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pitching-moment coefficient about station at x m from nose,

normal-force coefficient,
G

q _A

pitching moment

q ooA d

G

d

%,G

K

pressure coefficient, P-P'_
q_

body cross-section diameter

axial and normal forces

hypersonic similarity parameter, --
M_d

_N

corner rounding for body of square cross section, __r
W

body length



Moo

P

P_

qa

qn

q_

ra

rb

Re

Re a

Re n

V

v.

W

X

X (l¢

vi

nose length

aftersection length

Mach number component in body axis direction, Moo cos c_

Mach number component normal to body axis, Moo sin c_

free-stream Mach number

pressure

free-stream static pressure

dynamic pressure component in body axis direction, qoo cos 2 c_

dynamic pressure component normal to body axis, qoo sin 2 o_

1
free-stream dynamic pressure, -_ p V2oo

nose or body cross-section radius for circular body or corner rounding for noncircular
body

arc radius of ogive

nose or body cross-section radius at base

free-stream Reynolds number based on body cross-section diameter, p Vood

Reynolds number component in body axis direction, Re cos

Reynolds number component normal to body axis, Re sin

body volume

velocity component in body axis direction, Voo cos o_

velocity component normal to body axis, Voo sin

free-stream velocity

body width

axial distance from body nose

distance from nose to aerodynamic force center



x C

x m

o_

7

0

tl

P

4_

Subscripts

B

cir

cy

Newt

SB

SF

stag

W

distance from nose to centroid of body planform area

distance from nose to pitching-moment reference center

angle of attack

-1

ratio of specific heats (taken as 1.4 for air)

crossflow drag proportionality factor

cone half-angle

dynamic viscosity of air

density of air

angle of bank about body longitudinal axis

base

circular cross section

cylinder

Newtonian theory

slender body theory

skin friction

stagnation

wave or pressure
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PREDICTIONOF STATIC AERODYNAMIC CHARACTERISTICS FOR

SPACE-SHUTTLE-LIKE AND OTHER BODIES AT

ANGLES OF ATTACK FROM 0 ° TO 180 °

Leland H. Jorgensen

Ames Research Center

SUMMARY

An engineering-type procedure is presented for computing normal-force, axial-force, and

pitching-moment coefficients for bodies at angles of attack from 0 ° to 180 °. The procedure is ideally

suited for estimating the aerodynamic characteristics of space shuttle booster-like bodies because of

the wide range of angles of attack, Mach numbers, and Reynolds numbers to be encountered. The

analytical formulas, plots, and references given are also applicable for shuttle orbiter, missile, and
aircraft-like bodies of both circular and noncircular cross section. The method for computing normal-

force and pitching-moment coefficients is based upon the original proposal of Allen that the cross-

flow or lift distribution over a body can be expressed as the sum of a slender-body potential term

and an empirical viscous crossflow term.

Although experimental data from which to verify the procedure at very high angles of attack

are extremely limited, the comparisons made thus far of computed with experimental results are

good. In this report the procedure has been shown to be capable of predicting reasonably well the

experimental variation of CN, CA, Cm, and Xac/£ with angle of attack for nine bodies of revolution
at a flee-stream Mach number of 2.86.

The procedure can be used to predict the effects of Mach number and Reynolds number changes
on the aerodynamic coefficients of shuttle boosters from atmospheric entry to recovery. For a

booster-like body of revolution (fineness ratio 5 ogival nose with a fineness ratio 6 cylinder after-

section) effects of Mach number and Reynolds number on the variation of CN and Xac/9. with a have
been computed and are presented for illustration.

It is predicted that Mach number changes from Moo = 7 down to Moo = 0.3 (the entry range

studied) can significantly affect CN over most of the a range. The aerodynamic force center, how-
ever, moves little with the Mach number.

Even more pronounced than the effect of Mach number is the effect of Reynolds number,

which has been predicted for the body at the subcritical Mach number of Moo_-0.3. With increase
in Reynolds number from l0 s to 106 , up to about 75 percent of the normal force is lost, the maxi-

mum loss occurring at a = 90 °. With further increase in Reynolds number to Re = 107 , only about

one-half of the normal force at Re -- 10 s is regained. This large effect of Reynolds number results

from the fact that the crossflow Reynolds numbers vary from subcritical to critical as free-stream

Reynolds number increases well over Re -'- 10 s .



Thefact that therecanbea severeeffectof Reynoldsnumberon theaerodynamicswhenthe
crossflowReynoldsnumbersarein thecriticalrangealsohasbeendemonstratedwith experimental
resultsfor a flat-bottomed,shuttle-typebody.Computednormal-forcecoefficientsfor thisbody at
Moo = 0.3 qualitatively predict the significant measured effect of changing the crossflow Reynolds

number through the critical range.

The results of this investigation suggest that, if shuttle boosters (and other vehicles) are to be

flown back into the atmosphere at very high angles of attack to low subsonic Mach numbers, effort

should be made to obtain wind-tunnel data at near-flight Reynolds numbers.

INTRODUCTION

In some recent studies of space-shuttle booster reentry profiles, the booster angle of attack

varies from about 70 ° or 80 ° down to 0 °, and the Mach number ranges from about 7 or 8 down to a

low subsonic recovery or flyback value. The Reynolds numbers based on body diameter are greater

than 1 million over most of the reentry profile. Prediction of the aerodynamic forces and moments

through such a wide range of conditions presents an engrossing challenge.

For booster-like bodies at the higher angles of attack, it has been shown from wind-tunnel

tests (e.g., refs. 1-3) that the aerodynamic force and moment characteristics can be affected consider-

ably by changes in Mach and Reynolds numbers. At hypersonic Mach numbers it appears that the

characteristics can be predicted acceptably well by programs utilizing Newtonian theory (e.g., ref. 2).

The real need now appears to be in the formulation and validation of analytical prediction techniques

applicable to lower Mach numbers. Of concern also is the prediction of Reynolds number effects on

the aerodynamics, particularly at subsonic Mach numbers where the Reynolds numbers based on

diameter can become very large (of the order of 107 to 108 ). Recent experimental tests have shown

that Reynolds number can significantly alter the aerodynamic characteristics of a shuttle-like, flat-

bottomed body both with and without wing and tail at subsonic Mach numbers below about 0.6

(ref. 3).

In view of the foregoing, the present study was initiated to accomplish the following objectives:

(1) Present an engineering-type procedure for computing the normal force, axial force, and

pitching-moment coefficients of booster-like bodies of circular and noncircular cross section at Mach

numbers, Reynolds numbers, and angles of attack expected during reentry.

(2) Compare computed results by this procedure with available experimental data (ref. 4) for
nine bodies of revolution tested in a wind tunnel at a Mach number Of 2.86, a Reynolds number of

1.25 × 10 s , and angles of attack from 0 ° to 180 °.

