CASE FILE ${ }^{\text {NASA } 5 P-3074}$
 COPY

TABLES OF CRITICAL-FLOW FUNCTIONS

AND THERMODYNAMIC PROPERTIES FOR METHANE

AND COMPUTATIONAL PROCEDURES

FOR BOTH METHANE AND NATURAL GAS
JOHNSON

By Robert C. Johnson
Lewis Research Center

Prepared at NASA Lewis Research Center

Scientific and Tecbuical Information Office
1972
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C.

SUMMARY

Procedures for calculating the mass flow rate of methane and natural gas through nozzles are given, along with the FORTRAN IV subroutines used to make these calculations. Three sets of independent variables are permitted in these routines. In addition to the plenum pressure and temperature, the third independent variable is either nozzle exit pressure, Mach number, or temperature. A critical-flow factor that becomes a convenient means for determining the mass flow rate of methane through critical-flow nozzles is tabulated. Other tables are included for nozzle throat velocity and critical pressure, density, and temperature ratios, along with some thermodynamic properties of methane, including compressibility factor, enthalpy, entropy, specific heat, specific-heat ratio, and speed of sound. These tabulations cover a temperature range from 120 to 600 K and pressures to $300 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$.

INTRODUCTION

When nozzles are used for measuring the mass flow rate of gases, it is usually as sumed that the flow of the gas from the plenum to the throat of the nozzle is one dimensional and isentropic; and, in addition, the assumption is frequently made that the gas is perfect. For a typical nozzle, the assumption of one-dimensional and isentropic flow is a good approximation. Actual deviations from these conditions can be handled by applying a multiplying factor (the discharge coefficient) that is almost unity and is a function of Reynolds number and nozzle geometry. The assumption that the gas is perfect is sufficiently accurate for gases such as air or nitrogen at room temperatures and at pressures up to a few atmospheres. However, for gases such as methane or naturalgas mixtures, this assumption breaks down even at atmospheric pressure because of the strong dependence of specific heat on temperature. At high pressures and/or low temperatures, the effect of compressibility factor variation becomes important. (In this report, a perfect gas is defined as one whose compressibility factor has a value of unity and whose specific heat is a constant whose value depends only on the composition of the gas. A perfect gas should be distinguished from an ideal gas, which, in this report, is defined as a gas whose compressibility factor has a value of unity but whose specific heat varies with temperature. In the absence of dissociation, all real gases approach this ideal-gas condition as the pressure is reduced.)

There is a case where the real-gas, mass-flow-rate calculation is easy to make. This is the case where the change in pressure and temperature of the gas as it flows from the plenum to the throat of the nozzle is much smaller than the absolute level of pressure and temperature. The flow is then considered incompressible, and the realgas correction consists of using the actual value of density in the flow equation rather than the value that would result from the perfect-gas assumption. However, in this mode of operation, it is necessary to measure a differential pressure between the plenum and the throat of the nozzle which is much smaller than the pressure level. At high pressure levels, this is a difficult measurement to make accurately. There is a second mode of nozzle operation which eliminates the need of making this accurate differential pressure measurement. In this mode, the pressure at the exit of the nozzle is made so low that the flow velocity at the throat of the nozzle is sonic. Once this condition is reached, the mass flow rate through the nozzle does not change as the nozzle exit pressure is lowered further. A nozzle operating in this mode is referred to as a critical-flow nozzle; and, under this condition, the mass flow rate of the gas through the nozzle depends only on plenum pressure, plenum temperature, and gas composition. However, the real-gas, mass-flow-rate calculation for a critical-flow nozzle is not so simple as that for a nozzle operating in the incompressible flow mode. In fact, in the absence of appropriate tables, this computation usually necessitates the use of a digital computer.

In reference 1, critical-flow tables are presented for methane and natural-gas mixtures. By using these tables, the isentropic mass flow rate of these gases through critical-flow nozzles can be calculated. These tables cover temperatures from 250 to 390 K and pressures to $69 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$. The state equation used in these computations is that developed by Benedict, Webb, and Rubin and reported in references 2 to 4 . Since 1940, when this equation was first presented, more accurate state data for methane have been obtained (refs. 5 and 6). In 1969, Vennix and Kobayashi (ref. 7) presented a state equation whose coefficients were computed from this more recent and accurate data. Except for the data points in the liquid region, the pressures predicted by the state equation of reference 7 agree with the measured pressures in references 5 and 6 to within 0.1 percent. According to reference 7 , this state equation is valid for pressures to $410 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ and for temperatures from 130 to 625 K .

Natural gas is being considered as a fuel for propulsion and power systems to be used for aircraft and ground transportation, and methane is the principal component of natural gas. Therefore, isentropic flow calculations based on the more accurate state equation of reference 7 would be useful. Such calculations would also be useful to the natural-gas industry in the metering of fuel.

In this report, a critical-flow factor that permits the computation of the isentropic mass flow rate of methane through critical-flow nozzles is tabulated. Besides this critical-flow factor, additional critical-flow functions are tabulated. These are the nozzle throat velocity, the ratio of throat to plenum pressure, the ratio of throat to plenum
density, and the ratio of throat to plenum temperature. In addition, some thermody namic state functions are included in the tabulations. These are compressibility factor, enthalpy, entropy, specific heat, specific-heat ratio, and speed of sound. These tabulations cover pressures to $300 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ and temperatures from 120 to 600 K . In addition to these tabulations, a method based on the principle of corresponding states, by which the state equation used for methare can be extended to natural-gas mixtures, is presented in appendix B. The FORTRAN IV computer subprograms used to make the methane computations are described and presented in appendix C. Appendix D describes and presents the FORTRAN IV subprograms that apply to natural-gas mixtures. All symbols are defined in appendix A. The International System of Units (SI) is used throughout this report.

CALCULATION PROCEDURES

The compressibility factor for methane and natural-gas mixtures as given in appendix B is a function of density and temperature. For this reason, the calculation of the mass flow rate of these gases through critical-flow nozzles requires that the entropy, the enthalpy, and the speed of sound be expressed in terms of density and temperature. To do this requires the following functions of the compressibility factor:

$$
\begin{gather*}
\mathrm{Z}_{\mathrm{I}}(\rho, \mathrm{~T})=\mathrm{Z}=\frac{\mathrm{p}}{\rho \mathrm{RT}} \tag{1}\\
\mathrm{Z}_{\mathrm{II}}(\rho, \mathrm{~T})=\mathrm{Z}+\mathrm{T}\left(\frac{\partial \mathrm{Z}}{\partial \mathrm{~T}}\right)_{\rho}=\frac{1}{\mathrm{R}_{\rho}}\left(\frac{\partial \mathrm{p}}{\partial \mathrm{~T}}\right)_{\rho} \tag{2}\\
\mathrm{Z}_{\mathrm{III}}(\rho, \mathrm{~T})=\mathrm{Z}+\rho\left(\frac{\partial \mathrm{Z}}{\partial \rho}\right)_{\mathrm{T}}=\frac{1}{\mathrm{RT}}\left(\frac{\partial \mathrm{p}}{\partial \rho}\right)_{\mathrm{T}} \tag{3}\\
\mathrm{Z}_{\mathrm{IV}}(\rho, \mathrm{~T})=\int_{0}^{\rho}\left(\mathrm{Z}_{\mathrm{II}}-1\right) \frac{\mathrm{d} \rho}{\rho} \tag{4}\\
\mathrm{Z}_{\mathrm{V}}(\rho, \mathrm{~T})=\int_{0}^{\rho}\left(\mathrm{Z}_{\mathrm{II}}-\mathrm{Z}_{\mathrm{I}}\right) \frac{\mathrm{d} \rho}{\rho} \tag{5}
\end{gather*}
$$

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{VI}}(\rho, \mathrm{~T})=\mathrm{T}\left(\frac{\partial \mathrm{Z}_{\mathrm{IV}}}{\partial \mathrm{~T}}\right)_{\rho}=\frac{\mathrm{C}_{\mathrm{v}, \text { ideal }}-\mathrm{C}_{\mathrm{v}}}{\mathrm{R}} \tag{6}
\end{equation*}
$$

(These and most of the other equations in this section can be found in ref. 8). For an ideal gas, $\mathrm{Z}_{\mathrm{I}}, \mathrm{Z}_{\mathrm{II}}$, and $\mathrm{Z}_{\mathrm{III}}$ equal unity; and $\mathrm{Z}_{\mathrm{IV}}, \mathrm{Z}_{\mathrm{V}}$, and Z_{VI} equal zero.

In addition, two functions of the ideal-gas specific heat are necessary. These are

$$
\begin{align*}
& \xi_{\mathrm{I}}(\mathrm{~T})=\int \frac{\mathrm{C}_{\mathrm{v}, \text { ideal }}}{\mathrm{R}} \frac{\mathrm{dT}}{\mathrm{~T}} \tag{7}\\
& \xi_{\mathrm{II}}(\mathrm{~T})=\int \frac{\mathrm{C}_{\mathrm{v}, \text { ideal }}}{R} \mathrm{dT} \tag{8}
\end{align*}
$$

The equations for the ideal-gas specific heat and the related functions ξ_{I} and ξ_{II} are given in appendix B for both methane and natural-gas mixtures.

In terms of the functions represented by equations (1) to (8), the following thermodynamic quantities can be expressed as functions of density and temperature:

$$
\begin{gather*}
\frac{\mathrm{S}}{\mathrm{R}}=\xi_{\mathrm{I}}-\ln \rho-\mathrm{Z}_{\mathrm{IV}} \tag{9}\\
\frac{\mathrm{H}}{\mathrm{R}}=\xi_{\mathrm{II}}+\mathrm{T}\left(\mathrm{Z}_{\mathrm{I}}-\mathrm{Z}_{\mathrm{V}}\right) \tag{10}\\
\frac{\mathrm{C}_{\mathrm{v}}}{\mathrm{R}}=\frac{\mathrm{C}_{\mathrm{V}, \text { ideal }}}{\mathrm{R}}-\mathrm{Z}_{\mathrm{VI}} \tag{11}\\
\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{R}}=\frac{\mathrm{C}_{\mathrm{v}}}{\mathrm{R}}+\frac{\mathrm{Z}_{\mathrm{II}}^{2}}{\mathrm{Z}_{\mathrm{III}}} \tag{12}\\
\gamma=\frac{C_{p}}{\mathrm{C}_{\mathrm{v}}} \tag{13}
\end{gather*}
$$

$$
\begin{align*}
\mathrm{k}=\frac{\rho}{\mathrm{p}}\left(\frac{\partial \mathrm{p}}{\partial \rho}\right)_{\mathrm{S}} & =\gamma \frac{\rho}{\mathrm{p}}\left(\frac{\partial \mathrm{p}}{\partial \rho}\right)_{\mathrm{T}}=\gamma \frac{\mathrm{Z}_{\mathrm{III}}}{\mathrm{Z}_{\mathrm{I}}} \tag{14}\\
\alpha & =\sqrt{\mathrm{k} \mathrm{Z}_{\mathrm{I}} \mathrm{RT}} \tag{15}
\end{align*}
$$

Now that entropy, enthalpy, and speed of sound are given in terms of density and temperature, the procedures for calculating the flow functions tabulated in this report can be discussed. While these flow functions are concerned with critical flow, the calculation procedures contained in the computer routines are more general. These procedures permit three sets of independent variables. The plenum pressure and the plenum temperature are independent variables included in all three sets. The third independent variable can be either nozzle throat temperature, nozzle throat pressure, or nozzle throat Mach number. For the case of critical flow, the nozzle throat Mach number would be specified and would have a value of unity. For the case of subsonic flow, the pressure at the nozzle throat would be specified. In all cases, the flow from the plenum ahead of the nozzle, where the gas is essentially at rest, to the throat of the nozzle is assumed to be isentropic and one dimensional. The quantities that have to be determined in order to make the mass-flow-rate calculation are the density and flow velocity at the nozzle throat. The equations that have to be solved for these three cases are as follows:

Case I - Given p_{0}, T_{0}, and T_{1}

$$
\begin{gather*}
\mathrm{p}_{0}=\mathrm{Z}\left(\rho_{0}, \mathrm{~T}_{0}\right) \rho_{0} \mathrm{RT}_{0} \tag{16}\\
\mathrm{~S}\left(\rho_{0}, \mathrm{~T}_{0}\right)=\mathrm{S}\left(\rho_{1}, \mathrm{~T}_{1}\right) \tag{17}\\
\mathrm{H}\left(\rho_{0}, \mathrm{~T}_{0}\right)=\mathrm{H}\left(\rho_{1}, \mathrm{~T}_{1}\right)+\frac{1}{2} \mathrm{v}_{1}^{2} \tag{18}
\end{gather*}
$$

Case II - Given $\mathrm{p}_{0}, \mathrm{~T}_{0}$, and p_{1}
In addition to equations (16) to (18), the following equation has to be satisfied:

$$
\begin{equation*}
\mathrm{p}_{1}=\mathrm{Z}\left(\rho_{1}, \mathrm{~T}_{1}\right) \rho_{1} \mathrm{RT}_{1} \tag{19}
\end{equation*}
$$

Case III - Given $\mathrm{p}_{0}, \mathrm{~T}_{0}$, and M_{1}
In addition to equations (16) to (18), the following equation has to be satisfied:

$$
\begin{equation*}
\mathrm{M}_{1}=\frac{\mathrm{v}_{1}}{\alpha\left(\rho_{1}, \mathrm{~T}_{1}\right)} \tag{20}
\end{equation*}
$$

The solution of the sets of equations for any of the three cases determines the value of the nozzle throat density and nozzle throat velocity. In fact, thermodynamic state functions as represented by equations (9) to (15) can now be easily determined at both the plenum and throat of the nozzle. The iteration procedures necessary to solve these sets of equations are given in reference 8 .

The mass flow rate of the gas through a nozzle whose throat has geometric area A_{1} is then

$$
\begin{equation*}
\dot{\mathrm{m}}=\mathrm{C}_{\mathrm{D}} \mathrm{~A}_{1} \rho_{1} \mathrm{v}_{1} \tag{21}
\end{equation*}
$$

The quantity C_{D} is referred to as the discharge coefficient. It has a value close to unity. The amount that C_{D} deviates from unity mainly represents the effects of non-one-dimensional and nonisentropic flow in the boundary layer of the nozzle. The value of C_{D} is usually determined by a nozzle calibration and is considered to be uniquely determined by Reynolds number.

RESULTS AND DISCUSSION

Methane

The isentropic mass flow rate of methane through critical-flow nozzles was calculated. The result of this calculation is a critical-flow factor which is defined as follows:

$$
\begin{equation*}
\mathrm{C}^{*}=\frac{\left(\rho_{1} \mathrm{v}_{1}\right) \sqrt{\mathrm{RT}_{0}}}{\mathrm{p}_{0}} \tag{22}
\end{equation*}
$$

For a perfect gas, C* would only depend on the specific-heat ratio and would equal

$$
\begin{equation*}
\mathrm{C}_{\text {perf }}^{*}=\left[\gamma\left(\frac{2}{\gamma+1}\right)^{(\gamma+1) /(\gamma-1)}\right]^{1 / 2} \tag{23}
\end{equation*}
$$

In terms of C^{*}, the mass flow rate of methane through the critical-flow nozzle is

$$
\begin{equation*}
\dot{\mathrm{m}}=\mathrm{C}_{\mathrm{D}} \mathrm{~A}_{1} \mathrm{C}^{*} \frac{\mathrm{p}_{0}}{\sqrt{\mathrm{RT}_{0}}} \tag{24}
\end{equation*}
$$

The value of the gas constant R for methane is $518.26 \mathrm{~J} /(\mathrm{kg})(\mathrm{K}) \quad$ These calculations also yielded two groups of quantities. The first group contains flow quantities that depend on both plenum and nozzle-throat conditions. These are given in tables I to V and are
(1) The critical-flow factor C^{*} as defined by equation (22) - table I
(2) Nozzle throat velocity, $\mathrm{v}_{1}, \mathrm{~m} / \mathrm{sec}$ - table II
(3) Critical pressure ratio, $\mathrm{p}_{1} / \mathrm{p}_{0}$ - table III
(4) Critical density ratio, ρ_{1} / ρ_{0} - table IV
(5) Critical temperature ratio, $\mathrm{T}_{1} / \mathrm{T}_{0}$ - table V

The second group contains thermodynamic state functions that depend only on gas temperature and pressure. These are given in tables VI to XI and are
(1) Compressibility factor, Z - table VI
(2) Enthalpy, H/R, K - table VII
(3) Entropy , S/R - table VIII
(4) Specific heat, C_{p} / R - table IX
(5) Specific -heat ratio, γ - table X
(6) Speed of sound, $\alpha, \mathrm{m} / \mathrm{sec}$ - table XI

The pressure range is from 0 to $300 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ and the temperature range is 120 to 600 K . If methane were a perfect gas, $\mathrm{C}^{*}, \mathrm{p}_{1} / \mathrm{p}_{0}, \rho_{1} / \rho_{0}, \mathrm{~T}_{1} / \mathrm{T}_{0}, \mathrm{Z}, \mathrm{C}_{\mathrm{p}} / \mathrm{R}$, and γ would be independent of pressure and temperature. That is, they would be constant. Figures 1 and 2 are presented to illustrate these variations. The critical-flow factor (fig. 1) and the specific heat (fig. 2) are plotted as functions of pressure and temperature. In both cases, the temperature dependency at zero pressure represents the effects of the variation of the ideal-gas specific heat, and the amount that an individual curve varies with pressure represents the effects of the variation of the compressibility factor. The sensitivity to pressure of both the critical-flow factor and the specific heat diminishes as the temperature increases.

All the flow calculations given in this report involve a state equation whose accuracy is estimated by the author to be 0.1 percent in the gaseous phase and an ideal-gas specific-heat equation that probably has the same degree of accuracy. Because of this, most of the thermodynamic properties that are tabulated should have approximately the same order of accuracy except at the upper and lower temperature limits of the tabulations. There are two tabulated thermodynamic functions that become infinite at the

Figure l. - Critical-flow factor for methane.

Figure 2. - Specific heat for methane.
critical point. These functions are the specific heat at constant pressure and the specific-heat ratio. Therefore, large errors in these functions would be expected in the vicinity of the critical point.

The computer routines that were used to make all calculations are described and presented in appendix C. These routines are written in the FORTRAN IV version 13 language for an IBM 7094II/7044 direct couple computer .

Natural-Gas Mixtures

The computer routines that apply to natural-gas mixtures are described and presented in appendix D. As in the case of methane, they are written in the FORTRAN IV version 13 language for an IBM 7094II / 7044 direct couple computer.

The accuracy of the natural-gas mass flow calculations is limited by the accuracy of the state equation. Since the state equation is based on that used for methane, the accuracy of the mass flow calculations is highest for these natural-gas mixtures that have a high methane content. For natural-gas mixtures having methane mole fractions of 0.9 or higher, the computational methods of this report are estimated to be more accurate than those described in reference 8. For mixtures that have lower methane mole fractions, it is difficult to say which method is the more accurate. One advantage of the computational methods used in this report is that they allow for the inclusion of $\mathrm{C}_{5} \mathrm{H}_{12}$ and $\mathrm{C}_{6} \mathrm{H}_{14}$.

CONCLUDING REMARKS

When the critical-flow factor tabulated in this report is used to calculate the mass flow rate of methane through critical-flow nozzles, the greatest uncertainty in the calculation is probably the uncertainty in the knowledge of the discharge coefficient rather than the uncertainty in the knowledge of the critical-flow factor. This is because of the accuracy of the state equation used in calculating this critical-flow factor.

The computer routines used in this report are designed to be easily modified for other gases.

Lewis Research Center,
 National Aeronautics and Space Administration, Cleveland, Ohio, June 30, 1972, 764-74.

APPENDIX A

SYMBOLS

A	area, m^{2}
$\mathrm{a}_{1}, \ldots,{ }^{\text {a }} 24$	coefficients for the state equation (eq. (B1))
$\mathrm{b}_{0}, \ldots, \mathrm{~b}_{\mathrm{n}}$	coefficients for the ideal-gas specific-heat equation (eqs. (B6) and (B7))
C*	critical-flow factor (eq. (22))
C_{D}	discharge coefficient
C_{p}	specific heat at constant pressure, $\mathrm{J} /(\mathrm{kg})(\mathrm{K})$
C_{v}	specific heat at constant volume, $\mathrm{J} /(\mathrm{kg})(\mathrm{K})$
$\mathrm{c}_{0}, \ldots, \mathrm{c}_{8}$	coefficients in eq. (B17)
H	enthalpy, J/kg
K_{H}	integration constant (eq. (B10)), K
K_{S}	integration constant (eq. (B9))
k	isentropic exponent (eq. (14))
M	Mach number
m	molecular weight
m	mass flow rate, $\mathrm{kg} / \mathrm{sec}$
p	pressure, $\mathrm{N} / \mathrm{m}^{2}$
p_{c}	pseudocritical pressure (eq. (B19)), $\mathrm{N} / \mathrm{m}^{2}$
$\mathrm{p}_{\text {sat }}$	minimum pressure at which condensation occurs at a given temperature, $\mathrm{N} / \mathrm{m}^{2}$
$\mathrm{p}_{\text {sat }}^{\prime}$	adjusted value of $\mathrm{p}_{\text {sat }}$ (eq. (B18))
R	gas constant (for methane, $\mathrm{R}=518.26 \mathrm{~J} /(\mathrm{kg})(\mathrm{K})$; for natural-gas mixtures, $\left.\mathrm{R}=\frac{8314.4}{\mathrm{~m}} \mathrm{~J} /(\mathrm{kg})(\mathrm{K})\right)$
S	entropy, $\mathrm{J} /(\mathrm{kg})(\mathrm{K})$
T	temperature, K
T_{c}	pseudocritical temperature (eq. (B5)), K

$\mathrm{T}_{\text {sat }}$	maximum temperature at which condensation occurs for a given pressure, K
T'	adjusted temperature (eq. (B3)), K
$T_{\text {sat }}^{\prime}$	adjusted value of $\mathrm{T}_{\text {sat }}$ (eq. (B3) applied to $\mathrm{T}_{\text {sat }}$), K
V	velocity, m/sec
X	mole fraction
Z	compressibility factor
$\mathrm{Z}_{\mathrm{I}}, \ldots, \mathrm{Z}_{\mathrm{VI}}$	functions of compressibility factor (eqs. (1) to (6))
α	speed of sound, m/sec
γ	specific-heat ratio
	functions of ideal-gas specific heat (eqs. (7) and (8)) density, $\mathrm{kg} / \mathrm{m}^{3}$
ρ_{c}	pseudocritical density (eq. (B4)), $\mathrm{kg} / \mathrm{m}^{3}$
ρ^{\prime}	adjusted density (eq. (B2))
φ	factor in eq. (B16)
Subscripts:	
i	$1,2,3, \ldots, n$; index used in summation
ideal	ideal-gas condition
j	species
perf	perfect-gas condition
0	plenum station
1	nozzle-exit station

APPENDIX B

BASIC EQUATIONS

The calculations in this report use three basic relations. The first describes the pressure-temperature-density behavior of the gas and is referred to as the state equation. The second describes the ideal-gas specific-heat variation with temperature, and the third describes the saturated-vapor-pressure variation with temperature. This last relation is used to determine whether or not the fluid is a gas. These relations are discussed in detail in this appendix for both methane and natural-gas mixtures.

State Equation for Methane

The state equation for methane is that developed by Vennix and Kobayashi in reference 7. That equation has been modified herein by dividing by $\rho R T$ and has been further modified by changing the density units from grams per cubic centimeter to kilograms per cubic meter. This equation, which is computationally equivalent to that given in reference 7, is

$$
\begin{align*}
& Z=1+\sum_{i=1}^{5}\left(\frac{a_{i}}{T}+a_{5+i}\right) \rho^{i}+\frac{1}{T}\left[\sum_{i=1}^{5} a_{10+i} \rho^{i}\right] e^{\left(a_{16}+a_{17} \rho\right) / T} \\
& +\frac{\mathrm{a}_{18}}{\mathrm{~T}} \rho\left(\rho+\mathrm{a}_{19}\right)^{2}\left[\left(\rho+\mathrm{a}_{19}\right)^{3}-\mathrm{a}_{20}\right]\left[\mathrm{a}_{21}-\left(\rho+\mathrm{a}_{19}\right)^{3}\right] \\
& {\left[\mathrm{a}_{22^{+\mathrm{a}_{23}}}\left(\rho+\mathrm{a}_{19}\right)^{3}\right]\left(\mathrm{T}+\mathrm{a}_{24}\right)} \\
& \times \mathrm{e} \tag{B1}
\end{align*}
$$

where
$\mathrm{a}_{1}=-2.239832$
$\mathrm{a}_{2}=1.3433125 \times 10^{-3}$
$\mathrm{a}_{3}=2.7591018 \times 10^{-5}$
$\mathrm{a}_{4}=-1.6554698 \times 10^{-7}$
$a_{5}=2.3412456 \times 10^{-10}$
$a_{6}=4.9147357 \times 10^{-3}$
$a_{7}=7.3766422 \times 10^{-6}$
$a_{8}=-1.1458784 \times 10^{-7}$
$a_{9}=5.8951021 \times 10^{-10}$
$a_{10}=-5.7438228 \times 10^{-13}$
$a_{11}=-3.9776054$
$a_{12}=-1.5062252 \times 10^{-2}$
$a_{13}=4.3294074 \times 10^{-4}$
$\mathrm{a}_{14}=-1.8535561 \times 10^{-6}$
$\mathrm{a}_{15}=2.0528632 \times 10^{-9}$
$a_{16}=-1378.7933$
$a_{17}=1.3441846$
$a_{18}=1.0993467 \times 10^{-14}$
$a_{19}=113.318$
$\mathrm{a}_{20}=1.6487332 \times 10^{7}$
$\mathrm{a}_{21}=1.0724364 \times 10^{8}$
$\mathrm{a}_{22}=-0.046002$
$\mathrm{a}_{23}=-2.1177 \times 10^{-10}$
$\mathrm{a}_{24}=147.71055$

In the gaseous phase, the compressibility factors calculated by this equation are estimated to be accurate to 0.1 percent for pressures to $410 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$, and temperatures from 130 to 625 K (ref. 7).

State Equation for Natural-Gas Mixtures

If the principle of corresponding states is assumed to be valid, equation (B1) can also be used to calculate the compressibility factor of natural-gas mixtures. This is done by substituting the following quantities, referred to as the adjusted density and temperature, for the actual density and temperature in equation (B1):

$$
\begin{array}{r}
\rho^{\prime}=\frac{162.5}{\rho_{\mathrm{c}}} \times \rho \\
\mathrm{T}^{\prime}=\frac{190.8}{\mathrm{~T}_{\mathrm{c}}} \times \mathrm{T} \tag{B3}
\end{array}
$$

where ρ_{c} and T_{c} are the pseudocritical density and temperature of the natural-gas mixture and are defined as follows:

$$
\begin{equation*}
\rho_{c}=\sum_{j=1}^{8} X_{j} \rho_{c} \tag{B4}
\end{equation*}
$$

$$
\begin{equation*}
T_{c}=\sum_{j=1}^{8} X_{j} T_{c} \tag{B5}
\end{equation*}
$$

Natural gas is assumed to consist of paraffins containing one to six carbon atoms and the dilutent gases N_{2} and CO_{2}. Since there are two $\mathrm{C}_{4} \mathrm{H}_{10}$'s, three $\mathrm{C}_{5} \mathrm{H}_{12}$'s, and five $\mathrm{C}_{6} \mathrm{H}_{14}$'s, it is arbitrarily assumed that the various molecular configurations of the paraffins containing the same number of carbon atoms are equally probable. The following table gives the values of the critical density and critical temperature and, in addition, includes the values of the critical pressure and molecular weight for the se natural-gas components. The values for $\mathrm{C}_{4} \mathrm{H}_{10}, \mathrm{C}_{5} \mathrm{H}_{12}$, and $\mathrm{C}_{6} \mathrm{H}_{14}$ are the average of the values

Component	Molecular weight, m	Critical pressure, $\begin{gathered} \mathrm{p}_{\mathrm{c}} \\ \mathrm{~N} / \mathrm{m}^{2} \end{gathered}$	Critical temperature. T_{c} K	$\begin{gathered} \text { Critical } \\ \text { density, } \\ \rho_{\mathrm{c}}, \\ \mathrm{~kg} / \mathrm{m}^{3} \end{gathered}$
CH_{4}	16.043	46.26×10^{5}	190.8	162.5
$\mathrm{C}_{2} \mathrm{H}_{6}$	30.070	48.94	305.6	203.2
$\mathrm{C}_{3} \mathrm{H}_{8}$	44.097	42.57	370.0	220.5
$\mathrm{C}_{4} \mathrm{H}_{10}$	58.124	${ }^{\mathrm{a}} 37.22$	${ }^{\mathrm{a}} 416.7$	${ }^{\text {a }} 224.4$
$\mathrm{C}_{5} \mathrm{H}_{12}$	72.151	${ }^{\text {a }} 32.99$	${ }^{\text {a }} 454.6$	${ }^{\mathrm{a}} 235.0$
$\mathrm{C}_{6} \mathrm{H}_{14}$	86.178	${ }^{\text {a }} 31.49$	${ }^{\text {a }} 499.7$	${ }^{\text {a }} 236.7$
N_{2}	28.013	33.98	126.1	311.0
CO_{2}	44.010	73.68	304.2	468.0

${ }^{a}$ Average of values given for various molecular configurations.
for the various molecular configurations. The CH_{4} values are from reference 7. The values for the other paraffins are from reference 9 . The N_{2} and CO_{2} values are from reference 10 .

This method of calculating the compressibility factor is similar to that used by the American Gas Association (AGA) in reference 11. There are, however, two differences: first, a different form of state equation is used; second, since the AGA state equation gives Z as a function of pressure and temperature rather than of density and temperature, reference 11 uses adjusted pressures and temperatures rather than adjusted densities and temperatures.

At a temperature of 250 K and at pressures to $100 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$, the compressibility factors calculated by the methods of this report were compared with those calculated by the methods of reference 11. The differences were as much as $1 / 2$ percent for methane, $1 \frac{1}{4}$ percent for a natural gas containing 90 -percent methane, and $2 \frac{1}{2}$ percent for a natural gas containing 84 -percent methane. Under the same conditions of pressure and temperature, the compressibility factors calculated by the methods of this report were also compared with those calculated by the methods of reference 8. In this case, the differences were $1 / 4$ percent for methane, $1 / 4$ percent for the natural gas containing 90 -percent methane, and 1 percent for the natural gas containing 84 -percent methane.

Ideal-Gas Specific Heat for Methane

The ideal-gas specific heat for methane is taken from the data in reference 12 and is represented by a temperature polynomial as follows:

$$
\begin{equation*}
\frac{C_{v, \text { ideal }}}{R}=b_{0}+\sum_{i=1}^{8} b_{i}\left(\frac{T}{100}\right)^{i} \tag{B6}
\end{equation*}
$$

For $70 \mathrm{~K} \leq \mathrm{T} \leq 259.78828 \mathrm{~K}$,

$$
\begin{array}{ll}
b_{0}=3.0159729 & b_{5}=7.7524692 \times 10^{-3} \\
b_{1}=-6.7124682 \times 10^{-2} & b_{6}=-4.6776567 \times 10^{-4} \\
b_{2}=0.1053479 & b_{7}=-2.240781 \times 10^{-4} \\
b_{3}=-5.9827343 \times 10^{-2} & b_{8}=2.5771104 \times 10^{-6} \\
b_{4}=1.0207347 \times 10^{-3} &
\end{array}
$$

For $259.78828 \mathrm{~K}<\mathrm{T} \leq 600 \mathrm{~K}$,

$$
\begin{array}{ll}
b_{0}=4.5834702 & b_{5}=1.7546467 \times 10^{-3} \\
b_{1}=-1.6311027 & b_{6}=1.2048213 \times 10^{-4} \\
b_{2}=0.4503988 & b_{7}=-3.6924768 \times 10^{-5} \\
b_{3}=1.8825512 \times 10^{-2} & b_{8}=2.1771302 \times 10^{-6} \\
b_{4}=-1.7244897 \times 10^{-2} &
\end{array}
$$

Ideal-Gas Specific Heat for Natural-Gas Mixtures

The ideal-gas specific heat for natural-gas mixtures is represented by the following equation:

$$
\begin{equation*}
\frac{C_{v, \text { ideal }}}{R}=b_{0}+\sum_{i=1}^{7} b_{i}\left(\frac{T}{100}\right)^{i} \tag{B7}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{i}=\sum_{j=1}^{8} x_{j} b_{i, j} \tag{B8}
\end{equation*}
$$

The values of $b_{i, j}$ are presented in the following table for the natural-gas components:

Coefficient	Natural-gas component							
	CH_{4}	$\mathrm{C}_{2} \mathrm{H}_{6}$	$\mathrm{C}_{3} \mathrm{H}_{8}$	$\mathrm{C}_{4} \mathrm{H}_{10}$	$\mathrm{C}_{5} \mathrm{H}_{12}$	$\mathrm{C}_{6} \mathrm{H}_{14}$	$\mathrm{~N}_{2}$	CO_{2}
$\mathrm{~b}_{0}$	2.79983	-9.85338	-16.7968	-1.81229	-3.3598	-0.537922	2.50115	2.50447
$\mathrm{~b}_{1}$.4285	19.6577	29.0846	5.6641	7.41963	5.65394	-9.72058×10^{-3}	-.508557
$\mathrm{~b}_{2}$	-.27518	-10.1866	-13.8109	-.907714	-.726671	.360786	1.03606×10^{-2}	.48403
$\mathrm{~b}_{3}$	2.58217×10^{-2}	1.82674	2.21983	.143523	4.55318×10^{-2}	-.168431	-4.43726×10^{-3}	-3.73057×10^{-2}
$\mathrm{~b}_{4}$	2.41658×10^{-2}	.246368	.365514	3.46448×10^{-2}	0	1.54752×10^{-2}	6.8256×10^{-4}	-2.52264×10^{-2}
$\mathrm{~b}_{5}$	-2.51637×10^{-3}	-.120205	-.15326	-1.7196×10^{-2}	0	0	0	6.14015×10^{-3}
$\mathrm{~b}_{6}$	-8.24658×10^{-4}	1.08075×10^{-2}	1.29667×10^{-2}	1.76606×10^{-3}	0	0	0	-4.11664×10^{-4}
$\mathrm{~b}_{7}$	1.15233×10^{-4}	0	0	0	0	0	0	0

These values were obtained by a least-squares fit of tabulated data. These fits are valid over a temperature range of 200 to 400 K . The CH_{4} data are from reference 12 , the data for the other paraffins are from reference 9 . The N_{2} data are from reference 13 , and the CO_{2} data are from reference 14 .

Ideal-Gas Specific-Heat Functions

In terms of the coefficients in equations (B6) and (B7), equations (7) and (8) become

$$
\begin{align*}
& \xi_{I}(T)=\int \frac{C_{v, i d e a l}}{R} \frac{d T}{T}=b_{0} \ln \left(\frac{T}{100}\right)+\sum_{i=1}^{n} \frac{b_{i}}{i}\left(\frac{T}{100}\right)^{i}+K_{S} \tag{B9}\\
& \xi_{I I}(T)=\int \frac{C_{v, \text { ideal }}}{R} d T=100\left[\sum_{i=0}^{n} \frac{b_{i}}{i+1}\left(\frac{T}{100}\right)^{i+1}\right]+K_{H} \tag{B10}
\end{align*}
$$

where n equals 8 for methane and 7 for natural-gas mixtures. In terms of ξ_{I} and ξ_{II}, the ideal-gas entropy and enthalpy are given by

$$
\begin{align*}
& \frac{S_{\text {ideal }}}{R}=\xi_{I}(T)-\ln \left(\frac{p}{R T}\right) \tag{B11}\\
& \frac{H_{\text {ideal }}}{R}=\xi_{I I}(T)+T \tag{B12}
\end{align*}
$$

The terms K_{S} and K_{H} in equations (B9) and (B10) are constants of integration for the indefinite temperature integrals in these equations. For the case of methane, K_{S} is chosen so that the ideal-gas entropy equals zero at a temperature of 0 K and a pressure of $1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$, and K_{H} is chosen such that the ideal-gas enthalpy equals zero at a temperature of 0 K . The values of K_{H} and K_{S} are

For $70 \mathrm{~K} \leq \mathrm{T} \leq 259.78828 \mathrm{~K}$,

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{S}}=18.667924 \\
& \mathrm{~K}_{\mathrm{H}}=-2.1763239
\end{aligned}
$$

For $259.78828 \mathrm{~K}<\mathrm{T} \leq 600 \mathrm{~K}$,

$$
\begin{aligned}
& K_{S}=19.908975 \\
& K_{H}=-110.43728
\end{aligned}
$$

For the components of natural-gas mixtures, K_{S} is chosen such that the ideal-gas entropy equals zero at a temperature of 200 K and a pressure of $1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$, and K_{H} is chosen such that the ideal-gas enthalpy equals zero at a temperature of 200 K . These values of K_{S} and K_{H} for the components of natural-gas mixtures are given in the following table.

Component	Integration constant	
	K_{S}	K_{H}
CH_{4}	-2.4259223	-794.25505
$\mathrm{C}_{2} \mathrm{H}_{6}$	-16.722706	-224.35315
$\mathrm{C}_{3} \mathrm{H}_{8}$	-24.468514	43.25468
$\mathrm{C}_{4} \mathrm{H}_{10}$	-7.4352313	-792.77257
$\mathrm{C}_{5} \mathrm{H}_{12}$	-9.7108697	-836.39894
$\mathrm{C}_{6} \mathrm{H}_{14}$	-9.6240575	-1261.944
$\mathrm{~N}_{2}$	-1.2043084	-699.70984
CO_{2}	-.54815092	-702.9866

The values of K_{S} and K_{H} for natural-gas mixtures are given by

$$
\begin{gather*}
K_{H}=\sum_{j=1}^{8} x_{j} K_{H, j} \tag{B13}\\
K_{S}=\ln m+\sum_{j=1}^{8} X_{j}\left(K_{S, j}-\ln m_{j}\right) \tag{B14}
\end{gather*}
$$

where m is the molecular weight of the natural-gas mixture and is given by

$$
\begin{equation*}
m=\sum_{j=1}^{8} x_{j} m_{j} \tag{B15}
\end{equation*}
$$

Saturated Vapor Pressure for Methane

The relation that gives the saturated vapor pressure for methane as a function of temperature is given in reference 15 and is

$$
\begin{equation*}
\log _{10} \mathrm{p}_{\text {sat }}=8.30516-\frac{296.1}{\mathrm{~T}_{\text {sat }}}-\frac{8000}{\mathrm{~T}_{\text {sat }}^{2}}+\varphi \tag{B16}
\end{equation*}
$$

where

$$
\varphi=0 \quad \text { for } \quad T_{\text {sat }} \leq 118.83
$$

and

$$
\varphi=0.257\left(\frac{\mathrm{~T}}{118.83}-1\right)^{1.32} \quad \text { for } T_{\text {sat }}>118.83
$$

In addition to equation (B16), the calculations also require a direct representation of temperature in terms of pressure; that is,

$$
\begin{equation*}
T_{s a t}=c_{0}+\sum_{i=1}^{8} c_{i}\left(\ln p_{s a t}\right)^{i} \tag{B17}
\end{equation*}
$$

where

$$
\begin{array}{ll}
c_{0}=53.88758 & c_{5}=1.2470553 \times 10^{-4} \\
c_{1}=1.8253577 & c_{6}=9.4808617 \times 10^{-6} \\
c_{2}=0.18723912 & c_{7}=-1.280319 \times 10^{-6} \\
c_{3}=1.570661 \times 10^{-5} & c_{8}=4.5446557 \times 10^{-8} \\
c_{4}=-8.7451662 \times 10^{-4} &
\end{array}
$$

Saturated Vapor Pressure for Natural-Gas Mixtures

Equation (B16) can be used to estimate $p_{\text {sat }}$ and equation (B17) can be used to
estimate $T_{\text {sat }}$ if an adjusted value of the saturated pressure is substituted for $p_{\text {sat }}$ and an adjusted value of the saturated temperature is substituted for $T_{\text {sat }}$ in equations (B16) and (B17). These values are as follows:

$$
\begin{equation*}
\mathrm{p}_{\mathrm{sat}}^{\prime}=\frac{46.26 \times 10^{5}}{\mathrm{p}_{\mathrm{c}}} \times \mathrm{p}_{\mathrm{sat}} \tag{B18}
\end{equation*}
$$

and, when equation (B3) is rewritten to apply to saturated temperatures,

$$
\begin{equation*}
\mathrm{T}_{\text {sat }}^{\prime}=\frac{190.8}{\mathrm{~T}_{\mathrm{c}}} \times \mathrm{T}_{\mathrm{sat}} \tag{B3}
\end{equation*}
$$

where T_{c} is given by equation (B5) and p_{c} is the pseudocritical pressure and is defined as follows:

$$
\begin{equation*}
\mathrm{p}_{\mathrm{c}}=\sum_{\mathrm{j}=1}^{8} \mathrm{x}_{\mathrm{j}} \mathrm{p}_{\mathrm{c}, \mathrm{j}} \tag{B19}
\end{equation*}
$$

The values of the critical pressures for the natural-gas components are tabulated on page 14 .

APPENDIX C

DESCRIPTION AND CARD LISTING OF COMPUTER
 ROUTINES THAT APPLY TO METHANE

This set of computer routines is referenced in the main program by the following statement:

CALL RGAS(KK, PA, TA , AM, PB, TB, FLOW, KODE)
For a valid computation, three conditions have to be satisfied:
(1) $69 \mathrm{~K} \leq \mathrm{T} \leq 601 \mathrm{~K}$.
(2) $0.1 \mathrm{~N} / \mathrm{m}^{2} \leq \mathrm{p} \leq 401 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$.
(3) The pressure of methane has to be less than a constant times its saturation pressure. Unless specified otherwise, this constant will have a value of unity.

Some of the variables in this program are entered or returned through labeled common. Therefore, the following common statements should be in the main program:

> COMMON/LDATA/XKV,R, XMW ,RC, D $2, \mathrm{G}$
> COMMON/LIMTT/EDA, EDB, ETP, ETM COMMON/OUTPUT/OUT(9), CONV(4), $\mathrm{ZA}(6), \mathrm{ZB}(6), \operatorname{KOD} 1(5)$

The following symbols apply to these routines:

KK
Controls entry to and exit from RGAS. If $\mathrm{KK}=0$, just the plenum properties are calculated. If $\mathrm{KK}=2$, both the plenum and nozzleexit properties are calculated. If $\mathrm{KK}=1$, just the nozzle-exit properties are calculated. For a given set of plenum conditions, at least one reference to RGAS has to be made for $\mathrm{KK}=0$ or $\mathrm{KK}=2$ before a reference can be made for $K K=1$.
PA Plenum pressure, $\mathrm{p}_{0}, \mathrm{~N} / \mathrm{m}^{2}$
TA
Plenum temperature, $\mathrm{T}_{0}, \mathrm{~K}$
AM
Nozzle-exit Mach number, M_{1}
PB Nozzle-exit pressure, $\mathrm{p}_{1}, \mathrm{~N} / \mathrm{m}^{2}$
TB
FLOW
Nozzle-exit temperature, $\mathrm{T}_{1}, \mathrm{~K}$
Nozzle-exit mass flow rate per unit area, $\rho_{1} \mathrm{v}_{1}, \mathrm{~kg} /\left(\mathrm{m}^{2}\right)(\mathrm{sec})$

KODE

XKV

R
XMW

EDA

EDB

ETP

ETM

OUT(1)

Indicates the independent variables to RGAS. If $\mathrm{KODE}=1$, these variables are $P A, T A$, and $P B$. If $K O D E=2$, these variables are PA , TA, and $A M$. If $K O D E=3$, these variables are $P A, T A$, and TB.

Constant referred to in condition 3. Unless specified otherwise, the value of XKV is 1 .

Gas constant, $\mathrm{J} /(\mathrm{kg})(\mathrm{K})$
Molecular weight
Maximum value of $\left|1-\frac{p_{0}}{Z_{0} \rho_{0} R T_{0}}\right|$ permitted. Unless otherwise specified, EDA equals 1×10^{-6}.
Maximum value of $\left|\left(S_{1}-S_{0}\right) / R\right|$ permitted. Unless otherwise specified, EDB equals 1×10^{-6}.

Applies when the nozzle exit independent variable is pressure. It is the maximum value of $\left|1-\frac{p_{1}}{Z_{1} \rho_{1} R T_{1}}\right|$ permitted. Unless other wise specified, ETP equals 1×10^{-6}

Applies when the nozzle exit independent variable is Mach number. It is the maximum value of $\left|1-\frac{v_{1} / \alpha_{1}}{M_{1}}\right|$ permitted. Unless other wise specified, ETM equals 1×10^{-4}.
Actual mass flow rate $\rho_{1} v_{1}$ divided by the perfect-gas mass flow rate $\left(\rho_{1} v_{1}\right)_{\text {perf }}$, where
$\left(\rho_{1} v_{1}\right)_{\text {perf }}=\frac{\mathrm{p}_{0}}{\sqrt{R \mathrm{~T}_{0}}}\left\{8\left(\frac{p_{1}}{p_{0}}\right)^{3 / 2}\left[1-\left(\frac{p_{1}}{p_{0}}\right)^{1 / 4}\right]\right\}^{1 / 2}$

$$
\begin{equation*}
\text { for } M_{1} \neq 1 \tag{C1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\rho_{1} \mathrm{v}_{1}\right)_{\text {perf }}=0.6732 \frac{\mathrm{p}_{0}}{\sqrt{\mathrm{RT}_{0}}} \text { for } \mathrm{M}_{1}=1 \tag{C2}
\end{equation*}
$$

OUT(2)	Nozzle-exit specific heat, $\mathrm{C}_{\mathrm{p}, 1} / \mathrm{R}$
OUT(3)	Nozzle-exit specific-heat ratio, γ_{1}
OUT(4)	Nozzle-exit isentropic exponent, k_{1}
OUT(5)	Plenum enthalpy, $\mathrm{H}_{0} / \mathrm{R}, \mathrm{K}$
OUT(6)	Plenum entropy, $\mathrm{S}_{0} / \mathrm{R}$
OUT(7)	Plenum specific heat, $\mathrm{C}_{\mathrm{p}, 0} / \mathrm{R}$
OUT(8)	Plenum specific-heat ratio, γ_{0}
OUT(9)	Plenum isentropic exponent, k_{0}
CONV(1)	Degree to which the nozzle-exit entropy equals the plenum entropy. $\operatorname{CONV}(1)=\left(\mathrm{S}_{1}-\mathrm{S}_{0}\right) / \mathrm{R}$.
CONV(2)	$\begin{aligned} & \text { For } \operatorname{KODE}=1, \operatorname{CONV}(2)=\mathrm{Z}_{1} \rho_{1} \mathrm{RT}_{1} . \\ & \text { For } \operatorname{KODE}=2, \operatorname{CONV}(2)=\mathrm{v}_{1} / \alpha_{1} . \\ & \text { For } \operatorname{KODE}=3, \operatorname{CONV}(2)=0 . \end{aligned}$
CONV(3)	Degree to which the calculated plenum pressure equals the prescribed plenum pressure. $\operatorname{CONV}(3)=1-\left(\mathrm{p}_{0} / \mathrm{Z}_{0} \rho_{0} R \mathrm{~T}_{0}\right)$.
CONV(4)	$\operatorname{CONV}(4)=\mathrm{Z}_{0} \rho_{0} \mathrm{RT}_{0}$
ZA(1) , ..., $\mathrm{ZA}(6)$	$\mathrm{Z}_{\mathrm{I}}\left(\rho_{0}, \mathrm{~T}_{0}\right)$ to $\mathrm{Z}_{\mathrm{VI}}\left(\rho_{0}, \mathrm{~T}_{0}\right)$
$\mathrm{ZB}(1), \ldots, \mathrm{ZB}(6)$	$\mathrm{Z}_{\mathrm{I}}\left(\rho_{1}, \mathrm{~T}_{1}\right)$ to $\mathrm{Z}_{\mathrm{VI}}\left(\rho_{1}, \mathrm{~T}_{1}\right)$

The following symbols represent integers to indicate various error conditions. If all the integers equal zero, a valid calculation has been performed. If the integers are not zero, errors exist. These errors are described for each symbol as follows:

KOD1(1) If $K O D E=1$, this quantity equals 1 if the calculated nozzle-exit pressure fails to converge to p_{1}. If KODE=2, this quantity equals 1 if the calculated nozzle-exit Mach number fails to converge to M_{1}.
KOD1(2) Equals 1 if the iteration procedure for the calculation of the nozzle-exit density fails to converge.

KOD1(3) Equals 1 if the nozzle-exit conditions are out of range in either pressure of temperature. A value of 1 terminates the calculation.

KOD1(4) Equals 1 if the iteration procedure for the calculation of the plenum density fails to converge.

KOD1(5) Equals 1 if the plenum conditions are out of range in either pressure or temperature. A value of 1 terminates the calculation.

The computer routines that apply to methane are described briefly in the following paragraphs. In order to calculate the thermodynamic properties of methane, all these routines have to be included in the program. The routines are identified by their deck names.

Deck RGASCl

In this subroutine, the iteration procedures necessary to calculate the isentropic mass flow rate of a nonperfect gas through a nozzle are given. These procedures are general and apply to any gas whose compressibility factor is given as a function of density and temperature. In addition to the mass flow rate per unit area, the output of this subroutine includes such quantities as entropy, enthalpy, specific heat, and compressibility factor. Except for minor changes, this routine very closely resembles RGASC in reference 8 .

Deck RDATA

This is a block data subprogram that supplies constants that have to do with the convergence criteria for the iteration procedures in RGASC1.

Deck MEZETA and Deck MEPOLY

The compressibility factor functions Z_{I} to Z_{VI}, as defined by equations (1) to (6), are calculated in these two subroutines. MEPOLY is only called by MEZETA.

Deck METEMP

The nondimensional ideal-gas specific heat $C_{v, \text { ideal }} / R$ and the related functions
ξ_{I} and ξ_{II} as given by equations (B6), (B9), and (B10) are calculated in this routine.

Deck MELOG

This is a logical function that tests whether the pressure and temperature lie within the range of both the state equation and the ideal-gas specific-heat equation. In addition, this routine also tests whether or not methane is in the gaseous state.

Deck METLG

This subroutine, if necessary, will change the temperature such that it is above the condensation temperature of methane.

Deck MEDATA

This is a block data subprogram that supplies constants for the other routines.

Exclusive of the library routines, these routines require 2630 storage locations. The execution time for a typical case on an IBM 7094II/7044 direct couple computer is of the order of 0.1 second.

The card listing of these routines follows.

```
SIBFTC RGASCI
C
C THE THERMODYNAMIC PROPERTIES OF A NON-PERFECT GAS ARE CALCULATEO IN
C THIS SLBROUTINE.
C
    SUBROUTINE RGAS {KK,PAA,TAA,AMM,PBB,TBB,FLOW,KO)
    CONMON /OUTPUT/ DUT(9),CONV(4),ZA(6),ZB(6),KOD1(5)
    COMMON /LDATA/ XKV,R,XMW,RC,D2,G
    CONNON /LIMIT/ EDA,EDB,ETP,ETM
    COURLE PRECISION CP,CS,CH,CHA,CSA,CSB,CAB,LRHCA,LRHOB,DZA,OZB
    LOGICAL LGFN
    DATA KG/O/
    IF (KG.EQ.1) GO TO l
    GAMC=G-1.0
    GAMA =GAMD/G
    GAME =GAMD/2.0
    GAMC =2.0/G
    GAMF=G/GAMD
    GAME=2.0*GAMF
    KG=1
```

```
1 PA=FAA
    TA=TAA
    KKK=KK
    KODE=KO
    PR=C.C
    AM=C.C
    TB=C.0
    FLOn=C.0
    CONV(11)=0.0
    CONV(2)=0.0
    GO 10 (2,3,4),KODE
    PB=FEB
    CO 1O 5
    \DeltaM=\DeltaNM
    GO 10 5
    TB=TEB
    CO \in N=1,3
    OUT(N)=0.0
    ZB(N)=1.0
    KODl(N)=0
    CUT(4)=0.0
    CO 7 N=4,6
    ZB(A)=0.0
    IF (KKK.EQ.1) GO TO 18
    CONV(3)=0.0
    CONV(4)=0.0
    CO & N=5,9
    OUT(N)=0.0
    KOD1(4)=0
    CO S N=1,3
    ZA(N)=1.0
    CD 10 N=4,6
10 LA(N)=0.0
    IF (LGFN(PA,TA,KODI(5),ZA)) GO TO 44
C THE ITERATION PROCESS FOR CALCULATING THE PLENUM DENSITY FOLLOWS.
    A=PA/(R*TA)
    RHOA=A
    KV=C
11 CO 14 MM=1,50
    CALL ZETA (I,RHOA,TA,ZA)
    IF (ZA(3).LE.O.O) GO TO 15
    CONV(3)=1.0-(PA/RHOA)/(ZA(1)*R*TA)
    IF (ABS(CONV(3)).LT.EDA) GO TO 17
    AAA = (ZA(1)-A/RHOA)/ZA(3)
    IF (1.C-AAA) 13,13,14
    \DeltaAA=\Delta\Delta\Delta/2.0
    GO TO 12
    RHOA =RHOA*(1.0-AAA)
    IF (KN.EQ.I) GO TO 16
    RHOA=C2*A
    KN=1
    GO 10 11
    KOD1(4)=1
    CALL ZETA (3,RHOA,TA,ZA)
    IF (LGFN(PA,TA,KODI(5),ZA)) GO TO 44
C THE PLENUM THERMODYNAMIC fUNCTIONS ARE CALCULATED RY THE FOLLOWING
C STATEMENTS.
```

```
C
C
18
C
C the InItial estimate of the nozzle exit temperature when the nozzle
C
C
19 TB=TA*(PB/PA)**GAMA
    GO 10 22
The INITIAL EStImATE OF THE NOZZLE EXIT TEMPERATURE WHEN thE NOZZLE
EXIT MACH NUMBER IS GIVEN IS MADE BY THE FOLLOWTNG STATEMENTS.
    TRAT=1.0+GAMB*AM**2
    PB=FA/TRAT**GAMF
    TB=TA/TRAT
    GO 10 22
    PB=PA*(TB/TA)**GAMF
    GO 10 23
    CALL TLOGIC (PB,TB)
    IF (TB.LT.TA.AND.PB.LT.PA) GO TO 24
    K001(3)=1
    GO 10 44
    TB1=TB
    NN=1
    KOD1(2)=0
    IF (NN.EQ.1) GO TO 26
    IF {LGFN(PB,TB,KODI(3),2B)) GO TO 44
    THE ITERATION PROCESS FOR CALCULATING THE NOZZLE EXIT DENSITY
    FOLLOWS.
    CSB=CS(TB)
    CAB=CSB-CSA +LRHOA +DZA
    LRHCB = LRHOA +CSB-CSA
    DO 27 M=1,50
    RHOE = DEXP(LRHOB)
    CALL ZETA (2,RHOB,TB,ZB)
    CZB=CBLE(2B(4))
    CONV(1)=CAB-DZB-LRHOB
    IF (ABS(CONV(1)).LT.EDB) GO TO 28
    LRHCB=LRHOB +CONV(1)/ZB(2)
    KOD1(2)=1
    IF (RHOA-RHOB) 29,29,30
    KOD1(3)=1
    GO 10 44
```

```
30
C
C THE THERMODYNAMIC FUNCTIONS AT THE NOZZLE EXIT CONDITIONS ARE
C CALCULATED BY THE FOLlOWING StatemENTS.
C
VV=2.ODO*(CHA-CH(TB)-DBLE(TB*{ZB(1)-ZB(5)))]
CV=CP(TB)-2B(6)
GA=2B(3)+2B(2)**2/CV
CUT(4)=GA/2B(1)
C
31 AM=ASQRT(VV/(ZB(1)*OUT(4)*TB))
        IF (NN.NE.1) Bl=CONV(2)
        CONV(2)=RHOB*ZB(1)*R*TB
        PERR=PB/CONV(2)-1.0
        IF (ABS(PERR).LT.ETP) GO TO 40
        IF (NN.GT.20) GO TO 34
        NN=^N+1
C
C THE SUCCEEDING ESTIMATES OF THE NOZZLE EXIT TEMPERATURE ARE MADE
BY THE FOLLOWING STATEMENTS FOR THE CASE OF A GIVEN NOZZLE EXIT
    PRESSURE.
        IF (NN-2) 33,32,33
        TB=TB*(1.0+GAMA*PERR)
        IF (TB.GE.TA) TB=0.999*TA
        TB2=TB
        GO 10 25
        TB=1B+(TB2-TB1)*(PB-CONV(2))/(CONV(2)-B1)
        TB1=TB2
        TB2=TB
        GO 10 25
C
34 KODI(1)=1
        GO TO 40
        PB=ZB(1)*TB*R*RHOB
        IF (NN.NE.1) Bl=CONV(2)
        CONV(2)=ASQRT(VV/(ZB(1)*TB*OUT(4)))
        IF (ABS(1.O-CONV(2)/AM).LT.ETM) GO TO 40
        IF (NN.GT.20) GO TO 38
        NN=NN+1
C
C THE SUCCEEDING ESTIMATES OF THE NOZZLE EXIT TEMPERATURE ARE mADE
C BY THE FOLLOWING STATEMENTS FOR THE CASE OF A GIVEN NOZZLE EXIT
C MACH NLMBER.
C
36 TB=TB*(1.0-GAMD*TB*AM*(AM-CONV(2))/TA)
    IF (TB.GE.TA) TB=0.999*TA
    TB2 = TB
    GO 10 25
37TB=TB+(TB2-TB1)*(AM-CONV(2))/(CONV(2)-B1)
    TB1=TB2
    TB2=TB
    GO 10 25
C
38 KODI(1)=1
    GO 10 40
```

 AM=ASQRT(VV/(2B(1)*OUT(4)*TB))
 PB=2B(1)*R*RHOB*TB
 CONV(2)=0.0
 IF (LGFN(PB,TB,KODI(3),2B)) GO TO 44
 IF (VV.GT.O.0) GO TO 41
 KOO1(3)=1
 GO 10 44
 C
C THE ISENTROPIC FLOW PROPERTIES ARE CALCULATED BY THE FOLLOWING
C STATEMENTS.
C
41 FLOh=PB*SQRT(VV/R)/(2B(1)*TB)
OUT(3)=GA/2B(3)
OUT(2)=CV*OUT(3)
TAF=(PB/PA)**GAMA
IF ((AM.EQ.1.0).AND.(KODE.EQ.2)) GO TO 42
FLOKI =PA*SQRT(GAME*(PB/PA)**GAMC*(1.0-TBF)/(R*TA))
GO TO 43
FLOHI=PA*SQRT(RC/TA)
OUTII)=FLOW/FLOWI
AMM=AM
PBB=PB
TBB=TB
RETIRN
END
\$IBFTC RDATA
BLOCK DATA
CONMON /LIMIT/ E(4)
CATA E/3*1.OE-6,1.OE-4/
END
\$IBFTC MEZETA
SUBRQUTINE ZETA (KK,PP,TT,Z)
COMMON /VALUE/ F(4,4),G(6,4)
DIMENSION Z(6)
DOURLE PRECISION F,G,B1,B2,B3,B4,B5,A1,A2,A3,A4,A5,E1,E2,PA,TA,THI
1,TH2,TH3,TH4,D1,D2,D3,D4,D5,F1,F2,UA,P,T,P1,P2,U,T1,RC,EXPC,RB,EXP
2B,ZE1,ZC1,AB1,AB2,AB3,AB4,AB5,ZA,ZB,ZC,RB1,EXPB1,S,SS,PSI1,PSI2,PS
3I3,PSI4,RC1,EXPC1,PSI5,PSI6,PSIT,PSI8
DATA B1,B2,B3,B4,B5,A1,A2,A3,A4,A5,E1,E2,PA/4.914735749916B6D-03,7
1.37t642234785500-00,-1.145878430329230-07,5.895102095111410-10,-5.
2743\&2281343532D-13,-2.23983199201862000,1.343312537412700-03,2.759
3101829065510-05,-1.655469770535420-07,2.341245626870640-10,-4.6002
4000C0000000-02,-2.117700000000000-10,1.133180000000000021
DATA TA,TH1,TH2,TH3,TH4,D1,D2,D3,D4,D5,F1,F2,UA/1.4771055000000000
12,1.099346664736540-14,1.64873321284064007,1.07243639762491008,3.6
264488882455140-15,-3.97760537104600000,-1.506225160810860-02,4.329
340740732648D-04,-1.85355607372189D-06,2.05286315303314D-09,-1.3787
4933C0C0000003,1.34418460000000000,1.45511293919343006/
K=KK
P=PP
T=TT

```
```

Pl=P+PA
P2=P1*P1
L=P`*P1
T1=T+TA
RC=(F1+F2*P)/T
EXPC=CEXP(RC)
RB=(E1+E2*U)
EXPE=DEXP(RB*TI)
ZB1=(TH1*P*P2*(U-TH2)*(TH3-U)*EXPB)/T
ZCl=(D1+(D2+(D3+(D4+D5*P)*P)*P)*P)*P*EXPC/T
IF (K.EQ.2) GO TO 1
ABl=Bl+A1/T
AB2=B2+A2/T
AB3=B3+A3/T
AB4=B4+A4/T
AB5=B5+A5/T
ZA=1.0+(AB1+(AB2+(AB3+(AB4+AB5*P)*P)*P)*P)*P
Z(1)=ZA+ZBl+ZCl
IF (K.EQ.O) RETURN
ZA=1.0+(2.0*AB1+(3.0*AB2+14.0*AB3+(5.0*AB4+6.0*AR5*P)*P)*D)*P)*P
ZB=ZB1*(2.0*(1.0+P/P1)+3.0*P*P2*(E2*T1+1.0/(U-TH3)+1.0/(U-TH2)))
ZC=(F2*P*2C1+EXPC*(2.0*D1+(3.0*D2+(4.0*D3+(5.0*D4+6.0*D5*P)*P)*P)*
|P)*P)/T
Z(3)=ZA+ZB+ZC
IF (K.EQ.l) RETURN
RR1=E1+E2*UA
EXPE1=DEXP(RB1*T1)
ZA=1.0+(B1+(B2+(B3+(B4+B5*P)*P)*P)*P)*P
2B=RB*T*2B1
ZC=-RC*2C1
Z(2)=ZA+ZB+ZC
S=E2*Tl
SS=F2/T
CALL POLY (1,1,U,T,S)
CALL POLY (1,2,P,T,SS)
ZA=(B1+(B2/2.0+(B3/3.0+(B4/4.0+B5*P/5.0)*P)*P)*P)*P
PSII=F(1,1)-F(2,1)+F(3,1)-F(4,1)
PSI2=F(1,2)-F(2,2)+F(3,2)-F(4,2)
ZR=TH4*(PSII*EXPB-PSI2*EXPB))
PS I 3=G(1,1)-G(2,1)+G(3,1)-G(4,1)+G(5,1)-G(6,1)
PSI4=G(1,2)-G(2,2)+G(3,2)-G(4,2)+G(5,2)-G(6,2)
RC1=F1/T
EXPC1=DEXP(RC1)
ZC=(PSI4*EXPC1-PSI3*EXPC)/T**2
Z(4)=ZA+ZB+ZC
IF (K.EQ.2) RETURN
CALL POLY (2,1,U,T,S)
CALL POLY (2,2,P,T,SS)
PSIE=F(1,3)-F(2,3)+F(3,3)-F(4,3)
PSIt=F(1,4)-F(2,4)+F(3,4)-F(4,4)
PS[7=G(1,3)-G(2,3)+G(3,3)-G(4,3)+G(5,3)-G(6,3)
PSIE=G(1,4)-G(2,4)+G(3,4)-G(4,4)+G(5,4)-G(6,4)
ZA= - (A1+(A2/2.0+(A3/3.0+(A4/4.0+A5*P/5.0)*P)*P)*P)*P/T
ZR=TH4*(PSI5*EXPB-PSI6*EXPB1)
ZC=(PSI8*EXPC1-PSI 7*EXPC)/T**2
Z(5)=ZA+ZB+ZC
ZB=TH4*T*(EXPB*(RB*PSII-(F(1,1)-2.0*F(2,1)+3.0*F(3,1)-4.0*F(4,1))/
1T1)-EXPB1*(RB1*PSI2-(F(1,2)-2.0*F(2,2)+3.0*F(3,2)-4.0*F(4,2))/T1))
ZC=(EXPC*(12.0+RC)*PSI 3-G(1,1)+2.0*G(2,1)-3.0*G(3,1)+4.0*F,(4,1)-5.

```
```

1*G(5,1)+6.0*G(6,1))-EXPC1*((2.0+RC1)*PSI4-G(1,2)+2.0*G(2,2)-3.0*G1
23,2)+4.0*G(4,2)-5.0*G(5,2)+6.0*G(6,2)))/T**2
Z(6)=ZB+ZC
RETLRN
END

```
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\$IBFTC MEFOLY} \\
\hline & SUBROUTINE POLY (J,K,PP,TT,CC) \\
\hline & CONMON /VALUE/ F \((4,4), G(6,4)\) \\
\hline & CIMENSION A 17,2\()\), \(\mathrm{B}(16,2)\) \\
\hline & DOURLE PRECISION PP, TT, CC,F,G,A,B,AA, AB, UA, D1, D2, D3, \(04,05, P, T, C 1, C\) \\
\hline & 12,C3, C4, C5, C6, V1, V2,V3 \\
\hline & DATA B/5.48429563564224003,1.54210957155370001,-6.171822392721570- \\
\hline & 101, 3.137622972027460-03,-5.321995490752390-06, \(2.759427036214580-09\) \\
\hline & \(2,-1.23436447854431000,9.412868916082380-03.1 .88257378321648 \mathrm{D}-02,-2\) \\
\hline & \(3.128798196300950-05,-6.386394588902860-05,-1.277278917780570-04,1\). \\
\hline & \(4379713518107290-08,5.518854072429170-08,1.655656221728750-07,3.311\) \\
\hline & \(5312443457500-07,5 * 0.0000,2.759427036214580-09,6 * 0.0000,1.379713518\) \\
\hline & 6107290-08,5.518854072429170-08, 1.655656221722750-07.3.311212443457 \\
\hline & 7500-07/ \\
\hline & DATA A, AA, AB, UA, D1, D2, D3, D4, D5, V1, V2, V3/8.13389656644895D13,-5.317 \\
\hline & \(142860649802006,1.979949208266470-02,2.117700000000000-10,3.9598984\) \\
\hline & \(216532930-02.6 .353100000000000-10,1.270620000000000-09,3 * 0.0000,2.1\) \\
\hline & \(3177 \mathrm{CO} 00000000 \mathrm{D}-10,0.0000,6.353100000000000-10,1.27062000000000 \mathrm{c}-09\) \\
\hline & \(4,1.76816150742336015,1.23730971890897008,1.45511293919343006,-3.97\) \\
\hline & \(5760537104600000,-1.506225160810860-02,4.3294074 .7326480-04,-1.8535\) \\
\hline & \(656073721890-06,2.05286315303314 \mathrm{D}-09,7.36440814840596 \mathrm{D} 13,-5.2584624\) \\
\hline & 7363C271006,4.144787976812730-021 \\
\hline & \(\mathrm{P}=\mathrm{P} \mathrm{F}\) \\
\hline & \(T=T 1\) \\
\hline & \(\mathrm{Cl}=\mathrm{CC}\) \\
\hline & C2 \(=\) C \(1 * C 1\) \\
\hline & C \(3=\) C \(1 *\) C 2 \\
\hline & \(\mathrm{C} 4=\mathrm{C} 1 * \mathrm{C} 3\) \\
\hline & GO 10 (1,7), K \\
\hline \multirow[t]{3}{*}{1} & GO 10 (2,3), J \\
\hline & \(N=1\) \\
\hline & GO 104 \\
\hline \multirow[t]{5}{*}{3} & \(\Delta(1,2)=A(1,1)+A A / T\) \\
\hline & \(A(2,2)=A(2,1)-A B / T\) \\
\hline & A \((3,2)=A(3,1)+1.0 / T\) \\
\hline & \(A(5,2)=2.0 * A(3,2)\) \\
\hline & \(\mathrm{N}=2\) \\
\hline \multirow[t]{7}{*}{4} & \[
\cos 1=1,2
\] \\
\hline & \[
M=2 * N-2+I
\] \\
\hline & IF (M.EQ.2) GO TO 6 \\
\hline & \(F(1, M)=(A(1, N)+(A(2, N)+(A(3, N)+A(4, N) * P) * P) * P) / C 1\) \\
\hline & \(F(2, M)=(A(2, N)+(A(5, N)+A(6, N) * P) * P) / C 2\) \\
\hline & \(F(3, M)=(A(5, N)+A(7, N) * P) / C 3\) \\
\hline & \(F(4, M)=A(7, N) / C 4\) \\
\hline \multirow[t]{2}{*}{5} & \(P=U A\) \\
\hline & RETLRN \\
\hline \multirow[t]{3}{*}{6} & \(F(1,2)=V 1 / C 1\) \\
\hline & \(F(2,2)=V 2 / C 2\) \\
\hline & \(F(3,2)=V 3 / C 3\) \\
\hline
\end{tabular}
```

 F(4,2)=F(4,1)
 RETLRN
 C5=C4*C1
 C6=C5*C1
 GO 10 (8,9),J
 N=1
 GO 10 10
 9
B(1,2)=B(1,1)+T*D1
B(2,2)=B(2,1)+T*D2
B(3,2)=B(3,1)+T*D3
B(4,2)=B(4,1)+T*D4
B(5,2)=B(5,1)+T*D5
B(7,2)=B(3,2)*2.0
B(8,2)=B(4,2)*3.0
B(9,2)=B(8,2)*2.0
B(1C,2)=B(5,2)*4.0
B(1),2)=B(10,2)*3.0
B(12,2)=B(11,2)*2.0
N=2
O M=2*N-1
G(1,M)=(B(1,N)+(B(2,N)+(B(3,N)+(B(4,N)+(B(5,N)+B(6,N)*P)*O)*P)*P)*
1P//Cl
G(2,M)=(B(2,N)+(B(7,N)+(B(8,N)+(B(10,N)+B(13,N)*P)*P)*P)*D)/C2
G(3,M)=(B(7,N)+(B(9,N)+(B(11,N)+B(14,N)*P)*P)*P)/C3
G(4,M)=(B(9,N)+(B(12,N)+B(15,N)*P)*P)/C4
G(5,M)=(B(12,N)+B(16,N)*P)/C5
G(6,M)=B(16,N)/C6
M=M+1
G(1,M)=B(1,N)/C1
G(2,M)=B(2,N)/C2
G(3,M)=B(7,N)/C3
G(4,M)=B(9,N)/C4
G(5,M)=B(12,N)/C5
G(6,M)=B(16,N)/C6
RETLRN
END

```
SIBFTC METEMP
    DOURLE PRECISION FUNCTION CP(T)
    COURLE PRECISION SI(2),HI(2),S
    DIMENSION A(9,3,2)
    CATA A/2.5771104E-6,-2.240781E-4, -4.6776567E-4,7.7524692E-3,1.0207
    \(1347 \mathrm{E}-3,-5.9827343 \mathrm{E}-2, .1053479,-6.7124682 \mathrm{E}-2,3.0159729,3.2\) 21388E-7,
    2-3.2011157E-5,-7.7960945E-5,1.5504938E-3,2.5518368E-4,-1.9942448E-
    \(32,5.267395 \mathrm{E}-2,-6.7124682 \mathrm{E}-2,3.0159729,2.863456 \mathrm{E}-7,-2.8009762 \mathrm{E}-5,-6\)
    \(4.6823667 E-5,1.2920782 E-3,2.0414694 E-4,-1.4956836 E-2,3.5115967 E-2\). ,
    \(53.3562341 \mathrm{E}-2,3.0159729,2.1771302 \mathrm{E}-6,-3.6924768 \mathrm{E}-5,1.2048213 \mathrm{~F}-4,1.7\)
    \(6546467 \mathrm{E}-3,-1.7244897 \mathrm{E}-2,1.8825512 \mathrm{E}-2, .4503988,-1.6311027,4.5834702\)
    7.2.7214128E-7,-5.2749669E-6,2.0080355E-5.3.5092934E-4, -4.3112242E-
    83,6.2751707E-3,.2251994,-1.6311027,4.5834702,2.4190336E-7,-4.61559
    96E-E. \(1.7211733 E-5,2.9244112 E-4,-3.4489794 E-3.4 .706378 \mathrm{E}-3, .15013293\)
    \(\$,-.81555135,4.58347021\)
    DATA SI,HI/18.66792402732497.19.90897487890906,-2.1763239n5587196.
    1-11C.4372755187238/
    \(K=1\)
\(1 \quad N=1\)
IF(T.GE.259.78828)N=2
\(\mathrm{S}=\mathrm{T} / 1.0 \mathrm{D} 2\)
\(C P=A(1, K, N)\)
CO \(2 \mathrm{~J}=2,8\)
\(2 \quad C P=C P * S+A(J, K, N)\)
3 (RET(R) 3 ,4, 5 ),
\(-\quad C P=C P * S+A(9,1, N)\)
RETLRN
evtry csiti
\(K=2\)
GO 101
\(4 \quad C P=C P * S+A(9,2, N) * D L O G(S)+S I(N)\)
RETLRN
EVTRY CHITI
\(\mathrm{K}=3\)
GO TO 1
\(C P=T *(C P * S+A(9,3, N))+H I(N)\)
RETLRN
end
\$IBFTC MELOG

> LOGICAL FUNCTION LGFNIP,T,J,ZI

CONMON /LOATA/ XKV,R,XMW,RC,O2,G
CIMENSION Z \((6)\)
\(\mathrm{S}=\mathrm{T} / 100\). 0
\(J=1\)
LGFA \(=\). TRUE.
IF IP.GT.4.01ET.OR.P.LT.O.1.OR.S.LT.O.69.OR.S.GT.G.O1.OR.Z(I).LE.O 1.O.CR.Z(2).LE.O.O.OR.2(3).LE.O.0) RETURN

IF (S.GT. 1.9077 ) GO TO 1
PLOC \(=8.30516+(-2.961-0.8 / 5) / S\)
IF (S.GE.1.1883) PLOG =PLOG +0.257*(S/1.1883-1.0)**1.32
IF (P.GT.XKV*EXP(2.3025851*PLOG)) RETURN
\(J=0\)
LGFA =. FALSE.
RETLRN
END
```

sibfic metlg
SUBROLTINE TlOGIC (P,T)
CATA A1,A2,A3,A4,A5,A6,A7,A8,A9/53.88758,1.8253577,0.18723912,1.57
10661E-5,-8.7451662E-4,1.2470553E-4,9.4808617E-6,-1.280319E-6,4.544
26557E-8/
IF (T.GT.190.77) RETURN
V=ALOG(P)
S=Al+(A2+(A3+(A4+(A5+(A6+(AT+(A8+A9*V)*V)*V)*V)*V)*V)*V)*V
IF (T.LT.S) T=S
IF (T.LT.69.0) T=69.0
RETLRN
evd

```
§IBFTC MECATA BLOCK OATA CONNON /LDATA/ R(6)
DATA R/1.0,518.2562,16.04303,8.745139E-4.5.6.1.3333333/
END

\section*{APPENDIX D}

\section*{DESCRIPTION AND CARD LISTING OF COMPUTER ROUTINES THAT APPLY TO NATURAL GAS}

Since natural gas is a mixture of many gases, the first reference in the main program is to the subroutine that calculates a set of composition-dependent constants for use in the other routines. For a given composition, this has to be referenced only once in a given run. The following statement references this routine:

\section*{CALL BDATA(X)}

The subroutine used to calculate the thermodynamic properties of natural gas is referenced by the following statement:

> CALL RGAS(KK, PA, TA , AM, PB, TB, FLOW, KODE)

For a successful computation, three conditions have to be satisfied:
(1) \(190 \mathrm{~K} \leq \mathrm{T} \leq 410 \mathrm{~K}\).
(2) \(0.1 \mathrm{~N} / \mathrm{m}^{2} \leq \mathrm{p} \leq 110 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\).
(3) The pressure of the natural gas nas to be less than a constant times the saturation pressure. Unless otherwise specified, the value of this constant will be unity.

Some of the variables in this program are entered or returned through labeled common. Therefore, the following common statements should be in the main program:

> COMMON/LDATA/XKV,R,XMW, RC, D2, G
> COMMON/LIMIT/EDA, EDB, ETP, ETM
> COMMON/OUTPUT/OUT(9), CONV(4), ZA (6), ZB(6), KOD1 (5)

With the exception of \(X\), the symbols that apply to these routines are defined in appendix \(C\). The symbol \(X\) represents an eight-element array. The elements in this array are proportional to the mole fractions of the natural-gas components. The order in which these elements appear is as follows: \(\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{3} \mathrm{H}_{8}, \mathrm{C}_{4} \mathrm{H}_{10}, \mathrm{C}_{5} \mathrm{H}_{12}, \mathrm{C}_{6} \mathrm{H}_{14}\), \(\mathrm{N}_{2}\), and \(\mathrm{CO}_{2}\).

The computer routines that apply to natural-gas mixtures are described in the following paragraphs. In order to calculate the thermodynamic properties of natural-gas mixtures, all these routines have to be included in the program. The routines are identified by their deck names.
\[
\begin{gather*}
{[F(3,3)-F(3,3,2)-2 F(3,1)+2 F(3,2)]+\frac{4}{\operatorname{Pr}}[F(4,4)]=0}  \tag{83}\\
{[F(3,3,3,2)-F(3,3,3)-3 F(3,3,2)+F(3,3)+F(3,2)-3 F(3,1)]} \\
+\frac{12}{\operatorname{Pr}}[F(4,4)-F(4,4,3)]=0  \tag{84}\\
{[F(3,3,3,3)-F(3,3,3,3,2)+4 F(3,3,3,2)-4 F(3,3,3)-6 F(3,3,2)+6 F(3,3)+4 F(3,2)} \\
-4 F(3,1)]+\frac{24}{\operatorname{Pr}}[F(4,4)-2 F(4,4,3)+F(4,4,3,3)]=0 \tag{85}
\end{gather*}
\]
where the following definitions are utilized:
\[
\left[\mathrm{f}_{\mathrm{i}}\right]=\left[\begin{array}{c}
1  \tag{86}\\
1-\mathrm{u}_{0} \\
1-\theta_{0} \\
d \theta_{0} / \mathrm{d} \eta
\end{array}\right] \quad\left[\mathrm{s}_{\mathrm{i}}\right]=\left[\begin{array}{c}
0 \\
\mathrm{~A} \\
\bar{A} \\
\bar{A}
\end{array}\right] \quad\left[\mathrm{h}_{\mathrm{im}}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & \mathrm{~B} & \mathrm{C} & \mathrm{D} \\
1 & \bar{B} & \bar{C} & \bar{D} \\
\bar{A}-\bar{B} & \overline{\mathrm{AB}}-2 \bar{C} & \overline{\mathrm{AC}}-3 \bar{D} & \overline{\mathrm{AD}}
\end{array}\right]
\]

The solution to the set of algebraic equations (82) to (85) is, for \(\operatorname{Pr}=0.72\)
\[
\left[\begin{array}{c}
\overline{\mathrm{A}}  \tag{87}\\
\overline{\mathrm{~B}} \\
\overline{\mathrm{C}} \\
\overline{\mathrm{D}}
\end{array}\right]=\left[\begin{array}{l}
1.665 \\
1.367 \\
0.6699 \\
0.7161
\end{array}\right]
\]

The corresponding profile results are compared with the exact similarity solution in table II and also shown graphically in figure 18. In addition to the obvious agreement, we note the following comparison of slopes at the wall:
\[
\left.\begin{array}{l}
\left(\frac{\mathrm{dG}}{\mathrm{~d} \eta}\right)_{\eta=0}=0.2976  \tag{88}\\
\left(\frac{\mathrm{~d} \theta_{0}}{\mathrm{~d} \eta}\right)_{\eta=0}=0.2980
\end{array}\right\}
\]

\section*{Deck NMLOG}

This is a logical function that tests whether the pressure and temperature lie within the range of both the state equation and the ideal-gas specific-heat equation. In addition, a check is made on whether the natural gas is in the gaseous state.

Deck NMTLG

This subroutine, if necessary, will change the temperature such that it is above the condensation temperature of natural gas.

\section*{Deck NMDATA}

This is a block data subprogram that supplies constants for the other routines.
Exclusive of the library routines, these routines require 2889 storage locations. The execution time for a typical case on an IBM 7094II/7044 direct couple computer is of the order of 0.1 second.

A card listing of the decks that apply to natural-gas mixtures follows. The card listings of the decks that are identical to those for methane are omitted in this appendix but are in appendix B. The omitted decks are RGASC1, RDATA, and MEPOLY.
```

