
at, 

INASA-CR-129817) DATA STORAGE TECHNOLOGY: N73-14190
HARDWARE AND SOFTWARE, APPENDIX B J.D.
Sable (Auerbach Associates, Inc.,
Arlington, Va.) 24 Aug. 1972 60 p Unclas

CSCL 09B G3/08 16410

~ AINAL TE(lNIA

A_'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I~c



DATA STORAGE TECHNOLOGY - HARDWARE

AND SOFTWARE

APPENDIX B TO

TECHNICAL REPORT
1958-100-TR-004

By:

JEROME D. SABLE

Submitted to:

NASA Headquarters
Under

Contract No. NASW-2285

x~~_
August 24, 1972

AUERBACH
0

AUERBACH Associates, Inc.
1501 Wilson Boulevard

Arlington, Virginia
22209

I



TABLE OF CONTENTS

PARAGRAPHI TITLE PAGE

SECTION 1. SUMMARY

1.1 PURPOSE OF THIS DOCUMENT 1

1.2 PURPOSE OF THE DEVELOPMENT PROJECT 1

1.3 PRINCIPLE BENEFITS AND BENEFICIARIES OF THE RESULTS 2

1.4 SCOPE 4

1.5 ORGANIZATION OF THIS APPENDIX 6

SECTION 2. BACKGROUND

2.1 THE PROBLEM OF UTILIZING MASS STORAGE AND MANAGING DATA 7

2.2 THE STORAGE MANAGEMENT FUNCTION 8

2.3 THE DATA MANAGEMENT FUNCTION 11

SECTION 3. TECHNICAL DISSERTATION ON MANAGEMENT OF
STORAGE AND DATA

3.1 INTRODUCTION 13

3.2 DATA NEEDS IN LARGE MULTI-USER SYSTEMS 13

3.3 BASIC CONCEPTS OF STORAGE AND DATA STRUCTURE 15

3.4 STORAGE SYSTEMS 19

3.5 DATA MANAGEMENT SYSTEM ARCHITECTURE 26

SECTION 4. STATEMENT OF THE PROBLEM AND REQUIREMENTS

4.1 THE STORAGE DEVICE AND THE STORAGE MANAGEMENT SYSTEM 32

4.2 THE DATA MANAGEMENT SYSTEM AND ITS INTERFACE WITH
THE USER 35

SECTION 5. DISCUSSION OF THE PROJECT

5.1 STORAGE MANAGEMENT 42

5.2 DATA MANAGEMENT SYSTEM 47

REFERENCES 57

AUERBACH



SECTION 1. SUMMARY

1.1 PURPOSE OF THIS DOCUMENT

This document describes a project effort, and can be used by

NASA to evaluate the worth and feasibility of launching that project

effort. The subject project involves developing more economical ways of

integrating and interfacing new storage devices and data processing pro-

grams into a computer system. It involves developing interface standards

and a software/hardware architecture which will make it possible to develop

machine independent devices and programs. These will interface with the

machine dependent operating systems of particular computers. The develop-

ment project will not be to develop the software which would ordinarily be

the responsibility of the manufacturer to supply but to develop the

standards with which that software is expected to conform in providing an

interface with the user or storage system.

1.2 PURPOSE OF THE DEVELOPMENT PROJECT

The purpose of this project is to specify the components of a

1 ~A

AUERBACI4



storage management system employing devices of advanced performance and

massive capacity. The intent is to permit the development of a NASA

standard system, which avoids the cost of developing individual mass data

storage systems for each installation and eliminates differences in the

procedures for automatic access to them. The system components, and the

related development to be undertaken by the project are:

* Storage Devices. A hierarchy of storage equipment,
ranging across the speed/capacity/cost spectrum, and
consisting of items of standard manufacture will be
used. Performance specifications for the devices
required will be developed by this project.

* Storage Management Processes. This comprises the
processes necessary to the logistics of moving data
automatically between slower- and faster-access
storage, which may be executed by hardware dedicated
to the purpose or shared by other processes. The
project will develop effective strategies, and a
system architecture, for carrying out these storage
management functions.

* Data Management Processes. These consist of
programs to provide data management services, such
as establishing a file, reading into it, writing
from it, etc. The project will specify a set of
data types suitable for general NASA use and a
Data Management System architecture which supplies
a full range of necessary services for these types.

* User Language. The project will specify a language
for invoking the services of the Data Management
System.

The project will also develop a storage system simulator,

which will be used to determine the performance of a given mix of devices

in a storage hierarchy and/or a given logistics strategy employed by the

storage manager.

1.3 PRINCIPLE BENEFITS AND BENEFICIARIES OF THE RESULTS

The obvious areas to benefit from the use of a systematically

specified set of storage devices are NASA's ground-based computing

facilities, particularly those requiring access to large, on line data

2 A
AUERBACN



bases. These results of a uniform set of performance specifications are

likely:

* A set of storage devices which more closely meets
the needs of NASA is apt to become available.

* The Data Management System's paging function, which
provides for automatic data movement across storage
levels, will be more effectively designed, implemented
and debugged.

* The way the Data Management System interfaces with the
storage device controller will be designed once and
will not have to be modified for each device or
installation.

The use of the same data management system at several mass

storage installations means that the stored data bases will be accessible

in identical ways. Thus computer programs used to interact with data

stored at any one of the installations will work equally well with all,

aside from substantive differences in the data itself. This greatly

simplifies program development for a single consumer of data which is stored

at several of the sites, all using the standard Data Management System.

The availability of a standardized interface which provides

data services at a number of levels, appropriate to a number of user types

can have a profound effect on the cost of new program development for

NASA. It is almost trite to say that the problem of data logistics is

one of the most dominant problems in computing today. Every program,

whether application program, compiler, or query interpreter, requires

these services, hence every programmer must solve a data logistics

problem. If these services are provided in a centralized, standardized,

way in the computing facility's operating system then a large proportion

of the cost of program design, implementation, debugging, and maintenance

can be avoided.

3



There are certain difficulties inherent in undertaking this project

and, in fact, procuring systems which satisfy these goals.

(1) NASA is a small part of the customer base of any one vendor
and hence may not be able to sufficiently influence the design
of the computer manufacturers' operating systems or storage
devices.

(2) Manufacturers may be well into the next generation of
operating systems design by the time these standards are
completed, so that they may be committed to an incompatible
course.

On the other hand, the arguments in favor of developing these

standards at the present time are as follows:

(1) Computer manufacturers and independent software firms will
be developing data management systems in the near future.
There will be continued development of new computers and
operating systems by manufacturers. Timely guidance by NASA
may very well affect the course that this development may
take.

(2) There are no existing interface standards in these areas
and the need is recognized as critical.

(3) CODASYL's Data Base Task Group (DBTG) has proposed a standard
Data Management System language, but many professionals and
manufacturers feel that the DBTG specifications are not
adequate for use as the common approach. They are not suf-
ficiently complete, and what has been proposed has deficien-
cies. The shortcomings are with respect to data independence,
data integrity, and compatibility. A fresh look by NASA,
from a broader archetectural base, may contribute to an
improved specification, satisfactory to CODASYL, manufac-
turers, and users.

1.4 SCOPE

The project comprises eight developments, divided equally between

Storage Management System and Data Management System Tasks.

(1) Defining a Storage Management System Architecture. The
functional specifications of a Storage Management System are

4

A
AUERBACH



to be defined, along with at least one strategy for reali-
zation and use.

(2) Defining an Optimal Set of Storage Device Characteristics.
The performance and control specifications for an optimal
set of storage devices suitable for NASA-wide procurement
are developed. In order to match these characteristics to
NASA needs, statistics will be gathered and evaluated on
representative data storage requirements and flows.

(3) Storage System Simulator. A system flow model and simulation
program will be developed to estimate the performance of a
given Storage Management System under various problem mixes.
The model will permit a hierarchy of devices optimal for
typical job mixes.

(4) Feasibility Studies and Analysis. Studies to evaluate the
technical feasibility and probable industry/user acceptance
of proposed device and interface standards are conducted.

(5) Specification of a Set of Data Types. A set of data types
required by the range of system users and their applications
is developed. These types range from the machine-oriented
structures used by systems programmers to the application-
oriented structures used by analysts.

(6) Development of a DMS Language. The data services, user
languages, and the DMS/program interface concept are developed
in this task. The language must have comprehensive data
description and manipulation capabilities in order to
facilitate program transferability.

(7) Development of a DMS Architecture. The architecture of the
DMS is viewed as a set of virtual machine types which provide
standard data management services to the program. Each of these
types makes data available to the user at a logical and control
level appropriate to his needs. In the larger computers,
microprogramming can be used to implement the set of virtual
machines.

(8) Feasibility Studies and Analysis. This task evaluates the
realizability and performance of DMS designs, the effect of
a standard design on DMS technology, its relationship
with other proposed standards, etc.

5A
UERUCH



1.5 ORGANIZATION OF THIS APPENDIX

1.5.1 Section 2. Background

In the background section, the major considerations arguing for

the development of NASA standard mass storage hardware and software are

discussed.

1.5.2

types of

advanced

1.5.3

1.5.4

Section 3. Technical Dissertation on the Management of Storage
and Data

This section discusses technical subjects germane to this project:

users and levels of data control; storage management concepts;

storage device capabilities; and data management system architecture.