(3) Point out how changes in Mach and Reynolds numbers can be expected to alter the aero-

dynamic coefficients of booster bodies.
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PROCEDUREANDFORMULASFORCOMPUTING
AERODYNAMICCHARACTERISTICS

Priorto theworkof Allen in 1949-51(refs.5and6),mostanalyticalproceduresfor computing
the aerodynamiccharacteristicsof bodiesandmissile-typeconfigurationswerebasedon potential
theoryandwerelimited in usefulnessto verylow anglesof attack.Allenproposedamethodfor pre-
dicting the forcesandmomentsfor bodiesof revolutioninclinedto anglesof attackconsiderably
higherthan thosefor whichtheoriesbasedonly onpotential-flowconceptsareknownto apply.In
this methoda crossflowlift attributedto flow separationis addedto thelift predictedby slender-
body potentialtheory.Thismethodhasbeenusedquitesuccessfullyin estimatingtheaerodynamic
coefficientsof inclinedbodies(e.g.,refs. 5-9),althoughmostdataavailablefor studyhavebeenfor
bodiesat anglesof attack belowabout20°. In the presentinvestigation,Allen'smethodhasbeen
adoptedandformulashavebeenwritten for computingthenormal-force,axial-force,andpitching-
momentcoefficientsfor bodiesthroughouttheangleof attackrangefrom 0° to 180°.

GeneralExpressionsfor Bodiesof Revolutionat Anglesof Attack from 0° to t80°

For the signconventionin sketch(a),normal-force,axial-force,andpitching-momentcoeffi-
cientsaregivenby

_+°° co@ % +__ C'o

Sketch (a)

_ Ab
CN ---_ sin 2 o_, o:' Ap , 0 °

cos ---y + _/Cdn -_ sin 2 a" _< a _< 180 ° (1)

CA = CAfk,=oO c°$20_r' 0 ° _< o__< 90 ° (2)

CA = CA_=I80 o cos 2 oe'; 90 ° _< o__< 180 ° (3)
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Ad sin2a cos_ +r/Cdn_ sin 2
0 ° _< o__< 90 ° (4)

and

Cm =- \ _ -// sin2 cos T + rlCdn 7 sin 2 c_';
90 °_<c_<_ 180 ° (5)

where

_'= a for O°_<a_<90 ° and a'= 180 °-a

The aerodynamic force center is given by

for 90 °<_<180 °

(6)

The first terms in equations (1), (4), and (5) come from slender-body potential theory. The

second terms represent the viscous crossflow or crossflow attributed to flow separation.

Crossflow drag coefficient - In the expressions for CN and Crn (eqs. (1), (4), and (5)) Cdn
is the crossflow drag coefficient for a section of an "infinite" length cylinder placed normal to an air-
stream. It is a function of both the Mach number and Reynolds number components that are normal

to the cylinder longitudinal axis, and, hence, for a body at angle of attack it is a function of

M n = Moo sin a (7)

and

Re n = Re sin a (8)

M n is commonly called the crossflow Mach number and Re n the crossflow Reynolds number.

For circular cylinders, "state-of-the knowledge" plots have been prepared for the variation of

Cd with M and Re (figs 1-3) Figure 1 gives the variation of Cd. with M, over the entire reentry
n n " " rt '_n . .

Mach number range expected for a booster body (1.e., maximum M n from about 7 or 8 down to
almost 0). It was prepared from the data of references 10 through 15. Also shown for reference are

the theoretical variations predicted from Newtonian and modified Newtonian theories. Because of

4



the closeagreementof the Newtonianvalueswith experimentat thehigherMachnumbers,it isnot
surprisingthat programsutilizing Newtoniantheoryhavebeenusedto successfullypredictshuttle-
boosterwind-tunnelresultsat hypersonicMachnumbers(see,e.g.,ref. 2). Exceptfor the transonic
range,wherereliabledataarevery limited, the variationof Cd with M n is well documented in fig-
ure 1. There is, however, a crossflow Reynolds number effect wnhich can drastically lower the values

below about 0.5. For M n less than about 0.5 and Re n greater than about l0 s , theof Cdn at M n
values of Cdn are given in greater detail in figures 2 and 3.

1.4

2.4

_-1.6

*E
0)

._o

o 1.2

x_

o

.8
o
(D

2.0 I
/ \
I \

l_Crossflow Reynolds number m

.4 _critical Reynolds number range

/
0 .4 .8 1.2 i.6

4 5 6 7 8

Mn

[ I I I L I I
Experiment

0 Lindsey, ref. I0

[] Stack, ref. II

4_ Gowen & Perkins, ref. 12

A Walter 8_ Lange, ref. 15

i_ Penland, ref. 14

--_ Welsh (flight test),ref. 15

Theory

------Newtonian flow Cdn: 4/5

.... Modified Newtonian flow, Cdn: 2/5 Cpslag -

2.0 2.4 2.8 3.2 3.6 4.0 4.4

Crossflow Mach number,M n

4.8

Figure 1. - Variation of crossflow drag coefficient with crossflow Mach number for circular cylinders.

Figure 2 gives the variation of Cdn with Re n for M n less than about 0.4. It has been well docu-
mented over the last 58 years (e.g., refs. 11, 16-18) that Cdn - 1.2 for laminar boundary-layer flow
and separation just before the critical Reynolds number of about Re n = 2 × 10 s . At about Re = 5 × 10 s

there is evidence (e.g., refs. 19-21) of laminar boundary-layer flow around the front of the cylinder

to an angular position of about 80 ° or 90 ° where the flow separates, undergoes transition, and re-

attaches at an angular position of about 110 ° to form a laminar separation bubble. Then the turbu-
lent flow separates at some position downstream (an angular location of about 130°). With further

increase in Reynolds number into the supercritical regime, the bubble decreases in size until the

transition to turbulent flow moves upstream of the location of laminar separation, and the bubble

disappears (ref. 21). From the low Cdn value between about 0.15 and 0.30, Cdn increases gradually,

at least for increase in Re n up to about 5 × 106 . The supercritical Reynolds number regime has only
been investigated recently in any detail (refs. 18-21 ), and there is still considerable uncertainty in the

5
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coefficient, Cdn
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Figure 2. - Variation of crossflow drag coefficient with crossflow Reynolds number for circular cylinders at sub-

critical crossflow Mach numbers (M n <- 0.4).
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Figure 3. - Variation of crossflow drag coefficient with cmssflow Reynolds number for circular cylinders at super-

critical Reynolds numbers and at crossflow Mach numbers from 0.25 to 0.50 (from Jones, Cincotta, and Walker,

ref. 21).



magnitude and trend of Cdn with Re n and M n. The shading in figure 2 indicates the approximate

spread or uncertainty in Cdn based on known data.

Jones, Cincotta, and Walker (ref. 21) have probably made the most detailed study of circular

cylinders in supercritical flow. With the use of freon gas for obtaining high Ren, they have shown

that there is an effect of M n on the variation of Cdn with Re n. Figure 3 (taken from ref. 21 ) sum-

marizes their Cdn results for M n from 0.25 to 0.50. The reader is referred to reference 21 for their
interpretation of these Cdn results based upon pressure-distribution and visual-flow studies.