\$IBFTC NMCOMP
SUBROUTINE BDATA (x)
CIMENSION X(8), MOL(8), XMOL(8), S(8), H(8), CP(8,8), T(8), P(8),
lRHO(8)
CONMON ILDATAI XKV,R,MW,RC,D2,G
CONMON /PDATA/ F(9)/ZDATA/PC,TC,RHOC/TDATA/A(8,3),HI,SI
REAL MOL,MW
OATA MOL,XMOL/16.043,30.07,44.097,58.124,72.151,86.178,28.013,44.0
11,2.77527262,3.403528,3.78639175,4.06264748,4.27876115,4.45641492,
23.33266869,3.784416881
CATA CP/2.7998255,.4284998,-. 2751805,2.5821711E-2,2.4165792E-2,-2.
15163737E-3,-8.2465805E-4,1.1523272E-4,-9.8533835,19.657673,-10.186
2582,1.8267443,.2463681,-.1202048,1.0807487E-2,0.0,-16.796807,29.08
34569,-13.810883,2.2198327,.3655141,-.1532602,1.296668E-2,n.0,-1.81
422946,5.6640979,-.907714,.1435233,.034644782,-.017195974,1.7660626
5E-3,0.0,-3.3598014,7.4196271,-.726671,.045531828,4*0.0,-.5379224,5
6.6539353,.3607859,-.1684308,.015475231,3*0.0,2.501146,-9.720581E-3
7,1.C 36056E-2,-4.437258E-3,6.825596E-4,3*0.0,2.5044684,-.5n85567,.4
8840302,-3.730571E-2,-2.522643E-2,6.1401476E-3,-4.1166357E-4,0.01
OATA S,H/-2.42592233,-16.722706,-24.4685144,-7.4352313,-9.71086973
1,-9.62405754,-1.20430845,-.54815092,-794.255051,-224.353146,43.254
268,-792.772573,-836.398938,-1261.94398,-699.709835,-702.986595/
CATA P,T,RHO/4.626E6,4.894E6,4.257E6,3.722E6,3.299E6,3.149E6,3.398

```
    1E6,7.368E6,190.77,305.56,369.97,416.7,454.6,499.7,126.135,304.20,1
    262.5,203.2,220.5,224.4,235.0.236.7.311.0,468.0/
    \(x X=C .0\)
    \(001 N=1,8\)

\section*{SIBFTC NMZETA}

SUBROUTINE ZETA \(\mid K K, P P, T T, Z 1\)
CONMON /VALUE/ \(F(4,4), G(6,4)\)
CONNON /ZDATA/ PC,TC,RHOC
DIMENSION Z(6)
CDUQLE PRECISION F,G,B1,B2,B3,B4,B5,A1,A2,A3,A4,A5,E1,E2,PA,TA,TH1
\(1, \mathrm{TH} 2, \mathrm{TH} 3, \mathrm{TH} 4, \mathrm{D} 1, \mathrm{D} 2, \mathrm{D} 3, \mathrm{D} 4, \mathrm{D} 5, \mathrm{~F} 1, \mathrm{~F} 2, \mathrm{UA}, \mathrm{P}, \mathrm{T}, \mathrm{P} 1, \mathrm{P} 2, \mathrm{U}, \mathrm{T} 1, \mathrm{RC}, \mathrm{EXPC}, \mathrm{RB}, E X P\) \(2 B, Z E 1, Z C 1, A B 1, A B 2, A B 3, A B 4, A B 5, Z A, Z B, Z C, R B 1, E X P B 1, S, S S, P S I 1, P S I 2, P S\) 313,FSI4,RC1, EXPC1,PSIS,PSI6,PSI7,PSI8
CATA B1, B2, B3, B4, B5, A1, A2, A3, A4, A5,E1,E2,PA/4.914735749916860-03,7
\(1.376642234785500-06,-1.145878430329230-07,5.895102095111410-10,-5\). \(2743822813435320-13,-2.23983199201862000,1.342317537412700-03,2.759\) 3101829065510-05, -1.655469770535420-07,2.341245626870640-10,-4.6002 \(4000 \mathrm{CO} 00000 \mathrm{D}-02,-2.11770000000000 \mathrm{D}-10.1 .133180009000000021\)
DATA TA,TH1,TH2,TH3,TH4,D1,D2,D3,04,05,F1,F2,UA/1.4771055000000000
```

 12,1.09934666473654D-14,1.64873321284064007,1.07243639762491008,3.6
 2644&8882455140-15,-3.97760537104600000,-1.506225160810860-02,4.329
 340740732648D-04,-1.85355607372189D-06,2.05286315303314D-09,-1.3787
 4933C000000003.1.34418460000000000.1.45511293919343006/
 K=KK
 P=PP*RHOC
 T=TT*TC
 P1=P+PA
 P2=P1*P1
 U=P2#P1
 TI=T+TA
 RC=(F1+F2*P)/T
 EXPC=DEXP(RC)
 RB=(E1+E2*U)
 EXPE=DEXP(RB*T1)
 ZBl=(TH1*P*P2*(U-TH2)*(TH3-U)*EXPB)/T
 ZCl=(D1+(D2+(D3+(D4+D5*P)*P)*P)*P)*P*EXPC/T
 IF (K.EQ.2) GO TO 1
 AB1=B1+A1/T
 AB2=B2+A2/T
 AB3=B3+A3/T
 AB4=B4+A4/T
 AB5=B5+A5/T
 ZA=1.0+(AB1+(AB2+(AB3+(AB4+AB5*P)*P)*P)*P)*P
 Z(1)=2A+ZB1+ZC1
 IF (K.EQ.O) RETURN
 ZA=1.0+(2.0*AB1+(3.0*AB 2+(4.0*AB3+(5.0*AB4+6.0*AB5*P)*P)*P)*P)*P
 ZB=2B1*(2.0*(1.0+P/P1)+3.0*P*P2*(E2*T1+1.0/(U-TH3)+1.0/(U-TH2)))
 ZC=(F2*P*ZC1+EXPC*(2.0*D1+(3.0*D2*(4.0*D3+(5.0*D4+6.0*D5*P)*P)*P)*
 (P)*P)/T
Z(3)=ZA+ZB+ZC
IF (K.EQ.1) RETURN
1 RB1=E1+E2*UA
EXPE1=DEXP(RB1*T1)
ZA=1.0+(B1+(B2+(B3+(B4+B5*P)*P)*P)*P)*P
ZB=RB*T*2B1
ZC=-RC*ZC1
Z(2)=ZA+ZB+ZC
S=E2*Tl
SS=F2/T
CALL POLY (1,1,U,T,S)
CALL POLY (1,2,P,T,SS)
ZA=(B1+(B2/2.0+(B3/3.0+(B4/4.0+B5*P/5.0)*P)*P)*P)*P
PSI I=F(1,1)-F(2,1)+F(3,1)-F(4,1)
PSI2=F(1,2)-F(2,2)+F(3,2)-F(4,2)
ZB=1H4*(PSII*EXPB-PSI2*EXPB1)
PSI 3=G(1,1)-G(2,1)+G(3,1)-G(4,1)+G(5,1)-G(6,1)
PSI4=G(1,2)-G(2,2)+G(3,2)-G(4,2)+G(5,2)-G(6,2)
RCl=F1/T
EXPC1=DEXP(RC1)
ZC=(PSI4*EXPC1-PSI3*EXPC)/T**2
Z(4)=2A+2B+ZC
IF (K.EQ.2) RETURN
CALL POLY (2,1,U,T,S)
CALL POLY (2,2,P,T,SS)
PSIE=F(1,3)-F(2,3)+F(3,3)-F(4,3)
PSIt=F(1,4)-F(2,4)+F(3,4)-F(4,4)
PSIT=G(1,3)-G(2,3)+G(3,3)-G(4,3)+G(5,3)-G(6,3)
PSIE=G(1,4)-G(2,4)+G(3,4)-G(4,4)+G(5,4)-G(6,4)

```
```

ZA=-(A1+(A2/2.0+(A3/3.0+(A4/4.0+A5*P/5.0)*P)*P)*P)*P/T
ZB=TH4*{PS15*EXPB-PSI6*EXPB1)
ZC=(PSI8*EXPC1-PSIT*EXPCI/T**2
Z(5)=ZA+ZB+ZC
ZB=TH4*T*(EXPB*(RB*PSI1-{F(1,1)-2.0*F(2,1)+3.0*F(3;1)-4.0*F(4,1))/
1T1)-EXPB1*(RB1*PSI2-(F(1,2)-2.0*F(2,2)+3.0*F(3,2)-4.0*F(4,2))/T1))
ZC=(EXPC*((2.0+RC)*PS13-G(1,1)+2.0*G(2,1)-3.0*G(3,1)+4.0*C(4,1)-5.
1*G(S,1)+6.0*G(6,1))-EXPC1*((2.0+RC1)*PS[4-G(1,2)+2.0*G(2,2)-3.0*G(
23,2)+4.0*G(4,2)-5.0*G(5,2)+6.0*G(6,2)))/T**2
Z(6)=2B+ZC
RETLRN
END

```
\$IBFTC NMTEMP
    DOURLE PRECISION FUNCTICN CP(T)
    DOURLE PRECISION S
    COMMON/TDATA/A(8,3),HI,SI
    \(K=1\)
    \(1 S=T / 1.002\)
    \(C P=A(1, K)\)
    DO \& \(N=2,7\)
    \(2 C P=C P * S+A(N, K)\)
    GO TO \((3,4,5), K\)
    \(3 C P=C P * S+A(8,1)\)
    RETLRN
    ENTRY CS(T)
    \(K=2\)
    GO 101
    \(4 C P=C P * S+A(8,2) * D L O G(S)+S I\)
    RETLRN
    ENTRY CH(T)
    \(K=3\)
    GO 101
    \(5 C P=T *(C P * S+A(8,3))+H I\)
    RETLRN
    END
\$IBFTC NMLOG
    LOGICAL FUNCTION LGFN(P,T,J,Z)
    COMNON IZDATA/ PC,TC,RHOC
    COMNON /LDATA/ XKV,R,XMW,RC,D2,G
    DIMENSION 2(6)
    \(S=T / 100.0\)
    \(J=1\)
    LGFA = . TRUE
    IF (P.GT.1.1ET.OR.P.LT.O.1.OR.S.LT.1.9.OR.S.GT.4.1.OR.Z(1).LE.O.O.
LOR.Z(2).LE.O.O.OR.Z(3).LE.0.0) RETURN
    \(S=S * T C\)
    IF (S.GT.1.9077) GO TO 1
    PLOE \(=8.30516+(-2.961-0.8 / S) / S+.257 *(5 / 1.1883-1.0) * * 1.32\)
    IF (P*PC.GT.XKV*EXP(2.3025851*PLOG)) RETURN
\(1 \quad J=0\)
    LGFA =. FALSE.
    RETLRN
    END
```