Section 4. Statement of the Problem and Requirements

In Section 4 the tasks of the development are discussed.

Section 5. Discussion of the Project

Section 5 sets forth possible approaches to the storage management

and data management tasks.

6

A



SECTION 2. BACKGROUND

2.1 THE PROBLEM OF UTILIZING MASS STORAGE AND MANAGING DATA

The optimal design of a mass storage system, its efficient

utilization during computation, the providing of useful data services to

the programmer, and the effective handling of data logistics during program

operations are some of the most important, and least satisfactorily

answered, questions facing large-scale computer users at this time. These

are the issues of data management, using the phrase in its broadest sense,

and because they are related they deserve comprehensive analysis as a set

of related issues. A concerted attack on these problems may yield the

most powerful solutions and such an attack, in fact, is planned in the

study proposed in this Appendix. For convenience, the study is divided

into two facets, storage management, and data management. The problems

of the design and selection of a storage system and the handling of

physical space allocation and physical data storage logistics are treated

within the first task (storage management), while the problems of the

programmer interface and logical data structures are treated within the

second task (data management).

7

A
AUERBACH



The terms physical data and logical data are sometimes used to

distinguish between two levels of the data management function. The first,

physical data, is intended to imply concern with data for purposes of

storage and movement, with no concern for its internal structure, meaning,

or ultimate use. The second, logical data, is intended to imply concern

with the internal structure (names, formats, relationships, etc.), meaning,

and use of the data. Actually, this distinction turns out to be less use-

ful than might appear on the surface because whether a given data entity can

be considered physical data or logical data depends on the particular

process it is undergoing at the moment and may, in fact, be treated as a

structureless commodity at one moment and undergo an internal interpretation

and decomposition at the next. Thus, although the distinction between

physical data and logical data as such is apt to be equivocal, there may

be some argument for the concepts of physical data management or logical

data management as descriptive of a function being carried out at the

moment.

Actually, as will be made evident below, the subdivision of data

management is multi-level, not dichotomous, with the identity of the stratum

dependent upon the kind of structures being considered at the moment, so

that the physical/logical distinction will not be generally made hereafter.

The storage management/data management distinction will be made, however,

and this will depend upon whether the basic concern is with the storage

devices and their efficient use, or with the management, interpretation,

and use of the data which is stored in the system.

2.2 THE STORAGE MANAGEMENT FUNCTION

The storage management function comprises the specification and

selection of a set of storage devices with adequate capacity for the

installation, and a strategy (possibly a hardware storage processor) for

allocating and managing storage space. The storage management function

becomes critical when the total capacity required exceeds the capacity of

fast-access disk systems and the responsiveness required can neither be

compromised nor can it be satisfied by traditional manual reel-handling

8

AAUERBACH



approaches. There are several instances in NASA where fast (real-time)

response is required in installations which manage data volumes in the tril-

lion bit range. To meet these demands requires the utilization of the

latest terabit (1012 bit) capacity mass storage devices and advanced

level-changing strategies in multi-level (hierarchic) storage systems. By

level-changing is meant the transfer of data from slow-access to faster-

access storage. A subsidiary need is to take full advantage of recent

advances in storage devices and storage management algorithms, and perhaps

to specify needs not satisfied at the moment in order to channel further

research in storage devices and strategies into the most productive areas.

Research in information storage has spawned two new technology

areas which promise devices with characteristics distinctly differenct from

those available at the present time. The first area, which can be called bit

transfer devices, promises to fill the space-time performance gap between

magnetic core and drum/disk memories. The second area is optical storage

of information in the form of a hologram or interference pattern. This second

area presents the unique capability of providing parallel access to a page

of data in microseconds. The emergence of new storage device technologies

such as bit transfer devices (which include magnetic domain devices,

charge-coupled devices, and others) and holographic stores significantly alters

constraints on access time and capacity so that storage hierarchies of much

more flexible characteristics can become available.

Several questions arise as a result of these developments, and

form the subject of this study.

(1) Can a set of standard storage system specifications
be developed which will guide the development and
procurement of storage devices so that the following
conditions are satisfied:

(a) the needs of specific installations, applications,
and programs are satisfied,

(b) an optimal set of devices for NASA-wide procurement
are provided, and

9

A
AUERBACH



(c) the gamut of storage device technologies are
exploited without undue constraint?

(2) What device characteristics should be available inthe
storage hierarchy of a given facility to maximize the
effectiveness of the system?

(3) What storage management strategies should be developed to
fully utilize a multi-level storage hierarchy?

Bit transfer devices and holographic storage systems can be

engineered with a wide range of characteristics such as capacity, block

size, and mean access time. There are a number of reasons why NASA should

remain abreast of developments in these technologies and seek to guide

the characteristics of devices which are developed, and control or stan-

dardize the characteristics of the devices it procures. Without the guidance

of large-scale users such as NASA, it is likely that a set of devices with

non-systematic characteristics will become available as each manufacturer

seeks out a particular, and what appears to him as a unique, market

segment. However, from the standpoint of efficient software development,

it is important that the systems programmer be presented with a consistent

and uniform set of hardware environments so that storage allocation and

strategies can be effectively evolved. The results of this project will be

an important step in insuring that this does indeed take place.

The obvious areas to benefit from the utilization of a system-

atically specified set of storage devices are NASA's general purpose

ground-based computing facilities and the general software development

activities associated with them. (Specialized spaceborne computers may

also benefit as bit transfer devices are developed and achieve wider use.)

These results of a uniform set of performance specifications are likely:

(1) A set of storage devices, which more closely meet the needs
of NASA, is apt to become available.

(2) The Data Management System's paging function, which provides
for automatic data movement across storage levels, will be
more effectively designed, implemented, and debugged.

10

A
AUERBACH

® 



(3) The way the Data Management System interfaces with the
storage device controller will be designed once, and will
not have to be modified for each device or installation.

2.3 THE DATA MANAGEMENT FUNCTION

The cost of problem analysis and programming dominates by far

the cost of computer utilization. This dominance will increase in the

future as hardware elements become more powerful and economical and problems

become more complex and demanding of highly skilled analysis. As this trend

continues, users are seeking ways of permitting economic transfer of programs

and data from one installation or hardware type to another. At the same

time, new storage technologies which both extend and interpolate the

range of performance characteristics available (in both capacity and access

time) compound the complexity of data management strategies, such as auto-

matic level changing, and make it mandatory that an organized and systematic

attack on these data management problems be launched.

A proposed approach to these problems is a multi-level hierarchy

of data management services integrated into the hardware and software of

a program's environment.

If this strategy is adopted for a number of NASA installations,

it will provide a powerful tool for increasing the effectiveness of program

development activities and also serve to achieve standardized environments

for program execution, hence as a powerful vehicle for achieving program and

data transferability across installations and machine types. Although the

organization of a Data Management System component of an operating system

which meets these objectives can be outlined, there are central unsolved

problems which still exist for machines which are to be used to manage

large collections of shared, inter-related data for users at different

levels (system programmers, application programmers, analysts, managers,

and planners). However, these are some of the central and fundamental

problems in computing today and an organized assault on these problems

promises a high payoff in terms of potential efficiencies and inroads into

the solution of long-standing problems.

-11A
AUERBACH

CA



The traditional approaches to data and program transferability

have been through (a) the use of compatible hardware types which have

presented "equivalent" hardware interpreters for data and program, and

(b) the use of standard higher level procedure-oriented languages and

compilers to translate programs into a particular machine type. The

first approach guarantees complete interchangeability only as long as the

program's support software is duplicated but removes the possiblity of

matching special hardware types to problem areas for which they may be

particularly appropriate. This restriction is unnecessarily severe in many

cases. The second approach avoids this restriction but there are many

problem areas for which standard procedure-oriented languages have not been

adopted. Indeed, many systems will continue to be implemented in assembler

and macro level languages.

It is believed that the problem of data and program transferability

can be approached most generally by extending approach "(a)" to include

software as well as hardware interpreters. Software interpreters, or

simulators, have been used in the past to transfer a machine language

program from machine A to machine B. However, these have not been entirely

successful or widely used. The success of this approach hinges on the

ability to write programs for one of several standard environments and to

describe in a standard, yet general, way the data structures which are

to be transmitted and interpreted. To permit general applicability, from

machine level programs and data through to higher level language programs

and other character stream messages, requires that a wide range of data

structures and languages be describable in a standard way. The language

description standards must include the lexicographic, syntactic, and

semantic levels.

12A

A
AUERB1ACHI



SECTION 3. TECHNICAL DISSERTATION ON MANAGEMENT OF STORAGE AND DATA

3.1 INTRODUCTION

The problems of the proper management and control of data and the

effective utilization of mass storage resources remain as key technical

issues in the utilization of computers for data processing. These issues

are critical for NASA because of the large amount of data collected in

aerospace research and the need for its timely analysis and widespread use.

The NASA environment - widespread distribution of resources, continuous and

intense computer program development, a large variety of data, data users,

and user needs - compounds data control and storage problems.

3.2 DATA NEEDS IN LARGE MULTI-USER SYSTEMS

A typical general purpose computing facility in NASA is used by a

large number of specialists (and non-specialists) with different kinds of

skills and different kinds of needs for languages, services, and data. One

can, for convenience, identify the following types of user and his needs:

13 A
AUERBACH



(a) Systems Programmer - the "toolmaker" who devises software
systems for other programmers to use. He is the skilled
programmer who develops compilers, data management systems,
display systems, simulators, etc. He requires access to the
basic hardware, may program in assembly language, and utilizes
the more primitive data structures such as pages and segments.