Crossflow drag proportionality factor - In equations (1), (4), and (5) r/is the crossflow drag

proportionality factor, that is, the ratio of the crossflow drag coefficient for a finite length cylinder
to that for an infinite length cylinder. Cylinder drag coefficients from which values of I/can be deter-

mined have been measured, to the author's knowledge, only at very low subsonic Mach numbers

(refs. 22 and 23). In figure 4, values of r_ from

reference 22 are plotted as a function of

length-to-diameter ratio. For reference, r_'s

for flat plates are also presented (plotted as a

function of plate length-to-width ratio). In

spite of a dearth of _ data throughout the

subsonic Mach number regime, the results
given in figure 4 have been used to success-

fully predict, for most engineering purposes,
the aerodynamic characteristics of bodies of

revolution at subsonic Mach numbers (e.g.,.

ref. 24). For bodies at supersonic and hyper-

sonic Mach numbers, _7 probably can be

assumed to be unity, an assumption indicated

as being essentially correct from past investi-
gations (e.g., refs. 5, 7, 9, and 24).

Relative influence of crossflow terms -

From a strict theoretical standpoint, an argu-

ment can be made against the addition of a

theoretically derived potential crossflow term

g-

!.Oi 6
.2

o 0 4 8 12 16 20 24 28 52 36 40

Circular cylinder length to diameter ratio

Flat plate length to-width ratio

Figure 4. - Ratio of crossflow drag coefficient for a finite
length cylinder (or flat plate) to that for an
infinite length cylinder (or flat plate), from
ref. 22.

.to an empirically determined viscous crossflow term (eqs. (1), (4), and (5)), especially at very high

angles of attack. The argument is that the empirical term actually encompasses all of the crossflow

(viscous and nonviscous), since it is determined from experimental measurements of total crossflow

drag. The Allen approach, however, has been justified on the basis of rather good agreement with

existing experimental lift and pitching-moment data for bodies at angles of attack up to about a = 20 ° .

At higher o_, however, the approach has had little or no verification, but logic dictates that it should

give increasingly better results as c_increases to 90 °. The viscous crossflow (empirical) term contributes
most of the normal force as a increases and, in fact, all of the normal force at o_= 90 °.

For demonstration, the relative influence of the crossflow terms in the CN and Cm expressions
(equations (1), (4), and (5)) has been calculated for an ogive-cylinder body of fineness ratio 11

(£N/d = 5) at angles of attack from 0 ° to 180 ° and Moo = 2.9. Computed magnitudes from the slender-
body potential and viscous crossflow terms are presented in figure 5. It is seen that the slender-body

7



-5.5d_j __ ---- Slender-body potential theory

lqFd

_Sd_ _ --Slender-body poieniiol plusId viscous cross flow theory

0 _/'_/.._- Slender b_

-12

-16 I I I I I f I I

CN

16

12

8

4

0 20 40 60 80 I00 120 140 160 180

a ,deg

Figure 5. - Theoretical components of normal force and pitching-moment coefficients for an ogive-cylinder body at
angles of attack from 0° to 180° and Moo = 2.9.

term contributes relatively little to CN at high c_, but it has a significant influence on Cm. Because of
the strong influence of both the potential and viscous crossflow terms on the variation of Cm with

_, experimental verification of equations (4) and (5) for determining Cm is especially pertinent.

Axial-Force Coefficients for Bodies of Revolution at Angles
of Attack of 0 ° and 180 °

To predict the variation of CA with angle of attack by equations (2) and (3), either computed
or measured values of axial-force coefficient at _ of 0 ° and 180 ° are required. In general the axial-

force coefficient at _ = 0° or 180 ° can be expressed by

CA = CAw + CAs F + CAB (9)

where CAw represents the wave or pressure contribution from the nose or forwardfacing base;

CASF is the skin-friction contribution; and CAB is the base-pressure contribution.



For thepresentstudy,cylindricalbodiesof revolutionwith conical,ogival,andflat-facednoses
havebeenemphasized,andsoin this sectionof the report considerationis givento thesetypesof
bodies.In spiteof the extensiveliteratureon thesubjectof bodydrag,onlya fewpertinentsources
of informationarecitedherein,andthedesireis to citesimpleformulasandcorrelationsfromwhich
practicalengineering-typeanswerscanbe readilyobtained.Becauseof lack of simpleformulas,
correlations,andindeedreliabletheoryfor transonicMachnumbers,axial-forcecoefficientsfor this
regimearenot consideredin thepresentreport.

Wave or pressure contribution - For a forwardfacing conical-nosed body at supersonic or
hypersonic Mach numbers, the wave or pressure contribution to the total axial-force coefficient can

be readily computed from the Linnell-Bailey expression (ref. 25)

= (4 sin 2 0) (2.5 + 8/3 sin 0) (10)
CAw (1 + 16/3 sin 0)

where /3 = v/M_-I and 0 is the cone half-angle. This equation was obtained from correlation of

computed values of Cp (=CA W) from exact (Taylor-Maccoll) cone theory. According to Wittcliff
(ref. 26) it provides a root-mean-square accuracy of 1.4 percent over the range of 0.05 _</3 sin 0 _< 10.

Wittcliff (ref. 26) and Schwartz (ref. 27) also present equally or more accurate correlation

expressions.

For a circular-arc tangent ogive nose at high supersonic and hypersonic Moo, values of CAw can

be determined from the correlation curve in figure 6. Here the wave drag parameter, ('),/2) M_ CA If,

1.6

<_ 1.2__m
(D

.8 E

E

.4

O .2

Cones (by TQylor-Mqccoll theory), ref 29

---- Ogives (by method of characteristics), ref 28

/ X _ 5/4

---_ Approx Newtonian r=r b[TNN), (bysecond-order
theory), ref 50

J

J

-" i
.4 .6 .8 1.0

d
Simdarity parometer, K : Moo 7.N

f_

J

/

/
/

J ./j
/ j

./ j jj ...
J /p-" ./t

_J

// J L,,./_ _'
J

j j/

Moo2 CAw= .422 K 1'683

I

1.2 1.4 1.6

/

/ /

./
j

J

J
J

1.8

Figure 6. - Variation of wave drag parameter with hypersonic similarity parameter for cones, circular-arc tangent
ogives, and approximate minimum-drag Newtonian noses at o_= 0°.



is plottedasafunctionof thehypersonicsimilarityparameter,K = Moo(d/£N). This correlation curve
was obtained by Rossow (ref. 28) from values of CA W computed by the method of characteristics.
Also shown for reference in figure 6 are correlation curves for cones (ref. 29) and Newtonian

minimum-drag noses optimized for specified length and base diameter (ref. 30)

For a body with a flat-faced nose or flat base forward, it can be assumed that the stagnation

pressure coefficient Cpstag is nearly constant over the flat face, so that CA W _- Cpstag" With the aid
of references 31 and 32, the variation of Cpstag with free-stream Mach number has been computed
for perfect air, and the results are plotted in figure 7. For equilibrium real air, there are many tables

and charts from which one can compute the

variation of Cpsta _ with free-stream velocity
..... frand altitude (e.g., ref. 33). However, o

preliminary studies and for most of the

booster range of flow conditions, the perfect

air plot in figure 7 is probably satisfactory.

] relations, ref. 31

1.86

1.82

1.78

1.74

1.70

1.66

1.62

Cps_ug

1.58

1.54

1.50

1.46

1.42

1.58

1.34
I 2 5 4 5 6 7 8 9 I0

Mco

Figure 7. - Variation of"stagnation pressure coefficient
with free-stream Mach number

Readers who are interested in obtain-

ing computed drag coefficients for other

nose shapes and bodies of revolution, includ-

ing some with boattailing, might refer to
Stivers' work (ref. 34). Stivers has used the

method of characteristics to compute pres-

sure coefficients and drag coefficients for

18 constant length and volume slender
bodies of revolution for Mach numbers from

2to 12.

