X-625-72-187
 TREPRINT:
 MABA TAX $x=66140$
 \title{ AN ANALYSIS OF THE VENUS measurements

}

JOHN E. AINSWORTH
JAY R. HERMAN

DECEMBER 1972

GSFC - GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND

AN ANALSSIS

 OF THE
VENUS MEASUREMENTS

John E. Ainsworth
and

Jay R. Herman

Laboratory for Planctary Atmospheres

December 1972

Abstract
 $P(19)$, show that the Venora profiles are essentially congruent with the Mariner 5 day and night profiles, but are displated 28% higher in pressure. There is evidence that this displacement is a characteristic of the Venus atmosphere that arises from a latitude dependence of the height of the isotherms caused primarily by dynamic processes. Use of the Venera water vapor measurements with the Venera and hariner $5 \mathrm{P}(\mathrm{T})$ profiles leads to the suggestion of a variability in the atmospheric water vapor content in the region from 30 to 50 km . This result is consistent with the measurements of Venus radiation at 18.5 to 24.0 GHz by Jones, Wrathall, and Meredith (1972). The Venera 7 measurements are interpreted as presenting evidence for updrafts, down-drafts, horizontal wind layers, and non-acpuous precipitation. The previously observed band of retrograde winds which circle the equator with an average speed of $110 \mathrm{~m}, \mathrm{~s}$ is found to extend downard to the one atmosphere level at the equatorial morning terminator. The possibility of a low aftitude equator-topole cireulation with warm gats rising at the poles is inferred from the Vemera probe and Earth-based microwave interferometer measurements. Vonara 7 tomprature data used in conjunction with a compheison of ratare toporiaphy and microware interferometer measuremen's sugersts that the varition of

 region.

Introduction

Our understanding of the Venus atmosphere has been greatly increased by the data obtained from the Mariner 5 and the Venera 4, 5, 6, and 7 missions. From this data and from ground-based measurements it is possible to devise a model of atmospheric composition, temperature, and dynamic processes which exploits the consistencies in all the measurements and attempts to explain the apparent discrepancies. The purpose of this paper is to devise such a model and to examine critically the arguments of selection and rejection which lead to the choice of the key parameters. *

The analysis comprises twelve sections based on major features in the data which delineate the scope of the work. The sections are:
Page

1. The sub-adiabatic region at 40 km . ** 4
2. The uniform 28% separation of the $\mathrm{P}(\mathrm{T})$ profiles. 6
3. Water vapor content. 19
4. Winds data. 27
5. Vertical winds. 34
6. Horizontal winds. 39
7. Winds near the surface. 44
8. Temperature lajse-rate near the surface. 48

[^0]9. Precipitation. 50
10. Clouds. 55
11. Planet radius and topography. 61
12. Atmospheric structure. 72
Our starting point for the analysis is the Marincr 5 measurements obtained from Fjeldbo et al. (1971) and shown in Figures 1, 2, 3, and 13. A conspicuous feature of these measurements is that from the 7 atmosphere level at 30 km to the 0.007 atmosphere level at 73 km the altitude profiles of pressure and temperature obtained on the day-side are essentially identical to those obtained on the night-side, despite the fact that the measurement region on the sunlit side had experienced 24 Earth days of continuous solar heating while the measurement region on the night-side had continuously radiated energy to space for 24 days. Since the radiative heating and cooling time constants of the atmosphere at $73 k$ are of the order of 1 Earth day, the fact of identical temperature profiles suggests atmospheric mixing on a global seale and is eonsistent with the existence of the equatorial band of high speed horizontal winds deseribed by Boyer and Guerin (1969) and diseussed in Soction 6. In the following sections repeated use will be made of the near identity of day and night-side. data to deduce additional information about the Venus atmosiphere.
An important additional feature of the Mariner 5 measurements is the existence of roughly identical s-band mieroname attenuation profiles in the region between 30 km and risk on both the day and night sides of lemus.

According to F jeldbo et al. this feature, in association with sub-adiabatic regions in the temperature profile, suggests the presence of two different cloud systems separated in altitude by about 10 km . Our work will lend support to this interpretation.

1. The sub-adiabatic regrion at 40 km

In order to work with data which had recoived a minimum of processing, values of $P^{\prime}(\mathrm{i})$ and $T(t)$ were used to obtain the plots of $\mathrm{P}^{\prime}(\mathrm{T})$ shown in figure 4. Venera 4 data was obtained from two sources, $T(t)$ from the telemetry data presented by Mickhnevich and Sokolov (1969), and $P(t)$ from Avduevsky et al. (1968). Venera "a and 6 data were obtained from Avduevsky et al. (1970a). Tubulated Mariner 5 pressure and temperature data was obtained from Fjeldbo and was plotted using an average atmospheric mean-molecular-mass of $43.3 \mathrm{~g} / \mathrm{mole}$ corresponding to an atmosphere of $97 \% \mathrm{CO}_{2}$ and 3% Ne. This atmosphere is consistent with the Venera composition measurements described by Vinogradov et al. (1970) who obtained $97 \pm 4 \% \mathrm{CO}_{2}$, less than $2 \% \mathrm{~N}_{2}$, and up to $1.5 \% \mathrm{H}_{2} \mathrm{O}$ vapor in certain regions.