(b) Applications Programmer - develops an accounting system, an
inventory system, a real-time control system, the engineering
analysis of a structure, etc., using more basic tools such as
compilers, assemblers, debug systems, etc. His "products"
may be used parametrically by non-programmers. He deals with
a wide variety of data structures, from pages and segments
to user-oriented files.

(c) The Analyst - not a programmer, but someone who may use
application programs to solve a detailed technical problem.
He understands a technical discipline and may be using the
computer and programmed systems as tools to solve his problem.
He is the statistician analyzing experimental data, the
engineer developing a structure or analyzing a network, or
the accountant preparing a specialized report. He understands
the use and limitations of his software tools, the parameters
required, etc. He is never concerned with machine-oriented
data structures but deals with scalars, vectors, and arrays.
He may wish to create a network-like structure of data
elements.

(d) The Data Administrator - performs a service function in
assisting other users in utilizing a large common data base
to solve problems. He helps establish the design of the
data base, to optimize its effectiveness over many applica-
tions and users, establishes access rights, priorities, and
is responsible for the integrity of the data base. He helps
to train other users in the effective use of data resources,
and the data management system.

(e) The Manager - uses packaged applications in a prescribed
way. He is not expected to be expert in either the structure
of the data base or the use of programmed systems. He
customarily interfaces the computer through the analyst,
or data administrator, but may enter data or queries within
a prescribed interface and range of capabilities. He deals
only with application-oriented data entities and is not
concerned with their coding or representation in the system.

14 A
MJERBACH



BASIC CONCEPTS OF STORAGE AND DATA STRUCTURE

3.3.1 Storage and Data

A clear distinction between storage structures and data structures

should be drawn at the outset of any discussion of the storage and data

management aspects of computer systems. A terminology which will permit

accurate discussion of storage structures and can serve as a foundation for

the discussion of data structures will be developed. By a store is meant

a device which contains addressable space in which digitally coded informa-

tion, or data, may be recorded (written), and then retrieved (read).

Devices whose storage space may be reused (that is, in which data may be

erased and rewritten) form the most important class of stores.

From an orientation of the data system architect, storage devices

can be examined with respect to their logical characteristics, rather than

physical characteristics. Thus work-addressable stores such as magnetic-

core, twistor, plated wire, and thin-film memories all fall into the same

class, while magnetic drum and head-per-track disks are logically similar.

The larger capacity memories with random-access plus sequential access

aspects are moving-head drums and disks, and magnetic card and strip.

Magnetic tapes can also be thought of as having random-access plus sequential

access components, if retrieval and mounting of the reel is considered.

The principal characteristics of a storage device, from the

standpoint of the data system architect, are the capacity (size) of the

addressable storage element, data access time, and data transmission rate

associated with ito A computer system will invariably contain stores of

differing capacity and access time. These will range from low-capacity/

fast access (primary) stores to high-capacity slower access (secondary,

tertiary, etc.) stores. Typically, these real stores (devices) will be

separately addressable, yet it will be convenient to think in terms of an

address space which covers all accessible storage in a system. Intervals

in this virtual address space, or virtual store, can then be mapped to

areas of real storage. We will talk of allocating intervals in the address

15 A

3.3



space to data entities, and will use the words cell, block, and track

to designate units of addressable and allocatable storage space in which

data may be recorded. In the discussion of data structures which will take

place later, the terms word, page, and train will designate data entities

which may be recorded in the previously mentioned storage elements.

The design of effective data management systems must be based on

consistent, precise, coherent, and adequate notions about storage, data

and associated mapping and transformation operations. Unfortunately, there

is no commonly agreed upon theory of data management and therefore we must

face up to the problem of terminology. That is precisely why it is important

to define these terms and others as they arise. The particular terms used

are not as important as the concepts which they represent.

The cell is the basic addressable unit of primary storage. A

block is a fixed length sequence of cells, and a track is a variable length

sequence of cells or blocks.

3.3.2 Storage Device Features

Storage devices are available in a variety of media, physical

characteristics, and logical characteristics, and as we already mentioned,

a given data processing system configuration will usually employ a variety

of device types with different characteristics. This is due to two factors,

(1) the existence of data entities with differing accessibility require-

ments, and (2) the economic tradeoffs of capacity and access time in storage

devices.

Taking a broad view for the moment and considering data as

anything which must be stored, it is clear that system data (programs and

the entities they operate on) take many forms. Some must always be resident

in primary storage (magnetic core memory), but others may be transferred

from secondary storage (drum or disc) to be operated on.

Data processing system performance is usually measured in terms

of the complementary aspects of throughput and responsiveness. Throughput

16 A
AUERBCH



refers to the speed at which operands are converted into results, and can

be measured in bits per second (although throughput has also been measured

in instructions per second). Responsiveness, sometimes called turn-around

time, refers to the time delay between submitting a job and receiving the

results. Throughput is maximized in the processing mode known as batch

processing, in which operands for each task are batched or queued so that

set-up time is small compared to productive running time. Responsiveness,

on the other hand, is maximized by responding to each operand as it arrives.

This processing mode, called on-line or real-time processing, is required

when there are short real-time deadlines. In this mode, overhead factors

such as set-up time and process switching may become large compared to

productive processing and, as a result, throughput will suffer. It is

clear that real-time processing may require fast access storage devices.

Throughput is limited by internal processing speeds, primary

memory access times, and data transfer rates from storage and input/output

devices. Responsiveness, however, is primarily limited by secondary storage

access time, and external devices.

The most economical storage, in terms of capacity (bits) per

unit cost (dollars) is magnetic tape reels. Magnetic tape also provides

high physical density of storage (bits per cubic centimeter). The highest

performance storage (from an access time and throughput standpoint) is

magnetic core (or more exotic and costly media such as semiconductor

registers, and thin film memories). Between these extremes lie a number of

device types and media such as (in order of increasing performance) tape

strips, disks, and drums.

3.3.3 Multi-level Storage Management

What the programmer would like is to be able to take advantage

of the economies of multi-level storage hierarchy, yet have intervening

hardware/software elements which permit him to view storage as a large

single-level addressable store. A powerful method for accomplishing this

17 A
AUERBACN



is to give the programmer a large address space, called a vritual store

or virtual memory, while delegating the responsibility for transporting data

between levels ("level-changing") to a combination of special purpose

hardware and software elements. When the transfer of data across levels

takes place in fixed-size elements called pages, we call this an automatic

paging system.

A virtual address (the address of a word in virtual memory) is

made up of two fields, a page address and a word address within the page.

Only a limited number of a program's pages will be stored in primary storage

at any time. Hence, a page-mapping table is required to locate pages

wherever they may be stored in the storage hierarchy. The page table,

usually implemented in a hardware associative memory, transforms the page

address into a block address in real storage. If it falls in the block

address part of primary storage or "memory," access is made immediately.

If the block address is not in memory, a page fault occurs and paging must

take place. That is, a reference is made to the page on secondary storage,

it is brought into memory, and the page table is corrected accordingly.

During the paging time the task has been interrupted and the central pro-

cessor has been executing another task.

The effectiveness of this process depends on a careful engineering

of many factors that can influence the performance of the system. Some of

these are as follows:

* the size of primary storage

* page size

* the speed of access to secondary storage

* the allocation strategies at each level of storage

* the number of competing processes.

18 A
AUERBACH



3.4 STORAGE SYSTEMS

3.4.1 Technological Problems in Storage Management

Current and future aerospace experiments generate and utilize

vast amounts of data. The total amount of data needed in a large scale

computer installation on a regular basis is in the terabit (10 -bit)

range, exceeding by a factor of 100 to 1000 the amount which can be feasibly

accommodated by expensive fast-access disks and drums. Consequently, a

tiny fraction of the required, active, data can be entitled to on-line

residence, accessible within about 150 milliseconds of the time its need

is apparent, while the vast majority of data remains beyond a large gap

in access time, accessible only after tapes or disk packs are found and

fetched from a library and physically mounted by an operator.

A large gap in access time actually occurs at the other extreme

as well, between the sub-microsecond access time of word addressable (e.g.,

magnetic core) primary memory and the multi-millisecond access time of

drums and disks. This problem is often approached, and sometimes solved,

by data access strategies called paging systems, based on multi-channel

servicing of queued requests from independent programs. Not all problems

and processing situations lend themselves to this approach.

In the past, there has been no good universal solution to the

above access time gaps. One used paging systems for the secondary/

primary storage data movement requests, and for the tertiary/secondary

storage data movement, one used tape and disk-pack libraries, mounting and

demounting of volumes by operators. With both of these approaches one

suffered the attendant delays in responsiveness or job turn-around time,

and comparatively inefficient utilization of the other resources

committed to the job.

There was no acceptable middleground in these gaps in the

past. However, current and emerging advances in storage technology,

promise to fill the core/disk gap in one instance, and provide for terabit

19 A



levels of on-line storage in another instance (at one hundredth the cost

per bit os disk storage).

We will address the emerging technologies in each of these areas,

and examine the problems facing NASA in effectively exploiting these

developments.