Skin-friction contribution - The skin-

friction contribution, CASF, can be readily
computed by any number of classical flat-

plate methods outlined in, for example,
references 35 through 41. For most boosters

it is probably realistic to assume a turbulent

boundary layer and compute the skin fric-
tion by either the T' method (refs. 35 and

36), the Spalding and Chi method (refs. 38

and 39), or the second method of Van Driest

(refs. 37, 40, and 41). From comparison of
these methods with direct measurements of

skin friction, Hopkins and Inouye (ref. 40) suggest that the Van Driest method (II) be used to predict
the turbulent skin friction for the design of supersonic and hypersonic vehicles. Hopkins (ref. 41 ) has

prepared charts by the Van Driest method (II) from which skin-friction coefficients can be readily
obtained.
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Base pressure contribution - For blunt-based bodies in supersonic flow, Gabeaud (ref. 42)
derived the following expression for base pressure coefficient:

% - \MU
(11)

This expression, which predicts a perfect vacuum at Moo = _, has been verified reasonably well by
experimental data. In figure 8 it is seen to agree closely with results compiled by Love (ref. 43) for
nonboattailed bodies of revolution with turbulent boundary layers for Mach numbers down to about

Moo = 1.5. With CAB = -CpB, either equation (11) or the results in figure 8 can be used to predict
CAB"

Cp B

-.32

-.28

.24

-.20

-.16

-.12

-.08

-.04

0

!

2 3 4 5 6 7 8

M_

Figure 8. - Variation of base pressure coefficient with free-stream Mach number for bodies of revolution having
cylindrical afterbodies at o_= 0 ° (from Love, ref. 43, except for curve computed from Gabeaud, ref. 42).

For boattailed bodies of revolution in supersonic flow, Love (ref. 43) has devised a simple pro-

cedure for determining base-pressure coefficients. His method, originally applied only to supersonic

flow, has recently been extended by Stivers (ref. 34) to hypersonic flow.
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AlternateProcedurefor ComputingAxial-ForceCoefficients
for Bodiesof Revolutionat Anglesof Attack

An alternate,moreprecise,procedurethantheuseof equations(2) and(3) canbeusedto com-
pute thevariationof CA with cc In this procedure the axial-force coefficient is determined from the
components of Mach number and Reynolds number in the body axial direction and is expressed by

CA = Ca cos 2 oe (12)

where

Fa
Ca qaA - Caw+CasF+CaB

(13)

with

Caw = f (Ma, 9.N/d)
(14)

Cas F = f (Ma, Re a, As�A)
(15)

CaB = f (Ma) for turbulent boundary layer (16)

1 2

qa =-2 P V a = qoo c°s2 c_ (17)

Ma = Moocos_
(18)

and

Re a = Re'_ cos
(19)
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HereCa W is the wave or force-pressure contribution to the axial-force coefficient; CaSF is the skin-

friction contribution from the body wetted area; and CaB is the base-pressure contribution. These
axial-force components are based on the axial component qa of the dynamic pressure and are deter-

mined from axial components (Ma and Re a) of free-stream Mach number (Moo) and Reynolds
number (Re).

Estimation of Aerodynamic Characteristics for Bodies

with Noncircular Cross Sections

Equations (1) through (5) can be adapted for the determination of the aerodynamic character-

istics of slender bodies of noncircular cross section if values of Cdn are available for the cross sections

considered. At low subsonic crossflow Mach numbers, the variation of Cdn with Re n has been meas-
ured for many cross sections of interest (see, e.g., refs. 10, 18, 44, 45, and 46). However, there are

little or no data available for the variation of Cdn with M n over the moderate subsonic to hypersonic

range. In view of this lack of data, an alternate procedure has been suggested by Jorgensen (ref. 9)

for computing CN and Cm.

CN and Cm controlled by crossflow Mach number - In the procedure of reference 9, the force
and moment coefficients are computed for the equivalent body of circular cross section that has the

same axial distribution of cross-sectional area as the noncircular body. Then the values of CN and

Cm for the noncircular body are computed with the use of values of CN/(CN)ci r (=Cm/(Cm)ci r)
determined from apparent mass coefficients (slender-body theory). Very good agreement of theory

with experiment has been obtained by this procedure for bodies of elliptic cross section at the condi-

tions investigated in reference 9 (a/b from 1 to 2, q_of 0 ° and 90 °, Moo from 2 to 4, and a from 0 ° to

20°). In the next few paragraphs, several formulas are given from which values of CN/(CN)ci r can be

computed for bodies of elliptic and square cross section.

From slender-body theory, the ratio of CN for a body of elliptic cross section to CN for the

equivalent body of circular cross section is given by

CN _ Cm a b
(CN)ci r (Cm)ci r b c°s2 q_ + --a sin2 q_ (20)

where _ is the angle of bank about the body longitudinal axis, being 0 ° with the semimajor axis a

perpendicular to the crossflow velocity, and 90 ° with the semiminor axis perpendicular to the cross-

flow velocity. (See sketches (b) and (c).)

For bodies at very high a in hypersonic flow, it is likely that values of CN/(CN)ci r (=C m /

(Cm)cir) will be given more accurately from Newtonian theory than from slender-body theory. In the
present study the following two equations for elliptic cross sections have been derived from

Newtonian theory.

13



Vn _ @ ,:j6= 0 ° Vn

: 90 °

Sketch (b) Sketch (c)

With the semimajor axis a perpendicular to the crossflow velocity,

CN__ Cm = 3 .//_a _ -b2 /a 2 log [rb(CN)ci r (Cm)ci r 2vu= ,_/ b2X3/2

_,tl- _ -)

(21)

With the semiminor axis b perpendicular to the crossflow velocity,

CN _ Cm _ 3 _ [- a2 /b 2 __1

(CN)cir (Cm)cir 2 _/ a a 2---
[(_-_ - 1) 3/2 tan

(22)

Values of CN/(CN)ci r computed from slender-body and Newtonian theories for various a/b are
compared in tables 1 and 2.

TABLE 1. - CN/(CN)ci r FOR ELLIPTIC CROSS SECTION WITH SEMIMAJOR

AXIS a PERPENDICULAR TO CROSSFLOW VELOCITY

a

b

1.5

2

3

Slender-body

theory

1.41

1.50

2.00

3.00

CN/(CN)c 

Newtonian

theory

1.34

1.41

1.75

2.32

Percent difference

Slender-body-Newtonian) 100Slender-body

5

6

12

23

14



TABLE1.- CN/(CN)ci r FOR ELLIPTIC CROSS SECTION WITH SEMIMAJOR

AXIS a PERPENDICULAR TO CROSSFLOW VELOCITY - Concluded

a

b

CN/(CN)cir

Slender-body

theory

4.00

5.00

6.00

Newtonian

theory

2.77

3.17

3.52

Percent difference

Slender-body-Newtonian _ 100
Slender-body /

31

37
41.