\$IBFTC NMTLG
SUBROUTINE TLOGIC (P,T)
COMMON /ZDATA/ PC,TC,RHOC
CIMENSION A(9)
CATA A/4.5446557E-8,-1.280319E-6,9.4808617E-6,1.2470553E-4,-8.7451
1662E-4,1.570661E-5,.18723912,1.8253577,53.88758/
PP=P*PC
TT=T*TC
IF (TT.GT.190.77) RETURN
V=ALOG(PP)
S=0.0
CO 1 N=1,9
1 S=S*V+A(N)
IF (TT.LT.S) T=S/TC
IF(T.LT.190.0)T=190.0
RETLRN
END

```
\$IBFTC NMLATA
    BLOCK DATA
    COMMON /LOATA/ R(6)
    DATA R(1),R(5),R(6)/1.0,5.6,1.3333333/
    END

\section*{REFERENCES}
1. Johnson, R. C.: Calculations of the Flow of Natural Gas Through Critical Flow Nozzles. J. Basic Eng., vol. 92, no. 3, Sept. 1970, pp. 580-589.
2. Benedict, Manson; Webb, George B.; and Rubin, Louis C.: An Empirical Equation for Ther modynamic Properties of Light Hydrocarbons and Their Mixtures.
I. Methane, Ethane, Propane and n-Butane. J. Chem. Phys., vol. 8, no. 4, Apr. 1940, pp. 334-345.
3. Benedict, Manson; Webb, George B.; and Rubin, Louis C.: An Empirical Equation for Thermodynamic Properties of Light Hydrocarbons and Their Mixtures.
II. Mixtures of Methane, Ethane, Propane, and n-Butane. J. Chem. Phys., vol. 10, no. 12, Dec. 1942, pp. 747-758.
4. Benedict, Manson; Webb, George B. ; and Rubin, Louis C.: An Empirical Equation for Thermodynamic Properties of Light Hydrocarbons and Their Mixtures Constants for Twelve Hydrocarbons. Chem. Eng. Progr., vol. 47, no. 8, Aug. 1951, pp. 419-422.
5. Douslin, Donald R.; Harrison, Roland H.; Moore, Richard T.; and McCullough, John P.: P-V-T Relations for Methane. J. Chem. Eng. Data, vol. 9, no. 3, July 1964, pp. 358-363.
6. Vennix, Alan J.: Low Temperature Volumetric Properties and the Development of an Equation of State for Methane. Ph. D. Thesis, Rice Univ., 1966.
7. Vennix, Alan J.; and Kobayashi, Riki: An Equation of State for Methane in the Gas and Liquid Phases. AIChE J., vol. 15, no. 6, Nov. 1969, pp. 926-931.
8. Johnson, Robert C.: A Set of FORTRAN IV Routines Used to Calculate the Mass Flow Rate of Natural Gas Through Nozzles. NASA TM X-2240, 1971.
9. Anon.: Technical Data Book - Petroleum Refining. American Petroleum Institute, 1966.
10. Anon.: American Institute of Physics Handbook. Second ed., McGraw-Hill Book Co., Inc., 1963.
11. Anon.: Manual for the Determination of Supercompressibility Factors for Natural Gas. American Gas Association, 1962.
12. McDowell, Robin S.; and Kruse, F. H.: Thermodynamic Functions of Methane. J. Chem. Eng. Data, vol. 8, no. 4, Oct. 1963, pp. 547-548.
13. Strobridge, Thomas R.: The Thermodynamic Properties of Nitrogen from \(64^{\circ}\) to \(300^{\circ} \mathrm{K}\) between 0.1 and 200 Atmospheres. Tech. Note 129, National Bureau of Standards, Jan. 1962.
14. Hilsenrath, Joseph; et al.: Tables of Thermodynamic and Transport Properties of Air, Argon, Carbon Dioxide, Carbon Monoxide, Hydrogen, Nitrogen, Oxygen, and Steam. Pergamon Press, 1960.
15. Thodos, George: Vapor Pressures of Normal Saturated Hydrocarbons. Ind. Eng. Chem., vol. 42, no. 8, Aug. 1950, pp. 1514-1526.
TABLE I．－THERMODYNAMIC PROPERTIES OF METHANE－CRITICAL－FLOW FACTOR．C＊
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \(\stackrel{-}{-}\) & 1 \(\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1\end{aligned} 1\) & \begin{tabular}{c|c|c:c}
1 & 1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & \begin{tabular}{c|c|c|c}
1 & 1 & 1 & 1 \\
1 & 1 & & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & 1 \(1: 11: 1111\) &  &  & Nの～～～へ がのかの \(\therefore 00^{\circ} 0^{\circ}\) &  & n
\(\sim\)
0
0 \\
\hline & \(\infty\) &  &  & \begin{tabular}{c|c|c|c}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & & \\
1 & 1 & 1
\end{tabular} &  &  & \begin{tabular}{l}
\(\sigma \infty \infty \sigma\) \\
 － 0000 －\({ }^{\circ} \dot{\circ} \dot{\circ}\)
\end{tabular} &  & \(\propto \sim r-\infty\) テ～デのロ \(\therefore 0<0\). －ćooㅇ & \begin{tabular}{l}
\(\square\) \\
\hline 0 \\
0 \\
0 \\
0
\end{tabular} \\
\hline \multirow{9}{*}{} & \(\infty\) & \multicolumn{2}{|l|}{\multirow[t]{9}{*}{}} &  &  &  & べががす のojog － \(0^{\circ} 0^{\circ}\) &  &  & 0
\(\infty\)
\(\infty\)
0
0
0 \\
\hline & － & & & ｜ \(1:\)\begin{tabular}{ll|l}
1 & 1 & 1 \\
1 & & 1 \\
1 & & 1 \\
1 & 1 & 1 \\
1
\end{tabular} &  & \begin{tabular}{l}
Noninn \\
がずのす。 \\
－osoo \\
－00．0．
\end{tabular} & \begin{tabular}{l}
がットコ \\
のかの可 \\
－ \(0^{\circ}\)
\end{tabular} & ペロばに \(\sigma \times \infty \infty\) －○○○。 & －ロ～～～ \(\infty \infty \propto \infty\) \(\therefore 0^{\circ} 0^{\circ} 0^{\circ}\) & O－
\(\stackrel{0}{\infty}\)
0
0
0 \\
\hline & \(\bigcirc\) & & &  &  & \begin{tabular}{l}
にに～の～ \\
 \(\therefore 0_{0}^{\circ} 0^{\circ}\)
\end{tabular} & \begin{tabular}{l}
 \\
 － \(0^{\circ} 0^{\circ}\)
\end{tabular} &  & ñosm \(\begin{array}{ll}\infty \\ \infty & \infty \\ 0 & \alpha_{0}^{c} \\ 0 & \infty \\ 0 & \infty \\ 0\end{array}\) \(\dot{\circ} 0_{0}^{\circ} 0^{\circ}\) & 0
0
0
0
0 \\
\hline & \(\sim\) & & &  &  & 「くらずの \({ }_{0}^{\infty}{ }^{\infty} \infty_{\infty}^{\infty} 0_{0}^{\infty}\) － \(0^{\circ} 0^{\circ}\) &  &  &  & I
D
\(\vdots\)
0 \\
\hline & \(\square\) & & &  &  &  & \begin{tabular}{l}
 \\
 －0．0்0
\end{tabular} &  &  & -7
\(\infty\)
0
0 \\
\hline & \(\cdots\) & & &  &  \(\mathfrak{\infty}\) －0．0： & CNNO～ \(\infty \times \infty\) － &  &  かのがか \(\because\) \(00000^{\circ}\) &  たたち下た －0000． & \(m\)
\(\infty\)
\(\vdots\)
0 \\
\hline & \(\sim\) & & &  &  &  &  なった －0．00． & \begin{tabular}{l}
べざット \\
AKAた \\
－0000．
\end{tabular} &  & ¢
\(\stackrel{0}{0}\)
\(\vdots\)
0 \\
\hline & － & & & \begin{tabular}{l}
NのミさN \\
がたた \\
－ \\
00000
\end{tabular} & 옹№ トゥトスト 0000 \(\therefore 0^{\circ} 0^{\circ}\) & \begin{tabular}{l}
mNogio \\
 \\
か6500 \\
－0000
\end{tabular} & Noonn だッドッドが \(\therefore 000\) \(00^{\circ 0} 00^{\circ}\) &  &  & 0
\(\vdots\)
\(\vdots\)
0
0 \\
\hline & \(\bigcirc\) & & & \begin{tabular}{l}
NNッジッ \\
～～～M～～ \\
\(\because 000\) \\
\(00_{0}^{\circ 0} 0^{\circ}\)
\end{tabular} &  &  &  & 읐ㅇp응 \(\underset{0}{\sim} \underset{\sim}{\sim} \underset{\sim}{n}\) \(00^{\circ 0} 00^{\circ}\) & 우N～N～N たNへN －0000 & 0
\(N\)
\(\vdots\)
0 \\
\hline 当 &  & \(\underset{\sim}{\sim} \underset{\sim}{\sim} \sim_{\sim}^{\sim}\) & \begin{tabular}{l}
 \\
いーーーー
\end{tabular} & －゙きずずす &  &  & ソニざ， &  &  & 윽 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Plenum } \\
\text { temperature, } \\
\text { K }
\end{gathered}
\]} & \multicolumn{11}{|l|}{Plenum pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 \\
\hline 16 C & 0.7131 & ------ & ------ & ------ & ---- & ------- & ------ & ------ & ------ & ------ & -- \\
\hline 162 & 0.7110 & ------ & ------ & ------ & ------ & ------ & ------ & & ------ & & \\
\hline 164 & 0.7092 & 0.7190 & -72 & ------ & ------ & ------ & ----- & & & & \\
\hline 166 & 0.7076 & 0.7167 & 0.7271 & ------ & ------ & ------ & ------ & & & & \\
\hline 168 & 0.7061 & 0.7147 & 0.7244 & & ------ & - & - & & & & \\
\hline 170 & 0.7047 & 0.7128 & 0.7219 & 0.7321 & ------ & ------ & ------ & ------ & ------ & & \\
\hline 172 & 0.7034 & 0.7111 & 0.7196 & 0.7292 & & - & --- & ------ & & & \\
\hline 174 & 0.7023 & 0.7096 & 0.7176 & 0.7265 & 0.7365 & -- & & & ------ & & \\
\hline 176 & 0.7012 & 0.7081 & 0.7157 & 0.7241 & 0.7334 & 0.7438 & ----75- & --------- & --------- & ------- & \\
\hline 178 & 0.7002 & 0.7068 & 0.7140 & 0.7219 & 0.7306 & 0.7403 & 0.7513 & ------ & ------ & ------ & \\
\hline 18 C & 0.6992 & 0.7056 & 0.7124 & 0.7199 & 0.7281 & 0.7371 & 0.7472 & ------- & ------ & ------ & ------ \\
\hline 182 & 0.6983 & 0.7044 & 0.7110 & 0.7181 & 0.7258 & 0.7342 & 0.7436 & 0.7541 & --7--7 & ------ & \\
\hline 184 & 0.6975 & 0.7034 & 0.7096 & 0.7164 & 0.7237 & 0.7316 & 0.7404 & 0.7501 & 0.7610 & & -------- \\
\hline 186 & 0.6967 & 0.7024 & 0.7083 & 0.7148 & 0.7217 & 0.7292 & 0.7374 & 0.7464 & 0.7565 & 0.7678
0.7628 & \\
\hline 188 & 0.6960 & 0.7014 & 0.7072 & 0.7133 & 0.7199 & 0.7270 & 0.7347 & 0.7431 & 0.7524 & & 0.7745 \\
\hline 19 C & 0.6953 & 0.7005 & 0.7060 & 0.7119 & 0.7182 & 0.7250 & 0.7322 & 0.7402 & 0.7488 & 0.7584 & 0.7691 \\
\hline 192 & 0.6946 & 0.6997 & 0.7050 & 0.7106 & 0.7166 & 0.7231 & 0.7300 & 0.7374 & 0.7455 & 0.7544 & 0.7642 \\
\hline 194 & 0.6940 & 0.6989 & 0.7040 & 0.7094 & 0.7151 & 0.7213 & 0.7278 & 0.7349 & 0.7425 & 0.7508 & 0.7599 \\
\hline 196 & 0.6934 & 0.6981 & 0.7030 & 0.7082 & 0.7138 & 0.7196 & 0.7259
0.7240 & 0.7325
0.7304 & 0.7397
0.7372 & 0.7475
0.7445 & 0.7559
0.7524 \\
\hline 198 & 0.6928 & 0.6974 & 0.7021 & 0.7071 & 0.7124 & 0.7181 & 0.7240 & & & & \\
\hline 200 & 0.6923 & 0.6967 & 0.7013 & 0.7061 & 0.7112 & 0.7166 & 0.7223 & 0.7283 & 0.7348 & 0.7417 & 0.7491 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Plenum } \\
\text { temperature, } \\
\mathrm{K} \\
\hline
\end{gathered}
\]} & \multicolumn{11}{|l|}{Plenum pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 30 & 32 & 34 & 36 & 38 & 40 & 42 & 44 & 46 & 48 & 50 \\
\hline 18 C & \multicolumn{11}{|l|}{} \\
\hline 182
184 & ------ & ------ & ------ & --- & ------ & ---- & & & & & \\
\hline 184
186 & ---- & ------- & ----- & -- & -------- & -------- & - & ----- & & & \\
\hline 188 & 0.7745 & ------ & ------ & ------ & & ------ & & & & & \\
\hline 190 & 0.7691 & 0.7812 & ------ & ------ & ------ & ------ & & & & & \\
\hline 192 & 0.7642 & 0.7752 & 0.7876 & ------ & ------ & ------ & - & & & & \\
\hline 194 & 0.7599 & 0.7699 & 0.7811 & 0.7938 & ------ & ------ & - & - & & & \\
\hline 196 & 0.7559 & 0.7652 & 0.7754 & 0.7869 & 0.7998 & & -------- & ------- & ------ & ------ & \\
\hline 198 & 0.7524 & 0.7610 & 0.7704 & 0.7808 & 0.7924 & 0.8055 & --- & & ----- & & \\
\hline 200 & 0.7491 & 0.7571 & 0.7658 & 0.7754 & 0.7859 & 0.7976 & 0.8109 & 0.8260 & ------ & & \\
\hline
\end{tabular}
TABLE I. - Continued. THERMODYNAMIC PROPERTIES OF METHANE - CRITICAL-FLOW FACTOR, C*
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Plenum temperature, K} & \multicolumn{11}{|l|}{Plenum pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 0 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 \\
\hline 200 & 0.6729 & 0.6821 & 0.6923 & 0.7037 & 0.7166 & 0.7315 & 0.7491 & 0.7705 & 0.7976 & ------ & ------ \\
\hline 202 & 0.6728 & 0.6818 & 0.6917 & 0.7028 & 0.7157 & 0.7295 & 0.7461 & 0.7660 & 0.7908 & 0.8232 & ------ \\
\hline 204 & 0.6728 & 0.6816 & 0.6912 & 0.7019 & 0.7139 & 0.7275 & 0.7433 & 0.7620 & 0.7847 & 0.8136 & 0.8526 \\
\hline 206 & 0.6728 & 0.6813 & 0.6907 & 0.7011 & 0.7126 & 0.7257 & 0.7407 & 0.7583 & 0.7793 & 0.8055 & 0.8394 \\
\hline 208 & 0.6728 & 0.6811 & 0.6902 & 0.7003 & 0.7114 & 0.7240 & 0.7383 & 0.7549 & 0.7745 & 0.7983 & 0.8284 \\
\hline 210 & 0.6727 & 0.6809 & 0.6897 & 0.6995 & 0.7103 & 0.7224 & 0.7360 & 0.7517 & 0.7700 & 0.7920 & 0.8190 \\
\hline 212 & 0.6727 & 0.6806 & 0.6893 & 0.6988 & 0.7097 & 0.7208 & 0.7339 & 0.7488 & 0.7660 & 0.7863 & 0.8108 \\
\hline 214 & 0.6727 & 0.6804 & 0.6889 & 0.6981 & 0.7082 & 0.7193 & 0.7319 & 0.7460 & 0.7622 & 0.7812 & 0.8036 \\
\hline 216 & 0.6726 & 0.6802 & 0.6884 & 0.6974 & 0.7071 & 0.7179 & 0.7299 & 0.7434 & 0.7588 & 0.7765 & 0.7972 \\
\hline 218 & 0.6726 & 0.6800 & 0.6880 & 0.6967 & 0.7062 & 0.7166 & 0.7281 & 0.7410 & 0.7556 & 0.7722 & 0.7914 \\
\hline 220 & 0.6725 & 0.6798 & 0.6876 & 0.8961 & 0.7052 & 0.7153 & 0.7264 & 0.7387 & 0.7525 & 0.7682 & 0.7861 \\
\hline 222 & 0.6725 & 0.6796 & 0.6872 & 0.6954 & 0.7043 & 0.7141 & 0.7248 & 0.7366 & 0.7497 & 0.7645 & 0.7812 \\
\hline 224 & 0.6725 & 0.6794 & 0.6868 & 0.6948 & 0.7035 & 0.7129 & 0.7232 & 0.7345 & 0.7470 & 0.7610 & 0.7768 \\
\hline 226 & 0.6724 & 0.6792 & 0.6864 & 0.6942 & 0.7026 & 0.7117 & 0.7217 & 0.7325 & 0.7445 & 0.7578 & 0.7727 \\
\hline 228 & 0.6724 & 0.6790 & 0.6861 & 0.6937 & 0.7018 & 0.7106 & 0.7202 & 0.7307 & 0.7421 & 0.7548 & 0.7688 \\
\hline 230 & 0.6723 & 0.6788 & 0.6857 & 0.6931 & 0.7010 & 0.7096 & 0.7188 & 0.7289 & 0.7399 & 0.7519 & 0.7652 \\
\hline 232 & 0.6723 & 0.6786 & 0.6854 & 0.6926 & 0.7003 & 0.7086 & 0.7175 & 0.7272 & 0.7377 & 0.7492 & 0.7619 \\
\hline 234 & 0.6722 & 0.6784 & 0.6850 & 0.6920 & 0.6995 & 0.7076 & 0.7162 & 0.7256 & 0.7357 & 0.7467 & 0.7587 \\
\hline 236 & 0.6722 & 0.6782 & 0.6847 & 0.6915 & 0.6988 & 0.7066 & 0.7150 & 0.7240 & 0.7337 & 0.7443 & 0.7557 \\
\hline 238 & 0.6721 & 0.6780 & 0.6843 & 0.6910 & 0.6981 & 0.7057 & 0.7138 & 0.7225 & 0.7318 & 0.7420 & 0.7529 \\
\hline 240 & 0.6721 & 0.6779 & 0.6840 & 0.6905 & 0.6974 & 0.7048 & 0.7126 & 0.7210 & 0.7301 & 0.7398 & 0.7502 \\
\hline 242 & 0.6720 & 0.6777 & 0.6837 & 0.6907 & 0.6967 & 0.7039 & 0.7115 & 0.7196 & 0.7283 & 0.7377 & 0.7477 \\
\hline 244 & 0.6719 & 0.6775 & 0.6834 & 0.6895 & 0.6961 & 0.7030 & 0.7104 & 0.7183 & 0.7267 & 0.7356 & 0.7452 \\
\hline 248 & 0.6719 & 0.6773 & 0.6830 & 0.6891 & 0.6955 & 0.7022 & 0.7094 & 0.7170 & 0.7251 & 0.7337 & 0.7429 \\
\hline 248 & 0.6718 & 0.6771 & 0.6827 & 0.6886 & 0.6948 & 0.7014 & 0.7084 & 0.7157 & 0.7235 & 0.7319 & 0.7407 \\
\hline 250 & 0.6717 & 0.6769 & 0.6824 & 0.6882 & 0.6942 & 0.7006 & 0.7074 & 0.7145 & 0.7221 & 0.7301 & 0.7386 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Plenum temperature, K} & \multicolumn{11}{|l|}{Plenum pressure, \(\mathrm{N} \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 50 & 55 & 60 & 65 & 70 & 75 & 80 & 85 & 90 & 95 & 100 \\
\hline 200 & --- & - & ------ & ------ & ------- & ------ & ------ & ------- & ------- & ------ & \\
\hline 207
204 & & & & & & & & & & & \\
\hline & 0.8526 & & & & & & & & & & \\
\hline 208 & 0.8284 & 0.8680 & & & & & & & & & \\
\hline 218 & 0.8108 & 0.8412 & 0.8801 & \(0.930 \%\) & ------ & ------ & ------ & ---- & ------ & & \\
\hline 214 & 0.8036 & 0.8309 & 0.8647 & 0.9075 & 0.9611 & ------ & ------ & ------ & ------ & ------- & -------- \\
\hline 216 & 0.7972 & 0.8218 & 0.8518 & 0.8887 & 0.9339 & 0.9878 & 1.0470 & & ------- & ------- & \\
\hline 218 & 0.7914 & 0.8139 & 0.8408 & 0.9731 & 0.9120 & 0.9580 & 1.0094 & 1.0625 & ------ & & ------ \\
\hline 22 C & 0.7861 & 0.8068 & 0.8311 & 0.8599 & 0.8939 & 0.9337 & 0.9785 & 1.0259 & 1.0726 & 1.1158 & \\
\hline 228 & 0.7812 & 0.8004 & 0.8227 & 0.8485 & 0.8787 & 0.9135 & 0.9527 & 0.9949 & 1.0376 & 1.0784 & 1.1154 \\
\hline 224 & 0.7768 & 0.7947 & 0.8151 & 0.8386 & 0.8656 & 0.8965 & 0.9311 & 0.9686 & 1.0073 & 1.0453 & 1.0808 \\
\hline 226 & 0.7727 & 0.7894 & 0.8083 & 0.0297 & 0.8542 & 0.8818 & 0.9127 & 0.9462 & 0.9812 & 1.0163 & 1.0498 \\
\hline 228 & 0.7688 & 0.7845 & 0.8020 & 0.8218 & 0.8441 & 0.8691 & 0.8968 & 0.9269 & 0.9586 & 0.9908 & 1.0221 \\
\hline 23 C & 0.7652 & 0.7800 & 0.7964 & 0.8147 & 0.8351 & 0.8579 & 0.8829 & 0.9101 & 0.9389 & 0.9683 & 0.9975 \\
\hline 236 & 0.7619 & 0.7758 & 0.7912 & 0.8082 & 0.8271 & 0.8479 & 0.8707 & 0.8954 & 0.9216 & 0.9486 & 0.9757 \\
\hline 234 & 0.7587 & 3.7719 & 0.7863 & 0.9022 & 0.8197 & 0.8389 & 0.8599 & 0.8824 & 0.9063 & 0.9311 & 0.9561 \\
\hline 236 & 0.7557 & 0.7682 & 0.7818 & 0.7967 & 0.8131 & 0.8308 & 0.8501 & 0.8708 & 0.8927 & 0.9155 & 0.9387 \\
\hline 236 & 0.7529 & 0.7648 & 0.7776 & 0.7917 & 0.8069 & 0.8234 & 0.8413 & 0.8604 & 0.8806 & 0.9016 & 0.9231 \\
\hline 24 C & 0.7502 & 0.7615 & 0.7737 & 0.7869 & 0.8012 & 0.8167 & 0.8333 & 0.8510 & 0.8696 & 0.8891 & 0.9090 \\
\hline \(24 \hat{1}\) & 0.7477 & 0.7584 & 0.7700 & 0.7825 & 0.7960 & 0.8105 & 0.8259 & 0.8424 & 0.8597 & 0.8777 & 0.8963 \\
\hline 244 & 0.7452 & 0.7555 & 0.7666 & 0.7784 & 0.7911 & 0.8047 & 0.8192 & 0.8345 & 0.8506 & 0.8674 & 0.8847 \\
\hline 246 & 0.7429 & 0.7528 & 0.7633 & 0.7745 & 0.7865 & 0.7993 & 0.8129 & 0.8273 & 0.8424 & 0.8580 & 0.8741 \\
\hline 248 & 0.7407 & 0.7501 & 0.7802 & 0.7709 & \(0.782 ?\) & 0.7943 & 0.8071 & 0.8206 & 0.8347 & 0.8494 & 0.8645 \\
\hline 250 & 0.7386 & 0.7476 & 0.7572 & 0.7674 & 0.7782 & 0.7897 & 0.8017 & 0.8144 & 0.8277 & 0.8414 & 0.8556 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Plenum temperature, K} & \multicolumn{11}{|l|}{Plenum pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 200 & 210 & 220 & 230 & 240 & 250 & 260 & 270 & 280 & 290 & 300 \\
\hline 226 & ------- & ------ & - & ------ & ------ & ---- & ----- & --- & & & \\
\hline 228 & ------- & ------- & ------ & ------ & ------ & - & ---- & ---- & --- & & \\
\hline 224 & 1.2567 & 1.2508 & 1.2437 & 1.2359 & 1.2274 & 1.2185 & 1.2093 & 1.1999 & 1.1904 & -------- & \\
\hline 226 & 1.2377 & 1.2329 & 1.2270 & 1.2201 & 1.2125 & 1.2045 & 1.1960 & 1.1873 & 1.1784 & 1.1694 & \\
\hline 228 & 1.2191 & 1.2154 & 1.2105 & 1.2046 & 1.1979 & 1.1906 & 1.1829 & 1.1749 & 1.1667 & 1.1583 & 1.1498 \\
\hline 230 & 1. 2009 & 1.1983 & 1.1944 & 1.1893 & 1.1835 & 1.1770 & 1.1700 & 1.1626 & & & \\
\hline 232 & 1.1831 & 1.1816 & 1.1785 & 1.1744 & 1.1693 & 1.1636 & 1.1573 & 1.1506 & 1.1435 & 1.1363 & 1.1392
1.1288 \\
\hline 234
236 & 1.1658 & 1.1652 & 1.1631 & 1.1597 & 1.1554 & 1.1504 & 1.1448 & 1.1387 & 1.1322 & 1.1255 & 1.1186 \\
\hline 236
238 & 1.1490 & 1.1492 & 1.1479 & 1.1454 & 1.1418 & 1.1375 & 1.1325 & 1.1270 & 1.1211 & 1.1149 & 1.1084 \\
\hline 238 & 1.1326 & 1.1337 & 1.1332 & 1.1313 & 1.1285 & 1.1248 & 1.1204 & 1.1155 & 1.1101 & 1.1044 & 1.0984 \\
\hline 240 & 1.1167 & 1.1185 & 1.1187 & 1.1176 & & & & & & & \\
\hline 242
244 & 1.1013 & 1.1038 & 1.1047 & 1.1042 & 1.1026 & 1.1001 & 1.0968 & 1.1041
1.0930 & 1.0993
1.0886 & 1.0940
1.0839 & 1.0885
1.0788 \\
\hline 244
246 & 1.0863 & 1.0894 & 1.0909 & 1.0911 & 1.0901 & 1.0881 & 1.0854 & 1.0820 & 1.0782 & 1.0739 & 1.0692 \\
\hline \(24 \%\)
248 & 1.0718 & 1.0755 & 1.0776 & 1.0783 & 1.0778 & 1.0764 & 1.0742 & 1.0713 & 1.0679 & 1.0640 & 1.0597 \\
\hline 248 & 1.0577 & 1.0620 & 1.0646 & 1.0658 & 1.0659 & 1.0649 & 1.0632 & 1.0608 & 1.0578 & 1.0543 & 1.0504 \\
\hline 25 C & 1.0442 & 1.0489 & 1.0520 & 1.0537 & 1.0542 & 1.0537 & 1.0524 & 1.0504 & 1.0478 & 1.0448 & 1.0413 \\
\hline
\end{tabular}
TABLE I, - Continued. THERMODYNAMIC PROPERTIES OF METHANE - CRITICAL-FLOW FACTOR, C*

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Plenum temperature, K} & \multicolumn{11}{|l|}{Plenum pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 100 & 110 & 120 & 130 & 140 & 150 & 160 & 170 & 180 & 190 & 200 \\
\hline 258 & 0.8556 & 0.8844 & 0.9130 & 0.9399 & 0.9641 & 0.9851 & 1.0027 & 1.0171 & & & \\
\hline 255 & 0.8361 & 0.8610 & 0.8859 & 0.9098 & 0.932 n & 0.9517 & 0.9688 & 0.9833 & 1.0286 & 1.0375
1.0047 & 1.0442 \\
\hline 26 C & 0.8199 & 0.8415 & 0.8633 & 0.8846 & 0.9046 & 0.9229 & 0.9391 & 0.9532 & 0.9651 & 0.9750 & 0.9830 \\
\hline 265 & 0.8061 & 0.8251 & 0.8442 & 0.8631 & 0.8811 & 0.8979 & 0.9131 & 0.9266 & 0.9382 & 0.9481 & 0.9564 \\
\hline 27C & 0.7941 & 0.8109 & 0.8279 & 0.8447 & 0.8600 & 0.8762 & 0.8903 & 0.9030 & 0.9142 & 0.9240 & 0.9564
0.9323 \\
\hline 275 & 0.7837 & 0.7987 & 0.8138 & 0.8288 & 0.8434 & 0.8573 & 0.8703 & & & & \\
\hline 286 & 0.7745 & 0.7879 & 0.8015 & 0.8149 & 0.8281 & 0.8408 & 0.8727 & 0.8822
0.8637 & 0.8928
0.8737 & 0.9023 & 0.9104 \\
\hline 285 & 0.7663 & 0.7784 & 0.7906 & 0.8027 & 0.8146 & 0.8261 & 0.8527
0.8371 & 0.8637
0.8473 & 0.8737
0.8567 & 0.8827
0.8652 & 0.8907
0.8728 \\
\hline 296 & 0.7589 & 0.7699 & 0.7809 & 0.7919 & 0.8027 & 0.8132 & 0.8232 & 0.8326 & 0.8567
0.8414 & 0.8652
0.8494 & 0.8728
0.8568 \\
\hline 295 & 0.7523 & 0.7622 & 0.7723 & 0.7822 & 0.7921 & 0.8016 & 0.8108 & 0.8326
0.8195 & 0.8414
0.8276 & 0.8494
0.8351 & 0.8566
0.8420 \\
\hline 300 & 0.7463 & 0.7553 & 0.7645 & 0.7736 & 0.7825 & 0.7912 & 0.7997 & & & & \\
\hline 305 & 0.7408 & 0.7491 & 0.7574 & 0.7657 & 0.7739 & 0.7819 & 0.7997
0.7896 & 0.8077
0.7970 & 0.8152
0.8040 & 0.8222 & 0.8287 \\
\hline 316 & 0.7357 & 0.7433 & 0.7510 & 0.7586 & 0.7661 & 0.7735 & 0.7806 & 0.7874 & 0.7939 & 0.8106
0.8000 & 0.8167
0.8057 \\
\hline 315 & 0.7310 & 0.7381 & 0.7451 & 0.7521 & 0.7590 & 0.7658 & 0.7723 & 0.7786 & 0.7846 & 0.7903 & 0.81857
0.7956 \\
\hline 32 C & 0.7267 & 0.7332 & 0.7397 & 0.7462 & 0.7525 & 0.7588 & 0.7648 & 0.7706 & 0.7762 & 0.7815 & 0.7865 \\
\hline 325 & 0.7227 & 0.7288 & 0.7347 & 0.7407 & 0.7466 & 0.7523 & 0.7579 & 0.7633 & & & \\
\hline 33 C & 0.7190 & 0.7246 & 0.7302 & 0.7357 & 0.7411 & 0.7464 & 0.7516 & 0.7633
0.7566 & 0.7685
0.7614 & 0.7734
0.7660 & 0.7781
0.7703 \\
\hline 335 & 0.7156 & 0.7207 & 0.7259 & 0.7310 & 0.7360 & 0.7410 & 0.7458 & 0.7504 & 0.7549 & 0.7592 & 0.7632 \\
\hline 340 & 0.7123 & 0.7171 & 0.7219 & 0.7267 & 0.7313 & 0.7359 & 0.7404 & 0.7447 & 0.7488 & 0.7528 & 0.7568 \\
\hline 345 & 0.7093 & 0.7138 & 0.7182 & 0.7226 & 0.7270 & 0.7312 & 0.7354 & 0.7394 & 0.7433 & 0.7470 & 0.7505 \\
\hline 35 C & 0.7064 & 0.7106 & 0.7147 & 0.7189 & 0.7229 & 0.7269 & 0.7307 & 0.7345 & & & \\
\hline 355 & 0.7037 & 0.7076 & 0.7115 & 0.7153 & 0.7191 & 0.7228 & 0.7264 & 0.7345
0.7299 & 0.7381
0.7333 & 0.7416
0.7365 & \\
\hline 36 C & 0.7012 & 0.7048 & 0.7084 & 0.7120 & 0.7155 & 0.7190 & 0.7224 & 0.7256 & 0.7383
0.7288 & 0.7365
0.7318 & 0.7398
0.7347 \\
\hline 365
370 & 0.6987 & 0.7022 & 0.7056 & 0.7089 & \(0.712 ?\) & 0.7154 & 0.7186 & 0.7216 & 0.7246 & 0.7274 & 0.7347
0.7301 \\
\hline 370 & 0.6965 & 0.6997 & 0.7029 & 0.7060 & 0.7091 & 0.7121 & 0.7150 & 0.7179 & 0.7206 & 0.7233 & 0.7258 \\
\hline 375 & 0.6943 & 0.6973 & 0.7003 & 0.7032 & 0.7061 & & & & & & \\
\hline 38 C & 0.6922 & 0.6951 & 0.6979 & 0.7006 & 0.7033 & 0.7060 & 0.7085 & 0.7143
0.7110 & 0.7169
0.7135 & 0.7194
0.7158 & 0.7218 \\
\hline 385 & 0.6903 & 0.6929 & 0.6956 & 0.6982 & 0.7007 & 0.7032 & 0.7056 & 0.7079 & 0.7135
0.7102 & 0.7158
0.7124 & 0.7180
0.7145 \\
\hline 390 & 0.6884 & 0.6909 & 0.6934 & 0.6958 & 0.6987 & 0.7005 & 0.7028 & 0.7050 & 0.7071 & 0.7091 & 0.7145 \\
\hline 395 & 0.6866 & 0.6890 & 0.6913 & 0.6936 & 0.6958 & 0.6980 & 0.7001 & 0.7022 & 0.7042 & 0.7061 & 0.7080 \\
\hline 400 & 0.6849 & 0.6871 & 0.6893 & 0.6915 & 0.6936 & 0.6956 & 0.6976 & 0.6995 & 0.7014 & 0.7032 & 0.7050 \\
\hline
\end{tabular}
TABLE I. - Continued. THERMODYNAMIC PROPERTIES OF METHANE - CRITICAL-FLOW FACTOR, C*

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Plenum temperature, K} & \multicolumn{11}{|l|}{Plenum pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 0 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 \\
\hline 400 & 0.6617 & 0.6640 & 0.6664 & 0.6687 & 0.6711 & 0.6734 & 0.6758 & 0.6781 & 0.6804 & 0.6827 & 0.6849 \\
\hline 405 & 0.6613 & 0.6635 & 0.6658 & 0.6680 & 0.6702 & 0.6724 & 0.6746 & 0.6768 & 0.6790 & 0.6812 & 0.6833 \\
\hline 410 & 0.6609 & 0.6630 & 0.6851 & 0.6673 & 0.6694 & 0.6715 & 0.6736 & 0.6756 & 0.6777 & 0.6797 & 0.6817 \\
\hline 415 & 0.6605 & 0.6625 & 0.6645 & 0.6665 & 0.6685 & 0.6705 & 0.6725 & 0.6745 & 0.6764 & 0.6783 & 0.6802 \\
\hline 42 C & 0.6601 & 0.6620 & 0.6639 & 0.6658 & 0.6677 & 0.6696 & 0.6715 & 0.6734 & 0.6752 & 0.6770 & 0.6788 \\
\hline 425 & 0.6597 & 0.6615 & 0.6633 & 0.6651 & 0.6670 & 0.6687 & 0.6705 & 0.6723 & 0.6740 & 0.6757 & 0.6774 \\
\hline 436 & 0.6593 & 0.6610 & 0.6627 & 0.6645 & 0.6662 & 0.6679 & 0.6696 & 0.6712 & 0.6729 & 0.6745 & 0.6761 \\
\hline 435 & 0.6588 & 0.6605 & 0.6622 & 0.6638 & 0.6654 & 0.6671 & 0.6687 & 0.6702 & 0.6718 & 0.6733 & 0.6748 \\
\hline 440 & 0.6584 & 0.6600 & 0.6616 & 0.6632 & 0.6647 & 0.6663 & 0.6678 & 0.6693 & 0.6707 & 0.6722 & 0.6736 \\
\hline 44.5 & 0.6580 & 0.6596 & 0.6611 & 0.6625 & 0.6640 & 0.6655 & 0.6669 & 0.6683 & 0.6697 & 0.6711 & 0.6724 \\
\hline 45 C & 0.6577 & 0.6591 & 0.6605 & 0.6619 & 0.6633 & 0.6647 & 0.6661 & 0.6674 & 0.6687 & 0.6700 & 0.6713 \\
\hline 455 & 0.6573 & 0.6586 & 0.6600 & 0.6613 & 0.6627 & 0.6640 & 0.6653 & 0.6665 & 0.6678 & 0.6690 & 0.6702 \\
\hline 46 C & 0.6569 & 0.6582 & 0.6595 & 0.6607 & 0.6620 & 0.6632 & 0.6845 & 0.6657 & 0.6668 & 0.6680 & 0.6691 \\
\hline 465 & 0.6565 & 0.6577 & 0.6590 & 0.6602 & 0.6614 & 0.6625 & 0.6637 & 0.6648 & 0.6659 & 0.6670 & 0.6681 \\
\hline 470 & 0.6561 & 0.6573 & 0.6585 & 0.6596 & 0.6607 & 0.6619 & 0.6630 & 0.6640 & 0.6651 & 0.6661 & 0.6671 \\
\hline 475 & 0.6557 & 0.6569 & 0.6580 & 0.6591 & 0.6601 & 0.6612 & 0.6622 & 0.6632 & 0.6642 & 0.6652 & 0.6662 \\
\hline 48 C & 0.6554 & 0.6564 & 0.6575 & 0.6585 & 0.6595 & 0.6605 & 0.6615 & 0.6625 & 0.6634 & 0.6643 & 0.6652 \\
\hline 485 & 0.6550 & 0.6560 & 0.6570 & 0.6580 & 0.6590 & 0.6599 & 0.6608 & 0.6617 & 0.6626 & 0.6635 & 0.6643 \\
\hline 49 C & 0.6546 & 0.6556 & 0.6565 & 0.6575 & 0.6584 & 0.6593 & 0.6602 & 0.6610 & 0.6619 & 0.6627 & 0.6635 \\
\hline 495 & 0.6543 & 0.6552 & 0.6561 & 0.6570 & 0.6578 & 0.6587 & 0.6595 & 0.6603 & 0.6611 & 0.6619 & 0.6626 \\
\hline 50 C & 0.6539 & 0.6548 & 0.65 .56 & 0.6565 & 0.6573 & 0.6581 & 0.6589 & 0.6597 & 0.6604 & 0.6611 & 0.6618 \\
\hline 505 & 0.6536 & 0.6544 & 0.6552 & 0.6560 & 0.6568 & 0.6575 & 0.6583 & 0.6590 & 0.6597 & 0.6604 & 0.6611 \\
\hline 510 & 0.6532 & 0.6540 & 0.6548 & 0.6555 & 0.6563 & 0.6570 & 0.6577 & 0.6584 & 0.6590 & 0.6597 & 0.6603 \\
\hline 515 & 0.6529 & 0.6536 & 0.6544 & 0.6551 & 0.6558 & 0.6564 & 0.6571 & 0.6577 & 0.6584 & 0.6590 & 0.6596 \\
\hline 52 C & 0.6525 & 0.6532 & 0.6539 & 0.4546 & 0.6553 & 0.6559 & 0.6565 & 0.6571 & 0.6577 & 0.6583 & 0.6588 \\
\hline 525 & 0.6522 & 0.6529 & 0.6535 & 0.6542 & 0.654 R & 0.6554 & 0.6560 & 0.6565 & 0.6571 & 0.6576 & 0.6581 \\
\hline 530 & 0.6519 & 0.6525 & 0.6531 & 0.6537 & 0.6543 & 0.6549 & 0.6554 & 0.6560 & 0.6565 & 0.6570 & 0.6575 \\
\hline 535 & 0.6516 & 0.6522 & 0.6527 & 0.6533 & 0.6539 & 0.6544 & 0.6549 & 0.6554 & 0.6559 & 0.6564 & 0.6568 \\
\hline 540 & 0.6512 & 0.6518 & 0.6524 & 0.6529 & 0.6534 & 0.6539 & 0.6544 & 0.6549 & 0.6553 & 0.6558 & 0.6562 \\
\hline 545 & 0.6509 & 0.6515 & 0.6520 & 0.4525 & 0.6530 & 0.6534 & 0.6539 & 0.6543 & 0.6548 & 0.6552 & 0.6556 \\
\hline 550 & 0.6506 & 0.6511 & 0.6516 & 0.6521 & 0.6525 & 0.6530 & 0.6534 & 0.6538 & 0.6542 & 0.6546 & 0.6550 \\
\hline 555 & 0.6503 & 0.6508 & 0.6512 & 0.6517 & 0.6521 & 0.6525 & 0.6529 & 0.6533 & 0.6537 & 0.6540 & 0.6544 \\
\hline 56 C & 0.6500 & 0.6505 & 0.6509 & 0.6513 & 0.6517 & 0.6521 & 0.6525 & 0.6528 & 0.6532 & 0.6535 & 0.6538 \\
\hline 565 & 0.6497 & 0.6501 & 0.6505 & 0.6509 & 0.6513 & 0.6517 & 0.6520 & 0.6523 & 0.6527 & 0.6530 & 0.6533 \\
\hline 570 & 0.6494 & 0.6498 & 0.6502 & 0.6506 & 0.6509 & 0.6512 & 0.6516 & 0.6519 & 0.6522 & 0.6525 & 0.6527 \\
\hline 575 & 0.6492 & 0.6495 & 0.6499 & 0.6502 & 0.6505 & 0.6508 & 0.6511 & 0.6514 & 0.6517 & 0.6519 & 0.6522 \\
\hline 58 C & 0.6489 & 0.6492 & 0.6495 & 0.6498 & 0.6501 & 0.6504 & 0.6507 & 0.6510 & 0.6512 & 0.6515 & 0.6517 \\
\hline 585 & 0.6486 & 0.6489 & 0.6492 & 0.6495 & 0.6498 & 0.6500 & 0.6503 & 0.6505 & 0.6508 & 0.6510 & 0.6512 \\
\hline 590 & 0.6483 & 0.6486 & 0.6489 & 0.6492 & 0.6494 & 0.6497 & 0.6499 & 0.6501 & 0.6503 & 0.6505 & 0.6507 \\
\hline 595 & 0.6480 & 0.6483 & 0.6486 & 0.6488 & 0.6491 & 0.6493 & 0.6495 & 0.6497 & 0.6499 & 0.6501 & 0.6502 \\
\hline 600 & 0.6478 & 0.6480 & 0.6483 & 0.6485 & 0.6487 & 0.6489 & 0.6491 & 0.6493 & 0.6495 & 0.6496 & 0.6498 \\
\hline
\end{tabular}
TABLE I. - Concluded. THERMODYNAMIC PROPERTIES OF METHANE - CRITICAL-FLOW FACTOR, C*

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & ¢ &  &  &  & minn o のださ～ ONANA \(\therefore 0^{\circ} 0^{\circ}\) & \begin{tabular}{l}
NNMON \\
 tosos －0000
\end{tabular} & \begin{tabular}{l}
的 \(M \sim-1\) \\
जN～O \\
 \\
\(00^{\circ} 0^{\circ}\)
\end{tabular} & 으우N in in in in \(n\)
0
0
0
0 \(0_{0}\) \(00_{0}^{\circ} 0^{\circ}\) & \begin{tabular}{l}
が心の～ \\
 00000 \(\therefore 0_{0}^{\circ} 0^{\circ}\)
\end{tabular} & ＋
in
0
0
0 \\
\hline & প্ণ &  & Ningoo ごかに気 ㅇonoos －0000 & \(\infty 000\) r \(\infty \infty\) \({ }^{\infty} \infty_{0}^{\infty} \infty \infty\) \(0 \infty 000\) \(00^{\circ} 0^{\circ} 0^{\circ}\) & のNにのが がNがN 0000 • \(00^{\circ} 00^{\circ}\) & か～～かo ㅇ․ た0．00 \(\therefore 0000\) & \begin{tabular}{l}
\(+N-00\) \\
HMNーO \\
 \\
－0000 0
\end{tabular} & oronn Ninninin 6000
0 \(00^{\circ} 0^{\circ} 0^{\circ}\) & \begin{tabular}{l}
tunON \\
tmNNA \\
Nn nn n n \\
\(00^{\circ} 0^{\circ}\)
\end{tabular} & \[
\begin{aligned}
& \text { n } \\
& \text { in } \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline & \(\stackrel{\sim}{\sim}\) &  －＝O O ARRKR － 0 & すへ～N゙～ － \(\mathrm{O}_{\mathrm{N}} \mathrm{NO}\) トかのかっ －000 \(0^{\circ}\) & N゙が～～。 \(\infty \infty \infty \infty\) \(\omega_{0}^{\infty} 00_{0}\) \(00^{\circ} 0^{\circ} 0^{\circ}\) & \(n \infty\)
\(\infty\)
\(\infty\)
0 かんトN～ 00000 \(\therefore 0^{\circ} 0^{\circ}\) & 「mon出 ト0．000 00000 \(\therefore 0^{\circ} 0^{\circ} 0^{\circ}\) & N～웅 40
0
0 00000 － \(0^{\circ} 0^{\circ} 0^{\circ}\) & のかの日N解的心的 －0．0．0 \(00^{\circ} 0^{\circ}\) &  がNN゙ ヘ000 \(0_{0}^{\circ} 0^{\circ} 0^{\circ}\) & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline \multirow{8}{*}{} & \[
\stackrel{\ominus}{\sim}
\] & 응․ m N－ ネス수 －் ÓO 0 &  &  & \begin{tabular}{l}
\(\vec{\infty}_{\infty}^{+\infty} \mathrm{m}_{\mathrm{m}}^{\infty} \underset{\sim}{\infty}\) \\
トトNペ \\
0000 \\
\(00^{\circ} 00^{\circ}\)
\end{tabular} & 4O～4N ○のトロ～N \(00 \% 00\) \(\circ 0^{\circ} 0^{\circ}\) &  & \(\infty \infty\)禺下inin \(\begin{array}{rl}0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}\) \(\circ 0^{\circ} 0^{\circ} 0^{\circ}\) & \＆M N O細in 00000 \(00^{\circ} 0^{\circ}\) & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline & 莡 & \begin{tabular}{l}
minmw \\
～ロ～す。 \\
ネNㅜㅇ \\
－́Óó
\end{tabular} &  &  & \begin{tabular}{l}
－oますn \\
ト゚さN゙ \\
个人下5た \\
\(\therefore 0_{0}^{\circ} 0^{\circ}\)
\end{tabular} &  & ONROR MNHO～ \(0 \% 000\) －0000 & Nomon が心ninn会 \(00^{\circ} 0^{\circ}\) & \begin{tabular}{l}
moxom さNNNー \\
 \(00^{\circ} 0^{\circ} 0^{\circ}\)
\end{tabular} & 0
0
0
0
0 \\
\hline & 옹 & \begin{tabular}{l}
MNNNは \\
 구웃ㅇ － 0 O்O்
\end{tabular} & \begin{tabular}{l}
\(\infty\) Nont \\
－nNO ofor on \(\therefore 0^{\circ} 0^{\circ} 0^{\circ}\)
\end{tabular} & \(m m+\infty \infty\) －NOM \(\infty_{\infty}^{\infty} \infty_{0}^{\infty} \infty_{0}^{\infty}\) \(00^{\circ} 0^{\circ}\) & \begin{tabular}{l}
－nonn \\
トにN～N \\
へた 人 人 \\
\(\because 0:\) \\
\(00^{\circ} 0^{\circ}\)
\end{tabular} & へNNの のが心思 \(\because 0000\) \(\therefore 000^{\circ}\) & －0nに～n MNーが ○．0．00 n －0000 & ○下かのに \(\infty\) Noinin nin \(n_{0}^{n} \ln _{0}\) －0000 & \begin{tabular}{l}
mnomm \\
HMNN． \\
\(\operatorname{con} \operatorname{nin} \sin\) \\
－•・ロ． \\
00000
\end{tabular} & N
O
0
0
0 \\
\hline & 否 & \begin{tabular}{l}
 \\
\(\rightarrow{ }^{\circ} \mathrm{O}\) \\
ARAKO \\
－ \(0 \dot{\circ} 0^{\circ} 0^{\circ}\)
\end{tabular} & \[
\begin{aligned}
& \infty \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned} \alpha
\] &  & \begin{tabular}{l}
SOr～N \\
トNMNR \\
00000 \\
\(00^{\circ} 0^{\circ} 0^{\circ}\)
\end{tabular} & \[
\begin{aligned}
& 5.10 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] &  & \begin{tabular}{l}
\(\pm \underset{\infty}{\infty} \underset{0}{\circ}\) N O in in \\
 \(\therefore 0_{0}^{\circ} 0^{\circ}\)
\end{tabular} & \begin{tabular}{l}
muact かMNNシ \\
 00000
\end{tabular} & \(n\)
0
0
0
0 \\
\hline & N & \begin{tabular}{l}
人ONON \\
anmo \\
우웅 \\
\(\therefore \circ \circ \circ \circ\)
\end{tabular} &  & かの一円 ＋Nनの～ \(\infty \infty \infty\) かた 40000 \(\therefore 0^{\circ} 0^{\circ}\) & \begin{tabular}{l}
\(\rightarrow\) がーのm \\
にNッ～ロ \\
\(0 \infty 000\) \\
\(\therefore 0^{\circ} 0^{\circ}\)
\end{tabular} & \[
\begin{aligned}
& 0 \uparrow \\
& 0 \sim 4 \\
& 0 \\
& 0 \\
& 0
\end{aligned} 0
\] & N゙ござ N～NO 00000 \(\therefore 0^{\circ} 0^{\circ}\) & MッチかO m下心in inninnn \(\because 0\). －0000 & NさトOm JMNNH にかい心 \(0000 \infty\) \(\therefore 0^{\circ} 00^{\circ}\) & N
0
\(n\)
0
0 \\
\hline & 어N & NNMOO がNor 아웅 － \(00^{\circ} 0^{\circ}\) & \begin{tabular}{l}
amoon \\
ふNOK～ \\
－0 0 \\
－0 \(00^{\circ}\)
\end{tabular} &  & no No べさ～が \(060 \%\) 。 －0000 & \begin{tabular}{l}
がNOの \\
 00900 －© ó 0
\end{tabular} & ののかの品 Nobsin 0.5 Mn \(\therefore 0^{\circ} 00^{\circ}\) & \begin{tabular}{l}
\(\rightarrow \infty\) \\
 0000 \(00_{0}^{\circ} 0^{\circ} 0^{\circ}\)
\end{tabular} & が옥寺べベñ 00000 \(\therefore 0^{\circ} 0^{\circ} 0^{\circ}\) & N
0
0
0
0 \\
\hline & － & \begin{tabular}{l}
orのmか \\
 웅ㅇㅇㅇ \(\therefore 0^{\circ} 0^{\circ}\)
\end{tabular} & \begin{tabular}{l}
＋NOOO \\
 \(0_{0}^{0} 0_{0}^{\infty} \infty_{0}^{\infty}\) －0000
\end{tabular} & \[
\begin{aligned}
& \rightarrow m \infty \\
& \sim N O \\
& \infty \\
& \infty \\
& 0 \\
& 0
\end{aligned}
\] & －5OM NMNOか トた 个 \(00^{\circ} 0^{\circ}\) & \[
\begin{aligned}
& \Rightarrow \text { O } 0 \text { 个 } \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned} 0
\] &  NーO～か \(000 \sin\) －0000 & －-m n minnin 00000 \(00^{\circ} 00^{\circ}\) & \begin{tabular}{l}
○mロのm \\
 \\
 \\
\(0000^{\circ}\)
\end{tabular} & \(n\)
0
\(n\)
0
0 \\
\hline & － &  & NOONO NONがな \(\circ 0_{0}^{\circ} 00_{0}^{\infty}\) \(\therefore 0^{\circ} 0^{\circ} 0^{\circ}\) & NMinN NomNに \(\infty\) \(00^{\circ} 0^{\circ}\) &  & \begin{tabular}{l}
Now \(\operatorname{com}_{\mathrm{m}}^{\mathrm{m}}\) トロ品品 \\
 \(0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ}\)
\end{tabular} &  Nobonin \(0000_{0}^{0} n_{0}^{0}\) \(\therefore 0^{\circ} 0^{\circ} 0^{\circ}\) & \begin{tabular}{l}
\(\infty 0\) No Noininit \\
 \(00^{\circ} 0^{\circ}\)
\end{tabular} & \begin{tabular}{l}
のN～の～～ \\
 にnnñ －0．0．0．
\end{tabular} & 0
0
0
0
0 \\
\hline \[
\begin{aligned}
& E \\
& \underset{Z}{Z} \\
& \underset{\sim}{D}
\end{aligned}
\] &  & \[
\begin{array}{cccc}
6 \\
0 & 0 \\
0
\end{array}
\] &  &  &  &  & Numu w NMMñ & U にがminn &  in in in in in & O \\
\hline
\end{tabular}
TABLE II. - THERMODYNAMIC PROPERTY OF METHANE - NOZZLE THROAT VE LOCITY, \(\mathrm{v}_{1}\). m /sec

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Plenum temperature, K} & \multicolumn{11}{|l|}{Plenum pressure. \(\mathrm{N} \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 \\
\hline 16 C & 283.0 & ------ & -- & ------ & ------ & - & ------ & ------ & ------ & ------ & ------ \\
\hline 162 & 285.9 & -..--- & ---- & - & ------ & ------- & ----- & ------ & - & ------ & ------ \\
\hline 164 & 288.7 & 283.1 & ----- & ------ & -- & ------ & ------ & ------ & ------ & ------ & \\
\hline 166 & 291.5 & 286.1 & 280.3 & ----- & ------ & ------ & ------ & ------- & ------ & ---- & \\
\hline 168 & 294.2 & 289.1 & 283.6 & ------ & ------- & ------- & ------ & ------- & ------- & ------ & ------ \\
\hline 170 & 296.8 & 292.0 & 286.7 & 281.0 & ------ & ------ & -- & ------ & ------ & ------ & ------ \\
\hline 172 & 299.4 & 294.8 & 289.8 & 284.4 & ------ & ------ & ------- & -.-.-.-. & ------ & ------ & ------- \\
\hline 174 & 301.9 & 297.5 & 292.8 & 287.7 & 282.1 & ----- & ------ & ------ & ------ & ------- & -------- \\
\hline 176 & 304.4 & 300.2 & 295.6 & 290.8 & 285.6 & 279.9 & ----- & ------- & ------ & ------ & ------ \\
\hline 178 & 306.9 & 302.8 & 298.4 & 293.8 & 288.9 & 283.6 & 277.8 & ------ & ------ & ------ & ------ \\
\hline 18 C & 309.2 & 305.3 & 301.2 & 296.8 & 292.1 & 287.1 & 281.7 & ------ & -- & ------ & ------ \\
\hline 182 & 311.6 & 307.8 & 303.9 & 299.7 & 295.2 & 290.5 & 285.4 & 279.9 & ------ & ------ & ------ \\
\hline 184 & 313.9 & 310.3 & 306.5 & 302.5 & 298.2 & 293.7 & 288.9 & 283.8 & 278.2 & ----- & ----- \\
\hline 186 & 316.2 & 312.7 & 309.0 & 305.2 & 301.? & 296.9 & 292.4 & 287.5 & 282.3 & 276.6 & ---- \\
\hline 188 & 318.5 & 315.1 & 311.6 & 307.9 & 304.0 & 299.9 & 295.6 & 291.1 & 286.2 & 280.9 & 275.2 \\
\hline 19 C
192 & 320.7
322.9 & 317.4
319.7 & 314.0
316.5 & 310.5
313.1 & 306.8
309.5 & 302.9
305.8 & 298.8
301.9 & 294.5 & 289.9
293.5 & 285.0 & 279.7 \\
\hline 192 & 322.9
325.1 & 319.7
322.0 & 316.5
318.8 & 313.1
315.6 & 309.5
312.2 & 305.8
308.6 & 301.9
304.9 & 297.8
301.0 & 293.5
296.9 & 288.9
292.6 & 283.9
288.0 \\
\hline 196 & 327.2 & 324.3 & 321.2 & 318.0 & 314.8 & 311.4 & 307.8 & 304.1 & 300.2 & 296.1 & 291.8 \\
\hline 198 & 329.3 & 326.5 & 323.5 & 320.5 & 317.3 & 314.0 & 310.6 & 307.1 & 303.4 & 299.5 & 295.5 \\
\hline 200 & 331.4 & 328.7 & 325.8 & 322.9 & 319.8 & 316.7 & 313.4 & 310.0 & 306.5 & 302.8 & 299.0 \\
\hline Plenum & \multicolumn{11}{|l|}{Plenum pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline K & 30 & 32 & 34 & 36 & 38 & 40 & 42 & 44 & 46 & 48 & 50 \\
\hline 180 & ------ & ------ & ------ & ------ & ---- & ------ & ------ & ------ & ------ & ------ & -- \\
\hline 182 & ---- & ------ & ------ & ------- & ------- & ------ & & & ----- & ----- & ------ \\
\hline 184 & ------ & ------ & ------ & -- & ------ & --- & ------ & -- & - & ----- & ---- \\
\hline 188
188 & 275.2 & -------- & -------- & ------ & ------- & ---- & ---- & -------- & & & \\
\hline 19 C & 279.7 & 274.0 & ------ & ----- & ------ & ------ & ------- & ------ & ------ & ------ & \\
\hline 192 & 283.9 & 278.7 & 272.9 & ------ & ------ & ------- & ------ & ------ & ------- & ------ & \\
\hline 194 & 288.0 & 283.1 & 277.8 & 272.1 & ------ & -- & ------ & ------- & ------ & ------- & ------- \\
\hline 196 & 291.8 & 287.2 & 282.3 & 277.1 & 271.4 & ------ & -- & ------ & ------ & ------ & ------ \\
\hline 198 & 295.5 & 291.2 & 286.6 & 281.8 & 276.6 & 271.0 & ------ & ------ & ------ & ------ & ------ \\
\hline 20 C & 299.0 & 294.9 & 290.7 & 286.2 & 281.4 & 276.3 & 270.9 & 264.9 & & - & \\
\hline
\end{tabular}


TABLE II. - Continued. THERMODYNAMIC PROPERTY OF METHANE - NOZZLE THROAT VELOCITY, \(v_{1}\), m/sec
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Plenum temperature, K} & \multicolumn{11}{|l|}{Plenum pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 100 & 110 & 120 & 130 & 140 & 150 & 160 & 170 & 180 & 190 & 200 \\
\hline 22C & ------ & -- & ----- & ----- & ------ & ----- & ----- & ----- & ---- & ----- & \\
\hline 222 & 252.3 & --- & ----- & ----- & ---- & ---- & ---20- & ----- & ---- & ----- & ---- \\
\hline 224 & 256.8 & 259.9 & 266.3 & 274.4 & 283.5 & 293.0 & 302.6 & 312.1 & 321.4 & 330.5 & 339.4 \\
\hline \(22 t\) & 261.5 & 263.5 & 268.8 & 276.? & 284.7 & 293.7 & 302.9 & 312.2 & 321.3 & 330.3 & 339.0 \\
\hline 228 & 266.4 & 267.3 & 271.7 & 278.2 & 286.1 & 294.6 & 303.5 & 312.5 & 321.4 & 330.2 & 338.8 \\
\hline 23 C & 271.3 & 271.3 & 274.8 & 280.5 & 287.8 & 295.8 & 304.3 & 313.0 & 321.7 & 330.3 & 338.8 \\
\hline 232 & 276.2 & 275.5 & 278.1 & 283.1 & 289.7 & 297.3 & 305.4 & 313.7 & 322.2 & 330.6 & 338.9 \\
\hline 234 & 281.1 & 279.7 & 281.6 & 285.9 & 291.9 & 298.9 & 306.6 & 314.6 & 322.8 & 331.0 & 339.2 \\
\hline 236 & 285.9 & 284.0 & 285.2 & 288.9 & 294.3 & 300.8 & 308.1 & 315.7 & 323.6 & 331.6 & 339.6 \\
\hline 238 & 290.7 & 288.3 & 288.9 & 292.0 & 296.8 & 302.8 & 309.7 & 317.0 & 324.6 & 332.4 & 340.2 \\
\hline 24 C & 295.3 & 292.6 & 292.7 & 295.2 & 299.5 & 305.1 & 311.5 & 318.5 & 325.8 & 333.3 & 340.9 \\
\hline 242 & 299.7 & 296.9 & 296.6 & 298.5 & 302.3 & 307.4 & 313.4 & 320.1 & 327.1 & 334.4 & 341.7 \\
\hline 244 & 304.1 & 301.1 & 300.4 & 301.9 & 305.2 & 309.9 & 315.5 & 321.8 & 328.5 & 335.5 & 342.7 \\
\hline 246 & 308.4 & 305.2 & 304.2 & 305.4 & 308.2 & 312.5 & 317.7 & 323.7 & \[
330.1
\] & 336.8 & 343.8 \\
\hline 248 & 312.5 & 309.3 & 308.1 & 308.9 & 311.3 & 315.1 & 320.0 & \[
325.6
\] & \[
331.8
\] & 338.3 & 345.0 \\
\hline 25C & 316.5 & 313.2 & 311.9 & 312.3 & 314.4 & 317.9 & 322.4 & 327.7 & 333.6 & 339.8 & 346.3 \\
\hline Plenum & \multicolumn{11}{|l|}{Plenum pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline K & 200 & 210 & 220 & 230 & 240 & 250 & 260 & 270 & 280 & 290 & 300 \\
\hline 22C & ------ & ----- & - & ------ & ------ & --- & ----- & --- & ------ & ------ & ----- \\
\hline 222 & ------- & ----- & - & ----- & ----- & ----- & ----- & ---- & - & ----- & ---- \\
\hline 224 & 339.4 & 348.0 & 356.4 & 364.5 & 372.5 & 380.1 & 387.7 & 395.0 & 402.1 & ----- & ------ \\
\hline 226 & 339.0 & 347.5 & 355.9 & 364.0 & 371.8 & 379.5 & 387.0 & 394.3 & 401.4 & 408.4 & ----- \\
\hline 228 & 338.8 & 347.2 & 355.5 & 363.5 & 371.3 & 379.0 & 386.4 & 393.7 & 400.8 & 407.7 & 414.5 \\
\hline \(23 C\) & 338.8 & 347.1 & 355.2 & 363.2 & 371.0 & 378.5 & 385.9 & 393.2 & 400.3 & 407.2 & 413.9 \\
\hline 232 & 338.9 & 347.1 & 355.1 & 3R3.0 & 370.7 & 378.2 & 385.6 & 392.8 & 399.8 & 406.7 & 413.4 \\
\hline 234 & 339.2 & 347.2 & 355.1 & 362.9 & 370.5 & 378.0 & 385.3 & 392.5 & 399.5 & 406.3 & 413.0 \\
\hline 236 & 339.6 & 347.5 & 355.3 & 363.0 & 370.5 & 377.9 & 385.2 & 392.3 & 399.2 & 406.0 & 412.7 \\
\hline 238 & 340.2 & 347.9 & 355.6 & 363.2 & 370.6 & 377.9 & 385.1 & 392.1 & 399.0 & 405.8 & 412.4 \\
\hline 240 & 340.9 & 348.5 & 356.0 & 363.4 & 370.8 & 378.0 & 385.1 & 392.1 & 398.9 & 405.6 & 412.2 \\
\hline 242 & 341.7 & 349.1 & 356.5 & 363.8 & 371.1 & 378.2 & 385.2 & 392.2 & 398.9 & 405.6 & 412.1 \\
\hline 244 & 342.7 & 349.9 & 357.1 & 304.3 & 371.5 & 378.5 & 385.5 & 392.3 & 399.0 & 405.6 & 412.1 \\
\hline 246 & 343.8 & 350.8 & 357.9 & 364.9 & 371.9 & 378.9 & 385.8 . & 392.5 & 399.2 & 405.7 & 412.2 \\
\hline 248 & 345.0 & 351.8 & 358.7 & 365.6 & 372.5 & 379.4 & 386.1 & 392.8 & 399.4 & 405.9 & 412.3 \\
\hline 25 C & 346.3 & 352.9 & 359.7 & 366.4 & 373.2 & 379.9 & 386.6 & 393.2 & 399.7 & 406.1 & 412.4 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Plenum temperature. K} & \multicolumn{11}{|l|}{Plenum pressure, \(\mathrm{N} \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 200 & 210 & 220 & 230 & 240 & 250 & 260 & 270 & 280 & 290 & 300 \\
\hline 25 C & 346.3 & 352.9 & 359.7 & 366.4 & & & & & & & \\
\hline 255 & 349.9
354.1 & 356.1 & 362.4 & \(3 \times 8.8\) & 373.2
375.7 & 379.9
381.7 & 386.6
389.1 & 393.2
394.5 & 399.7
400.8 & 406.1 & 412.4
413.2 \\
\hline 26 C & 354.1 & 359.8 & 365.6 & 371.7 & 377.7 & 383.9 & 390.0 & 394.5
396.2 & 400.8
402.3 & 407.0
408.3 & 413.2
414.3 \\
\hline 265 & 358.6 & 363.8 & 369.3 & 374.9 & 380.7 & 386.5 & 392.3 & 398.2 & 402.3
404.1 & 408.3
409.9 & 414.3
415.8 \\
\hline 270 & 363.5 & 368.2 & 373.3 & 378.5 & 383.9 & 389.4 & 395.0 & 400.6 & 406.2 & 411.9 & 415.8
417.5 \\
\hline 275 & 368.5 & 372.9 & 377.5 & 382.4 & 387.5 & 392.6 & & & & & \\
\hline 286 & 373.7 & 377.7 & 382.0 & 386.5 & 391.7 & 392.6 & 397.9 & 403.3 & 408.7 & 414.1 & 419.5 \\
\hline 285 & 379.0 & 382.6 & 386.6 & 390.8 & 395.? & 399.8 & 404.5 & 403.2
409.4 & 411.4 & 416.6
419.3 & 421.8
424.3 \\
\hline 29 C & 384.3 & 387.6 & 391.3 & 395.2 & 399.3 & 403.6 & 408.1 & 412.7 & 417.3 & 419.3
422.1 & 424.3
427.0 \\
\hline 295 & 389.6 & 392.7 & 396.0 & 399.7 & 403.5 & 407.6 & 411.8 & 416.2 & 420.6 & 422.1
425.2 & 427.0
429.8 \\
\hline 3 CC & 394.9 & 397.7 & 400.8 & 404.2 & 407.8 & 411.6 & 415.6 & & & & \\
\hline 305 & 400.2 & 402.7 & 405.6 & 408.8 & 412.2 & 415.8 & 419.5 & 423.5 & 427.5 & 428.4
431.6 & 432.8
435.9 \\
\hline 316 & 405.3 & 407.7 & 410.4 & 413.4 & 416.5 & 419.9 & 423.5 & 427.2 & 431.1 & 435.1 & 435.9
439.1 \\
\hline 315 & 410.4 & 412.7 & 415.2 & 418.0 & 421.0 & 424.2 & 427.5 & 431.1 & 434.7 & 438.5 & 442.4 \\
\hline 326 & 415.5 & 417.6 & 419.9 & 422.5 & 425.4 & 428.4 & 431.6 & 434.9 & 438.4 & 442.1 & 445.8 \\
\hline 325 & 420.4 & 422.4 & 424.6 & 427.1 & & & & & & & \\
\hline 33 C
335 & 425.3 & 427.1 & 429.3 & 431.6 & 434.1 & 436.8 & 435.7
439.7 & 438.9
442.8 & 442.2
446.0 & 445.7
449.3 & 449.2
452.7 \\
\hline 335 & 430.0 & 431.8 & 433.8 & 436.0 & 438.5 & 44.1 & 443.8 & 446.7 & 444.8 & 449.3
453.0 & 452.7
456.2 \\
\hline 340
345 & 434.7 & 436.4 & 438.3 & 440.5 & 442. \({ }^{\text {a }}\) & 445.2 & 447.9 & 450.7 & 453.6 & 456.0
450.6 & 456.2
459.8 \\
\hline 345 & 439.3 & 441.0 & 442.8 & 444.8 & 447.0 & 449.4 & 451.9 & 454.6 & 457.4 & 456.6
460.3 & 459.8
463.4 \\
\hline 35 C & 443.8 & 445.4 & 447.2 & 449.1 & 451.? & & & & & & \\
\hline 355 & 448.3 & 449.8 & 451.5 & 453.4 & 455.4 & 457.6 & 455.9 & 458.5
462.4 & 461.2 & 464.0 & 467.0 \\
\hline 36 C & 452.6 & 454.1 & 455.7 & 457.6 & 459.9 & 461.6 & 463.9 & 466.3 & 468.8 & 467.7
471.4 & 470.6
474.2 \\
\hline 365 & 456.9 & 458.3 & 459.9 & 461.7 & 463.6 & 465.6 & 467.8 & 470.1 & 472.6 & 475.1 & 474.2
477.8 \\
\hline 370 & 461.1 & 462.5 & 464.0 & 465.8 & 467.6 & 469.6 & 471.7 & 474.0 & 476.3 & 478.8 & 481.4 \\
\hline 375 & 465.2 & 466.6 & 468.1 & 44.9 .8 & 471.6 & 473.5 & & & & & \\
\hline 38 C & 469.2 & 470.6 & 472.1 & 473.7 & 475.5 & 477.4
478 & 475.6
479.4 & 477.8
481.5 & 480.0
483.7 & 482.4
486.1 & 484.9 \\
\hline 385 & 473.2 & 474.6 & 476.0 & 477.6 & 479.4 & 481.2 & 48.4
48.2 & 481.5
485.2 & 483.1
487.4 & 486.1 & 488.5 \\
\hline 39 C & 477.1 & 478.5 & 479.9 & \(4{ }^{9} 1.5\) & 483.2 & 485.0 & 486.9 & 485.2
488.9 & 489.4 & 489.7
493.2 & 492.0 \\
\hline 395 & 481.0 & 482.3 & 483.7 & 485.3 & 486.9 & 488.7 & 490.6 & 492.5 & 494.6 & 496.8 & 495.5
499.0 \\
\hline 40 C & 484.8 & 486.1 & 487.5 & 489.0 & 490.6 & 492.4 & 494.2 & 496.1 & 498.2 & 500.3 & 502.5 \\
\hline
\end{tabular}
TABLE II. - Continued. THERMODYNAMIC PROPERTY OF METHANE - NOZZLE THRGAT VELOCITY, \(\mathrm{v}_{1}\), m/sec
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Plenum temperature, K} & \multicolumn{11}{|l|}{Plenum pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 0 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 \\
\hline 40 C & 483.3 & 482.4 & 481.5 & 480.7 & 480.0 & 479.5 & 479.0 & 478.7 & 478.4 & 478.3 & 478.3 \\
\hline 405 & 486.2 & 485.3 & 484.5 & 493.8 & 483.2 & 482.7 & 482.3 & 482.0 & 481.8 & 481.8 & 481.8
485.3 \\
\hline 416 & 489.0 & 488.2 & 487.4 & 496.8 & 486.3 & 485.9 & 485.5 & 488.6 & 488.5 & 488.5 & 488.7 \\
\hline 415 & 491.8 & 491.0 & 490.4 & 489.8 & 489.4
492.4 & 489.1 & 491.9 & 491.8 & 491.8 & 491.9 & 492.0 \\
\hline 42 C & 494.5 & 493.9 & 493.3 & 492.8 & 492.4 & 492.1 & 491.9 & 491.8 & 491.8 & & \\
\hline & 497.3 & 496.7 & 496.2 & 495.7 & 495.4 & 495.2 & 495.0 & 495.0 & 495.0 & 495.1 & 495.3 \\
\hline 425
430 & 500.0 & 499.5 & 499.0 & 498.7 & 498.4 & 498.2 & 498.1 & 498.1 & 498.2 & 498.3 & 498.6 \\
\hline 435 & 502.7 & 502.2 & 501.8 & 501.5 & 501.3 & 501.2 & 501.1 & 501.2 & 501.3
504.4 & 504.7 & 505.0 \\
\hline 44 C & 505.4 & 505.0 & 504.6 & 504.4 & 504.? & 504.2
507.1 & 504.2
507.2 & 504.3
507.3 & 507.5 & 507.8 & 508.2 \\
\hline 445 & 508.1 & 507.7 & 507.4 & 507.2 & 507.1 & 507.1 & 507.2 & 507.3 & 507. & & \\
\hline & & 510.4 & 510.2 & 510.1 & 510.0 & 510.0 & 510.1 & 510.3 & 510.5 & 510.9 & 511.3 \\
\hline 45C & 510.7 & 510.4 & 512.9 & 512.8 & 512.8 & 512.9 & 513.0 & 513.2 & 513.5 & 513.9 & 514.4 \\
\hline 455
465 & 513.3
515.9 & 513.1
515.8 & 512.9
515.6 & 515.6 & 515.6 & 515.7 & 515.9 & 516.2 & 516.5 & 516.9 & 517.4 \\
\hline 46 C & 518.9 & 518.4 & 518.3 & 518.3 & 518.4 & 518.6 & 518.8 & 519.1 & 519.4 & 519.9 & 520.4 \\
\hline 465
470 & 521.1 & 521.0 & 521.0 & 521.1 & 521.7 & 521.4 & 521.6 & 522.0 & 522.4 & 522.8 & 523.4 \\
\hline & & & & 523.8 & 523.9 & 524.2 & 524.4 & 524.8 & 525.2 & 525.7 & 526.3 \\
\hline 475 & 523.7 & 523.6 & 523.7
526.3 & 526.4 & 526.6 & 526.9 & 527.2 & 527.6 & 528.1 & 528.6 & 529.2 \\
\hline 48 C & 526.2 & 526.2 & 526.3
528.9 & 526.4
529.1 & 529.3 & 529.6 & 530.0 & 530.4 & 530.9 & 531.5 & 532.1 \\
\hline 485 & 528.8
531.3 & 528.8
531.4 & 528.9
531.5 & 531.7 & 532.0 & 532.4 & 532.8 & 533.2 & 533.7 & 534.3 & 535.0 \\
\hline \(49 C\)
495 & 531.3
533.8 & 533.9 & 534.1 & 534.4 & 534.7 & 535.0 & 535.5 & 536.0 & 536.5 & 537.1 & 537.8 \\
\hline & & & & & & 537.7 & 538.2 & 538.7 & 539.3 & 539.9 & 540.6 \\
\hline 50 C & 536.3 & 536.4 & 536.7 & 537.0
539.5 & 539.9 & 540.4 & 540.9 & 541.4 & 542.0 & 542.7 & 543.4 \\
\hline 505 & 538.8 & 539.0 & 539.2
541.8 & 539.5
542.1 & 542.5 & 543.0 & 543.5 & 544.1 & 544.7 & 545.4 & 546.1 \\
\hline 510 & 541.2
543.7 & 541.5
543.9 & 541.8
544.3 & 544.7 & 545.1 & 545.6 & 546.2 & 546.8 & 547.4 & 548.1 & 548.9 \\
\hline 515
520 & 543.7
546.1 & 543.9
546.4 & 544.3
546.8 & 547.2 & 547.7 & 548.2 & 548.8 & 549.4 & 550.1 & 550.8 & 551.6 \\
\hline & & & & & & & & 552.0 & 552.7 & 553.5 & 554.3 \\
\hline 525 & 548.5 & 548.9 & 549.3 & 549.7 & \(550 . ?\)
552.8 & 550.8
553.3 & 554.0 & 554.6 & 555.4 & 556.1 & 556.9 \\
\hline 530 & 550.9 & 551.3 & 551.7
554.2 & 552.2
554.7 & 555.3 & 555.9 & 556.5 & 557.2 & 558.0 & 558.8 & 559.6 \\
\hline 535 & 553.3
555.7 & 553.8
556.2 & 554.2
556.7 & 557.2 & 557.8 & 558.4 & 559.1 & 559.8 & 560.6 & 561.4 & 562.2 \\
\hline 54 C
545 & 555.7
558.1 & 558.6 & 559.1 & 559.7 & 560.3 & 560.9 & 561.6 & 562.3 & 563.1 & 564.0 & 564.8 \\
\hline & & & & & & & 564.1 & 564.9 & 565.7 & 566.5 & 567.4 \\
\hline 55 C & 560.5 & 561.0 & 561.5 & 562.1
564.5 & 562.7
565.2 & 565.9 & 566.6 & 567.4 & 568.2 & 569.1 & 570.0 \\
\hline 555 & 562.8 & 563.4 & 563.9
566.3 & 567.0 & 567.6 & 568.4 & 569.1 & 569.9 & 570.8 & 571.6 & 572.6 \\
\hline 560 & 565.2
567.5 & 565.7
568.1 & 566.3 & 589.4 & 570.1 & 570.8 & 571.6 & 572.4 & 573.3 & 574.2 & 575.1 \\
\hline 565
570 & 567.5
569.8 & 568.1
570.4 & 568.7
571.1 & 571.8 & 572.5 & 573.2 & 574.0 & 574.9 & 575.8 & 576.7 & 577.6 \\
\hline & & & & & & 575.7 & 576.5 & 577.3 & 578.2 & 579.2 & 580.1 \\
\hline 57 E & 572.2 & 572.8 & 573.4 & 574.1 & 574.9 & 578.1 & 578.9 & 579.8 & 580.7 & 581.7 & 582.6 \\
\hline 58 C & 574.5 & 575.1 & 575.8 & 576.5 & 577.3
579.7 & 580.5 & 581.3 & 582.2 & 583.2 & 584.1 & 585.1 \\
\hline 585 & 576.8 & 577.4
579.7 & 578.1 & 578.9
581.2 & 588.0 & 582.9 & 583.7 & 584.7 & 585.6 & 586.6 & 587.6 \\
\hline 590 & 579.0
581.3 & 579.7
582.0 & 580.5
582.8 & 503.6 & 584.4 & 585.2 & 586.1 & 587.1 & 588.0 & 589.0 & 590.0 \\
\hline & & & & & 586.7 & 587.6 & 588.5 & 589.5 & 590.4 & 591.4 & 592.5 \\
\hline 60C & 583.6 & 584.3 & 585.1 & 585.9 & 586.7 & 587.6 & & & & & \\
\hline
\end{tabular}

TABLE II. - Concluded. THERMODYNAMIC PROPERTY OF METHANE - NOZZLE THROAT VE LOCITY, \(\mathrm{v}_{1}\), m/sec

TABLE III. - THERMODYNAMIC PROPERTY OF METHANE - CRITICAL PRESSURE RATIO, \(\mathrm{p}_{1} / \mathrm{p}_{0}\)

TABLE III. - Continued. THERMODYNAMIC PROPERTY OF METHANE - CRITICAL PRESSURE RATIO, \(p_{1} p_{0}\)


TABLE III. - Continued. THERMODYNAMIC PROPERTY OF METHANE - CRITICAL PRESSURE RATIO, \(\mathrm{p}_{1} / \mathrm{p}_{0}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Plenum temperature, K} & \multicolumn{11}{|l|}{Plenum pressure, \(\mathrm{N} \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 100 & 110 & 120 & 130 & 140 & 150 & 160 & 170 & 180 & 190 & 200 \\
\hline 220 & ------ & ------ & ------ & ------ & ------- & ------ & ------ & ------ & --- & --- & \\
\hline 222 & 0.4990 & & & & & -- & ------ & & & & \\
\hline 224 & 0.5058 & 0.4786 & 0.4507 & 0.4235 & 0.3978 & 0.3739 & 0.3518 & 0.3317 & 0.3133 & 0.2966 & 0.2814 \\
\hline 226 & 0.5112 & 0.4864 & 0.4602 & 0.4343 & 0.4095 & 0.3862 & 0.3646 & 0.3447 & 0.3264 & 0.3097 & 0.2944 \\
\hline 228 & 0.5156 & 0.4930 & 0.4685 & 0.4439 & 0.4201 & 0.3975 & 0.3763 & 0.3567 & 0.3386 & 0.3220 & 0.3067 \\
\hline 238 & 0.5191 & 0.4986 & 0.4758 & 0.452 t & 0.4297 & 0.4079 & 0.3872 & 0.3680 & 0.3501 & 0.3336 & 0.3183 \\
\hline 232 & 0.5218 & 0.5033 & 0.4822 & 0.4602 & 0.4384 & 0.4173 & 0.3972 & 0.3784 & 0.3608 & 0.3345 & 0.3183 \\
\hline 234 & 0.5239 & 0.5072 & 0.4877 & 0.4670 & 0.4462 & 0.4259 & 0.4065 & 0.3881 & 0.3708 & 0.3547 & 0.3397 \\
\hline 236 & 0.5255 & 0.5104 & 0.4925 & 0.4731 & 0.4533 & 0.4338 & 0.4150 & 0.3971 & 0.3802 & 0.3643 & 0.3494 \\
\hline 238 & 0.5267 & 0.5131 & 0.4966 & 0.4785 & 0.4597 & 0.4410 & 0.4229 & 0.4054 & 0.3889 & 0.3733 & 0.3587 \\
\hline 24 C & 0.5276 & 0.5153 & 0.5001 & 0.4832 & 0.4654 & 0.4476 & 0.4301 & 0.4132 & 0.3971 & 0.3818 & 0.3674 \\
\hline 242 & 0.5283 & 0.5171 & 0.5031 & 0.4873 & 0.470 K & 0.4536 & 0.4367 & 0.4204 & 0.4047 & 0.3897 & 0.3755 \\
\hline 244 & 0.5288 & 0.5186 & 0.5057 & 0.4919 & 0.4752 & 0.4590 & 0.4428 & 0.4270 & 0.4117 & 0.3971 & 0.3832 \\
\hline 246 & 0.5292 & 0.5198 & 0.5080 & 0.4942 & 0.4794 & 0.4639 & 0.4484 & 0.4332 & 0.4184 & 0.4041 & 0.3905 \\
\hline 248 & 0.5295 & 0.5208 & 0.5099 & 0.4971 & 0.4831 & 0.4684 & 0.4536 & 0.4389 & 0.4245 & 0.4107 & 0.3973 \\
\hline 250 & 0.5297 & 0.5217 & 0.5115 & 0.4996 & 0.4864 & 0.4725 & 0.4583 & 0.4442 & 0.4303 & 0.4168 & 0.4038 \\
\hline \multirow[t]{2}{*}{Plenum temperature, K} & \multicolumn{11}{|l|}{Plenum pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 200 & 210 & 220 & 230 & 240 & 250 & 260 & 270 & 280 & 290 & 300 \\
\hline 220 & -- & ------ & ------ & ------ & ------ & ------ & ------ & ------ & ---.--- & ------- & ------ \\
\hline 222 & ------ & ------ & ------ & ------ & ------ & ------ & ------ & ------ & -.....- & --.--- & ------ \\
\hline 224 & 0.2814 & 0.2676 & 0.2549 & 0.2433 & 0.2327 & 0.2229 & 0.2140 & 0.2057 & 0.1981 & ------ & ------- \\
\hline 226 & 0.2944 & 0.2804 & 0.2676 & 0.2559 & 0.2451 & 0.2352 & 0.2260 & 0.2176 & 0.2097 & 0.2025 & ------ \\
\hline 228 & 0.3067 & 0.2927 & 0.2798 & 0.2679 & 0.2570 & 0.2469 & 0.2376 & 0.2289 & 0.2210 & 0.2135 & 0.2066 \\