3.4.2 Storage Hierarchies

All large-scale computer systems utilize a hierarchy of stores

whose capacity, access time, and (usually) density increase as one moves

"outward" from the central processor. This architecture is generally found

in large machines because of two economic factors. The first is the cost

and throughput of a central processor, which vary with the word length

(or width of the memory bus) of the machine; since an instruction word

must contain space for each cell address in primary storage, the word

length and hence cost must vary as the base-two logarithm of the capacity

of the word-addressable storage system. The second factor is that word-

addressable storage has a higher cost per bit and faster access time

than block-addressable storage.

Storage systems are organized into levels of addressability and

accessibility such as cell, block, track, etc. in order to maximize the

performance/cost ratio of a given computer facility.

These factors are reinforced by the fact that the access pattern

to cells in main memory is not random, but tends to be made up of linear

sequences from a small number of (program or data) arrays at any one time.1

Stating this from a slightly different viewpoint, historically (and currently)

hardware and software strategies are such as to require execution of linear

arrays of instructions and/or data. Current machine architectures, as well

as compilers and data management systems, are designed to exploit the fact

that access to contiguous strings of cells and blocks in storage is more

efficient than random access to cells of storage.

20 A
AUERBACN



The memory hierarchy of a computer system usually encompasses

three or more levels of storage and the largest systems can conceivably

utilize five or more. At the present time these levels in the storage

hierarchy usually embrace different device technologies, each providing

an optimal capacity/cost tradeoff for the desired access characteristics.

The technologies involved may include integrated circuits, magnetic core,

magnetic drum, disk, strips, and tape. To these are being added the

emerging technologies of bit transfer devices such as magnetic domain and

charge coupled devices and optical storage devices, both bit-by-bit and

holographic. Bit transfer devices are particularly attractive for NASA

applications because they do not involve moving parts and hence can be made

highly rugged and reliable. Also, they can be designed to fill the per-

formance gap between core and drum. Several papers relevant to the role

of bit transfer devices in storage hierarchies have recently appeared
2

3

The technology of digital storage covers a vast domain from

the nanosecond access of bipolar integrated circuit technology to kilo-

second access of tape archives. A large-scale computer installation may

actually involve this range of data access in its storage "hierarchy."

Figure 3-1 shows that as we move across the technologies of integrated

circuits, magnetic core, "bit transfer" devices such as charge-coupled

and magnetic-domain devices, rotating drums and disk, strips, and tapes,

we find that the range of twelve orders of magnitude of access time is

accompanied by a range of ten orders of magnitude of capacity and seven

orders of magnitude of cost per bit.

We also see, in the same chart, the progress made in the

technology over the last four years, and projections for the next four

derived from current projects in development.

There are two areas of particular interest to us with respect

to this study:

(1) the performance gap between core and drums

(2) the upper range of capacity of a trillion bits or more.

21 A
AJJERBAI.



-I

-2

3

4

i;Ipolar

-r-A
Io 

-0 1

I
I
I Mos I

- L1_J

Main
.Core Bulk
- Core

I IL c- I

Head per Track
Drum/Disk

8 -

- - -II I
I- I I I I ~ I I I I I I I ~ I

-8 -7 -6 -5 -4 3 -2

Average Access Time (logo seconds)

opt
Disk

Ia
. I

I
_ n~~~~~~~~~~~~~~~~~~~~~~I

BTD I R

r u 1k|~~~--~ Fo~ l - - 'LI

- .R \l \ Core

1 D tMain . A = 196
Core 197

~Bi~p48~MtaO - 197
Cor 0 L197LUP t 17'

1 0 1 2 1 4

0 TPM--- I 

· II
Da~~~~~~~~~~ta~~~~~~/ I I v

Cell I T .I

° 1 I s NION1l I

S Tape

~~~~I I ~'Mag I S IHypert~ape

Magi
Disk 

Head/ 
Track |

Legend

.8

72

i5

I .

C =
BTD =

p -

T 
V =

Integrated Circuits
Magnetic Core
Rit Transfer Devices
Rotating ':tores
Tape
Vault (off-lineN Storage

Figure 3-1. Storage Characteristics

22

A
AUERBACH

e

'c
_ -6
.0

O- 6
to
0

:' 7
U

.,4
1.4

A.

13 

12 

II

10

9

8

7

ao
L4

.0

0

soO0
rt

aj
4'-4

U
o

CL

0-

a

v

6

5

4



The performance gap between core and drum can be filled possibly

by magnetic domain-wall movement devices such as the "bubble store" being

developed by Bell Telephone Laboratory and others. They will have an upper

limit of capacity of about a billion bits.

Storage systems which have the potential capacity of a trillion

bits on-line can be achieved with either extended performance magnetic head

recording on wide tape, or optical recording on wide strips, tape, disks,

or planes. Optical recording can be accomplished in either a bit-by-bit

or holographic mode. Holographic mode optical recording will have a higher

potential impact on computer system architecture than other forms of mass

storage.

3.4.3 Bit Transfer Devices - The Billion Bit Store

The block-addressable random access storage devices in the

billion bit range available at present or the near future are based on

movable head disk technology. These devices require serial transfer of

pages to primary memory before data is accessible to the central processor.

Access time is on the order of tens to hundreds of milliseconds due to

lateral head motion and rotational latency. However, there is an emerging

class of devices, currently in the research stage, which promises to achieve

block addressability in the billion-bit range with no mechanical motion

and with an improvement in access time of at least two decimal orders of

magnitude.

This class of device, of which Bell Telephone Laboratories'

(BTL) "magnetic bubble" device is the the prime example, can be called bit

transfer devices because they depend on shifting or propagating a serial

bit stream along patterns or channels lithographed onto some substrate.

The bit stream is sensed and generated at stationary positions along the

propagation channel.

Devices in this class, along with BTL's "magnetic bubble"

cylindrical domain device which has been mentioned, include charge coupled

23 A
AJJERBACH



devices, magnetic domain propagation along helical wire and zig-zag

patterns of magnetic film, and acoustic stress wave induced readout along

magnetic strips on a glass substrate used for propagation of the stress

wave.

These devices can achieve a storage density of 10 bits/cm.

The BTL device, achieves its shift energy from a rotating magnetic field,

eliminating the need of conductors to carry the shift signal. However,

due to the need for a lithographed permalloy pattern at each bit position,

and the use of a relatively critical material, the cost per bit of these

devices is likely to remain higher than disk storage.

3.4.4 Mass Storage - The Trillion Bit Store

Conventional magnetic recording on moving media such as disks

and tape have reached a limit of 10 bit/mm. in devices like the IBM 3330

disk, and Ampex TBM. Random access time in the hundred millisecond region
2probably requires that we keep recorded area below 10 m , making the limit

of capacity around 1010 bit for conventional disk technology.

However, optical recording on magnetic and amorphous semi-

conductor (Ovonic) media can increase the practical recording density to
4 2

5 x 10 bit/mm . Several systems based on optical bit-by-bit recording on

disks are under development at a 10 bit/mm density. Thus, laser optical

recording will put the trillion bit random access store within reach

of disk technology. These developments are under way at Ampex and OMI.

It is probable that the large computer manufacturers have similar projects

underway.

An even more impressive improvement in storage density, hence

access time, is promised through the use of holographic, rather than bit-

by-bit recording. A hologram is a recording of the interference pattern

formed when the light from an object illuminated by the coherent light of

a laser is mixed with unmodulated light from the same laser. In digital

holographic recording the hologram of a mosiac of light valves is formed

24 A
AUERBACH



on an area of one square millimeter or less. Because surface imperfections

affect only the signal-to-noise ratio of the entire image, and not specific

bits, and because a stationary medium is ued, (eliminating errors due to

vibration, eccentricity, etc.), the full theoretical resolution of the

medium can be approached. Although theoretical densities of 10 bit/mm
3

have been quoted for thick (volumetric) holograms, practical results for

digital storage systems have been demonstrated only for surface holograms
5 2

at a density of 10 bit/mm2.

2 12
Although this would require 10 m for a 10 bit system, it

would be difficult for a practical holographic system to handle this area

of storage medium due to alignment tolerances. However, RCA feels a 1010

bit system with 10 pages and 10 bit/page accessible in microseconds is

possible. Such a system, using .1 m of medium area is probably the upper

limit in systems whose entire medium area is electronically accessible.

Such a system would provide parallel access to a page of 10
5

bits. Serious thought would have to be given to the question of how this

can be used, and whether, in fact, a multi-channel system with smaller pages

would be better. In any event it is clear that the holographic store

with microsecond access time to a large fraction of main memory will have

a major impact on computer architecture.

Assuming such a device will become available, other interesting

conclusions can be drawn. The need for BTD's such as discussed above

is obviated on a performance basis (but perhaps not on a performance/

cost basis). However, the holographic store does not obviate the need

for archival storage since the holographic medium is limited in capacity.

Replaceable media introduce alignment errors which reduce net achievable

density.

The holographic storage device is not nearly as imminent as

bit-by-bit optical storage on disk or the magnetic bubble store. Serious

research problems still exist with respect to media, page composers, and

deflection systems for holographic systems. Because of this, one cannot

25 A
AUERBACH



make an accurate estimate of when holographic systems will be operational

and commercially available. On the other hand, OMI is planning commercial

availability of the 4440 optical disk system in early 1973, although a more

conservative estimate for the optical disk system would be late 1973.

3.5 DATA MANAGEMENT SYSTEM ARCHITECTURE

In a common data base system, the data base is treated as a pool

of data which is shared among several different users in a variety of user

jobs. An environment for processing data in a common data base system is

shown in Figure 3-2. This figure shows the relationship between the user

and the Activity Management System which schedules user jobs and divides

the processing time of the system among several users and several tasks.

A typical user task is shown with its relationship to a data management system,

which is providing data services to it from the common data base (or as

named in this figure, the data pool). The data management system provides

services to the user tasks which allow the programmer to read and write

data entities at the appropriate data structural level. Depending on that

level, these entities may range from pages to records and fields from an

item structure.

3.5.1 Levels of Data Management Service

Data Management Systems should offer a range of data structure

types and will allow the user to involve himself, at an appropriate level,

with the logistics of data movement and the strategies of data structuring

and transformation. In effect, the user and the user task (the program

actively serving him) are provided with one or more virtual machines which

comprise his hardware/software environment.

Figure 3-3 illustrates the relationship between the user, his

task program, and the hardware/software environment. The levels of virtual

machines are listed as M0 , M1, M2 , etc. The dashed lines show the flow

of control and illustrate the logical dependence among service levels.

For example, M0 , or M0
and M1, may be implemented in hardware, or possibly

in hardware and firmware, while others, for example M2, may be provided

26 AH
AUJERBAcH



Figure 3-2. The User and User Task Environment

27



-- DATA 
I MANAGEMENT I

SYSTEM

ACTIVITYll

MAAGEMEN M
, .…-.I