TABLE 2. - CN/(CN)ci r FOR ELLIPTIC CROSS SECTION WITH SEMIMINOR

AXIS b PERPENDICULAR TO CROSSFLOW VELOCITY

a

b

1.5

2

3

4

5

6

Slender-body

theory

0.7O7

.667

.500

.333

.250

.200

.167

CN/(CN)cir

Newtonian

theory

0.720

.679

.501

.316

.222

.167

.132

Percent difference

Slender-b ody-Newtonian)

-2

-2

0

5

11
16

21

100

For bodies with square cross sections in which the corners are rounded (see sketch (d)),

Newtonian theory gives

V n

r=kw

Sketch (d)

CN Cm 1 3_k)/1 7r(CN)ci r - (Cm)ci; = 2- (2 -(4-70 k 2

0_<k_< 0.5 (23)
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where the diameter of the equivalent circular body is

d = 2w/1-(%- 7r) k 2 (24)

Some values of CN/(CN)cirfrom equation (23) are given in table 3.

TABLE 3. - CN/(CN)ci r FROM NEWTONIAN THEORY FOR SQUARE CROSS

SECTIONS WITH ROUNDED CORNERS

k 0 0.05 0.1 0.2 0.3 0.4 0.5

CN](CN)ci r 1.33 1.29 1.25 1.17 1.11 1.05 t.00

Corresponding values from slender-body theory vary from 1.19 at k = 0 (no corner radius) to 1.00

at k -- 025 (completely circular cross section).

For noncircular bodies, an approach somewhat consistent with the logic of each term in equa-

tions (1), (4), and (5) is to modify the first term by CN/(CN)ci r (-- Cm/(Cm)ci r) from slender-body

theory and the second term by CN/(CN)ci r (=Cm/(Crn)ci r) from Newtonian theory. The equations

then become,

CN = (-_ sin 2 c_' cos-_-)
(CN)cir SB

A b

(CN)cir Newt'

0 ° _< c__< 180 ° (25)

I I V-Ab(_-Xm) ] o_'
Ad sin2 a' cos -_-

+
1(Cm)cir SB

%
(Cm)cir Newt

0 ° _< o__< 90 ° (26)
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and

% = - Ad sin 2 o_' cos

+ _ _Cdn__

(Cm)cir SB

(Cm)cir Newt'

90 ° <_ u _< 180 ° (27)

wherea' =a for 0 ° _<a_<90 ° anda'= 180 °-a for 90 ° _<a_< 180 ° .

For many cross sections the values of CN/(CN)ci r (=Cm/(Cm)ci r) given from slender-body
theory are reasonably close to those given from Newtonian theory, (see, e.g., tables 1-3), and the

distinction between these theories in equations (25) through (27) may not be necessary for many

engineering-type studies.

It should be noted that equations (25) through (27) are written for the case of a body whose

cross-sectional shape is the same along its length. The cross-sectional area, of course, need not be

constant over the body length.

CN and Cm controlled by crossflow Reynolds number - At low subsonic crossflow Mach num-
bers (below critical) the variation of Cdn with Re n for the cross section of interest can be significantly

large as Re n exceeds the critical value. (See, for example, fig. 2 for a circular cross section.) For the
Reynolds number controlled conditions, equations (25) through (27) can be used with slight modifi-
cation to the second terms. The values of [ CN/CN)ci r ]Newt and [Cm/(Cm)ci r ] Newt become

unity, and experimental values of Cdn for tl_e cross section of interest are used. It should be noted,

however, that most experimental values of Cdn are based on cross section width w and must be

multiplied by w/d, where d is the equivalent diameter of the cross section.

In table 4 some references are listed from which experimental values of Cdn versus Re n can be

obtained for various cross sections and flow directions.

Crossflow drag proportionality factor - Based upon experience with bodies of elliptic, square,

and triangular cross section at supersonic freestream Mach numbers (ref. 9), it is probably best to

assume a crossflow drag proportionality factor r/ of unity for bodies in supersonic and hypersonic
freestream flow. For subsonic freestream flow, r/can be interpolated from figure 4, since the values

plotted as a function of length-to-width ratio (fig. 4) are only slightly lower for flat plates than for

circular cylinders. However, the reliability of using figure 4 for obtaining r/ for noncircular bodies
has not been verified, and it is likely that r/varies somewhat with crossflow Mach number and/or

crossflow Reynolds number as well as with length-to-width ratio.
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TABLE 4. - REFERENCES FROM WHICH EXPERIMENTAL VALUES OF Cdn VS Re n

CAN BE OBTAINED FOR VARIOUS CROSS SECTIONS AND FLOW DIRECTIONS

References Cross sections and flow directions References Cross sections and flow directions

I0

(Lindsey)

18

(Polhamus)

44

( Delany 8,
Sorensen)

16= 0 ° _ 180 °

Sem::ube

16= 0 °

Ellipses
a/b= 2,4,
and 8

16=0°8 45 °

16 = 0 ° & 180 °

Isoseles triangles := 30 o, 60 °,
90 ° , 120 o

!6 = 0 ° to 45 °

r=kw " k=.080,.245,.500

f6 =0 ° to 90 °

ib = 0 ° to 90 °

r = . 200 w

w

____

_F-. 667 w

.,. r =.152w

wT-_> r : .229 w

L/r = .152w

16: 0 o _ 90 ° Ellipse
o/b : 2

44

(Delany 8_
Sorensen)

45

(Polhamus,
Geller, 8,
Grunwald )

46

(Lockwood)

16 : 0 o & 45 °

r =kw; k :.021

,----q-
w

,____J_

,.167, .555, .500

r=kw " k= 021, .085, .250

_I_r=kw ; k:.021,.085, .250

16=0 ° & 180 ° _J

16=0°8190°!I_ __kw;k=.021,.085,.1677

16:0° to45 °
_--.

r = .570 w

f
w

r :. 152 w

16:o°to 2o_<Lt- w

r=229w':'_ j_
r= .152w

16=oo9ooto !

.675w -_i

Ellipse
a/b : 2

Flat front
cylinder

16= 0 ° to 90 °
w

I

_ x_1_-

Flat front

cylinders

x =.915w, .840w
.755 w
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Axial-force coefficients - The same basic procedures and equations (eqs. (2), (3) and (9)) can
be used to estimate the axial-force coefficients for bodies of noncircular cross section as for bodies

of revolution. Because of lack of investigation, however, there is little information from which to
compute the pressure contribution to the axial-force coefficients at _ of 0 ° of 180 °. For bodies with

cross sections that are not too different from circular, the pressure axial-force coefficients might be

roughly estimated by computing the coefficients for the equivalent body of revolution (circular body

with the same axial distribution of cross-sectional area). This procedure was shown to give reasonable

results in reference 9. More refinement in the computation procedure, however, is possible for cone-
cylinder bodies with elliptic cross sections.

For conical-nosed bodies of elliptic cross section, the pressure axial-force coefficient at ee= 0 °

has been derived by Van Dyke (ref. 47) from second-order slender-body theory. It is given by

CA W I 3 1 1 ]= ab(2X+l) + [32ab 3abX 2 +-_(a 2 +b 2) ;k-_ (a-b) 2 +-_ab

+a2b 2 (q'+I)--_-(2+M_)X +(1M_- , 2a/_

+M_aZb2[3 aZ+_b2 3 ab b]8 ab (X+l) + 2 a 2-b 21°g (28)

where

4 1, t3 = x/ML-1
X = log t3(a+b)

and a and b are slopes of the semimajor and semiminor axes.