\hline 23 C & 0.3183 & 0.3043 & 0.2913 & 0.2794 & 0.2683 & 0.2581 & 0.2487 & 0.2399 & 0.2318 & 0.2242 & 0.2171 \\
\hline 232 & 0.3293 & 0.3153 & 0.3023 & 0.2903 & 0.2792 & 0.2689 & 0.2593 & 0.2505 & 0.2422 & 0.2344 & 0.2272 \\
\hline 234 & 0.3397 & 0.3257 & 0.3128 & 0.3008 & 0.2896 & 0.2792 & 0.2696 & 0.2606 & 0.2522 & 0.2444 & 0.2370 \\
\hline 236 & 0.3494 & 0.3356 & 0.3227 & 0.3107 & 0.2995 & 0.2891 & 0.2794 & 0.2703 & 0.2619 & 0.2539 & 0.2465 \\
\hline 238 & 0.3587 & 0.3450 & 0.3321 & 0.3202 & 0.3090 & 0.2986 & 0.2888 & 0.2797 & 0.2712 & 0.2632 & 0.2557 \\
\hline 240 & 0.3674 & 0.3538 & 0.3411 & 0.3292 & 0.3181 & 0.3076 & 0.2979 & & 0.2801 & 0.2721 & 0.2645 \\
\hline 242 & 0.3755 & 0.3622 & 0.3496 & 0.3378 & 0.3267 & 0.3163 & 0.3065 & 0.2974 & 0.2887 & 0.2806 & 0.2730 \\
\hline 244 & 0.3832 & 0.3701 & 0.3577 & 0.3460 & 0.3349 & 0.3246 & 0.3149 & 0.3057 & 0.2970 & 0.2889 & 0.2813 \\
\hline \(24 t\) & 0.3905 & 0.3776 & 0.3653 & 0.3537 & 0.3428 & 0.3325 & 0.3228 & 0.3137 & 0.3050 & 0.2969 & 0.2892 \\
\hline 248 & 0.3973 & 0.3846 & 0.3726 & 0.3612 & 0.3503 & 0.3401 & 0.3305 & 0.3214 & 0.3127 & 0.3046 & 0.2969 \\
\hline 250 & 0.4038 & 0.3913 & 0.3795 & 0.3682 & 0.3575 & 0.3474 & 0.3378 & 0.3287 & 0.3201 & 0.3120 & 0.3043 \\
\hline
\end{tabular}
TABLE III. - Continued. THERMODYNAMIC PROPERTY OF METHANE - CRITICAL PRESSURE RATIO, \(p_{1} / p_{0}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & ¢ &  &  & \begin{tabular}{l}
ト～oの～ \\
\(00 m \circ o\) \\
 \\
\(0 \circ 00 \circ\)
\end{tabular} &  & \begin{tabular}{l}
motoN NMN゚ー・ \\
 －0000
\end{tabular} & にのロッ のㅇNN N in in in in －0000 & n
\(\sim\)
\(\sim\)
0 \\
\hline & \(\stackrel{8}{9}\) &  &  & にの000 Nangot gogio －0 0 － & \begin{tabular}{l}
mmmor \\
\(0 \infty 0 \sim m\) \\
 \\
\(\therefore 00^{\circ} 0^{\circ}\)
\end{tabular} & \begin{tabular}{l}
Nーがロ か \(0 \infty 0\) \\
 \(\therefore 0^{\circ} 0^{\circ} 0^{\circ}\)
\end{tabular} & \(\infty 0000\) －Nomo NNNNN \(\therefore 0^{\circ} 0^{\circ}\) & \[
\begin{aligned}
& \sigma \\
& 0 \\
& \sim \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline \multirow{9}{*}{} & 8 & MOへ～～ minn がなが \(\therefore \dot{\circ} 00^{\circ}\) &  &  &  & OMロ～の －ONN nounn \(00^{\circ \circ} 0^{\circ}\) & \(000 \infty\) NN～N N inumun －0．0000 & n
\(\sim\)
\(\sim\)
\(\sim\) \\
\hline & 읃 & \begin{tabular}{l}
NTMNO \\
寸ing in \\
ますがか \\
\(00^{\circ} 0^{\circ}\)
\end{tabular} & はーNトか がこのに。 ながない 00000 & ©ONNA 옹응 으느는 －0000 & \begin{tabular}{l}
\(\infty+\infty \times n\) mis omo \\
 \(00^{\circ} 00^{\circ}\)
\end{tabular} & －00응 ㅇNNN in in in in in \(00^{\circ} 00^{\circ}\) & 우웅 NNNN in unn in \(\therefore 000 \circ\) & ＋
0
0
0
0 \\
\hline & \[
8
\] & 禹 がすぎ \(\therefore 0^{\circ} 0^{\circ}\) & moons mだmo ơo \(00^{\circ 0} 0^{\circ}\) & トNomm かONさに号びに゙びに －0000 & \begin{tabular}{l}
\(\cdots \infty\) \\
ค家 -N \\
ジ心ージN \\
－0000
\end{tabular} & NMMN－ Mon or NNNNN \(00^{\circ} 0^{\circ} 0^{\circ}\) & oornm \(\infty \infty\) NNNMm \(\therefore \circ \circ \circ \circ\) & -
\(\sim\)
n
0 \\
\hline & \[
\stackrel{\circ}{\circ}
\] & \begin{tabular}{l}
にNが \\
 \\
 \(\therefore 0000\)
\end{tabular} & OTMロ～ がすがこ ino in in \(00^{\circ} 0^{\circ}\) & \begin{tabular}{l}
Mn 0 Om \\
的动动 \\
munumin \\
－00000
\end{tabular} & \begin{tabular}{l}
\(\cdots \infty\) NNNMN NNNNN Nin \\

\end{tabular} &  NNNN nin in in in \(\therefore 0^{\circ} 0^{\circ}\) & ORNN MOMNM in in in in in \(00^{\circ 0} 00^{\circ}\) & \(n\)
\(m\)
\(n\)
0
0 \\
\hline & 악 & \begin{tabular}{l}
なヶ～の～ \\
 t小十心に \\

\end{tabular} &  & N～5～0 へのONN ぶNNNM －0000 & mus～N NNNNN inninin \(00^{\circ} 0^{\circ}\) & crumc N～NOM in in inn －0000 & arnocr \(m N m m s\) Min in in m －0000 & in
ñ
0 \\
\hline & － &  & ヘッいか。 がーが munumu －0000 & のo～个 －NMホN NNNNN \(00^{\circ} 0^{\circ}\) & 5～が，す NNNN in uninis \(00000^{\circ}\) & \(-\infty\) no 으N～N Minmmm －0000 & に－at mがすinm Minmin min －0000 & 0
0
\(n\)
\(n\)
0
0 \\
\hline & 은 &  & \(m m \sim 0 \infty\) \(\rightarrow N M+5\) NNNNN \(00^{\circ} 0^{\circ}\) & ○mon ～orN NNNNN \(00^{\circ} 0^{\circ} 0^{\circ}\) & \begin{tabular}{l}
onown \\
 nun in in －0000
\end{tabular} & －Noman NNmm』 MNMNM \(00^{\circ} 0^{\circ}\) & ートMos innoon MnMmin \(\circ 0^{\circ} 0^{\circ} 0^{\circ}\) & 0
\(\infty\)
\(m\)
\(\sim\)
0 \\
\hline & \(\stackrel{9}{-7}\) & －mm－N \(\rightarrow\) msun NiNNNin \(\therefore \circ \circ \circ \circ\) & \(m \infty m \infty\) －○r～～ NNNNNN nn n 00000 & \(\infty m \infty m \infty\) かのOO NNNMMn \(\therefore 0_{0}^{\circ} 0^{\circ}\) & \(m \infty m \sigma \downarrow\) नMNNM \({ }_{n}^{n} \mathrm{~m}_{\mathrm{n}}^{\mathrm{m}} \mathrm{m}_{\mathrm{n}}^{\mathrm{n}}\) －0000 & ano m N m m m \(\begin{gathered}\text { Mn minn } \\ \text { m }\end{gathered}\) \(00^{\circ} 0^{\circ}\) & onNNm c＾N \(\infty\) Mmminn －0000 & \[
\begin{aligned}
& \underset{\sim}{n} \\
& \underset{n}{n} \\
& \dot{0}
\end{aligned}
\] \\
\hline & 8 & 응№ Nmmm in in in in in \(\therefore 0^{\circ} 0^{\circ} 0^{\circ}\) &  & ッの～～o mmmm onninin －0000 & \begin{tabular}{l}
\({ }^{+\infty} m_{m} \sim\) \\
 in in in in in －0000
\end{tabular} & シーロット mmmm in in in in in －0000 & \(\rightarrow\) mono かのの。 NnMñ －0000 & n
0
N
0
0 \\
\hline \[
\begin{aligned}
& \underset{\square}{\Xi} \\
& \underset{\sim}{\square}
\end{aligned}
\] &  & \[
\begin{aligned}
& \text { unu un } \\
& \text { nNonn }
\end{aligned}
\] & い品吅吅 N～～～～ NNNN &  & nunus nMmy m
\[
\mathrm{mmmmm}
\] & 识识品 mmmm & ※必必品品 mmmmm & － \\
\hline
\end{tabular}
TABLE III．－Continued．THERMODYNAMIC PROPERTY OF METHANE－CRITICAL PRESSURE RATIO，\(p_{1} p_{0}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & ¢ & m～N＋+ ター～Nに ㅇNunno －00000 & Nonnm かのかの mmo mo －00000 & \(+\infty\) 人 응N NMyます。 \(\therefore 0^{\circ} 0^{\circ}\) &  & \begin{tabular}{l}
－ \(\ln 0 \sin\) \\
－Nin \(\operatorname{Non}_{\infty}\) \\
けばず \\
\(00^{\circ} 0^{\circ}\)
\end{tabular} &  M O O O O fogin \(00000^{\circ}\) & \(n\)
0
0
0
0
0 \\
\hline & ¢ & ○すが心 NNGNN mmmmm \(\dot{0} 0 \dot{\circ} 0^{\circ}\) & Nminmat行 으연禹がすき \(\therefore 0^{\circ} 0^{\circ} 0^{\circ}\) & \begin{tabular}{l}
Nyoon No NN \\
 \(00_{0}^{\circ} 00^{\circ}\)
\end{tabular} & onomn N゚ーN゙か チッチさな －0 \(0^{\circ} 0^{\circ}\) & か m inn －\(\infty \times \infty\) ながすが － \(0 \dot{\circ} 0 \dot{\circ}\) & に \(\sim \infty \infty\) － go io in －0 \(0^{\circ} 0^{\circ}\) & \[
\begin{aligned}
& n \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline & － & －゙さN゚ロ NMんかめ mmmmm \(\circ \circ \circ \circ \circ\) & \begin{tabular}{l}
Nかmmion \\
NmmNo \\
 \\
00000
\end{tabular} &  &  &  & NmッNO ormin 50000 tuninn \(00^{\circ} 0^{\circ}\) & \[
\begin{aligned}
& \text { r } \\
& \infty \\
& 0 \\
& i \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline & \(\stackrel{\bigcirc}{\sim}\) & トのがか \(\stackrel{\infty}{\infty}{ }_{\sim}^{n} \underset{\sim}{n} \underset{\sim}{n}{ }_{\sim}^{n}\) mmmmm －00000 &  &  & \begin{tabular}{l}
－m rmm \\
スペ～が \\
なケながな \\
－0．0்
\end{tabular} & ․ ．O～～～ がいのがの かなのがす －0000 & \begin{tabular}{l}
のomem \\
部ninn －0 \(00^{\circ}\)
\end{tabular} & \[
\begin{aligned}
& 0 \\
& 0 \\
& \stackrel{1}{n} \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline \[
\stackrel{n}{x}
\] & \[
\begin{aligned}
& 8 \\
& \stackrel{\circ}{\circ} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
かoN．0 \\
 mm mm \(\therefore 0^{\circ} 0^{\circ} 0^{\circ}\)
\end{tabular} & \begin{tabular}{l}
のーmon \\
Nonm \\
虽き～以さ \\
－0000
\end{tabular} &  &  & \begin{tabular}{l}
－ト～が呙 \\
 ago \(\therefore 0^{\circ} 0^{\circ} 0^{\circ}\)
\end{tabular} & \begin{tabular}{l}
－inmos \\
员品品的偪 －0．000
\end{tabular} & \[
\begin{aligned}
& \vec{m} \\
& \stackrel{n}{n} \\
& 0
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 0 \\
& i \\
& i \\
& i n \\
& 0
\end{aligned}
\] & － & さNMかO チタがNO 4mingo 00000 & oninno nis No ながす \(\therefore 0000^{\circ}\) & N～さN N いかか「ト がすなさ \(00^{\circ} 0^{\circ}\) &  & \begin{tabular}{l}
 \\
 \\
voinin \\
\(00^{\circ} 00^{\circ}\)
\end{tabular} & NORm トのoNm只伿的心式 00000 & \[
\begin{aligned}
& n \\
& n \\
& \stackrel{n}{n} \\
& 0
\end{aligned}
\] \\
\hline  & 끄N & 「が Nさ N N N M mmmys －0 \(0 \circ \circ\) & ～ さm゙すが子小さます \(\therefore 00^{\circ}\) &  &  & HONNC のNOHO o은응 －00000 & \begin{tabular}{l}
aroro の一の土也 \\
 \(00000^{\circ}\)
\end{tabular} & \[
\stackrel{m}{n} \underset{0}{n}
\] \\
\hline & ¢ &  & \begin{tabular}{l}
－rovor NーGON mすないか \\

\end{tabular} & \begin{tabular}{l}
in ONM \\
 \\
 0000
\end{tabular} & －Nont －N N N No かの尔の品 \(00^{\circ} 0^{\circ}\) &  & \begin{tabular}{l}
Momnか \\
かール \\
いいいが \\
－0000
\end{tabular} & \[
\begin{aligned}
& \infty \\
& \underset{\sim}{m} \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline & 으N & \begin{tabular}{l}
にNーNの \\
のにのジゥ mmytu －0 \(0^{\circ} 0^{\circ}\)
\end{tabular} &  & \begin{tabular}{l}
omnm \\
さのットロ \\
ヶためかす。 \\
\(000^{\circ}\)
\end{tabular} &  &  &  & m
\(\sim\)
\(\sim\)
\(n\)
0
0 \\
\hline & \(\stackrel{\bigcirc}{\sim}\) & \(m \sim \infty m m\) ज゚○のです my viv －0000 &  & 「の \(\infty\) Nm －\(+\infty \mathrm{N}\) \(\infty \infty \infty\) なばす 00000 & \begin{tabular}{l}
Nがささ \\
か8Min \\
tininin \\
\(\therefore 0000\)
\end{tabular} &  & \begin{tabular}{l}
Nかめの～ \\
NローN \\
がいいが
\[
\therefore \dot{0} 0 \circ \circ
\]
\end{tabular} & \(\sim\)
\(\sim\)
\(\sim\)
\(\sim\)
0 \\
\hline & ¢ &  &  & 下ing かOMGのg がすきす －0000 &  & \begin{tabular}{l}
 \\
 \\
－00000
\end{tabular} & \begin{tabular}{l}
 \\
\(\rightarrow N \sim N\) \\
in in in in in \\
00000
\end{tabular} & \(\sim\)
\(\sim\)
\(\sim\)
0
0 \\
\hline \[
\begin{aligned}
& \Xi \\
& \stackrel{\Xi}{\Xi} \\
& \frac{a}{2}
\end{aligned}
\] &  & U以un0 ～NNNN & いいい ヘN～NN &  & \[
\mathrm{mmmm}
\] & U W U W U
\[
\mathrm{mmmmm}
\] &  & － \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{11}{*}{} & 8 & \begin{tabular}{l}
nonos OGHNN \\
 \(00^{\circ} 0^{\circ}\)
\end{tabular} & \begin{tabular}{l}
응혀영 \\
 in in un in \(\therefore 0^{\circ} 0^{\circ}\)
\end{tabular} &  ががが納的 \(\therefore 0^{\circ} 0^{\circ}\) & \begin{tabular}{l}
下－io영 ががな \\
 \(00^{\circ} 0^{\circ}\)
\end{tabular} & \begin{tabular}{l}
のペール \\
 \\
 \\
\(00^{\circ} 0^{\circ}\)
\end{tabular} & のMOOt ninnmm ninnninn \(\therefore 0^{\circ} 0^{\circ} 0^{\circ}\) & \begin{tabular}{l}
\(\infty \rightarrow \infty \times\) のはなが \\
 \(\therefore 0000\)
\end{tabular} & 的がNom inn in in inninninin \(\therefore 0_{0}^{\circ} 00^{\circ}\) & \[
\begin{aligned}
& N \\
& N \\
& \hat{N} \\
& \dot{0}
\end{aligned}
\] \\
\hline & 8 & ค－\(-\boldsymbol{\sim}\) जNNM炀出出出 \(00^{\circ} 0^{\circ} 0^{\circ}\) & \begin{tabular}{l}
\(\rightarrow \cos 0\) ty \\
 \(\therefore 0^{\circ} 0^{\circ} 0^{\circ}\)
\end{tabular} & \begin{tabular}{l}
が心にー かのド \\
 \(00^{\circ} 0^{\circ} 0^{\circ}\)
\end{tabular} & \begin{tabular}{l}
－O』のm かoの日。 \\
 \(00^{\circ} 0^{\circ} 0^{\circ}\)
\end{tabular} & \begin{tabular}{l}
ヘッルの～ \\
 innunn －0000
\end{tabular} & べがN Nmmon的心inn \(00^{\circ} 0^{\circ} 0^{\circ}\) & ルの～oo tyin in nin in \(n\) \(00^{\circ} 0^{\circ} 0^{\circ}\) & moono 0 onrr inininnn以 \(n\) nn m \(\therefore 0^{\circ} 0^{\circ} 0^{\circ}\) & \[
\begin{aligned}
& \sigma \\
& n \\
& n \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline & \(\infty\) & がッロ゚ NMMさt納志志志 －00000 & oincos がなが的心納 －0ㅇㅇㅇ & ヘト～～O ながぢ， 000000 &  ton in inninn \(-0^{\circ} 0^{\circ} 0^{\circ}\) & ののmNー ぞにNNM unnmin －0 \(0^{\circ} 0^{\circ}\) & \(\rightarrow \infty \sim n o\) mmざす的 \(n n_{n} n_{n} n\) －0000 & Nosme nnininin nnunn －0000 & ○ッミか～隹的心 unininn －00000 & \[
\begin{aligned}
& 0 \\
& \infty \\
& n \\
& n \\
& 0
\end{aligned}
\] \\
\hline &  & \begin{tabular}{l}
か～べゥ \\
 に納的 \(\circ 0^{\circ} 0^{\circ} 0^{\circ}\)
\end{tabular} & ○与OMN なばなさ的心 \(n\) win －00000 & No영 がすなか innumu \(00^{\circ} 0^{\circ} 0^{\circ}\) &  & MNのが NNMM ninnininn \(00_{0}^{\circ} 0^{\circ}\) & \begin{tabular}{l}
Noomo ty tinin \\
 －0000
\end{tabular} & OMNOt ninnon in in in in \(\therefore 0^{\circ} 0^{\circ} 0^{\circ}\) & 个OMno in in in un in的心nn \(\therefore \circ^{\circ} 0^{\circ} 0^{\circ}\) & \[
\begin{gathered}
\sim \\
\underset{\sim}{n} \\
\sim \\
\dot{0}
\end{gathered}
\] \\
\hline & 8 & －-1000 4
4
4的的的 －0 0 － 0 & \begin{tabular}{l}
のヘト～か ○人下 \\
 －00000
\end{tabular} & 영№ のぱOO出出縕思 －0́óo & ールのか下 ジーシN的认n －00000 & \begin{tabular}{l}
OG No \\
的 \(n\) in －0000
\end{tabular} & omoom云inino in \(\sin _{\text {un }}\) in －0：000 & 「Oさ人O号に in in in in －0 O O O & 4「OMロ \(\infty\) かoの minininin －0．0． \(00^{\circ} 0^{\circ}\) & \[
\begin{aligned}
& o \\
& \alpha \\
& n \\
& \sim \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline & \(\bigcirc\) & 붕N \(\begin{array}{rl}10 \\ 4 \\ 4 \\ 4 & 0 \\ 4\end{array}\) min in in \(00^{\circ} 00^{\circ}\) & －\(\rightarrow\) in なもなば的心的心 \(00^{\circ} 0^{\circ}\) & \begin{tabular}{l}
～NOOU \\
 inninum －0000
\end{tabular} & \(\infty\) NoOt nNMMM inminnin －0000 & monon mば出心n nininin \(00^{\circ} 00^{\circ}\) & \(\therefore\) OMrO ininnou nin in in \(00^{\circ} 0^{\circ}\) & のトーさん คーが \(n_{n}^{n} n_{n} n_{n} n_{n}\) \(\therefore 00^{\circ} 0^{\circ}\) & 응ㅇ aros ninininin \(\therefore 0^{\circ} 0^{\circ} 0^{\circ}\) & \(n\)
0
0
0
0 \\
\hline & 안 &  60ヶt约納 －○○○○ & \begin{tabular}{l}
がoño がなった。 \\
 \(\circ_{0}^{\circ} 0_{0}^{\circ} 0^{\circ}\)
\end{tabular} & がすが化保保的心n心 －0000 & N NMN゙ ninnin ninumin －0000． & on \(0 \times 0\) 4ininin解的保 －00000 & moom电以心GA n心nin －0ㅇㅇㅇㅇ &  \(\infty\) minnmin －0ㅇㅇㅇㅇ &  ～8080 inininin \(\therefore 0^{\circ} 0^{\circ} 0^{\circ}\) & \begin{tabular}{c}
\(\sim\) \\
\hdashline\(\sim\) \\
\(\sim\) \\
0 \\
0
\end{tabular} \\
\hline & ¢ & No むは士甘す －••• －0000 & No． \(0^{\circ}\) or 000 4 4 innin \(\therefore 0^{\circ} 0^{\circ} 0^{\circ}\) & mN－inco RNNNN的以 －0000 & \begin{tabular}{l}
Noota mmyty \\
 －0000
\end{tabular} & 的心 \(n\) in inuw un －0000 & \begin{tabular}{l}
\(0 m 004\) トゥ \(-\infty\) \\
 \(\because\) ロ． \(\therefore 0^{\circ} 00^{\circ}\)
\end{tabular} & NOGNO mo \(\sigma\) ninninion －0000 & \[
\begin{aligned}
& \text { mognu } \\
& 000 \\
& 000 \\
& 0 \\
& 0
\end{aligned}
\] & \[
\begin{aligned}
& \infty \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline & 응 & \begin{tabular}{l}
のットール \\
\(\uparrow \infty \infty \sigma\) \\
式志吉志志 \\
\(00^{\circ} 0^{\circ} 0^{\circ}\)
\end{tabular} & \begin{tabular}{l}
のットコに \\
号으Nun \\
志 in in in in \\
－0000
\end{tabular} & \begin{tabular}{l}
omトーin ーN～Mm \\
 －00000
\end{tabular} & \begin{tabular}{l}
amros \\
 \\
 －00000
\end{tabular} & mNin N in OOON ininininin －0000 & ○omos ninninn解 \(n_{n}^{n} n_{n}\) \(00^{\circ} 0^{\circ}\) & \begin{tabular}{l}
mNOMO oro 08的会inisin \\

\end{tabular} & \begin{tabular}{l}
の～～か～ \\
 \\
on in 绍品 \\
\(0-00^{\circ}\)
\end{tabular} & \[
\begin{aligned}
& \stackrel{\sim}{n} \\
& 0 \\
& i \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline & \(\bigcirc\) & \begin{tabular}{l}
かのmへー mona \\
 \(\therefore \circ \circ \circ \circ\)
\end{tabular} & inのm下～ ○O～ー～以的心nin numun －0000 & \begin{tabular}{l}
いのMNッ NNMM～ \\
 －0 ÓO
\end{tabular} & \begin{tabular}{l}
のomNo がいか。 \\
 \(\circ \circ \circ \circ \circ\) 00000
\end{tabular} & \begin{tabular}{l}
＋\({ }^{\infty}\)～～ －○ Nr \\
 \(\therefore 0^{\circ} 0^{\circ}\)
\end{tabular} & \begin{tabular}{l}
Noomo \(\infty\)
\(n_{n} \infty\)
inn
0 \\
 \(00^{\circ} 0^{\circ}\)
\end{tabular} & \(0 m \circ \sigma^{\circ}\) No in in in in in －0．000 & n \(\infty \rightarrow+r\) \(\rightarrow \pi N N T\) in \(\operatorname{HAn}_{n}\) in in －0000 & \[
\begin{aligned}
& 0 \\
& \text { è } \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline & \(\bigcirc\) & \begin{tabular}{l}
－ng Mr onooo \\
 \\

\end{tabular} &  &  & min \(\sin _{0}\) ninininio nnininnin －0000 & ○さトが隹にが心 n的以的的 －0000 & \begin{tabular}{l}
\(\infty\)－in \({ }^{\infty}\) かのののO \\
 －0000
\end{tabular} & \begin{tabular}{l}
～onno \\
 ninininn \(\therefore 0^{\circ} 0^{\circ} 0^{\circ}\)
\end{tabular} & ～NOM NNNMM in in in in \(\therefore 0^{\circ} 0^{\circ} 0^{\circ}\) & \[
\begin{aligned}
& 0 \\
& \text { N } \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \Xi \\
& \vec{a} \\
& \frac{a}{0}
\end{aligned}
\] &  &  &  &  &  &  & N 心 w w n minmin &  in unginin & 40454 in minoron & O \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Plenum } \\
\text { temperature, } \\
\mathrm{K}
\end{gathered}
\]} & \multicolumn{11}{|l|}{Plenum pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 200 & 210 & 220 & 230 & 240 & 250 & 260 & 270 & 280 & 290 & 300 \\
\hline 40 C & 0.5251 & 0.5232 & 0.5213 & 0.5193 & 0.5173 & 0.5152 & 0.5131 & 0.5109 & 0.5087 & 0.5065 & 0.5043 \\
\hline 405 & 0.5261 & 0.5243 & 0.5224 & 0.5205 & 0.5186 & 0.5166 & 0.5145 & 0.5124 & 0.5104 & 0.5082 & 0.5060 \\
\hline 416 & 0.5270 & 0.5253 & 0.5235 & 0.5217 & 0.5198 & 0.5179 & 0.5159 & 0.5139 & 0.5119 & 0.5098 & 0.5077 \\
\hline 415 & 0.5280 & 0.5263 & 0.5245 & 0.5228 & 0.5210 & 0.5191 & 0.5172 & 0.5153 & 0.5133 & 0.5113 & 0.5093 \\
\hline 42 C & 0.5288 & 0.5272 & 0.5255 & 0.223R & 0.5221 & 0.5203 & 0.5185 & 0.5166 & 0.5147 & 0.5128 & 0.5109 \\
\hline 425 & 0.5297 & 0.5281 & 0.5265 & 0.5248 & 0.5233 & 0.5214 & 0.5197 & 0.5179 & 0.5160 & 0.5142 & 0.5123 \\
\hline 435 & 0.5305 & 0.5290 & 0.5274 & 0.5258 & 0.5242 & 0.5225 & 0.5208 & 0.5191 & 0.5173 & 0.5155 & 0.5137 \\
\hline 435 & 0.5313 & 0.5298 & 0.5283 & 0.5268 & 0.5252 & 0.5236 & 0.5219 & 0.5202 & 0.5185 & 0.5168 & 0.5150 \\
\hline 44 C & 0.5321 & 0.5307 & 0.5292 & 0.5277 & 0.5261 & 0.5246 & 0.5230 & 0.5213 & 0.5197 & 0.5180 & 0.5163 \\
\hline 445 & 0.5329 & 0.5315 & 0.5300 & 0.5286 & 0.5271 & 0.5255 & 0.5240 & 0.5224 & 0.5208 & 0.5192 & 0.5175 \\
\hline 450 & 0.5337 & 0.5323 & 0.5309 & 0.5294 & 0.5280 & 0.5265 & 0.5250 & 0.5234 & 0.5219 & 0.5203 & 0.5187 \\
\hline 455 & 0.5344 & 0.5331 & 0.5317 & 0.5303 & 0.5289 & 0.5274 & 0.5260 & 0.5244 & 0.5229 & 0.5214 & 0.5198 \\
\hline 46 C & 0.5351 & 0.5338 & 0.5325 & 0.5311 & 0.5297 & 0.5283 & 0.5269 & 0.5254 & 0.5240 & 0.5225 & 0.5209 \\
\hline 465 & 0.5358 & 0.5345 & 0.5332 & 0.5319 & 0.5306 & 0.5292 & 0.5278 & 0.5264 & 0.5249 & 0.5235 & 0.5220 \\
\hline 470 & 0.5365 & 0.5352 & 0.5340 & 0.5327 & 0.5313 & 0.5300 & 0.5286 & 0.5273 & 0.5259 & 0.5244 & 0.5230 \\
\hline 475 & 0.5371 & 0.5359 & 0.5347 & 0.5334 & 0.5321 & 0.5308 & 0.5295 & 0.5281 & 0.5268 & 0.5254 & 0.5240 \\
\hline 48 C & 0.5378 & 0.5366 & 0.5354 & 0.5341 & 0.5329 & 0.5316 & 0.5303 & 0.5290 & 0.5276 & 0.5263 & 0.5249 \\
\hline 485 & 0.5384 & 0.5372 & 0.5360 & 0.5348 & 0.5336 & 0.5324 & 0.5311 & 0.5298 & 0.5285 & 0.5272 & 0.5258 \\
\hline 496 & 0.5390 & 0.5379 & 0.5367 & 0.5355 & 0.5343 & 0.5331 & 0.5319 & 0.5306 & 0.5293 & 0.5280 & 0.5267 \\
\hline 495 & 0.5396 & 0.5385 & 0.5373 & 0.5367 & 0.5350 & 0.5338 & 0.5326 & 0.5314 & 0.5301 & 0.5289 & 0.5276 \\
\hline 50 C & 0.5402 & 0.5391 & 0.5380 & 0.5368 & 0.5357 & 0.5345 & 0.5333 & 0.5321 & 0.5309 & 0.5297 & 0.5284 \\
\hline 505 & 0.5407 & 0.5397 & 0.5386 & 0.5375 & 0.5363 & 0.5352 & 0.5340 & 0.5328 & 0.5317 & 0.5304 & 0.5292 \\
\hline 51 C & 0.5413 & 0.5402 & 0.5392 & 0.5381 & 0.5379 & 0.5359 & 0.5347 & 0.5336 & 0.5324 & 0.5312 & 0.5300 \\
\hline 515 & 0.5418 & 0.5408 & 0.5398 & 0.5387 & 0.5376 & 0.5365 & 0.5354 & 0.5342 & 0.5331 & 0.5319 & 0.5308 \\
\hline 52 C & 0.5424 & 0.5414 & 0.5403 & 0.5393 & 0.538 ? & 0.5371 & 0.5360 & 0.5349 & 0.5338 & 0.5326 & 0.5315 \\
\hline 525 & 0.5429 & 0.5419 & 0.5409 & 0.5398 & 0.5388 & 0.5377 & 0.5367 & 0.5356 & 0.5345 & 0.5333 & 0.5322 \\
\hline 53 C & 0.5434 & 0.5424 & 0.5414 & 0.5404 & 0.5394 & 0.5383 & 0.5373 & 0.5362 & 0.5351 & 0.5340 & 0.5329 \\
\hline 535 & 0.5439 & 0.5429 & 0.5419 & 0.5410 & 0.5399 & 0.5389 & 0.5379 & 0.5368 & 0.5357 & 0.5347 & 0.5336 \\
\hline 54 C & 0.5444 & 0.5434 & 0.5425 & 0.5415 & \(0.540=\) & 0.5395 & 0.5385 & 0.5374 & 0.5364 & 0.5353 & 0.5342 \\
\hline 545 & 0.5449 & 0.5439 & 0.5430 & 0.5420 & 0.5410 & 0.5400 & 0.5390 & 0.5380 & 0.5370 & 0.5359 & 0.5349 \\
\hline 556 & 0.5453 & 0.5444 & 0.5435 & 0.5425 & 0.5416 & 0.5406 & 0.5396 & 0.5386 & 0.5376 & 0.5365 & 0.5355 \\
\hline 555 & 0.5458 & 0.5449 & 0.5440 & 0.5430 & 0.5421 & 0.5411 & 0.5401 & 0.5391 & 0.5381 & 0.5371 & 0.5361 \\
\hline 56 C & 0.5462 & 0.5453 & 0.5444 & 0.5435 & 0.5426 & 0.5416 & 0.5407 & 0.5397 & 0.5387 & 0.5377 & 0.5367 \\
\hline 565 & 0.5467 & 0.5458 & 0.5449 & 0.5440 & 0.5431 & 0.5421 & 0.5412 & 0.5402 & 0.5392 & 0.5383 & 0.5373 \\
\hline 570 & 0.5471 & 0.5462 & 0.5453 & 0.5444 & 0.5435 & 0.5426 & 0.5417 & 0.5407 & 0.5398 & 0.5388 & 0.5378 \\
\hline 575 & 0.5475 & 0.5467 & 0.5458 & 0.5449 & 0.5440 & 0.5431 & 0.5422 & 0.5412 & 0.5403 & 0.5393 & 0.5384 \\
\hline 58C & 0.5479 & 0.5471 & 0.5462 & 0.5453 & 0.5445 & 0.5436 & 0.5426 & 0.5417 & 0.5408 & 0.5399 & 0.5389 \\
\hline 585 & 0.5483 & 0.5475 & 0.5466 & 0.5458 & 0.5449 & 0.5440 & 0.5431 & 0.5422 & 0.5413 & 0.5404 & 0.5394 \\
\hline 59 C & 0.5487 & 0.5479 & 0.5470 & 0.5462 & 0.5453 & 0.5445 & 0.5436 & 0.5427 & 0.5418 & 0.5409 & 0.5400 \\
\hline 595 & 0.5492 & 0.5483 & 0.5475 & 0.9466 & 0.5458 & 0.5449 & 0.5440 & 0.5431 & 0.5423 & 0.5414 & 0.5404 \\
\hline 60C & 0.5496 & 0.5487 & 0.5479 & 0.5471 & 0.546? & 0.5453 & 0.5445 & 0.5436 & 0.5427 & 0.5418 & 0.5409 \\
\hline
\end{tabular}
TABLE IV. - THERMODYNAMIC PROPERTY OF METHANE - CRITICAL DENSITY RATIO, \(\rho_{1} \rho_{2}\)


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Plenum } \\
\text { temperature, } \\
\text { K }
\end{gathered}
\]} & \multicolumn{11}{|l|}{Plenum pressure, \(\mathrm{N} \times \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 0 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 \\
\hline 20 C & 0.6294 & 0.6291 & 0.6289 & 0.6287 & 0.6287 & 0.6290 & 0.6297 & 0.6310 & 0.6333 & ------ & \\
\hline 202 & 0.6294 & 0.6291 & 0.6289 & 0.6288 & 0.6289 & 0.6293 & 0.6300 & 0.6313 & 0.6335 & 0.6373 & \\
\hline 204 & 0.6294 & 0.6291 & 0.6290 & 0.6289 & \(0.629 n\) & 0.6295 & 0.6302 & 0.6315 & 0.6336 & 0.6371 & 0.6428 \\
\hline 206 & 0.6294 & 0.6291 & 0.6290 & 0.6290 & 0.6292 & 0.6297 & 0.6305 & 0.6317 & 0.6338 & 0.6369 & 0.6420 \\
\hline 208 & 0.6293 & 0.6291 & 0.6291 & 0.6291 & 0.6293 & 0.6298 & 0.6306 & 0.6319 & 0.6339 & 0.6368 & 0.6413 \\
\hline 216 & 0.6293 & 0.6292 & 0.6291 & 0.6292 & 0.6294 & 0.6300 & 0.6308 & 0.6321 & 0.6339 & 0.6367 & 0.6408 \\
\hline 212 & 0.6293 & 0.6292 & 0.6291 & 0.6292 & 0.6295 & 0.6300 & 0.6309 & 0.6322 & 0.6340 & 0.6366 & 0.6404 \\
\hline 214 & 0.6293 & 0.6291 & 0.6292 & 0.6293 & 0.6296 & 0.6301 & 0.6310 & 0.6323 & 0.6341 & 0.6366 & 0.6401 \\
\hline 216 & 0.6292 & 0.6291 & 0.6292 & 0.6293 & 0.6297 & 0.6302 & 0.6311 & 0.6324 & 0.6341 & 0.6365 & 0.6397 \\
\hline 218 & 0.6292 & 0.6291 & 0.6292 & 0.6294 & 0.6298 & 0.6303 & 0.6312 & 0.6324 & 0.6341 & 0.6364 & 0.6394 \\
\hline 220 & 0.6292 & 0.6291 & 0.6292 & 0.6294 & 0.6298 & 0.6304 & 0.6313 & 0.6324 & 0.6341 & 0.6363 & 0.6392 \\
\hline 222 & 0.6291 & 0.6291 & 0.6292 & 0.6294 & 0.6299 & 0.6305 & 0.6313 & 0.6325 & 0.6341 & 0.6362 & 0.6389 \\
\hline 224 & 0.6291 & 0.6291 & 0.6292 & 0.6295 & 0.6299 & 0.6305 & 0.6314 & 0.6325 & 0.6340 & 0.6361 & 0.6387 \\
\hline \(22 t\) & 0.6291 & 0.6291 & 0.6292 & 0.6295 & 0.6299 & 0.6305 & 0.6314 & 0.6325 & 0.6340 & 0.6360 & 0.6385 \\
\hline 228 & 0.6290 & 0.6291 & 0.6292 & 0.6295 & 0.6299 & 0.6305 & 0.6314 & 0.6325 & 0.6340 & 0.6358 & 0.6382 \\
\hline 236 & 0.6290 & 0.6290 & 0.6292 & 0.6295 & 0.6299 & 0.6305 & 0.6314 & 0.6325 & 0.6339 & 0.6358 & 0.6380 \\
\hline 232 & 0.6290 & 0.6290 & 0.6292 & 0.4295 & 0.6299 & 0.6305 & 0.6314 & 0.6325 & 0.6339 & 0.6356 & 0.6378 \\
\hline 234 & 0.6289 & 0.6290 & 0.6292 & 0.6295 & 0.6299 & 0.6305 & 0.6314 & 0.6324 & 0.6338 & 0.6355 & 0.6376 \\
\hline 234 & 0.6289 & 0.6290 & 0.6291 & 0.6295 & 0.6299 & 0.6305 & 0.6313 & 0.6324 & 0.6337 & 0.6354 & 0.6374 \\
\hline 238 & 0.6288 & 0.6289 & 0.6291 & 0.6295 & 0.6299 & 0.6305 & 0.6313 & 0.6324 & 0.6336 & 0.6352 & 0.6372 \\
\hline 24 C & 0.6288 & 0.6289 & 0.6291 & 0.6294 & 0.6299 & 0.6305 & 0.6313 & 0.6323 & 0.6336 & 0.6351 & 0.6370 \\
\hline 242 & 0.6288 & 0.6289 & 0.6291 & 0.6294 & 0.6299 & 0.6305 & 0.6313 & 0.6323 & 0.6335 & 0.6350 & 0.6368 \\
\hline 244 & 0.6287 & 0.6288 & 0.6290 & 0.6294 & 0.6298 & 0.6304 & 0.6312 & 0.6322 & 0.6334 & 0.6348 & 0.6366 \\
\hline \(24 t\) & 0.6287 & 0.6288 & 0.6290 & 0.6294 & 0.6298 & 0.6304 & 0.6312 & 0.6321 & 0.6333 & 0.6347 & 0.6364 \\
\hline 248 & 0.6286 & 0.6287 & 0.6290 & 0.6293 & 0.6298 & 0.6304 & 0.6311 & 0.6321 & 0.6332 & 0.6346 & 0.6362 \\
\hline 250 & 0.6286 & 0.6287 & 0.6289 & 0.6293 & 0.6297 & 0.6303 & 0.6311 & 0.6320 & 0.6331 & 0.6344 & 0.6360 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Plenum temperature. K} & \multicolumn{11}{|l|}{Plenum pressure. \(\mathrm{N} \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 50 & 55 & 60 & 65 & 70 & 75 & 80 & 85 & 90 & 95 & 100 \\
\hline 206 & ------- & -------- & - & ----- & --------- & --------- & -- & - & ---- & & \\
\hline 204 & 0.6428 & ------- & -------- & --- & --------- & & --- & & & & \\
\hline 206 & 0.6420 & -.-.--- & ------- & --...-- & -------- & -------- & & & & & \\
\hline 208 & 0.6413 & 0.6483 & & & & ------- & & & & & \\
\hline 210 & 0.6408 & 0.6469 & 0.6560 & ------ & ------ & ------ & ------ & ------ & ------ & ------ & ------ \\
\hline 212 & 0.6404 & 0.6458 & 0.6536 & 0.6645 & ------ & ------ & ------ & ------ & --- & ----- & ------- \\
\hline 214 & 0.6401 & 0.6449 & 0.6518 & 0.6611 & 0.6735 & ------ & ------ & ------ & --- & ---- & -------- \\
\hline 216 & 0.6397 & 0.6442 & 0.6502 & 0.6583 & 0.6689 & 0.6820 & 0.6969 & ------ & & & \\
\hline 218 & 0.6394 & 0.6435 & 0.6490 & 0.6562 & 0.6653 & 0.6766 & 0.6897 & 0.7038 & ------ & & ------ \\
\hline 220 & 0.6392 & 0.6430 & 0.6479 & 0.6543 & 0.6624 & 0.6723 & 0.6839 & 0.6965 & 0.7095 & 0.7223 & \\
\hline \(22 \%\) & 0.6389 & 0.6425 & 0.6470 & 0.6528 & 0.6600 & 0.6688 & 0.6790 & 0.6904 & 0.7023 & 0.7142 & 0.7257 \\
\hline 224 & 0.6387 & 0.6420 & 0.6462 & 0.6515 & 0.658 त & 0.6658 & 0.6750 & 0.6852 & 0.6960 & 0.7142 & 0.7257 \\
\hline 226 & 0.6385 & 0.6416 & 0.6455 & 0.6503 & 0.6563 & 0.6633 & 0.6715 & 0.6807 & 0.6907 & 0.7009 & 0.7112 \\
\hline 228 & 0.6382 & 0.6412 & 0.6448 & 0.6493 & 0.6547 & 0.6612 & 0.6686 & 0.6769 & 0.6860 & 0.6955 & 0.7051 \\
\hline 236 & 0.6380 & 0.6408 & 0.6442 & 0.6484 & 0.6534 & 0.6593 & 0.6660 & 0.6736 & 0.6819 & 0.6907 & 0.6997 \\
\hline 232 & 0.6378 & 0.6404 & 0.6437 & 0.6476 & 0.6522 & 0.6576 & 0.6638 & 0.6708 & 0.6784 & 0.6865 & 0.6948 \\
\hline 234 & 0.6376 & 0.6401 & 0.6432 & 0.6468 & 0.6511 & 0.6561 & 0.6618 & 0.6682 & 0.6752 & 0.6827 & 0.6905 \\
\hline 236 & 0.6374 & 0.6397 & 0.6427 & 0.6461 & 0.6501 & 0.6547 & 0.6600 & 0.6659 & 0.6724 & 0.6794 & 0.6866 \\
\hline 238 & 0.6372 & 0.6395 & 0.6422 & 0.6454 & 0.6492 & 0.6535 & 0.6584 & 0.6639 & 0.6699 & 0.6764 & 0.6831 \\
\hline 240 & 0.6370 & 0.6392 & 0.6417 & 0.6448 & 0.6484 & 0.6524 & 0.6570 & 0.6621 & 0.6677 & 0.6737 & 0.6800 \\
\hline 242 & 0.6368 & 0.6389 & 0.6414 & 0.6443 & 0.6476 & 0.6514 & 0.6557 & 0.6604 & 0.6656 & 0.6712 & 0.6771 \\
\hline 244
246 & 0.6366 & 0.6386 & 0.6410 & 0.6437 & 0.6469 & 0.6504 & 0.6544 & 0.6589 & 0.6638 & 0.6690 & 0.6745 \\
\hline 246
248 & 0.6364
0.6362 & 0.6383 & 0.6406 & 0.6432 & 0.6462 & 0.6496 & 0.6533 & 0.6575 & 0.6621 & 0.8670 & 0.6722 \\
\hline & & 0.6380 & 0.6402 & 0.6427 & 0.6455 & 0.6487 & 0.6523 & 0.6562 & 0.6605 & 0.6651 & 0.6700 \\
\hline 250 & 0.6360 & 0.6378 & 0.6399 & 0.6423 & 0.6450 & 0.6480 & 0.6513 & 0.6550 & 0.6591 & 0.6634 & 0.6685 \\
\hline
\end{tabular}
TABLE IV. - Continued. THERMODYNAMIC PROPERTY OF METHANE - CRITICAL DENSITY RATIO, \(\rho_{1} / \rho_{2}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Plenum temperature, K} & \multicolumn{11}{|l|}{Plenum pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 100 & 110 & 120 & 130 & 140 & 150 & 160 & 170 & 180 & 190 & 200 \\
\hline 22 C & ------- & - & ------ & ---- & -------- & ----- & -------- & ------- & ------ & ------- & ------ \\
\hline 222 & 0.7257 & & & 0.7662 & 0.7755 & 0.7826 & 0.7880 & 0.7922 & 0.7954 & 0.7980 & 0.8001 \\
\hline 224 & 0.7180
0.7112 & 0.7378
0.7303 & 0.7538
0.7465 & 0.7662
0.7594 & 0.7693 & 0.7770 & 0.7829 & 0.7875 & 0.7912 & 0.7941 & 0.7965 \\
\hline 226 & 0.7112
0.7051 & 0.7303
0.7235 & 0.7465
0.7395 & 0.7527 & 0.7632 & 0.7713 & 0.7777 & 0.7828 & 0.7868 & 0.7901 & 0.7927 \\
\hline & & & 0.7330 & 0.7463 & 0.7571 & 0.7657 & 0.7726 & 0.7780 & 0.7824 & 0.7860 & 0.7889 \\
\hline 230
232 & 0.6997
0.6948 & 0.7172
0.7115 & 0.7268 & 0.7402 & 0.7512 & 0.7602 & 0.7674 & 0.7733 & 0.7780
0.7735 & 0.7818
0.7777 & 0.7850
0.7811 \\
\hline 234 & 0.6905 & 0.7062 & 0.7211 & 0.7343 & 0.7455 & 0.7547
0.7495 & 0.7623
0.7573 & 0.7685
0.7638 & 0.7735
0.7691 & 0.7735 & 0.7772 \\
\hline 236 & 0.6866 & 0.7015 & 0.7158
0.7109 & 0.7288
0.7236 & 0.7400
0.734 A & 0.7495
0.7443 & 0.7524 & 0.7591 & 0.7647 & 0.7694 & 0.7733 \\
\hline 238 & 0.6831 & 0.6971 & 0.7109 & & & & & & & & \\
\hline & & 0.6932 & 0.7063 & 0.7187 & 0.7297 & 0.7394 & 0.7476 & 0.7545 & 0.7603 & 0.7652 & 0.7694 \\
\hline 24 C
242 & 0.6800 & 0.6896 & 0.7021 & 0.7141 & 0.7250 & 0.7346 & 0.7429 & 0.7500 & 0.7563 & 0.7612 & 0.7655
0.7616 \\
\hline 244 & 0.6745 & 0.6863 & 0.6982 & 0.7098 & 0.7205 & 0.7300 & 0.7384 & 0.7456 & 0.7477 & 0.7531 & 0.7578 \\
\hline 246 & 0.6722 & 0.6832 & 0.6946 & 0.7057 & 0.7162 & 0.7256 & -0.7340 & 0.7372 & 0.7436 & 0.7492 & 0.7540 \\
\hline 248 & 0.6700 & 0.6804 & 0.6913 & 0.7027 & 0.7121 & 0.7215 & & & & & \\
\hline 250 & 0.6680 & 0.6779 & 0.6882 & 0.6985 & 0.7083 & 0.7175 & 0.7258 & 0.7332 & 0.7397 & 0.7453 & 0.7503 \\
\hline \multirow[t]{4}{*}{Plenum temperature, K} & \multicolumn{11}{|l|}{\multirow[t]{2}{*}{Plenum pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)}} \\
\hline & & & & & & & & & & & \\
\hline & 200 & \multirow[t]{2}{*}{210} & \multirow[t]{2}{*}{220} & \multirow[t]{2}{*}{230} & \multirow[t]{2}{*}{240} & \multirow[t]{2}{*}{250} & \multirow[t]{2}{*}{260} & \multirow[t]{2}{*}{270} & 280 & \multirow[t]{2}{*}{290} & \multirow[t]{2}{*}{300} \\
\hline & & & & & & & & & & & \\
\hline 220 & ------ & ------ & ------ & --- & & & & & & & \\
\hline 222 & ------ & ------ & ------ & & & & 0.8068 & 0.8074 & 0.8078 & & \\
\hline 224 & 0.8001 & 0.8018 & 0.8032 & 0.8044 & 0.8053 & 0.8061 & 0.8042 & 0.8048 & 0.8054 & 0.8059 & \\
\hline \(22 t\) & 0.7965 & 0.7984 & \multirow[t]{2}{*}{0.7967} & 0.8013
0.7982 & 0.8024
0.7994 & 0.8034
0.8005 & \multirow[t]{2}{*}{0.8014} & \multirow[t]{2}{*}{0.8022} & & \multirow[t]{2}{*}{} & \multirow[t]{3}{*}{0.8040} \\
\hline 228 & 0.7927 & 0.7949 & & 0.7982 & 0.7994 & 0.8005 & & & 0.8029 & & \\
\hline & & 0.7913 & 0.7933 & 0.7959 & 0.7964 & 0.7977 & 0.7987 & 0.7996 & 0.8004 & 0.8010 & \\
\hline 236 & 0.7850 & 0.7877 & 0.7899 & 0.7918 & 0.7934 & 0.7947 & 0.7959 & 0.7969 & 0.7978 & 0.7985 & 0.7992 \\
\hline 232
234 & 0.7811 & 0.7840 & 0.7864 & 0.7885 & 0.7903 & 0.7918 & 0.7931 & 0.7942 & 0.7952 & 0.7960
0.7935 & 0.7968
0.7943 \\
\hline 236 & 0.7772 & 0.7803 & 0.7830 & 0.7852 & 0.7871 & 0.7888 & 0.7902 & 0.7914 & 0.7925 & 0.7935
0.7909 & 0.7918 \\
\hline \multirow[t]{2}{*}{238
240} & 0.7733 & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\[
0.7807
\]} & \multirow[t]{2}{*}{\[
0.7827
\]} & 0.7873 & 0.7887 & \multirow[t]{2}{*}{\[
0.7872
\]} & \multirow[t]{2}{*}{\[
0.7883
\]} & \multirow[t]{2}{*}{\[
0.7893
\]} \\
\hline & & & & & & & 0.7844 & 0.7859 & & & \\
\hline 24 C
242 & 0.7694
0.7655 & 0.7729
0.7692 & 0.7759 & 0.7752 & 0.7775 & 0.7796 & 0.7814 & 0.7831 & 0.7844 & 0.7857 & 0.7868 \\
\hline 242
244 & 0.7655
0.7616 & 0.7692 & 0.7689 & 0.7718 & 0.7747 & 0.7766 & 0.7785 & 0.7802 & 0.7817 & 0.7831 & 0.7843 \\
\hline 244 & 0.7578 & 0.7619 & 0.7654 & 0.7685 & 0.7711 & 0.7735 & 0.7755 & 0.7774 & 0.7790 & 0.7804 & 0.7817 \\
\hline 248 & 0.7540 & 0.7583 & 0.7619 & 0.7651 & 0.7679 & 0.7704 & 0.7726 & 0.7745 & 0.7762 & 0.7778 & \\
\hline 250 & 0.7503 & 0.7547 & 0.7585 & 0.7618 & 0.7648 & 0.7673 & 0.7596 & 0.7717 & 0.7735 & 0.7751 & 0.7766 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Plenum } \\
\text { temperature. } \\
\text { K }
\end{gathered}
\]} & \multicolumn{11}{|l|}{Plenum pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 0 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 \\
\hline 255 & 0.6286 & 0.6289 & 0.6297 & 0.6311 & 0.6331 & 0.6360 & 0.6399 & 0.6450 & 0.6513 & 0.6591 & \\
\hline 255 & 0.6285 & 0.6288 & 0.6296 & 0.6309 & 0.6329 & 0.6355 & 0.6391 & 0.6436 & 0.6492 & 0.6591 & 0.6680 \\
\hline 26 C & 0.6283 & 0.6287 & 0.6296 & 0.6308 & 0.6326 & 0.6351 & 0.6383 & 0.6424 & 0.6474 & 0.6533 & 0.6637 \\
\hline 265 & 0.6281 & 0.6286 & 0.6294 & 0.6306 & 0.6324 & 0.6347 & 0.6387 & 0.6413 & 0.6474 & 0.6533
0.6510 & 0.6601 \\
\hline 27 C & 0.6280 & 0.6284 & 0.6293 & 0.6304 & 0.6321 & 0.6343 & 0.6370 & 0.6404 & 0.6444 & 0.6491 & 0.6545 \\
\hline 275 & 0.6278 & 0.6283 & 0.6291 & 0.6303 & 0.6319 & 0.6339 & 0.6364 & 0.6395 & & & \\
\hline 28 C & 0.6277 & 0.6282 & 0.6289 & 0.6301 & 0.6316 & 0.6335 & 0.6359 & 0.6397 & 0.6432
0.6421 & 0.6474
0.6459 & 0.6522 \\
\hline 285 & 0.6275 & 0.6280 & 0.6288 & 0.6299 & 0.6313 & 0.6331 & 0.6353 & 0.6380 & 0.6411 & 0.6446 & 0.6486 \\
\hline 290 & 0.6273 & 0.6279 & 0.6286 & 0.6297 & 0.6310 & 0.6328 & 0.6349 & 0.6373 & 0.6402 & 0.6434 & 0.6471 \\
\hline 295 & 0.6271 & 0.6277 & 0.6284 & 0.4295 & 0.6308 & 0.6324 & 0.6344 & 0.6367 & 0.6394 & 0.6424 & 0.6457 \\
\hline 3 CC & 0.6270 & 0.6275 & 0.6282 & 0.4292 & 0.6306 & 0.6321 & 0.6340 & 0.6361 & 0.6386 & 0.6414 & 0.6445 \\
\hline 305 & 0.6268 & 0.6273 & 0.6281 & 0.4290 & 0.6303 & 0.6318 & 0.6335 & 0.6356 & 0.6379 & 0.6414 & 0.6445 \\
\hline 31 C & 0.6266 & 0.6271 & 0.6279 & 0.4288 & 0.6300 & 0.6315 & 0.6331 & 0.6351 & 0.6373 & 0.6397 & 0.6424 \\
\hline 315 & 0.6264 & 0.6269 & 0.6277 & 0.6286 & 0.6297 & 0.6311 & 0.6327 & 0.6346 & 0.6366 & 0.6389 & 0.6415 \\
\hline 32 C & 0.6262 & 0.6267 & 0.6275 & 0.6284 & 0.6295 & 0.6308 & 0.6324 & 0.6341 & 0.6361 & 0.6382 & 0.6406 \\
\hline 325 & 0.6260 & 0.6266 & 0.6273 & 0.6282 & 0.6293 & 0.6305 & 0.6320 & 0.6337 & 0.6355 & 0.6376 & \\
\hline 33 C & 0.6258 & 0.6264 & 0.6271 & 0.6280 & 0.6290 & 0.6302 & 0.6316 & 0.6333 & 0.6350 & 0.6370 & 0.6398 \\
\hline 335 & 0.6256 & 0.6262 & 0.6269 & 0.6277 & 0.6288 & 0.6300 & 0.6313 & 0.6328 & 0.6346 & 0.6364 & 0.6384 \\
\hline 340 & 0.6254 & 0.6260 & 0.6267 & 0.6275 & 0.6285 & 0.6297 & 0.6310 & 0.6324 & 0.6341 & 0.6359 & 0.6378 \\
\hline 345 & 0.6252 & 0.6258 & 0.6265 & 0.6273 & 0.6283 & 0.6294 & 0.6307 & 0.6321 & 0.6336 & 0.6353 & 0.6372 \\
\hline 350 & 0.6251 & 0.6256 & 0.6263 & 0.6271 & 0.6281 & 0.6291 & 0.6304 & & & & \\
\hline 355 & 0.6249 & 0.6254 & 0.6261 & 0.6269 & 0.6279 & 0.6289 & 0.6304 & 0.6318 & 0.6332
0.6328 & 0.6349
0.6344 & 0.6366
0.6361 \\
\hline 36 C & 0.6247 & 0.6252 & 0.6259 & 0.4267 & 0.6276 & 0.6286 & 0.6298 & 0.6311 & 0.6325 & 0.6340 & 0.6356 \\
\hline 365 & 0.6245 & 0.6250 & 0.6257 & 0.6265 & 0.6274 & 0.6284 & 0.6295 & 0.6307 & 0.6321 & 0.6335 & 0.6351 \\
\hline 370 & 0.6244 & 0.6249 & 0.6255 & 0.6263 & 0.6272 & 0.6282 & 0.6292 & 0.6304 & 0.6317 & 0.6331 & 0.6351 \\
\hline 375 & 0.6242 & 0.6247 & 0.6253 & 0.6261 & 0.6270 & 0.6279 & 0.6290 & 0.6301 & 0.6314 & & \\
\hline 38 C & 0.6240 & 0.6245 & 0.6251 & 0.6259 & 0.6267 & 0.6277 & 0.6287 & 0.6299 & 0.6311 & 0.6328 & 0.6342
0.6338 \\
\hline 385 & 0.6238 & 0.6244 & 0.6250 & 0.6257 & 0.6265 & 0.6275 & 0.6285 & 0.6296 & 0.6308 & 0.6320 & 0.6334 \\
\hline 39 C & 0.6237 & 0.6242 & 0.6248 & 0.6258 & 0.6263 & 0.6272 & 0.6282 & 0.6293 & 0.6305 & 0.6317 & 0.6330 \\
\hline 395 & 0.6235 & 0.6240 & 0.6247 & 0.6254 & 0.6261 & 0.6270 & 0.6280 & 0.6291 & 0.6302 & 0.6314 & 0.6327 \\
\hline 40 C & 0.6233 & 0.6239 & 0.6245 & 0.6252 & 0.6260 & 0.6268 & 0.6278 & 0.6288 & 0.6299 & 0.6311 & 0.6323 \\
\hline
\end{tabular}
TABLE IV．－Continued．THERMODYNAMIC PROPERTY OF METHANE－CRITICALDENSITYRATIO，\(\rho_{1} \rho_{2}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & － & ふのッロッ ペN～た \(\dot{\circ} \dot{0} \dot{\circ} \dot{\circ}^{\circ}\) &  &  & がべベm゙ ㅇ․․․ －0000 &  ninn in inn \(\therefore 0000\) &  & a
0
0
0
0 \\
\hline & 8 &  &  &  & が～～が － \(\dot{\circ} \dot{0} 0^{\circ}\) & \begin{tabular}{l}
Nがすこの \\
 －0．00ㅇ
\end{tabular} &  & 0
0
0
0
0
0 \\
\hline \multirow{9}{*}{} & \(\underset{\sim}{\infty}\) &  &  & 「5No： － \(0^{\circ} 0^{\circ}\) &  & \begin{tabular}{l}
NN№t \\
 －0．00
\end{tabular} &  & － \\
\hline & 은 &  &  & \begin{tabular}{l}
Nは「～～の \\
 \(00^{\circ 0} 0^{\circ}\)
\end{tabular} &  ninninn － \(0^{\circ 0} 0^{\circ}\) & 우우웅 n inst fut －0．0ㅇㅇ & ロが～～～ \(\begin{array}{cc}0 \\ 0 \\ 0 & 5 \\ 0 & 0 \\ 0\end{array}\) \(00^{\circ} 0^{\circ}\) & \(\stackrel{\infty}{\sim}\) \\
\hline & \(\stackrel{8}{-8}\) &  &  & ＂Mn かin \(\rightarrow-\) \(00^{\circ} 00\) & fonmor ninnino ㅇo．？ －0000 & \begin{tabular}{l}
 \\
 －0000
\end{tabular} & \begin{tabular}{l}
テのが～～ \\
 \(00^{\circ} 0^{\circ}\)
\end{tabular} & \begin{tabular}{l}
7 \\
\hline \\
0 \\
0
\end{tabular} \\
\hline & 운 & ぞがすが 꿍ㅇㅇㅇ －0000ㅇ &  &  &  ninno \(00^{\circ} 0^{\circ}\) &  & \begin{tabular}{l}
Nomior \\
 \\
\(00^{\circ} 0^{\circ}\)
\end{tabular} & \(n\)
\(\sim\)
\(\sim\)
\(\sim\)
0
0
0 \\
\hline & 안 &  & がいたが たたㅇ․ \(0^{\circ} 0^{\circ} 0^{\circ}\) &  ninn inn \(\therefore 0^{\circ} 0^{\circ}\) &  &  &  & \(o\)
\(\stackrel{0}{n}\)
\(\substack{0 \\ 0}\) \\
\hline & \(\stackrel{\text { ¢ }}{-}\) &  &  &  \(\mathfrak{n}\) －0000 &  &  &  & +
0
0
0
0
0 \\
\hline & 은 &  &  & \begin{tabular}{l}
－OinNo \\
 －00000
\end{tabular} &  &  &  & 0
\(n\)
0
0
0 \\
\hline & \(\stackrel{\text { 을 }}{ }\) & の～～N゚が下No \(\therefore 0^{\circ} 0^{\circ}\) &  & \begin{tabular}{l}
～ロM～～ \\
 －0．000
\end{tabular} &  & にのman MMmº \(\because 0 \%\) ． \(00^{\circ} 0^{\circ}\) & ヘmがo m m m m 0000 －000ㅇ & － \\
\hline & 8 &  &  &  &  &  &  & \(m\)
\(\sim\)
0
0
0 \\
\hline 咅 &  & 似能号只 ～～N～N &  ～～～N～ &  &  mmmm & 识出呺品 mmmmm &  m & 雚 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & ¢ & ロ～～ロッ～の シャがN － \(0^{\circ} 0^{\circ}\) & ぺロ品が ざきNへ －0．000 &  &  &  &  & \(N\)
\(N\)
0
0 \\
\hline & － &  － － 0 & mo 0 oo さヘNN～～ －0．00．0． & Nかんー へ～がす。゙ ミストR －0oㅇㅇ &  &  &  & n
0
0
0 \\
\hline & \(\stackrel{\sim}{\sim}\) &  & © \(\begin{gathered}\text { mogo } \\ 0\end{gathered}\) ざN～N゙ －0．00． & \begin{tabular}{l}
 굿웅 \\

\end{tabular} & \begin{tabular}{l}
－「～o \\
 \(\bigcirc 0^{\circ}\) －0．00．0
\end{tabular} &  &  & \(\stackrel{\sim}{0}\) \\
\hline & － &  &  & MONO～～ ㅂㅇ영 \(\therefore 0^{\circ} 0^{\circ 0}\) & 웅ㅇㅇ́n 0
0
\(\infty\)
\(\infty\)
\(\infty\) －0．0．0． &  がッN゚ 0600 － \(0^{\circ} 0^{\circ}\) &  & \(\pm\)
0
\(\bullet\)
0 \\
\hline \multirow[t]{7}{*}{\[
\text { Plenum pressure, } \mathrm{N} \mathrm{~m}^{2 \times 10^{-5}}
\]} & \(\stackrel{\substack{\circ \\ \sim}}{\sim}\) &  &  & \begin{tabular}{l}
Nかったが \\
 －00000
\end{tabular} &  & \(\infty\) 人卜 へベッが 0900 －0000 &  & \(i n\)
0
0
0
0 \\
\hline & \(\stackrel{\circ}{\circ}\) & m～～～Nか が～N゙～ －0000． &  & のn～～～～ ○8웅 웅o \({ }^{\circ}{ }^{\circ}\) －0000 &  &  &  & \(n\)
\(n\)
\(n\)
0 \\
\hline & 까N &  &  &  &  &  &  & c
\(n\)
0
\(\dot{0}\) \\
\hline & กั &  & \begin{tabular}{l}
ペッべべへ \\
N～NO～ \\
웅ㅇㅇ
\end{tabular} &  &  &  & \begin{tabular}{l}
 \\
 －0： \(00000^{\circ}\)
\end{tabular} & \(\hat{\sim}\)
\(\stackrel{n}{0}\)
\(\dot{0}\) \\
\hline & 긋 &  &  & ペがのご Mon No －0́0ó &  &  & ざロ～～ inininmin －0． 00000 & \(\infty\)
\(\stackrel{1}{n}\)
\(\vdots\)
0 \\
\hline & 은 &  & \begin{tabular}{l}
\(\infty\) 잉ㅇㅇ －す。 \\
 －0000．
\end{tabular} & \begin{tabular}{l}
へ～No～ \\
 －0．0．0 －0000
\end{tabular} & \begin{tabular}{l}
NべかMm ～～がが \\
 －000．0．
\end{tabular} & ～～mかn Noonis －© Hinn －0．000． & ～O～のが Ninn －0．000 & or
\(\sigma\)
0
0
\(\dot{0}\) \\
\hline & 읏 &  &  & 禺たたた －0́óóo &  & \begin{tabular}{l}
\(\cos _{\infty}^{\infty} \min _{\infty}^{\infty}\) \\
 －0000
\end{tabular} & \begin{tabular}{l}
 \\
 －0000
\end{tabular} &  \\
\hline E &  & 识出呺品 NNNNN &  NNNN &  &  mmmmm & 化保品品 mmmmm & \(\stackrel{\mu}{\sim}\) mmomm & O \\
\hline
\end{tabular}
TABLE IV. - Continued. THERMODYNAMIC PROPERTY OF METHANE - CRITICAL DENSITY RATIO, \(\rho_{1} \rho_{2}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Plenum } \\
\text { temperature, } \\
\mathrm{K}
\end{gathered}
\]} & \multicolumn{11}{|l|}{Plenum pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 100 & 110 & 120 & 130 & 140 & 150 & 160 & 170 & 180 & 190 & 200 \\
\hline 40 C & 0.6323 & 0.6336 & 0.6350 & 0.6364 & 0.6379 & & & & & & \\
\hline 405 & 0.6320 & 0.6333 & 0.6346 & \(0.636{ }^{\text {a }}\) & 0.6379 & 0.6395
0.6390 & 0.6411
0.6405 & 0.6428 & 0.6445 & 0.6463 & 0.6481 \\
\hline 41 C & 0.6317 & 0.6329 & 0.6342 & 0.6356 & 0.6370 & 0.6384 & 0.6405 & 0.6421 & 0.6438 & 0.6455 & 0.6473 \\
\hline 415 & 0.6313 & 0.6325 & 0.6338 & 0.6351 & 0.6365 & 0.6379 & 0.6394 & 0.6409 & 0.6431 & 0.6448 & 0.6465 \\
\hline 42 C & 0.6310 & 0.6322 & 0.6334 & 0.6347 & 0.6361 & 0.6375 & 0.6389 & 0.6415
0.6404 & 0.6425
0.6419 & 0.6441
0.6435 & 0.6457
0.6450 \\
\hline 425 & 0.6308 & 0.6319 & 0.6331 & 0.6343 & 0.6357 & 0.6370 & & & & & \\
\hline 436 & 0.6305 & 0.6318 & 0.6328 & 0.6340 & 0.6357 & 0.6370
0.6366 & 0.6384
0.6379 & 0.6398
0.6393 & 0.6413 & 0.6428 & 0.6444 \\
\hline 435 & 0.6303 & 0.6314 & 0.6325 & 0.6337 & 0.6349 & 0.6366
0.6362 & 0.6379
0.6375 & 0.6393
0.6388 & 0.6408
0.6402 & 0.6422
0.6417 & 0.6437 \\
\hline 440 & 0.6303 & 0.6311 & 0.6322 & 0.6334 & 0.6346 & 0.6358 & 0.6375
0.6371 & 0.6388
0.6384 & 0.6402 & 0.6417 & 0.6431 \\
\hline 445 & 0.6298 & 0.6308 & 0.6319 & 0.6330 & 0.6342 & 0.6354 & 0.6367 & 0.6384
0.6380 & 0.6397
0.6393 & 0.6411
0.6407 & 0.6426
0.6420 \\
\hline \(45 C\) & 0.6295 & 0.6306 & 0.6316 & 0.8327 & 0.6339 & & & & & & \\
\hline 455 & 0.6293 & 0.6303 & 0.6314 & 0.6324 & 0.6336 & 0.6351 & 0.6363 & 0.6375 & 0.6388 & 0.6402 & 0.6415 \\
\hline 46 C & 0.6291 & 0.6301 & 0.6311 & 0.6322 & 0.6333 & 0.6344 & 0.6359 & 0.6371 & 0.6384 & 0.6397 & 0.6410 \\
\hline 465 & 0.6289 & 0.6298 & 0.6308 & 0.6319 & 0.6330 & 0.6341 & 0.6352 & 0.6368
0.6364 & 0.6380 & 0.6393 & 0.6405 \\
\hline 476 & 0.6287 & 0.6296 & 0.6306 & 0.6316 & 0.6327 & 0.6338 & 0.6349 & 0.6360 & 0.6372 & 0.6388
0.6384 & 0.6401
0.6397 \\
\hline 475 & 0.6285 & 0.6294 & 0.6304 & 0.6314 & 0.6324 & & & & & & \\
\hline 48 C & 0.6283 & 0.6292 & 0.6301 & 0.6311 & 0.63321 & 0.6335 & 0.6346 & 0.6357 & 0.6368 & 0.6380 & 0.6392 \\
\hline 485 & 0.6281 & 0.6290 & 0.6299 & 0.6309 & 0.6319 & 0.6329 & 0.6340 & & 0.6365 & 0.6376 & 0.6388 \\
\hline 49 C & 0.6279 & 0.6288 & 0.6297 & 0.6307 & 0.6316 & 0.6326 & 0.6337 & 0.6350
0.6347 & 0.6361 & 0.6373 & 0.6384 \\
\hline 495 & 0.6277 & 0.6286 & 0.6295 & 0.6304 & 0.6314 & 0.6324 & 0.6334 & 0.6344 & 0.6358 & 0.6369
0.6366 & 0.6381
0.6377 \\
\hline 506 & 0.6276 & 0.6284 & 0.6293 & 0.6302 & 0.6312 & 0.6321 & 0.6331 & 0.6341 & & & \\
\hline 505 & 0.6274 & 0.6282 & 0.6291 & 0.6300 & 0.6309 & 0.6319 & 0.6329 & 0.6341 & 0.6352 & 0.6363 & 0.6374 \\
\hline 516 & 0.6272 & 0.6281 & 0.6289 & 0.6298 & 0.6307 & 0.6317 & 0.6326 & 0.6339
0.6336 & 0.63429
0.6346 & 0.6359
0.6356 & 0.6370 \\
\hline 515 & 0.6271 & 0.6279 & 0.6287 & 0.6296 & 0.6305 & 0.6314 & 0.6324 & 0.6336
0.0333 & 0.6346
0.6343 & & 0.6367 \\
\hline 520 & 0.6269 & 0.6277 & 0.6286 & 0.6294 & 0.6303 & 0.6312 & 0.6321 & 0.6331 & 0.63431 & 0.6354
0.6351 & 0.6364
0.6361 \\
\hline 525 & 0.6268 & 0.6276 & 0.6284 & 0.6292 & 0.6301 & & & & & & \\
\hline 530 & 0.6266 & 0.6274 & 0.6282 & 0.6291 & 0.6299 & 0.6308 & 0.6319 & 0.6329 & 0.6338 & 0.6348 & 0.6358 \\
\hline 535 & 0.6285 & 0.6272 & 0.6281 & 0.6289 & 0.6297 & 0.6308 & 0.6317 & 0.6326
0.6324 & 0.6336 & 0.6345 & 0.6355 \\
\hline 54 C & 0.6263 & 0.6271 & 0.6279 & 0.6287 & 0.6295 & 0.6304 & 0.6313 & 0.6326
0.6322 & 0.6336
0.6331 & 0.6343 & 0.6352 \\
\hline 545 & 0.6262 & 0.6270 & 0.6277 & 0.6285 & 0.6294 & 0.6302 & 0.6311 & 0.6320 & 0.6329 & 0.6338 & 0.6350
0.6347 \\
\hline 550 & 0.6261 & 0.6268 & 0.6276 & 0.6284 & 0.6292 & & & & & & \\
\hline 555 & 0.6259 & 0.6267 & 0.6274 & 0.6282 & 0.6297 & 0.6298 & 0.6309 & 0.6317 & 0.6326 & 0.6335 & 0.6345 \\
\hline 56 C & 0.6258 & 0.6265 & 0.6273 & 0.6281 & 0.6289 & 0.6297 & 0.6305 & 0.6313 & 0.6324 & 0.6333 & 0.6342 \\
\hline 565 & 0.6257 & 0.6264 & 0.6271 & 0.6279 & 0.6287 & 0.6295 & 0.6303 & 0.6311 & 0.6322
0.6320 & 0.6331
0.6329 & 0.6340 \\
\hline 57 C & 0.6256 & 0.6263 & 0.6270 & 0.6278 & 0.6285 & 0.6293 & 0.6301 & 0.6310 & 0.6318 & 0.6327 & 0.6337
0.6335 \\
\hline 575 & 0.6255 & 0.6262 & 0.6269 & 0.6276 & 0.6284 & 0.6292 & & & & & \\
\hline 58 C & 0.6254 & 0.6261 & 0.6268 & 0.6275 & 0.6283 & 0.6292 & 0.6300 & 0.6308 & 0.6316 & 0.6324 & 0.6333 \\
\hline 585 & 0.6252 & 0.6259 & 0.6267 & 0.6274 & 0.6281 & 0.6298 & 0.6298
0.6297 & 0.6306 & 0.6314 & 0.6322 & 0.6331 \\
\hline 59 C & 0.6251 & 0.6258 & 0.6265 & 0.6273 & \(0.628^{n}\) & 0.6287 & 0.6297 & 0.6304 & 0.6312 & 0.6320 & 0.6329 \\
\hline 59. & 0.6253 & 0.6257 & 0.6264 & 0.6271 & 0.6279 & 0.6286 & 0.6294 & 0.6303
0.6301 & 0.6311
0.6309 & \[
\begin{aligned}
& 0.6318 \\
& 0.6317
\end{aligned}
\] & \[
\begin{aligned}
& 0.6327 \\
& 0.6375
\end{aligned}
\] \\
\hline 60 C & 0.6249 & 0.6256 & 0.6263 & 0.6272 & 0.6277 & 0.6285 & 0.6292 & 0.6300 & 0.6307 & 0.6315 & 0.632 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & ¢ & \(N \infty 0 \sim N\)下納 0000 \(00^{\circ} 0^{\circ}\) &  & \begin{tabular}{l}
NMinn min \\
 Non －0000
\end{tabular} &  & \[
\begin{aligned}
& N 0 \\
& \sim \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \begin{tabular}{l}
\(\therefore\) ○～～～ \\
5す5゙5 \\
－0．0．0
\end{tabular} & \begin{tabular}{l}
50ㅇN \\
fomm N \\
 \\
－0000
\end{tabular} & \begin{tabular}{l}
nNonN ～～ずぎさ \\
 －0000
\end{tabular} & 0
0
0
0
0
0
0 \\
\hline & － & \begin{tabular}{l}
morns \\
 00000 \(\ddot{0} 0 \dot{0} 0^{\circ}\)
\end{tabular} &  &  &  &  & \begin{tabular}{l}
जoc～a unssm \\
 －0000
\end{tabular} & ＊으№ mぶN゙ 4
0
0 \(5_{0}^{4}\) \(00^{\circ} 0^{\circ}\) &  & \begin{tabular}{l} 
O \\
\hline 0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{tabular} \\
\hline & ¢ &  & \begin{tabular}{l}
人上No minnsu \\
 －0́óo
\end{tabular} & のざに水心緛 nun 0 －0 \(0 \dot{0}\) & \begin{tabular}{l}
かO～～～～～ \\
 － \(0^{\circ} 0^{\circ} 0^{\circ}\)
\end{tabular} & NNかM かも 4 4
6
0 \(0_{0}^{4}\) \(\therefore 0000\) & \begin{tabular}{l}
monñ \\
tyMct \\
05050 \\
\(\therefore 0^{\circ} 0^{\circ} 0^{\circ}\)
\end{tabular} & \begin{tabular}{l}
NO～～ロ \\
 06000 \(00^{\circ} 0^{\circ}\)
\end{tabular} &  \(\rightarrow \ddagger 4 \mathrm{~mm}\) \(\because \because 0\). \(00^{\circ} 0^{\circ}\) & \(\square\)
\(\sim\)
0
0
0 \\
\hline & \(\stackrel{\bigcirc}{\text { ¢ }}\) & \[
0
\] & －O～N N nun in 00000 \(\therefore 0000\) & －NO～の ninins 00000 －0000 &  & Nóvか なずなさ 00000 \(0000^{\circ}\) & \begin{tabular}{l}
Nos으N MNN～い \\
 －0000
\end{tabular} &  &  mmmmm 00000 \(\therefore 0^{\circ} 00^{\circ}\) & N
\(\infty\)
0
0
0
0 \\
\hline \[
\overbrace{0}^{10}
\] & －8 & ルMNNN のロッロ～ \(\begin{array}{ll}n & n \\ 0 & n \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}\) \(00^{\circ} 00^{\circ}\) & \begin{tabular}{l}
NMNにが \\
 \(\begin{array}{rl}0 \\ 0 & 0 \\ 0\end{array}\) －0 ó ó
\end{tabular} &  & \[
\begin{aligned}
& 0 \pm \infty \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & mason なMMN ざざ ず す す －0000 &  &  & 「ボが家 m mommon \(00^{\circ}\) & \[
\begin{aligned}
& \text { r} \\
& \\
& \vdots \\
& 0
\end{aligned}
\] \\
\hline 0
\(\vdots\)
\(\vdots\)
0
0
0 & 옹 & にないます。 in incun 00000 \(0^{\circ} 0^{\circ} 0^{\circ}\) & べッがす。 unin in \(t\) 00000 \(\therefore 0^{\circ} 0^{\circ} 0^{\circ}\) & \(\therefore \cos _{\infty}^{\infty}\) ないなざす 0.000 －0000 & 的心品品 なちなすす 00000 \(0-0.00\) & MN～～～ ざすぎす 5
0
0
0 \(0_{0}^{5}\) －0000 & \begin{tabular}{l}
옹ㅇ웅 \\
 00000 \(00^{\circ} 0^{\circ}\)
\end{tabular} &  & \[
\begin{aligned}
& \infty N N O H \\
& N M N M \\
& N M M \\
& 0000 \\
& 00000
\end{aligned}
\] & \(n\)
\(n\)
0
0
0
0
0 \\
\hline  & ¢ & OOODN いがN゙N 0000 －0000 & \begin{tabular}{l}
 \\
 00000 －0．0்○
\end{tabular} & \(\approx=c t a\)子まずす 00000 \(0^{\circ} 0^{\circ} 0^{\circ}\) & \begin{tabular}{l}
 \\
 00000 \(00^{\circ} 0^{\circ}\)
\end{tabular} &  & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0
\end{aligned} 0
\] &  & © mmmm 00000 \(\therefore 000\) & \(c\)
\(\substack{c \\ \sim \\ 0 \\ 0 \\ 0}\) \\
\hline & ¢ & \begin{tabular}{l}
ヘNの日 Mn un in \\
 －0000
\end{tabular} & \begin{tabular}{l}
 \\
 －0．0． \(0^{\circ} 0^{\circ} 0^{\circ}\)
\end{tabular} & へN～ロin なちな」す \(40 * 0\). 00000 & O～NON MNNーい \(\begin{array}{rll}5 \\ 0 & 5 \\ 0\end{array}\) \(00^{\circ} 0^{\circ}\) &  & －© No \(\infty \infty\) MMNM －0000 &  & \(\begin{array}{cc}\text { Fin } \\ 0 & \text { in }\end{array}\) ounnin M M M M － 00000 & a
\(\substack{1 \\ m \\ c \\ 0 \\ 0}\) \\
\hline & ก &  & ogning tytut 00000 \(0-0.0\) & \begin{tabular}{l}
mon N N \\
ばぎN \\
\(\begin{array}{rcc}5 \\ 0 & 5 \\ 0 & 0\end{array}\) \\
\(00^{\circ} 0^{\circ}\)
\end{tabular} & べッが号子与ます品 00000 －00000 & NNOMN \(\sigma \sigma \infty \infty\) MMOM \(00^{\circ}\) & minNos ヘNMN゚ 00000 \(0^{\circ} 0^{\circ} 0^{\circ}\) & \(m \rightarrow \infty \quad 0 m\) moninn mom m －0000 & \[
\begin{array}{llll}
\vec{n} & 0 & 4 & \overrightarrow{0} \\
& 5 & 5 & w \\
0 & w \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}
\] & 0
0
0
0
0
0 \\
\hline & 응 &  & \[
\begin{array}{lll}
0 & m & 0 \\
0 & 0 \\
0 & 0 \\
t & 0 \\
t & t & t \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}
\] &  & にON f 4 mmm 5
0
0
0 \(0_{0}^{m}\) \(\therefore 0^{\circ} 0^{\circ}\) & ががが のmmmm －0000 －0000 & \begin{tabular}{l}
\(\infty\) in Nor \\
obonin \\
monmm \\
\(00^{\circ} 00^{\circ}\)
\end{tabular} &  & \begin{tabular}{l}
Noトにm \\
tmmmm \\
 \\
－0000
\end{tabular} & -1
\(\cdots\)
0
0
0 \\
\hline & ¢ &  －T N \(\begin{array}{lll}5 \\ 5 & 5 & 5 \\ 0 & 0 \\ 0\end{array}\) －0000 & \begin{tabular}{l}
さ「が～O \\
 －0000
\end{tabular} &  &  mmmmm 00000 －0000 &  mmmm 00000 －000 & onnor inn in int mmm \(00^{\circ}\) \(00000^{\circ}\) & \begin{tabular}{l}
～NON～N \\
＋5 mm \\
Mommm \\
－0．0．
\end{tabular} & \begin{tabular}{l}
MッツN～N \\
MMNMN \\
00000 \\
\(00^{\circ} 0^{\circ}\)
\end{tabular} & \(n\)
\(\sim\)
\(\sim\)
0
0
0 \\
\hline \[
\begin{aligned}
& \Xi \\
& \underset{\Xi}{\Xi} \\
& \underset{\sim}{g}
\end{aligned}
\] &  &  &  &  &  &  & \begin{tabular}{l}
ज4 \\

\end{tabular} & U心 ninumin &  & O \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Plenum } \\
\text { temperature, } \\
\mathrm{K}
\end{gathered}
\]} & \multicolumn{11}{|l|}{Plenum pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 12 C & 0.8573 & ------ & ------ & ------ & ------ & ------ & ------ & ------ & ------ & ------ & ------ \\
\hline 122 & 0.8573 & 0.8625 & ------ & ------ & ------ & ------ & ---- & & & & \\
\hline 124 & 0.8573 & 0.8622 & ------ & ------ & ------ & ------ & ----- & ------ & & ------ & \\
\hline 126 & 0.8573 & 0.8619 & ------ & ------ & ------ & ------ & ---- & & & & \\
\hline 128 & 0.8573 & 0.8616 & & & & & & & & & \\
\hline 13 C & 0.8573 & 0.8613 & 0.8647 & ------ & ------ & ------ & ------ & ------ & ------ & ------ & \\
\hline 132 & 0.8573 & 0.8610 & 0.8642 & ------ & ------ & ------ & ------ & ------ & & ------ & \\
\hline 134 & 0.8573 & 0.8607 & 0.8638 & ------ & ------ & ----- & ----- & ------ & ---- & --- & \\
\hline 136 & 0.8573 & 0.8605 & 0.8633 & 0.8659 & ------ & ------ & ------ & ------ & ------ & ------ & ------ \\
\hline 138 & 0.8573 & 0.8602 & 0.8629 & 0.8653 & ------ & ------ & - & ------ & ------ & - & ------ \\
\hline 140 & 0.8573 & 0.8600 & 0.8625 & 0.8647 & - & ------ & ------ & ------ & ------ & ------ & ------ \\
\hline 142 & 0.8573 & 0.8598 & 0.8621 & 0.8642 & 0.8661 & ------ & ------ & ------ & ----- & ------ & ------ \\
\hline 144 & 0.8573 & 0.8596 & 0.8617 & 0.8637 & 0.8655 & ------ & ------- & ------ & ------ & ------ & ------ \\
\hline 146 & 0.8573 & 0.8594 & 0.8614 & 0.8632 & 0.8649 & 0.8665 & & -------- & -------- & -------- & --------- \\
\hline 148 & 0.8573 & 0.8592 & 0.8610 & 0.8627 & 0.8643 & 0.8658 & 0.8672 & ------ & ------ & ------ & ------ \\
\hline 150 & 0.8573 & 0.8591 & 0.8607 & 0.9623 & 0.8638 & 0.8651 & 0.8664 & ------ & ------- & ------ & ------ \\
\hline 152 & 0.8573 & 0.8589 & 0.8604 & 0.8619 & 0.8632 & 0.8645 & 0.8657 & 0.8669 & ---0.71 & ------ & ----- \\
\hline 154 & 0.8573 & 0.8588 & 0.8602 & 0.8615 & 0.8627 & 0.8639 & 0.8650 & 0.8661 & 0.8671 & ------ & ------- \\
\hline \(15 t\) & 0.8573 & 0.8587 & 0.8599 & 0.9611 & 0.8623 & 0.8633 & 0.8644 & 0.8654 & 0.8663 & 0.8673 & \\
\hline 158 & 0.8573 & 0.8585 & 0.8597 & 0.8608 & 0.8618 & 0.8628 & 0.8638 & 0.8647 & 0.8656 & 0.8664 & \\