~~~~~~~~~~~~~~Figure 3-3. Service Levels

Figure 3-3. Service Levels

28

STO R A G E
MANAGEMENT

SYSTEM



solely through software. It is useful to conjecture a system architecture

in which the user task program is unaffected by how many service levels are

hard or soft, and may be transferred to another environment or configura-

tion in which the division between hard and soft levels is entirely different

with no consequences to the program except possibly speed of execution.

This approach provides program transferability across configura-

tions, or even hardware types, provided that the data structures and the

service functions handled at each level have been standardized.

The Activity Management System is that part of the operating

system which interfaces with the user on the one hand, and schedules the

activities of program execution. It can provide for standard levels of

human user interfaces just as it and the Data Management System provide

for different levels of program interface.

The data structure types handled may range from the very

machine oriented sequences of continuous words and pages to the management

user oriented hierarchic files with variable length fields in a variety of

alphabets and codes.

Large-scale computer users, with large data base and program

investments need not be tolerant of a situation which prevents effective

program and data transferability across different hardware types and even

configurations. Standardization at the procedural language level (such as

COBOL) is inadequate for the system programmer and for many common data

base applications. What is required, and can be accomplished, is standard-

ization at a number of operating system (or call it virtual machine)

levels. CODASYL has developed a data description language at the applica-

tion level but is far from a solution to the problem of standardizing pro-

gram/machine interfaces. Research into this approach to the problem of

program transferability is just beginning to get underway.

The problems of providing data management services within an

installation, transferring data from one computer to another, and inter-

preting the data correctly, can be approached as a problem of constructing

29 A
AUERBACH



an adequate range of data structure types and devising a standard way of

describing these types. No one level of data description is adequate.

Rather, there must be a range of structures which go from the highly machine

oriented cell structure to the user-information oriented structure. It

is felt that a hierarchy of data structure types which is adequate for this

task can be devised.

The problem of data description, however, is but a special case

of language specification and special attention must be paid to the lexi-

cographic, syntactic, and semantic aspects of specification. Some recently

developed language specification languages and generalized language

processors can be brought to bear on this problem. These processors can

be employed as a standard interface in a network of different computer types.

When furnished with the description of the structure (languages) to be

accepted, they can carry out the appropriate translation and interpretation.

The stratification of data management services into a number of

standard levels would make it appear to the programmer that at any one

moment, he is interfacing with one of a number of virtual machines which

form an upward compatible hierarchy. These services may be, in fact,

provided by a mix of hardware and software modules which depends on the

particular system implementation, and the hardware types being used in a

given instance. Thus, each program has, as its interpreter, a virtual

machine whose interface with the program is known but whose composition may

vary and is irrelevant except for timing considerations. A given installa-

tion, because of hardware and software modules used, may provide inter-

pretive virtual machines only up to a given level, requiring programs

written for a higher level virtual machine to undergo a translation

process down to the appropriate level before interpretation can take place.

That the goals outlined above may be difficult to achieve in

today's technology is well recognized. However, it may be that at this

point in time the technology may be mature enough, and the payoff to

NASA great enough that NASA should embark on a comprehensive project

to ensure comprehensive data management services for computer users, and

software transferability across a wide range of problem areas and hardware

types without limiting the development of new languages and machines,

30 A
AtUERBAcH



SECTION 4. STATEMENT OF THE PROBLEM AND REQUIREMENTS

This Section defines the problems to be addressed in the project,

the basic purpose of which is to develop more economical ways of integrating

new storage devices and data processing programs into a computer system

which has a large and growing data base to manage. This is to be developed

in two major tasks:

(1) the development of methods for specifying hierarchies of
storage devices and storage management strategies

(2) the development of data management services for various types
of users.

These are recognized as complementary facets of the problem

of processing the vast amounts of data to be spawned by future NASA exper-

iments. The approach described here is one which improves the program-

ability of data storage systems which must be developed, as well as the

transferability of programs and data across installations.

31 A
AUERW:H



THE STORAGE DEVICE AND THE STORAGE MANAGEMENT SYSTEM

The objective of this task is to derive a storage system archi-

tecture and a set of storage device specifications which will meet the long

range requirements of NASA for massive (trillion bit) storage. This

system should accommodate new storage devices as they are developed with

a minimum of disruptive impact on mission-oriented programs and programmers.

The task involves defining a storage management system architecture, an

optimum set of device characteristics suitable for NASA-wide (or, preferably,

industry-wide) procurement, and analyzing the realizability of those

standards, and their potential acceptability by the manufacturer and users.

4.1.1 Defining a Storage Management System Architecture

It has been pointed out (Section 3.3) that storage devices which

provide fast access and word addressability invariably have a high cost per

bit while storage devices with low cost per bit and high capacity invariably

have a relatively slow access time. However, within these constraints,

and with one or two notable exceptions, storage devices with a wide range

of performance characteristics are now available.

One of these exceptions is the performance gap between core and

disk storage (Section 3.4) and the other is the promise of both high

performance and high capacity from optical holographic storage technology.

However, devices which will fill the access-time/capacity gap between core

and disk are now under development and may become available within a few

years. At the high capacity end of the scale, although holographic tech-

nology promises to achieve a break-through in performance, price, and

capacity, these devices may not achieve a "product" status for another

four to eight years.

As a result of this situation, the use of a hierarchy of storage

devices utilizing several technologies will remain the only effective

solution to providing optimal performance in those computer installations

which must provide access to an extremely large volume of data. In order

32

4.1



to realize the promise of high performance in a hierarchic storage configur-

ation a complex logistical problem of storage allocation and data movement

across levels of storage must be solved. This problem has indeed been

solved in specific installations and it is conjectured that a general

solution, insensitive to specific computer and storage device types is

possible. When realized, this hardware/software processor, called the

Storage Management System, will automatically allocate storage to data

and change the highest storage level allocated to a specific data entity

(page, or segment) either as a result of a specific program reference to

a data entity, or in anticipation of such reference. This process of dynamic

"level changing" will be a prime function of the Storage Management System.

As a result of this subtask, the functional specifications of a

Storage Management System will be defined, along with at least one strategy

for its realization and use. The specific design aspects which will be

specified are:

(1) the classes of storage devices to interfaced

(2) the storage device control interface standards to be used

(3) the data and control interface with the computer

(4) the interface with the operating system

(5) the level-changing algorithms

(6) the net access time and throughput performance achievable

with a specified problem mix.

4.1.2 Defining an Optimal Set of Storage Device Characteristics

Assuming the current and emerging state of digital storage

technology is accurately portrayed in Section 3.4, this subtask will

develop the performance and control specifications for an optimal set of

storage devices suitable for NASA-wide (and perhaps industry-wide)

procurement. The parameters to be specified, for each storage device,

are as follows:

33



(1) unit of addressability (block size)

(2) address domain

(3) access time

(4) transmission rate

(5) channel width

(6) control commands.

In addition to these performance parameters, the maximum capacity, and the

cost per bit as a function of capacity, should be estimated for various

storage technologies.

In order that the storage needs of NASA installations are satis-

fied with a high degree of confidence, the volume of data stored and the

storage needs in a representative selection (possibly all) of NASA's

general purpose data processing installations will be evaluated. Statistics

gathered should include estimates of data volume vs. access time required

for all applications with significant storage needs. The aggregate flow

of data across installations should also be estimated. Instances of data

stored redundantly (at more than one installation) should be carefully noted.

4.1.3 Storage System Simulator

In order to estimate the performance yielded by a given Storage

Management System and device set, a system flow model and simulation

program will be developed. The model will be capable of experimentally

determining the performance achieved by a given mix of devices (with the

above parameters) in a storage hierarchy and/or a given level changing or

control strategy in the Storage Manager.

The parameters of the flow model and simulation program will be

the problem mix, channel characteristics, device characteristics, device

mix, and storage allocation and level-changing algorithm. The simulation

program should be designed to change these parameters conveniently and

record the resulting performance changes.