For conical-nosed bodies of elliptic cross section, the skin-friction coefficient CASF at a = 0 °
can be computed by the same flat-plate skin-friction methods as for the bodies of revolution, but the

wetted area of the noncircular body should be used. For an elliptic cone nose, the surface wetted

area can be determined closely from

A s "_ rr(a+b) 64-304 /a/b+£2N64 - 1602 2
(29)
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where

a-b
a+b

and a and b are the semimajor and semiminor axes.

COMPARISON OF COMPUTED WITH EXPERIMENTAL AERODYNAMIC

CHARACTERISTICS FOR NINE BODIES OF REVOLUTION

Bodies Studied and Flow Conditions

The longitudinal aerodynamic characteristics for a series of cylinder, cone-cylinder, and ogive-

cylinder bodies of revolution with various nose and afterbody fineness ratios were measured by

Jernell (ref. 4) in the Langley Unitary Plan Wind Tunnel. Data were obtained for Mach numbers from

1.50 to 2.86, angles of attack from about -5 ° to 180 °, and a Reynolds number based on diameter

of 1.25X10 s.

Drawings of the bodies are shown in figure 9 along with values of the geometric parameters re-

quired to compute the aerodynamic characteristics. For the cylinder-only bodies (numbers 1 and 2)

Body 7, 7,N 7,A xm A p V ×c A s Nose

Xm _.j no d d d d d 2 d-5 d-- d_ shape

I I , 6 0 6 3 6.000 4.710 3.000 19.63 Flat

I @ I 2 8 0 8 4 8.000 6.280 4.000 25.92 Fiat

__i_ ] 3 7 3 4 3.5 5.500 3.925 4.183 17.34 Cone

I 4 9 5 6 4.5 7.500 5.495 5.200 23.62 Cone

I 5 II 3 8 5.5 9.500 7.065 6.211 29,91 Cone

6 9 3 6 4.5 8.011 5.977 4.965 25.24 Ogive

7 7 5 2 3.5 5.540 5.671 4.200 16,82 Ogive

_ IKf3Blem

8 9 5 4 4.5 7.340 5.241 5.234 25. IO Ogive

9 II 5 6 5.5 9.340 6.811 6.255 29.58 Ogive

Figure 9. - Bodies for which the aerodynamic characteristics were measured in reference 4 and computed in the

present study for Moo = 2.86.
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andcone-cylinderbodies(numbers3-5) all of thesegeometricparametersareeasilycomputed,but
for the bodieswith tangent-ogivenoses(numbers6-9) thevaluesof Ap/d 2, V/d 3, Xc/d , and As�d2
are not so easily obtained. Some convenient formulas for computing these parameters for tangent-
ogive noses are given in the appendix.

In the present study the aerodynamic characteristics for the bodies shown in figure 9 have been

computed only for Moo = 2.86. Jernell (ref. 4) found appreciable discontinuities in his data, believed

to be due primarily to interference effects from the model support system, as evidenced by schlieren

photographs. Although these data discontinuities persist throughout the test Mach number range
from 1.50 to 2.86, they appear to diminish slightly with increase in Mach number. The data for

Moo = 2.86 are probably the least affected by interference, and for this reason computed results are

compared only with these data. Also, because of interference effects, any trends in the experimental

aerodynamic characteristics with change in Mach number from only 1.50 to 2.86 may be erroneous.

The procedure outlined in this report has been used to compute the variation of CN, CA, Cm,
and Xac/9. with a for the nine bodies of figure 9 at Moo = 2.86. Turbulent boundary layer flow and
zero heat transfer were assumed because Jernell (ref. 4) states that "boundary-layer transition was

effected" by artificial trips throughout the a range.

Variation of CN, CA, and Cm With Angle of Attack

In figures 10 through 14, computed values of CN, CA, and Cm as a function of angle of attack
are compared with the experimental results for the nine bodies at Moo = 2.86. Generally there is

good agreement of the computed with the measured results, especially in the variation of CN and Cm
with a. The poorest agreement is between values of CA, and further comment on this disparity will
be made shortly.

It is gratifying that effects of afterbody fineness ratio, nose fineness ratio, and nose shape on

CN and Crn are predicted so well. In general the magnitudes of CN and Cm increase with increase in
fineness ratio, just as the computed results predict. Figure 10 shows the effect of fineness ratio for

flat-nosed cylinders. Figure 11 shows the effect of fineness ratio for cone-cylinder bodies, all with

fineness ratio 3 conical noses. Likewise, figure 12 shows the effect of fineness ratio for ogive-cylinder
bodies, all with fineness ratio 5 ogival noses. Figure 13 shows the effect of nose fineness ratio for

ogive-cylinder bodies, and figure 14 shows the effect of change in nose shape from conical to ogival
for a given fineness ratio.

It is believed that at least some of the disagreement between computed and measured values of

CA can be attributed to support interference effects. No adjustments were made in the data of ref-

erence 4 for base-pressure conditions, and the coefficients represent total measured axial force. It is

not understood why there is such a significant increase in measured CA for the conical- and ogival-

nosed bodies as a increases from 0 ° to about 70 ° (figs. 11-14). The measured values of CA pass
through zero at an a above 0_= 90 °, probably in part because of different spillage flow around the

nose than the base of each model. Here again, however, there is evidence of support interference,
since the CA values for the flat-faced cylinders (bodies 1 and 2) also pass through zero at an c_a little
above a = 90 ° (see fig. 10).
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Figure 10. - Comparison of computed with measured aerodynamic characteristics for cylindrical bodies with

completely blunt noses; Moo = 2.86.
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Cm

I0

-I0

Body 5

I
Body 4

@
Body 5

Lid = 7

_/d = 9

Lid = II

-- _13" "Z_ '=0'_ --u_-

,,..[3&...., --O--
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Computed Measured
(ref. 4)

©

2O

CN

2O

0 =_=.--_ _i_. _ _

I0

0

CA

-I

-2

Figure l 1. - Comparison of computed with measured aerodynamic characteristics for cylindrical bodies with conical

noses of fineness ratio 3;Moo - 2.86.
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Cm

Body 7

_ l_/d =7

Body 8

_'-"-"'----" _ I l/d = 9

Body 9

< _ ] 7,/d= II
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0

A
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CN
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0
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I
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---2

Figure 12. - Comparison of computed with measured aerodynamic characteristics for cylindrical bodies with ogival
noses of fineness ratio 5;Moo = 2.86.
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Figure 13. - Comparison of computed with measured aerodynamic characteristics for cylindrical bodies with ogival

noses of fineness ratio 3 and 5 ;Moo = 2.86.
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Body 4
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Figure 14. - Comparison of computed with measured aerodynamic characteristics for cylindrical b odies with conical
and ogival noses of fineness ratio 3;Moo = 2.86.
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Equations (2) and (3) were used to compute the variation of CA with a, and the values include
the contributions of fore pressure, turbulent skin friction, and base pressure. Although no attempt

was made to compute the magnitude of wind-tunnel support interference, additional values of CA
for body number 5, a cone-cylinder, were computed by the alternate, more precise, method pre-

viously outlined.