\hline 160 & 0.8573 & 0.8584 & 0.8594 & 0.8604 & 0.8614 & 0.8623 & 0.8632 & 0.8640 & 0.8649 & 0.8656 & 0.8664 \\
\hline 162 & 0.8574 & 0.8583 & 0.8592 & 0.8601 & 0.8610 & 0.8618 & 0.8626 & 0.8634 & 0.8642 & 0.8649 & 0.8656 \\
\hline 164 & 0.8574 & 0.8582 & 0.8591 & 0.8599 & 0.8606 & 0.8614 & 0.8621 & 0.8628 & 0.8635 & 0.8642 & 0.8648 \\
\hline \(16 t\) & 0.8574 & 0.8581 & 0.8589 & 0.8596 & 0.8603 & 0.8610 & 0.8616 & 0.8623 & 0.8629 & 0.8635 & 0.8541 \\
\hline 168 & 0.8574 & 0.8581 & 0.8587 & 0.8593 & 0.8600 & 0.8606 & 0.8612 & 0.8617 & 0.8623 & 0.8628 & 0.8634 \\
\hline 170 & 0.8574 & 0.8580 & 0.8586 & 0.8591 & 0.8597 & 0.8602 & 0.8607 & 0.8612 & 0.8617 & 0.8622 & 0.8627 \\
\hline 172 & 0.8574 & 0.8579 & 0.8584 & 0.8589 & 0.8594 & 0.8599 & 0.8603 & 0.8608 & 0.8612 & 0.8617 & 0.8621 \\
\hline 174 & 0.8574 & 0.8579 & 0.8583 & 0.8587 & 0.8591 & 0.8595 & 0.8599 & 0.8603 & 0.8607 & 0.8611 & 0.8615 \\
\hline 176 & 0.8575 & 0.8578 & 0.8582 & 0.8584 & 0.8589 & 0.8593 & 0.8596 & 0.8599 & 0.8603 & 0.8606 & 0.8610 \\
\hline 178 & 0.8575 & 0.8578 & 0.8581 & 0.8584 & 0.8587 & 0.8590 & 0.8593 & 0.8596 & 0.8599 & 0.8601 & 0.8604 \\
\hline 18 C & 0.8575 & 0.8578 & 0.8580 & 0.8583 & 0.8585 & 0.8588 & 0.8590 & 0.8592 & 0.8595 & 0.8597 & 0.8600 \\
\hline 182 & 0.8575 & 0.8577 & 0.8579 & 0.8581 & 0.8583 & 0.8585 & 0.8587 & 0.8589 & 0.8591 & 0.8593 & 0.8595 \\
\hline 184 & 0.8576 & 0.8577 & 0.8579 & 0.858 .7 & 0.858 ? & 0.8583 & 0.8585 & 0.8586 & 0.8588 & 0.8589 & 0.8591 \\
\hline \(18 t\) & 0.8576 & 0.8577 & 0.8578 & \(0.857^{\circ}\) & 0.8580 & 0.8581 & 0.8583 & 0.8584 & 0.8585 & 0.8586 & 0.8587 \\
\hline 188 & 0.8576 & 0.8577 & 0.8578 & 0.8578 & 0.8570 & 0.8580 & 0.8581 & 0.8581 & 0.8582 & 0.8583 & 0.8584 \\
\hline 19 C & 0.8577 & 0.8577 & 0.8577 & 0.8578 & 0.8578 & 0.8578 & 0.8579 & 0.8579 & 0.8583 & 0.8580 & 0.8581 \\
\hline 192 & 0.8577 & 0.8577 & 0.8577 & 0.8577 & 0.8577 & 0.8577 & 0.8577 & 0.8577 & 0.8577 & 0.8577 & 0.8578 \\
\hline 194 & 0.8577 & 0.8577 & 0.8577 & 0.8576 & 0.8576 & 0.8576 & 0.8576 & 0.8575 & 0.8575 & 0.8575 & 0.8575 \\
\hline \(19 t\) & 0.8578 & 0.8577 & 0.8576 & 0.8576 & 0.8575 & 0.8575 & 0.8574 & 0.8574 & 0.8573 & 0.8573 & 0.8572 \\
\hline 198 & 0.8578 & 0.8577 & 0.8576 & 0.8576 & 0.8575 & 0.8574 & 0.8573 & 0.8572 & 0.8571 & 0.8571 & 0.8570 \\
\hline 200 & 0.8579 & 0.8577 & 0.8576 & 0.8575 & 0.8574 & 0.8573 & 0.8572 & 0.8571 & 0.8570 & 0.8569 & 0.8568 \\
\hline
\end{tabular}
table v. - Continued. thermodynamic property of methane - Critical temperature ratio, \(\mathrm{T}_{1} / \mathrm{T}_{0}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Plenum temperature. K} & \multicolumn{11}{|l|}{Plenum pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 \\
\hline 160 & 0.8664 & ---- & ------ & --- & ------ & ------ & ------ & ------ & ------ & - & ------ \\
\hline 162 & 0.8656 &  & ------ & ------ & ------ & ------ & ------ & ------ & ------ & ------ & ------ \\
\hline 164 & 0.8648 & 0.8661 & ------ & ------ & ------ & ------ & ------ & ------ & ------ & ------- & \\
\hline 166 & 0.8641 & 0.8653 & 0.8664 & ------ & ------ & & ------ & & & & \\
\hline 168 & 0.8634 & 0.8644 & 0.8655 & ------ & ------ & ----- & ------ & & ------ & & \\
\hline 17 C & 0.8627 & 0.8637 & 0.8646 & 0.8655 & ------ & ------ & ------ & ------ & ------ & ------ & ------ \\
\hline 172 & 0.8621 & 0.8630 & 0.8638 & 0.8646 & ------ & ------ & ------ & ------ & ------ & ------ & \\
\hline 174 & 0.8615 & 0.8623 & 0.8630 & 0.8638 & 0.8645 & ------ & ------ & ------ & ------- & ---..-- & ------- \\
\hline \(17 \epsilon\) & 0.8610 & 0.8616 & 0.8623 & 0.0630 & 0.8636 & 0.8644 & ------ & ------ & ------ & ------ & ------- \\
\hline 178 & 0.8604 & 0.8610 & 0.8616 & 0.8622 & 0.8628 & 0.8634 & 0.8641 & ------ & ------ & ------ & ------ \\
\hline 18 C & 0.8600 & 0.8604 & 0.8609 & 0.8614 & 0.8620 & 0.8625 & 0.8631 & - & ------- & ------- & ------ \\
\hline 182 & 0.8595 & 0.8599 & 0.8603 & 0.9608 & 0.861 , & 0.8617 & 0.8622 & 0.8628 & ------- & ------ & ------- \\
\hline 184 & 0.8591 & 0.8594 & 0.8598 & 0.8601 & 0.8605 & 0.8609 & 0.8613 & 0.8618 & 0.8624 & ------ & ------ \\
\hline 186 & 0.8587 & 0.8590 & 0.8592 & 0.0595 & 0.8598 & 0.8601 & 0.8605 & 0.8609 & 0.8614 & 0.8620 & \\
\hline 188 & 0.8584 & 0.8585 & 0.8587 & 0.0589 & 0.8592 & 0.8594 & 0.8598 & 0.8601 & 0.8605 & 0.8610 & 0.8616 \\
\hline 190 & 0.8581 & 0.8582 & 0.8583 & 0.8584 & 0.8586 & 0.8588 & 0.8590 & 0.8593 & 0.8597 & 0.8601 & 0.8606 \\
\hline 192 & 0.8578 & 0.8578 & 0.8579 & 0.858 & 0.8581 & 0.8582 & 0.8584 & 0.8586 & 0.8588 & 0.8592 & 0.8596 \\
\hline 194 & 0.8575 & 0.8575 & 0.8575 & 0.9575 & 0.8576 & 0.8576 & 0.8578 & 0.8579 & 0.8581 & 0.8583 & 0.8587 \\
\hline 196 & 0.8572 & 0.8572 & 0.8571 & 0.8571 & 0.8571 & 0.8571 & 0.8571 & 0.8573 & 0.8574 & 0.8576 & 0.8578 \\
\hline 198 & 0.8570 & 0.8569 & 0.8568 & 0.8567 & 0.8567 & 0.8566 & 0.8566 & 0.8567 & 0.8567 & 0.8569 & 0.8571 \\
\hline 20 C & 0.8568 & 0.8567 & 0.8565 & 0.8564 & 0.8563 & 0.8562 & 0.8561 & 0.8561 & 0.8561 & 0.8562 & 0.8563 \\
\hline Plenum & \multicolumn{11}{|l|}{Plenum pressure. \(\mathrm{Nm}^{2} \times 10^{-5}\)} \\
\hline & 30 & 32 & 34 & 36 & 38 & 40 & 42 & 44 & 46 & 48 & 50 \\
\hline 18 C & ------ & ------ & -- & ---- & ------- & ------ & ------ & - & ------- & ------ & \\
\hline 182 & ------ & ------ & ------ & ------ & ------ & ------ & ------ & ------ & ------ & ------ & ------ \\
\hline 184 & ------ & ------ & ------- & ------ & ------ & ------- & ----- & ------ & & ------ & ------ \\
\hline 186 & ------ & ------ & ------ & ------ & ------ & ------ & ------- & ------ & & & ------ \\
\hline \(18 \varepsilon\) & 0.8616 & ------ & ------ & ------ & ------ & ------ & ---- & & & & \\
\hline 19 C & 0.8605 & 0.8612 & ------- & ------ & ------ & ------ & ------ & ------ & ------- & ------ & ------ \\
\hline 19く & 0.8596 & 0.8601 & 0.8607 & ------ & ------ & ------ & ------ & ------ & ------ & ------ & ------ \\
\hline 194 & 0.8587 & 0.8591 & 0.8596 & 0.9603 & ----- & ------ & ------ & ------ & ------ & & ------ \\
\hline 196 & 0.8578 & 0.8582 & 0.8586 & 0.8591 & 0.8590 & -- & ------ & ------ & --- & ------ & ------ \\
\hline 198 & 0.8571 & 0.8573 & 0.8577 & 0.8581 & 0.8587 & 0.8594 & ------ & ------- & ------ & ------ & ------ \\
\hline 20 C & 0.8563 & 0.8565 & 0.8568 & 0.8571 & 0.8576 & 0.8582 & 0.8590 & 0.8599 & ------ & ------ & ------ \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Plenum temperature, K} & \multicolumn{11}{|l|}{Plenum pressure. \(\mathrm{N} \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 50 & 55 & 60 & 65 & 70 & 75 & 80 & 85 & 90 & 95 & 100 \\
\hline 200 & ----- & --- & ------ & ------ & ------ & ------ & ------ & ---- & ------ & - & \\
\hline 202 & ------ & ------ & ------ & ------ & ------ & ------ & ------ & ------ & ----. & ------ & ------ \\
\hline 204 & 0.8603 & ------ & ------ & ----*- & ------ & --. & - & - & & --1.- & \\
\hline 206 & 0.8585 & ------ & - & ----- & - & - & & & & & \\
\hline 208 & 0.8570 & 0.8600 & & & & & & & & & ------ \\
\hline 216 & 0.8556 & 0.8580 & 0.8619 & ------ & ------ & ------ & ------ & ------ & ------ & ------ & ------ \\
\hline 212 & 0.8544 & 0.8563 & 0.8594 & 0.8639 & ----1-- & ------ & ------ & ------ & ------ & --.-. & ----- \\
\hline 214 & 0.8534 & 0.8549 & 0.8574 & 0.8617 & 0.8658 & & & - & ----- & ----- & \\
\hline 216 & 0.8524 & 0.8536 & 0.8556 & 0.0585 & 0.8625 & 0.8672 & 0.8722 & ------ & & & \\
\hline 218 & 0.8516 & 0.8525 & 0.8541 & 0.0564 & 0.8597 & 0.8637 & 0.8682 & 0.8725 & & & \\
\hline 220 & 0.8509 & 0.8515 & 0.8528 & 0.8547 & 0.8573 & 0.8607 & 0.8646 & 0.8685 & 0.8722 & 0.8753 & \\
\hline 222 & 0.8502 & 0.8507 & 0.8516 & 0.8532 & 0.8553 & 0.8582 & 0.8615 & 0.8650 & 0.8685 & 0.8715 & 0.8741 \\
\hline 224 & 0.8496 & 0.8499 & 0.8506 & 0.9518 & 0.8538 & 0.8560 & 0.8588 & 0.8619 & 0.8651 & 0.8680 & 0.8706 \\
\hline 226 & 0.8492 & 0.8493 & 0.8497 & 0.8507 & 0.8521 & 0.8541 & 0.8565 & 0.8592 & 0.8621 & 0.8648 & 0.8673 \\
\hline 228 & 0.8487 & 0.8487 & 0.8490 & 0.9497 & 0.8508 & 0.8524 & 0.8545 & 0.8568 & 0.8594 & 0.8619 & 0.8643 \\
\hline 236 & 0.8484 & 0.8482 & 0.8483 & 0.8488 & 0.8497 & 0.8510 & 0.8527 & 0.8547 & 0.8570 & 0.8593 & 0.8615 \\
\hline 232 & 0.8480 & 0.8478 & 0.8478 & 0.8481 & 0.8487 & 0.8498 & 0.8512 & 0.8529 & 0.8548 & 0.8569 & 0.8590 \\
\hline 234 & 0.8478 & 0.8474 & 0.8473 & 0.0474 & 0.8479 & 0.8487 & 0.8499 & 0.8513 & 0.8530 & 0.8548 & 0.8566 \\
\hline 236 & 0.8476 & 0.8471 & 0.8469 & 0.8469 & 0.8472 & 0.8478 & 0.8487 & 0.8499 & 0.8513 & 0.8529 & 0.8546 \\
\hline 238 & 0.8474 & 0.8469 & 0.8465 & 0.8464 & 0.8468 & 0.8470 & 0.8477 & 0.8487 & 0.8499 & 0.8512 & 0.8527 \\
\hline 240 & 0.8473 & 0.8467 & 0.8462 & 0.946.\()\) & 0.8460 & 0.8463 & 0.8468 & 0.8478 & 0.8486 & 0.8498 & 0.8510 \\
\hline 242 & 0.8472 & 0.8465 & 0.8460 & 0.8457 & 0.8456 & 0.8457 & 0.8461 & 0.8467 & 0.8475 & 0.8485 & 0.8496 \\
\hline 244 & 0.8472 & 0.8464 & 0.8458 & 0.8454 & 0.8457 & 0.8452 & 0.8455 & 0.8459 & 0.8465 & 0.8473 & 0.8483 \\
\hline 246 & 0.8472 & 0.8464 & 0.8457 & 0.8452 & 0.8449 & 0.8449 & 0.8449 & 0.8452 & 0.8457 & 0.8463 & 0.8471 \\
\hline 248 & 0.8472 & 0.8463 & 0.8456 & 0.8451 & 0.8447 & 0.8445 & 0.8445 & 0.8446 & 0.8450 & 0.8455 & 0.8461 \\
\hline 25 C & 0.8472 & 0.8464 & 0.8456 & 0.8450 & 0.8445 & 0.8442 & 0.8441 & 0.8442 & 0.8444 & 0.8448 & 0.8453 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Plenum } \\
\text { temperature, } \\
\mathrm{K}
\end{gathered}
\]} & \multicolumn{11}{|l|}{Plenum pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 100 & 110 & 120 & 130 & 140 & 150 & 160 & 170 & 180 & 190 & 200 \\
\hline 22 C
222 & --...-- & ------ & --------- & -------- & ------ & ----- & ----- & ---- & ----- & -------- & ------- \\
\hline 224 & 0.8706 & 0.8744 & 0.8764 & 0.8772 & 0.8770 & 0.8762 & 0.8750 & 0.8736 & 0.8720 & 0.8704 & 0.8687 \\
\hline 226 & 0.8673 & 0.8712 & 0.8736 & 0.8747 & 0.8748 & 0.8743 & 0.8733 & 0.8721 & 0.8706 & 0.8691 & 0.8675 \\
\hline 228 & 0.8643 & 0.8682 & 0.8708 & 0.8722 & 0.8726 & 0.8723 & 0.8716 & 0.8705 & 0.8692 & 0.8678 & 0.8663 \\
\hline 236 & 0.8615 & 0.8654 & 0.8681 & 0.8697 & 0.8703 & 0.8703 & 0.8698 & 0.8689 & 0.8677 & 0.8665 & 0.8651 \\
\hline 232 & 0.8590 & 0.8627 & 0.8654 & 0.8672 & 0.8681 & 0.8683 & 0.8679 & 0.8672 & 0.8662 & 0.8651 & 0.8638 \\
\hline 234 & 0.8566 & 0.8601 & 0.8629 & 0.8648 & 0.8659 & 0.8663 & 0.8661 & 0.8656 & 0.8647 & 0.8637 & 0.8625 \\
\hline 236 & 0.8546 & 0.8578 & 0.8605 & 0.8825 & 0.8637 & 0.8643 & 0.8643 & 0.8639 & 0.8632 & 0.8623 & 0.8612 \\
\hline 238 & 0.8527 & 0.8557 & 0.8583 & 0.8603 & 0.8616 & 0.8623 & 0.8624 & 0.8622 & 0.8617 & 0.8609 & 0.8599 \\
\hline 240 & 0.8510 & 0.8537 & 0.8562 & 0.8582 & 0.8596 & 0.8604 & 0.8607 & 0.8605 & 0.8601 & 0.8594 & 0.8586 \\
\hline 242 & 0.8496 & 0.8520 & 0.8543 & 0.8562 & 0.8576 & 0.8585 & 0.8589 & 0.8589 & 0.8586 & 0.8580 & 0.8573 \\
\hline 244 & 0.3483 & 0.8504 & 0.8525 & 0.8543 & 0.8557 & 0.8567 & 0.8572 & 0.8573 & 0.8571 & 0.8567 & 0.8560 \\
\hline 246 & 0.8471 & 0.8490 & 0.8509 & 0.8526 & \(0.854 n\) & 0.8550 & 0.8556 & 0.8558 & 0.8557 & 0.8553 & 0.8547 \\
\hline 248 & 0.8461 & 0.8477 & 0.8494 & \(0.851)\) & 0.8524 & 0.8534 & 0.8540 & 0.8543 & 0.8542 & 0.8540 & 0.8535 \\
\hline 250 & 0.8453 & 0.8466 & 0.8481 & 0.8496 & 0.8508 & 0.8518 & 0.8525 & 0.8528 & 0.8529 & 0.8527 & 0.8523 \\
\hline Plenum & \multicolumn{11}{|l|}{Plenum pressure, \(\mathrm{N}^{\text {m }} \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline K & 200 & 210 & 220 & 230 & 240 & 250 & 260 & 270 & 280 & 290 & 300 \\
\hline \[
220
\] & ---------- & --------- & -------- & ------ & ------- & --- & ----- & ------- & --- & --- & ------- \\
\hline 224 & 0.8687 & 0.8669 & 0.8652 & 0.8635 & 0.8619 & 0.8602 & 0.8586 & 0.8570 & 0.8555 & & \\
\hline 226 & 0.8675 & 0.8659 & 0.8642 & 0.8626 & 0.8609 & 0.8593 & 0.8578 & 0.8562 & 0.8547 & 0.8532 & \\
\hline 228 & 0.8663 & 0.8647 & 0.8632 & 0.8616 & 0.8600 & 0.8585 & 0.8569 & 0.8554 & 0.8539 & 0.8525 & 0.8510 \\
\hline 23 C & 0.8651 & 0.8636 & 0.8621 & 0.8606 & 0.8591 & 0.8576 & 0.8561 & 0.8546 & 0.8531 & 0.8517 & 0.8503 \\
\hline 232 & 0.8638 & 0.8624 & 0.8610 & 0.8596 & 0.8581 & 0.8566 & 0.8552 & 0.8538 & 0.8523 & 0.8509 & 0.8495 \\
\hline 234 & 0.8625 & 0.8612 & 0.8599 & 0.8585 & 0.8571 & 0.8557 & 0.8543 & 0.8529 & 0.8515 & 0.8502 & 0.8488 \\
\hline 236 & 0.8612 & 0.8600 & 0.8588 & 0.8575 & 0.8561 & 0.8548 & 0.8534 & 0.8521 & 0.8507 & 0.8494 & 0.8481 \\
\hline 238 & 0.8599 & 0.8588 & 0.8576 & 0.8564 & 0.8551 & 0.8539 & 0.8525 & 0.8512 & 0.8499 & 0.8486 & 0.8473 \\
\hline 24 C & 0.8586 & 0.8576 & 0.8565 & 0.8554 & 0.8542 & 0.8529 & 0.8517 & 0.8504 & 0.8491 & 0.8479 & 0.8466 \\
\hline 242 & 0.8573 & 0.8564 & 0.8554 & 0.8543 & 0.8532 & 0.8520 & 0.8508 & 0.8496 & 0.8483 & 0.8471 & 0.8459 \\
\hline 244 & 0.8560 & 0.8552 & 0.8543 & 0.8533 & 0.8522 & 0.8511 & 0.8499 & 0.8487 & 0.8476 & 0.8464 & 0.8452 \\
\hline 246 & 0.8547 & 0.8540 & 0.8532 & 0.8522 & 0.8512 & 0.8501 & 0.8491 & 0.8479 & 0.8468 & 0.8456 & 0.8445 \\
\hline 248 & 0.8535 & 0.8528 & 0.8521 & 0.8512 & 0.8507 & 0.8492 & 0.8482 & 0.8471 & 0.8460 & 0.8449 & 0.8438 \\
\hline 250 & 0.8523 & 0.8517 & 0.8510 & 0.2502 & 0.8493 & 0.8484 & 0.8474 & 0.8463 & 0.8453 & 0.8442 & 0.8431 \\
\hline
\end{tabular}
TABLE V. - Continued. THERMODYNAMIC PROPERTY OF METHANE - CRITICAL TEMPERATURE RATIO, \(\mathrm{T}_{1} / \mathrm{T}_{0}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Plenum } \\
\text { temperature, } \\
\mathrm{K}
\end{gathered}
\]} & \multicolumn{11}{|l|}{Plenum pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 0 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 \\
\hline 250 & 0.8601 & 0.8572 & 0.8544 & 0.8518 & 0.8493 & 0.8472 & 0.8456 & 0.8445 & 0.8441 & 0.8444 & 0.8453 \\
\hline 255 & 0.8605 & 0.8576 & 0.8548 & 0.8521 & 0.8497 & 0.8475 & 0.8457 & 0.8443 & 0.8435 & 0.8433 & 0.8436 \\
\hline 260 & 0.8609 & 0.8580 & 0.8553 & 0.8526 & 0.8501 & 0.8479 & 0.8459 & 0.8444 & 0.8433 & 0.8427 & 0.8426 \\
\hline 265 & 0.8613 & 0.8585 & 0.8558 & 0.8531 & 0.8507 & 0.8484 & 0.8464 & 0.8447 & 0.8434 & 0.8425 & 0.8420 \\
\hline 270 & 0.8617 & 0.8590 & 0.8563 & 0.8537 & 0.8513 & 0.8490 & 0.8469 & 0.8451 & 0.8437 & 0.8426 & 0.8418 \\
\hline 275 & 0.8622 & 0.8595 & 0.8569 & 0.8544 & 0.8519 & 0.8496 & 0.8476 & 0.8457 & 0.8442 & 0.8429 & 0.8419 \\
\hline 28 C & 0.8627 & 0.8601 & 0.8575 & 0.855 & 0.8526 & 0.8504 & 0.8483 & 0.8464 & 0.8448 & 0.8434 & 0.8423 \\
\hline 285 & 0.8632 & 0.8607 & 0.8582 & 0.8558 & 0.8534 & 0.8512 & 0.8491 & 0.8472 & 0.8455 & 0.8441 & 0.8429 \\
\hline 296 & 0.8638 & 0.8613 & 0.8589 & 0.8565 & 0.854 ? & 0.8520 & 0.8500 & 0.8481 & 0.8464 & 0.8449 & 0.8436 \\
\hline 295 & 0.8644 & 0.8620 & 0.8596 & 0.8573 & 0.8550 & 0.8529 & 0.8509 & 0.8490 & 0.8473 & 0.8458 & 0.8444 \\
\hline 300 & 0.8650 & 0.8626 & 0.8603 & 0.8581 & 0.8559 & 0.8538 & 0.8518 & 0.8500 & 0.8483 & 0.8467 & 0.8454 \\
\hline 305 & 0.8656 & 0.8633 & 0.8611 & 0.8589 & 0.8568 & 0.8547 & 0.8528 & 0.8510 & 0.8493 & 0.8478 & 0.8464 \\
\hline 310 & 0.8663 & 0.8641 & 0.8619 & 0.9597 & 0.8577 & 0.8557 & 0.8538 & 0.8520 & 0.8504 & 0.8488 & 0.8474 \\
\hline 315 & 0.8670 & 0.8648 & 0.8627 & 0.8606 & 0.8586 & 0.8567 & 0.8548 & 0.8531 & 0.8514 & 0.8499 & 0.8485 \\
\hline 32 C & 0.8677 & 0.8656 & 0.8635 & 0.8615 & 0.8596 & 0.8577 & 0.8559 & 0.8542 & 0.8525 & 0.8510 & 0.8496 \\
\hline 325 & 0.8684 & 0.8664 & 0.8644 & 0.8624 & 0.8605 & 0.8587 & 0.8569 & 0.8553 & 0.8537 & 0.8522 & 0.8508 \\
\hline 33 C & 0.8692 & 0.8672 & 0.8652 & 0.8633 & 0.8615 & 0.8597 & 0.8580 & 0.8564 & 0.8548 & 0.8534 & 0.8520 \\
\hline 335 & 0.8699 & 0.8680 & 0.8661 & 0.864 & 0.8625 & 0.8608 & 0.8591 & 0.8575 & 0.8560 & 0.8545 & 0.8532 \\
\hline 340 & 0.8707 & 0.8688 & 0.8670 & 0.9652 & 0.8635 & 0.8618 & 0.8602 & 0.8586 & 0.8571 & 0.8557 & 0.8544 \\
\hline 345 & 0.8715 & 0.8697 & 0.8679 & 0.8662 & 0.8645 & 0.8628 & 0.8613 & 0.8598 & 0.8583 & 0.8569 & 0.8556 \\
\hline 350 & 0.8723 & 0.8705 & 0.8688 & 0.8671 & 0.8655 & 0.8639 & 0.8624 & 0.8609 & 0.8595 & 0.8581 & 0.8569 \\
\hline 355 & 0.8731 & 0.8714 & 0.8697 & 0.8681 & 0.8665 & 0.8650 & 0.8635 & 0.8620 & 0.8606 & 0.8593 & 0.8581 \\
\hline 36 C & 0.8739 & 0.8723 & 0.8707 & 0.8691 & 0.8675 & 0.8660 & 0.8646 & 0.8632 & 0.8618 & 0.8605 & 0.8593 \\
\hline 365 & 0.8748 & 0.8732 & 0.8716 & 0.8700 & 0.8685 & 0.8671 & 0.8657 & 0.8643 & 0.8630 & 0.8617 & 0.8605 \\
\hline 375 & 0.8756 & 0.8741 & 0.8725 & 0.8710 & 0.8695 & 0.8681 & 0.8668 & 0.8654 & 0.8641 & 0.8629 & 0.8617 \\
\hline 375 & 0.8765 & 0.8749 & 0.8735 & 0.8720 & 0.8706 & 0.8692 & 0.8678 & 0.8666 & 0.8653 & 0.8641 & 0.8630 \\
\hline 38 C & 0.8774 & 0.8759 & 0.8744 & 0.8730 & 0.8716 & 0.8702 & 0.8689 & 0.8677 & 0.8665 & 0.8653 & 0.8642 \\
\hline 385 & 0.8782 & 0.8768 & 0.8754 & 0.8730 & 0.8726 & 0.8713 & 0.8700 & 0.8688 & 0.8676 & 0.8665 & 0.8654 \\
\hline 39 C & 0.8791 & 0.8777 & 0.8763 & 0.9749 & 0.8736 & 0.8723 & 0.8711 & 0.8699 & 0.8687 & 0.8676 & 0.8665 \\
\hline 395 & 0.8800 & 0.8786 & 0.8772 & 0.0750 & 0.8746 & 0.8734 & 0.8722 & 0.8710 & 0.8699 & 0.8688 & 0.8677 \\
\hline 40 C & 0.8808 & 0.8795 & 0.8782 & 0.8769 & 0.8756 & 0.8744 & 0.8732 & 0.8721 & 0.8710 & 0.8699 & 0.8689 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Plenum } \\
\text { temperature. } \\
\mathrm{K} \\
\hline
\end{gathered}
\]} & \multicolumn{11}{|l|}{Plenum pressure, \(\mathrm{N} \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 100 & 110 & 120 & 130 & 140 & 150 & 160 & 170 & 180 & 190 & 200 \\
\hline 250 & 0.8453 & 0.8466 & 0.8481 & 0.8496 & 0.8509 & & & & & & \\
\hline 255 & 0.8436 & 0.8443 & 0.8454 & 0.8465 & 0.8575 & 0.8518
0.8484 & 0.8525
0.8491 & 0.8528
0.8495 & 0.8529
0.8497 & 0.8527 & 0.8523 \\
\hline 266 & 0.8426 & 0.8428 & 0.8434 & 0.8441 & 0.8449 & 0.8457 & 0.8491
0.8462 & 0.8495
0.8466 & 0.8497
0.8469 & 0.8496 & 0.8494 \\
\hline 265 & 0.8420 & 0.8419 & 0.8421 & 0.8425 & 0.8430 & 0.8435 & 0.8440 & 0.8466
0.8443 & 0.8469
0.8445 & 0.8459
0.8446
0.8427 & 0.8468
0.8446 \\
\hline 270 & 0.8418 & 0.8414 & 0.3413 & 0.8414 & 0.8416 & 0.8419 & 0.8422 & 0.8425 & 0.8426 & 0.8446
0.8427 & 0.8446 \\
\hline 275 & 0.8419 & 0.8413 & 0.8409 & 0.8407 & 0.8407 & 0.8408 & & & & & \\
\hline 28 C & 0.8423 & 0.8415 & 0.8409 & 0.8405 & 0.8403 & 0.8408 & 0.8410
0.8402 & 0.8411
0.8402 & 0.8412
0.8402 & 0.8412 & 0.8412 \\
\hline 285 & 0.8429 & 0.8419 & 0.8411 & 0.8406 & 0.8402 & 0.8399 & 0.8397 & 0.8396 & 0.8402 & 0.8402 & 0.8401 \\
\hline 29 C & 0.8436 & 0.8425 & 0.8416 & 0.8409 & 0.8404 & 0.8400 & 0.8397 & 0.8394 & & 0.8391 & 0.8393
0.8389 \\
\hline 295 & 0.8444 & 0.8433 & 0.8423 & 0.8415 & 0.8408 & 0.8403 & 0.8399 & 0.8395 & 0.8392
0.8392 & 0.8391
0.8390 & 0.8389
0.8388 \\
\hline 30 C & 0.8454 & 0.8441 & 0.8431 & 0.8422 & 0.8414 & 0.8408 & & & & & \\
\hline 305 & 0.8464 & 0.8451 & 0.8440 & 0.8430 & 0.8422 & 0.8408 & 0.8403
0.8409 & 0.8398 & 0.8395 & 0.8392 & 0.8389 \\
\hline 316 & 0.8474 & 0.8461 & 0.8450 & \(0.844^{\prime}\) & 0.8431 & 0.8423 & 0.8409
0.8417 & 0.8404 & 0.8399 & 0.8395 & 0.8392 \\
\hline 315 & 0.8485 & 0.8472 & 0.8461 & 0.8450 & 0.8441 & 0.8423 & 0.8417
0.8426 & 0.8411
0.8419 & 0.8406
0.8413 & 0.8401 & 0.8397 \\
\hline 326 & 0.8496 & 0.8484 & 0.8472 & 0.8461 & 0.8452 & 0.8443 & 0.8435 & 0.8419
0.8429 & 0.8413
0.8422 & 0.8408
0.8417 & \[
\begin{aligned}
& 0.8404 \\
& 0.8412
\end{aligned}
\] \\
\hline 325 & 0.8508 & 0.8495 & 0.8484 & 0.8473 & 0.8463 & & & & & & \\
\hline 336 & 0.8520 & 0.8507 & 0.8495 & 0.2485 & 0.8475 & 0.8454
0.8466 & 0.8446
0.8457 & 0.8439 & 0.8432 & 0.8426 & 0.8421 \\
\hline 335 & 0.8532 & 0.8519 & 0.8508 & 0.8497 & 0.8487 & 0.8478 & 0.8457 & 0.8450
0.8461 & 0.8443
0.8454 & 0.8437
0.8448 & 0.8431 \\
\hline 340 & 0.8544 & 0.8532 & 0.8520 & 0.8509 & 0.8490 & 0.8490 & 0.8481 & 0.8461 & 0.8454
0.8466 & 0.8448 & 0.8442 \\
\hline 345 & 0.8556 & 0.8544 & 0.8533 & 0.8522 & 0.851 ? & 0.8502 & 0.8494 & 0.8486 & 0.8478 & 0.8471 & 0.84423
0.8465 \\
\hline 356 & 0.8569 & 0.8556 & 0.8545 & 0.8534 & 0.8524 & 0.8515 & & & & & \\
\hline 355 & 0.8581 & 0.8569 & 0.8558 & 0.8547 & 0.8537 & 0.8528 & 0.8519 & 0.8498 & 0.8491 & 0.8484 & 0.8477 \\
\hline 36 C & 0.8593 & 0.8581 & 0.8570 & 0.8566 & 0.8550 & 0.8541 & 0.8532 & 0.8524 & 0.8516 & 0.8496
0.8509 & 0.8490 \\
\hline 365 & 0.8605 & 0.8594 & 0.8583 & 0.8573 & 0.8563 & 0.8553 & 0.8545 & 0.8537 & 0.8516
0.8529 & 0.8509
0.8522 & 0.8502
0.8515 \\
\hline 37C & 0.8617 & 0.8606 & 0.8596 & 0.8586 & 0.8576 & 0.8567 & 0.8558 & 0.8550 & 0.8542 & 0.8522
0.8535 & 0.8515
0.8528 \\
\hline 375 & 0.8630 & 0.8619 & 0.8608 & 0.959 R & & & & & & & \\
\hline 38 C & 0.8642 & 0.8631 & 0.8620 & 0.8611 & 0.8601 & 0.8580
0.8592 & 0.8571 & 0.8563 & 0.8555 & 0.8548 & 0.8541 \\
\hline 385 & 0.8654 & 0.8643 & 0.8633 & 0.8623 & 0.8614 & 0.8605 & 0.8584
0.8597 & 0.8576 & 0.8568 & 0.8561 & 0.8554 \\
\hline 390 & 0.8665 & 0.8655 & 0.8645 & 0.8636 & 0.8627 & 0.8618 & 0.8610 & 0.8602 & 0.8581 & 0.8574 & 0.8567 \\
\hline 395 & 0.8677 & 0.8667 & 0.8657 & 0.8648 & 0.8630 & 0.8630 & 0.8622 & 0.8614 & 0.8607 & 0.8587
0.8600 & 0.8580
0.8593 \\
\hline \(40 C\) & 0.8689 & 0.8679 & 0.8669 & \(0.866^{\prime}\) & 0.8651 & 0.8643 & 0.8635 & 0.8627 & 0.8620 & & \\
\hline
\end{tabular}
TABLE V．－Continued．THERMODYNAMIC PROPERTY OF METHANE－CRITICAL TEMPERATURE RATIO．\(T_{1} \mathrm{~T}_{0}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & \％ &  がすが －0．0．0． &  & \begin{tabular}{l}
～nos． \\
 \(00_{0}^{\circ} 0^{\circ}\)
\end{tabular} &  \(\underset{\infty}{\infty} \infty\) －0．00． & \begin{tabular}{l}
Nonnin \\
 －0．000
\end{tabular} & \begin{tabular}{l}
\(\mathfrak{\infty} \cap \sim \sim n^{2}\) \\
 －0000
\end{tabular} & \(\stackrel{\rightharpoonup}{n}\)
\(\sim\)
\(\infty\)
\(\dot{0}\) \\
\hline & \(\stackrel{\stackrel{8}{\sim}}{\sim}\) & \begin{tabular}{l}
～～～ロは \\
 \(\infty \infty \infty \infty\) －0．0ㅇㅇ
\end{tabular} &  & へのmが in in in \(\infty \infty \infty \infty\) －0000 &  & \begin{tabular}{l}
NがNが \\
 －0．0ㅇㅇ
\end{tabular} & \begin{tabular}{l}
Nさrom \\
のローm \\
 \\
óoóó
\end{tabular} & \[
\begin{aligned}
& \sim \\
& \sim \\
& \stackrel{\infty}{\circ} \\
& \dot{0}
\end{aligned}
\] \\
\hline & 오N &  &  & づかったの かめ M M M －•• 0000 &  &  & のロ～～～～た なのでい － \(0^{\circ} 0^{\circ}\) －0000 & \[
\begin{aligned}
& \stackrel{0}{0} \\
& \stackrel{\sim}{\alpha} \\
& \dot{0}
\end{aligned}
\] \\
\hline \multirow{8}{*}{} & \(\stackrel{\otimes}{\text { ¢ }}\) & ตッ～～～ なよさます －000． & \begin{tabular}{l}
 \\
 －0000
\end{tabular} & \begin{tabular}{l}
かロット～が \\
 －0．0．0．
\end{tabular} & \begin{tabular}{l}
웅웅 \\
 －0000ㅇ
\end{tabular} & \begin{tabular}{l}
 \\
 －00000
\end{tabular} & \begin{tabular}{l}
ロット～N \\
 \(\infty\) \(0^{\circ 00} 0^{\circ}\)
\end{tabular} & \(n\)
0
0
0
0
0 \\
\hline & 号 &  & \(\operatorname{man}_{\infty} \underset{\sim}{n}\) No minmin \(\infty \infty \infty \infty\) －0000 &  \(\cos _{\infty}^{\infty} \underset{\infty}{\infty} \underset{\infty}{\infty}\) －0000 &  &  &  & 0
\(\stackrel{0}{\infty}\)
\(\stackrel{1}{0}\)
\(\dot{0}\) \\
\hline & 号 &  &  & \begin{tabular}{l}
ざッドが \\
 －0000
\end{tabular} &  &  & \begin{tabular}{l}
こさ～～～ \\
 － 00000
\end{tabular} & 0
\(\stackrel{n}{\infty}\)
\(\stackrel{\infty}{0}\)
\(\dot{0}\) \\
\hline & 꾼 &  あがあがあ －\({ }^{\circ} 0^{\circ} 0^{\circ}\) & N～～が品 웅Nun \(\ddot{0} 00^{\circ}\) &  \({ }_{\infty}^{\infty} \infty_{\infty}^{\infty} \infty_{\infty}^{\infty}\) －00000 & ตニ～～～～～ ながあざ \(\dot{\circ} \dot{\circ} \dot{\circ} \dot{\circ}\) 00000 &  & \begin{tabular}{l}
 \\
 －•• 0000
\end{tabular} & \(\bar{\infty}\)
\(\infty\)
\(\infty\)
\(\infty\)
\(\dot{0}\) \\
\hline & － & \begin{tabular}{l}
 \\
 －0000
\end{tabular} & \begin{tabular}{l}
 \\
 －0．000
\end{tabular} & \begin{tabular}{l}
 \\
 －0000
\end{tabular} & \begin{tabular}{l}
－¢ ¢ No \\
 －0．000
\end{tabular} & が～が会 ばばがあ －0．00． & \begin{tabular}{l}
～～～～～すき \\
 －0．0．0．
\end{tabular} & \(\stackrel{\sim}{\infty}\) \\
\hline & 옥 &  & \begin{tabular}{l}
 \\
 －0．000
\end{tabular} &  &  &  &  & \(m\)
\(\sim\)
\(\sim\)
\(\infty\)
0
0
0 \\
\hline & － &  になすき \(\infty\) \(0000^{\circ}\) &  & \(\operatorname{mon}_{\infty} \mathrm{m}_{\mathrm{O}}\) \(\infty_{\infty} m_{\infty} \operatorname{mb}_{\infty}\) －0．0்○ & \(\rightarrow 0\) が品 ながかなが \(\dot{0} 0^{\circ} 0^{\circ}\) &  &  &  \\
\hline & \(\stackrel{8}{8}\) & \begin{tabular}{l}
 \\
 －© óo
\end{tabular} & \begin{tabular}{l}
N゙かの积 \\
 －0．0．0
\end{tabular} &  & \begin{tabular}{l}
ご～～～～～～ \\
 －0000
\end{tabular} & 웅ñ ががごn －000． & ずか い゙ \(\infty \infty \propto \infty\) －00000 & \(\circ\)
\(\stackrel{+}{0}\)
\(\infty\)
\(\dot{0}\)
\(\dot{0}\) \\
\hline 艺 &  & 化出呺出 nN～NN &  ～NNN &  & NOMNO mmmmm & 促出品出 mmmm &  mmmm & ¢ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{11}{*}{} & 8 &  & \begin{tabular}{l}
 \\
 －0．0．0
\end{tabular} &  &  & \begin{tabular}{l}
へon～～～N \\
がㅇNN \\
\(\infty_{\infty}^{\infty} \cos _{\infty}{ }^{\infty}\) \\
－0்0்
\end{tabular} &  &  &  & r
\(\stackrel{1}{\circ}\)
\(\stackrel{\circ}{0}\) \\
\hline & 8 &  & \begin{tabular}{l}
UnNN \(\infty\) \\
\(n_{n} \infty+\infty\) \\
\(\infty \infty \infty \propto \infty\) \\
－0．0்0
\end{tabular} & \begin{tabular}{l}
\(\infty \propto \infty \infty \infty\) \\
 \\
\(\alpha \infty \propto \infty \alpha\) \\
－00000
\end{tabular} &  & \begin{tabular}{l}
品～No \\
우NN \\
かめ \\
－்000
\end{tabular} & デッグかの かのおのふ かめの \(00^{\circ} 0^{\circ}\) & がよがった。 \(\infty\)
\(\alpha\)
\(\infty\)
\(\infty\)
\(\infty\)
\(\alpha\)
\(\circ\) －0000 & \begin{tabular}{l}
no ㅇmo \\
 かのすよか \(00^{\circ} 0^{\circ}\)
\end{tabular} & ®
\(\stackrel{\sim}{\circ}\)
\(\stackrel{0}{0}\)
0 \\
\hline & \(\stackrel{8}{8}\) &  & \begin{tabular}{l}
ペべがが \\
が下が \\
－0．00́
\end{tabular} & \begin{tabular}{l}
へへへへ。 \\
「～NがN \(\infty \infty \infty \infty\) \(\dot{\circ}^{\circ} 0^{\circ \circ}\)
\end{tabular} &  &  &  &  & が～～～～～～～ ㅇㅇㅇㅇㅇ －0்0் － & \(\stackrel{\square}{0}\)
\(\stackrel{O}{0}\)
\(\stackrel{0}{0}\) \\
\hline & \(\bigcirc\) & ～～～～～～～ た人かん \(\dot{\circ} 0^{\circ} 0^{\circ}\) & \begin{tabular}{l}
 \\
 －0．00．
\end{tabular} & \begin{tabular}{l}
～ロ゚～～～～～ \\
\(\begin{array}{ll}\infty & \infty \\ \infty & \infty \\ 0\end{array}\) \\
－் \(0^{\circ} 0^{\circ}\)
\end{tabular} &  & \begin{tabular}{l}
が的さ～ \\
 \\
\(\infty \infty \infty\) \\
－0000
\end{tabular} &  &  & \begin{tabular}{l}
ざぎざ品 \\
 \(\dot{-0.00}\)
\end{tabular} & \begin{tabular}{l}
0 \\
\(\stackrel{\circ}{\circ}\) \\
\(\stackrel{\circ}{\circ}\) \\
\hline
\end{tabular} \\
\hline & 8 & \begin{tabular}{l}
Nますぎい \\
 －0．0．0．
\end{tabular} &  ト人 \(\infty \infty \infty \infty\) －0．000 & がすざが \(\infty \times \infty\) \(\infty \infty \infty \infty\) －0．00ㅇㅇ & N－ON moㅇㅇ웅 \(\infty \infty \infty \infty\) －0000 & がぎーの Nのばが \(\infty_{\infty} \infty_{\infty}\) －0．000 & \begin{tabular}{l}
へさ～のダか \\
 －000ㅇ․
\end{tabular} & \begin{tabular}{l}
さ～のロ～～ \\
 －0000
\end{tabular} & \begin{tabular}{l}
anmon \\
 のनのण －0．0ㅇ․
\end{tabular} & N
\(\stackrel{0}{0}\)
\(\dot{0}\) \\
\hline & 8 &  かんたが \(\therefore 0^{\circ} 0^{\circ} 0^{\circ}\) &  &  &  &  & Nーがのが かのよが， \(\therefore 0^{\circ 0} 0^{\circ}\) &  & ～～N～～～ 웅웅웅 －0000 & N
人̀
\(\vdots\)
\(\dot{\circ}\) \\
\hline & \％ & に下た \(\underset{\infty}{\infty} \underset{\infty}{\infty} \underset{\infty}{\underset{\infty}{\infty}} \underset{\infty}{\infty}\) \(\therefore 0^{\circ} 0^{\circ} 0^{\circ}\) & \begin{tabular}{l}
 \\
 \\
\(\infty \infty \infty \infty \infty\) \\
－00000
\end{tabular} &  & \begin{tabular}{l}
 \\
がのこの \\
 \\
－0．00．
\end{tabular} &  & －※ － － 0 00000 &  & こ～～～へ人⿱⿰⿴⿰丿㇇⺀⿺乀乛⿱二小欠 －0000 & \begin{tabular}{l}
\(\sim\) \\
\(\infty\) \\
\hline \\
\(\stackrel{\circ}{\circ}\) \\
\(\dot{\circ}\)
\end{tabular} \\
\hline & 8 &  \(\hat{\infty} \hat{\infty} \hat{\infty} \times \underset{\infty}{\infty}\) \(\therefore 0_{0}^{\circ} 0^{\circ}\) &  & \begin{tabular}{l}
NNが会会 \\
\({ }_{\substack{\infty \\ \infty \\ \alpha_{\infty}^{\infty} \\ \infty \\ \infty \\ \infty \\ \infty \\ \infty \\ \infty \\ 0}}^{\infty}\) \\
－0000
\end{tabular} &  & \begin{tabular}{l}
が品が \\
 めのよのよ －0000．
\end{tabular} &  &  &  영여웅 －00000 & \begin{tabular}{l}
\(\infty\) \\
\(\infty\) \\
\(\infty\) \\
\hline \\
0 \\
\(\dot{0}\)
\end{tabular} \\
\hline & 슥 &  & \begin{tabular}{l}
\(\sigma \infty A \infty\) \\
\(\cdots m+i n+\infty\) \\
\(\infty \infty \infty \infty \infty\) \\
\(00^{\circ 0} 0^{\circ}\)
\end{tabular} &  &  &  &  &  & \begin{tabular}{l}
Mo～～～～～～～～ \\
 －0000
\end{tabular} & ¢
\(\stackrel{\circ}{\circ}\)
\(\stackrel{\circ}{\circ}\) \\
\hline & 앙 &  &  ＋\(+\infty\) \(\propto \infty \infty \infty\) －00000 &  & \begin{tabular}{l}
○～～～～ \\
N゙ずがn \\
－ \\
－000．
\end{tabular} & \begin{tabular}{l}
べがかんい \\
 \(\infty \infty \infty\) －0．000
\end{tabular} &  & べすご出 웅양ㅇㅇ －0000 &  & 응
\(\square\)
\(\square\)
0 \\
\hline & \(\bigcirc\) &  & \begin{tabular}{l}
～ロのペ \\
 －000．0
\end{tabular} &  &  &  &  &  & ペ～がめ。 여융 \(\therefore 0000\) & \(\stackrel{\sim}{0}\) \\
\hline 家 &  & \[
\left\lvert\, \begin{array}{lll}
0 \\
0 \\
\hline
\end{array}\right.
\] &  &  &  &  & 的的的心緛 & 足出咍品 &  in in inum & O \\
\hline
\end{tabular}
TABLE V. - Concluded. THERMODYNAMIC PROPERTY OF METHANE - CRITICAL TEMPERATURE RATIO. \(T_{1} T_{0}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{array}{|c}
\text { Plenum } \\
\text { temperature, } \\
K
\end{array}
\]} & \multicolumn{11}{|l|}{Plenum pressure, \(\mathrm{N} \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 200 & 210 & 220 & 230 & 240 & 250 & 260 & 270 & 280 & 290 & 300 \\
\hline 4 CC & 0.8606 & 0.8599 & 0.8593 & 0.8587 & 0.8581 & & 0.8570 & & & & \\
\hline 405 & 0.8619 & 0.8612 & 0.8606 & 0.8607 & 0.8594 & 0.8589 & 0.8583 & 0.8565
0.8578 & 0.8580
0.8573 & 0.8555
0.8568 & 0.8551
0.8563 \\
\hline 41 C & 0.8631 & 0.8625 & 0.8619 & 0.8613 & 0.8607 & 0.8601 & 0.8596 & 0.8591 & 0.8586 & 0.8568
0.8581 & 0.8563 \\
\hline 415 & 0.8644 & 0.8637 & 0.8631 & 0.9625 & \(0.861{ }^{\circ}\) & 0.8614 & 0.8609 & 0.8603 & 0.8598 & 0.8593 & 0.8589 \\
\hline 42 C & 0.8656 & 0.8650 & 0.8644 & 0.8638 & 0.8632 & 0.8627 & 0.8621 & 0.8616 & 0.8611 & 0.8606 & 0.8601 \\
\hline 425 & 0.8668 & 0.8662 & 0.8656 & 0.8650 & 0.8645 & 0.8639 & 0.8634 & 0.8629 & 0.8623 & 0.8619 & \\
\hline 430 & 0.8681 & 0.8674 & 0.8668 & 0.8663 & 0.8657 & 0.8651 & 0.8646 & 0.8641 & 0.8636 & 0.8631 & 0.8614 \\
\hline 435 & 0.8693 & 0.8687 & 0.8681 & 0.8675 & 0.8669 & 0.8664 & 0.8658 & 0.8653 & 0.8648 & 0.8643 & 0.8639 \\
\hline 44 C & 0.8705 & 0.8698 & 0.8693 & 0.9687 & 0.8681 & 0.8676 & 0.8670 & 0.8665 & 0.8660 & 0.8656 & 0.8651 \\
\hline 445 & 0.8717 & 0.8710 & 0.8704 & 0.8699 & 0.8693 & 0.8688 & 0.8682 & 0.8677 & 0.8672 & 0.8668 & 0.8663 \\
\hline 450
455 & 0.8728 & 0.8722 & 0.8716 & 0.8710 & 0.8705 & 0.8700 & 0.8694 & 0.8689 & 0.8684 & & \\
\hline 455 & 0.8740 & 0.8734 & 0.8728 & 0.8722 & 0.8717 & 0.8711 & 0.8706 & 0.8701 & 0.8684
0.8696 & 0.8680
0.8691 & 0.8675
0.8687 \\
\hline 46 C & 0.8751 & 0.8745 & 0.8739 & 0.8734 & 0.8728 & 0.8723 & 0.8718 & 0.8713 & 0.8708 & 0.8703 & 0.8698 \\
\hline 465 & 0.8762 & 0.8756 & 0.8751 & 0.0745 & 0.8740 & 0.8734 & 0.8729 & 0.8724 & 0.8720 & 0.8715 & 0.8710 \\
\hline 47 C & 0.8773 & 0.8767 & 0.8762 & 0.0756 & 0.8751 & 0.8746 & 0.8741 & 0.8736 & 0.8731 & 0.8726 & 0.8722 \\
\hline 475 & 0.8784 & 0.8778 & 0.8773 & \(0 . R 767\) & \(0.876 ?\) & 0.8757 & 0.8752 & 0.8747 & & & \\
\hline 48 C & 0.8795 & 0.8789 & 0.8784 & 0.8778 & 0.8773 & 0.8768 & 0.8763 & 0.8758 & 0.8753 & 0.8749 & 0.8733 \\
\hline 485 & 0.8805 & 0.8800 & 0.8794 & 0.0789 & 0.8784 & 0.8779 & 0.8774 & 0.8769 & 0.8764 & 0.8750 & 0.8755 \\
\hline 490 & 0.8816 & 0.8810 & 0.8805 & 0.8799 & 0.8794 & 0.8789 & 0.8784 & 0.8780 & 0.8775 & 0.8770 & 0.8766 \\
\hline 495 & 0.8826 & 0.8820 & 0.8815 & 0.9810 & 0.8805 & 0.8800 & 0.8795 & 0.8790 & 0.8786 & 0.8781 & 0.8776 \\
\hline 50 C & 0.8836 & 0.8830 & 0.8825 & 0.982 ? & 0.8815 & 0.8810 & 0.8805 & 0.8801 & 0.8796 & & \\
\hline 505 & 0.8846 & 0.8840 & 0.8835 & 0.8830 & 0.8825 & 0.8820 & 0.8816 & 0.8811 & 0.8805 & 0.8802 & 0.8787 \\
\hline 51 C & 0.8855 & 0.8850 & 0.8845 & 0.884 & 0.8835 & 0.8830 & 0.8826 & 0.8821 & 0.8816 & 0.8812 & 0.8808 \\
\hline 515 & 0.8865 & 0.8860 & 0.8855 & 0.8850 & 0.8845 & 0.8840 & 0.8835 & 0.8831 & 0.8826 & 0.8822 & 0.8808
0.8818 \\
\hline 520 & 0.8874 & 0.8869 & 0.8864 & 0.8859 & 0.8855 & 0.8850 & 0.8845 & 0.8841 & 0.8836 & 0.8832 & 0.8828 \\
\hline 525 & 0.8884 & 0.8879 & 0.8874 & 0.9869 & 0.8864 & 0.8859 & 0.8855 & 0.8850 & 0.8846 & & \\
\hline 53 C & 0.8893 & 0.8888 & 0.8883 & 0.9878 & 0.8873 & 0.8869 & 0.8864 & 0.8860 & 0.8846
0.8855 & 0.8842
0.8851 & 0.8837
0.8847 \\
\hline 535 & 0.8902 & 0.8897 & 0.8892 & 0.8887 & 0.8882 & 0.8878 & 0.8873 & 0.8869 & 0.8865 & 0.8851
0.8860 & 0.8847
0.8856 \\
\hline 54 C & 0.8910 & 0.8906 & 0.8901 & 0.8896 & 0.8891 & 0.8887 & 0.8883 & 0.8878 & 0.8874 & 0.8870 & 0.88566 \\
\hline 545 & 0.8919 & 0.8914 & 0.8910 & 0.8905 & 0.8900 & 0.8896 & 0.8891 & 0.8887 & 0.8883 & 0.8879 & 0.8875 \\
\hline 550 & 0.8928 & 0.8923 & 0.8918 & 0.8914 & \(0.890^{\circ}\) & 0.8905 & 0.8900 & & & & \\
\hline 555 & 0.8936 & 0.8931 & 0.8927 & 0.8922 & 0.8918 & 0.8913 & 0.8909 & 0.8905 & 0.8901 & 0.8888
0.8896 & 0.8884
0.8892 \\
\hline 56 C & 0.8944 & 0.8939 & 0.8935 & 0.8930 & 0.8926 & 0.8922 & 0.8917 & 0.8913 & 0.8909 & 0.8905 & 0.8901 \\
\hline 565 & 0.8952 & 0.8948 & 0.8943 & 0.8939 & 0.8934 & 0.8930 & 0.8926 & 0.8922 & 0.8918 & 0.8914 & 0.8910 \\
\hline 570 & 0.8960 & 0.8956 & 0.8951 & 0.8947 & 0.8942 & 0.8938 & 0.8934 & 0.8930 & 0.8926 & 0.8922 & 0.8918 \\
\hline 575 & 0.8963 & 0.8963 & 0.8959 & 0.8955 & 0.8950 & 0.8946 & 0.8942 & 0.8938 & 0.8934 & 0.8930 & \\
\hline 58 C & 0.8975 & 0.8971 & 0.8967 & 0.8962 & 0.8959 & 0.8954 & 0.8950 & 0.8946 & 0.8942 & 0.8938 & 0.8934 \\
\hline 585 & 0.8983 & 0.8979 & 0.8974 & 0.897 & 0.8966 & 0.8962 & 0.8958 & 0.8954 & 0.8950 & 0.8946 & 0.8942 \\
\hline 59 C & 0.8990 & 0.8986 & 0.8982 & 0.8978 & 0.8973 & 0.8969 & 0.8965 & 0.8962 & 0.8958 & 0.8954 & 0.8950 \\
\hline 595 & 0.8998 & 0.8993 & 0.8989 & 0.9985 & 0.8981 & 0.8977 & 0.8973 & 0.8969 & 0.8965 & 0.8961 & 0.8958 \\
\hline 60 C & 0.9005 & 0.9001 & 0.8997 & 0.8992 & 0.8988 & 0.8984 & 0.8980 & 0.8977 & 0.8973 & 0.8969 & 0.8965 \\
\hline
\end{tabular}
TABLE VI．－THERMODYNAMIC PROPERTY OF METHANE－COMPRESSIBILITY FACTOR．\(Z_{0}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{11}{*}{\[
\text { Pressure, } \mathrm{N} / \mathrm{m}^{2} \times 10^{-5}
\]} & &  & 1 \begin{tabular}{c|c|c:}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & 1 \begin{tabular}{c|c|c:c}
1 & 1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} &  &  & ～ロのが か～Nのが \(\infty \infty \infty\) －0000 & か～～～～ のがのデ～ －0．0．0． & \[
\begin{aligned}
& \hat{\sim} \\
& \underset{\sim}{\tilde{0}} \\
& \dot{0}
\end{aligned}
\] \\
\hline & \(\infty\) & \begin{tabular}{l|l|l|l}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\hline
\end{tabular} & 1 1 \begin{tabular}{ll|l|l}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} & ： \(1:|c| c\) &  & \(\sim \infty 0^{\infty}\)下～N Non \(\bullet 0\) －0．00 &  &  & \(\stackrel{\infty}{\square}\) \\
\hline & \(\infty\) & （1：c｜c：｜ & 1 \(1:|c| c\) &  &  &  のo \(\therefore 0^{\circ 0} 0^{\circ}\) &  &  & \(\stackrel{\sim}{o}\) \\
\hline & r & \begin{tabular}{cc:c|c}
1 & 1 & 1 & 1 \\
1 & & 1 & 1 \\
1 & 1 & & \\
1 & 1 & 1
\end{tabular} & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
& 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} &  &  がのか。 \(\infty\) \(000^{\circ}\) & がッペ～ がのーが －0000 &  テ̄Noño －0．00． & ～ㅇㅇㅇ웅 のずすずす －ósó & \(O\) \\
\hline & \(\bigcirc\) & \begin{tabular}{l|l|l|l}
1 & 1 & 1 & 1 \\
1 & & & 1 \\
1 & 1 & 1 & \\
1 & 1 & 1
\end{tabular} & \begin{tabular}{c|c|c:c}
1 & 1 & 1 \\
1 & & 1 \\
1 & & \\
1 & 1 & 1
\end{tabular} & \begin{tabular}{l}
NoNべN \\
 －0்0்
\end{tabular} &  & の～mNo へ～～～～ ののののの －00000 &  のペさすす －000ㅇ & \begin{tabular}{l}
Norino \\
 －0000
\end{tabular} & \(\stackrel{n}{n}\) \\
\hline & ᄂ & 1 \(1: 11: 11\) &  &  & 우Nin \(\sin _{\sim}^{\sigma}\) す～N～N －00000 &  & \begin{tabular}{l}
がざいか \\
 \(00^{\circ 0} 0^{\circ}\)
\end{tabular} & \begin{tabular}{l}
Ma～N～～～ \\
 －0000
\end{tabular} & \[
\begin{aligned}
& \stackrel{0}{0} \\
& \stackrel{\circ}{\circ} \\
& \dot{\circ}
\end{aligned}
\] \\
\hline & \(\checkmark\) & \begin{tabular}{l|l|l|l}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{tabular} &  & にたの～～～ जテ～Nテ～N －00000 &  & \begin{tabular}{l}
のむ～～～～ \\
 －0．000
\end{tabular} &  &  & d
\(\stackrel{0}{0}\)
\(\vdots\)
0 \\
\hline & \(\infty\) &  & ํ．N～のが ज N～Nの －0000 &  のずすずら \(\therefore 0000^{\circ}\) & \begin{tabular}{l}
NMN～～ \\
 －000ㅇ
\end{tabular} & \begin{tabular}{l}
～くらへの \\
 －0000
\end{tabular} & Noñ～m がたがた \(00^{\circ 00}\) & NOめ．「ふふふた －0．00． & \(\square\)
\(\sim\)
\(\sim\)
\(\sim\)
\(\stackrel{1}{0}\) \\
\hline & \(\sim\) &  & \begin{tabular}{l}
ㅇN～N Nom \\
 －0்óo
\end{tabular} & ペ～～～～～～ －0．0． －\(\sigma\). －000 & MNON～～ タ゚ラスNス －0．00ㅇ & ペ～～～が ふたふたの －0்○் &  & \begin{tabular}{l}
anoino \\
 \\
 \(\therefore 0^{\circ} 0^{\circ}\)
\end{tabular} & \(n\)
\(\sim\)
\(\infty\)
\(\infty\)
0
0 \\
\hline & － &  & MがNに゚「た人下人 ののホの。 \(00^{\circ 0}\) &  & \begin{tabular}{l}
－N№m \\
 －000்
\end{tabular} &  &  &  & \(\infty\)
\(\sim\)
\(\sim\)
\(\sigma\)
\(\dot{0}\) \\
\hline & － & \[
\begin{aligned}
& 80808 \\
& 80808 \\
& 080 \\
& i n \\
& i n
\end{aligned}
\] &  &  &  &  &  & \[
\begin{aligned}
& 80880 \\
& 808080 \\
& 080 \\
& 10.10 i
\end{aligned}
\] & \begin{tabular}{l}
\(\circ\) \\
\hline 8 \\
\hline \\
\hline
\end{tabular} \\
\hline  & 4 & \(\underset{\sim}{\sim} \underset{N}{N} \underset{\sim}{N} \underset{\sim}{\infty}\) ーのームー &  &  &  &  &  &  & \(\stackrel{\square}{-}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature,
K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} \mathrm{m}^{2} \cdot 10^{-5}\)} \\
\hline & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 \\
\hline 156 & 0.8183 & ---.--- & ----- & ---- & --...-- & ---- & ------ & & ------ & - & \\
\hline 152 & 0.8286 & & ------ & ---- & ------ & -- & ------ & ------ & ------ & -- & ------ \\
\hline 154
156
156 & 0.8380
0.8465 & 0.7957
0.8073 & -------- & & & & & & & & \\
\hline 158 & 0.8542 & 0.8177 & 0.7770 & & & --.--- & & & & & ------- \\
\hline 160 & 0.8612 & 0.8271 & 0.7895 & 0.7469 & ------ & ------ & & & & & \\
\hline 162 & 0.8677 & 0.8357 & 0.8007 & 0.7617 & & ---- & & ---- & & & \\
\hline 164 & 0.8737
0.8792 & 0.8436
0.8508 & 0.8109 & 0.7747 & 0.7345 & & & & & & \\
\hline 168 & 0.8844 & 0.8574 & \({ }_{0.8286}\) & \(\bigcirc\) & 0.7494 & \({ }_{0}^{0.7252}\) & -------- & & & & \\
\hline 170 & 0.8892 & 0.8636 & 0.8364 & 0.8072 & 0.7756 & 0.7407 & 0.7013 & ------ & & ------ & ------ \\
\hline 172 & 0.8936 & 0.8693 & 0.8436 & 0.8161 & 0.7866 & 0.7545 & 0.7188 & 0.6780 & & & \\
\hline 174 & 0.8978 & 0.8747 & 0.8502 & 0.8244 & 0.7967 & 0.7669 & 0.7342 & 0.6977 & 0.6555 & & \\
\hline 176
178 & 0.9618 & 0.8796 & 0.8564 & 0.9317 & 0.8059 & 0.7781 & 0.7479 & 0.7148 & 0.6775 & 0.6338 & \\
\hline 178 & 0.9054 & 0.8843 & 0.8622 & 0.839 ? & 0.8145 & 0.7884 & 0.7603 & 0.7299 & 0.6963 & 0.6582 & 0.6131 \\
\hline 186
182
188 & 0.9089
0.9122 & 0.8887
0.8928 & 0.8676
0.8727 & 0.8455
0.8517 & 0.8227 & 0.7978
0.8065 & 0.7716 & 0.7435 & 0.7129 & 0.6789 & 0.6401 \\
\hline 184 & 0.9153 & 0.8967 & \({ }_{0.8774}\) & 0.8517
0.8574 & 0.829
0.8365 & 0.8065
0.8145 & 0.7820
0.7915 & 0.7558
0.7670 & 0.7276
0.7409 & 0.6968
0.7127 & 0.6625
0.6818 \\
\hline 186 & 0.9182 & 0.9004 & 0.8819 & 0.8628 & 0.8429 & 0.8220 & 0.8002 & 0.7773 & 0.7529 & 0.7269 & 0.6988 \\
\hline 188 & 0.9213 & 0.9039 & 0.8862 & 0.9678 & 0.8489 & 0.8291 & 0.8084 & 0.7868 & 0.7640 & 0.7398 & 0.7139 \\
\hline 19 C & 0.9237 & 0.9072 & 0.8902 & 0.9726 & 0.8544 & 0.8356 & 0.8160 & 0.7956 & 0.7741 & 0.7515 & 0.7276 \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Temperature, } \\
K
\end{gathered}
\]} & \multicolumn{11}{|l|}{Pressure. \(\mathrm{N} \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 30 & 32 & 34 & 36 & 38 & 40 & 42 & 44 & 46 & 48 & 50 \\
\hline 170
172
172 & -------- & ----- & ---- & ------- & ------ & ------ & ------ & ------ & --- & --- & ------ \\
\hline 174
176
176 & & & & & & & & & - & & \\
\hline 176
178 & 0.6131 & ------- & & & --..--- & ------ & & & & & \\
\hline 18 C & 0.6401 & 0.5935 & & ------ & ------ & -..--- & & ------ & & & \\
\hline 182 & 0.6625 & 0.6232 & 0.5753 & & ------ & & & & & 相 & \\
\hline 184
186 & 0.6818
0.6988 & 0.6474
0.6580 & 0.6076 & 0.5589 & & & & & & & ----- \\
\hline 188 & 0.7139 & 0.6860 & 0.6554 & 0.6212 & 0.5815 & 0.4325
0.5326 & 0.4613 & & & & \\
\hline 196 & 0.7276 & 0.7020 & 0.6743 & 0.6441 & 0.6103 & 0.5712 & 0.5234 & 0.4556 & - & ------ & \\
\hline
\end{tabular}
TABLE VI. - Continued. THERMODYNAMIC PROPERTY OF METHANE - COMPRESSIBILITY FACTOR, \(\mathrm{Z}_{0}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature. K} & \multicolumn{11}{|l|}{Pressure. \(\mathrm{N} \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 50 & 55 & 60 & 65 & 70 & 75 & 80 & 85 & 90 & 95 & 100 \\
\hline 19 C & ------ & ------ & ------ & ------ & ------ & --- & ------ & ------- & ------ & ------ & \\
\hline 192 & 0.2347 & 0.2314 & 0.2402 & 0.2517 & 0.2642 & 0.2773 & 0.2907 & 0.3043 & 0.3179 & 0.3316 & 0.3452 \\
\hline 194 & 0.3720 & 0.2513 & 0.2515 & 0.360 & 0.2709 & 0.2830 & 0.2957 & 0.3086 & 0.3218 & 0.3351 & 0.3485 \\
\hline \(19 t\) & 0.4622 & 0.3000 & 0.2693 & 0.2713 & 0.2795 & 0.2900 & 0.3016 & 0.3138 & 0.3264 & 0.3393 & 0.3522 \\
\hline 198 & 0.5122 & 0.3893 & 0.3004 & 0.2875 & 0.2907 & 0.2987 & 0.3088 & 0.3200 & 0.3319 & 0.3441 & 0.3566 \\
\hline 206 & 0.5487 & 0.4553 & 0.3528 & 0.3118 & 0.3057 & 0.3097 & 0.3176 & 0.3274 & 0.3382 & 0.3497 & 0.3616 \\
\hline 202 & 0.5780 & 0.5013 & 0.4120 & 0.3474 & 0.3263 & 0.3239 & 0.3284 & 0.3362 & 0.3457 & 0.3562 & 0.3674 \\
\hline 204 & 0.6027 & 0.5369 & 0.4615 & 0.3914 & 0.3537 & 0.3420 & 0.3418 & 0.3468 & 0.3545 & 0.3638 & 0.3740 \\
\hline 206 & 0.6241 & 0.5860 & 0.5011 & 0.4354 & 0.3872 & 0.3648 & 0.3582 & 0.3595 & 0.3649 & 0.3725 & 0.3816 \\
\hline 208 & 0.6430 & 0.5909 & 0.5337 & 0.4745 & 0.4234 & 0.3918 & 0.3779 & 0.3746 & 0.3770 & 0.3826 & 0.3902 \\
\hline 210 & 0.6600 & 0.6126 & 0.5614 & 0.5081 & 0.4585 & 0.4215 & 0.4007 & 0.3921 & 0.3909 & 0.3941 & 0.4000 \\
\hline 212 & 0.6754 & 0.6318 & 0.5854 & 0.5372 & 0.4906 & 0.4518 & 0.4258 & 0.4120 & 0.4069 & 0.4073 & 0.4111 \\
\hline 214 & 0.6895 & 0.6491 & 0.6066 & 0.5626 & 0.5197 & 0.4810 & 0.4519 & 0.4337 & 0.4246 & 0.4219 & 0.4234 \\
\hline 216 & 0.7025 & 0.6649 & 0.6256 & 0.5852 & 0.5451 & 0.5081 & 0.4778 & 0.4565 & 0.4438 & 0.4380 & 0.4370 \\
\hline 218 & 0.7145 & 0.6793 & 0.6428 & 0.6054 & 0.5682 & 0.5331 & 0.5028 & 0.4795 & 0.4639 & 0.4552 & 0.4518 \\
\hline 22 C & 0.7257 & 0.6926 & 0.6585 & 0.6237 & 0.5890 & 0.5559 & 0.5263 & 0.5021 & 0.4845 & 0.4733 & 0.4675 \\
\hline 222 & 0.7361 & 0.7049 & 0.6729 & 0.6404 & 0.6080 & 0.5768 & 0.5482 & 0.5239 & 0.5050 & 0.4918 & 0.4839 \\
\hline 224 & 0.7463 & 0.7164 & 0.6863 & 0.6559 & 0.6254 & 0.5959 & 0.5686 & 0.5445 & 0.5250 & 0.5104 & 0.5007 \\
\hline \(22 \epsilon\) & 0.7552 & 0.7272 & 0.6987 & 0.670 & 0.6414 & 0.6136 & 0.5875 & 0.5640 & 0.5442 & 0.5288 & 0.5177 \\
\hline 228 & 0.7639 & 0.7373 & 0.7103 & 0.4832 & 0.656 ? & 0.6299 & 0.6050 & 0.5823 & 0.5627 & 0.5467 & 0.5346 \\
\hline 23 C & 0.7721 & 0.7468 & 0.7212 & 0.6955 & 0.6700 & 0.6451 & 0.6214 & 0.5995 & 0.5802 & 0.5640 & 0.5512 \\
\hline 232 & 0.7799 & 0.7557 & 0.7314 & 0.7073 & 0.6829 & 0.6592 & 0.6366 & 0.6156 & 0.5967 & 0.5805 & 0.5674 \\
\hline 234 & 0.7873 & 0.7642 & 0.7410 & 0.7178 & 0.6949 & 0.6724 & 0.6509 & 0.6307 & 0.6124 & 0.5964 & 0.5830 \\
\hline 236 & 0.7943 & 0.7722 & 0.7501 & 0.728 : & 0.7061 & 0.6848 & 0.6642 & 0.6449 & 0.6272 & 0.6114 & 0.5980 \\
\hline 238 & 0.8010 & 0.7799 & 0.7587 & 0.7376 & 0.7169 & 0.6964 & 0.6768 & 0.6583 & 0.6411 & 0.6258 & 0.6125 \\
\hline 246 & 0.8074 & 0.7871 & 0.7669 & 0.7467 & 0.7268 & 0.7074 & 0.6887 & 0.6709 & 0.6544 & 0.6394 & 0.6263 \\
\hline 242 & 0.8135 & 0.7940 & 0.7746 & 0.7553 & 0.7363 & 0.7178 & 0.6999 & 0.6828 & 0.6669 & 0.6524 & 0.6395 \\
\hline 244 & 0.8193 & 0.8006 & 0.7820 & 0.7635 & 0.7454 & 0.7276 & 0.7104 & 0.6941 & 0.6788 & 0.6647 & 0.6520 \\
\hline 246 & 0.8249 & 0.8070 & 0.7891 & 0.7714 & 0.7539 & 0.7369 & 0.7205 & 0.7048 & 0.6900 & 0.6764 & 0.6641 \\
\hline 248 & 0.8303 & 0.8130 & 0.7958 & 0.7789 & 0.7621 & 0.7458 & 0.7300 & 0.7149 & 0.7007 & 0.6875 & 0.6755 \\
\hline 25 C & 0.8354 & 0.8188 & 0.8022 & 0.7859 & 0.7697 & 0.7542 & 0.7391 & 0.7246 & 0.7109 & 0.6982 & 0.6865 \\
\hline
\end{tabular}
TABLE VI. - Continued. THERMODYNAMIC PROPERTY OF METHANE - COMPRESSIBILITY FACTOR. Z \({ }_{0}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature, K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 200 & 210 & 220 & 230 & 240 & 250 & 260 & 270 & 280 & 290 & 300 \\
\hline 190 & & & ------ & ------ & ------ & ------ & ------- & ------- & ------ & ------ & ------ \\
\hline 192 & 0.6111 & 0.6367 & 0.6623 & 0.6876 & 0.7129 & 0.7380 & 0.7630 & 0.7878 & 0.8125 & 0.8372 & 0.8617 \\
\hline 194 & 0.6109 & 0.6364 & 0.6616 & 0.6869 & \(0.711^{\circ}\) & 0.7367 & 0.7614 & 0.7860 & 0.8106 & 0.8350 & 0.8592 \\
\hline 196 & 0.6110 & 0.6362 & 0.6612 & 0.6861 & 0.7109 & 0.7355 & 0.7600 & 0.7844 & 0.8087 & 0.8329 & 0.8570 \\
\hline 198 & 0.6113 & 0.6362 & 0.6610 & 0.6856 & 0.7107 & 0.7346 & 0.7589 & 0.7830 & 0.8071 & 0.8310 & 0.8549 \\
\hline 20C & 0.6118 & 0.6364 & 0.6609 & 0.6853 & 0.7096 & 0.7338 & 0.7578 & 0.7818 & 0.8056 & 0.8293 & 0.8530 \\
\hline 202 & 0.6125 & 0.6368 & 0.6611 & 0.6852 & 0.7093 & 0.7332 & 0.7570 & 0.7807 & 0.8043 & 0.8278 & 0.8512 \\
\hline 204 & 0.6134 & 0.6375 & 0.6614 & 0.6853 & 0.7091 & 0.7328 & 0.7563 & 0.7798 & 0.8032 & 0.8265 & 0.8496 \\
\hline 206 & 0.6145 & 0.6383 & 0.6620 & 0.6856 & 0.7091 & 0.7325 & 0.7559 & 0.7791 & 0.8022 & 0.8253 & 0.8482 \\
\hline 208 & 0.6158 & 0.6393 & 0.6627 & 0.6860 & 0.7093 & 0.7325 & 0.7555 & 0.7785 & 0.8014 & 0.8243 & 0.8470 \\
\hline 210 & 0.6173 & 0.6405 & 0.6636 & 0.6867 & 0.7097 & 0.7326 & 0.7554 & 0.7782 & 0.8008 & 0.8234 & 0.8459 \\
\hline 212 & 0.6191 & 0.6419 & 0.6647 & 0.6875 & 0.7102 & 0.7329 & 0.7554 & 0.7779 & 0.8004 & 0.8227 & 0.8450 \\
\hline 214 & 0.6210 & 0.6436 & 0.6661 & 0.6885 & 0.7109 & 0.7333 & 0.7556 & 0.7779 & 0.8001 & 0.8222 & 0.8442 \\
\hline 216 & 0.6232 & 0.6454 & 0.6676 & 0.6897 & 0.7119 & 0.7340 & 0.7560 & 0.7780 & 0.7999 & 0.8218 & 0.8436 \\
\hline 218 & 0.6256 & 0.6474 & 0.6693 & 0.6911 & 0.7129 & 0.7348 & 0.7565 & 0.7783 & 0.8000 & 0.8216 & 0.8432 \\
\hline 226 & 0.6283 & 0.6497 & 0.6711 & 0.6927 & 0.714 ? & 0.7357 & 0.7572 & 0.7787 & 0.8001 & 0.8215 & 0.8429 \\
\hline 222 & 0.6311 & 0.6521 & 0.6732 & 0.6944 & 0.7156 & 0.7369 & 0.7581 & 0.7793 & 0.8005 & 0.8216 & 0.8427 \\
\hline 224 & 0.6342 & 0.6548 & 0.6755 & 0.6963 & 0.7172 & 0.7382 & 0.7591 & 0.7801 & 0.8010 & 0.8219 & 0.8427 \\
\hline 226 & 0.6374 & 0.6576 & 0.6780 & 0.6984 & 0.7190 & 0.7396 & 0.7603 & 0.7810 & 0.8016 & 0.8222 & 0.8429 \\
\hline 228 & 0.6409 & 0.6606 & 0.6806 & 0.7007 & 0.7210 & 0.7413 & 0.7616 & 0.7820 & 0.8024 & 0.8228 & 0.8431 \\
\hline 230 & 0.6446 & 0.6639 & 0.6834 & 0.7032 & 0.7231 & 0.7430 & 0.7631 & 0.7832 & 0.8033 & 0.8234 & 0.8436 \\
\hline 232 & 0.6485 & 0.6673 & 0.6864 & 0.7058 & \(0.725^{2}\) & 0.7450 & 0.7647 & 0.7845 & 0.8044 & 0.8242 & 0.8441 \\
\hline 234 & 0.6526 & 0.6709 & 0.6896 & 0.7086 & 0.727 ? & 0.7471 & 0.7665 & 0.7860 & 0.8056 & 0.8252 & 0.8448 \\
\hline 236 & 0.6569 & 0.6747 & 0.6929 & 0.7115 & 0.730 ? & 0.7493 & 0.7684 & 0.7876 & 0.8069 & 0.8262 & 0.8456 \\
\hline 238 & 0.6613 & 0.6786 & 0.6964 & 0.7146 & 0.7330 & 0.7517 & 0.7705 & 0.7894 & 0.8084 & 0.8274 & 0.8465 \\
\hline 240 & 0.6659 & 0.6828 & 0.7001 & 0.7178 & 0.7359 & 0.7542 & 0.7727 & 0.7913 & 0.8100 & 0.8288 & 0.8476 \\
\hline 242 & 0.6707 & 0.6870 & 0.7039 & 0.7212 & 0.7389 & 0.7568 & 0.7750 & 0.7933 & 0.8117 & 0.8302 & 0.8488 \\
\hline 244 & 0.6757 & 0.6914 & 0.7078 & 0.7247 & 0.7420 & 0.7596 & 0.7774 & 0.7954 & 0.8135 & 0.8318 & 0.8501 \\
\hline \(24 \%\) & 0.6808 & 0.6960 & 0.7119 & 0.7284 & 0.7453 & 0.7625 & 0.7800 & 0.7976 & 0.8155 & 0.8334 & 0.8515 \\
\hline 248 & 0.6865 & 0.7007 & 0.7161 & 0.7322 & 0.7486 & 0.7655 & 0.7826 & 0.8000 & 0.8175 & 0.8352 & 0.8530 \\
\hline 250 & 0.6913 & 0.7055 & 0.7204 & 0.736 & 0.7521 & 0.7686 & 0.7854 & 0.8024 & 0.8197 & 0.8371 & 0.8546 \\
\hline
\end{tabular}
TABLE VI. - Continued. THERMODYNAMIC PROPERTY OF METHANE - COMPRESSIBILITY FACTOR, \(Z_{0}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature K} & \multicolumn{11}{|l|}{Pressure. \(\mathrm{N} \mathrm{m}^{2} \cdot 10^{-5}\)} \\
\hline & 100 & 110 & 120 & 130 & 140 & 150 & 160 & 170 & 180 & 190 & 200 \\
\hline 25 C & 0.6865 & 0.6670 & 0.6531 & 0.644 & 0.6417 & 0.6432 & 0.6482 & 0.6562 & 0.6663 & 0.6781 & 0.6913 \\
\hline 255 & 0.7118 & 0.6933 & 0.6794 & 0.6702 & 0.8657 & 0.6654 & 0.6685 & 0.6746 & 0.6830 & 0.6933 & 0.7050 \\
\hline 26 C & 0.7346 & 0.7172 & 0.7036 & 0.694 i & 0.6887 & 0.6870 & 0.6886 & 0.6931 & 0.7000 & 0.7088 & 0.7192 \\
\hline 265 & 0.7550 & 0.7388 & 0.7258 & 0.7163 & 0.7103 & 0.7077 & 0.7082 & 0.7114 & 0.7170 & 0.7245 & 0.7336 \\
\hline 270 & 0.7735 & 0.7584 & 0.1462 & \(0.736^{\circ}\) & 0.7307 & 0.7275 & 0.7271 & 0.7293 & 0.7337 & 0.7400 & 0.7480 \\
\hline 275 & 0.7903 & 0.7763 & 0.7648 & 0.7559 & 0.7497 & 0.7461 & 0.7451 & 0.7465 & 0.7500 & 0.7553 & 0.7623 \\
\hline 286 & 0.8056 & 0.7927 & 0.7819 & 0.7734 & 0.7673 & 0.7636 & 0.7622 & 0.7630 & 0.7657 & 0.7703 & 0.7764 \\
\hline 285 & 0.8196 & 0.8077 & 0.7977 & 0.7897 & 0.7838 & 0.7800 & 0.7783 & 0.7787 & 0.7808 & 0.7847 & 0.7901 \\
\hline 290 & 0.8324 & 0.8215 & 0.8122 & 0.8047 & \(0.799 n\) & 0.7953 & 0.7935 & 0.7936 & 0.7953 & 0.7986 & 0.8034 \\
\hline 295 & 0.8443 & 0.8341 & 0.8255 & \(0.818{ }^{\text {c }}\) & 0.8132 & 0.8097 & 0.8078 & 0.8076 & 0.8091 & 0.8119 & 0.8182 \\
\hline 30 C & 0.8552 & 0.8459 & 0.8379 & 0.8314 & 0.826 \(=\) & 0.8231 & 0.8212 & 0.8209 & 0.8221 & 0.8246 & 0.8285 \\
\hline 305 & 0.8653 & 0.8567 & 0.8494 & 0.8434 & 0.8388 & 0.8356 & 0.8338 & 0.8335 & 0.8345 & 0.8367 & 0.8402 \\
\hline 31 C & 0.8747 & 0.8668 & 0.8600 & 0.8545 & 0.8507 & 0.8473 & 0.8456 & 0.8453 & 0.8462 & 0.8492 & 0.8515 \\
\hline 315 & 0.8834 & 0.8761 & 0.8699 & 0.864\% & 0.8609 & 0.8582 & 0.8567 & 0.8564 & 0.8572 & 0.8591 & 0.8621 \\
\hline 32 C & 0.8915 & 0.8848 & 0.8791 & 0.8745 & 0.8709 & 0.8685 & 0.8671 & 0.8668 & 0.9676 & 0.8695 & 0.8723 \\
\hline 325 & 0.8990 & 0.8929 & 0.8877 & 0.9835 & 0.8803 & 0.8780 & 0.8768 & 0.8766 & 0.8775 & 0.8792 & 0.8819 \\
\hline 336 & 0.9061 & 0.9005 & 0.8958 & 0.8919 & \(0.889 n\) & 0.8870 & 0.8860 & 0.8859 & 0.8867 & 0.8885 & 0.8911 \\
\hline 335 & 0.9127 & 0.9076 & 0.9033 & 0.8598 & 0.8972 & 0.8955 & 0.8946 & 0.8946 & 0.8955 & 0.8972 & 0.8997 \\
\hline 34 C & 0.9189 & 0.9142 & 0.9103 & \(0.907 ?\) & 0.9049 & 0.9034 & 0.9027 & 0.9028 & 0.9038 & 0.9055 & 0.9080 \\
\hline 345 & 0.9247 & 0.9204 & 0.9169 & 0.9141 & 0.9121 & 0.9108 & 0.9103 & 0.9105 & 0.9116 & 0.9133 & 0.9158 \\
\hline 350 & 0.9301 & 0.9263 & 0.9231 & 0.9204 & 0.9189 & 0.9178 & 0.9175 & 0.9178 & 0.9189 & 0.9207 & 0.9231 \\
\hline 355 & 0.9352 & 0.9318 & 0.9289 & 0.9264 & 0.9257 & 0.9244 & 0.9242 & 0.9247 & 0.9259 & 0.9277 & 0.9301 \\
\hline 36 C & 0.9400 & 0.9369 & 0.9344 & 0.9325 & 0.931 , & 0.9306 & 0.9306 & 0.9312 & 0.9324 & 0.9343 & 0.9368 \\
\hline 365 & 0.9445 & 0.9418 & 0.9396 & 0.9377 & \(0.936{ }^{\circ}\) & 0.9365 & 0.9366 & 0.9373 & 0.9387 & 0.9406 & 0.9430 \\
\hline 37C & 0.9488 & 0.9463 & 0.9444 & 0.943 : & 0.9422 & 0.9420 & 0.9423 & 0.9431 & 0.9445 & 0.9465 & 0.9490 \\
\hline 375 & 0.9528 & 0.9507 & 0.9490 & 0.9477 & 0.9473 & 0.9472 & 0.9476 & 0.9486 & 0.9501 & 0.9521 & 0.9546 \\
\hline 38 C & 0.9566 & 0.9547 & 0.9533 & 0.9524 & \(0.952 n\) & 0.9521 & 0.9527 & 0.9538 & 0.9554 & 0.9574 & 0.9600 \\
\hline 385 & 0.9602 & 0.9586 & 0.9574 & 0.9567 & 0.9565 & 0.9568 & 0.9575 & 0.9587 & 0.9603 & 0.9625 & 0.9651 \\
\hline 396 & 0.9636 & 0.9622 & 0.9613 & 0.9609 & 0.9607 & 0.9612 & 0.9620 & 0.9633 & 0.9651 & 0.9573 & 0.9699 \\
\hline 395 & 0.9668 & 0.9657 & 0.9649 & 0.9646 & 0.964 R & 0.9653 & 0.9663 & 0.9677 & 0.9695 & 0.9718 & 0.9744 \\
\hline 400 & 0.9698 & 0.9689 & 0.9684 & 0.9682 & 0.968 h & 0.9693 & 0.9704 & 0.9719 & 0.9738 & 0.9761 & 0.9788 \\
\hline
\end{tabular}