34 ^A
AUERBACH



The model, when implemented and tested, will be used to estimate

the effectiveness of various mass storage device hierarchies at representa-

tive installations, for a number of typical job mixes.

4.1.4 Feasibility Studies and Analysis

As a final subtask of the Storage Management System task, a

series of studies and analyses concerning the feasibility of realizing

the Storage Processor and the storage devices will be carried out. The

following aspects should be examined:

(1) the technical feasibility of developing industry-wide
standards for givenclasses of system capability

(2) the extent of acceptability of these standards likely by
the manufacturer and the user

(3) the likely effect of these performance and interface
standards on the development of systems and the develop-
ment and exploitation of storage technology

(4) estimates of the realizability of storage devices with the
given characteristics and the likely dates of first commer-
cial availability of devices with those characteristics.

4.2 THE DATA MANAGEMENT SYSTEM AND ITS INTERFACE WITH THE USER

The management of data goes hand in hand with the management of

storage. The Storage Manager must interface with the Data Manager and it,

in turn, must interface with the user. Both systems involve hardware and

software aspects.

The objective of this task is to develop a data management

system architecture and its interface with the user. This will involve

specification of an appropriate set of data structure types, data manage-

ment services, and user languages appropriate for each type of user of

the data processing facility. The user may be a systems programmer,

application programmer, data base administrator, engineer, analyst, or

manager. These users, their roles, responsibilities, capabilities, and

35



needs have been discussed previously (Section 3.2). An important subtask

will be to develop and analyze alternate strategies for developing each

level in the data management system and evaluating its feasibility of

implementation and likelihood of its industry-wide acceptability.

4.2.1 Specification of a Set of Data Types

The management of large volumes of data is one of the key problems

which faces almost all users of general-purpose digital computers in NASA.

It has been recognized for some time that this problem can be approached

through the use of generalized data management tools. However, the wide

variety of users within NASA, and the disparity of their needs (see Section

3.2) raises the challenge (and the opportunity) of devising a comprehensive

approach to the data management problem with a system whose overall archi-

tecture makes optimal use of its structural elements in meeting the needs

of those users.

The Data Management System (DMS) should provide the capability

to define, create, store, retrieve, and modify the types of data entities

and data structures required by the range of users and applications which

the system must serve. These must range from the machine-oriented data

structures of the systems programmer, often tied to a logical or physical

address space, to the application-oriented data structures of the analyst,

application programmer, or manager, dealing with array, records, and fields,

usually devoid of addressing considerations.

The following types of data structures should be considered,

although the set is not unique, independent, or exhaustive:

(1) machine-oriented data structures, such as words, pages, and
segments (word sequences), which can be allocated directly
to storage structures, should be defined. A word would be
allocated to a cell in primary storage, a page to an
addressable block in secondary storage, a sequence of pages
or a segment to a track, etc. A word and page (all cell
and block) would be fixed, system-defined (rather than
user-defined) entities.

36 A
AUERBACH



(2) Fixed length elements whose size is user defined should be
handled. Also sequences or networks of such elements should
be definable. This would permit list structures to be handled.

(3) Variable length entities, and sequences of variable length
entities should be handled.

(4) Fixed and variable-length records whose internal structure
is defined to the system should be handled. The internal
record structure may contain fields of various types (numeric,
character strings, etc.), embedded records, and embedded
files. Files (record sequences) should be handled at any
level in the hierarchic structure.

A general capability which should be provided (as is evident in

the above structural types) is the ability to create sequences and hierarchies

of the definable elements. This is the basis of many processing strategies.

There are several basic methods for providing access to entities in a

sequence and these should be provided by the system. These are as follows:

(1) spatial access - the target entity is contiguous to the
current entity in an address space

(2) tabular access - the location of the target entity is
determined indirectly by reference to a contiguous (spatial
access) list of links

(3) chained access - the location of the target entity is given
by a link in the current entity

(4) calculated access - the location of the target entity
is a computed function of a unique access key, or name,
associated with the entity.

Additions or modifications to the data structures and entity

types listed above may be proposed, and the more complex entities can often

be defined and implemented as a sequence, tree, or network of a more

primitive type or in terms of a mapping of its elements onto another type.

4.2.2 Development of a DMS Language

As part of the previous subtask, a comprehensive set of data

structures will be defined as a basis for a set of standard data

services to be provided to the programmer and other users. A feasible

37 A
AUJERBACH



candidate set of data structures has been discussed above (Section 4.2.1)o

The data services, user languages, and the DMS/program interface concept

will be developed in the current subtask.

The use of a "host-language" concept shall be investigated and

adopted if feasible. In a host-language approach the data services are

accessible through service calls that originate in standard programming

languages, and the existing language processors need not be modified to

accommodate the additional user capabilities.

The user language should have descriptive, conditional, and

imperative components. The descriptive component should be a machine and

host language independent data description language appropriate for each

class of data structures. The conditional component should permit boolean

logical conditions to be imposed which defines a subset of the data base

or a unique data base element. The imperative component should define

the operation, command, or procedure to be carried out by the DMS.

The success of the approach to data access and retrieval and

data and program transferability being proposed here depends on the adoption

of comprehensive data description and data manipulation languages (DDL and

DML). These languages must meet a number of requirements:

(1) They must be able to handle at least the range of data
types listed above.

(2) The requirement to handle item structures and source language
messages means that they should be capable of expressing the
symbols and syntax of context-free languages.

(3) They should be capable of expressing the semantics of trans-
lation or interpretation of the source language strings,
including procedure calls to other processors.

(4) They should be representable in a graphical format that
exhibits the structure of the language or data being
described so that it represents an effective tool for
human communication.

(5) They should also be representable by linear strings amendable
to transmission and computer input, and it should be easy

38 A
PAJERBACH



to translate from the graphical to the linear version, and
vice versa.

4.2.3 Development of a DMS Architecture

As a result of this subtask, the structure of a Data Management

System will be defined.

A comprehensive set of data structures and a set of standard data

services will be defined as a result of the previous two subtasks. Their

significance is as follows:

(1) Each of these data structure types implies a set of data
management services, such as "Read," "Write," and "Modify,"
which should interface with the program and user.

(2) Each set of data management services can be considered as
an essential component of a virtual machine which forms
a standard host environment for programs dealing with data
at that level.

(3) The definition of standard program host environments and an
adequate data definition language can be the key to trans-
ferability of programs and data from one environment to
another.

(4) We are witnessing the emergence of new classes of machine
types making use of large scale integration technology and,
in several instances these machines are based on micropro-
grammed logic, making it possible to emulate in hardware
or firmware the standard environment for which a program was
developed.

Thus, the architecture of the DMS can be viewed as a set of

virtual machine types which will provide standard data management services

to the program. In each of these standard interfaces, the data should be

viewed as a system resource which is made accessible to the user at an

appropriate level of control, provided that access rights at that level

have been established and verified.

In the largest computers, all or most of these virtual machines

will be microprogrammed to be effectively provided as an emulated machine.

39 E
AAJERBACH



In the smallest computers, these virtual machines will be simulated by

data management service programs which provide a software implementation of

the virtual machines. Future generations of machine types may not be

directly compatible with today's machines but may, through microprogramming,

offer increased flexibility to adapt to special requirements or to emulate

other machine types, existing or proposed.

The stratification of data management services into a number of

standard levels would make it appear to the programmer that at any one

moment, he is interfacing with one of a number of virtual machines which

form an upward compatible hierarchy. These services may be, in fact,

provided by a mix of hardware and software modules which depends on the

particular system implementation, and the hardware types being used in a

given instance. Thus, each program has, as its interpreter, a virtual

machine whose interface with the program is known but whose composition

may vary and is irrelevant except for timing considerations. A given

installation, because of hardware and software modules used, may provide

interpretive virtual machines only up to a given level, requiring programs

written for a higher level virtual machine to undergo a translation

process down to the appropriate level before interpretation can take place.

4.2.4 Feasibility Study and Analysis

As a final subtask of the DMS task, a series of studies and

analyses concerning the feasibility of realizing the DMS will be carried

out. The following aspects should be examined.

(1) the effect of the proposed DMS languages on the develop-
ment and exploitation of DMS technology

(2) the relationship of other proposed systems, such as the
CODASYL Data Base Task Group proposal, on the DMS

(3) the extent of acceptability of these standards likely by
the manufacturer, software development companies, and the
user

(4) estimates of the implementability of a system with the
given characteristics, a likely date of availability of

initial models, and a development plan for its realization

40



(5) the level of performance likely to be achieved by such a
system and an estimate of the degree to which performance
is sacrificed (if at all) in achieving the other goals of

the system.

41



SECTION 5. DISCUSSION OF THE PROJECT

Aspects of the Mass Storage project which will be discussed in

this section are technical feasibility, project structure, possible

approaches, and anticipated results. The two major tasks, storage manage-

ment and data management will be discussed separately.

5.1 STORAGE MANAGEMENT

5.1.1 Technical Feasibility

The Storage Management task is concerned with answering several

questions which arise in utilizing modern mass storage technology:

(1) Can a set of standard storage system specifications be
developed which will guide the development and procure-
ment of storage devices so that the following conditions
are satisfied:

(a) the needs of specific installations, applications, and

programs are satisfied,

42



(b) an optimal set of devices for NASA-wide procurement
are provided, and

(c) the gamut of storage device technologies are exploited
without undue constraint?