In figure 15, CA's computed by both methods are compared with the measured values for body
number 5. It is seen that use of the more precise method (the dashed line) only slightly changes the

comparison of computed with measured re-

suits. Also, the variation of CA with a by the
more precise method is limited to a's less than
69.5 ° . This limitation results from the fact that

M a < 1 for at > 69.5 ° with Moo = 2.86, and

supersonic cone theory for determining Caw is
not applicable. In the computations, Caw
values for the conical nose were determined

with the use of equation (10), the cone tables

in reference 48, and chart 6 in reference 31.

Computed CA results with and without base
pressure (from eq. (11)) are shown for com-

parison in figure 15.

Variation of Xac/£ With Angle of Attack

In figure 16 computed values of aero-

dynamic force center (the symbols) are com-

pared with the experimental results (the lines

from ref. 4) for the nine bodies at Moo = 2.86.

As for the CN and Cm results, the. agreement
of the computed with the measured values is

reasonably good, especially for _ near 90 °.

Note that symbols are used to denote com-

puted values because lines are used in ref-
erence 4 to denote the measured results. At o_

somewhat less than and greater than 90 °, the

computed values are generally a little forward

of the measured values. The greatest differ-
ences between predicted and measured results

occur with the blunt cylindrical portions of the

bodies almost facing into the free-stream flow
(i.e., for o_ approaching 0 ° and 180 ° for the

completely blunt-nosed bodies and _ approach-
ing 180 ° for the pointed-nosed bodies).

CA

.6

.4

-.2

-.4

0

0

I

Computed

-- CA= CAa=o. cos2a, O°_<a <90 °

= CAa =i8o * cos 2 (180°-a), 90°_< a _<180 °

------ CA= Co cos 2a, 0°_< a-<69.5 °

----- CA = Co cos2a, O°_<a<- 69.5 ° (No COB)

Measured, ref. 4

I I I I I i I I I I

O O O
O O

O

O

O

__ O

Body 5 j_ X

8d

I I I I I I I I I I I

20 40 60 80 I00

a , deg

120

Figure 15. - Comparison of computed axial-force
coefficients with measured axial-

force coefficients for a cone-cylinder
body (body 5); Moo = 2.86.
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Ot I I I I Computed Measured-

1@@@ E_],/d=6 0 (re_4)

"2 I-:a--bt--I Body 2

_I I---"-I 7,/d =8 [] ....
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Xac

Body 3
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.4 !<1 I L/d:ll
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i

Computed Measured-
(ref. 4)

0

[]

©

40 60 80 iO0 120 140 160 180

a,deg

(a) Cylindrical bodies with completely blunt noses. (b) Cylindrical bodies with conical noses of fineness
ratio 3.

Computed Measured- Computed Measured •

°r_ T" Body7 (ref. 4) ° _..=::__ 7,/d ....

__ 1,/d:7 0 ---- .2k_- _ Body 6 I 9 0 (ref. 4).2 [_{_- Body8

LL__ .,,=::::_zzz_ _/d =9 [] ..... [] ......
I I I Body 9 I _A I I Body 8

Xec .4_- _ ,.7----I L /d =11 _ ----- Xao .4___._1' ' "[ "_ "(7_ <_ .....

I | ild
• 0 20 40 60 80 I00 120 140 160 I 0 " 0 20 40 60 80 I00 120 140 160 I 0

a, deg a, deg

(c) Cylindrical bodies with ogival noses of fineness ratio 5. (d) Cylindrical bodies with conical and ogival noses.

Figure 16. - Comparison of computed with measured aerodynamic force centers for cylindrical

bodies with completely blunt noses, with conical noses, and with ogival noses; Moo = 2.86.

PREDICTED EFFECTS OF MACH NUMBER AND REYNOLDS

NUMBER ON BODY AERODYNAMIC CHARACTERISTICS

The procedure reviewed in this report has been used to predict some effects of Mach number

and Reynolds number on the variation of CN and Xac/£ with a for a body of revolution. The body

consists of a fineness ratio 5 ogival nose followed by a fineness ratio 6 cylinder (body number 9 in

fig. 9). It is believed that the aerodynamic trends computed for this body are indicative of those

that can be expected for most booster bodies at comparable Mach numbers, Reynolds numbers, and

angles of attack.
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Effect of Mach Number

The variation of CN and Xac/f_ with 0Lhas been computed for several free-stream Mach numbers
from hypersonic down to subsonic (Moo = 7.0, 2.9, 1.5, and 0.3), and the curves are presented in fig-

ure 17. It is seen that Mach number significantly affects CN over most of the o_ range. The aero-
dynamic force center, however, moves little with change in Mach number.
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(b) Aerodynamic force centers.

Figure 17. - Effect of Mach number on the computed aerodynamic characteristics of an ogive-cylinder body.

Naturally, because of the semiempirical method used, the CN curves, especially at c_ near

e_= 90 °, strongly reflect the variation of crossflow drag coefficient Cdn with crossflow Mach number

M n for two-dimensional circular cylinders (see fig. 1). That is, as M_o decreases from Moo = 7.0 to

Moo = 1.5 (fig. 17), CN increases as does Cdn. Although the transonic crossflow Mach number range

is not well defined for two-dimensional circular cylinders, Cdn probably reaches a maximum at or

near M n = 1 (fig. 1), and the computed CN for a booster body would reach a maximum at or near

Moo = 1 with o_= 90 ° (since M n = Moo sin o0. As the free-stream Mach number decreases to low sub-
sonic (Moo_< 0.3), there is considerable drop in maximum Cdn and, hence, in computed CN. See, for

example, the CN curve for Moo = 0.3 in figure 17.

It should be noted that the CN curve for Moo = 0.3 was computed for a free-stream Reynolds
number of Re = 10 s , so that, throughout the _ range, all of the values of crossflow Reynolds num-

ber (Re n = Re sin _) are subcritical and Cdn = 1.2 (see fig. 2). The topic next discussed is the effect

on CN and Xac/£ of increasing Re above Re = l0 s so that values of Re n lie within the supercritical

range.

Effect of Reynolds Number

For Moo less than about 0.4; the variation of CN and Xac/f_ with c_has been computed for free-
stream Reynolds numbers of 10 , 106, and 107, and the curves are presented in figure 18. It is seen
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Figure 18. - Effect of supercritical Reynolds numbers on the computed aerodynamic characteristics of an ogive-

cyhnder body at subcritical crossfiow Mach numbers (M n _ 0.4).
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that thereis a significanteffectof Reynoldsnumberonboth CN and Xac/f_ throughout most of the
a range. These curves, of course, reflect the strong influence of crossflow Reynolds number Re n on

crossflow drag coefficient Cdn for two-dimensional circular cylinders (see fig. 2).

As shown in figure 2, Cdn for a circular cylinder drops considerably as Re n increases from l0 s

to 106, and then there is gradual rise as Re n increases from 106 to 107 . There apparently is much

more uncertainty in the magnitude of Cdrt at supercritical Re n (such as 106 and 107 )than at sub-

critical Re n (values less than about 2X10" ), and the shading in figure 2 indicates the uncertainty
because of scatter in known data.