TABLE VI．－Continued．THERMODYNAMIC PROPERTY OF METHANE－COMPRESSSIBILITY FACTOR，\(Z_{0}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & － & \begin{tabular}{l}
－O온 \\
 \(\infty \infty \infty\) － \(0^{\circ} 0^{\circ}\)
\end{tabular} & ののロッ～ かががか －－ & 공ㅇN －NNMさ \(\dot{0} 0 \dot{0} 0 \dot{0}\) & \(\infty N+\) n + ばがが －0000 &  &  & \begin{tabular}{c} 
N \\
\(\sim\) \\
0 \\
\(\sim\) \\
\hline
\end{tabular} \\
\hline & ¢ & ミNのがす。 \(\operatorname{Min}_{\infty}+\infty\) \(\therefore 0_{0}^{\circ} 0^{\circ}\) &  & \begin{tabular}{l}
か～～～か \\
 \(00^{\circ 0} 0^{\circ}\)
\end{tabular} & \begin{tabular}{l}
「ざの～N゙ \\
 －0．000
\end{tabular} & \begin{tabular}{l}
ヅッ～が \\
 \(\dot{0} 0^{\circ 0} 0^{\circ}\)
\end{tabular} &  & \(m\)
\(\stackrel{m}{0}\)
\(\square\) \\
\hline & \(\underset{\sim}{\infty}\) &  ～～my \(\dot{0} 0^{\circ} 0^{\circ}\) & さニロ웅 Mるのが \(\infty \infty \infty \infty\) －óóo & ～～～～N～ ～ㅇํํㅜN －் \(\dot{0} 0^{\circ}\) &  &  &  & \begin{tabular}{l} 
n \\
\(\stackrel{n}{0}\) \\
\(\vdots\) \\
\hdashline
\end{tabular} \\
\hline \multirow{8}{*}{} & \(\stackrel{\bigcirc}{\text { 근 }}\) &  &  Mち M －0．0ㅇ․ & \begin{tabular}{l}
～ロー～～～ \\
 －0000
\end{tabular} &  & \begin{tabular}{l}
ミMN～～ \\
 －0000
\end{tabular} &  & \begin{tabular}{l}
\(\circ\) \\
\hline 0 \\
\hline \\
0 \\
\hline
\end{tabular} \\
\hline & － & N～NON ～が品品 －0．000 & \begin{tabular}{l}
 \\
 －00000
\end{tabular} & \begin{tabular}{l}
Nか～～の \\
 －00000
\end{tabular} & が～～～～ जテNoñ －0．0்ó & \begin{tabular}{l}
ペ～～が \\
 －0000
\end{tabular} &  & ～1 \\
\hline & 읏 &  がNが品 \(\dot{0} 0000^{\circ}\) & Fo웅․ か～～～N \(\infty \infty \infty\) \(00^{\circ 0} 0^{\circ}\) & \begin{tabular}{l}
Nロット～ \\
 －0́0：0́
\end{tabular} &  &  &  & \(\dot{\sigma}\)
\(\stackrel{\alpha}{\circ}\)
\(\dot{0}\) \\
\hline & \(\underset{\sim}{\text { 간 }}\) &  &  &  &  &  &  & \(\dot{W}\)
\(\stackrel{\sigma}{\sigma}\)
\(\dot{0}\) \\
\hline & \％ &  & N～Nagi人 －0000． &  &  &  &  & \(\sim\)
\(\sim\)
\(\infty\)
\(\dot{0}\)
\(\dot{0}\) \\
\hline & 슨 &  & \begin{tabular}{l}
～～ぺ～m \\
个 \(-\infty \infty\) －0000ㅇ
\end{tabular} & がローテ mixため －0000． &  &  & ～n 0 品 －品たか －のoのの －0000 & \(m\)
\(\sim\)
\(\infty\)
0
0
0 \\
\hline & \(\stackrel{\square}{\sim}\) & \begin{tabular}{l}
かの， \\
 \(\therefore 0_{0}^{\circ \circ} 0^{\circ}\)
\end{tabular} & \begin{tabular}{l}
へのが白 \\
웅․․ \\
 \\
－0．0்○。
\end{tabular} &  &  & ～N ～mmon －0．00． &  & a
\(\stackrel{0}{0}\)
0
0 \\
\hline & \(\stackrel{8}{\sim}\) & mo№웅 のO～M －0000． & Nざが志 둣웅 －000் & ～N～N～～～～～ No －0．00ㅇ․ &  &  ふのぶする －0000． &  & \(\infty\)
\(\infty\)
\(\stackrel{\infty}{\infty}\)
\(\dot{0}\) \\
\hline \[
\begin{aligned}
& 0_{0}^{0} \\
& \tilde{y} \\
& 0 \\
& \tilde{U} \\
& E \\
& E \\
& E \\
& E
\end{aligned}
\] & & 伿出煰： NNNNN &  N～～N～N & \begin{tabular}{l}
 \\

\end{tabular} & \({ }_{N}^{n}\) nminm &  mmmm &  mimemm & O \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature, K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N}, \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 0 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 \\
\hline 40 C & 1.0000 & 0.9953 & 0.9910 & 0.9871 & 0.9835 & 0.9803 & 0.9774 & 0.9750 & 0.9729 & 0.9712 & 0.9698 \\
\hline 405 & 1.0000 & 0.9957 & 0.9917 & 0.9881 & 0.9848 & 0.9819 & 0.9793 & 0.9771 & 0.9753 & 0.9738 & 0.9727 \\
\hline 41 C & 1.0000 & 0.9960 & 0.9923 & 0.9890 & 0.9860 & 0.9834 & 0.9811 & 0.9792 & 0.9776 & 0.9763 & 0.9755 \\
\hline 415 & 1.0000 & 0.9963 & 0.9929 & 0.9897 & 0.9872 & 0.9848 & 0.9828 & 0.9811 & 0.9797 & 0.9787 & 0.9780 \\
\hline 42C & 1.0000 & 0.9966 & 0.9935 & 0.9908 & 0.9883 & 0.9862 & 0.9844 & 0.9829 & 0.9818 & 0.9810 & 0.9805 \\
\hline 425 & 1.0000 & 0.9969 & 0.9941 & 0.9916 & 0.9894 & 0.9875 & 0.9859 & 0.9847 & 0.9838 & 0.9831 & 0.9828 \\
\hline 43 C & 1.0000 & 0.9971 & 0.9946 & 0.9923 & 0.9904 & 0.9887 & 0.9874 & 0.9864 & 0.9856 & 0.9852 & 0.9850 \\
\hline 435 & 1.0000 & 0.9974 & 0.9951 & 0.9931 & 0.9914 & 0.9899 & 0.9888 & 0.9879 & 0.9874 & 0.9871 & 0.9872 \\
\hline 440 & 1.0000 & 0.9976 & 0.9956 & 0.9938 & 0.9923 & 0.9911 & 0.9901 & 0.9894 & 0.9891 & 0.9890 & 0.9892 \\
\hline 445 & 1.0000 & 0.9979 & 0.9960 & 0.9945 & 0.9932 & 0.9921 & 0.9914 & 0.9909 & 0.9907 & 0.9907 & 0.9911 \\
\hline 45 C & 1.0000 & 0.9981 & 0.9965 & 0.9951 & 0.9940 & 0.9931 & 0.9926 & 0.9923 & 0.9922 & 0.9924 & 0.9929 \\
\hline 455 & 1.0000 & 0.9983 & 0.9969 & 0.9957 & 0.9948 & 0.9941 & 0.9937 & 0.9936 & 0.9937 & 0.9940 & 0.9946 \\
\hline 46 C & 1.0000 & 0.9985 & 0.9973 & 0.9963 & 0.9955 & 0.9950 & 0.9948 & 0.9948 & 0.9950 & 0.9955 & 0.9963 \\
\hline 465 & 1.0000 & 0.9987 & 0.9976 & 0.9988 & 0.9963 & 0.9959 & 0.9958 & 0.9960 & 0.9964 & 0.9970 & 0.9978 \\
\hline 47 C & 1.0000 & 0.9989 & 0.9980 & 0.9974 & 0.9970 & 0.9968 & 0.9968 & 0.9971 & 0.9976 & 0.9984 & 0.9993 \\
\hline 475 & 1.0000 & 0.9991 & 0.9984 & 0.9979 & 0.9976 & 0.9976 & 0.9978 & 0.9982 & 0.9988 & 0.9997 & 1.0008 \\
\hline 48 C & 1.0000 & 0.9992 & 0.9987 & 0.9984 & 0.9982 & 0.9984 & 0.9987 & 0.9992 & 1.0000 & 1.0009 & 1.0021 \\
\hline 485 & 1.0000 & 0.9994 & 0.9990 & 0.9988 & 0.9989 & 0.9991 & 0.9996 & 1.0002 & 1.0011 & 1.0022 & 1.0034 \\
\hline 49 C & 1.0000 & 0.9995 & 0.9993 & 0.9993 & 0.9994 & 0.9998 & 1.0004 & 1.0012 & 1.0021 & 1.0033 & 1.0047 \\
\hline 495 & 1.0000 & 0.9997 & 0.9996 & 0.9997 & 1.0000 & 1.0005 & 1.0012 & 1.0021 & 1.0031 & 1.0044 & 1.0059 \\
\hline 50 C & 1.0000 & 0.9998 & 0.9999 & 1.0001 & 1.0005 & 1.0011 & 1.0019 & 1.0029 & 1.0041 & 1.0054 & 1.0070 \\
\hline 505 & 1.0000 & 1.0000 & 1.0001 & 1.0005 & 1.0010 & 1.0017 & 1.0026 & 1.0037 & 1.0050 & 1.0065 & 1.0081 \\
\hline 51 C & 1.0000 & 1.0001 & 1.0004 & 1.0008 & 1.0015 & 1.0023 & 1.0033 & 1.0045 & 1.0059 & 1.0074 & 1.0091 \\
\hline 515 & 1.0000 & 1.0002 & 1.0006 & 1.0012 & 1.0029 & 1.0029 & 1.0040 & 1.0053 & 1.0067 & 1.0083 & 1.0101 \\
\hline 52 C & 1.0000 & 1.0003 & 1.0009 & 1.0015 & 1.0024 & 1.0034 & 1.0046 & 1.0060 & 1.0075 & 1.0092 & 1.0111 \\
\hline 525 & 1.0000 & 1.0005 & 1.0011 & 1.0019 & 1.0028 & 1.0040 & 1.0052 & 1.0067 & 1.0083 & 1.0101 & 1.0120 \\
\hline 530 & 1.0000 & 1.0006 & 1.0013 & 1.0022 & 1.0037 & 1.0045 & 1.0058 & 1.0073 & 1.0090 & 1.0109 & 1.0128 \\
\hline 535 & 1.0000 & 1.0007 & 1.0015 & 1.0025 & 1.0036 & 1.0049 & 1.0064 & 1.0080 & 1.0097 & 1.0116 & 1.0137 \\
\hline 540 & 1.0000 & 1.0008 & 1.0017 & 1.0028 & 1.0040 & 1.0054 & 1.0069 & 1.0086 & 1.0104 & 1.0124 & 1.0145 \\
\hline 545 & 1.0000 & 1.0009 & 1.0019 & 1.0031 & 1.0044 & 1.0058 & 1.0074 & 1.0092 & 1.0111 & 1.0131 & 1.0152 \\
\hline 55 C & 1.0000 & 1.0010 & 1.0021 & 1.0033 & 1.0047 & 1.0062 & 1.0079 & 1.0097 & 1.0117 & 1.0138 & 1.0160 \\
\hline 55. & 1.0000 & 1.0011 & 1.0022 & 1.0036 & 1.0050 & 1.0067 & 1.0084 & 1.0103 & 1.0123 & 1.0144 & 1.0167 \\
\hline 56 C & 1.0000 & 1.0011 & 1.0024 & 1.0038 & 1.0054 & 1.0070 & 1.0088 & 1.0108 & 1.0128 & 1.0150 & 1.0173 \\
\hline 565 & 1.0000 & 1.0012 & 1.0026 & 1.0041 & 1.0057 & 1.0074 & 1.0093 & 1.0113 & 1.0134 & 1.0156 & 1.0180 \\
\hline 57 C & 1.0000 & 1.0013 & 1.0027 & 1.0043 & 1.0060 & 1.0078 & 1.0097 & 1.0117 & 1.0139 & 1.0162 & 1.0186 \\
\hline 575 & 1.0000 & 1.0014 & 1.0029 & 1.0045 & 1.0067 & 1.0081 & 1.0101 & 1.0122 & 1.0144 & 1.0167 & 1.0192 \\
\hline 58 C & 1.0000 & 1.0014 & 1.0030 & 1.0047 & 1.0065 & 1.0084 & 1.0105 & 1.0126 & 1.0149 & 1.0173 & 1.0198 \\
\hline 585 & 1.0000 & 1.0015 & 1.0032 & 1.0049 & 1.0068 & 1.0088 & 1.0108 & 1.0130 & 1.0154 & 1.0178 & 1.0203 \\
\hline 590 & 1.0000 & 1.0016 & 1.0033 & 1.0051 & 1.0070 & 1.0091 & 1.0112 & 1.0134 & 1.0158 & 1.0183 & 1.0208 \\
\hline 595 & 1.0000 & 1.0017 & 1.0034 & 1.0053 & 1.0073 & 1.0093 & 1.0115 & 1.0138 & 1.0162 & 1.0187 & 1.0213 \\
\hline 60C & 1.0000 & 1.0017 & 1.0035 & 1.0055 & 1.0075 & 1.0096 & 1.0119 & 1.0142 & 1.0166 & 1.0192 & 1.0218 \\
\hline
\end{tabular}
TABLE VI. - Concluded. THERMODYNAMIC PROPERTY OF METHANE - COMPRESSIBILITY FACTOR, Z \({ }_{0}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature. K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N}, \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 200 & 210 & 220 & 230 & 240 & 250 & 260 & 270 & 280 & 290 & 300 \\
\hline 40 C & 0.9788 & 0.9819 & 0.9853 & 0.9892 & 0.9934 & 0.9979 & & & & & \\
\hline \[
405
\] & 0.9829 & 0.9860 & 0.9895 & 0.9933 & 0.9975 & 1.0020 & 1.0028 & 1.0080 & 1.0135
1.0174 & 1.0193 & 1.0254 \\
\hline 410 & 0.9868 & 0.9900 & 0.9934 & 0.9973 & 1.0014 & 1.0059 & 1.0068
1.0106 & 1.0119
1.0157 & 1.0174
1.0211 & 1.0231 & 1.0290 \\
\hline 415 & 0.9906 & 0.9937 & 0.9972 & 1.001 & 1.0051 & 1.0096 & 1.0143 & 1.0193 & 1.0246 & 1.0301 & 1.0325
1.0359 \\
\hline 42C & 0.9941 & 0.9973 & 1.0008 & 1.0046 & 1.0087 & 1.0131 & 1.0178 & 1.0227 & 1.0279 & 1.0334 & 1.0391 \\
\hline 425 & 0.9975 & 1.0007 & 1.0042 & 1.008) & 1.0121 & 1.0164 & & & & & \\
\hline \(43 C\)
435 & 1.0007 & 1.0039 & 1.0074 & 1.0112 & 1.0153 & 1.0196 & 1.0211
1.0242 & 1.0260
1.0291 & 1.0311
1.0342 & 1.0366
1.0396 & 1.0422 \\
\hline 435
440 & 1.0037
1.0066 & 1.0070 & 1.0105 & 1.0143 & 1.0184 & 1.0227 & 1.0273 & 1.0321 & 1.0371 & 1.0424 & 1.0479 \\
\hline 440
445 & 1.0066
1.0094 & 1.0099
1.0127 & 1.0134
1.0162 & 1.0172 & 1.0213 & 1.0256 & 1.0301 & 1.0349 & 1.0399 & 1.0452 & 1.0506 \\
\hline 445 & 1.0094 & 1.0127 & 1.0162 & 1.0200 & 1.0241 & 1.0284 & 1.0329 & 1.0376 & 1.0426 & 1.0478 & 1.0532 \\
\hline 450 & 1.0120 & 1.0153 & 1.0189 & 1.0227 & 1.0267 & 1.0310 & 1.0355 & 1.0402 & & & \\
\hline 455 & 1.0145 & 1.0178 & 1.0214 & 1.0252 & 1.0293 & 1.0335 & 1.0380 & 1.0402 & 1.0452
1.0476 & 1.0503
1.0527 & 1.0556 \\
\hline 46C & 1.0169 & 1.0203 & 1.0238 & 1.0277 & 1.0317 & 1.0359 & 1.0404 & 1.0451 & 1.0499 & 1.0550 & 1.05802 \\
\hline 465
470 & 1.0192
1.0213 & 1.0225
1.0247 & 1.0262 & 1.0302 & 1.0340 & 1.0382 & 1.0427 & 1.0473 & 1.0522 & 1.0572 & 1.0624 \\
\hline 470 & 1.0213 & 1.0247 & 1.0284 & 1.0322 & 1.0362 & 1.0404 & 1.0449 & 1.0495 & 1.0543 & 1.0592 & 1.0644 \\
\hline 475 & 1.0234 & 1.0268 & 1.0305 & 1.0343 & 1.0383 & 1.0425 & 1.0469 & 1.0515 & 1.0563 & 1.0612 & \\
\hline 48 C & 1.0254 & 1.0288 & 1.0325 & 1.0363 & 1.0403 & 1.0445 & 1.0489 & 1.0535 & 1.0582 & 1.0631 & 1.0663
1.0682 \\
\hline 485
490 & 1.0273 & 1.0307 & 1.0344 & 1.0382 & 1.0422 & 1.0464 & 1.0508 & 1.0554 & 1.0601 & 1.0649 & 1.0700 \\
\hline 495 & 1.0291
1.0308 & 1.0325
1.0343 & 1.0362
1.0379 & \(1.040 \%\) & 1.0441 & 1.0482 & 1.0526 & 1.0571 & 1.0618 & 1.0667 & 1.0717 \\
\hline 49 & 1.0308 & 1.0343 & 1.0379 & 1.0418 & 1.0458 & 1.0500 & 1.0543 & 1.0588 & 1.0635 & 1.0683 & 1.0733 \\
\hline 506 & 1.0324 & 1.0359 & 1.0396 & 1.0435 & 1.0475 & 1.0516 & \(1.0560^{-}\) & 1.0605 & 1.0651 & 1.0699 & 1.0748 \\
\hline 505
510 & 1.0340 & 1.0375 & 1.0412 & 1.0450 & 1.0491 & 1.0532 & 1.0575 & 1.0620 & 1.0666 & 1.0714 & 1.0763 \\
\hline 510
515 & 1.0355 & 1.0390 & 1.0427 & 1.0466 & 1.0506 & 1.0547 & 1.0590 & 1.0635 & 1.0681 & 1.0728 & 1.0777 \\
\hline 52 C & 1.0369
1.0383 & 1.0404 & 1.0442 & 1.0480 & 1.0520 & 1.0562 & 1.0605 & 1.0649 & 1.0695 & 1.0742 & 1.0791 \\
\hline & 1.0383 & 1.0418 & 1.0455 & 1.0494 & 1.0534 & 1.0576 & 1.0618 & 1.0663 & 1.0708 & 1.0755 & 1.0803 \\
\hline 525 & 1.0396 & 1.0431 & 1.0469 & 1.0507 & 1.0547 & 1.0589 & 1.0632 & 1.0676 & 1.0721 & & \\
\hline 53 C & 1.0408 & 1.0444 & 1.0481 & 1.0520 & 1.0567 & 1.0601 & 1.0644 & 1.0676
1.0688 & 1.0733 & 1.0768
1.0780 & 1.0816
1.0827 \\
\hline 535
540 & 1.0420 & 1.0456 & 1.0493 & 1.0532 & 1.0572 & 1.0613 & 1.0656 & 1.0700 & 1.0745 & 1.0771 & 1.0838 \\
\hline 540
545 & 1.0431
1.0442 & 1.0467
1.0478 & 1.0505 & 1.0544 & 1.0584 & 1.0625 & 1.0667 & 1.0711 & 1.0756 & 1.0852 & 1.0849 \\
\hline 54. & 1.0442 & 1.0478 & 1.0516 & 1.0555 & 1.0595 & 1.0636 & 1.0678 & 1.0722 & 1.0766 & 1.0812 & 1.0859 \\
\hline 550 & 1.0453 & 1.0489 & 1.0526 & 1.0565 & 1.0605 & 1.0646 & 1.0689 & 1.0732 & 1.0776 & & \\
\hline 555 & 1.0463 & 1.0499 & 1.0536 & 1.0575 & 1.0615 & 1.0656 & 1.0698 & 1.0742 & 1.0786 & 1.0832 & 1.0869
1.0878 \\
\hline 56 C
56 & 1.0472 & 1.0509 & 1.0546 & 1.058 & 1.0625 & 1.0666 & 1.0708 & 1.0751 & 1.0795 & 1.0841 & 1.0887 \\
\hline 565
570 & 1.0481 & 1.0518 & 1.0555 & 1.0594 & 1.0634 & 1.0675 & 1.0717 & 1.0760 & 1.0804 & 1.0849 & 1.0895 \\
\hline 570 & 1.0490 & 1.0526 & 1.0564 & 1.0603 & 1.0643 & 1.0684 & 1.0725 & 1.0768 & 1.0812 & 1.0857 & 1.0903 \\
\hline 575 & 1.0498 & 1.0535 & 1.0573 & 1.0611 & 1.0651 & 1.0692 & 1.0734 & & & & \\
\hline 58 C & 1.0506 & 1.0543 & 1.0581 & 1.0619 & 1.0659 & 1.0700 & 1.0742 & 1.0784 & 1.0820
1.0828 & 1.0865
1.0872 & 1.0911 \\
\hline 585 & 1.0514 & 1.0551 & 1.0588 & 1.0627 & 1.0667 & 1.0707 & 1.0749 & 1.0792 & 1.0835 & 1.0872 & 1.0918
1.0925 \\
\hline 59 C
595 & 1.0521 & 1.0558 & 1.0596 & 1.0634 & 1.0674 & 1.0715 & 1.0756 & 1.0799 & 1.0842 & 1.0886 & 1.0931 \\
\hline 59. & 1.0528 & 1.0565 & 1.0603 & 1.0641 & 1.0681 & 1.0722 & 1.0763 & 1.0805 & 1.0849 & 1.0893 & 1.0938 \\
\hline 60 C & 1.0535 & 1.0572 & 1.0609 & 1.0648 & 1.0688 & 1.0728 & 1.0770 & 1.0812 & 1.0855 & 1.0899 & 1.0944 \\
\hline
\end{tabular}
TABLE VII. - THERMODYNAMIC PROPERTY OF METHANE - ENTHALPY. H \(\mathrm{H}_{0}\). K
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature, K} & \multicolumn{11}{|l|}{Pressure. \(\mathrm{N} \mathrm{m}{ }^{2} \times 10^{-5}\)} \\
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 12 C & 478.27 & 459.97 & ------ & ------ & & & - & - & --------- & -------- & \\
\hline 122 & 486.28 & 469.24 & 450.61 & & & & & & & & \\
\hline 124 & 494.29 & 478.39 & 461.13 & & & & & & & & \\
\hline \(12 t\) & 502.29 & 487.44 & 471.40 & & & & & & & & \\
\hline 128 & 510.30 & 496.39 & 481.45 & 465.25 & - & & & & & & \\
\hline 130 & 518.31 & 505.26 & 491.31 & 476.28 & & & & & & & \\
\hline 132 & 526.31 & 514.05 & 501.00 & 487.01 & 471.89 & & & & & --------- & \\
\hline 134 & 534.32 & 522.78
531.44 & 510.54 & 497.48
507.72 & 483.45
494.64 & 480.59 & ---- & - & - & ------- & -...-- \\
\hline 136
136 & 542.33
550.34 & 531.44
540.05 & 519.94
529.21 & 507.72
517.75 & 494.64
505.56 & 480.59
492.50 & ---- & ------ & ------ & ------ & ------ \\
\hline 13 c & & & & & & & & & & & \\
\hline 140 & 558.34 & 548.60 & 538.38 & 527.60 & 516.19 & 504.03 & 490.98 & & & & \\
\hline 142 & 566.35 & 557.12 & 547.45 & 537.29 & 526.57 & 515.20 & 503.08
514.77 & 490.05
502.70 & & & \\
\hline 144 & 574.36 & 565.59 & 556.42 & 54 4 .83 & 536.74 & 526.08 & 514.77 & 502.70
514.87 & 532.85 & --.-.-. & \\
\hline 146 & 582.37 & 574.02 & 565.32 & 556.23 & 546.71 & 536.69 & 526.11 & 514.87
526.62 & 515.46 & 503.50 & \\
\hline 148 & 590.38 & 582.42 & 574.14 & 565.52 & 556.51 & 547.07 & 537.13 & 526.62 & 515.46 & 503.50 & \\
\hline 15 C & 598.39 & 590.79 & 582.90 & 574.70 & 566.16 & 557.23 & 547.87 & 538.02 & 527.60 & 516.51 & 504.64 \\
\hline 152 & 606.40 & 599.13 & 591.60 & 583.79 & 575.67 & 567.21 & 558.37 & 549.10 & 539.33 & 529.01 & 518.02 \\
\hline 154 & 614.41 & 607.45 & 600.25 & 592.79 & 585.06 & 577.03 & 568.65 & 559.90 & 550.72 & 541.05 & 530.83 \\
\hline 156 & 622.43 & 615.74 & 608.84 & 601.72 & 594.34 & 586.69 & 578.74 & 570.45 & 561.79
572.59 & 552.71 & 543.15
555.05 \\
\hline 158 & 630.44 & 624.01 & 617.40 & 617.57 & 603.52 & 596.22 & 588.65 & 580.79 & 572.59 & 564.03 & 555.05 \\
\hline & & 632.27 & 625.91 & 619.36 & 612.61 & 605.63 & 598.41 & 590.93 & 583.15 & 575.05 & 566.59 \\
\hline \(16 C\)
162 & 638.45
646.47 & 640.51 & 634.39 & 628.10 & 621.62 & 614.93 & 608.03 & 800.90 & 593.50 & 585.82 & 577.82 \\
\hline 162
164 & 646.47 & 648.73 & 642.84 & 636.78 & 630.55 & 624.14 & 617.53 & 610.71 & 603.66 & 598.35 & 588.76
599.46 \\
\hline \(16 t\) & 662.50 & 656.95 & 651.25 & 645.41 & 639.42 & 633.26 & 626.92 & 620.38
629.93 & 613.64
623.47 & 608.87
616.81 & 599.46
809.93 \\
\hline 168 & 670.52 & 665.14 & 659.64 & 654.00 & 648.23 & 642.29 & 636.20 & 629.93 & 623.47 & 616.81 & 609.93 \\
\hline 17 C & 678.54 & 673.33 & 668.01 & 662.56 & 656.9 A & 651.26 & 645.39 & 639.37 & 633.17 & 626.79 & 620.22 \\
\hline 172 & 688.56 & 681.51 & 676.35 & 671.08 & 665.68 & 660.16 & 654.50 & 648.70 & 642.74 & 636.62 & 630.32 \\
\hline 174 & 694.59 & 689.68 & 684.68 & 679.57 & 674.34 & 669.00 & 663.54 & 657.94 & 652.21 & 646.32 & 640.27 \\
\hline 176 & 702.61 & 697.85 & 692.98 & 688.02 & 682.96 & 677.79 & 672.51 & 667.10 & 661.57 & 655.90 & 650.09 \\
\hline 178 & 710.64 & 706.00 & 701.28 & 696.46 & 691.55 & 686.54 & 681.42 & 676.19 & 670.85 & 665.38 & 659.77 \\
\hline 18 C & 718.67 & 714.15 & 709.55 & 704.87 & 700.19 & 695.23 & 690.27 & 685.21 & 680.04 & 674.75 & 669.35 \\
\hline 186
182 & 726.70 & 722.30 & 717.82 & 713.26 & 708.62 & 703.89 & 699.08 & 694.17 & 689.16 & 694.04 & 678.82 \\
\hline 184 & 734.74 & 730.44 & 726.07 & 721.63 & 717.11 & 712.52 & 707.84 & 703.07 & 698.21 & 693.25 & 688.20 \\
\hline \(18 t\) & 742.77 & 738.58 & 734.31 & 729.99 & 725.58 & 721.11 & 716.55 & 711.92 & 707.20 & 702.39 & 697.50 \\
\hline 188 & 750.81 & 746.71 & 742.55 & 738.32 & 734.07 & 729.67 & 725.23 & 720.73 & 716.14 & 711.47 & 706.72 \\
\hline 19 C & 758.86 & 754.85 & 750.78 & 74R.65 & 742.46 & 738.20 & 733.88 & 729.49 & 725.03 & 720.49 & 715.87 \\
\hline
\end{tabular}

TABLE VII. - Continued. THERMODYNAMIC PROPERTY OF METHANE - ENTHALPY, \(H_{0}\) R, K
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature, K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} \mathrm{m}^{2} \cdot 10^{-5}\)} \\
\hline & 0 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 \\
\hline 19 C & 758.86 & 738.20 & 715.87 & 691.46 & 664.39 & 633.76 & 598.02 & 554.09 & 493.84 & 357.43 & 167.36 \\
\hline 192 & 766.90 & 746.72 & 724.96 & 701.29 & 675.21 & 645.96 & 612.29 & 571.94 & 519.73 & 437.21
477.10 & \(\begin{array}{r}167.36 \\ 338.72 \\ \hline\end{array}\) \\
\hline 194 & 774.95 & 755.21 & 734.00 & 711.0 ? & 685.84 & 657.83 & 625.97
639.15 & 588.54
604.17 & 542.04
562.01 & 477.10
507.10 & 338.72
421.54 \\
\hline 196 & 783.00 & 763.68 & 742.98
751.92 & 720.65
730.2 & 696.31
706.62 & 669.41
680.75 & 639.15
651.89 & 619.01 & 580.28 & 532.12 & 465.81 \\
\hline 198 & 791.06 & 772.13 & 751.92 & 730.2 & & & & & & & \\
\hline 2 Cc & 799.12 & 780.57 & 760.82 & 739.66 & 716.87 & 691.86 & 664.27 & 633.19 & 577.25 & 554.05 & 498.55 \\
\hline 202 & 807.18 & 788.99 & 769.68 & 749.05 & 726.86 & 702.78 & 676.32 & 646.83 & 613.25 & 573.85 & 525.51 \\
\hline 204 & 815.25 & 797.41 & 778.51 & 758.38 & 736.81 & 713.52 & 688.10 & 660.00 & 628.42 & 592.08 & 548.91 \\
\hline 206 & 823.32 & 805.81 & 787.30 & 767.65 & 746.67 & 724.10 & 699.62 & 672.77 & 642.91 & 609.10 & 569.89
589.10 \\
\hline 208 & 831.40 & 814.20 & 796.07 & 776.87 & 756.43 & 734.54 & 710.92 & 685.19 & 656.85 & 625.16 & \\
\hline & & 822.59 & 804.81 & 786.03 & 766.11 & 744.85 & 722.02 & 697.31 & 670.30 & 640.44 & 606.96 \\
\hline 212 & 847.57 & 830.96 & 813.53 & 795.14 & 775.77 & 755.05 & 732.95 & 709.16 & 683.35 & 655.06 & 623.75 \\
\hline 214 & 855.67 & 839.34 & 822.23 & 804.24 & 785.25 & 765.15 & 743.72 & 720.78 & 696.03 & 669.14 & 639.67 \\
\hline 216 & 863.76 & 847.70 & 830.91 & 813.28 & 794.74 & 775.15 & 754.35 & 732.18 & 758.40 & 682.75 & 654.87 \\
\hline 218 & 871.87 & 856.07 & 839.57 & 822.31 & 804.15 & 785.06 & 764.86 & 743.40 & 720.50 & 695.95 & 669.47 \\
\hline & 879.98 & 864.43 & 848.22 & 831.2 \% & 813.54 & 794.90 & 775.24 & 754.45 & 732.36 & 738.79 & 683.55 \\
\hline 2220 & 888.10 & 872.79 & 856.85 & 840.24 & 822.87 & 804.66 & 785.52 & 765.34 & 744.00 & 721.33 & 697.19 \\
\hline 224 & 896.22 & 881.14 & 865.48 & 849.17 & 832.15 & 814.36 & 795.71 & 776.10 & 755.44 & 733.60 & 710.45 \\
\hline 226 & 904.35 & 889.50 & 874.09 & 858.08 & 841.40 & 824.00 & 805.81 & 786.74 & 766.71 & 745.62 & 723.38 \\
\hline 228 & 912.49 & 897.86 & 882.70 & 866.96 & 850.61 & 833.59 & 815.83 & 797.27 & 777.83 & 757.43 & 736.00 \\
\hline & & & & 875.84 & 859.8 n & 843.13 & 825.78 & 807.69 & 788.80 & 769.05 & 748.37 \\
\hline 236 & 928.79 & 914.58 & 899.89 & 884.69 & 868.95 & 852.62 & 835.60 & 818.02 & 799.65 & 780.49 & 760.50 \\
\hline 234 & 936.95 & 922.94 & 908.47 & 893.53 & 878.09 & 862.07 & 845.48 & 828.26 & 810.37 & 791.77 & 772.42 \\
\hline 236 & 945.12 & 931.30 & 917.06 & 902.3n & 887.19 & 871.49 & 855.25 & 838.43 & 821.00 & 802.92 & 784.15 \\
\hline 238 & 953.30 & 939.67 & 925.64 & \(911.1{ }^{\circ}\) & 896.26 & 880.87 & 864.97 & 848.53 & 831.53 & 813.93 & 795.72 \\
\hline & 961.49 & 948.04 & 934.22 & 919.9 H & 905.33 & 890.22 & 874.64 & 858.56 & 841.97 & 824.83 & 807.13 \\
\hline 242 & 969.69 & 956.42 & 942.79 & 928.78 & 914.37 & 899.54 & 884.27 & 868.54 & 852.32 & 835.62 & 818.40 \\
\hline 244 & 977.90 & 964.80 & 951.37 & 937.58 & 923.40 & 908.84 & 893.86 & 878.46 & 862.61 & 846.31 & 829.55 \\
\hline 246 & 986.11 & 973.19 & 959.95 & 946.36 & 932.42 & 918.11 & 903.42 & 888.33 & 872.83 & 856.71 & 840.57 \\
\hline 248 & 994.34 & 981.59 & 968.53 & 955.14 & 941.43 & 927.36 & 912.94 & 898.15 & 882.98 & 867.43 & 851.50 \\
\hline \(25 ¢\) & 1002.58 & 989.99 & 977.11 & 963.92 & 950.4? & 936.60 & 922.44 & 907.93 & 893.08 & 877.88 & 862.33 \\
\hline & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature, K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} \mathrm{m}{ }^{2} \times 10^{-5}\)} \\
\hline & 50 & 55 & 60 & 65 & 70 & 75 & 80 & 85 & 90 & 95 & 100 \\
\hline 198
192 & 167.36 & 127.33 & 109.02 & ------ & 88.04 & ------ & 75.33 & 70.57 & 66.55 & 63.09 & \\
\hline 194 & 338.72 & 174.23 & 142.70 & 96.96
125.49 & 88.04
113.68 & 81.03
104.77 & 75.33
97.71 & 70.57
91.92 & 66.55 & 63.09 & 60.11 \\
\hline 196 & 421.54 & 252.79 & 184.09 & 157.63 & 141.48 & 129.99 & 121.17 & 114.09 & 108.25 & 82.95
103.34 & 99.41 \\
\hline 198 & 465.81 & 355.06 & 239.30 & 195.12 & 172.18 & 157.05 & 145.92 & 137.24 & 130.19 & 124.34 & 79.45
119.39 \\
\hline 200 & 498.55 & 419.17 & 310.26 & 240.28 & 206.70 & 186.40 & 172.23 & 161.50 & 152.99 & 146.01 & 140.17 \\
\hline 202 & 525.51 & 462.17 & 376.50 & 293.67 & 245.97 & 218.56 & 200.36 & 187.06 & 176.75 & 168.44 & 161.56 \\
\hline 204 & 548.91 & 495.38 & 426.85 & 349.24 & 289.98 & 253.86 & 230.56 & 214.07 & 201.58 & 191.68 & 183.60 \\
\hline 206 & 569.89 & 523.07 & 465.79 & 398.77 & 336.29 & 292.09 & 262.94 & 242.63 & 227.56 & 215.82 & 206.34 \\
\hline 208 & 589.10 & 547.20 & 497.66 & 440.11 & 380.87 & 332.02 & 297.24 & 272.74 & 254.73 & 240.87 & 229.80 \\
\hline 216 & 606.96 & 568.85 & 524.95 & 474.74 & 421.02 & 371.57 & 332.71 & 304.16 & & & 254.00 \\
\hline 212 & 623.75 & 588.68 & 549.06 & 504.49 & 456.25 & 408.88 & 368.18 & 336.37 & 312.19 & 293.58 & 278.88 \\
\hline 214 & 639.67 & 607.09 & 570.87 & 530.69 & 487.20 & 443.03 & 402.47 & 368.66 & 341.92 & 320.98 & 304.36 \\
\hline 216 & 654.87 & 624.39 & 590.92 & 554.25 & 514.72 & 473.91 & 434.77 & 400.26 & 371.71 & 348.75 & 330.29 \\
\hline 218 & 669.47 & 640.78 & 609.60 & 575.79 & 539.55 & 501.88 & 464.75 & 430.58 & 401.06 & 376.54 & 356.46 \\
\hline 220 & 683.55 & 656.41 & 627.18 & 595.74 & 562.2k & 527.37 & 492.42 & 459.27 & 429.54 & 404.02 & 382.63 \\
\hline 222 & 697.19 & 671.41 & 643.85 & 614.43 & 583.2 s & 550.80 & 517.99 & 486.19 & 456.83 & 430.86 & 408.54 \\
\hline 224 & 710.45 & 685.88 & 659.76 & 632.07 & 602.89 & 572.54 & 541.71 & 511.41 & 482.80 & 456.82 & 433.96 \\
\hline 226 & 723.38 & 699.87 & 675.04 & 648.85 & 621.39 & 592.88 & 563.84 & 535.04 & 507.39 & 481.76 & 458.70 \\
\hline 228 & 736.00 & 713.47 & 689.77 & 664.90 & 638.97 & 612.04 & 584.62 & 557.26 & 530.68 & 505.61 & 482.65 \\
\hline 230 & 748.37 & 726.71 & 704.03 & 680.32 & 655.66 & 630.20 & 604.24 & 578.22 & 552.73 & 528.38 & 505.72 \\
\hline 232 & 760.50 & 739.63 & 717.87 & 695.21 & 671.72 & 647.53 & 622.86 & 598.09 & 573.67 & 550.11 & 527.90 \\
\hline 234 & 772.42 & 752.29 & 731.36 & 709.64 & 687.19 & 664.13 & 640.63 & 617.00 & 593.60 & 570.86 & 549.20 \\
\hline 236 & 784.15 & 764.69 & 744.52 & 723.66 & 702.15 & 680.10 & 657.66 & 635.08 & 612.64 & 590.71 & 569.65 \\
\hline 238 & 795.72 & 776.88 & 757.40 & 737.37 & 716.66 & 695.53 & 674.05 & 652.42 & 630.89 & 609.75 & 589.32 \\
\hline 246 & 807.13 & 788.86 & 770.03 & 75n. 66 & 730.78 & 710.48 & 689.87 & & & & \\
\hline 242 & 818.40 & 800.67 & 782.44 & 763.72 & 744.55 & 725.01 & 705.20 & 685.25 & 648.43 & 628.05
645.68 & 608.24
626.50 \\
\hline 244 & 829.55 & 812.32 & 794.64 & 776.52 & 758.01 & 739.17 & 720.08 & 700.87 & 681.69 & 662.71 & \\
\hline \(24 t\) & 840.57 & 823.82 & 806.65 & 789.16 & 771.19 & 752.99 & 734.58 & 716.05 & 697.54 & 679.21 & 661.21 \\
\hline 248 & 851.50 & 835.18 & 818.50 & 801.46 & 784.17 & 766.52 & 748.72 & 730.83 & 712.95 & 695.21 & 677.77 \\
\hline 25 C & 862.33 & 846.43 & 830.19 & 813.65 & 796.8? & 779.77 & 762.55 & 745.24 & 727.95 & 710.78 & 693.87 \\
\hline
\end{tabular}
TABLE VII. - Continued. THERMODYNAMIC PROPERTY OF METHANE - ENTHALPY, H \(H_{0}\), K

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature, K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 200 & 210 & 220 & 230 & 240 & 250 & 260 & 270 & 280 & 290 & 300 \\
\hline 190 & ------ & -----7 & ------ & ------ & & & & & & & \\
\hline 192
194 & 42.47
57.57 & 42.77
57.71 & 43.28 & 43.95 & 44.70 & 45.76 & 46.86 & 48.08 & 49.41 & 50.84 & 52.36 \\
\hline 198 & 57.57
72.71 & 57.71
72.67 & 58.05 & 58.59 & 59.29 & 60.14 & 61.14 & 62.25 & 63.49 & 64.82 & 66.26 \\
\hline 198 & 87.89 & 87.65 & 78.85
87.66 & 73.23
87.89 & 73.80
88.31 & 74.53
88.91 & 75.40
89.67 & 76.41 & 77.55 & 78.79 & 80.14 \\
\hline 206 & & & & & & & & & & 92.75 & 94.00 \\
\hline 202 & 118.36 & 102.67 & 102.50 & 102.54 & 102.83 & 103.30 & 103.93 & 104.71 & 105.64 & 106.69 & 107.85 \\
\hline 204 & 133.67 & 117.71
132.80 & 117.35
132.24 & 117.25
131.96 & 117.37
131.97 & 117.69 & 118.19 & 118.86 & 119.67 & 120.62 & 121.69 \\
\hline 206 & 149.02 & 147.92 & 147.15 & 146.69 & 146.48 & 132.09
146.50 & 132.46
146.73 & 133.00
147.14 & 133.70
147.73 & 134.54 & 135.51 \\
\hline 208 & 164.42 & 163.08 & 162.10 & 161.44 & 161.06 & 160.92 & 161.01 & 161.29 & 147.73
161.75 & 148.46
162.37 & 149.33
163.14 \\
\hline 216 & 179.87 & 178.28 & 177.08 & 176.22 & 175.66 & 175.36 & & & & & \\
\hline 212 & 195.37 & 193.52 & 192.09 & 191.02 & 190.28 & 189.36
189.81 & 175.30
189.60 & 175.44
189.61 & 175.78
189.81 & 176.29 & 176.95 \\
\hline 214 & 210.93 & 208.81 & 207.14 & 205.86 & 204.92 & 204.28 & 203.91 & 203.77 & 189.81
203.85 & 190.20
204.12 & 190.75
204.56 \\
\hline 216 & 226.54 & 224.14 & 222.22 & 22^.7? & 219.59 & 218.77 & 218.24 & 217.95 & 217.89 & 218.03 & 204.56
218.36 \\
\hline 218 & 242.21 & 239.51 & 237.34 & 235.61 & 234.27 & 233.28 & 232.58 & 232.14 & 231.94 & 231.96 & 232.16 \\
\hline 226 & 257.92 & 254.93 & 252.49 & 250.53 & 248.99 & 247.80 & 246.93 & 246.34 & & & \\
\hline 222 & 273.69 & 270.39 & 267.68 & 265.49 & 263.7? & 262.35 & 261.30 & 260.55 & 260.07 & 245.89 & 245.97
259.78 \\
\hline 224 & 289.50 & 285.88 & 282.90 & 280.46 & 278.48 & 276.91 & 275.69 & 274.78 & & & \\
\hline 226 & 305.35 & 301.42 & 298.15 & 295.46 & 293.26 & 291.49 & 290.09 & 289.01 & 284.15
288.23 & 273.76
287.71 & 273.60
287.42 \\
\hline 228 & 321.25 & 316.98 & 313.44 & 31 n .49 & 308.07 & 306.09 & 304.50 & 303.26 & 302.33 & 301.67 & 287.42
301.25 \\
\hline 236 & 337.17 & 332.58 & 328.74 & 325.54 & 322.89 & & & & & & \\
\hline 232 & 353.13 & 348.20 & 344.07 & 340.61 & 337.73 & 335.34 & 318.93
333.38
347 & 317.52
331.80 & 316.43
330.55 & 315.63 & 315.08 \\
\hline 234 & 369.11 & 363.85 & 359.42 & 355.70 & 352.58 & 349.98 & 318.38
34.83 & 331.80
346.08 & 330.55
344.67 & 329.60 & 328.92 \\
\hline 236 & 385.10 & 379.51 & 374.79 & 370.80 & 367.45 & 364.63 & 362.29 & 360.37 & 358.80 & \(\begin{array}{r}343.58 \\ 357.57 \\ \hline\end{array}\) & 342.77
356.62 \\
\hline 238 & 401.10 & 395.17 & 390.16 & 385.91 & 382.37 & 379.30 & 376.77 & 374.66 & 372.94 & 371.56 & 356.62
370.47 \\
\hline 240 & 417.10 & 410.84 & 405.54 & 401.03 & 397.21 & & & & & & \\
\hline 242 & 433.09 & 426.51 & 420.92 & 416.15 & 412.09 & 408.64 & 405.72 & 388.97
403.27 & 387.08
401.23 & 385.55
399.55
413.55 & 384.33 \\
\hline 244 & 449.06 & 442.17 & 436.29 & 431.26 & 426.97 & 423.32 & 420.21 & 417.58 & 415.38 & 413.55 & 398.19
412.06 \\
\hline 248 & 465.01 & 457.81 & 451.65 & 446.37 & 441.85 & 437.99 & 434.69 & 431.89 & 429.52 & 427.55 & 425.06 \\
\hline 248 & 480.93 & 473.43 & 466.99 & 461.47 & 456.72 & 452.65 & 449.17 & 446.19 & 443.67 & 441.55 & 439.79 \\
\hline 250 & 496.80 & 489.01 & 482.32 & 476.55 & 471.58 & 467.31 & 463.64 & 460.49 & 457.81 & 455.55 & 453.65 \\
\hline
\end{tabular}
TABLE VII. - Continued. THERMODYNAMIC PROPERTY OF METHANE - ENTHALPY, \(\mathrm{H}_{0} / \mathrm{R}, \mathrm{K}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature, K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 100 & 110 & 120 & 130 & 140 & 150 & 160 & 170 & 180 & 190 & 200 \\
\hline 256 & 693.87 & 661.33 & 631.30 & 604.42 & 580.96 & 560.79 & 543.59 & 528.96 & 516.51 & 505.89 & 496.80 \\
\hline 255 & 732.35 & 701.90 & 673.35 & 647.28 & 624.01 & 603.59 & 585.87 & 570.57 & 557.40 & 546.05 & 536.26 \\
\hline 26 C & 768.73 & 740.19 & 713.14 & 689.06 & 665.29 & 644.95 & 627.00 & 611.29 & 597.59 & 585.66 & 575.29 \\
\hline 265 & 803.42 & 776.60 & 750.99 & 726.98 & 704.89 & 684.86 & 666.93 & 651.02 & 636.98 & 624.64 & 613.81 \\
\hline 270 & 836.76 & 811.49 & 787.22 & 764.28 & 742.95 & 723.38 & 705.65 & 689.73 & 675.52 & 662.91 & 651.74 \\
\hline 275 & 868.99 & 845.10 & 822.07 & 800.18 & 779.65 & 760.64 & 743.23 & 727.43 & 713.20 & 700.44 & 689.05 \\
\hline 28. & 900.30 & 877.67 & 855.78 & 834.88 & 815.15 & 796.74 & 779.73 & 764.17 & 750.02 & 737.22 & 725.71 \\
\hline 285 & 930.86 & 909.36 & 888.52 & 868.55 & 849.61 & 831.82 & 815.27 & 800.00 & 796.02 & 773.28 & 761.73 \\
\hline 290 & 960.79 & 940.31 & 920.45 & 901.35 & 883.16 & 865.99 & 849.92 & 835.00 & 821.25 & 808.63 & 797.12 \\
\hline 295 & 990.19 & 970.65 & 951.67 & 933.39 & 915.92 & 899.36 & 883.79 & 869.25 & 855.77 & 843.32 & 831.90 \\
\hline 30 C & 1019.14 & 1000.47 & 982.31 & 964.79 & 948.00 & 932.03 & 916.96 & 902.81 & 889.63 & 877.40 & 866.12 \\
\hline 305 & 1047.72 & 1029.84 & 1012.44 & 995.63 & 979.49 & 964.09 & 949.50 & 935.77 & 922.90 & 910.92 & 899.80 \\
\hline 310 & 1075.98 & 1058.83 & 1042.14 & 1025.99 & 1010.48 & 995.62 & 981.50 & 968.17 & 955.63 & 943.91 & 932.99 \\
\hline 315 & 1103.98 & 1087.51 & 1071.48 & 1055.95 & 1041.0n & 1026.67 & 1013.02 & 1000.09 & 987.89 & 976.43 & 965.73 \\
\hline 32 C & 1131.75 & 1115.91 & 1100.50 & 1085.55 & 1071.14 & 1057.32 & 1044.11 & 1031.57 & 1019.71 & 1008.53 & 998.06 \\
\hline 325 & 1159.33 & 1144.09 & 1129.25 & 1114.85 & 1100.96 & 1087.61 & 1074.83 & 1062.67 & 1051.14 & 1040.25 & 1030.01 \\
\hline 330 & 1186.75 & 1172.07 & 1157.77 & 1143.90 & 1130.49 & 1117.59 & 1105.23 & 1093.44 & 1082.23 & 1071.63 & 1061.63 \\
\hline 335 & 1214.05 & 1199.90 & 1186.10 & 1172.72 & 1159.77 & 1147.30 & 1135.34 & 1123.91 & 1113.02 & 1102.70 & 1092.94 \\
\hline 340 & 1241.25 & 1227.59 & 1214.28 & 1201.35 & 1188.84 & 1176.78 & 1165.20 & 1154.11 & 1143.54 & 1133.50 & 1123.98 \\
\hline 345 & 1268.37 & 1255.17 & 1242.31 & 1229.82 & 1217.73 & 1206.06 & 1194.85 & 1184.10 & 1173.83 & 1164.06 & 1154.78 \\
\hline 350 & 1295.42 & 1282.67 & 1270.24 & 1258.16 & 1246.47 & 1235.18 & 1224.31 & 1213.88 & 1203.91 & 1194.40 & 1185.37 \\
\hline 355 & 1322.44 & 1310.10 & 1298.08 & 1286.40 & 1275.08 & 1264.14 & 1253.61 & 1243.49 & 1233.81 & 1224.56 & 1215.76 \\
\hline 360 & 1349.43 & 1337.49 & 1325.85 & 1314.55 & 1303.59 & 1292.99 & 1282.78 & 1272.96 & 1263.56 & 1254.57 & 1246.00 \\
\hline 365 & 1376.40 & 1364.84 & 1353.58 & 1342.63 & 1332.01 & 1321.74 & 1311.84 & 1302.31 & 1293.17 & 1284.43 & 1276.08 \\
\hline 37C & 1403.38 & 1392.18 & 1381.27 & 1370.66 & 1360.37 & 1350.41 & 1340.80 & 1331.56 & 1322.68 & 1314.17 & 1306.05 \\
\hline 375 & 1430.37 & 1419.51 & 1408.94 & 1398.65 & 1388.67 & 1379.02 & 1369.70 & 1360.72 & 1352.09 & 1343.82 & 1335.91 \\
\hline 38 C & 1457.38 & 1446.85 & 1436.60 & 1426.63 & 1416.95 & 1407.58 & 1398.53 & 1389.81 & 1381.43 & 1373.38 & 1365.68 \\
\hline 385 & 1484.43 & 1474.22 & 1464.27 & 1454.59 & 1445.20 & 1436.11 & 1427.33 & 1418.85 & 1410.70 & 1402.88 & 1395.39 \\
\hline 396 & 1511.52 & 1501.61 & 1491.95 & 1482.56 & 1473.45 & 1464.62 & 1456.09 & 1447.86 & 1439.94 & 1432.33 & 1425.03 \\
\hline 395 & 1538.66 & 1529.04 & 1519.67 & 1510.55 & 1501.70 & 1493.13 & 1484.84 & 1476.84 & 1489.14 & 1461.74 & 1454.64 \\
\hline 40 C & 1565.86 & 1556.52 & 1547.42 & 1538.57 & 1529.97 & 1521.65 & 1513.59 & 1505.82 & 1498.33 & 1491.12 & 1484.21 \\
\hline
\end{tabular}
TABLE VII. - Continued. THERMODYNAMIC PROPERTY OF METHANE - ENTHALPY. H \(\mathrm{H}_{0}\), K
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature. K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} \mathrm{m}{ }^{2} \cdot 10^{-5}\)} \\
\hline & 200 & 210 & 220 & 230 & 240 & 250 & 260 & 270 & 280 & 290 & 300 \\
\hline 256 & 496.80 & 489.01 & 482.32 & 476.55 & 471.58 & 467.31 & 463.64 & 460.49 & 457.81 & 455.55 & 453.65 \\
\hline 255 & 536.26 & 527.80 & 520.48 & 514.15 & 508.69 & 503.89 & 499.77 & 496.21 & 493.14 & 490.52 & 488.29 \\
\hline 26 C & 575.29 & 566.26 & 558.39 & 551.54 & 545.55 & 540.34 & 535.79 & 531.84 & 528.41 & 525.44 & 522.89 \\
\hline 265 & 613.81 & 604.30 & 595.97 & 588.65 & 582.23 & 576.60 & 571.66 & 567.34 & 563.57 & 560.28 & 557.42 \\
\hline 270 & 651.74 & 641.87 & 633.14 & 625.44 & 618.64 & 612.64 & 607.35 & 602.69 & 598.59 & 595.00 & 591.86 \\
\hline 275 & 689.05 & 678.90 & 669.87 & 661.85 & 654.72 & 648.41 & 642.81 & 637.84 & 633.46 & 629.58 & 626.18 \\
\hline 28 C & 725.71 & 715.38 & 706.13 & 697.86 & 690.47 & 683.88 & 678.01 & 672.78 & 668.13 & 664.01 & 680.36 \\
\hline 285 & 761.73 & 751.30 & 741.89 & 733.44 & 725.84 & 719.03 & 712.93 & 707.47 & 702.60 & 698.25 & 694.38 \\
\hline 290 & 797.12 & 786.65 & 777.16 & 768.58 & 760.83 & 753.84 & 747.56 & 741.91 & 736.84 & 732.29 & 728.23 \\
\hline 295 & 831.90 & 821.46 & 811.94 & 803.2 \% & 795.4? & 788.31 & 781.88 & 776.07 & 770.84 & 766.13 & 761.90 \\
\hline 30 C & 866.12 & 855.74 & 846.24 & 837.55 & 829.63 & 822.43 & 815.89 & 809.96 & 834.60 & 799.75 & 795.38 \\
\hline 305 & 899.80 & 889.54 & 880.08 & 871.41 & 863.47 & 856.21 & 849.60 & 843.58 & 838.11 & 833.14 & 828.65 \\
\hline 316 & 932.99 & 922.86 & 913.50 & 904.87 & 896.94 & 889.66 & 883.00 & 876.92 & 871.37 & 866.32 & 861.73 \\
\hline 315 & 965.73 & 955.76 & 946.51 & 937.96 & 930.06 & 922.79 & 916.11 & 909.99 & 904.39 & 899.27 & 894.61 \\
\hline 32 C & 998.06 & 988.27 & 979.15 & 970.69 & 962.85 & 955.61 & 948.94 & 942.81 & 937.17 & 932.01 & 927.29 \\
\hline 325 & 1030.01 & 1020.41 & 1011.45 & 1003.1? & 995.34 & 988.15 & 981.51 & 975.38 & 969.73 & 964.54 & 959.79 \\
\hline 33 C & 1061.63 & 1052.23 & 1043.43 & 1035.20 & 1027.54 & 1020.42 & 1013.82 & 1007.71 & 1092.07 & 996.87 & 992.10 \\
\hline 335 & 1092.94 & 1083.75 & 1075.11 & 1067.03 & 1059.47 & 1052.44 & 1045.89 & 1039.82 & 1034.21 & 1029.02 & 1024.23 \\
\hline 340 & 1123.98 & 1115.00 & 1106.54 & 1098.6 & 1091.17 & 1084.22 & 1077.75 & 1071.73 & 1066.15 & 1060.98 & 1056.20 \\
\hline 345 & 1154.78 & 1146.01 & 1137.73 & 1129.94 & 1122.64 & 1115.80 & 1109.41 & 1153.45 & 1097.91 & 1092.77 & 1088.01 \\
\hline 350 & 1185.37 & 1176.80 & 1168.71 & \(1161.0 \%\) & 1153.91 & 1147.17 & 1140.88 & 1134.99 & 1129.51 & 1124.41 & 1119.68 \\
\hline 355 & 1215.76 & 1207.41 & 1199.50 & 1192.03 & 1184.99 & 1178.38 & 1172.18 & 1166.37 & 1160.95 & 1155.90 & 1151.21 \\
\hline 36 C & 1246.00 & 1237.85 & 1230.12 & 1222.81 & 1215.9 ? & 1209.43 & 1203.33 & 1197.61 & 1192.26 & 1187.27 & 1182.62 \\
\hline 365 & 1276.08 & 1268.14 & 1260.60 & 1253.45 & 1246.70 & 1240.33 & 1234.34 & 1228.71 & 1223.44 & 1218.51 & 1213.91 \\
\hline 37 C & 1306.05 & 1298.31 & 1290.95 & 1283.95 & 1277.35 & 1271.11 & 1265.23 & 1259.70 & 1254.51 & 1249.65 & 1245.11 \\
\hline 375 & 1335.91 & 1328.36 & 1321.18 & 1314.36 & 1307.90 & 1301.78 & 1296.02 & 1290.59 & 1295.48 & 1280.69 & 1276.21 \\
\hline 38 C & 1365.68 & 1358.33 & 1351.33 & 1344.67 & 1338.35 & 1332.36 & 1326.71 & 1321.38 & 1316.36 & 1311.65 & 1307.24 \\
\hline 385 & 1395.39 & 1388.22 & 1381.39 & 1374.89 & 1368.71 & 1362.86 & 1357.32 & 1352.09 & 1347.17 & 1342.54 & 1338.19 \\
\hline 39 C & 1425.03 & 1418.05 & 1411.39 & 1405.05 & 1399.01 & 1393.29 & 1387.87 & 1382.75 & 1377.91 & 1373.36 & 1369.09 \\
\hline 395 & 1454.64 & 1447.84 & 1441.34 & 1435.15 & 1429.26 & 1423.66 & 1418.36 & 1413.34 & 1408.60 & 1404.14 & 1399.94 \\
\hline 40 C & 1484.21 & 1477.59 & 1471.26 & 1465.22 & 1459.46 & 1453.99 & 1448.81 & 1443.89 & 1439.25 & 1434.87 & 1430.75 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 8 &  &  &  & \begin{tabular}{l}
\(\sigma\) on ono \(\sigma \infty \infty \sigma \sim\) \(\dot{+} \dot{\sim} \dot{\sim}\) \\
 －NNN
\end{tabular} & \(-N \operatorname{Non} m\) ONONN －்がの் mom－s N～NN & \begin{tabular}{l}
\(\infty m+\sim\) \\
\(\infty \rightarrow \cos\) \\
から守シ \\
Nmmo \\
～～～～N
\end{tabular} & \begin{tabular}{l}
 \\
 moonin さむさん N N
\end{tabular} & \(\infty \times x^{\infty}\) N000m \(\dot{\circ} \dot{\circ} \dot{\circ}\) かんいの一 へ～NへN &  \\
\hline & 8 & \begin{tabular}{l}
 in \(\dot{\sim}\) \\
 ーローーー ー
\end{tabular} & \(\begin{array}{llll}m o n & \infty \\ m & \infty \\ 0 & \infty \\ 0\end{array}\) \(\rightarrow \infty-\dot{-1}\) ＂MNon NRNN & \begin{tabular}{l}
～トにかo \(x \infty 0 m \infty\) \(\dot{0} \dot{\circ} \dot{\circ} \dot{\sim}\) \\
 ーーーーか
\end{tabular} & \begin{tabular}{l}
MのNが \\
\(\therefore \mathrm{O}_{\circ}^{\circ} \mathrm{N}\) \\
जNが品 \\
\(0000-\) \\
－NNNN
\end{tabular} &  & \(m \propto \infty m m\) かoNrm ＋\(\dot{+}\) in in ががった NNNN～ & \begin{tabular}{l}
0000 に \(000 \sim 0\) － \(\cos _{0}^{\circ}\) \\
 ～N～NN
\end{tabular} &  & \(\stackrel{\infty}{\sim}\) \\
\hline & \(\infty\) & \begin{tabular}{l}
\(\pm \infty \infty\) －ロット～ \\
 \\
 ーーーーー
\end{tabular} &  ががおーが上さミの～ ーーーニー &  & \begin{tabular}{l}
ぶッ～が \\
－ \\
 \\
－NNN
\end{tabular} & \begin{tabular}{l}
 ～•••் \\
tr2 \({ }^{\circ}\) \({ }^{-1} N \sim N \sim N\)
\end{tabular} &  & \begin{tabular}{l}
\(\sim \sim \propto \sigma N\) \\
がmさん \\
 \\
vなinco \\
NNNN～
\end{tabular} & OのばがN「官 \(\dot{\sim}\) \(\begin{array}{ccc}0 \\ 0 & 0 & 0 \\ 0 & 0\end{array}\) \(\sim \sim N N\) & \(\sim\)
\(\sim\)
\(\sim\)
0
\(\sim\)
\(\sim\)
\(\sim\) \\
\hline \multirow{8}{*}{} & 안 & \begin{tabular}{l}
NのホON ～～No \\
 Not
0 ーーコーコ
\end{tabular} & \begin{tabular}{l}
\(\uparrow \infty \sim \infty\) intirom ががが \\
 －
\end{tabular} &  & \begin{tabular}{l}
がったが \\
 응ㅇㅇ․․ NNNN
\end{tabular} &  &  & －NNMO N \(\infty \infty\) ○ \(\bullet 0-\infty\) ずす心合 ～NNNN & \(m m \infty 0 \infty\) \(m \infty+m \sim\) －～+0.0 OMO N ○○～～N NNNNN & \(N\)
+
0
0
\(\sim\)
\(\sim\) \\
\hline & 8 & \begin{tabular}{l}
－NOON \(+\infty 0 \mathrm{~mm}\) ジゥトナ் \\
 －゚ロッチ
\end{tabular} &  & \begin{tabular}{l}
NoONT ヶ \(\rightarrow \infty\) NT へ்がゥ \\
 かのののが
\end{tabular} & Nmoor NH0．0N －のがが －mon 우NㅇNN & \(\sigma\) のー～ ㅇ․N․ \(\dot{4} \dot{\sim}\) が心先 NNNN & \(\infty\) かのos nmNmo －0．00 Omoon N NNNN & 0toon O．\(\quad \mathrm{mNm}\) \(\rightarrow \dot{\operatorname{com}}\) かの一さ～ ～～N N N N N &  & \(\sim\)
\(\sim\)
\(\vdots\)
0
\(\sim\)
\(\sim\) \\
\hline & 안 &  & \begin{tabular}{l}
－ONNO に－T －ペがが \\
さへの～～N \\
\(\stackrel{\sim}{\wedge}\)
\end{tabular} &  &  &  & コャが心 \(\therefore\) が心が omogn N NNNNN & \begin{tabular}{l}
\(\infty\) 的 \(\infty\) \(\infty \rightarrow \infty \infty\) パ～が nomatin \\
 かNNNN
\end{tabular} & がN～M』 が守が OGHOM ペ～N & 0
\(\cdots\)
\(\infty\)
0
\(\sim\) \\
\hline & 안 &  &  &  & N ベッーがの \(\cdots\) in o 응ㅇN & NO～～～～ \(\dot{\circ} \dot{\circ} \dot{+} \dot{\sim}\) －2N～N NスNNN N N &  &  &  & \(\sim\)
\(\sim\)
\(\sim\)
\(\sim\)
\(N\) \\
\hline & ¢ &  &  & \begin{tabular}{l}
orm N \\
\(-100 \sim 0\) \\
がッが \\
がNか。 \\
かののが
\end{tabular} &  & \begin{tabular}{l}
\(\stackrel{c}{\sim} \circ\) Nrtmm \\
  －NNNN NNNNN
\end{tabular} &  &  \(\therefore \dot{\circ} \dot{\circ}\) －N～N NNNN &  & \(\pm\)
\(N\)
\(\vdots\)
\(\sim\)
\(N\)
\(N\) \\
\hline & ¢ & \begin{tabular}{l}
\(\infty \sim \sim \infty\) OッMロー・ \\
 すへの～さ ロー゚ーラ
\end{tabular} & \begin{tabular}{l}
\(\infty 0 \%\) on \\
\(\infty\) ค \(0 \infty\)－ \\
さ்́ㅇ́ㅇ \\
 \\
ーーツーの
\end{tabular} & トm゚ロm \(\because M \because \because M\) に～Oロの 웅№ のールーN & ～かめNに \(\because \because \infty\) ・ト － \(0_{0}\) ñ かっ゚～n NNNN & inNTOO \(0 \times \infty 0\) が영 －NNNN NNNNN &  －・ペー！ ヴN～シ Ning＝ mmmyy NNNNN & mivam noomo \(\because-\dot{-1}\) －OMon \(\cdots \stackrel{N}{n} \sim n_{n}^{n}\) &  ジゥベゥの Nin \(\rightarrow\) ペ゚NへN & \[
\begin{aligned}
& \infty \\
& + \\
& \dot{0} \\
& \dot{\infty} \\
& \stackrel{\sim}{N}
\end{aligned}
\] \\
\hline & 9 & \begin{tabular}{l}
Nomma \(-\sigma \infty \sigma\)－ \(\dot{\sigma} \dot{\circ} \dot{\circ} \dot{\sigma}\) \\
 ッゴゴゴコ
\end{tabular} & NNのがす。 \(\stackrel{\circ}{\circ} \rightarrow \dot{\circ}\) \(\infty \rightarrow \infty\) \(\stackrel{\infty}{-\infty} \underset{\sim}{\infty} \underset{-1}{\infty}\) &  & \begin{tabular}{l}
\(n_{\infty}^{\infty} \infty, \infty\) M \(0 \rightarrow \infty\) \\
品かっmin N～N～N
\end{tabular} &  & \begin{tabular}{l}
जN゚No が On－ \(\circ \times \infty \times\) \\
 mmNs． NNNNN
\end{tabular} &  &  & \[
\begin{aligned}
& \pm \\
& \infty \\
& \dot{H} \\
& \underset{\sim}{\sim} \\
& \sim
\end{aligned}
\] \\
\hline & \(\bigcirc\) &  &  & \begin{tabular}{l}
\(\underset{\sim}{\sim} \rightarrow \vec{\sim}\) \\
 ～は下O～ agooio
\end{tabular} & \(\sigma+\infty\) 웅 －••• \(\therefore m 0 \infty\) ロローゴ NNNNN & がoNN \(\dot{m}-0^{\circ} \dot{\circ}\) anino \(\boldsymbol{\sim} N \sim N \sim N\) &  がすが ペゅが～N NMN & NGONM ？5．T N～ベッ が心出会 NNNNN &  ベが・～ moon in ペㅇN N & \(\sim\)
\(\sim\)
\(\sim\)
\(\sim\)
\(\sim\)
\(\sim\) \\
\hline  & &  & Nomusw なさなざす &  &  &  & nus． nMmst numin & ب心 in in on muntin & \(u\)
\(\sim\) in in in in & ¢ \\
\hline
\end{tabular}
TABLE VII．－Concluded．THERMODYNAMIC PROPERTY OF METHANE－ENTHALPY，\(H_{0}\) R，K
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 응 &  &  &  &  & \(N_{0}^{\infty} \operatorname{Nn}_{n} N\) osomino \(\dot{\sim} \dot{\sim} \dot{+} \dot{+}\) がすN～只べNN & \begin{tabular}{l}
munon \(\infty \rightarrow \infty-\infty\) \\
 \(\mathrm{n} \sim \mathrm{mm}\) N～NN
\end{tabular} & \begin{tabular}{l}
\(\circ 0\) 人 －．．．． ぶへのが志 \\
 NNNN
\end{tabular} &  シージが minw い心 000 NNNNN & \[
\begin{aligned}
& 0 \\
& \dot{B} \\
& N \\
& N
\end{aligned}
\] \\
\hline & \[
\stackrel{8}{-}
\] & \begin{tabular}{l}
NON～t \(\rightarrow+\infty N \infty\) \(-0^{\circ} 00^{\circ}\) aNが
\(\rightarrow 0\) \\

\end{tabular} & ONNON OnOnH －「ペ mognin
\[
\Rightarrow=-1
\] & \begin{tabular}{l}
m下Nom minmN \\
 \(\stackrel{\infty}{\sim} \underset{\infty}{\infty}\) \(\rightarrow \rightarrow-\boldsymbol{H a}\)
\end{tabular} &  &  &  & \begin{tabular}{l}
 －© N－ \\
 NNNN
\end{tabular} & －mong がㅂ․ nn
in
in o
0 NNNN & \[
\begin{gathered}
\vec{~} \\
\stackrel{N}{N} \\
\underset{\sim}{N}
\end{gathered}
\] \\
\hline \multirow{9}{*}{} & \[
\stackrel{\circ}{\infty}
\] & \begin{tabular}{l}
\(\begin{array}{lll}\text { min } & 0 \\ 0 & 0 & 0\end{array}\) － \(\infty\) 人 0 に的 \\
 － \(\boldsymbol{\sim}\)
\end{tabular} & \begin{tabular}{l}
べけ －ற்～் \\

\[
\because=-\rightarrow-1
\]
\end{tabular} &  &  &  & ～ヘNが －品品品 NNmmm NNNNN & へかんのが ベツレペ omoon NNNNN & か～～がo \(\dot{\sim} \dot{\sim} \dot{+} \dot{\sim}\) \(\begin{array}{ll}0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0\end{array}\) NNNNN & \[
\underset{\sim}{\vec{\sigma}} \underset{\sim}{N}
\] \\
\hline & \(\stackrel{\square}{\square}\) &  &  &  &  & Ni゚日～。 に \(\because \dot{\circ}\) のペ～が ～N～N & \(\infty \sim \infty\) －••• \(\infty\)－\(\rightarrow \sim m\) ざがが NNNN & \begin{tabular}{l}
べへ～N～ \\
 omeom ～NNN
\end{tabular} & innomo ～がード －ペ்～レ゙ \(\therefore \sigma ल \circ \sigma\) ～～N NNNNN & \[
\begin{aligned}
& n \\
& \stackrel{n}{\infty} \\
& \underset{\sim}{\infty}
\end{aligned}
\] \\
\hline & 8 & \begin{tabular}{l}
onnNo inm－ar ウベがか \\
 \\

\end{tabular} & \begin{tabular}{l}
け～～Nin \\
oun or \\
－シーが \\
ぺがささ \\
のーゴゴ
\end{tabular} &  & \begin{tabular}{l}
\(\stackrel{\text { co }}{\sim}\) －்ががか \\
 －nNN
\end{tabular} &  &  &  & mNに \(\infty \dot{\circ} \dot{\circ} \dot{\circ}\) \(\therefore 000 \%\)以 000 NNNN & \(N\)
\(\sim\)
\(\vdots\)
\(\sim\)
\(N\) \\
\hline & － & \begin{tabular}{l}
untmin ッートのに \(\because 0^{\circ}+\operatorname{con}^{\circ}\) Nin \(\mathrm{O}_{\mathrm{m}}\) \\

\end{tabular} &  &  & \begin{tabular}{l}
\(m^{\infty} \operatorname{Nan}^{\infty}\) －•••• に综なさ \\
 の9우N
\end{tabular} & \begin{tabular}{l}
\(\infty \circ \infty \times\) か．… \\
 －Mo～～～ べべN
\end{tabular} &  & ごがが －•••• Nな～～～ ますが心年 ～NNN & がッニッ －トロ・• \(\boldsymbol{r} 000-1\) isoor NNNN & 0
0
0
\(\vdots\)
\(\sim\)
\(\sim\) \\
\hline & \[
\underset{\sim}{\square}
\] &  & \[
\begin{aligned}
& \text { NoNc } \\
& \text { No N } \\
& \text { No N } \\
& \text { ONN }
\end{aligned}
\] &  －ジッシ ひ \(\infty \infty \times 0\) \(\rightarrow-\boldsymbol{\rightarrow - a}\) &  & 下の目へ のペロロ் omoom へ～NN &  &  －•••• がのごぎ がながが NNNNN &  & \(\infty\)
\(\stackrel{\alpha}{0}\)
\(\stackrel{1}{*}\)
\(\sim\)
\(\sim\) \\
\hline & 악 & べづが からすべ monNin in in in 0
\[
m-1-\omega \rightarrow-1
\] &  & \begin{tabular}{l}
 \\
 N以下Om \(\infty \infty \infty\)
\[
-5-5
\]
\end{tabular} &  & N人NGom さすホず心 जホNON NNNN &  －•～が かのNか N N MNN ～NNNN & \begin{tabular}{l}
 \\
 N～が示 ＋54～～～ NNNNN
\end{tabular} & \begin{tabular}{l}
avmin ？Mn m \(\propto \dot{\circ} \dot{\circ} \dot{+}\) \\
 NNNNN
\end{tabular} & \begin{tabular}{l}
\(\square\) \\
\hline 0 \\
0 \\
4 \\
\(\sim\)
\end{tabular} \\
\hline & － & \begin{tabular}{l}
～～ロペース \\
 \\
ヶNomin \\
in in on \\
\(\rightarrow \rightarrow-\boldsymbol{r r}\)
\end{tabular} &  &  &  & oronin －ローの のがのがの NNNN &  \(\therefore \dot{O}-\dot{\sim}\) ROMDO NMNMN NNNNN & トのロッツ \(\sim+\infty \mathrm{mo}\) \(\dot{+} \sin ^{\circ} \dot{o}^{\circ}\) N～が心 さささぜN NNNNN &  & \(\pm\)
\(\stackrel{4}{4}\)
\(\stackrel{4}{4}\)
\(\sim\) \\
\hline & \(\stackrel{9}{-}\) & NODMO －ボが \(\begin{array}{rlr}10 & 0 & 0 \\ 0 & 0 & 0\end{array}\) ベッチーが & \begin{tabular}{l}
－N M G N N \\
 －N N がづーッ
\end{tabular} &  & Nonn \(\dot{\sim}+\dot{\circ} \dot{\circ} \dot{\circ}\) rome －NNN &  & m－nかn ○to 0 Nín in NOMo \(\underset{N}{N} \underset{N}{N} \underset{N}{N}\) & \begin{tabular}{l}
～ぱ～の tin \(\infty\) Nr かoㅇ́n Nにの～～ \\

\end{tabular} & \begin{tabular}{l}
oraro \\
inmmua \\
 \\
\(\infty \rightarrow 5 \times\) \\
NかNoN
\end{tabular} & \(\infty\)
\(n\)
0
0
\(\vdots\)
\(N\) \\
\hline & \(\stackrel{8}{-}\) &  &  &  & ONing \(\dot{4} \dot{\sim} \dot{\sim}\) － －NNN & NNNK －シ்のロの moons ～NNNN &  & \begin{tabular}{l}
の人～の \\
 moann N～NN～N N N N N
\end{tabular} & \(\underset{\sim}{\infty} \circ \circ^{\circ} \mathrm{m}\) N000m がッヅッ \(\infty\) N以 N～NNN & N
\(\sim\)
0
+
\(N\) \\
\hline  & \(x\) & \[
\begin{array}{ccc}
4 \\
0 \\
0 & 0 \\
y
\end{array}
\] & \begin{tabular}{l}
N0 w \\
ざなざ
\end{tabular} &  &  &  & NOM出罚
incin in in & 听的心 inincin & \begin{tabular}{l}
 \\
 いのいinun
\end{tabular} & O－0 \\
\hline
\end{tabular}

TABLE VIII. - THERMODYNAMIC PROPERTY OF METHANE - ENTROPY. \(\mathrm{S}_{0}\) R
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Temperature. \\
K
\end{tabular}} & \multicolumn{11}{|l|}{Pressure. \(\mathrm{N} \mathrm{m}^{2} \cdot 10^{-5}\)} \\
\hline & (a) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 12 C & 18.7077 & 18.5905 & - & ------ & ------ & ------ & ------- & ------ & ------ & ------ & ------ \\
\hline 122 & 18.7739 & 18.6671 & 17.8555 & & & & & & & & \\
\hline 124 & 18.8390 & 18.7415 & 17.941) & ------- & ------ & ------ & ------ & ------ & ------- & -- & \\
\hline 126 & 18.9030 & 18.8139 & 18.0231 & & & ------ & & & & & \\
\hline 128 & 18.9661 & 18.8844 & 18.1023 & 17.5991 & ------ & ------ & ------ & ------ & ------ & ------ & ---- \\
\hline 136 & 19.0281 & 18.9531 & 18.1788 & 17.6846 & ------ & ------- & ------ & ------- & ------- & ------ & ------ \\
\hline 132 & 19.0893 & 19.0202 & 18.2527 & 17.7666 & 17.3904 & ------ & ------ & ------ & ------ & ------- & ------ \\
\hline 134 & 19.1495 & 19.0858 & 18.3244 & 17.8453 & 17.4774 & ------- & & & & & \\
\hline 136 & 19.2088 & 19.1500 & 18.3941 & 17.9211 & 17.5605 & 17.2576 & ------ & ------ & ------ & ------ & ------ \\
\hline 13 e & 19.2672 & 19.2128 & 18.4618 & 17.9944 & 17.6400 & 17.3448 & & & & & ------ \\
\hline 14. & 19.3249 & 19.2744 & 18.5277 & 18.0652 & 17.7165 & 17.4275 & 17.1736 & ------- & ------ & ------ & ------ \\
\hline 142 & 19.3816 & 19.3347 & 18.5920 & 18.1339 & 17.7901 & 17.5067 & 17.2594 & 17.0344 & ------ & & \\
\hline 144 & 19.4376 & 19.3940 & 18.6548 & 18.2006 & 17.861? & 17.5828 & 17.3412 & 17.1229 & ------ & ------- & ------ \\
\hline 146 & 19.4929 & 19.4521 & 18.7161 & 18.7655 & 17.9300 & 17.6560 & 17.4194 & 17.2068 & 17.0101 & & \\
\hline 148 & 19.5474 & 19.5093 & 18.7762 & 18.2287 & 17.9967 & 17.7266 & 17.4943 & 17.2868 & 17.0959 & 16.9158 & \\
\hline 15 C & 19.6011 & 19.5654 & 18.8350 & 18.3903 & 18.0614 & 17.7948 & 17.5664 & 17.3633 & 17.1773 & 17.0032 & 16.8366 \\
\hline 152 & 19.8542 & 19.6207 & 18.8926 & 18.4505 & 18.1244 & 17.8609 & 17.6360 & 17.4367 & 17.2551 & 17.0859 & 16.9252 \\
\hline 154 & 19.7066 & 19.6750 & 18.9491 & 18.5093 & \(18.185 \%\) & 17.9250 & 17.7032 & 17.5073 & 17.3295 & 17.1646 & 17.0089 \\
\hline \(15 t\) & 19.7583 & 19.7286 & 19.0045 & 18.5669 & 18.2457 & 17.9874 & 17.7682 & 17.5753 & 17.4009 & 17.2398 & 17.0884 \\
\hline 158 & 19.8093 & 19.7813 & 19.0590 & 18.6233 & 18.3041 & 18.0481 & 17.8314 & 17.6412 & 17.4697 & 17.3119 & 17.1642 \\
\hline 16 C & 19.8597 & 19.8332 & 19.1126 & 18.6786 & \(18.361^{7}\) & 18.1073 & 17.8928 & 17.7050 & 17.5362 & 17.3813 & 17.2368 \\
\hline 162 & 19.9095 & 19.8844 & 19.1652 & 18.7329 & 18.4177 & 18.1651 & 17.9525 & 17.7669 & 17.6004 & 17.4481 & 17.3065 \\
\hline 164 & 19.9587 & 19.9348 & 19.2170 & 18.7861 & 18.4720 & 18.2215 & 18.0108 & 17.8271 & 17.6627 & 17.5127 & 17.3737 \\
\hline 166 & 20.0073 & 19.9846 & 19.2681 & 18.8384 & 18.5258 & 18.2768 & 18.0677 & 17.8857 & 17.7232 & 17.5753 & 17.4385 \\
\hline 169 & 20.0553 & 20.0337 & 19.3183 & 18.9899 & 18.5785 & 18.3309 & 18.1233 & 17.9429 & 17.7821 & 17.6361 & 17.5012 \\
\hline 17 C & 20.1027 & 20.0821 & 19.3678 & 18.9405 & 18.6303 & 18.3840 & 18.1777 & 17.9987 & 17.8395 & 17.6951 & 17.5621 \\
\hline 172 & 20.1497 & 20.1300 & 19.4166 & 18.9903 & 18.681 ? & 18.4360 & 18.2310 & 18.0533 & 17.8955 & 17.7526 & 17.6212 \\
\hline 174 & 20.1960 & 20.1772 & 19.4647 & 19.0394 & 18.7313 & 18.4871 & 18.2832 & 18.1067 & 17.9502 & 17.8086 & 17.6787 \\
\hline 176 & 20.2419 & 20.2238 & 19.5122 & 19.0877 & 18.7805 & 18.5374 & 18.3344 & 18.1591 & 18.0037 & 17.8634 & 17.7348 \\
\hline 178 & 20.2872 & 20.2699 & 19.5590 & 19.1354 & 18.8290 & 18.5868 & 18.3848 & 18.2104 & 18.0561 & 17.9159 & 17.7895 \\
\hline 180 & 20.3321 & 20.3155 & 19.6053 & 19.1824 & 18.8768 & 18.6354 & 18.4342 & 18.2608 & 18.1075 & 17.9693 & 17.8430 \\
\hline 182 & 20.3765 & 20.3605 & 19.6509 & 19.2287 & 18.9230 & 18.6832 & 18.4829 & 18.3103 & 18.1578 & 18.0206 & 17.8953 \\
\hline 184 & 20.4204 & 20.4050 & 19.6960 & 19.2745 & 18.9707 & 18.7303 & 18.5307 & 18.3589 & 18.2073 & 18.0710 & 17.9466 \\
\hline 186 & 20.4638 & 20.4489 & 19.7406 & 19.3196 & 19.0161 & 18.7767 & 18.5779 & 18.4068 & 18.2559 & 18.1204 & 17.9968 \\
\hline 18 ¢ & 20.5068 & 20.4924 & 19.7846 & 19.3647 & 19.0617 & 18.8225 & 18.6243 & 18.4539 & 18.3037 & 18.1689 & 18.0461 \\
\hline 190 & 20.5494 & 20.5355 & 19.8282 & 19.4083 & 19.1059 & 18.8677 & 18.6700 & 18.5003 & 18.3507 & 18.2166 & 18.0946 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{\text {For }}\) For chese case the entropy function is that of the ideal gas at a pressure of \(1 \cdot 10^{5} \mathrm{~N} \mathrm{~m}{ }^{2}\)
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature, K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 \\
\hline 15 C
152 & 16.8366
16.9252 & -------- & -------- & -------- & ------- & --------- & ---.-- & -------- & ---- & --- & ------ \\
\hline 154 & 17.0089 & 16.7134 & ------ & ------- & & & & & & & \\
\hline 156 & 17.0884 & 16.8037 & & ------- & ------ & ------ & & & & & \\
\hline 158 & 17.1642 & 16.8886 & 16.6262 & ------- & ------ & & -------- & & & & \\
\hline 16 C & 17.2368 & 16.9690 & 16.7172 & 16.4686 & & ------ & ------ & ------ & ------ & & \\
\hline 162 & 17.3065 & 17.0455 & 16.8025 & 16.5662 & ------- & ------ & ------ & ------- & ------ & -.---- & \\
\hline 164 & 17.3737 & 17.1186 & 16.8831 & 16.6569 & 16.4305 & ------- & ------ & ------ & ---- & ----- & -.---- \\