(2) What device characteristics should be available in the
storage hierarchy of a given facility to maximize the
effectiveness of the system?

(3) How should the set of mass storage devices, viewed as a
heterogeneous resource, be allocated to best serve the
synamic needs of the active (and soon to be active) jobs
in an installation?

(4) Will the specification of devices with new performance
characteristics influence the liklihood of commercial
availability of such devices?

These questions will be addressed in specific subtasks of this

task. The relationship between capacity, access time, and cost per bit

appears to be subject to physical constraints characteristic of each

storage technology and device configuration (See Fig. 3-1). The question

of an optimal device mix for a given installation is therefore a question

of performance/cost tradeoffs and can be approached through application

of known economic modeling and linear programming techniques with a high

degree of confidence.

The technology of magnetic storage on disk is fully matured.

The technologies of bubble memories (and other bit transfer devices) and

optical recording on disk are still in the laboratory stage but several

"product" projections have already been made so that a reasonable per-

formance/cost estimate can be made. Therefore, the feasibility of making

an accurate estimate of overall system performance, and specifying an

effective, realizable set of storage devices, depends on the ability to

accurately model the performance of a hierarchic storage system. This is

the problem addressed in the task discussed in Section 4.1.3, and the

answer depends on our ability to parameterize the performance of devices

utilizing different technologies and the skill with which the model is

constructed. It is felt to be within the scope of today's technology.

43



The realizability of the system and the degree of commercial

acceptance of the devices and control techniques will be the subject of

the final subtask.

Possible Approach to Storage Management

Several terabit (trillion bit) storage devices (for example,

Ampex TBM, Grumman Masstape, and General Precision Unicon) have already

reached "product" status. However, their inherently slow access time

requires that special approaches be taken to assure the overall responsive-

ness of the Storage Management System. This discussion is concerned with

one particular problem in the utilization of a multi-level mass storage

hierarchy--the automatic migration of data from slow access to fast access

storage in response to, or in anticipation of, data requests.

Broadly speaking, two classes of service are meaningful to con-

sider for a Storage Management System to render to one or more user com-

puters. These are:

Solution 1 - At the job scheduling level, data sets or files
to be used by a job must be made available before
committing core memory and CPU resources to it.
This may require human intervention to mount tapes
and/or disk packs. Also, files which normally
reside on expensive on-line storage are wasting
valuable resources during periods of inactivity.
A Storage System which could just support migration
of these data sets at beginning and end of the jobs
which use them has much to recommend it.

Solution 2- It is conceivable to think of an elaborate, high
performance Storage Management System as a direct
replacement for secondary storage devices. Such
an SMS would emulate disk storage in responding to
each program request issued in the host. The SMS
in this case must comprise a hierarchy of storage
devices and contain sophisticated software for its
management. The performance of such a subsystem
would at times greatly surpass conventional secondary
storage devices, as many transfer requests could be
anticipated and responded to via core-to-core movement.

44

5.1.2

AUH



5.1.2.1 Solution 1 - File Access. The fundamental role of a Storage

Management System is as a repository for files or data sets, where a

data set is copied onto faster (e.g., disk) storage when needed by a job.

No longer is there a need to consume expensive secondary storage space for

data sets not in use. No longer is it necessary to keep less frequently

used data sets off-line.

The great appeal of Solution l is the promise of the tremendous

payoff achievable; yet relatively little software or hardware complication

is entailed, viz:

* Instead of mounting and demounting volumes, user-programmed
routines at job initiation and termination see to the migra-
tion of data sets or files.

* Manufacturers' design guidelines include minimizing or
obviating operating system modification.

* Some of the recent terabit stores are meant for large
I/O transfers as designed, fitting the requirement with
neither gross deficiency nor surplus capability.

There are properties and areas of optimization to look for in an

initial selection, implementation and in future development, which bear

upon performance of a "Solution 1" Storage Management System:

(1) It would be desirable for the SMS to directly share disk
facilities with user (or "host") computer systems, so that
data set migration does not require traffic through host
computer main memory. The sharing and allocation of disk
storage must be completely controlled by software in the
host in order to avoid problems of deadly embrace and to
maintain integrity of directories and data. None of the
products are designed for this today, but some are more
amenable to such augmentation of capability than others.

(2) The ability of a product to accommodate various strategic
measures in file allocation and request scheduling is worthy
of attention as significant gains in performance are then
possible.

(3) The storage device should be highly programmable by the
user, and amenable to variati6ns in configuration. It is
unlikely that any standard device can be the most cost-
effective solution of a given problem without some tailoring,

45 

AUERBACH



5.1.2.2 Solution 2 - Access At All Levels. The notion of centralizing

all file storage and access into a single, responsive, on-line storage

device is certainly an attractive one. A storage processing subsystem

which could hold a trillion bits and perform like a drum for most requests

is an ambitious idea, but plausible.

The high capacity is achievable with mass storage devices already

available.* Such performance, however, requires that the SMS is a com-

puter system in its own right, with drum storage and core storage, and

sophisticated hierarchical file management strategies.

When a file is first requested, a copy is made from the terabit

store to the drum, still within the SMS. During processing, fragments of

the file pass between drum and SMS core memory in such a way as to maximize

the probability that a given request from a host may be serviced by

immediate core-to-core transfer. With-this type of system, a heavily I/O

bound application might run in as little as a tenth of the time it takes

in a conventional environment using on-line disk files. Such a scheme

applies most obviously to sequentially accessed files, and is also promising

for indexed files. The actual performance gain will be a function of the

core and drum capacity of the SMS, the investment made in SMS software, and

the percentage of data traffic having predictable order. It is also possible,

but not essential to the main theme, to assign spooling functions to this

type of SMS. In that case, nearly all secondary storage could be removed

from the host systems. Also, the sequential access typical in reading

spooled input and producing spooled output would be serviced at core-to-

core speed. Large print files could descend immediately to the terabit

store with quite an economic advantage.

Although the implementation of this type of SMS requires a signi-

ficant investment in hardware and software on the SMS side, careful planning

will minimize the need for modification on the host side. Any scheme will

require further study and verification, but a strategy such as the following,

or a variation on it is the key to a clean interface with the manufacturer's

operating system.

* For example, Ampex TBM, Grumman MASSTAPE, and GPC Unicon.

46 A
AUERBACH



A simple method is to deceive the operating system into "thinking"

that each permanent data set has its own volume and competes with no other

data set for that space. In reality, this virtual space will be managed

by the SMS. On the host side each permanent data set is therefore assigned

a serial number for its virtual volume which becomes the parameter for the

command used to catalog the data set. If it proves desirable for an SMS to

support temporary data sets, the same concept will apply with some addi-

tional considerations.

With the help of hardware emulation, no changes would be necessary

to host I/O schedulers. The SMS will receive head and track specifications,

translate them to its internally managed space, and set up responses identical

to those of the simulated drum or disk facility. If emulation at the inter-

face is not feasible, it would be necessary to develop software for the host

to intercept supervisor calls to substitute the needed channel commands.

Also, tailored channel-end software would be needed. While this is non-

trivial, it is not impractical, and is minor compared to the SMS internal

software system.

5.2 DATA MANAGEMENT SYSTEM

5.2.1 Technical Feasibility

The Data Management System task will be carried out in a number

of phases. As specified in Section 4.2, it is basically a design problem,

followed by an analysis and evaluation of that design. Implementation of

the system will be undertaken only if indicated by the results of the

analysis and evaluation phase, and may in fact be undertaken by the

manufacturers and/or independent software developers if a system with a

high degree of industry-wide user acceptability is specified.

A project with many of the elements of this task, was one just

carried out by CODASYL's Data Base Task Group (DBTG). The DBTG developed

what they intended to be accepted as an industry-wide standard specifica-

tion for a management system. However, the DBTG did not view their task

with the breadth of scope intended for the NASA DMS task. The DBTG was

47[ACH 4A



concerned with the data base management question at the item level

(heirarchically related records and files) and with providing a COBOL-

oriented capability.

A major portion of the industry has taken issue with the DBTG

proposal. (In spite of this, some software developers are implementing

subsets of the system). It is felt that the;DBTG system fails because of

its limited scopte and needless complexity due to lack of development of

more primitive systems upon which it can be built. The recognized short-

comings of the DBTG system can be avoided with the more global approach

to the problem, which is inherent in the system specified here.

The advantages of simplicity and structural modularity result

because:

(1) The system can be designed in terms of interrelated modules
which provide data services for a related system of data
structures, and

(2) it should be possible to implement each system module in a
way which takes full advantage of the capability of the
computer hardware, the Storage Manager, more primitive
modules and the standard language processors of the system.

5.2.2 Technical Approach

One approach to the design of a set of data structures which

meets the requirements outlined in Section 4.2 is given below.

5.2.2.1 Page and Train. The most primitive data structures under con-

sideration are the page and a sequence of pages, the train. Figure 5-1

shows a track in storage that is allocated in units of fixed-length entities

called blocks. A train of pages is to be defined and stored on blocks in

that track. This figure illustrates one way of accomplishing this without

requiring the allocation of contiguous pages to contiguous blocks. In

this example, a train index (an indexed listrwith-pages as list entities)

is used. The address of each page is the block number in the address space

for the track. Unused space in the data train is indicated by a zero tag

48 A



in the index entry. Periodically, the blocks on which unused pages are

stored are collected and added to a list called a space train index. This

is simply a list of unused pages, referenced through the index shown on

the righthand side of the figure.