In figure 18 the shaded bands in the CN and Xac/9_ curves for Re = 106 reflect the uncertainty
in these curves resulting from the scatter in the Cdn data shown in figure 2. It is clearly evident, how-
ever, that this uncertainty in the curves is relatively small compared with the large effect of change
in Reynolds number.

In figure 18(b) is shown the ratio of CN for the body at Re of 10 6 and 10 v to CN for the body
at the subcritical Re of l0 s . With this figure, the effect of Re can be studied throughout the a range.

It is seen, for example, that at a near 90 ° the body at Re = 10 6 develops only about 25 percent of

the CN developed at Re = l0 s , but at c_ less than about 10 °, 100 percent of the CNiS developed.
Similar study in the movement of Xac/9_ with change in Re and ot can be made with the use of fig-
ures 18(c) and (d).

The curves in figure 18(e) verify that quick estimates of CN/[CN]
from about 60 ° to 120 ° by assuming that . k .IRe = l0 s

can be made for a

CN Cdn

Re = l0 s Re = l0 s

Values of Cdn for Re of interest can be readily read from figures 2 and 3.

Verification of Effect of Reynolds Number from Experimental Data

Experimental results have been obtained (ref. 3) which show significant effects of Reynolds

number and body comer radius on the force and moment characteristics of a flat-bottomed space-

shuttle-type model at high angles of attack and at low subsonic Mach numbers (Moo _- 0.3). A sam-

pling of CN data from reference 3 for a given comer radius is plotted in figure 19. These data show a

large effect of Reynolds number (based on body width) on the variation of (A/Ap)C N with a over
the a range investigated (35 ° __ a __ 75°).

Reference 3 shows that there is close similarity, in both magnitude and change with Reynolds

number, between the crossflow drag coefficients for this shuttle body at high c¢and two-dimensional

square cylinders with rounded corners at 90 ° angle of attack. From this similarity it is concluded
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that thesedatalie within thecriticalReynoldsnumberrange,therangein whichthecrossflowdrag
coefficientdecreasesfrom high to low valuesasthe Reynoldsnumberincreasesfrom subcriticalto
critical.

With the useof plotsof Cdn versus Re n for two-dimensional square cylinders with various cor-
ner radii (fig. 6 in ref. 3), normal-force coefficients have been computed for the shuttle body and are

compared with the data in figure 19. Although the computed results do not agree closely with the

measured, they do qualitatively predict the significant effect of Reynolds number.

_r'-= Reference

_ cross section

.065 w

" ' 13C Elevation

Bose

( Bottom _'_

C N
Ap

1.6

Measured
ReX IO -6 Computed (ref. 5)

0.63 0

1,83 []

1.2

.8

.4

0
5O

I I I I

O /E3 /

 __2o ___.
0 []

[]
[] []

I I I F

40 50 60 70 80

a, deg

Figure 19. - Comparison of computed with measured effect
of Reynolds number on variation of normal-force coeffi-
cient with angle of attack for a space shuttle-type body
(flat bottomed with rounded corners) at Moo = 0.3.

In addition to the somewhat explain-

able CN and Cm results measured in refer-
ence 3 for this shuttle body, sideslip results
were measured that are difficult to under-

stand and, at present, impossible to predict.

It is believed, however, that they are asso-

ciated with body boundary-layer-flow sepa-

ration and vortex action - particularly the

phenomenon that includes unsymmetrical
boundary-layer separation, unsymmetrical

vortex formation, and random switching of

vortex position with time which has been

observed for bodies at high angles of attack.

It is hoped that the very limited results
in reference 3 and in this report will serve as

a "red warning flag" concerning possible un-

certainties and unpredictable aerodynamic
effects for shuttle boosters and missiles at

subcritical crossflow Mach numbers and

supercritical crossflow Reynolds numbers.
If shuttle boosters are to be flown back into

the atmosphere at very high angles of attack
to low subsonic Mach numbers, further

effort should be made to obtain detailed

wind-tunnel data at near-flight Reynolds
numbers.

CONCLUDING REMARKS

The following remarks are written to

correspond with the three study objectives
stated in the Introduction.

(1) An engineering-type procedure with formulas and plots has been presented for computing

normal force, axial force, and pitching-moment coefficients for booster-like bodies of circular and
various noncircular cross sections. Included are necessary "state-of-the knowledge" plots of circular-
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cylindercrossflowdrag coefficient versus crossflow Mach number and crossflow Reynolds number.

Some available plots of crossflow drag coefficient versus crossflow Reynolds number for various non-
circular cross sections are referenced.

(2) The presented procedure has been used to predict the variation of CN, CA, Crn, and Xac/9.

with o_ for nine bodies of revolution at Moo = 2.86. Except for CA, the agreement of the predicted
with the available measured results is good throughout the o_range.

(3) Effects of Mach number and Reynolds number on the variation of CN and Xac/9_ with a
have been predicted for a body of revolution (fineness ratio 5 ogival nose with a fineness ratio 6

cylinder aftersection). Mach number changes from Moo = 7 down to Moo = 0.3 (the range studied)can

significantly affect CN over most of the a range. The aerodynamic force center, however, moves
little with Mach number.

Even more pronounced than the effect of Mach number is the effect of Reynolds number,

which has been predicted for the body at the subcritical Mach number of Moo--_0.3. With increasein

Reynolds number from l0 s to 10 6 , up to 75 percent of the normal force is lost, the maximum loss

occurring at a = 90 °. With further increase in Reynolds number to Re = 107 , only about one-half of

the normal force at Re = 10 s is regained. This large effect of Reynolds number results from the fact

that the crossflow Reynolds numbers vary from subcritical to critical as freestream Reynolds number
increases well above Re = l0 s .

The fact that there can be a severe effect of Reynolds number on the aerodynamics when the

crossflow Reynolds numbers are in the critical range also has been demonstrated with experimental

results for a flat-bottomed shuttle-type body. Computed normal-force coefficients for this body at

Moo = 0.3 qualitatively predict the significant measured effect of changing the crossflow Reynolds
number through the critical range.

The results of this investigation suggest that, if shuttle boosters (and other vehicles) are to be

flown back into the atmosphere at very high angles of attack to low subsonic Mach numbers, effort

should be made to obtain wind-tunnel data at near flight Reynolds numbers.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, California, August 9, 1972
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APPENDIX

FORMULAS TO COMPUTE GEOMETRIC PARAMETERS FOR TANGENT OGIVES

To compute the aerodynamic characteristics of bodies of revolution having tangent ogive nose

shapes, various geometric parameters must be obtained. To compute CN and Cm the planform area
A_ is required, and to compute C.._ it is also necessary to obtain the volume V and the distance x c

lJ ffl.

from the nose vertex to the centroid of planform area. To compute skin-friction drag, the wetted

surface area A s is needed.

For an ogival nose of length £N and diameter d (see sketch (e)) the following useful formulas
have been derived:

_N D

-- x c _______o_

r a

Sketch (e)

Ap_ _ _N 2 _ + R 2 sin -1 - 2 - (A1)
d 2 d

(A2)

2

d d Ap (A3)

d 2

and

d2 - 2 7rR R - sin -a + (A4)

where R is the ratio of the ogival arc radius ra to base diameter d, and
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