\hline 166 & 17.4385 & 17.1886 & 16.9596 & 16.7418 & 16.5271 & 16.3064 & ------ & ------ & ------- & --.-- & \\
\hline 168 & 17.5012 & 17.2560 & 17.0326 & 16.822? & 16.6162 & 16.4097 & ------- & ------ & & & \\
\hline 170 & 17.5621 & 17.3209 & 17.1025 & \(16.898{ }^{\text {\% }}\) & 16.7007 & 16.5045 & 16.3023 & ------ & ------ & ------ & ------ \\
\hline 172 & 17.6212 & 17.3837 & 17.1696 & 16.9704 & 16.7798 & 16.5925 & 16.4026 & 16.2030 & ------ & & \\
\hline 174 & 17.6787 & 17.4445 & 17.2343 & 17.0398 & 16.8549 & 16.6749 & 16.4949 & 16.3095 & 16.1105 & & \\
\hline 178 & 17.7348 & 17.5035 & 17.2968 & 17.1063 & 16.9264 & 16.7526 & 16.5807 & 16.4064 & 16.2240 & 16.0242 & \\
\hline 178 & 17.7895 & 17.5609 & 17.3572 & 17.1704 & 16.9949 & 16.8263 & 16.6612 & 16.4957 & 16.3257 & 16.1452 & 15.9433 \\
\hline 18 C
182 & 17.8430
17.8953 & 17.6168
17.6713 & 17.4159
17.4730 & 17.2323
17.2923 & 17.0605
17.1239 & 16.8967
16.9640 & 16.7372
16.8093 & 16.5790
16.6572 & 16.4187 & 16.2520 & 16.0726 \\
\hline 184 & 17.9466 & 17.7246 & 17.5285 & 17.2923
17.3504 & 17.1239
17.1851 & 16.9640
17.0287 & 16.8093
16.8782 & 16.6572
16.7312 & 16.5047
16.5852 & 16.3487
16.4376 & 16.1848
16.2852 \\
\hline 186 & 17.9968 & 17.7767 & 17.5827 & 17.4069 & 17.2443 & 17.0910 & 16.9443 & 16.8017 & 16.6611 & 16.5203 & 16.3769 \\
\hline 188 & 18.0461 & 17.8277 & 17.6356 & 17.4619 & 17.3017 & 17.1512 & 17.0077 & 16.8690 & 16.7330 & 16.5979 & 16.4617 \\
\hline 190 & 18.0946 & 17.8777 & 17.6873 & 17.5156 & 17.3576 & 17.2098 & 17.0690 & 16.9336 & 16.8016 & 16.6712 & 16.5410 \\
\hline Temperature, & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 30 & 32 & 34 & 36 & 38 & 40 & 42 & 44 & 46 & 48 & 50 \\
\hline 178 & ------ & ------ & ------ & --- & - & - & ------ & ------ & ------ & ------ & \\
\hline 172
174 & - & -------- & -------- & -------- & ------- & ------ & ------ & & & & \\
\hline 176 & ------- & ------ & ------- & --.--- & -------- & -------- & ---- & & & & \\
\hline 178 & 15.9433 & ------ & ------ & ------ & ------- & ------- & ------- & ------ & ------ & & \\
\hline 18 C & 16.0726 & 15.8680 & ------ & ------ & ------ & ------ & ------ & & & & \\
\hline 182 & 16.1848 & 16.0060 & 15.7984 & ------ & ------ & -------- & -------- & ------- & & & \\
\hline 184 & 16.2852 & 16.1237 & 15.9456 & 15.7353 & ------ & --- & ------ & & & & \\
\hline 186 & 16.3769 & 16.2278 & 16.0685 & 15.8913 & 15.6798 & 15.3747 & & & & & \\
\hline 188 & 16.4617 & 16.3221 & 16.1761 & 16.0192 & 15.843 h & 15.6325 & 15.3270 & & & & \\
\hline 19 C & 16.5410 & 16.4089 & 16.2729 & 16.130. & 15.9758 & 15.8028 & 15.5948 & 15.3001 & & & \\
\hline
\end{tabular}
TABLE VIII. - Continued. THERMODYNAMIC PROPERTY OF METHANE - ENTROPY, \(\mathrm{S}_{0}{ }^{\prime} \mathrm{R}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature. K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & (a) & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 \\
\hline 190 & 20.5494 & 18.8677 & 18.0946 & 17.5995 & 17.2096 & 16.8673 & 16.5410 & 16.2025 & 15.8028 & 15.0255 & \\
\hline 192 & 20.5915 & 18.9123 & 18.1422 & 17.6509 & 17.2662 & 16.9311 & 16.6157 & 16.2960 & 15.9383 & 15.4437 & 14.0005 \\
\hline 194 & 20.6332 & 18.9563 & 18.1890 & 17.7013 & 17.3213 & 16.9926 & 16.6866 & 16.3820 & 16.0540 & 15.6504 & 14.8878 \\
\hline 196 & 20.6745 & 18.9997 & 18.2351 & 17.7507 & 17.3750 & 17.0520 & 16.7541 & 16.4622 & 16.1564 & 15.8043 & 15.3128 \\
\hline 198 & 20.7154 & 19.0426 & 18.2804 & 17.7992 & 17.4274 & 17.1096 & 16.8189 & 16.5375 & 16.2491 & 15.9313 & 15.5376 \\
\hline 200 & 20.7559 & 19.0850 & 18.3252 & 17.8467 & 17.4785 & 17.1654 & 16.8810 & 16.6088 & 16.3345 & 16.0415 & 15.7022 \\
\hline \(20 \hat{}\) & 20.7960 & 19.1269 & 18.3692 & 17.8935 & 17.5286 & 17.2197 & 16.9410 & 16.6766 & 16.4140 & 16.1401 & 15.8363 \\
\hline 204 & 20.9358 & 19.1684 & 18.4127 & 17.9394 & 17.5776 & 17.2726 & 16.9990 & 16.7415 & 16.4887 & 16.2299 & 15.9516 \\
\hline \(20 \epsilon\) & 20.8751 & 19.2094 & 18.4556 & 17.9846 & 17.6256 & 17.3242 & 17.0552 & 16.8038 & 16.5595 & 16.3129 & 16.0540 \\
\hline 208 & 20.9142 & 19.2499 & 18.4980 & 18.0292 & 17.6728 & 17.3747 & 17.1098 & 16.8638 & 16.6268 & 16.3905 & 16.1468 \\
\hline 210 & 20.9528 & 19.2900 & 18.5398 & 18.0730 & 17.7191 & 17.4240 & 17.1630 & 16.9218 & 16.6912 & 16.4636 & 16.2323 \\
\hline 212 & 20.9912 & 19.3297 & 18.5811 & 18.1163 & 17.7647 & 17.4724 & 17.2147 & 16.9780 & 16.7530 & 16.5329 & 16.3118 \\
\hline 214 & 21.0292 & 19.3690 & 18.6220 & 18.1589 & 17.8095 & 17.5198 & 17.2653 & 17.0325 & 16.8125 & 16.5990 & 16.3866 \\
\hline 216 & 21.0668 & 19.4079 & 18.6623 & 18.2010 & 17.8536 & 17.5663 & 17.3148 & 17.0856 & 16.8701 & 16.6623 & 16.4573 \\
\hline 218 & 21.1042 & 19.4465 & 18.7022 & 18.2425 & 17.8970 & 17.6120 & 17.3632 & 17.1372 & 16.9258 & 16.7231 & 16.5245 \\
\hline 22 C & 21.1412 & 19.4847 & 18.7417 & 18.2835 & 17.9399 & 17.6569 & 17.4106 & 17.1877 & 16.9800 & 16.7818 & 16.5889 \\
\hline 222 & 21.1779 & 19.5225 & 18.7808 & 18.324) & 17.9827 & 17.7011 & 17.4571 & 17.2370 & 17.0326 & 16.8385 & 16.6506 \\
\hline 224 & 21.2144 & 19.5600 & 18.8195 & 18.3641 & 18.0236 & 17.7446 & 17.5028 & 17.2853 & 17.0840 & 16.8935 & 16.7100 \\
\hline \(22 t\) & 21.2505 & 19.5971 & 18.8578 & 18.4037 & 18.0647 & 17.7874 & 17.5477 & 17.3325 & 17.1341 & 16.9470 & 16.7675 \\
\hline 228 & 21.2864 & 19.6339 & 18.8957 & 18.4420 & 18.1053 & 17.8296 & 17.5918 & 17.3789 & 17.1830 & 16.9990 & 16.8231 \\
\hline 236 & 21.3219 & 19.6704 & 18.9332 & 18.4816 & 18.1454 & 17.8713 & 17.6353 & 17.4244 & 17.2309 & 17.0497 & 16.8771 \\
\hline 232 & 21.3572 & 19.7066 & 18.9704 & 18.5199 & 18.1851 & 17.9124 & 17.6780 & 17.4691 & 17.2779 & 17.0992 & 16.9296 \\
\hline 234 & 21.3923 & 19.7425 & 19.0073 & 18.5579 & 18.2242 & 17.9530 & 17.7202 & 17.5131 & 17.3239 & 17.1477 & 16.9808 \\
\hline 236 & 21.4270 & 19.7781 & 19.0438 & 18.5954 & 18.2639 & 17.9930 & 17.7618 & 17.5564 & 1.7.3691 & 17.1951 & 17.0307 \\
\hline 238 & 21.4616 & 19.8134 & 19.0800 & 18.6326 & 18.3013 & 18.0326 & 17.8029 & 17.5990 & 17.4133 & 17.2416 & 17.0795 \\
\hline 24 C & 21.4958 & 19.8484 & 19.1159 & 18.0695 & 18.3392 & 18.0717 & 17.8432 & 17.6410 & 17.4572 & 17.2872 & 17.1273 \\
\hline 242 & 21.5298 & 19.8832 & 19.1515 & 18.706 & 18.3767 & 18.1104 & 17.8832 & 17.6823 & 17.5002 & 17.3319 & 17.1740 \\
\hline 244 & 21.5636 & 19.9177 & 19.1868 & 18.7422 & 18.4139 & 18.1487 & 17.9227 & 17.7232 & 17.5426 & 17.3759 & 17.2199 \\
\hline \(24 \epsilon\) & 21.5971 & 19.9519 & 19.2218 & 18.7780 & 18.4507 & 18.1865 & 17.9617 & 17.7635 & 17.5843 & 17.4192 & 17.2649 \\
\hline \(24 \varepsilon\) & 21.6305 & 19.9859 & 19.2565 & 18.8136 & 18.4872 & 18.2240 & 18.0002 & 17.8032 & 17.6254 & 17.4618 & 17.3091 \\
\hline 250 & 21.6635 & 20.0197 & 19.2910 & 18.8489 & 18.523 \({ }^{7}\) & 18.2611 & 18.0384 & 17.8425 & 17.6659 & 17.5038 & 17.3526 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{4}\) For these cases, the entropy function is that of the ideal gas at a pressure of \(1 \cdots 10^{5} \mathrm{~N} \mathrm{~m}{ }^{2}\)
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature, K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 50 & 55 & 60 & 65 & 70 & 75 & 80 & 85 & 90 & 95 & 100 \\
\hline 19 C & ------- & ------- & ------- & ------ & ------- & ------- & & & & & \\
\hline 192 & 14.0005 & 13.7700 & 13.6542 & 13.5717 & 13.5062 & 13.4510 & 13.4029 & 13.3601 & 13.3214 & 13.2859 & 13.2530 \\
\hline 194 & 14.8878 & 14.0129 & 13.8287 & 13.7195 & 13.6390 & 13.5740 & 13.5189 & 13.4707 & 13.4277 & 13.3887 & 13.3529 \\
\hline 196 & 15.3128 & 14.4156 & 14.0409 & 13.8843 & 13.7816 & 13.7033 & 13.6392 & 13.5845 & 13.5364 & 13.4933 & 13.4542 \\
\hline 198 & 15.5376 & 14.9349 & 14.3211 & 14.0746 & 13.937 \% & 13.8406 & 13.7648 & 13.7019 & 13.6477 & 13.5999 & 13.5569 \\
\hline 200 & 15.7022 & 15.2572 & 14.6776 & 14.3015 & 14.1108 & 13.9881 & 13.8970 & 13.8239 & 13.7623 & 13.7088 & 13.6614 \\
\hline 202 & 15.8363 & 15.4712 & 15.0072 & 14.6671 & 14.3062 & 14.1481 & 14.0370 & 13.9510 & 13.8805 & 13.8204 & 13.7678 \\
\hline 204 & 15.9516 & 15.6348 & 15.2553 & 14.8408 & 14.5229 & 14.3220 & 14.1857 & 14.0840 & 14.0028 & 13.9349 & 13.8763 \\
\hline 206 & 16.0540 & 15.7699 & 15.4453 & 15.0825 & 14.7489 & 14.5085 & 14.3437 & 14.2234 & 14.1295 & 14.0526 & 13.9873 \\
\hline 208 & 16.1468 & 15.8865 & 15.5993 & 15.2822 & 14.9642 & 14.7014 & 14.5094 & 14.3688 & 14.2608 & 14.1736 & 14.1006 \\
\hline 210 & 16.2323 & 15.9901 & 15.7299 & 15.4480 & 15.1564 & 14.8906 & 14.6791 & 14.5191 & 14.3961 & 14.2978 & 14.2164 \\
\hline 212 & 16.3118 & 16.0840 & 15.8442 & 15.589.\()\) & 15.3233 & 15.0675 & 14.8472 & 14.6718 & 14.5344 & 14.4246 & 14.3343 \\
\hline 214 & 16.3866 & 16.1705 & 15.9466 & 15.7129 & 15.4686 & 15.2278 & 15.0082 & 14.8234 & 14.6740 & 14.5533 & 14.4539 \\
\hline 216 & 16.4573 & 16.2510 & 16.0398 & 15.8216 & 15.5967 & 15.3714 & 15.1584 & 14.9704 & 14.8125 & 14.6824 & 14.5745 \\
\hline 218 & 16.5245 & 16.3265 & 16.1259 & 15.9208 & 15.7111 & 15.5003 & 15.2966 & 15.1101 & 14.9478 & 14.8105 & 14.6951 \\
\hline 22 C & 16.5889 & 16.3979 & 16.2062 & 16.0120 & 15.8148 & 15.6167 & 15.4230 & 15.2411 & 15.0778 & 14.9359 & 14.8146 \\
\hline 222 & 16.6506 & 16.4658 & 16.2816 & 16.0965 & 15.9099 & 15.7228 & 15.5387 & 15.3630 & 15.2013 & 15.0574 & 14.9319 \\
\hline 224 & 16.7100 & 16.5306 & 16.3530 & 16.1756 & 15.9979 & 15.8203 & 15.6451 & 15.4760 & 15.3178 & 15.1738 & 15.0458 \\
\hline 226 & 16.7675 & 16.5928 & 16.4209 & 16.2502 & 16.080n & 15.9106 & 15.7434 & 15.5811 & 15.4271 & 15.2847 & 15.1558 \\
\hline 228 & 16.8231 & 16.6527 & 16.4858 & 16.3209 & 16.1573 & 15.9950 & 15.8350 & 15.6790 & 15.5297 & 15.3898 & 15.2613 \\
\hline 23 C & 16.8771 & 16.7105 & 16.5480 & 16.3883 & 16.2304 & 16.0744 & 15.9206 & 15.7705 & 15.6260 & 15.4892 & 15.3621 \\
\hline 232 & 16.9296 & 16.7665 & 16.6080 & 16.4527 & 16.3000 & 16.1494 & 16.0013 & 15.8565 & 15.7166 & 15.5833 & 15.4581 \\
\hline 234 & 16.9808 & 16.8208 & 16.6658 & 16.5146 & 16.3664 & 16.2206 & 16.0775 & 15.9377 & 15.8022 & 15.6723 & 15.5495 \\
\hline 236 & 17.0307 & 16.8736 & 16.7219 & 16.5743 & 16.4300 & 16.2886 & 16.1500 & 16.0146 & 15.8832 & 15.7568 & 15.6365 \\
\hline 238 & 17.0795 & 16.9250 & 16.7762 & 16.6319 & \(16.491^{2}\) & 16.3537 & 16.2191 & 16.0878 & 15.9602 & 15.8371 & 15.7195 \\
\hline 240 & 17.1273 & 16.9752 & 16.8291 & 16.6879 & 16.5503 & 16.4163 & 16. 2853 & 16.1577 & 16.0336 & 15.9137 & 15.7987 \\
\hline 242 & 17.1740 & 17.0241 & 16.8805 & 16.7419 & 16.6075 & 16.4766 & 16.3489 & 16.2246 & 16.1037 & 15.9869 & 15.8745 \\
\hline 244 & 17.2199 & 17.0721 & 16.9307 & 16.7946 & 16.6629 & 16.5348 & 16.4102 & 16.2889 & 16.1710 & 16.0569 & 15.9470 \\
\hline 246 & 17.2649 & 17.1190 & 16.9798 & 16.846 , & 16.7167 & 16.5912 & 16.4694 & 16.3508 & 16.2357 & 16.1243 & 16.0167 \\
\hline 242 & 17.3091 & 17.1650 & 17.0277 & 16.896 & 16.769n & 16.6460 & 16.5266 & 16.4107 & 16.2981 & 16.1891 & 16.0838 \\
\hline 25 C & 17.3526 & 17.2102 & 17.0747 & 16.945 & \(16.820 n\) & 16.6992 & 16.5822 & 16.4686 & 16.3584 & 16.2516 & 16.1485 \\
\hline
\end{tabular}
TABLE VIII. - Continued. THERMODYNAMIC PROPERTY OF METHANE - ENTROPY, \(S_{0}\) R
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature, K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 100 & 110 & 120 & 130 & 140 & 150 & 160 & 170 & 180 & 190 & 200 \\
\hline 19 C & & & & & & & & & & & \\
\hline 192 & 13.2530 & 13.1935 & 13.1406 & 13.0927 & 13.0488 & 13.0081 & 12.9703 & 12.9347 & 12.9012 & 12.8694 & 12.8392 \\
\hline 194 & 13.3529 & 13.2889 & 13.2324 & 13.1817 & 13.1355 & 13.0929 & 13.0534 & 13.0164 & 12.9816 & 12.9487 & 12.9175 \\
\hline 196 & 13.4542 & 13.3849 & 13.3245 & 13.2707 & 13.2220 & 13.1774 & 13.1361 & 13.0976 & 13.0615 & 13.0274 & 12.9952 \\
\hline 198 & 13.5569 & 13.4817 & 13.4170 & 13.3598 & 13.3084 & 13.2616 & 13.2184 & 13.1783 & 13.1408 & 13.1055 & 13.0722 \\
\hline 200 & 13.6614 & 13.5795 & 13.5100 & 13.4491 & 13.3948 & 13.3456 & 13.3004 & 13.2586 & 13.2197 & 13.1831 & 13.1487 \\
\hline 202 & 13.7678 & 13.6783 & 13.6035 & 13.5387 & 13.4812 & 13.4294 & 13.3822 & 13.3386 & 13.2981 & 13.2602 & 13.2246 \\
\hline 204 & 13.8763 & 13.7784 & 13.6976 & 13.5285 & 13.5676 & 13.5132 & 13.4637 & 13.4182 & 13.3761 & 13.3368 & 13.3000 \\
\hline 206 & 13.9873 & 13.8797 & 13.7925 & 13.7186 & 13.6542 & 13.5968 & 13.5449 & 13.4975 & 13.4537 & 13.4130 & 13.3748 \\
\hline 208 & 14.1006 & 13.9824 & 13.8881 & 13.8091 & 13.740 8 & 13.6803 & 13.6260 & 13.5765 & 13.5310 & 13.4887 & 13.4492 \\
\hline 210 & 14.2164 & 14.0865 & 13.9845 & 13.9000 & 13.8275 & 13.7638 & 13.7069 & 13.6552 & 13.6078 & 13.5640 & 13.5232 \\
\hline 212 & 14.3343 & 14.1919 & 14.0816 & 13.9912 & 13.9143 & 13.8473 & 13.7876 & 13.7336 & 13.6843 & 13.6389 & 13.5966 \\
\hline 214 & 14.4539 & 14.2984 & 14.1793 & 14.7829 & 14.0013 & 13.9306 & 13.8681 & 13.8118 & 13.7605 & 13.7134 & 13.6697 \\
\hline 216 & 14.5745 & 14.4058 & 14.2776 & 14.1746 & 14.0883 & 14.0139 & 13.9484 & 13.8897 & 13.8364 & 13.7875 & 13.7423 \\
\hline 218 & 14.6951 & 14.5137 & 14.3764 & 14.2666 & 14.1754 & 14.0971 & 14.0285 & 13.9672 & 13.9119 & 13.8612 & 13.8145 \\
\hline 220 & 14.8146 & 14.6216 & 14.4752 & 14.358R & 14.2624 & 14.1802 & 14.1084 & 14.0446 & 13.9870 & 13.9345 & 13.8862 \\
\hline 222 & 14.9319 & 14.7290 & 14.5739 & 14.4508 & 14.3493 & 14.2630 & 14.1880 & 14.1215 & 14.0618 & 14.0075 & 13.9576 \\
\hline 224 & 15.0458 & 14.8351 & 14.6721 & 14.5425 & 14.4359 & 14.3456 & 14.2673 & 14.1982 & 14.1362 & 14.0800 & 14.0285 \\
\hline 226 & 15.1558 & 14.9394 & 14.7695 & 14.6339 & 14.5221 & 14.4278 & 14.3463 & 14.2744 & 14.2102 & 14.1521 & 14.0989 \\
\hline 228 & 15.2613 & 15.0413 & 14.8656 & 14.7243 & 14.6079 & 14.5096 & 14.4248 & 14.3503 & 14.2838 & 14.2238 & 14.1690 \\
\hline 230 & 15.3621 & 15.1404 & 14.9602 & 14.9139 & 14.6929 & 14.5908 & 14.5029 & 14.4257 & 14.3569 & 14.2950 & 14.2385 \\
\hline 232 & 15.4581 & 15.2363 & 15.0528 & 14.9022 & 14.7772 & 14.6714 & 14.5804 & 14.5005 & 14.4296 & 14.3657 & 14.3076 \\
\hline 234 & 15.5495 & 15.3289 & 15.1433 & 14.0891 & 14.8604 & 14.7513 & 14.6572 & 14.5748 & 14.5017 & 14.4359 & 14.3762 \\
\hline 236 & 15.6365 & 15.4181 & 15.2314 & 15.0745 & 14.9425 & 14.8302 & 14.7333 & 14.6485 & 14.5732 & 14.5056 & 14.4442 \\
\hline 238 & 15.7195 & 15.5038 & 15.3169 & 15.1582 & 15.0232 & 14.9082 & 14.8087 & 14.7215 & 14.6441 & 14.5747 & 14.5117 \\
\hline 240 & 15.7987 & 15.5862 & 15.3998 & 15.2396 & 15.1026 & 14.9850 & 14.8831 & 14.7937 & 14.7144 & 14.6432 & 14.5787 \\
\hline 242 & 15.8745 & 15.6655 & 15.4802 & 15.3192 & 15.1805 & 15.0607 & 14.9566 & 14.8652 & 14.7839 & 14.7110 & 14.6450 \\
\hline 244 & 15.9470 & 15.7416 & 15.5579 & 15.3967 & 15.2567 & 15.1352 & 15.0291 & 14.9357 & 14.8527 & 14.7782 & 14.7108 \\
\hline 246 & 16.0167 & 15.8150 & 15.6331 & 15.4722 & 15.3313 & 15.2083 & 15.1005 & 15.0054 & 14.9208 & 14.8447 & 14.7759 \\
\hline 248 & 16.0838 & 15.8856 & 15.7059 & 15.5455 & 15.4042 & 15.2801 & 15.1708 & 15.0742 & 14.9880 & 14.9105 & 14.8403 \\
\hline 250 & 16.1485 & 15.9538 & 15.7763 & 15.6169 & 15.4754 & 15.3504 & 15.2399 & 15.1419 & 15.0543 & 14.9755 & 14.9041 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature, K} & \multicolumn{11}{|l|}{Pressure. \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 200 & 210 & 220 & 230 & 240 & 250 & 260 & 270 & 280 & 290 & 300 \\
\hline 19 C & ----7-- & ------- & ------ & & & ------ & & & & & \\
\hline 192 & 12.8392 & 12.8104 & 12.7828 & 12.7563 & 12.7309 & 12.7063 & 12.6827 & 12.6597 & 12.6376 & 12.6161 & 12.5952 \\
\hline 194 & 12.9175 & 12.8878 & 12.8594 & 12.8322 & 12.8060 & 12.7809 & 12.7566 & 12.7332 & 12.7105 & 12.6885 & 12.6672 \\
\hline 196 & 12.9952 & 12.9645 & 12.9352 & 12.9073 & 12.8804 & 12.8546 & 12.8298 & 12.8058 & 12.7826 & 12.7601 & 12.7384 \\
\hline 198 & 13.0722 & 13.0406 & 13.0104 & 12.9817 & 12.9541 & 12.9276 & 12.9022 & 12.8776 & 12.8539 & 12.8310 & 12.8088 \\
\hline 200 & 13.1487 & 13.1160 & 13.0850 & 13.0554 & 13.0271 & 12.9999 & 12.9738 & 12.9487 & & & \\
\hline 202 & 13.2246 & 13.1909 & 13.1589 & 13.1285 & 13.0994 & 13.0715 & 13.0448 & 13.0191 & 12.9243 & 12.9703 & 12.8784 \\
\hline 204 & 13.3000 & 13.2652 & 13.2322 & 13.2009 & 13.1710 & 13.1425 & 13.1151 & 13.0888 & 13.0634 & 13.0389 & 13.0153 \\
\hline 206 & 13.3748 & 13.3389 & 13.3050 & 13.2728 & 13.2421 & 13.2128 & 13.1847 & 13.1577 & 13.1318 & 13.1068 & 13.0827 \\
\hline 208 & 13.4492 & 13.4122 & 13.3772 & 13.3440 & 13.3125 & 13.2825 & 13.2537 & 13.2261 & 13.1996 & 13.1741 & 13.1494 \\
\hline 216 & 13.5232 & 13.4849 & 13.4489 & 13.4148 & 13.3824 & 13.3515 & 13.3221 & 13.2938 & 13.2667 & 13.2406 & 13.2155 \\
\hline 212 & 13.5966 & 13.5571 & 13.5200 & 13.4849 & 13.4517 & 13.4200 & 13.3898 & 13.3609 & 13.3332 & 13.3066 & 13.2809 \\
\hline 214 & 13.6697 & 13.6289 & 13.5906 & 13.5546 & 13.5204 & 13.4880 & 13.4570 & 13.4274 & 13.3991 & 13.3719 & 13.3457 \\
\hline 216 & 13.7423 & 13.7002 & 13.6608 & 13.6237 & 13.5886 & 13.5553 & 13.5237 & 13.4934 & 13.4644 & 13.4366 & 13.4099 \\
\hline 218 & 13.8145 & 13.7711 & 13.7305 & 13.6923 & 13.6563 & 13.6222 & 13.5897 & 13.5588 & 13.5292 & 13.5008 & 13.4735 \\
\hline 220 & 13.8862 & 13.8415 & 13.7997 & 13.7605 & 13.7235 & 13.6885 & 13.6553 & 13.6236 & 13.5934 & 13.5644 & 13.5366 \\
\hline 222 & 13.9576 & 13.9114 & 13.8684 & 13.8281 & 13.7902 & 13.7543 & 13.7203 & 13.6879 & 13.6570 & 13.6274 & 13.5991 \\
\hline 224 & 14.0285 & 13.9809 & 13.9367 & 13.8953 & 13.8564 & 13.8196 & 13.7848 & 13.7517 & 13.7201 & 13.6900 & 13.6610 \\
\hline 226 & 14.0989 & 14.0499 & 14.0044 & 13.9629 & 13.9221 & 13.8844 & 13.8488 & 13.8150 & 13.7828 & 13.7520 & 13.7225 \\
\hline 228 & 14.1690 & 14.1185 & 14.0718 & 14.0282 & 13.9873 & 13.9488 & 13.9123 & 13.8778 & 13.8449 & 13.8134 & 13.7834 \\
\hline 23 C & 14.2385 & 14.1866 & 14.1386 & 14.0939 & 14.0520 & 14.0126 & 13.9753 & 13.9400 & 13.9065 & 13.8744 & \\
\hline 232 & 14.3076 & 14.2543 & 14.2050 & 14.1591 & 14.116 ? & 14.0759 & 14.0379 & 14.0018 & 13.9676 & 13.9349 & 13.9037 \\
\hline 234 & 14.3762 & 14.3214 & 14.2708 & 14.2239 & \(14.180 n\) & 14.1388 & 14.0999 & 14.0631 & 14.0282 & 13.9949 & 13.9631 \\
\hline 236 & 14.4442 & 14.3880 & 14.3362 & 14.2881 & 14.243? & 14.2011 & 14.1614 & 14.1239 & 14.0883 & 14.0544 & 14.0221 \\
\hline 238 & 14.5117 & 14.4541 & 14.4011 & 14.3519 & 14.3060 & 14.2630 & 14.2225 & 14.1842 & 14.1480 & 14.1134 & 14.0805 \\
\hline 240 & 14.5787 & 14.5197 & 14.4654 & 14.4151 & 14.3683 & 14.3244 & 14.2831 & 14.2441 & 14.2071 & 14.1720 & \\
\hline 242 & 14.6450 & 14.5847 & 14.5292 & 14.4779 & 14.4300 & 14.3853 & 14.3432 & 14.3034 & 14.2658 & 14.2301 & 14.1960 \\
\hline 244 & 14.7108 & 14.6492 & 14.5925 & 14.5401 & 14.4913 & 14.4457 & 14.4028 & 14.3623 & 14.3240 & 14.2877 & 14.2531 \\
\hline 246 & 14.7759 & 14.7130 & 14.8552 & 14.6018 & 14.5520 & 14.5055 & 14.4619 & 14.4207 & 14.3818 & 14.3448 & 14.3097 \\
\hline 248 & 14.8403 & 14.7762 & 14.7173 & 14.6629 & 14.6122 & 14.5649 & 14.5205 & 14.4786 & 14.4391 & 14.4015 & 14.3658 \\
\hline 25 C & 14.9041 & 14.8388 & 14.7789 & 14.7234 & 14.6719 & 14.6238 & 14.5786 & 14.5361 & 14.4959 & 14.4577 & 14.4215 \\
\hline
\end{tabular}
TABLE VIII. - Continued. THERMODYNAMIC PROPERTY OF METHANE - ENTROPY, \(S_{0}\) /R
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature. K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & (a) & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 \\
\hline \(25 C\) & 21.6635 & 19.2910 & 18.5233 & 18.0384 & 17.6659 & 17.3526 & 17.0747 & 16.8200 & 16.5822 & 16.3584 & 16.1485 \\
\hline 255 & 21.7453 & 19.3760 & 18.6122 & 18.1319 & 17.7651 & 17.4584 & 17.1882 & 16.9424 & 16.7145 & 16.5010 & 16.3009 \\
\hline 266 & 21.8257 & 19.4595 & 18.6993 & 18.2232 & 17.8613 & 17.5603 & 17.2968 & 17.0586 & 16.8388 & 16.6339 & 16.4421 \\
\hline 265 & 21.9050 & 19.5415 & 18.7846 & 18.3123 & 17.9548 & 17.6589 & 17.4012 & 17.1694 & 16.9566 & 16.7589 & 16.5743 \\
\hline 270 & 21.9830 & 19.6222 & 18.8682 & 18.3995 & 18.0459 & 17.7546 & 17.5019 & 17.2756 & 17.0688 & 16.8774 & 16.6990 \\
\hline 275 & 22.0599 & 19.7015 & 18.9504 & 18.484 4 & 18.1349 & 17.8476 & 17.5994 & 17.3780 & 17.1764 & 16.9903 & 16.8172 \\
\hline 286 & 22.1358 & 19.7797 & 19.0312 & 18.5685 & 18.2219 & 17.9382 & 17.6940 & 17.4769 & 17.2798 & 17.0985 & 16.9301 \\
\hline 285 & 22.2106 & 19.8567 & 19.1106 & 18.6507 & 18.3070 & 18.0267 & 17.7860 & 17.5728 & 17.3797 & 17.2025 & 17.0383 \\
\hline 290 & 22.2845 & 19.9326 & 19.1888 & 18.7314 & 18.3905 & 18.1131 & 17.8757 & 17.6659 & 17.4765 & 17.3029 & 17.1424 \\
\hline 295 & 22.3575 & 20.0076 & 19.2659 & 18.8108 & 18.4724 & 18.1978 & 17.9633 & 17.7566 & 17.5704 & 17.4002 & 17.2429 \\
\hline 30 C & 22.4296 & 20.0815 & 19.3418 & 18.8889 & 18.5529 & 18.2808 & 18.0490 & 17.8451 & 17.6618 & 17.4945 & 17.3402 \\
\hline 305 & 22.5009 & 20.1545 & 19.4167 & 18.9658 & 18.6320 & 18.3622 & 18.1329 & 17.9316 & 17.7509 & 17.5863 & 17.4347 \\
\hline 316 & 22.5715 & 20.2267 & 19.4906 & 19.0416 & 18.709R & 18.4422 & 18.2151 & 18.0162 & 17.8379 & 17.6758 & 17.5266 \\
\hline 315 & 22.6413 & 20.2980 & 19.5636 & 19.1164 & 18.7865 & 18.5209 & 18.2959 & 18.0991 & 17.9231 & 17.7631 & 17.6162 \\
\hline 320 & 22.7104 & 20.3686 & 19.6358 & 19.1902 & 18.8621 & 18.5983 & 18.3752 & 18.1804 & 18.0064 & 17.8486 & 17.7037 \\
\hline 325 & 22.7788 & 20.4384 & 19.7071 & 19.2631 & 18.9366 & 18.6745 & 18.4533 & 18.2603 & 18.0882 & 17.9322 & 17.7892 \\
\hline 33 C & 22.8466 & 20.5075 & 19.7776 & 19.335. & 19.0101 & 18.7497 & 18.5301 & 18.3388 & 18.1685 & 18.0142 & 17.8729 \\
\hline 335 & 22.9137 & 20.5759 & 19.8473 & 19.4062 & 19.0827 & 18.8238 & 18.6058 & 18.4161 & 18.2473 & 18.0947 & 17.9550 \\
\hline 346 & 22.9803 & 20.6437 & 19.9164 & 19.4766 & 19.1545 & 18.8970 & 18.6804 & 18.4922 & 18.3249 & 18.1738 & 18.0356 \\
\hline 345 & 23.0463 & 20.7109 & 19.9847 & 19.5462 & 19.2254 & 18.9692 & 18.7540 & 18.5672 & 18.4013 & 18.2516 & 18.1148 \\
\hline 356 & 23.1118 & 20.7774 & 20.0524 & 19.6151 & 19.2955 & 19.0406 & 18.8267 & 18.6412 & 18.4766 & 18.3282 & 18.1927 \\
\hline 355 & 23.1768 & 20.8435 & 20.1195 & 19.6833 & 19.3649 & 19.1112 & 18.8984 & 18.7141 & 18.5508 & 18.4036 & 18.2693 \\
\hline 36 C & 23.2413 & 20.9089 & 20.1860 & 19.7509 & 19.4335 & 19.1809 & 18.9693 & 18.7862 & 18.6240 & 18.4780 & 18.3448 \\
\hline 365 & 23.3053 & 20.9739 & 20.2520 & 19.8178 & 19.5015 & 19.2500 & 19.0395 & 18.8574 & 18.6963 & 18.5513 & 18.4192 \\
\hline 370 & 23.3688 & 21.0384 & 20.3174 & 19.8842 & 19.5689 & 19.3183 & 19.1088 & 18.9278 & 18.7677 & 18.6237 & 18.4926 \\
\hline 375 & 23.4320 & 21.1024 & 20.3823 & 19.950 n & 19.6356 & 19.3860 & 19.1775 & 18.9974 & 18.8383 & 18.6952 & 18.5651 \\
\hline 380 & 23.4947 & 21.1659 & 20.4467 & 20.0153 & 19.7018 & 19.4531 & 19.2454 & 19.0663 & 18.9080 & 18.7659 & 18.6366 \\
\hline 385 & 23.5570 & 21.2290 & 20.5106 & 20.0806 & 19.7674 & 19.5195 & 19.3127 & 19.1344 & 18.9771 & 18.8358 & 18.7073 \\
\hline 396 & 23.6190 & 21.2917 & 20.5741 & 20.1443 & 19.8325 & 19.5854 & 19.3794 & 19.2019 & 19.0454 & 18.9049 & 18.7773 \\
\hline 395 & 23.6805 & 21.3540 & 20.6371 & 20.2081 & 19.8970 & 19.6507 & 19.4455 & 19.2688 & 19.1130 & 18.9733 & 18.8464 \\
\hline 40 C & 23.7418 & 21.4160 & 20.6998 & 20.2714 & 19.9611 & 19.7156 & 19.5111 & 19.3351 & 19.1800 & 19.0410 & 18.9148 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{a}\) For these cases, the entropy function is that of the ideal gas at a pressure of \(1 \times 10^{-5} \mathrm{~N} / \mathrm{m}^{2}\)
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature. K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 100 & 110 & 120 & 130 & 140 & 150 & 160 & 170 & 180 & 190 & 200 \\
\hline 250 & 16.1485 & 15.9538 & 15.7763 & 15.6169 & 15.4754 & 15.3504 & 15.2399 & 15.1419 & 15.0543 & 14.9755 & 14.9041 \\
\hline 255 & 16.3009 & 16.1145 & 15.9429 & 15.7866 & 15.6459 & 15.5199 & 15.4074 & 15.3067 & 15.2163 & 15.1346 & 15.0603 \\
\hline 266 & 16.4421 & 16.2632 & 16.0974 & \(15.945{ }^{\text {r }}\) & 15.806) & 15.6806 & 15.5672 & 15.4648 & 15.3723 & 15.2884 & 15.2119 \\
\hline 265 & 16.5743 & 16.4020 & 16.2416 & 16.9933 & 15.9571 & 15.8326 & 15.7193 & 15.6162 & 15.5224 & 15.4369 & 15.3586 \\
\hline 270 & 16.6990 & 16.5324 & 16.3770 & 16.2329 & 16.0994 & 15.9766 & 15.8640 & 15.7609 & 15.6665 & 15.5800 & 15.5005 \\
\hline 275 & 16.8172 & 16.6557 & 16.5050 & 16.7645 & 16.2341 & 16.1134 & 16.0019 & 15.8993 & 15.8048 & 15.7177 & 15.6374 \\
\hline 28 C & 16.9301 & 16.7731 & 16.6264 & 16.4896 & 16.3620 & 16.2435 & 16.1335 & 16.0317 & 15.9375 & 15.8503 & 15.7695 \\
\hline 285 & 17.0383 & 16.8853 & 16.7424 & 16.608 P & \(16.484 n\) & 16.3676 & 16.2593 & 16.1585 & 16.0649 & 15.9779 & 15.8970 \\
\hline 296 & 17.1424 & 16.9930 & 16.8534 & \(16.722^{\circ}\) & 16.6007 & 16.4865 & 16.3798 & 16.2803 & 16.1875 & 16.1009 & 16.0201 \\
\hline 295 & 17.2429 & 17.0967 & 16.9602 & 16.8324 & 16.7127 & 16.6006 & 16.4956 & 16.3974 & 16.3055 & 16.2195 & 16.1390 \\
\hline 3 CC & 17.3402 & 17.1969 & 17.0631 & 16.9379 & 16.8205 & 16.7104 & 16.6071 & 16.5102 & 16.4193 & 16.3340 & 16.2540 \\
\hline 305 & 17.4347 & 17.2940 & 17.1628 & 17.0399 & 16.9246 & 16.8164 & 16.7147 & 16.6191 & 16.5293 & 16.4448 & 16.3654 \\
\hline 310 & 17.5266 & 17.3883 & 17.2593 & 17.1386 & 17.0254 & 16.9189 & 16.8188 & 16.7245 & 16.6358 & 16.5521 & 16.4733 \\
\hline 315 & 17.6162 & 17.4801 & 17.3532 & 17.2345 & 17.123! & 17.0183 & 16.9197 & 16.8267 & 16.7390 & 16.6562 & 16.5781 \\
\hline 32 C & 17.7037 & 17.5695 & 17.4446 & 17.3278 & 17.2189 & 17.1148 & 17.0176 & 16.9258 & 16.8392 & 16.7573 & 16.6799 \\
\hline 325 & 17.7892 & 17.6569 & 17.5338 & 17.4186 & 17.3105 & 17.2088 & 17.1128 & 17.0223 & 16.9367 & 16.8557 & 16.7790 \\
\hline 336 & 17.8729 & 17.7424 & 17.6209 & 17.5073 & 17.4007 & 17.3003 & 17.2057 & 17.1162 & 17.0316 & 16.9515 & 16.8756 \\
\hline 335 & 17.9550 & 17.8260 & 17.7061 & 17.594\% & 17.4887 & 17.3897 & 17.2962 & 17.2079 & 17.1242 & 17.0449 & 16.9697 \\
\hline 34 C & 18.0356 & 17.9081 & 17.7896 & 17.678 H & 17.5749 & 17.4770 & 17.3847 & 17.2974 & 17.2146 & 17.1362 & 17.0617 \\
\hline 345 & 18.1148 & 17.9886 & 17.8714 & 17.7619 & 17.6592 & 17.5625 & 17.4713 & 17.3849 & 17.3031 & 17.2254 & 17.1516 \\
\hline 35 C & 18.1927 & 18.0678 & 17.9518 & 17.8435 & 17.7419 & 17.6463 & 17.5560 & 17.4706 & 17.3896 & 17.3128 & 17.2396 \\
\hline 355 & 18.2693 & 18.1456 & 18.0308 & 17.0236 & 17.8231 & 17.7285 & 17.6392 & 17.5546 & 17.4745 & 17.3983 & 17.3259 \\
\hline 36 C & 18.3449 & 18.2222 & 18.1085 & 18.0023 & 17.9029 & 17.8092 & 17.7208 & 17.6371 & 17.5577 & 17.4822 & 17.4105 \\
\hline 365 & 18.4192 & 18.2977 & 18.1849 & 18.079 & 17.981? & 17.8885 & 17.8009 & 17.7180 & 17.6394 & 17.5646 & 17.4935 \\
\hline 37 C & 18.4926 & 18.3720 & 18.2603 & 18.1561 & 18.0584 & 17.9665 & 17.8797 & 17.7976 & 17.7197 & 17.6456 & 17.5750 \\
\hline 375 & 18.5651 & 18.4454 & 18.3346 & 18.7312 & 18.1344 & 18.0433 & 17.9573 & 17.8759 & 17.7986 & 17.7251 & 17.6552 \\
\hline 38 C & 18.6366 & 18.5179 & 18.4079 & 18.3053 & 18.2093 & 18.1190 & 18.0337 & 17.9530 & 17.8763 & 17.8035 & 17.7340 \\
\hline 385 & 18.7073 & 18.5894 & 18.4802 & 18.3785 & 18.2832 & 18.1936 & 18.1090 & 18.0289 & 17.9529 & 17.8806 & 17.8117 \\
\hline 396 & 18.7773 & 18.6601 & 18.5516 & 18.4506 & 18.3561 & 18.2671 & 18.1832 & 18.1038 & 18.0283 & 17.9566 & 17.8882 \\
\hline 395 & 18.8464 & 18.7300 & 18.6222 & 18.5219 & 18.4281 & 18.3398 & 18.2565 & 18.1776 & 18.1027 & 18.0315 & 17.9636 \\
\hline 400 & 18.9148 & 18.7991 & 18.6921 & 18.5924 & 18.4997 & 18.4115 & 18.3288 & 18.2505 & 18.1762 & 18.1054 & 18.0380 \\
\hline
\end{tabular}
TABLE VIII. - Continued. THERMODYNAMIC PROPERTY OF METHANE - ENTROPY, \(\mathrm{S}_{0}\) R
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature, K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 200 & 210 & 220 & 230 & 240 & 250 & 260 & 270 & 280 & 290 & 300 \\
\hline 250 & 14.9041 & 14.8388 & 14.7789 & 14.7234 & 14.6719 & 14.6238 & 14.5786 & 14.5361 & 14.4959 & 14.4577 & 14.4215 \\
\hline 255 & 15.0603 & 14.9924 & 14.9300 & 14.8723 & 14.8187 & 14.7686 & 14.7217 & 14.6775 & 14.6358 & 14.5962 & 14.5587 \\
\hline 26 C & 15.2119 & 15.1418 & 15.0773 & 15.0175 & 14.9620 & 14.9102 & 14.8616 & 14.8159 & 14.7727 & 14.7319 & 14.6930 \\
\hline 265 & 15.3586 & 15.2867 & 15.2204 & 15.1589 & 15.1018 & 15.0484 & 14.9983 & 14.9512 & 14.9067 & 14.8646 & 14.8246 \\
\hline 27 C & 15.5005 & 15.4272 & 15.3594 & 15.2965 & 15.2379 & 15.1831 & 15.1317 & 15.0833 & 15.0376 & 14.9944 & 14.9533 \\
\hline 275 & 15.6374 & 15.5631 & 15.4942 & 15.4301 & 15.3703 & 15.3144 & 15.2618 & 15.2123 & 15.1656 & 15.1213 & 15.0793 \\
\hline 288 & 15.7695 & 15.6945 & 15.6248 & 15.5599 & 15.4991 & 15.4422 & 15.3887 & 15.3382 & 15.2905 & 15.2454 & 15.2025 \\
\hline 285 & 15.8970 & 15.8217 & 15.7514 & 15.6858 & 15.6243 & 15.5666 & 15.5123 & 15.4610 & 15.4125 & 15.3666 & 15.3229 \\
\hline 29 C & 16.0201 & 15.9447 & 15.8741 & \(15.808 \%\) & 15.7460 & 15.6877 & 15.6327 & 15.5808 & 15.5316 & 15.4850 & 15.4406 \\
\hline 295 & 16.1390 & 16.0637 & 15.9930 & 15.9267 & 15.8642 & 15.8055 & 15.7501 & 15.6976 & 15.6479 & 15.6007 & 15.5558 \\
\hline 30 C & 16.2540 & 16.1789 & 16.1083 & 16.0419 & 15.9793 & 15.9202 & 15.8644 & 15.8115 & 15.7614 & 15.7137 & 15.6683 \\
\hline 305 & 16.3654 & 16.2906 & 16.2202 & 16.1538 & 16.0912 & 16.0319 & 15.9758 & 15.9227 & 15.8721 & 15.8241 & 15.7783 \\
\hline 31 C & 16.4733 & 16.3990 & 16.3289 & 16.2626 & 16.2000 & 16.1407 & 16.0845 & 16.0311 & 15.9703 & 15.9320 & 15.8859 \\
\hline 315 & 16.5781 & 16.5043 & 16.4345 & 16.3685 & 16.3060 & 16.2467 & 16.1904 & 16.1369 & 16.0860 & 16.0374 & 15.9911 \\
\hline 32 C & 16.6799 & 16.6067 & 16.5373 & 16.4716 & 16.4093 & 16.3501 & 16.2938 & 16.2403 & 16.1892 & 16.1405 & 16.0940 \\
\hline 325 & 16.7790 & 16.7064 & 16.6375 & 16.5721 & \(16.510 n\) & 16.4510 & 16.3948 & 16.3413 & 16.2902 & 16.2414 & 16.1948 \\
\hline 330 & 16.8756 & 16.8035 & 16.7351 & 16.6701 & 16.6084 & 16.5495 & 16.4935 & 16.4400 & 16.3890 & 16.3401 & 16.2934 \\
\hline 335 & 16.9697 & 16.8983 & 16.8304 & 16.7659 & 16.7044 & 16.6458 & 16.5899 & 16.5366 & 16.4856 & 16.4368 & 16.3901 \\
\hline 34 C & 17.0617 & 16.9909 & 16.9236 & 16.8594 & 16.7983 & 16.7400 & 16.6843 & 16.6311 & 16.5803 & 16.5315 & 16.4848 \\
\hline 345 & 17.1516 & 17.0814 & 17.0146 & 16.9509 & 16.8902 & 16.8322 & 16.7768 & 16.7237 & 16.6730 & 16.6243 & 16.5777 \\
\hline 350 & 17.2396 & 17.1701 & 17.1038 & 17.0405 & 16.9802 & 16.9225 & 16.8673 & 16.8145 & 16.7639 & 16.7154 & 16.6688 \\
\hline 355 & 17.3259 & 17.2569 & 17.1911 & 17.1283 & 17.0684 & 17.0110 & 16.9561 & 16.9035 & 16.8531 & 16.8047 & 16.7583 \\
\hline 36 C & 17.4105 & 17.3420 & 17.2768 & 17.2145 & 17.1549 & 17.0979 & 17.0433 & 16.9909 & 16.9407 & 16.8925 & 16.8461 \\
\hline 365 & 17.4935 & 17.4256 & 17.3609 & 17.2990 & 17.2398 & 17.1831 & 17.1288 & 17.0767 & 17.0267 & 16.9787 & 16.9325 \\
\hline 370 & 17.5750 & 17.5077 & 17.4434 & 17.282) & 17.3237 & 17.2669 & 17.2129 & 17.1610 & 17.1113 & 17.0534 & 17.0173 \\
\hline 375 & 17.6552 & 17.5884 & 17.5246 & 17.4636 & 17.4052 & 17.3492 & 17.2955 & 17.2440 & 17.1944 & 17.1467 & 17.1008 \\
\hline 38 C & 17.7340 & 17.6678 & 17.6045 & 17.5439 & 17.4859 & 17.4302 & 17.3768 & 17.3255 & 17.2762 & 17.2287 & 17.1830 \\
\hline 385 & 17.8117 & 17.7459 & 17.6831 & 17.6229 & 17.5653 & 17.5100 & 17.4569 & 17.4058 & 17.3568 & 17.3095 & 17.2640 \\
\hline 396 & 17.8882 & 17.8229 & 17.7605 & 17.7007 & 17.6434 & 17.5885 & 17.5357 & 17.4849 & 17.4361 & 17.3891 & 17.3437 \\
\hline 395 & 17.9636 & 17.8988 & 17.8368 & 17.7774 & 17.7205 & 17.6659 & 17.6134 & 17.5629 & 17.5143 & 17.4675 & 17.4223 \\
\hline 40 C & 18.0380 & 17.9736 & 17.9120 & 17.8531 & 17.7965 & 17.7422 & 17.6900 & 17.6398 & 17.5914 & 17.5448 & 17.4998 \\
\hline
\end{tabular}
TABLE VIII. - Concluded. THERMODYNAMIC PROPERTY OF METHANE - ENTROPY, \(\mathrm{S}_{0} /\) R
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature, K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 100 & 110 & 120 & 130 & 140 & 150 & 160 & 170 & 180 & 190 & 200 \\
\hline 40 C & 18.9148 & 18.7991 & 18.6921 & 18.5924 & 18.4992 & 18.4115 & 18.3288 & 18.2505 & 18.1762 & 18.1054 & 18.0380 \\
\hline 405 & 18.9826 & 18.8675 & 18.7611 & 18.6621 & 18.5695 & 18.4824 & 18.4002 & 18.3225 & 18.2486 & 18.1784 & 18.1114 \\
\hline 41 C & 19.0497 & 18.9352 & 18.8295 & 18.7311 & 18.6390 & 18.5525 & 18.4708 & 18.3936 & 18.3203 & 18.2505 & 18.1840 \\
\hline 415 & 19.1162 & 19.0023 & 18.8971 & 18.7993 & 18.7078 & 18.6218 & 18.5407 & 18.4639 & 18.3910 & 18.3217 & 18.2556 \\
\hline 42 C & 19.1821 & 19.0688 & 18.9641 & 18.8668 & 18.7758 & 18.6904 & 18.6097 & 18.5334 & 18.4610 & 18.3921 & 18.3264 \\
\hline 425 & 19.2474 & 19.1346 & 19.0305 & 18.9337 & 18.8433 & 18.7583 & 18.6781 & 18.6022 & 18.5303 & 18.4618 & 18.3964 \\
\hline 43 C & 19.3122 & 19.2000 & 19.0963 & 19.0000 & 18.9100 & 18.8255 & 18.7458 & 18.6703 & 18.5988 & 18.5307 & 18.4657 \\
\hline 435 & 19.3765 & 19.2647 & 19.1616 & 19.0658 & 18.9762 & 18.8921 & 18.8128 & 18.7378 & 18.6666 & 18.5989 & 18.5343 \\
\hline 44 C & 19.4402 & 19.3290 & 19.2263 & 19.1309 & 19.0418 & 18.9581 & 18.8792 & 18.8046 & 18.7338 & 18.6664 & 18.6022 \\
\hline 445 & 19.5036 & 19.3927 & 19.2905 & 19.1955 & 19.1068 & 19.0235 & 18.9450 & 18.8708 & 18.8003 & 18.7333 & 18.6694 \\
\hline 45 C & 19.5664 & 19.4560 & 19.3542 & 19.2596 & 19.1713 & 19.0884 & 19.0103 & 18.9364 & 18.8663 & 18.7996 & 18.7360 \\
\hline 455 & 19.6288 & 19.5188 & 19.4174 & 19.3232 & 19.2353 & 19.1528 & 19.0750 & 19.0015 & 18.9317 & 18.8653 & 18.8020 \\
\hline 460 & 19.6908 & 19.5812 & 19.4802 & 19.3864 & 19.2988 & 19.2166 & 19.1392 & 19.0660 & 18.9965 & 18.9305 & 18.8675 \\
\hline 465 & 19.7524 & 19.6432 & 19.5425 & 19.4491 & 19.3619 & 19.2800 & 19.2029 & 19.1300 & 19.0609 & 18.9951 & 18.9324 \\
\hline 470 & 19.8136 & 19.7047 & 19.6044 & 19.5113 & 19.4244 & 19.3429 & 19.2661 & 19.1935 & 19.1247 & 19.0592 & 18.9967 \\
\hline 475 & 19.8744 & 19.7659 & 19.6659 & 19.5732 & 19.4868 & 19.4054 & 19.3289 & 19.2566 & 19.1880 & 19.1228 & 19.0606 \\
\hline 48 C & 19.9349 & 19.8267 & 19.7270 & 19.6346 & 19.5483 & 19.4674 & 19.3912 & 19.3192 & 19.2509 & 19.1859 & 19.1240 \\
\hline 485 & 19.9950 & 19.8871 & 19.7878 & 19.6956 & 19.6097 & 19.5290 & 19.4531 & 19.3814 & 19.3133 & 19.2486 & 19.1869 \\
\hline 490 & 20.0547 & 19.9472 & 19.8481 & 19.7563 & 19.6706 & 19.5903 & 19.5146 & 19.4431 & 19.3753 & 19.3108 & 19.2494 \\
\hline 495 & 20.1142 & 20.0069 & 19.9081 & 19.8166 & \(19.731 ?\) & 19.6511 & 19.5757 & 19.5044 & 19.4369 & 19.3726 & 19.3114 \\
\hline 500 & 20.1733 & 20.0663 & 19.9678 & 19.8765 & 19.7914 & 19.7115 & 19.6364 & 19.5654 & 19.4981 & 19.4340 & 19.3730 \\
\hline 505 & 20.2321 & 20.1254 & 20.0272 & 19.9361 & 19.8512 & 19.7716 & 19.6967 & 19.6260 & 19.5589 & 19.4951 & 19.4342 \\
\hline 51 C & 20.2906 & 20.1841 & 20.0862 & 19.9954 & 19.9107 & 19.8314 & 19.7567 & 19.6862 & 19.6193 & 19.5557 & 19.4951 \\
\hline 515 & 20.3488 & 20.2426 & 20.1449 & 20.0543 & 19.9699 & 19.8908 & 19.8163 & 19.7460 & 19.6793 & 19.6159 & 19.5555 \\
\hline 52 C & 20.4068 & 20.3008 & 20.2033 & 20.1130 & 20.0288 & 19.9499 & 19.8756 & 19.8055 & 19.7390 & 19.6758 & 19.6156 \\
\hline 525 & 20.4644 & 20.3587 & 20.2614 & 20.1713 & 20.0877 & 20.0086 & 19.9346 & 19.8647 & 19.7984 & 19.7354 & 19.6753 \\
\hline 53 C & 20.5218 & 20.4163 & 20.3192 & 20.2293 & 20.1456 & 20.0671 & 19.9933 & 19.9235 & 19.8574 & 19.7946 & 19.7347 \\
\hline 535 & 20.5789 & 20.4736 & 20.3768 & 20.2871 & 20.2035 & 20.1252 & 20.0516 & 19.9820 & 19.9161 & 19.8535 & 19.7938 \\
\hline 540 & 20.6358 & 20.5307 & 20.4341 & 20.3446 & 20.2617 & 20.1831 & 20.1096 & 20.0403 & 19.9745 & 19.9120 & 19.8525 \\
\hline 545 & 20.6924 & 20.5875 & 20.4911 & 20.4018 & 20.3186 & 20.2407 & 20.1674 & 20.0982 & 20.0326 & 19.9703 & 19.9109 \\
\hline 55 C & 20.7488 & 20.6441 & 20.5478 & 20.4587 & 20.3757 & 20.2980 & 20.2249 & 20.1558 & 20.0904 & 20.0282 & 19.9690 \\
\hline 555 & 20.8049 & 20.7004 & 20.6043 & 20.5154 & 20.4326 & 20.3550 & 20.2821 & 20.2132 & 20.1479 & 20.0859 & 20.0268 \\
\hline 56C & 20.8608 & 20.7565 & 20.6606 & 20.571 R & 20.4892 & 20.4118 & 20.3390 & 20.2702 & 20.2051 & 20.1433 & 20.0843 \\
\hline 565 & 20.9165 & 20.8123 & 20.7166 & 20.6280 & 20.5455 & 20.4683 & 20.3956 & 20.3271 & 20.2621 & 20.2004 & 20.1416 \\
\hline 57 C & 20.9720 & 20.8680 & 20.7724 & 20.6840 & 20.6016 & 20.5245 & 20.4520 & 20.3836 & 20.3188 & 20.2572 & 20.1985 \\
\hline 575 & 21.0272 & 20.9234 & 20.8280 & 20.7397 & 20.6575 & 20.5806 & 20.5082 & 20.4399 & 20.3752 & 20.3138 & 20.2552 \\
\hline 58 C & 21.0822 & 20.9785 & 20.8833 & 20.7952 & 20.7131 & 20.6363 & 20.5641 & 20.4960 & 20.4314 & 20.3701 & 20.3117 \\
\hline 585 & 21.1370 & 21.0335 & 20.9384 & 20.8505 & 20.7685 & 20.6919 & 20.6198 & 20.5518 & 20.4874 & 20.4262 & 20.3679 \\
\hline 59 C & 21.1917 & 21.0883 & 20.9933 & 20.9055 & 20.8237 & 20.7472 & 20.6753 & 20.6074 & 20.5431 & 20.4820 & 20.4238 \\
\hline 595 & 21.2461 & 21.1428 & 21.0480 & 20.9603 & 20.8787 & 20.8023 & 20.7305 & 20.6627 & 20.5985 & 20.5376 & 20.4795 \\
\hline 60C & 21.3003 & 21.1972 & 21.1025 & 21.0150 & 20.9335 & 20.8572 & 20.7855 & 20.7179 & 20.6538 & 20.5929 & 20.5350 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature, K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 200 & 210 & 220 & 230 & 240 & 250 & 260 & 270 & 280 & 290 & 300 \\
\hline 40 C & 18.0380 & 17.9736 & 17.9120 & 17.0531 & 17.7965 & 17.7422 & 17.6900 & 17.6398 & 17.5914 & 17.5448 & 17.4998 \\
\hline 405 & 18.1114 & 18.0475 & 17.9863 & 17.9277 & 17.8715 & 17.8175 & 17.7655 & 17.7156 & 17.6675 & 17.6211 & 17.5763 \\
\hline 41 C & 18.1840 & 18.1204 & 18.0596 & 18.0014 & 17.9455 & 17.8918 & 17.8401 & 17.7904 & 17.7425 & 17.6964 & 17.6518 \\
\hline 415 & 18.2556 & 18.1924 & 18.1320 & 18.0741 & 18.0185 & 17.9651 & 17.9138 & 17.8643 & 17.8167 & 17.7707 & 17.7263 \\
\hline 42 C & 18.3264 & 18.2636 & 18.2036 & 18.146 & 18.0907 & 18.0376 & 17.9865 & 17.9373 & 17.8899 & 17.8442 & 17.8000 \\
\hline 425 & 18.3964 & 18.3340 & 18.2743 & 18.217.7 & 18.1621 & 18.1093 & 18.0584 & 18.0095 & 17.9623 & 17.9167 & 17.8727 \\
\hline 430 & 18.4657 & 18.4037 & 18.3443 & 18.2873 & 18.2327 & 18.1801 & 18.1295 & 18.0808 & 18.0339 & 17.9885 & 17.9447 \\
\hline 435 & 18.5343 & 18.4726 & 18.4135 & \(18.356^{\circ}\) & 18.3025 & 18.2502 & 18.1999 & 18.1514 & 18.0339
18.1046 & 17.9885
18.0595 & 17.9447
18.0159 \\
\hline 44 C & 18.6022 & 18.5408 & 18.4820 & 18.4257 & 18.3716 & 18.3195 & 18.2695 & 18.2212 & 18.1747 & 18.1297 & 18.0863 \\
\hline 445 & 18.6694 & 18.6083 & 18.5498 & 18.4938 & 18.4399 & 18.3882 & 18.3383 & 18.2903 & 18.2440 & 18.1992 & 18.1559 \\
\hline 450 & 18.7360 & 18.6752 & 18.6170 & 18.5613 & 18.5077 & 18.4561 & 18.4065 & 18.3587 & 18.3126 & & \\
\hline 455 & 18.8020 & 18.7415 & 18.6836 & 18.6281 & 18.5748 & 18.5235 & 18.4741 & 18.4265 & 18.3805 & 18.2680
18.3362 & 18.2249 \\
\hline 46 C & 18.8675 & 18.8073 & 18.7496 & 18.6943 & 18.6413 & 18.5902 & 18.5410 & 18.4936 & 18.4479 & 18.4037 & 18.3609 \\
\hline 465 & 18.9324 & 18.8724 & 18.8150 & 18.7600 & 18.7072 & 18.6563 & 18.6074 & 18.5602 & 18.5146 & 18.4706 & 18.4280 \\
\hline 470 & 18.9967 & 18.9371 & 18.8799 & 18.9251 & 18.7725 & 18.7219 & 18.6731 & 18.6261 & 18.5807 & 18.5369 & 18.4945 \\
\hline 475 & 19.0606 & 19.0012 & 18.9443 & 18.8897 & 18.8373 & 18.7869 & 18.7383 & 18.6915 & 18.6463 & 18.6026 & 18.5604 \\
\hline 48 C & 19.1240 & 19.0648 & 19.0081 & 18.9538 & 18.9016 & 18.8514 & 18.8030 & 18.7564 & 18.7113 & 18.6678 & 18.6257 \\
\hline 485 & 19.1869 & 19.1280 & 19.0715 & 19.0174 & 18.9654 & 18.9154 & 18.8672 & 18.8207 & 18.7759 & 18.7325 & 18.6905 \\
\hline 49 C & 19.2494 & 19.1906 & 19.1344 & 19.0805 & 19.0287 & 18.9789 & 18.9309 & 18.8846 & 18.8399 & 18.7967 & 18.7548 \\
\hline 495 & 19.3114 & 19.2529 & 19.1969 & 19.1432 & 19.0916 & 19.0419 & 18.9941 & 18.9479 & 18.9034 & 18.8603 & 18.8187 \\
\hline 50 C & 19.3730 & 19.3147 & 19.2589 & 19.2054 & \(19.154 n\) & 19.1045 & 19.0568 & 19.0109 & & & \\
\hline 505 & 19.4342 & 19.3761 & 19.3205 & 19.2672 & 19.2159 & 19.1686 & 19.1191 & 19.0733 & 19.0291 & 18.9235
18.9863 & 18.8820
18.9449 \\
\hline 516 & 19.4951 & 19.4372 & 19.3817 & 19.2286 & 19.2775 & 19.2284 & 19.1810 & 19.1354 & 19.0913 & 19.0486 & 19.0074 \\
\hline 515 & 19.5555 & 19.4978 & 19.4425 & 19.3895 & 19.3386 & 19.2897 & 19.2425 & 19.1970 & 19.1530 & 19.1105 & 19.0594 \\
\hline 52 C & 19.6156 & 19.5581 & 19.5030 & 19.4502 & 19.3994 & 19.3506 & 19.3036 & 19.2582 & 19.2144 & 19.1720 & 19.1310 \\
\hline 525 & 19.6753 & 19.6180 & 19.5630 & 19.5104 & 19.459\% & 19.4111 & 19.3642 & 19.3190 & 19.2753 & & \\
\hline 530
535 & 19.7347 & 19.6775 & 19.6228 & 19.6703 & 19.5198 & 19.4713 & 19.4246 & 19.3795 & 19.3359 & 19.2938 & 19.2530 \\
\hline 535 & 19.7938 & 19.7367 & 19.6821 & 19.6298 & 19.5795 & 19.5311 & 19.4845 & 19.4395 & 19.3961 & 19.3541 & 19.3135 \\
\hline 540 & 19.8525 & 19.7956 & 19.7412 & \(19.689{ }^{\circ}\) & 19.6389 & 19.5906 & 19.5441 & 19.4993 & 19.4559 & 19.4141 & 19.3735 \\
\hline 545 & 19.9109 & 19.8542 & 19.7999 & 19.7478 & \(19.697^{8}\) & 19.6497 & 19.6034 & 19.5586 & 19.5154 & 19.4737 & 19.4332 \\
\hline 55 C & 19.9690 & 19.9124 & 19.8583 & 19.8064 & 19.7565 & 19.7085 & 19.6623 & 19.6177 & 19.5746 & 19.5329 & \\
\hline 555 & 20.0268 & 19.9704 & 19.9164 & 19.8646 & 19.9148 & 19.7670 & 19.7209 & 19.6764 & 19.6334 & 19.5919 & 19.5517 \\
\hline 50 C & 20.0843 & 20.0280 & 19.9742 & 19.9225 & 19.8729 & 19.8252 & 19.7792 & 19.7348 & 19.6919 & 19.6505 & 19.5517 \\
\hline 565 & 20.1416 & 20.0854 & 20.0317 & 19.9801 & 19.9306 & 19.8830 & 19.8371 & 19.7929 & 19.7501 & 19.7088 & 19.6688 \\
\hline 57 C & 20.1985 & 20.1425 & 20.0889 & 20.0375 & 19.9881 & 19.9406 & 19.8948 & 19.8507 & 19.8080 & 19.7668 & 19.7268 \\
\hline 575 & 20.2552 & 20.1993 & 20.1458 & 20.0945 & 20.0453 & 19.9979 & 19.9522 & 19.9082 & & & \\
\hline 58 C & 20.3117 & 20.2559 & 20.2025 & 20.1513 & 20.1027 & 20.0549 & 20.0093 & 19.9654 & 19.9229 & 19.8819 & 19.8421 \\
\hline 585 & 20.3679 & 20.3122 & 20.2589 & 20.2079 & 20.1588 & 20.1116 & 20.0662 & 20.0223 & 19.9800 & 19.9390 & 19.8993 \\
\hline 59 C & 20.4238 & 20.3683 & 20.3151 & 20.2642 & 20.215 ? & 20.1681 & 20.1228 & 20.0790 & 20.0367 & 19.9958 & 19.9563 \\
\hline 595 & 20.4795 & 20.4241 & 20.3710 & 20.3202 & 20.2713 & 20.2243 & 20.1791 & 20.1354 & 20.0932 & 20.0524 & 20.0129 \\
\hline 60 C & 20.5350 & 20.4797 & 20.4267 & 20.3760 & 20.3272 & 20.2803 & 20.2351 & 20.1916 & 20.1495 & 20.1088 & 20.0693 \\
\hline
\end{tabular}
TABLE IX．－THERMODYNAMIC PROPERTY OF METHANE－SPECIFIC HEAT，C \(\mathrm{C}_{\mathrm{p}, 0^{/ R}}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 응 & （1：c｜c｜c｜c｜c｜c｜c｜c｜c &  & \begin{tabular}{l}
かの人のが －Nota～ \\

\end{tabular} &  &  & \(\overrightarrow{0}\)
\(n\)
\(\stackrel{5}{5}\) \\
\hline \(\infty\) & （1：c｜l：l｜l｜l｜：｜c｜c｜c｜c & 0
0
0
\(\sim\)
0
0
0 &  &  &  & N010 \\
\hline \(\infty\) &  &  &  &  & NNシN00 & \(\stackrel{m}{\substack{5 \\ \vdots \\ j}}\) \\
\hline － &  & 边 &  &  & mす & \(\stackrel{m}{5}\) \\
\hline \[
\begin{array}{l|l}
0 & 0 \\
0 &
\end{array}
\] &  & mmor & ＊ &  &  & \(\stackrel{0}{9}\) \\
\hline  &  &  &  &  & － mmmnn がすが & \[
\begin{aligned}
& \text { No } \\
& \stackrel{1}{5} \\
& \text { + }
\end{aligned}
\] \\
\hline  &  &  &  & NF FNo
\[
\text { ; } \dot{j} ;
\] & NNNN~ & \begin{tabular}{l} 
O \\
\multirow{3}{*}{} \\
\(\vdots\)
\end{tabular} \\
\hline \(\infty\) &  &  &  mmmm～ jj \(\mathfrak{j} \dot{j}\) &  NNNN jj；jo &  & \begin{tabular}{l}
5 \\
\hline 5
\end{tabular} \\
\hline \(\sim\) &  &  & \begin{tabular}{l}
がッジロ \\
ますお永
\end{tabular} &  &  & \(\stackrel{\sim}{7}\) \\
\hline － &  &  &  &  & NNON がすます & － \\
\hline \(\bigcirc\) &  &  &  &  &  & N
¢ \\
\hline  & \begin{tabular}{l}
 \\

\end{tabular} &  &  & \[
\underset{\sim}{\sim} \underset{\sim}{\approx} \underset{\sim}{\approx}
\] & － & \(\stackrel{\mathrm{G}}{-}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature, K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 \\
\hline 156
152 & 6.845
6.538 & -------- & -------- & ------- & -------- & ----- & --- & --- & ------ & ------ & - \\
\hline 154 & 6.276 & 7.177 & ------ & -------- & ------ & & & & & & \\
\hline \(15 t\) & 6.052 & 6.822 & ------ & ------ & ------- & & & & & & \\
\hline 158 & 5.857 & 6.524 & 7.431 & ------ & ------- & ------- & & & & & \\
\hline 16 C & 5.689 & 6.270 & 7.038 & 8.126 & ------ & ------- & ------ & -- & - & & \\
\hline 162 & 5.539 & 6.051 & 6.710 & 7.607 & ------ & ------- & --.-- & ------ & ------- & & \\
\hline 164 & 5.407 & 5.862 & 6.434 & 7.187 & 8.250 & ---- & -.----- & ------- & ----- & ----- & \\
\hline 166 & 5.291 & 5.697 & 6.198 & 6.841 & 7.710 & 8.989 & ------- & ------- & & ------ & \\
\hline 168 & 5.188 & 5.552 & 5.995 & 6.550 & 7.276 & 8.289 & ------ & ------ & ------ & ------- & -------- \\
\hline 170 & 5.096 & 5.424 & 5.818 & 6.302 & 6.920 & 7.746 & 8.938 & ------ & ------ & ------- & \\
\hline 172 & 5.013 & 5.311 & 5.663 & 6.090 & 6.627 & 7.311 & 8.256 & 9.671 & & ------- & \\
\hline 174 & 4.940 & 5.210 & 5.527 & 5.906 & 6.369 & 6.954 & 7.726 & 8.811 & 10.502 & --- & \\
\hline 176
178 & 4.874
4.814 & 5.120 & 5.407 & 5.745 & 6.153 & 6.656 & 7.301 & 8.166 & 9.414 & 11.446 & \\
\hline 178 & 4.814 & 5.040 & 5.300 & 5.604 & 5.965 & 6.404 & 6.951 & 7.661 & 8.630 & 10.065 & 12.512 \\
\hline 18 C & 4.760 & 4.968 & 5.205 & 5.480 & 5.802 & 6.188 & 6.660 & 7.254 & 8.033 & 9.115 & 10.761 \\
\hline 182
184 & 4.712 & 4.903 & 5.120 & 5.370 & 5.659 & 6.001 & 6.412 & 6.918 & 7.561 & 8.414 & 9.617 \\
\hline 186 & 4.668
4.629 & 4.845
4.793 & 5.045
4.976 & 5.272 & 5.533 & 5.839 & 6.200 & 6.637 & 7.179 & 7.872 & 8.800 \\
\hline 188 & 4.593 & 4.745 & 4.975 & 5.184
5.106 & 5.422
5.323 & 5.696 & 6.017 & 6.399 & 6.862 & 7.439 & 8.182 \\
\hline 19 C & 4.561 & 4.703 & 4.860 & 5.036 & 5.234 & & & & & & \\
\hline & & & & & & & 5.710 & 6.017 & 6.369 & 6.790 & 7.303 \\
\hline Temperature, & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 30 & 32 & 34 & 36 & 38 & 40 & 42 & 44 & 46 & 48 & 50 \\
\hline 170
172 & --------- & --------- & -------- & -------- & --------- & ------- & ------ & ------- & ---- & ------- & ------- \\
\hline 174 & ----- & ------ & ------ & - & --- & -- & -------- & & -------- & & ------ \\
\hline 176 & ------ & ------ & ------ & ------- & & - & ------- & ------- & ------ & -------- & \\
\hline 178 & 12.512 & ------ & ------ & ------ & ------ & ------- & ------- & -------- & ------- & & \\
\hline 18 C & 10.761 & 13.697 & ------ & ------ & ------ & ------- & & & & & \\
\hline 182 & 9.617 & 11.489 & 14.977 & ------ & ------- & ------ & ------ & & & & \\
\hline 184 & 8.800 & 10.126 & 12.230 & 16.292 & ------- & ------- & & -------- & & & \\
\hline \(18 t\) & 8.182 & 9.183 & 10.628 & 12.952 & 17.542 & 33.868 & & & & & \\
\hline 188 & 7.696 & 8.485 & 9.555 & 11.107 & 13.616 & 18.593 & 36.044 & & & & \\
\hline 196 & 7.303 & 7.945 & 8.777 & 9.906 & 11.542 & 14.177 & 19.315 & 35.610 & ------ & --- & \\
\hline
\end{tabular}
~

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature, K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 50 & 55 & 60 & 65 & 70 & 75 & 80 & 85 & 90 & 95 & 100 \\
\hline 196 & ------ & --.-.- & ------ & ------ & & ------ & & & ------ & ------- & \\
\hline 1.92 & 40.180 & 19.750 & 15.537 & 13.558 & 12.365 & 11.551 & 10.951 & 10.486 & 10.112 & 9.804 & 9.544 \\
\hline 194 & 70.945 & 28.615 & 18.401 & 15.053 & 13.310 & 12.212 & 11.444 & 10.870 & 10.420 & 10.057 & 9.755 \\
\hline 196 & 27.223 & 52.525 & 23.508 & 17.231 & 14.55 h & 13.034 & 12.034 & 11.317 & 10.772 & 10.341 & 9.990 \\
\hline 198 & 18.494 & 41.182 & 32.212 & 20.466 & 16.217 & 14.063 & 12.742 & 11.838 & 11.174 & 10.661 & 10.251 \\
\hline 200 & 14.662 & 25.304 & 36.448 & 24.802 & 18.387 & 15.337 & 13.585 & 12.441 & 11.629 & 11.018 & 10.539 \\
\hline 202 & 12.466 & 18.535 & 28.994 & 28.045 & 20.904 & 16.848 & 14.567 & 13.129 & 12.139 & 11.412 & 10.853 \\
\hline 204 & 11.028 & 14.999 & 21.865 & 26.738 & 22.893 & 18.440 & 15.649 & 13.889 & 12.699 & 11.841 & 11.192 \\
\hline 206 & 10.006 & 12.838 & 17.431 & 22.661 & 23.050 & 19.691 & 16.710 & 14.678 & 13.289 & 12.294 & 11.550 \\
\hline 208 & 9.239 & 11.380 & 14.638 & 18.828 & 21.303 & 20.053 & 17.527 & 15.411 & 13.873 & 12.754 & 11.916 \\
\hline 210 & 8.641 & 10.327 & 12.761 & 15.963 & 18.815 & 19.337 & 17.840 & 15.960 & 14.390 & 13.190 & 12.274 \\
\hline 212 & 8.162 & 9.531 & 11.424 & 13.895 & 16.473 & 17.900 & 17.527 & 16.190 & 14.765 & 13.560 & 12.601 \\
\hline 214 & 7.769 & 8.908 & 10.428 & 12.377 & 14.551 & 16.241 & 16.695 & 16.033 & 14.923 & 13.817 & 12.868 \\
\hline 216 & 7.442 & 8.406 & 9.657 & 11.232 & 13.035 & 14.677 & 15.581 & 15.522 & 14.826 & 13.920 & 13.044 \\
\hline 218 & 7.164 & 7.995 & 9.045 & 10.344 & 11.843 & 13.326 & 14.402 & 14.770 & 14.487 & 13.846 & 13.105 \\
\hline 226 & 6.927 & 7.650 & 8.547 & 9.638 & 10.897 & 12.198 & 13.290 & 13.904 & 13.960 & & \\
\hline 222 & 6.721 & 7.359 & 8.135 & 9.065 & 10.135 & 11.267 & 12.300 & 13.027 & 13.322 & 13.216 & 12.850 \\
\hline 224 & 6.542 & 7.109 & 7.789 & 8.593 & 9.511 & 10.497 & 11.443 & 12.199 & 12.639 & 12.734 & 12.555 \\
\hline 226 & 6.384 & 6.893 & 7.494 & 8.197 & 8.995 & 9.856 & 10.709 & 11.448 & 11.964 & 12.201 & 12.181 \\
\hline 228 & 6.245 & 6.704 & 7.241 & 7.861 & 8.567 & 9.317 & 10.083 & 10.781 & 11.325 & 11.654 & 11.758 \\
\hline 236 & 6.122 & 6.539 & 7.021 & 7.573 & 8.19? & 8.862 & 9.548 & 10.196 & 10.738 & 11.119 & 11.313 \\
\hline 232 & 6.011 & 6.392 & 6.829 & 7.324 & 7.876 & 8.472 & 9.088 & 9.684 & 10.209 & 10.613 & 10.867 \\
\hline 234 & 5.912 & 6.262 & 6.660 & 7.107 & 7.602 & 8.136 & 8.692 & 9.237 & 9.735 & 10.144 & 10.434 \\
\hline 236 & 5.823 & 6.146 & 6.509 & 6.916 & 7.363 & 7.845 & 8.347 & 8.847 & 9.314 & 9.716 & 10.025 \\
\hline 238 & 5.742 & 6.041 & 6.376 & 6.747 & 7.154 & 7.590 & 8.046 & 8.503 & 8.939 & 9.327 & 9.643 \\
\hline 240 & 5.669 & 5.947 & 6.256 & 6.597 & 6.969 & 7.366 & 7.782 & 8.201 & 8.607 & 8.977 & 9.291 \\
\hline 242 & 5.603 & 5.862 & 6.149 & 6.463 & 6.804 & 7.168 & 7.548 & 7.934 & 8.311 & 8.661 & 8.968 \\
\hline 244 & 5.543 & 5.785 & 6.052 & 6.343 & 6.657 & 6.992 & 7.341 & 7.697 & 8.046 & 8.377 & 8.674 \\
\hline 246 & 5.488 & 5.715 & 5.964 & 6.234 & 6.525 & 6.834 & 7.156 & 7.485 & 7.810 & 8.121 & 8.406 \\
\hline 248 & 5.437 & 5.651 & 5.884 & 6.136 & 6.407 & 6.693 & 6.991 & 7.295 & 7.598 & 7.891 & 8.162 \\
\hline 250 & 5.391 & 5.593 & 5.812 & 6.048 & 6.300 & 6.566 & 6.842 & 7.125 & 7.408 & 7.682 & 7.940 \\
\hline
\end{tabular}
TABLE IX．－Continued．THERMODYNAMIC PROPERTY OF ME＇THANE－SPECIFIC HEAT，C \(\mathrm{C}_{\mathrm{p}} \mathrm{O}^{/ R}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & ¢ &  &  &  &  &  &  & 0
\(\sim\)
\(\sim\)
\(\sim\) \\
\hline & \(\stackrel{8}{-}\) & \(10 \sim m \infty\)
1000
000
\(\sim \sim r i r\) &  &  &  &  & NNONO が～～～ \(\rightarrow \infty+\infty\) & \[
\begin{gathered}
\infty \\
\stackrel{\infty}{\sigma} \\
\dot{\infty}
\end{gathered}
\] \\
\hline & \(\stackrel{8}{\infty}\) &  &  &  & ث－Nom NNmm \(\infty \times \infty \times \infty\) &  &  & \[
\begin{aligned}
& \underset{\sim}{\sim} \\
& \underset{\infty}{\infty}
\end{aligned}
\] \\
\hline \multirow{8}{*}{} & \(\stackrel{9}{-1}\) &  &  & \begin{tabular}{l}
\(\sigma \infty \infty \infty\) \\
 \(\infty^{\circ} \infty^{\circ} \infty^{\circ} \infty^{\circ}\)
\end{tabular} &  &  &  & \[
\begin{aligned}
& t \\
& 0 \\
& + \\
& \infty
\end{aligned}
\] \\
\hline & 8 &  & moOO －さimin \(\infty \times \dot{\infty} \times \dot{\infty}\) & \begin{tabular}{l}
NMG4O \\
 \(\infty \times \infty\)
\end{tabular} &  &  &  & \[
\begin{aligned}
& \text { in } \\
& \text { in } \\
& \text { in }
\end{aligned}
\] \\
\hline & ¢ &  & \(m \sim n\)
\(\alpha=0\)
\(\sim\) &  & \(\stackrel{n}{\sim} \operatorname{Nom}_{n}^{\infty}\) －－NNN がの゙のロ゚の &  & ©nNoO に － & \[
\begin{aligned}
& \text { m } \\
& \stackrel{0}{+} \\
& \infty
\end{aligned}
\] \\
\hline & 앆 &  &  &  & जNvo incon ががのデの &  &  & \(\stackrel{\sim}{\sim}\) \\
\hline & \(\xrightarrow{-1}\) &  &  &  & OMNに MONNN \(00^{\circ} 0^{\circ}\) ーットのー &  &  & \(\sim\)
\(\sim\)
\(\sim\)
\(\infty\) \\
\hline & \(\xrightarrow{\circ}\) &  &  &  &  & のけたい。 NOJNN