DATA TRAIN INDEX

I BLK NO.

I 

0-
F1 1 _

I I

TRACK

___~ ~ P2

-/ff///,

P3

-- ·-/////

P I

7/7////,

P4

/ / J/ / /

/, ., / Zr 

r-

SPACE TRAIN INDEX

I BLK NO.

0
l

Figure 5-1. Page Addressing and Block Allocation

The smallest element of addressable data is a word; a page is a

fixed-length sequence of words; and a sequence of words of'arbitrary length

is called a segment. These terms and their definitions are used by a large

segment of the computing field.

The page is used as the unit of data movement between primary and

secondary storage; its size is fixed, and it is equal to the unit of storage

allocation, the block. With the page and the train defined, we can consider

49

AUERBACH

J/l// // 

I



sequences of elements that possess user-defined size but that bear a fixed

relationship to the unit of data movement. Such a structure is called a

strip, and its element, a bead. There can be a constant ratio of beads per

page throughout the strip, so that additional tables at the bead level are

not necessary. The system must be aware of the size of the bead as well as

the internal structure of fixed fields that may represent information

elements (properties of some object) or links to other beads (relationships

among objects).

Figure 5-2 shows a bead that may exist in a network (plex). In

this case the bead has been divided into two areas: one area contains the

properties of the object to which it corresponds; the other area contains

links to other beads, representing a number of different types of relation-

ships with other entities in the structure. Two links are illustrated;

one points to the next bead of the same type; one points down to a bead

of perhaps a different type at a different level of the hierarchy.

PROPERTY
AREA

RELATIONAL NEXT
AREA - DOWN

Figure 5-2. A Plex Bead

Figure 5-3 illustrates how beads of different types that exist

in different strips may be linked together to form a plex. A root strip

contains pointers to each strip in the plex.' Pointers from one bead to

another model the different types of relationships previously discussed.

50



5.2.2.2 Stream. At times it is inconvenient to consider sequences of

entities of the same fixed length. A sequence of entities of variable

lengths is called a stream; Figure 5-4 details how a stream may control

the processing of data structures. In this figure it is assumed that each

stream element is a segment. The elements are called R1, R2, R3, etc.

They are stored on a train, with pages called P1, P2, P3, etc. This mapping

is defined in the stream index; entries include the page number and the word

with which each stream intity (segment) begins on the page. As before, the

pages in the page train are mapped to blocks in a track by means of a train

index. A stream is the structure that can appropriately be used to re-

present several types of entities, processed by hardware and software inter-

preters. For example, a task program is built as a stream in which each

sub-program procedure is a sequence of machine instructions. The data

structure, processed by the task, can be considered a stream of sub-program

data areas.

5.2.2.3 The Item. The composite data structures which have been defined

up to this point -- the train, the plex, and the stream -- and the virtual

machines and services which have been implied to service them provide

increasingly more general tools for the programmer. Nevertheless, these

tools have been designed primarily for the systems programmer, or tool-

maker, rather than for the applications programmer or even the non-

programming consumer interested in commercial file-processing applications.

Appropriate tools for the applications programmer and non-

programming consumer should provide the ability to define, create, and

transform structures of named items without regard to the access strategies

employed. Yet, because these structures may involve large quantities of

information with varying access requirements and processing deadlines, it

should be possible to avoid the wide-spread use of internal links (as in

the plex structure) and to provide the user with the space-time trade off

of creating and destroying indexes whenever appropriate. Furthermore, it

should be possible to manage a large common data base of commercial file-

oriented data with proper access and recovery safeguards and with a conven-

ient language interface for the non-programming user or consumer. To

meet the needs of this type of user, the item structure (and item machine)

were devised.

51 A
AUERBAH



STRIP ROOT STRIP

Figure 5-3. Plex \

STREAM INDEX STREAM PAGE
VA TRAIN

BLOCK TRACK TRAIN INDEX

Pi

P2

P3

P4

P5

P6

P7

P8

Figure 5-4. Stream Addressing

52 AxAUERBACH
e

PLEX STRIPS



Items are named and defined structures, devoid of any reference

to an address space. The item is both application and consumer oriented,

rather than access or programmer oriented.

There are three types of items: the record, the file, and the

field. The first two are composite items: They may contain sub-items.

The field is a simple or terminal item: It contains no sub-items. Every

item is defined by its name, type and size. The size of a composite item

is the number of immediate sub-items it contains; the size of a field is

the number of characters in the field. A file or a field may be variable

in length, but a record must contain a fixed number of immediate sub-items.

These item types are defined more precisely as follows:

* A record is a composite item that contains some fixed sequence
of sub-items of any type

* A file is a fixed or variable sequence of records with the
same definition.

* A field is a fixed or variable sequence of characters of
a given alphabet.

A record that is not part of a file (that is, it is not repeated)

is called a statement. These concepts are sufficient to represent data

structures that can be shown topologically as a tree. In a tree, each item

can be represented as a node that belongs to one, and only one, parent item

(node). Tree structures can be mapped into pages and trains so that the

fields encountered in a regular tree-coursing path (which exhausts all

branches systematically, left-to-right) produce contiguous fields in the

train-address space. For example, it is possible to have ai:sequential

organization in which adjacent fields of each record are contiguously

addressable in the train. This would apply to each record. If the record

contains other embedded items, these too can be mapped contiguously in the

address space.

Item structures can be defined and represented in several ways.

Figure 5-5 shows four methods of representing item structures. A structure

53 R
AUERBACH



of four levels is defined in this example, which corresponds topologically

to a rooted tree.

The indented tree has the most intuitive appeal and would be used

in the initial design of the structure. In the rooted tree- each increase

in depth level is indicated by indenting to the right. Items connected

to the same veritcal line are at the same level. Structures are indicated

by boxes of three different shapes: rectangular for files; hexagonal for

records; and oblate for statements. The name of each structure appears in

the box, and the names of simple items (scalars, fields, or leaves of the

tree) appear after a slash joined to the vertical line representing its

parent structure. A letter and number in front of a field name indicate

the character type and size of field (V signifies variable length).

(a) INDENTED TREE (b) INDENTED OUTLINE

S;A

(c)ITEM LIST/TERM LIST

S3

S;B

E6;C
AV;D

A20;E

S2

E6
AV
A20

FV;F

R

E6;G

FV

A

B

C
D
E

F

RI

E6;G E6 G

Figure 5-5. Item Structure Representations

~~~~~54~

54

AUERBACH

I



The indented outline closely follows the indented tree form, except

that the box shapes are indicated by a character. This form can be keyed

from the tree as input to the item definition job. The item list term list

combination may be similar to the internal representation of the structure

in the system directory. In this form, indentation is not used; instead,

the size of statements and records is presented in terms of the number of

sub-items.

Because the logical structure of all data items is defined in

this structure definition (stored internally as a system table and described

with the same convention), considerable leeway is afforded in the format of

input data. In agreement with the structure definition, data may be keyed

in strict field sequence with empty fields indicated by a slash, or data

may be keyed without regard to field sequence if each out-of-sequence field

is tagged with the appropriate name or identifying number. Blanks or

leading zeros need not be keyed; the system can automatically justify data

and can supply blanks or leading zeros. The system can also rearrange the

data in proper sequence, filling missing fields with blanks where necessary.

5.2.2.4 Conclusion. When structure definitions are collected into one

comprehensive directory for all items, a data pool or common data-base

concept can be realized. An alphabetical listing, by item name, can direct

the system to all occurrences of the item as structure definitions and as

data. Thus information (both structure definitions and data) is available

to users without prior knowledge of the existence of the data or its detailed

structure. The user needs to know only the generic names of the data to be

investigated. There is no need to approach the data on a file-by-file basis,

not is the user limited in any way by the original structure definitions.

Rather, a structure definition in a dialog mode is available so that the

user may take full advantage of the system and its data. The lack of

constraints at both ends of the process - data definition and data retrieval

- provides a new measure of flexibility in data-management processes.

55

A
AJERBACH



5.2.3 Anticipated Results

It is anticipated that the data management task of the data

storage project will result in a set of data structure types and data ser-

vices which will form the basis for a standard interface between users (and

user programs) and a data management system for satisfying user needs over

a wide range of user types. It is expected that the language and functional

specifications of the DMS would be suitable for implementation either by

NASA, manufacturers, or commercial software developers. The specification

should be suitable for presentation to CODASYL, USASI, user groups, and

others concerned with simplifying the effective use of computers, especially

when a large common data base is to be provided for a heterogeneous mix of

users. The common programming interface for data services which this pro-

vides should be an important factor in insuring the transferability of

programs and data from one installation to another.

56 A
AUEtBACH



REFERENCES

Section 3

1. E. Shapiro, "Technologies for Storage Hierarchies," Preprints,
International Federation of Information Processing Congress 71,
Invited Papers, p. 46-51.

2. W. Anacker, "Possible Uses of Charge Transfer Devices and Magnetic
Domain Devices in Memory Hierarchies," Intermag Conference, Denver,
April 1971o

3. C.V. Ramamoorthy, "Architectural Considerations of Memory Hierarchies,"
NEREM 71 Record, Part 1, p. 98-101.

57 £

AJJERBACH