\[
\dot{-1000} 0
\] &  & 7
0
0
0 \\
\hline & 윽 &  & \({ }_{\sim}^{\infty} \operatorname{mon}^{\infty}\) NyNOin monnr ơóóo & minnN aminn －ジョコ &  &  &  & \[
\begin{gathered}
\stackrel{\rightharpoonup}{N} \\
\text { N } \\
\infty \\
\infty
\end{gathered}
\] \\
\hline & \(\stackrel{8}{-}\) &  &  &  & \[
\begin{aligned}
& 00 \sim \sim \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned} \infty
\] &  &  &  \\
\hline \multicolumn{2}{|l|}{} & ƯNぶが心 & O응웅
\[
N N \sim N
\] &  & UNNN N NNNNN & 品 NNNNN &  NNNNN & \(\stackrel{\sim}{n}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature, K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 200 & 210 & 220 & 230 & 240 & 250 & 260 & 270 & 280 & 290 & 300 \\
\hline 19 C
192 & ---547 & ------ & ------ & ------ & ---- & ------ & --- & -- & - & ------ & \\
\hline 194 & 7.547
7.562 & 7.462
7.473 & 7.386
7.393 & 7.316
7.320 & 7.252 & 7.193 & 7.138 & 7.088 & 7.041 & 6.997 & 6.956 \\
\hline 196 & 7.579 & 7.486 & 7.401 & 7.325 & 7.253
7.255 & 7.191 & 7.135
7.132 & 7.082 & 7.033 & 6.988 & 6.945 \\
\hline 198 & 7.598 & 7.500 & 7.412 & 7.332 & 7.259 & 7.192 & 7.132
7.131 & 7.078
7.075 & 7.027
7.022 & 6.980
6.973 & 6.936
6.928 \\
\hline 200 & 7.618 & 7.515 & 7.423 & 7.340 & 7.264 & 7.195 & & & & & \\
\hline 202 & 7.640 & 7.532 & 7.436 & 7.349 & 7.270 & 7.198 & 7.131 & 7.072 & 7.018
7.016 & 6.968
6.964 & 6.921 \\
\hline 204 & 7.663 & 7.550 & 7.450 & 7.359 & 7.277 & 7.203 & 7.132 & 7.072 & 7.016 & 6.964
6.960 & 6.915 \\
\hline 206 & 7.687 & 7.570 & 7.465 & 7.371 & 7.285 & 7.208 & 7.138 & 7.073 & 7.013 & 6.980 & 6.910
6.907 \\
\hline 208 & 7.713 & 7.590 & 7.481 & 7.383 & 7.295 & 7.215 & 7.142 & 7.075 & 7.014 & 6.957 & 6.904 \\
\hline 216 & 7.739 & 7.611 & 7.497 & 7.396 & 7.305 & 7.222 & 7.147 & & & & \\
\hline 212 & 7.765 & 7.632 & 7.515 & 7.410 & 7.316 & 7.230 & 7.153 & 7.082 & 7.015 & 6.956
6.957 & 6.902
6.901 \\
\hline 214 & 7.792 & 7.654 & 7.533 & 7.424 & 7.327 & 7.239 & 7.159 & 7.087 & 7.020 & 6.958 & 6.901 \\
\hline 216 & 7.819 & 7.676 & 7.550 & 7.439 & 7.339 & 7.248 & 7.166 & 7.092 & 7.023 & 6.960 & 6.901 \\
\hline 218 & 7.845 & 7.698 & 7.568 & 7.453 & 7.350 & 7.258 & 7.174 & 7.097 & 7.027 & 8.963 & 6.903 \\
\hline 22 C & 7.870 & 7.719 & 7.586 & 7.468 & 7.362 & 7.267 & 7.181 & 7.103 & & & \\
\hline 222 & 7.894 & 7.739 & 7.603 & 7.482 & 7.374 & 7.277 & 7.189 & 7.109 & 7.032
7.036 & 6.986
6.969 & 6.905
6.907 \\
\hline 224
226 & 7.917 & 7.758 & 7.619 & 7.495 & 7.385 & 7.286 & 7.197 & 7.115 & 7.0361 & 6.969
6.973 & 6.907
6.910 \\
\hline 226
228 & 7.937 & 7.776 & 7.634 & 7.508 & 7.396 & 7.295 & 7.204 & 7.121 & 7.046 & 6.976 & 6.912 \\
\hline 228 & 7.956 & 7.792 & 7.648 & 7.520 & 7.406 & 7.304 & 7.211 & 7.127 & 7.051 & 6.980 & 6.915 \\
\hline 236 & 7.971 & 7.805 & 7.660 & 7.531 & 7.415 & & & & & & \\
\hline 232 & 7.984 & 7.817 & 7.670 & 7.540 & 7.423 & 7.312 & 7.218
7.224 & 7.133
7.138 & 7.055
7.060 & 6.984 & 6.918 \\
\hline 234 & 7.993 & 7.826 & 7.678 & 7.547 & 7.430 & 7.325 & 7.229 & 7.143 & 7.064 & 6.988 & 6.921
6.924 \\
\hline 236 & 7.999 & 7.832 & 7.685 & 7.553 & 7.436 & 7.330 & 7.234 & 7.147 & 7.067 & 6.991 & 6.924
6.926 \\
\hline 238 & 8.001 & 7.835 & 7.688 & 7.557 & 7.440 & 7.334 & 7.237 & 7.150 & 7.070 & 6.996 & 6.929 \\
\hline 240 & 7.998 & 7.835 & 7.690 & 7.559 & 7.442 & 7.336 & 7.240 & & & & \\
\hline 242 & 7.992 & 7.832 & 7.688 & 7.559 & 7.442 & 7.337 & 7.241 & 7.154 & 7.074 & 6.998
7.000 & 6.930 \\
\hline 244
246 & 7.982 & 7.825 & 7.684 & 7.556 & 7.441 & 7.337 & 7.241 & 7.154 & 7.074 & 7.000 & 6.932 \\
\hline 246
248 & 7.967
7.948 & 7.815 & 7.677 & 7.552 & 7.438 & 7.334 & 7.240 & 7.153 & 7.074 & 7.000 & 6.933 \\
\hline & & 7.801 & 7.667 & 7.545 & 7.433 & 7.331 & 7.237 & 7.152 & 7.073 & 7.000 & 6.932 \\
\hline 250 & 7.926 & 7.784 & 7.654 & 7.535 & 7.426 & 7.325 & 7.233 & 7.149 & 7.070 & 6.998 & 6.931 \\
\hline
\end{tabular}
TABLE IX. - Continued. THERMODYNAMIC PROPERTY OF METHANE - SPECIFIC HEAT, \(\mathrm{C}_{\mathrm{p}, 0} / \mathrm{R}^{\mathrm{R}}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature, K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 100 & 110 & 120 & 130 & 140 & 150 & 160 & 170 & 180 & 190 & 200 \\
\hline 250 & 7.940 & 8.374 & 8.661 & 8.791 & 8.791 & 8.703 & 8.565 & 8.404 & 8.239 & 8.078 & 7.926 \\
\hline 255 & 7.470 & 7.871 & 8.172 & 8.357 & 8.431 & 8.418 & 8. 345 & 8.237 & 8.112 & 7.981 & 7.852 \\
\hline 26 C & 7.095 & 7.458 & 7.753 & 7.963 & 8.083 & 8.125 & 8.106 & 8.046 & 7.961 & 7.862 & 7.758 \\
\hline 265 & 6.794 & 7.120 & 7.399 & 7.614 & 7.761 & 7.840 & 7.863 & 7.844 & 7.795 & 7.726 & 7.647 \\
\hline 270 & 6.549 & 6.841 & 7.100 & 7.313 & 7.471 & 7.574 & 7.628 & 7.640 & 7.621 & 7.581 & 7.525 \\
\hline 275 & 6.349 & 6.612 & 6.850 & 7.054 & 7.215 & 7.332 & 7.406 & 7.442 & 7.448 & 7.431 & 7.397 \\
\hline 28 C & 6.183 & 6.420 & 6.640 & 6.832 & 6.991 & 7.114 & 7.201 & 7.255 & 7.281 & 7.283 & 7.268 \\
\hline 285 & 6.045 & 6.260 & 6.462 & 6.642 & 6.796 & 6.921 & 7.016 & 7.081 & 7.121 & 7.139 & 7.140 \\
\hline 290 & 5.930 & 6.126 & 6.311 & 6.48 ? & 6.627 & 6.751 & 6.849 & 6.923 & 6.973 & 7.003 & 7.016 \\
\hline 295 & 5.833 & 6.012 & 6.183 & 6.341 & 6.481 & 6.601 & 6.701 & 6.779 & 6.836 & 6.876 & 6.899 \\
\hline 30 C & 5.751 & 5.916 & 6.074 & 6.221 & 6.354 & 6.470 & 6.569 & 6.649 & 6.712 & 6.757 & 6.788 \\
\hline 305 & 5.682 & 5.835 & 5.981 & 6.118 & 6.244 & 6.356 & 6.452 & 6.533 & 6.599 & 6.649 & 6.686 \\
\hline 310 & 5.624 & 5.765 & 5.902 & 6.030 & 6.149 & 6.256 & 6.350 & 6.430 & 6.497 & 6.550 & 6.592 \\
\hline 315 & 5.575 & 5.707 & 5.834 & 5.954 & 6.063 & 6.168 & 6.259 & 6.338 & 6.406 & 6.461 & 6.505 \\
\hline 32 C & 5.534 & 5.657 & 5.776 & 5.889 & 5.995 & 6.092 & 6.180 & 6.257 & 6.324 & 6.380 & 6.427 \\
\hline 325 & 5.500 & 5.615 & 5.726 & 5.833 & 5.933 & 6.026 & 6.110 & 6.185 & 6.251 & 6.308 & 6.356 \\
\hline 33 C & 5.472 & 5.580 & 5.685 & 5.785 & 5.880 & 5.968 & 6.049 & 6.122 & 6.187 & 6.243 & 6.292 \\
\hline 335 & 5.449 & 5.551 & 5.649 & 5.744 & 5.834 & 5.918 & 5.996 & 6.067 & 6.130 & 6.186 & 6.234 \\
\hline 34 C & 5.431 & 5.527 & 5.620 & 5.710 & 5.795 & 5.875 & 5.950 & 6.018 & 6.080 & 6.135 & 6.183 \\
\hline 345 & 5.417 & 5.507 & 5.596 & 5.681 & 5.762 & 5.838 & 5.910 & 5.976 & 6.036 & 6.090 & 6.138 \\
\hline 350 & 5.407 & 5.492 & 5.576 & 5.657 & 5.734 & 5.807 & 5.876 & 5.939 & 5.997 & 6.050 & 6.097 \\
\hline 355 & 5.400 & 5.481 & 5.561 & 5.638 & 5.711 & 5.781 & 5.847 & 5.908 & 5.964 & 6.016 & 6.062 \\
\hline 36 C & 5.396 & 5.473 & 5.549 & 5.622 & 5.692 & 5.759 & 5.822 & 5.881 & 5.938 & 5.986 & 6.031 \\
\hline 365 & 5.395 & 5.469 & 5.541 & 5.611 & 5.677 & 5.741 & 5.802 & 5.859 & 5.911 & 5.960 & 6.005 \\
\hline 37C & 5.396 & 5.467 & 5.535 & 5.602 & 5.666 & 5.727 & 5.785 & 5.840 & 5.891 & 5.938 & 5.982 \\
\hline 375 & 5.400 & 5.467 & 5.533 & 5.596 & 5.658 & 5.716 & 5.772 & 5.825 & 5.874 & 5.920 & 5.963 \\
\hline 38 C & 5.406 & 5.470 & 5.533 & 5.594 & 5.65? & 5.709 & 5.762 & 5.813 & 5.861 & 5.906 & 5.947 \\
\hline 385 & 5.414 & 5.475 & 5.535 & 5.594 & 5.659 & 5.704 & 5.756 & 5.805 & 5.851 & 5.894 & 5.934 \\
\hline 39 C & 5.423 & 5.482 & 5.540 & 5.598 & 5.650 & 5.702 & 5.751 & 5.799 & 5.843 & 5.885 & 5.924 \\
\hline 395 & 5.434 & 5.491 & 5.546 & 5.600 & 5.652 & 5.702 & 5.750 & 5.795 & 5.838 & 5.879 & 5.917 \\
\hline \(40 C\) & 5.447 & 5.501 & 5.554 & 5.606 & 5.656 & 5.704 & 5.750 & 5.794 & 5.836 & 5.875 & 5.912 \\
\hline
\end{tabular}
R

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 8 &  &  & \begin{tabular}{l}
Nonom momom \\

\end{tabular} &  &  &  & \(\infty \infty \infty \sigma\) o ががの －NNNM \(\dot{\circ} \dot{\circ} \circ \dot{\circ}\) &  & 0
0
0
0
0 \\
\hline & 8 &  & \begin{tabular}{l}
tinnot かonnin \\

\end{tabular} & \begin{tabular}{l}
がのがの ～Ny \\

\end{tabular} & \(\infty\) に \(m-\sigma\) Nにがが心 ペ in in in in & \(\infty\) 人 －oがNin เninvivis． &  & 个人のo －N～NN \(\therefore \circ 0_{0}^{\circ}\) &  & \begin{tabular}{l}
0 \\
\(\uparrow\) \\
+ \\
\hline 0
\end{tabular} \\
\hline & 8 &  &  &  &  & \begin{tabular}{l}
बoono mogno \(\infty \infty \infty \sigma\) \\

\end{tabular} &  &  &  & \(\sim\)
0
0
0 \\
\hline \multirow{8}{*}{} & ㅇ &  Nnmmm in in in \(\sin ^{\circ}\) &  & \begin{tabular}{l}
のヘにのN的縕品 \\

\end{tabular} & ㅇㅇㅇㅇㅇ O゚NんN ベ &  &  &  &  & \(n\)
0
0
0 \\
\hline & 8 &  & moom－ かoonn mmms以的的的的 & \begin{tabular}{l}
 \\
Tombor \\
to in in in in in in in in
\end{tabular} & \begin{tabular}{l}
0 人N \(\infty\) Nが心かさ \\

\end{tabular} & ONMin \(\underset{\sim}{\infty} \rightarrow \infty\) ベロージが &  &  &  & \begin{tabular}{l} 
N \\
\multirow{2}{*}{} \\
\hline 0
\end{tabular} \\
\hline & 8 &  & にのーロ N～No Nmmms が心的 & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned} \sigma 0
\] & \begin{tabular}{l}
 ONG～N \\

\end{tabular} & \begin{tabular}{l}
OMnNo \\
in \(\infty \rightarrow+\infty\) \\
\(\uparrow \uparrow \infty \infty\) \\

\end{tabular} &  &  & nugan thoth NNMMM \(\because 0.000\) & 0
0
0
0
0 \\
\hline & 안 &  & \begin{tabular}{l}
 H「Omo \(\sim N m m m\) \\

\end{tabular} & ๙o운 －Noon のホますか ヘn in in in in &  & \begin{tabular}{l}
Orcor \\
Nにがn \\

\end{tabular} & \begin{tabular}{l}
coroc が心の 0.000 \\

\end{tabular} &  & へunN \(\underset{\sim}{N} \sim N_{m}^{n}\) \(\therefore \dot{\circ} \circ \dot{\circ}\) & \(\square\)
0
0
0 \\
\hline & 9 &  & \begin{tabular}{l}
のロッ～ －m o N N \\

\end{tabular} & \begin{tabular}{l}
centa かめ～が のmすすす \\

\end{tabular} & \begin{tabular}{l}
ーがいい Ninin No \\

\end{tabular} & \begin{tabular}{l}
 がNかめ \\

\end{tabular} & \begin{tabular}{l}
～～Non \\
 \\

\end{tabular} &  & \begin{tabular}{l}
onoma 오N～으N \\

\end{tabular} & \(N\)
\(\sim\)
\(\sim\) \\
\hline & ¢ & \begin{tabular}{l}
け＋n N \\
 \\

\end{tabular} &  &  &  \(\infty\) 动 \(\infty\) tin in in 0以n in in in in & mNNNN nonea －orra in in in in in &  &  & \begin{tabular}{l}
かさのが べが呙 \\

\end{tabular} & \(m\)
\(n\)
0
0 \\
\hline & \(\bigcirc\) &  &  &  & \begin{tabular}{l}
 \\
\(+\infty\)
\(\ddagger\)
\(y\) \\

\end{tabular} & \begin{tabular}{l}
onNmm Noome 000 rr \\

\end{tabular} &  &  & \begin{tabular}{l}
 \(\rightarrow-N\) \\

\end{tabular} & \(m\)
\(n\)
\(\stackrel{m}{0}\) \\
\hline & \(\bigcirc\) &  & \begin{tabular}{l}
べットか ○○ーが \\

\end{tabular} & \begin{tabular}{l}
mong Nomm \\

\end{tabular} & \begin{tabular}{l}
mon No Gま \(\operatorname{cosin}^{\circ}\) \\

\end{tabular} &  & \begin{tabular}{l}
○～が \\
 \\

\end{tabular} &  & \begin{tabular}{l}
バニへ～～～ ールNNN \\

\end{tabular} & \(\stackrel{ \pm}{ \pm}\) \\
\hline  & &  & Nomusus なななざ &  &  &  & Nuwuw in in in in in & U心品品 in in in in in & 山 い い い い い nunin in & － \\
\hline
\end{tabular}
~


TABLE X. - THERMODYNAMIC PROPERTY OF METHANE - SPECIFIC-HEAT RATIO. \(7_{0}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature, K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline 12 C & 1.333 & 1.370 & - & ---- & ----- & - & & & ----- & --- & \\
\hline 122 & 1.333 & 1.367 & 1.412 & & & & & & & ----- & \\
\hline 124 & 1.333 & 1.364 & 1.404 & & & & & & & & \\
\hline \(12 t\) & 1.333 & 1.361 & 1.397 & & & & & & & & \\
\hline 128 & 1.333 & 1.359 & 1.392 & 1.434 & & & & & & & \\
\hline 13 C & 1.333 & 1.357 & 1.387 & 1.425 & & & ------- & & & & \\
\hline 132 & 1.333 & 1.355 & 1.382 & 1.416 & 1.460 & & --- & & & & \\
\hline 134 & 1.333 & 1.354 & 1.379 & 1.409 & 1.448
1.438 & --481 & & & & & \\
\hline 136 & 1.333 & 1.352 & 1.375
1.373 & 1.403
1.398 & 1.438
1.429 & 1.481
1.467 & ------- & - & ------ & - & -_--- \\
\hline 138 & 1.333 & 1.351 & 1.373 & 1.398 & 1.429 & 1.467 & & & & & \\
\hline 14 C & 1.333 & 1.350 & 1.370 & 1.394 & 1.422 & 1.456 & 1.498 & & & & \\
\hline 142 & 1.333 & 1.349 & 1.368 & 1.390 & 1.415
1.417 & 1.446
1.438 & 1.483
1.471 & 1.529
1.511 & -------- & ------- & ----- \\
\hline 144 & 1.333 & 1.348 & 1.366 & 1.386
1.383 & 1.417
1.405 & 1.438
1.430 & 1.476 & 1.496 & 1.539 & ----- & \\
\hline \(14 t\) & 1.333
1.333 & 1.347
1.347 & 1.364
1.362 & 1.383
1.380 & 1.405
1.401 & 1.430
1.424 & 1.451 & 1.483 & 1.521 & 1.568 & \\
\hline 148 & 1.333 & 1.347 & 1.362 & 1.38 & & & & & & & \\
\hline 150 & 1.333 & 1.346 & 1.361 & 1.378 & 1.397 & 1.419 & 1.443 & 1.472 & 1.506 & 1.547
1.530 & 1.597
1.573 \\
\hline 152 & 1.333 & 1.346 & 1.360 & 1.376 & 1.393 & 1.414 & 1.437 & 1.463 & 1.494
1.483 & 1.530
1.515 & 1.573
1.553 \\
\hline 154 & 1.333 & 1.345 & 1.359 & 1.374 & 1.390
1.388 & 1.409
1.406 & 1.431
1.425 & 1.455
1.448 & 1.483
1.473 & 1.502 & 1.536 \\
\hline \(15 t\) & 1.333
1.333 & 1.344 & 1.358
1.357 & 1.372
1.370 & 1.388
1.385 & 1.406
1.402 & 1.425
1.421 & 1.448 & 1.465 & 1.491 & 1.522 \\
\hline 158 & 1.333 & 1.344 & 1.357 & 1.370 & 1.385 & 1.402 & 1.421 & 1.441 & 1.465 & 1.4 & \\
\hline & 1.333 & 1.344 & 1.356 & 1.369 & 1.383 & 1.399 & 1.416 & 1.436 & 1.457 & 1.482 & 1.509 \\
\hline 162 & 1.332 & 1.343 & 1.355 & 1.367 & 1.381 & 1.396 & 1.413 & 1.431 & 1.451 & 1.473 & 1.499 \\
\hline 164 & 1.332 & 1.343 & 1.354 & 1.366 & 1.379 & 1.394 & 1.409 & 1.426 & 1.445
1.440 & 1.466
1.459 & 1.4891 \\
\hline \(16 t\) & 1.332 & 1.342 & 1.353 & 1.365 & 1.379
1.376 & 1.391
1.389 & 1.406
1.403 & 1.422
1.419 & 1.435 & 1.454 & 1.474 \\
\hline 168 & 1.332 & 1.342 & 1.353 & 1.364 & 1.376 & 1.389 & 1.403 & 1.419 & 1.435 & 1.45 & \\
\hline & & & 1.352 & 1.363 & 1.375 & 1.387 & 1.401 & 1.415 & 1.431 & 1.448 & 1.467 \\
\hline 178
172 & 1.332
1.332 & 1.342
1.341 & 1.352
1.351 & 1.363
1.362 & 1.377 & 1.385 & 1.398 & 1.412 & 1.427 & 1.443 & 1.461 \\
\hline 174 & 1.332 & 1.341 & 1.351 & 1.361 & 1.372 & 1.383 & 1.396 & 1.409 & 1.424 & 1.439 & 1.456 \\
\hline 176 & 1.332 & 1.341 & 1.350 & 1.361 & 1.371 & 1.382 & 1.394
1.392 & 1.407
1.404 & 1.420 & 1.435
1.431 & 1.451
1.446 \\
\hline \(17 \varepsilon\) & 1.332 & 1.340 & 1.350 & 1.359 & 1.369 & 1.380 & 1.392 & 1.404 & 1.417 & 1.431 & 1.446 \\
\hline & 1.332 & 1.340 & 1.349 & 1.358 & 1.368 & 1.379 & 1.390 & 1.402 & 1.414 & 1.428 & 1.442 \\
\hline 180
182 & 1.3332 & 1.340 & 1.348 & 1.35 月 & 1.367 & 1.377 & 1.388 & 1.400 & 1.412 & 1.424 & 1.438 \\
\hline 184 & 1.331 & 1.339 & 1.348 & 1.357 & 1.366 & 1.376 & 1.386 & 1.397 & 1.409 & 1.421 & 1.434 \\
\hline \(18 t\) & 1.331 & 1.339 & 1.347 & 1.356 & 1.365 & 1.375 & 1.385
1.383 & 1.395
1.394 & 1.404 & 1.416 & 1.428 \\
\hline 188 & 1.331 & 1.339 & 1.347 & 1.355 & 1.364 & 1.374 & 1.383 & 1.394 & 1.404 & 1.416 & 1.428 \\
\hline 19 C & 1.331 & 1.338 & 1.346 & 1.355 & 1.367 & 1.372 & 1.382 & 1.392 & 1.402 & 1.413 & 1.425 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature, K} & \multicolumn{11}{|l|}{Pressure. \(\mathrm{N} \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 \\
\hline 15 C & 1.597 & --- & ------ & ------ & ------ & & ------ & & & & \\
\hline 152 & 1.573 & ------ & ------ & ------- & ------- & & -------- & ------ & ------ & ------- & ------ \\
\hline 154 & 1.553 & 1.653 & -- & ------ & ---- & & ---- & - & ------- & & \\
\hline 156 & 1.536 & 1.623 & - & ------- & ------- & & ---- & --- & & & \\
\hline 158 & 1.522 & 1.598 & 1.707 & ------ & ------ & ------ & & & & --- & ----- \\
\hline 160 & 1.509 & 1.577 & 1.670 & 1.809 & & & & & & & \\
\hline 162 & 1.499 & 1.560 & 1.641 & 1.758 & ------- & & -------- & & & & \\
\hline 164 & 1.489 & 1.545 & 1.617 & 1.715 & 1.850 & ------ & ----- & & & & \\
\hline 166 & 1.481 & 1.532 & 1.596 & 1.681 & 1.800 & 1.980 & -- & & & & \\
\hline 168 & 1.474 & 1.520 & 1.578 & 1.653 & 1.754 & 1.899 & ------ & & & & \\
\hline 170 & 1.467 & 1.510 & 1.563 & 1.630 & 1.717 & & & & & & \\
\hline 172 & 1.461 & 1.501 & 1.550 & 1.610 & 1.687 & 1.788 & 1.931 & & & ------- & \\
\hline 174 & 1.456 & 1.493 & 1.538 & 1.593 & 1.661 & 1.749 & 1.867 & 2.036 & 2.306 & & \\
\hline 176 & 1.451 & 1.486 & 1.528 & 1.578 & 1.639 & 1.716 & 1.817 & 1.954 & 2.155 & 2.489 & \\
\hline 178 & 1.446 & 1.479 & 1.519 & 1.565 & 1.620 & 1.689 & 1.776 & 1.890 & 2.049 & 2.287 & 2.701 \\
\hline 18 C & 1.442 & 1.474 & 1.510 & 1.553 & 1.604 & 1.666 & 1.742 & & & & \\
\hline 182 & 1.438 & 1.468 & 1.502 & 1.542 & 1.589 & 1.645 & 1.713 & 1.798 & 1.907 & 2.152
2.053 & 2.433 \\
\hline 184
186 & 1.434 & 1.463 & 1.495 & 1.533 & 1.57 A & 1.627 & 1.689 & 1.763 & 1.857 & 2.053
1.978 & 2.262
2.141 \\
\hline 188 & 1.431
1.428 & 1.458
1.454 & 1.489 & 1.524 & 1.565 & 1.612 & 1.667 & 1.734 & 1.815 & 1.918 & 2.051 \\
\hline & & 1.454 & 1.483 & 1.516 & 1.554 & 1.598 & 1.648 & 1.709 & 1.781 & 1.869 & 1.981 \\
\hline 19 C & 1.425 & 1.450 & 1.478 & 1.509 & 1.544 & 1.585 & 1.632 & 1.686 & 1.751 & 1.829 & 1.924 \\
\hline Temperature, & \multicolumn{11}{|l|}{Pressure. \(\mathrm{N} \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 30 & 32 & 34 & 36 & 38 & 40 & 42 & 44 & 46 & 48 & 50 \\
\hline 170 & ------ & ------ & ------ & ------ & & & & & & & \\
\hline 172 & ------ & ------ & ------ & ----- & ------ & -- & ------ & & & ------ & \\
\hline 176 & ----- & -------- & & & & --- & ---- & ------- & ------ & & \\
\hline 178 & 2.701 & ------ & & & & & -- & ------ & ----- & ------ & \\
\hline 18 C & 2.433 & 2.942 & ------ & ------ & --- & & & & & & \\
\hline 182 & 2.262 & 2.590 & 3.208 & & ------ & ------- & ---- & ------- & - & ------ & ------ \\
\hline 184 & 2.141 & 2.377 & 2.754 & 3.490 & ----- & ------ & & & & & \\
\hline 18 t & 2.051 & 2.232 & 2.495 & 2.921 & 3.768 & 6.798 & & & & & \\
\hline 188 & 1.981 & 2.126 & 2.323 & 2.612 & 3.081 & 4.018 & 7.310 & & & & \\
\hline 190 & 1.924 & 2.044 & 2.200 & 2.413 & 2.724 & 3.227 & 4.210 & 7.335 & ------ & & \\
\hline
\end{tabular}
TABLE X. - Continued. THERMODYNAMIC PROPERTY OF METHANE - SPECIFIC-HEAT RATIO, \(\gamma_{0}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature, K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 50 & 55 & 60 & 65 & 70 & 75 & 80 & 85 & 90 & 95 & 100 \\
\hline 19 C & ------ & ------ & ----- & ------ & ------ & ------ & ------ & ------ & - & ------ & ----- \\
\hline 192 & 8.948 & 4.661 & 3.758 & 3.328 & 3.066 & 2.884 & 2.749 & 2.643 & 2.557 & 2.485 & 2.424 \\
\hline 194 & 14.603 & 6.567 & 4.404 & 3.681 & 3.299 & 3.056 & 2.883 & 2.752 & 2.649 & 2.565 & 2.494 \\
\hline \(19 t\) & 5.969 & 11.453 & 5.523 & 4.182 & 3.600 & 3.263 & 3.039 & 2.876 & 2.751 & 2.651 & 2.569 \\
\hline 198 & 4.264 & 8.942 & 7.363 & 4.907 & 3.990 & 3.517 & 3.222 & 3.017 & 2.865 & 2.746 & 2.650 \\
\hline 20 C & 3.520 & 5.732 & 8.179 & 5.852 & 4.489 & 3.824 & 3.435 & 3.177 & 2.991 & 2.850 & 2.737 \\
\hline 202 & 3.095 & 4.374 & 6.608 & 6.533 & 5.056 & 4.182 & 3.678 & 3.355 & 3.130 & 2.962 & 2.831 \\
\hline 204 & 2.817 & 3.667 & 5.142 & 6.244 & 5.496 & 4.553 & 3.943 & 3.550 & 3.279 & 3.082 & 2.930 \\
\hline 206 & 2.620 & 3.235 & 4.233 & 5.389 & 5.534 & 4.844 & 4.200 & 3.749 & 3.435 & 3.207 & 3.033 \\
\hline 208 & 2.472 & 2.943 & 3.661 & 4.590 & 5.167 & 4.936 & 4.400 & 3.935 & 3.589 & 3.333 & 3.138 \\
\hline 210 & 2.356 & 2.732 & 3.276 & 3.993 & 4.643 & 4.792 & 4.486 & 4.077 & 3.726 & 3.452 & 3.240 \\
\hline 212 & 2.262 & 2.572 & 3.000 & 3.560 & 4.149 & 4.490 & 4.431 & 4.146 & 3.830 & 3.556 & 3.334 \\
\hline 214 & 2.184 & 2.446 & 2.794 & 3.241 & 3.741 & 4.138 & 4.260 & 4.126 & 3.883 & 3.633 & 3.413 \\
\hline 216 & 2.119 & 2.343 & 2.634 & 2.999 & 3.418 & 3.803 & 4.024 & 4.025 & 3.876 & 3.672 & 3.470 \\
\hline 218 & 2.063 & 2.258 & 2.505 & 2.810 & 3.167 & 3.512 & 3.771 & 3.867 & 3.812 & 3.670 & 3.499 \\
\hline 220 & 2.014 & 2.187 & 2.400 & 2.659 & 2.958 & 3.267 & 3.529 & 3.682 & 3.703 & 3.626 & 3.498 \\
\hline 222 & 1.972 & 2.125 & 2.312 & 2.535 & 2.791 & 3.063 & 3.312 & 3.490 & 3.567 & 3.548 & 3.465 \\
\hline 224 & 1.934 & 2.072 & 2.237 & 2.432 & 2.654 & 2.893 & 3.122 & 3.307 & 3.418 & 3.445 & 3.406 \\
\hline 226 & 1.900 & 2.025 & 2.172 & 2.344 & 2.530 & 2.750 & 2.958 & 3.139 & 3.268 & 3.329 & 3.327 \\
\hline 228 & 1.869 & 1.983 & 2.116 & 2.269 & 2.442 & 2.628 & 2.817 & 2.989 & 3.124 & 3.207 & 3.235 \\
\hline 23 C & 1.842 & 1.946 & 2.066 & 2.204 & 2.358 & 2.524 & 2.694 & 2.855 & 2.990 & 3.085 & 3.135 \\
\hline 232 & 1.816 & 1.912 & 2.022 & 2.147 & 2.285 & 2.434 & 2.588 & 2.737 & 2.868 & 2.969 & 3.033 \\
\hline 234 & 1.793 & 1.882 & 1.983 & 2.096 & 2.221 & 2.355 & 2.495 & 2.632 & 2.757 & 2.860 & 2.933 \\
\hline 236 & 1.772 & 1.854 & 1.947 & 2.051 & 2.164 & 2.286 & 2.413 & 2.540 & 2.657 & 2.759 & 2.837 \\
\hline 238 & 1.752 & 1.829 & 1.915 & 2.010 & 2.114 & 2.225 & 2.341 & 2.457 & 2.568 & 2.666 & 2.746 \\
\hline 240 & 1.734 & 1.806 & 1.885 & 1.973 & 2.068 & 2.170 & 2.277 & 2.384 & 2.487 & 2.581 & 2.661 \\
\hline 242 & 1.717 & 1.784 & 1.858 & 1.940 & 2.028 & 2.121 & 2.219 & 2.318 & 2.414 & 2.504 & 2.582 \\
\hline 244 & 1.701 & 1.764 & 1.833 & 1.909 & 1.990 & 2.077 & 2.167 & 2.259 & 2.349 & 2.433 & 2.509 \\
\hline 246 & 1.686 & 1.745 & 1.810 & 1.881 & 1.957 & 2.037 & 2.120 & 2.205 & 2.289 & 2.369 & 2.442 \\
\hline 248 & 1.671 & 1.728 & 1.789 & 1.855 & 1.925 & 2.000 & 2.078 & 2.156 & 2.235 & 2.310 & 2.380 \\
\hline 250 & 1.658 & 1.711 & 1.769 & 1.831 & 1.897 & 1.966 & 2.039 & 2.112 & 2.185 & 2.256 & 2.323 \\
\hline
\end{tabular}
TABLE X．－Continued．THERMODYNAMIC PROPERTY OF METHANE－SPECIFIC－HEAT RATIO．\(r_{0}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & ¢ &  &  ○～す゚ロロ べNべ &  & がこのが NNNNN \(\dot{\sim}\) & Nーの～O NNNN \(\dot{\sim} \dot{N} N \dot{N}\) & mにnのo N～N N NNNN & N
\(\sim\)
\(\sim\)
\(\sim\) \\
\hline & －8 &  & \begin{tabular}{l}
\(0 \infty 0 N+\) \\
 \(\dot{\sim} \dot{N} \dot{N}\)
\end{tabular} & ○人下人～ ポ오N N \(\dot{N} \dot{N} \dot{N}\) & ざががす。 NNNNM \(\dot{\sim} \dot{N}\) & onmom जNMms ジNべN & ○ロにがか が \({ }^{\text {m }} \mathrm{m}\) NべNべ & \(\stackrel{\sim}{N}\) \\
\hline & － &  &  & \begin{tabular}{l}
Nぃ，or \\
 \(\dot{\sim} \dot{\sim} \dot{N}\)
\end{tabular} &  &  mmmyt \(\dot{\sim} \dot{N} \dot{N}\) &  & \(\stackrel{n}{\sim}\) \\
\hline & \(\stackrel{\bigcirc}{-}\) &  &  & n－ 0 Om 4～のNな NNNmm \(\dot{\sim} \dot{N} \dot{\sim} \dot{\sim}\) &  & \(\infty \infty\) のo 0 \(\begin{array}{ccc}5 \\ 5 & 0 \\ 4\end{array}\) \(\dot{N} \dot{N} \dot{N}\) & \begin{tabular}{l}
\(\sigma \sim \infty \infty\) \\
 \(\dot{\sim} \sim \dot{N}\)
\end{tabular} & \(\sim\)
\(\sim\)
\(\sim\)
\(\sim\) \\
\hline \[
10
\] & \(\stackrel{8}{-1}\) & l \(\sim 10 \times \infty\) &  &  &  & \begin{tabular}{l}
Oonom \\
 NへNざ
\end{tabular} & ○ーロ～か チMNO \(\because \because \curvearrowleft N\) 。 NNNNN & \(\infty\)
0
\(\sim\)
\(\sim\)
\(\sim\) \\
\hline z & －8 &  & \begin{tabular}{l}
こッのか～ \\
 N～NNべ
\end{tabular} &  &  & ～～0MO NMMN N～NへN &  & D
\(\sim\)
\(\sim\)
\(\sim\)
\(\sim\) \\
\hline 号 & 안 &  &  &  &  & \[
\begin{aligned}
& O F N N \\
& \text { NN } \\
& \text { N NNN }
\end{aligned}
\] & \(c r+5 c\) 00 mon NNNN & \[
\begin{aligned}
& \stackrel{\rightharpoonup}{m} \\
& \stackrel{n}{n} \\
& \dot{N}
\end{aligned}
\] \\
\hline & \(\stackrel{-}{-}\) &  &  &  & \begin{tabular}{l}
ポーが \\
の～が \\
ベNべ
\end{tabular} &  &  & \[
\begin{aligned}
& \text { N } \\
& \stackrel{n}{n} \\
& \stackrel{n}{n}
\end{aligned}
\] \\
\hline & 윽 &  & \begin{tabular}{l}
norins \\
 \(\dot{\sim} \sim \dot{\sim}\)
\end{tabular} &  & \(\infty \infty m \infty\) NONNN の0000 Nmmmm &  &  & \(\circ\)
0
0
\(\sim\) \\
\hline & \(\underset{\sim}{-1}\) &  & \begin{tabular}{l}
\(\infty \infty\) \\
 ベへべ
\end{tabular} &  & －mへino NNN№ ल்ற்ற்ற் &  &  & \[
\begin{aligned}
& \stackrel{+}{m} \\
& \stackrel{y}{\sim} \\
& \stackrel{y}{n}
\end{aligned}
\] \\
\hline & \(\stackrel{8}{-1}\) &  & \begin{tabular}{l}
ト－mom がmのn \\

\end{tabular} &  & がn～～～ GOONM ल்ற்ற்ற &  &  & N
\(\sim\)
\(\stackrel{\sim}{n}\) \\
\hline  & \(x\) &  & \[
N \sim N N
\] & \[
\underset{\sim}{\sim} \underset{\sim}{\sim} \underset{\sim}{N}
\] & \begin{tabular}{l}
UN～0 N \\
NNNNN NNNNN
\end{tabular} & \[
\underset{\sim}{N} \underset{N}{N} \underset{N}{N} N N_{N}^{N}
\] &  & \[
\underset{\sim}{n}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature, K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 200 & 210 & 220 & 230 & 240 & 250 & 260 & 270 & 280 & 290 & 300 \\
\hline 19 C & ----- & -- & - & ------ & ------ & -- & ------ & ------ & ------ & ------ & ------ \\
\hline 192 & 1.921 & 1.898 & 1.877 & 1.857 & 1.838 & 1.821 & 1.806 & 1.791 & 1.777 & 1.764 & 1.751 \\
\hline 194 & 1.942 & 1.917 & 1.895 & 1.874 & 1.855 & 1.837 & 1.820 & 1.805 & 1.790 & 1.777 & 1.764 \\
\hline 196 & 1.962 & 1.936 & 1.913 & 1.891 & 1.871 & 1.852 & 1.835 & 1.819 & 1.804 & 1.789 & 1.776 \\
\hline 198 & 1.983 & 1.956 & 1.931 & 1.908 & 1.887 & 1.868 & 1.850 & 1.833 & 1.817 & 1.802 & 1.788 \\
\hline 200 & 2.004 & 1.975 & 1.949 & 1.925 & 1.903 & 1.883 & 1.864 & 1.847 & 1.830 & 1.815 & 1.801 \\
\hline \(20{ }^{\circ}\) & 2.024 & 1.994 & 1.967 & 1.942 & 1.919 & 1.898 & 1.879 & 1.860 & 1.844 & 1.828 & 1.813 \\
\hline 204 & 2.045 & 2.013 & 1.985 & 1.959 & 1.935 & 1.913 & 1.893 & 1.874 & 1.856 & 1.840 & 1.825 \\
\hline 206 & 2.065 & 2.032 & 2.002 & 1.975 & 1.950 & 1.928 & 1.907 & 1.887 & 1.869 & 1.852 & 1.836 \\
\hline 208 & 2.085 & 2.051 & 2.020 & 1.991 & 1.966 & 1.942 & 1.920 & 1.900 & 1.882 & 1.864 & 1.848 \\
\hline 210 & 2.105 & 2.069 & 2.037 & 2.007 & 1.981 & 1.956 & 1.934 & 1.913 & 1.894 & 1.876 & 1.859 \\
\hline 212 & 2.124 & 2.087 & 2.053 & 2.023 & 1.995 & 1.970 & 1.947 & 1.925 & 1.906 & 1.887 & 1.870 \\
\hline 214 & 2.143 & 2.104 & 2.069 & 2.038 & 2.009 & 1.983 & 1.959 & 1.937 & 1.917 & 1.898 & 1.880 \\
\hline 216 & 2.161 & 2.121 & 2.085 & 2.052 & 2.023 & 1.996 & 1.972 & 1.949 & 1.928 & 1.908 & 1.890 \\
\hline 218 & 2.179 & 2.137 & 2.100 & 2.066 & 2.036 & 2.009 & 1.983 & 1.960 & 1.939 & 1.919 & 1.900 \\
\hline 220 & 2.195 & 2.152 & 2.114 & 2.080 & 2.049 & 2.020 & 1.994 & 1.971 & 1.949 & 1.928 & 1.909 \\
\hline 222 & 2.211 & 2.167 & 2.127 & 2.092 & 2.060 & 2.031 & 2.005 & 1.981 & 1.958 & 1.937 & 1.918 \\
\hline 224 & 2.225 & 2.180 & 2.140 & 2.104 & 2.072 & 2.042 & 2.015 & 1.990 & 1.967 & 1.946 & 1.926 \\
\hline 226 & 2.239 & 2.193 & 2.152 & 2.115 & 2.08 ? & 2.052 & 2.024 & 1.999 & 1.976 & 1.954 & 1.934 \\
\hline 228 & 2.251 & 2.204 & 2.163 & 2.125 & 2.092 & 2.061 & 2.033 & 2.008 & 1.984 & 1.962 & 1.942 \\
\hline 23 C & 2.262 & 2.214 & 2.172 & 2.135 & 2.100 & 2.069 & 2.041 & 2.015 & 1.991 & 1.969 & 1.948 \\
\hline 232 & 2.271 & 2.223 & 2.181 & 2.143 & 2.108 & 2.077 & 2.048 & 2.022 & 1.998 & 1.976 & 1.955 \\
\hline 234 & 2.279 & 2.231 & 2.189 & 2.152 & 2.115 & 2.084 & 2.055 & 2.029 & 2.004 & 1.981 & 1.960 \\
\hline 236 & 2.286 & 2.238 & 2.195 & 2.156 & 2.122 & 2.090 & 2.061 & 2.034 & 2.010 & 1.987 & 1.966 \\
\hline 238 & 2.290 & 2.243 & 2.200 & 2.162 & 2.127 & 2.095 & 2.066 & 2.039 & 2.014 & 1.992 & 1.970 \\
\hline 240 & 2.293 & 2.246 & 2.204 & 2.166 & 2.131 & 2.099 & 2.070 & 2.043 & 2.019 & 1.996 & 1.974 \\
\hline 242 & 2.295 & 2.249 & 2.207 & 2.169 & 2.134 & 2.103 & 2.074 & 2.047 & 2.022 & 1.999 & 1.978 \\
\hline 244 & 2.295 & 2.249 & 2.208 & 2.171 & 2.136 & 2.105 & 2.076 & 2.049 & 2.025 & 2.002 & 1.981 \\
\hline 246
248 & 2.293
2.290 & 2.249
2.247 & 2.208 & 2.172 & 2.138 & 2.107 & 2.078 & 2.051 & 2.027 & 2.004 & 1.983 \\
\hline & & & 2.207 & 2.171 & 2.138 & 2.107 & 2.079 & 2.053 & 2.028 & 2.006 & 1.984 \\
\hline 25 C & 2.285 & 2.243 & 2.205 & 2.170 & 2.137 & 2.107 & 2.079 & 2.053 & 2.029 & 2.007 & 1.986 \\
\hline
\end{tabular}
TABLE X．－Continued．THERMODYNAMIC PROPERTY OF METHANE－SPECIFIC－HEAT RATIO，\(\gamma_{0}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 8 & mo \(0 \rightarrow 0\) Noont \(m \rightarrow 000\) NNNこ &  &  &  &  &  & \(\cdots\) \\
\hline & ¢ & \begin{tabular}{l}
monOo \\
 Nべッジ
\end{tabular} & \(\sim\) NNDr 요NNN シージーシ & 9 90 in in シージッジ &  & \begin{tabular}{l}
MNージー \\
 \\

\end{tabular} & Nはいか。 OかNMN －－－－－－ & \[
\begin{aligned}
& n \\
& \infty \\
& \stackrel{y}{n} \\
& \dot{\sim}
\end{aligned}
\] \\
\hline & \(\infty\) & － \(5 \sim n\) MñかNた ベーム・•• &  &  &  &  &  & \[
\begin{aligned}
& N \\
& N \\
& \\
&
\end{aligned}
\] \\
\hline \multirow{8}{*}{|r} & 안 & が～Nの日が \(\infty \infty\) か～。 \(\rightarrow \dot{\circ}-\dot{\circ}\) &  &  & \[
\begin{aligned}
& \infty \\
& \infty \\
& 0 \\
& 0 \\
& y
\end{aligned} \infty
\] &  & N No No Nonnm －－－－－－ & \[
\begin{aligned}
& 0 \\
& 9 \\
& 9 \\
& \hline
\end{aligned}
\] \\
\hline & 8 & \begin{tabular}{l}
onstin \\
 \\

\end{tabular} & のonの のnn min がnに。 &  &  & のルローか on minm シージッ & \(\operatorname{ranom}\) ninsmmm mmmmm ーローーの & \(\infty\)
\(N\)
\(\sim\)
\(\vdots\) \\
\hline & 앙 & \begin{tabular}{l}
\(\infty \infty \rightarrow \infty\)－ No on心 \\

\end{tabular} &  &  &  & \begin{tabular}{l}
m－Oホ Mo mimy \\

\end{tabular} & ～ツッペ mmmm ジッ～ッ゙ &  \\
\hline & 7 &  &  &  &  & ＊ \(\boldsymbol{*}\) NNN \(\mathrm{n}+\mathrm{mm}\) mmmmm －－－－－ &  & 4
0
0
-1
-1 \\
\hline & ¢ &  & \begin{tabular}{l}
NmnNO Mッます。 \\

\end{tabular} & NoomN の日内Mm MのM゙M & －nono がnnmin \(\rightarrow-\dot{A}\) & nowno mmNNM －シージー &  & \(m\)
\(\sim\)
\(\sim\)
\(\vdots\) \\
\hline & ¢ &  &  &  & \(N \infty+0\) MMNNN mmmmm ジジのシ &  & 「ながが NN～N －シージ & \(\underset{\sim}{\sim}\) \\
\hline & 은 & ○Nかに～ー ○onn mmmmm シージゥ &  & \begin{tabular}{l}
ONMON MNNN二 mmmmm \\

\end{tabular} &  & かんNo． \(\sigma \sigma \infty \infty\) NNNNN \(\rightarrow\)－シーシ &  & 0
0
\(\sim\)
-1 \\
\hline & 0 &  &  &  &  & 옹NN NNNNN N～••• &  & N
\(\sim\)
\(\sim\) \\
\hline  & \(\pm\) & U以 un w NNNNN &  \(N \mathrm{NNNN}\) &  & numus mmmmm &  &  & － \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature, K} & \multicolumn{11}{|l|}{Pressure. \(\mathrm{N} \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 100 & 110 & 120 & 130 & 140 & 150 & 160 & 170 & 180 & 190. & 200 \\
\hline 250 & 2.323 & 2.434 & 2.506 & 2.537 & 2.534 & 2.508 & 2.468 & 2.422 & 2.375 & 2.329 & 2.285 \\
\hline 255 & 2.199 & 2.302 & 2.378 & 2.424 & 2.440 & 2.433 & 2.411 & 2.379 & 2.375
2.342 & 2.329
2.304 & 2.285
2.266 \\
\hline 26 C & 2.096 & 2.190 & 2.265 & 2.317 & 2.346 & 2.354 & 2.345 & 2.326 & 2.300 & 2.270 & 2.239 \\
\hline 265 & 2.011 & 2.095 & 2.167 & 2.221 & 2.256 & 2.274 & 2.277 & 2.268 & 2.252 & 2.230 & 2.206 \\
\hline 276 & 1.940 & 2.015 & 2.081 & 2.134 & 2.173 & 2.197 & 2.208 & 2.208 & 2.200 & 2.186 & 2.168 \\
\hline 275 & 1.878 & 1.946 & 2.007 & 2.058 & 2.098 & 2.125 & 2.142 & 2.148 & 2.147 & 2.139 & 2.127 \\
\hline 28 C & 1.825 & 1.886 & 1.942 & 1.990 & 2.029 & 2.059 & 2.079 & 2.090 & 2.094 & 2.091 & 2.084 \\
\hline 285 & 1.779 & 1.834 & 1.885 & 1.930 & 1.968 & 1.998 & 2.020 & <. 035 & 2.042 & 2.044 & 2.041 \\
\hline 29 C & 1.739 & 1.789 & 1.835 & 1.877 & 1.913 & 1.943 & 1.966 & 1.982 & 1.993 & 1.998 & 1.999 \\
\hline 295 & 1.703 & 1.748 & 1.791 & 1.830 & 1.864 & 1.893 & 1.916 & 1.934 & 1.946 & 1.954 & 1.957 \\
\hline 30 C & 1.671 & 1.712 & 1.751 & 1.787 & 1.819 & 1.847 & 1.870 & 1.889 & 1.902 & 1.912 & 1.918 \\
\hline 305 & 1.642 & 1.680 & 1.716 & 1.749 & 1.779 & 1.806 & 1.829 & 1.847 & 1.862 & 1.872 & 1.880 \\
\hline 310 & 1.616 & 1.651 & 1.684 & 1.715 & 1.743 & 1.769 & 1.790 & 1.809 & 1.824 & 1.835 & 1.844 \\
\hline 315 & 1.593 & 1.625 & 1.655 & 1.684 & 1.710 & 1.734 & 1.755 & 1.773 & 1.788 & 1.800 & 1.810 \\
\hline 320 & 1.571 & 1.601 & 1.629 & 1.656 & 1.681 & 1.703 & 1.723 & 1.741 & 1.756 & 1.768 & 1.778 \\
\hline 325 & 1.552 & 1.579 & 1.605 & 1.630 & 1.653 & 1.675 & 1.694 & 1.711 & 1.725 & 1.738 & 1.748 \\
\hline 33 C & 1.533 & 1.559 & 1.583 & 1.606 & 1.629 & 1.648 & 1.667 & 1.683 & 1.697 & 1.710 & 1.720 \\
\hline 335 & 1.517 & 1.540 & 1.563 & 1.585 & 1.605 & 1.624 & 1.642 & 1.657 & 1.671 & 1.683 & 1.694 \\
\hline 34 C & 1.501 & 1.523 & 1.544 & 1.565 & 1.584 & 1.602 & 1.619 & 1.634 & 1.647 & 1.659 & 1.669 \\
\hline 345 & 1.487 & 1.507 & 1.527 & 1.546 & 1.564 & 1.581 & 1.597 & 1.612 & 1.624 & 1.636 & 1.646 \\
\hline \(35 C\) & 1.473 & 1.492 & 1.511 & 1.529 & 1.546 & 1.562 & 1.577 & 1.591 & 1.603 & 1.615 & 1.625 \\
\hline 355 & 1.460 & 1.479 & 1.496 & 1.513 & 1.529 & 1.544 & 1.559 & 1.572 & 1.584 & 1.595 & 1.604 \\
\hline 36 C & 1.449 & 1.466 & 1.482 & 1.498 & 1.513 & 1.528 & 1.541 & 1.554 & 1.565 & 1.576 & 1.585 \\
\hline 365
370 & 1.437
1.427 & 1.453 & 1.469 & 1.484 & 1.498 & 1.512 & 1.525 & 1.537 & 1.548 & 1.558 & 1.567 \\
\hline 37C & 1.427 & 1.442 & 1.457 & 1.471 & 1.485 & 1.497 & 1.510 & 1.521 & 1.532 & 1.542 & 1.551 \\
\hline 375 & 1.417 & 1.431 & 1.445 & 1.459 & 1.471 & 1.484 & 1.495 & 1.506 & 1.517 & 1.526 & 1.535 \\
\hline 38 C & 1.407 & 1.421 & 1.434 & 1.447 & 1.459 & 1.471 & 1.482 & 1.493 & 1.502 & 1.511 & 1.520 \\
\hline 385 & 1.399 & 1.411 & 1.424 & 1.436 & 1.448 & 1.459 & 1.469 & 1.479 & 1.489 & 1.498 & 1.506 \\
\hline 39 C
395 & 1.390
1.382 & 1.402
1.394 & 1.414 & 1.426 & 1.437 & 1.447 & 1.457 & 1.467 & 1.476 & 1.484 & 1.492 \\
\hline 395 & 1.382 & 1.394 & 1.405 & 1.416 & 1.426 & 1.436 & 1.446 & 1.455 & 1.464 & 1.472 & 1.480 \\
\hline \(40 C\) & 1.374 & 1.385 & 1.396 & 1.407 & 1.417 & 1.426 & 1.435 & 1.444 & 1.453 & 1.460 & 1.468 \\
\hline
\end{tabular}
TABLE X. - Continued. THERMODYNAMIC PROPERTY OF METHANE - SPECIFIC-HEAT RATIO. \(i_{0}\)


TABLE X. - Concluded. THERMODYNAMIC PROPERTY OF METHANE - SPECIFIC-HEAT RATIO. \({ }^{\circ} 0\)


TABLE XI. - THERMODYNAMIC PROPERTY OF METHANE - SPEED OF SOUND, \(\alpha_{0}, \mathrm{~m} / \mathrm{sec}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Temperature， & \multicolumn{11}{|l|}{Pressure， \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 10 & 12 & 14 & 16 & 18 & 20 & 22 & 24 & 26 & 28 & 30 \\
\hline 150 & 281.2 & －－－－ & － & －－－－－－ & － & －－＊－－－ & －－－－－－ & －ーーーー－ & －ーーーー & －ーーー & \\
\hline 152 & 285．6 & －－－－－－ & －－－ & －－－－－－－ & －－－－－－ & －－－－－－ & －－－－ & & & & \\
\hline 154 & 289.7 & 279．9 & －－－ & －－－－－－ & －－－－－－ & －－－－－－ & －－－－－－ & －－－－ & & & \\
\hline 156 & 293.6 & 284．5 & －－－ & －－－－－－ & －－－－－－ & －－－－－－ & －－－－－－ & －－－－－－ & & & \\
\hline 158 & 297.4 & 288.9 & 279.4 & －－－－ & － & －－－－－－ & －－－－－－ & －－－－－－ & －－－－－－ & －－－－－－ & \\
\hline 16 C & 301.0 & 293．1 & 284．3 & 274．2 & －－－－－＊ & －－－－－－ & －－－－－－ & －－－－－－ & －－－－－－ & －－－－－－ & \\
\hline 162 & 304.5 & 297．1 & 288.9 & 279.7 & －－－－－－ & －－－－ & －－－－－－－ & －－－－－－ & －－－－－－ & －－－－－－ & \\
\hline 164 & 307.9 & 300．9 & 293.3 & 204．9 & 275．2 & －－－－－－ & －－－－－－－ & －－－－－－ & －－－－－－ & －－－－－－ & \\
\hline 166 & 311.2 & 304.6 & 297.5 & 289．7 & 280.9 & 270.8 & －－－－－－ & －－－－－ & －－－－－－ & －－－－－－ & \\
\hline 168 & 314.4 & 308．2 & 301.5 & 294．2 & 286．2 & 277．1 & －－ & －－－－－－ & －－－－－－ & －－－－－－ & －－－－－－ \\
\hline 17 C & 317.5 & 311.6 & 305.4 & 298.6 & 291．1 & 282．9 & 273.5 & －－－－－－ & －－－－－－ & －－－－－ & －－－－－－ \\
\hline 172 & 320.6 & 315.0 & 309.1 & 302．7 & 295．9 & 288.3 & 279.8 & 270．1 & － & －－－－－－ & －－－－－－ \\
\hline 174 & 323.5 & 318.2 & 312.6 & 306.7 & 300.2 & 293.3 & 285.6 & 277.0 & 267．0 & －－－－－－ & －－－－－－ \\
\hline 176 & 326.4 & 321.4 & 316.1 & 310.5 & 304.5 & 298.0 & 291.0 & 283.3 & 274.5 & 264．3 &  \\
\hline 178 & 329.2 & 324．5 & 319.4 & 314.1 & 308.5 & 302.5 & 296.0 & 289．0 & 281．2 & 272.4 & 261.9 \\
\hline 18 C & 332.0 & 327.4 & 322.7 & 317.7 & 312.4 & 306.8 & 300.8 & 294．3 & 287．3 & 279．5 & 270．6 \\
\hline 182 & 334.7 & 330.4 & 325.8 & 321.1 & 316.1 & 310.8 & 305.3 & 299.4 & 293.0 & 286．0 & 278.2 \\
\hline 184 & 337.4 & 333.2 & 328.9 & 324.4 & 319.7 & 314.8 & 309.6 & 304.1 & 298.2 & 291．9 & 285.0 \\
\hline 186 & 340.0 & 336.0 & 331.9 & 327.6 & 323.2 & 318.5 & 313.7 & 308.5 & 303.1 & 297.4 & 291.2 \\
\hline 188 & 342.6 & 338.8 & 334.8 & 330.7 & 326.5 & 322.1 & 317.6 & 312.8 & 307.8 & 302．5 & 296.9 \\
\hline 19 C & 345.1 & 341．4 & 337.7 & 333.8 & 329．8 & 325.7 & 321.4 & 316.9 & 312.2 & 307．3 & 302.2 \\
\hline Temperature， & & & & & Pr & e， \(\mathrm{N} / \mathrm{m}\) & & & & & \\
\hline & 30 & 32 & 34 & 36 & 38 & 40 & 42 & 44 & 46 & 48 & 50 \\
\hline 170 & －－－－－－ & －－－－－－ & －－－－－ & －－－－－－ & －－ & －－ & －－－－－＊ & －－－－－－ & －－－－－－ & & \\
\hline 172 & & － & －－－－－ & －－－－－－ & －－－－－－ & －－－－ & －－－－－ & －－－－－－－－ & & & \\
\hline 174 & －－－－－－ & －－－－－ & －－－－－ & －－－－－－ & － & －－ & －－－ & －－－－－－－ & －－－－－ & & \\
\hline 176 & －－－－－－ & －－－－－－ & － & － & －ー－ー－ & －－－－ & －－－－－ & －－－－－－－－ & －－－－ & －－－－－－－－－－ & \\
\hline 178 & 261．9 & －－－－－ & －－－－ & －－－－－ & －－－－ & －－－－ & －－－－ & －－－－－－－ & － & －－－－－－－－ & \\
\hline 18 C & 270.6 & 260.0 & －－－－－ & － & －＊－－－ & －－－－－－ & － & －－－－－－ & －－－－－ & & \\
\hline 182 & 278.2 & 269.4 & 258．7 & －－－－－ & －－－－－ & －－－ & －－－－－－ & －－－－－ & －－－－－ & －－－－－ & \\
\hline 184 & 285.0 & 277．4 & 268．6 & 258.2 & －－－－－－ & －－ & －－－－－－ & －－－－－－ & & －－－－ & \\
\hline 186 & 291.2 & 284．4 & 277．0 & 268.4 & 258.1 & 243.8 & － & －- －－－－ & －－－－－ & & \\
\hline 188 & 296.9 & 290．8 & 284．3 & 277．1 & 268.9 & 259.1 & 245.8 & －～－－－－ & － & －－－ & \\
\hline 19 C & 302.2 & 296．7 & 290.9 & 294.6 & 277．7 & 269．9 & 260.9 & 249．1 & －－－－ & －－－－ & \\
\hline
\end{tabular}
TABLE XI. - Continued. THERMODYNAMIC PROPERTY OF METHANE - SPEED OF SOUND, \(\alpha_{0}, \mathrm{~m} / \mathrm{sec}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature, K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 0 & 5 & 10 & 15 & 20 & 25 & 30 & 35 & 40 & 45 & 50 \\
\hline 190 & 362.0 & 353.8 & 345.1 & 335.7 & 325.7 & 314.6 & 302.2 & 287.8 & 269.9 & 240.3 & ------ \\
\hline 192 & 363.9 & 356.0 & 347.6 & 338.6 & 329.0 & 318.6 & 307.1 & 294.2 & 278.8 & 258.8 & 313.1 \\
\hline 194 & 365.8 & 358.1 & 350.0 & 341.4 & 332.3 & 322.5 & 311.8 & 300.0 & 286.5 & 270.5 & 251.9 \\
\hline 19 E & 367.6 & 360.2 & 352.4 & 344.2 & 335.5 & 326.3 & 316.3 & 305.5 & 293.4 & 279.8 & 264.5 \\
\hline 198 & 369.4 & 362.3 & 354.8 & 346.9 & 338.6 & 329.9 & 320.6 & 310.5 & 299.7 & 287.8 & 275.1 \\
\hline 200 & 371.3 & 364.3 & 357.1 & 349.6 & 341.7 & 333.4 & 324.6 & 315.3 & 305.5 & 294.9 & 284.0 \\
\hline 202 & 373.1 & 366.4 & 359.4 & 352.1 & 344.6 & 336.7 & 328.5 & 319.9 & 310.8 & 301.4 & 291.8 \\
\hline 204 & 374.9 & 368.4 & 361.7 & 354.7 & 347.5 & 340.0 & 332.2 & 324.2 & 315.9 & 307.3 & 298.8 \\
\hline 206 & 376.7 & 370.4 & 363.9 & 357. ? & 350.3 & 343.2 & 335.9 & 328.3 & 320.6 & 312.8 & 305.1 \\
\hline \(20 \varepsilon\) & 378.5 & 372.4 & 366.1 & 359.7 & 353.0 & 346.3 & 339.3 & 332.3 & 325.1 & 317.9 & 311.0 \\
\hline 210 & 380.3 & 374.3 & 368.3 & 362.1 & 355.7 & 349.3 & 342.7 & 336.1 & 329.4 & 322.7 & 316.4 \\
\hline 212 & 382.0 & 376.3 & 370.4 & 364.5 & 358.4 & 352.2 & 346.0 & 339.7 & 333.4 & 327.3 & 321.5 \\
\hline 214 & 383.8 & 378.2 & 372.5 & 366.8 & 361.0 & 355.1 & 349.2 & 343.2 & 337.4 & 331.7 & 326.3 \\
\hline 216 & 385.5 & 380.1 & 374.6 & 369.1 & 363.5 & 357.9 & 352.2 & 346.6 & 341.1 & 335.8 & 330.8
335.1 \\
\hline 218 & 387.3 & 382.0 & 376.7 & 371.4 & 366.0 & 360.6 & 355.2 & 349.9 & 344.7 & 339.8 & 335.1 \\
\hline 22 C & 389.0 & 383.9 & 378.8 & 373.6 & 368.4 & 363.3 & 358.2 & 353.1 & 348.2 & 343.6 & 339.3 \\
\hline 222 & 390.7 & 385.8 & 380.8 & 375.9 & 370.8 & 365.9 & 361.0 & 356.2 & 351.6 & 347.2 & 343.2 \\
\hline 224 & 392.4 & 387.6 & 382.8 & 378.0 & 373.2 & 368.5 & 363.8 & 359.3 & 354.9 & 350.8 & 347.0 \\
\hline 226 & 394.1 & 389.4 & 384.8 & 380.1 & 375.5 & 371.0 & 366.5 & 362.2 & 358.1 & 354.2 & 350.6 \\
\hline 228 & 395.8 & 391.3 & 386.7 & 382.3 & 377.8 & 373.5 & 369.2 & 365.1 & 361.2 & 357.5 & 354.2 \\
\hline 23 C & 397.4 & 393.1 & 388.7 & 384.4 & 380.1 & 375.9 & 371.8 & 367.9 & 364.2 & 360.7 & 357.6 \\
\hline 232 & 399.1 & 394.8 & 390.6 & 386.4 & 382.3 & 378.3 & 374.4 & 370.6 & 367.1 & 363.8 & 360.8 \\
\hline 234 & 400.8 & 396.6 & 392.5 & 388.5 & 384.5 & 380.6 & 376.9 & 373.3 & 369.9 & 366.8 & 364.0 \\
\hline 236 & 402.4 & 398.4 & 394.4 & 390.5 & 386.7 & 382.9 & 379.4 & 375.9 & 372.7 & 369.8 & 367.1 \\
\hline 238 & 404.0 & 400.1 & 396.3 & 392.5 & 388.9 & 385.2 & 381.8 & 378.5 & 375.4 & 372.6 & 370.1 \\
\hline 24 C & 405.6 & 401.9 & 398.1 & 394.5 & 390.9 & 387.5 & 384.1 & 381.0 & 378.1 & 375.4 & 373.1 \\
\hline 242 & 407.3 & 403.6 & 400.0 & 396.4 & 393.0 & 389.7 & 386.5 & 383.5 & 380.7 & 378.2 & 375.9 \\
\hline 244 & 408.9 & 405.3 & 401.8 & 398.3 & 395.0 & 391.8 & 388.8 & 385.9 & 383.3 & 380.9 & 378.7 \\
\hline 246 & 410.5 & 407.0 & 403.6 & 400.3 & 397. & 394.0 & 391.0 & 388.3 & 385.8
388.2 & 383.5
386.0 & 381.5
384.1 \\
\hline 248 & 412.0 & 408.7 & 405.3 & 402.1 & 399.0 & 396.1 & 393.3 & 390.6 & 388.2 & 386.0 & 384.1 \\
\hline 250 & 413.6 & 410.3 & 407.1 & 404.0 & 401.n & 398.2 & 395.5 & 392.9 & 390.6 & 388.6 & 386.8 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature. K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N} / \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 50 & 55 & 60 & 65 & 70 & 75 & 80 & 85 & 90 & 95 & 100 \\
\hline 19 C & --- & -- & ------ & ------ & ------ & ------ & ------ & -- & ----- & ------ & ------ \\
\hline 192 & 313.1 & 388.3 & 436.1 & 473.3 & 504.3 & 531.3 & 555.3 & 577.0 & 597.0 & 615.5 & 632.8 \\
\hline 194 & 251.9 & 336.2 & 396.6 & 440.0 & 475.0 & 504.7 & 530.7 & 554.1 & 575.4 & 615.5 & 632.8
613.2
a \\
\hline 196 & 264.5 & 282.1 & 354.1 & 405.1 & 444.6 & 477.4 & 505.8 & 530.9 & 553.6 & 574.3 & 593.5 \\
\hline 198 & 275.1 & 268.1 & 312.9 & 369.5 & 413.7 & 449.8 & 480.6 & 507.6 & 531.7 & 553.7 & 593.5
573.9 \\
\hline 200 & 284.0 & 275.2 & 287.7 & 376.1 & 383.) & 422.3 & 455.4 & 484.3 & 509.9 & & \\
\hline 202 & 291.8 & 283.5 & 283.9 & 311.5 & 355.? & 395.7 & 430.8 & 484.3
461.3 & 488.3 & 533.1
512.7 & 554.3
534.9 \\
\hline 204 & 298.8 & 291.2 & 288.2 & 300.3 & 333.0 & 371.6 & 407.3 & 439.1 & 467.3 & 592.8
492.8 & 5315.9 \\
\hline 206 & 305.1 & 298.3 & 294.3 & 298.9 & 319.4 & 351.9 & 386.2 & 418.2 & 447.2 & 473.4 & 515.9
497.4 \\
\hline 208 & 311.0 & 304.8 & 300.6 & 301.8 & 313.7 & 338.0 & 368.5 & 399.4 & 428.4 & 455.1 & 479.6 \\
\hline 210 & 316.4 & 310.7 & 306.7 & 306.3 & 313.1 & 330.0 & 355.1 & 383.4 & & & \\
\hline 212 & 321.5 & 316.3 & 312.5 & 311.3 & 315.7 & 326.7 & 346.3 & \begin{tabular}{l}
383.4 \\
370.8 \\
\hline
\end{tabular} & 411.5
397.0 & 438.1 & 462.8
447.3 \\
\hline 214 & 326.3 & 321.5 & 317.9 & 316.4 & 318.6 & 326.5 & 341.3 & 361.7 & 385.2 & 409.5 & 447.3
433.3 \\
\hline 216 & 330.8 & 326.4 & 323.0 & 321.4 & 322.6 & 328.1 & 339.2 & 355.8 & 376.2 & 398.5 & 433.3
421.1 \\
\hline 218 & 335.1 & 331.1 & 327.9 & 376.2 & 326.9 & 330.8 & 339.2 & 352.8
350 & 376.2
369.8 & 398.5
389.7 & 421.1
410.7 \\
\hline 220 & 339.3 & 335.5 & 332.5 & 330.8 & 331.0 & 334.0 & 340.5 & 351.1 & 365.6 & & \\
\hline 222 & 343.2 & 339.7 & 336.9 & 335.3 & 335.2 & 337.4 & 342.6 & 351.2 & 365.6
363.3 & 383.1
378.5 & 402.3
395.7 \\
\hline 224 & 347.0 & 343.7 & 341.1 & 339.6 & 339.4 & 341.0 & 345.6
345 & 352.2 & 363.3
362.4 & 378.5
375.5 & 395.7
390.8 \\
\hline 226 & 350.6 & 347.6 & 345.2 & 343.7 & 343.4 & 344.7 & 348.1 & 353.9 & 362.5 & 373.8 & 387.3 \\
\hline 228 & 354.2 & 351.3 & 349.0 & 347.6 & 347.2 & 348.3 & 351.1 & 356.1 & 363.4 & 373.1 & 385.1 \\
\hline 236 & 357.6 & 354.9 & 352.8 & 351.4 & 351.7 & 351.9 & 354.3 & & 364.8 & 373.3 & \\
\hline 232 & 360.8 & 358.3 & 356.3 & 355.1 & 354.7 & 355.4 & 357.4 & 361.1 & 366.6 & 373.3
374.0
375.2 & \begin{tabular}{l}
383.8 \\
383.3 \\
\hline 8.3
\end{tabular} \\
\hline 234 & 364.0 & 361.7 & 359.8 & 358.6 & 358.2 & 358.8 & 360.6 & 363.8 & 368.6 & 375.0
375.2 & 383.3
383.5 \\
\hline 236 & 367.1 & 364.9 & 363.2 & 382. & 361.6 & 362.1 & 363.7 & 366.6 & 370.9 & 376.7 & 383.5
384.1 \\
\hline 238 & 370.1 & 368.0 & 366.4 & 365.3 & 365.0 & 365.4 & 366.8 & 369.4 & 373.2 & 378.4 & 385.1 \\
\hline 246 & 373.1 & 371.1 & 369.6 & 368.6 & 368.? & 368.6 & 369.9 & & & & \\
\hline 242 & 375.9 & 374.1 & 372.6 & 371.7 & 371.4 & 371.7 & 372.9 & 375.0 & 378.2 & 388.4 & 386.4
387.9 \\
\hline 244 & 378.7 & 377.0 & 375.6 & 374.7 & 374.4 & 374.8 & 375.9 & 377.8 & 380.7 & 384.6 & 387.9
389.6 \\
\hline 246 & 381.5 & 379.8 & 378.5 & 377.7 & 377.4 & 377.7 & 378.8 & 380.6 & 383.2 & 386.8 & 391.4 \\
\hline 248 & 384.1 & 382.6 & 381.4 & 390.6 & 380.3 & 380.6 & 381.6 & 383.3 & 385.7 & 389.1 & 393.3 \\
\hline 250 & 386.8 & 385.3 & 384.1 & 383.4 & 383.2 & 383.5 & 384.4 & 386.0 & 388.3 & 391.4 & 395.3 \\
\hline
\end{tabular}



TABLE XI．－Continued．THERMODYNAMIC PROPERTY OF METHANE－SPEED OF SOUND，\(\alpha_{0}\) ． \(\mathrm{m}^{/} \mathrm{sec}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & 8 &  &  & \[
\begin{array}{lll}
0 & 0 & n \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
y & 0 & 0
\end{array}
\] &  & \begin{tabular}{l}
ヘnNot \\
 ながずか
\end{tabular} &  & 0
\(\sim\)
\(\sim\) \\
\hline & 8 & \(\min \operatorname{nin}\) がㅇ́ㅇ́ㅇ máco &  &  &  &  &  & \(\sim\)
0
N
in \\
\hline & \(\bigcirc\) &  &  &  &  &  &  & \[
\begin{aligned}
& 0 \\
& \infty \\
& \text { in }
\end{aligned}
\] \\
\hline \multirow{8}{*}{} & ㅇ & Nointr \(\dot{m} 0^{\circ} \dot{0} \dot{\circ}\) mog ongo &  & \begin{tabular}{l}
\(00 \rightarrow\) n \\
 mますがn
\end{tabular} & \[
\begin{aligned}
& \text { O~NG } \\
& \text { Nósi } \\
& \text { ót }
\end{aligned}
\] &  & －OHNO白白白 gO은 & N
\(\vdots\)
in \\
\hline & 8 &  &  &  &  &  & \begin{tabular}{l}
NeのNt \\
\(\infty \dot{-\infty} \dot{-1}\) \\
の000 \\
tiou in m
\end{tabular} & 0
0
0 \\
\hline & 앙 &  &  & \[
\begin{array}{llll}
\infty & \infty & \infty & 0 \\
0 & 0 \\
0 & \infty & 0 \\
m+5 & 0 \\
j & j & n
\end{array}
\] &  & \[
0.0
\] & \begin{tabular}{l}
Nットロー・ \\
「シャ்。 \\
a o o on \\
tominn
\end{tabular} & \(\sim\)
\(\sim\)
\(i\)
\(i n\) \\
\hline & 안 &  &  & \begin{tabular}{l}
\(\infty 0 \mathrm{cmN}\) くらがが \\

\end{tabular} &  &  &  & \(\sim\)
\(\sim\)
\(\sim\)
\(\sim\) \\
\hline & ¢ &  &  &  &  &  &  & ＋ \\
\hline & \(\bigcirc\) & \[
\begin{aligned}
& 0 \\
& 00 \sim \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] & \begin{tabular}{l}
Omvinn \\
 N～MMき
\end{tabular} &  &  & \begin{tabular}{l}
ONぱ 0 \\

\end{tabular} &  & \(\infty\)
0
0
0
0 \\
\hline & 은 &  &  &  &  &  &  & 0
0
0
\(i-1\) \\
\hline & \(\bigcirc\) &  &  &  & \[
\begin{aligned}
& n 0 \infty \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& j \\
& t
\end{aligned}
\] &  &  & 0
0
0
0 \\
\hline  & \(\Sigma\) & 以心 U w o NNNNN &  N～NNN &  &  mmmmm & U甘心
\[
\mathrm{mmmm}
\] &  & － \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Temperature, K} & \multicolumn{11}{|l|}{Pressure, \(\mathrm{N}, \mathrm{m}^{2} \times 10^{-5}\)} \\
\hline & 100 & 110 & 120 & 130 & 140 & 150 & 160 & 170 & 180 & 190 & 200 \\
\hline 250 & 395.3 & 405.8 & 419.8 & 436.6 & 455.8 & 476.3 & 497.7 & 519.2 & 540.7 & 561.8 & 582.3 \\
\hline 255 & 400.5 & 409.3 & 421.1 & 435.6 & 452.3 & 470.7 & 490.1 & 510.0 & 530.1 & 550.2 & 569.9 \\
\hline 260 & 405.8 & 413.4 & 423.6 & 436.1 & 450.8 & 467.1 & 484.7 & 503.0 & 521.8 & 540.6 & 559.4 \\
\hline 265 & 411.1 & 417.8 & 426.7 & 437.7 & 450.7 & 465.2 & 481.1 & 497.9 & 515.3 & 533.0 & 550.8 \\
\hline 270 & 416.4 & 422.4 & 430.2 & 440.0 & 451.5 & 464.6 & 479.0 & 494.4 & 510.5 & 527.0 & 543.8 \\
\hline 275 & 421.6 & 427.0 & 434.1 & 442.8 & 453.2 & 465.0 & 478.1 & 492.1 & 507.0 & 522.4 & 538.2 \\
\hline 280 & 426.7 & 431.6 & 438.1 & 446.9 & 455.4 & 466.1 & 478.0 & 491.0 & 504.7 & 519.1 & 533.8 \\
\hline 285 & 431.7 & 436.3 & 442.2 & 449.4 & 458.0 & 467.8 & 478.7 & 490.6 & 503.4 & 516.7 & 530.6 \\
\hline 290 & 436.6 & 440.9 & 446.3 & 453.0 & 460.9 & 469.9 & 480.0 & 491.0 & 502.8 & 515.3 & 528.3 \\
\hline 295 & 441.4 & 445.4 & 450.5 & 456.7 & 464.0 & 472.3 & 481.7 & 491.9 & 502.9 & 514.6 & 526.8 \\
\hline 300 & 446.0 & 449.9 & 454.7 & 460.5 & 467.3 & 475.0 & 483.7 & 493.2 & 503.5 & 514.5 & 526.0 \\
\hline 305 & 450.6 & 454.3 & 458.8 & 464.3 & 470.7 & 477.9 & 486.0 & 495.0 & 504.6 & 514.9 & 525.7 \\
\hline 31 C & 455.1 & 458.6 & 462.9 & 468.1 & 474.1 & 480.9 & 488.6 & 497.0 & 506.0 & 515.7 & 526.0 \\
\hline 315 & 459.5 & 462.9 & 467.0 & 471.9 & 477.6 & 484.1 & 491.3 & 499.2 & 507.7 & 516.9 & 526.6 \\
\hline 32 C & 463.7 & 467.0 & 471.0 & 475.7 & 481.1 & 487.3 & 494.1 & 501.6 & 509.7 & 518.4 & 527.6 \\
\hline 325 & 467.9 & 471.1 & 475.0 & 479.5 & 484.7 & 490.5 & 497.0 & 504.1 & 511.8 & 520.1 & 528.8 \\
\hline 33 C & 472.1 & 475.2 & 478.9 & 483.3 & 488.2 & 493.8 & 500.0 & 506.8 & 514.1 & 522.0 & 530.3 \\
\hline 335 & 476.1 & 479.2 & 482.8 & 487.0 & 491.8 & 497.1 & 503.1 & 509.5 & 516.5 & 524.0 & 532.0 \\
\hline 340 & 480.0 & 483.1 & 486.6 & 490.7 & 495.3 & 500.4 & 506.1 & 512.3 & 519.1 & 526.3 & 533.9 \\
\hline 345 & 483.9 & 486.9 & 490.3 & 494.3 & 498.8 & 503.8 & 509.2 & 515.2 & 521.7 & 528.6 & 535.9 \\
\hline \(35 C\) & 487.7 & 490.7 & 494.0 & 497.9 & 502.2 & 507.1 & 512.4 & 518.1 & 524.3 & 531.0 & 538.0 \\
\hline 355 & 491.5 & 494.4 & 497.7 & 501.5 & 505.7 & 510.4 & 515.5 & 521.1 & 527.1 & 533.5 & 540.3 \\
\hline 36 C & 495.2 & 498.0 & 501.3 & 505.0 & 509.1 & 513.6 & 518.6 & 524.0 & 529.8 & 536.0 & 542.6 \\
\hline 365 & 498.8 & 501.6 & 504.8 & 508.5 & 512.5 & 516.9 & 521.7 & 527.0 & 532.6 & 538.6 & 544.9 \\
\hline 370 & 502.4 & 505.1 & 508.3 & 511.9 & 515.8 & 520.2 & 524.9 & 529.9 & 535.4 & 541.2 & 547.4 \\
\hline 375 & 505.9 & 508.6 & 511.8 & 515.3 & 519.1 & 523.4 & 528.0 & 532.9 & 538.2 & 543.9 & 549.8 \\
\hline 38 C & 509.3 & 512.1 & 515.2 & 518.6 & 522.4 & 526.6 & 531.1 & 535.9 & 541.1 & 546.5 & 552.3 \\
\hline 385 & 512.7 & 515.5 & 518.5 & 521.9 & 525.7 & 529.7 & 534.1 & 538.8 & 543.9 & 549.2 & 554.9 \\
\hline 39 C & 516.1 & 518.8 & 521.8 & 525.2 & 528.9 & 532.9 & 537.2 & 541.8 & 546.7 & 551.9 & 557.4 \\
\hline 395 & 519.4 & 522.1 & 525.1 & 528.4 & 532.1 & 536.0 & 540.2 & 544.7 & 549.6 & 554.7 & 560.0 \\
\hline 40 C & 522.6 & 525.4 & 528.4 & 531.6 & 535.2 & 539.1 & 543.2 & 547.7 & 552.4 & 557.4 & 562.6 \\
\hline
\end{tabular}
TABLE XI. - Continued. THERMODYNAMIC PROPERTY OF METHANE - SPEED OF SOUND, \(\alpha_{0}\), m sec

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 8 & 000 Nm ベが～ジ Nin Nincm &  &  &  &  &  &  &  & \(\infty\)
0
0
0 \\
\hline & 8 &  &  & トロッルー \(\dot{\circ} \dot{\sim} \dot{\sim} \dot{\sim}\) inninininin &  & ＋00～m \(\infty\) Nin &  &  &  & \(\sim\)
\(\sim\)
\(\sim\)
\(\sim\)
\(\sim\) \\
\hline & \(\infty\) &  &  &  & \[
\begin{aligned}
& \text { inom } \\
& \text { ingón } \\
& \text { in in in }
\end{aligned}
\] & \[
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& \sim \\
& \sim
\end{aligned} \infty
\] &  &  &  & 0
0
\(\sim\)
\(\sim\) \\
\hline \multirow{8}{*}{} & \(\stackrel{\circ}{\sim}\) & Nmロッ 0 \(\dot{0} \dot{\sim}\) in in in in in &  & mNomin －がが ituininin &  &  &  &  &  & \(\underset{\sim}{\sim}\) \\
\hline & 8 & \begin{tabular}{l}
0 人のo \(\dot{+} \dot{\sim} \dot{\circ} \dot{m} \dot{\circ}\) \\

\end{tabular} &  & \begin{tabular}{l}
งNOMLIn ナージベ \\

\end{tabular} &  & \[
\begin{aligned}
& n \rightarrow r m \infty \\
& \text { ído } \\
& \text { ninninin }
\end{aligned}
\] &  & \[
\begin{array}{lll}
\infty & m r a n \\
0 & 0 \\
0 & 0 \\
o & 0 \\
0 & 0 \\
n & 0 & 0
\end{array}
\] & \[
\begin{array}{ll}
0 & m 0 \\
\infty & 0 \\
0 & =0 \\
0 & 0 \\
0 & 0
\end{array}
\] & \(\sim\)
0
\(\sim\)
\(\sim\) \\
\hline & 8 & \begin{tabular}{l}
Nmさt t moonn \\

\end{tabular} & \(m m \sim 00\) がげか Nmmmm以umin in & Mnnor ヘッがm 4なさ～in以uminn &  & N－HNo のペ～の orrra in munin & \(m \infty m \sim N\) Nな～N \(\infty \infty \infty\) nownin &  &  & \(m\)
0
\(\cdots\)
-1 \\
\hline & \％ &  & \[
\begin{aligned}
& c o r x \\
& \text { Nón } \\
& \text { NNM } \\
& \text { Nin in min }
\end{aligned}
\] & \begin{tabular}{l}
\(-00 m c\) \(\rightarrow \dot{\sim} \dot{\sim}\) \\

\end{tabular} &  &  &  &  &  & \(\stackrel{7}{\square}\) \\
\hline & ¢ &  &  &  &  &  & \begin{tabular}{l}
\(t \sigma m \infty N\) \(\infty 0 \mathrm{~m}\) in \(\infty\) \\

\end{tabular} &  &  & 5
\(\stackrel{\square}{9}\)
\(\stackrel{0}{6}\) \\
\hline & － &  & \begin{tabular}{l}
\(0 \infty 0 \mathrm{mo}\) \\
 NヘNMMñn
\end{tabular} & \begin{tabular}{l}
\(\operatorname{mon} 0 N\) がーロッが \\

\end{tabular} &  &  &  &  &  & \(\infty\)
\(\stackrel{-1}{\square}\)
0 \\
\hline & \(\bigcirc\) &  &  & \begin{tabular}{l}
Mmono ペ～～ロ \\

\end{tabular} & \[
\begin{aligned}
& n \rightarrow 0 \\
& 0 \\
& 0 \\
& 0 \\
& n \\
& n \\
& n
\end{aligned} n
\] & Otom MiNón inininn & \begin{tabular}{l}
－nono パがが \\

\end{tabular} &  & \begin{tabular}{l}
\(n \infty 0 \mathrm{~mm}\) \(\dot{\circ} \dot{\circ} \dot{\sim} \dot{\sim}\) \\

\end{tabular} & \(\infty\)
0
0
0
0 \\
\hline & \(\bigcirc\) &  &  & \begin{tabular}{l}
onomo \(\dot{0} \dot{0} \dot{y}\) \\

\end{tabular} & \begin{tabular}{l}
notom が～ジ \\

\end{tabular} &  & \begin{tabular}{l}
00 mN o M்க்． \\

\end{tabular} &  &  & \(\infty\)
\(\stackrel{-}{\circ}\)
0 \\
\hline  & & 号号品品品 & \[
\begin{array}{ccc}
n \\
\sim
\end{array}
\] & \[
\begin{array}{lll}
0 & 4 \\
\text { un } \\
\text { sto } \\
\text { sto }
\end{array}
\] &  & \[
\begin{aligned}
& \text { youn } \\
& \text { ond } \\
& \text { inn in in }
\end{aligned}
\] & N जn min &  ががmin & いuいいい \(\cdots \infty \infty\) unininn & U \\
\hline
\end{tabular}
table XI. - Concluded. Thermodynamic property of methane - Speed of sound, \(\alpha_{0}\). m sec

```