It is apparent from Figures 4 and 5 (a) that the Venera 4 and Mariner 5 $P(\mathrm{~T})$ profiles show similar sub-adiabatic temperature regions at $370 \mathrm{~K}(40 \mathrm{~km})$ and are almost identical exeept for a uniform displacement of the Venera profiles by $28^{\prime \prime}$, in pressure. The Vencra 5 and 6 profiles are also separated from Mariner b by a 28 epressure difference over much of the measurement region but they do not show the sub-adiabatie region at 370 . This absence of a subadiabatic region could be due to the following reasons: (a) the higher deseent speed of the Vencea 5 and 6 vehieles, roughly 2.5 times larger than the deseent sfeed for Venera 4 , may hate resulted in omission of detail in the data nereded to determine the precise shapes of the temperature and messure profiles in
the sub-adiabatic region, (b) the sub-adiabatio region tends to disappear from plots of $\mathrm{I}^{\prime}(\mathrm{h})$ when h is obtaned from parachute descent computations that ignore the effect of the large vertical wind gradient resulting from our analysis and shown in Figure 11 at 42 km , or (c) the sub-adiabatic region is transient. The almost identical shapes of the Venera 4 and Mariner $5 \mathrm{P}(\mathrm{T})$ profiles at three widely separated locations suggests that at the time of these measurements the sub-adiabatic region at 40 km existed in a band about the Venus equator extending from $30^{\circ} \mathrm{S}$ to $30^{\circ} \mathrm{N}$. The fact that both above and below 40 km the Venera $P(T)$ profiles remained unchanged with time suggests that the Venera 5 and 6 telemetry data should be re-examined to determine whether it is possible that the sub-adiabatic region existed 18 months after the Venera 4 and Marinor 5 measurements and may thus be cither a recurring or permanent temperature feature at the equatorial morning terminator and possibly in a band surrounding the Venus equator.
2. The uniform $28^{\prime \prime}$: spatation of the ${ }^{2}$ ('I) profiles

The good agrecment among the Vonera P('I) profiles and among the Narinor f(T) pofiles, as is evident in Figure 4 , is a measure of the permanency of the uniform 28% separation and of the precision of both sets of measurements. It is apparent from Figure 4 that at any temperature the sum of the deviations of the Venera and Mariner profiles from their respective mean profiles, even in the sub-adiabatic region, is a small fraction of the 28% separation.

We are unable to obtain an explanation of the uniform 28% separation based upon systematic error in the Venera and Mariner measurements. It is apparent from the description of the venera 4 pressure and temperature instruments given by Arduersky et al. (1969) that the separate or combined systematic erroe for these instruments is not sufficiently large or properly distributed to account for the $28 . \%$ separation. In the case of Nariner 5 , the Doppler frequency in this region of high atmospheric density is measured to better than one part in 10^{4}. The relations between Dopple frequency and xay-bending, and between raybending and refractivity, have been carefully evaluated ly lyeddo et al. (1971), by Phinney and Anderson (1968), and by Fjeldbo and lishleman (1968) to the extent that a constant error of 28 , over the range 0.7 to 7 atmospheres does not seom possible. The polarizability cooflicionts of CO$)_{2}, \mathrm{~N}_{2}$, and H_{2} () used for the consersion of refractivity $t o$ temperature and messure* have bern determined

[^1] with polariability u_{1}. Discussion of the effect of water vanor on the temperature and pressure measurements is deferred until Seetion 3.
in the pange of the Narinere is temperature and pressure measurements by fissen and Froome (1951), and more reeonty fyber and loward (1963) have verilied the CO_{2} eodficients. From the measurements made by Fssen and Froome of the refractivity of a mixture of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ vapor there is no evidence that it differs from the refractivity computed using the polarizability coefficients of the separate constituents.

We shall see in Section 3 that correction of the Mariner $5 P(\Gamma)$ profile to account for effect of the Vonus $\mathrm{H}_{2} \mathrm{O}$ vapor content given by Vinogradov et al. (1970) removes the apparent converging of the $P(T)$ profiles at 300 K and thus reinforces the assumption of the existence of a uniform 28% separation. The possibility that one or more unknown polar substances could cause the uniform 28% separation was examined. It was found that not only would large amounts be required, but the sensitivity of the polarizability of these substances to temperature would sequire mixing-ratios which vary roughly as the inverse of temperature. No reason has been found which suggests a highly specialized mixing-ratio profile of large size and unusual shape.

The remaining parameter used in determining the Mariner $5 \mathrm{P}(\mathrm{T})$ profile is $\overline{111}$, the mean-molecular-mass of the atmosphere. Reduetion of the value of the average sepatation between the Mariner $\overline{5}$ and Venera $4 \mathrm{P}(\mathrm{T})$ profiles to zero requires that $\bar{m}=41.2 \mathrm{~g} / \mathrm{mole}$, but thi: expedient encounters difliculties. For a earbon dioxide and nitrogen atmosphere the required $82.5 \% \mathrm{CO}_{2} / 17.5 \% \mathrm{~N}_{2}$ is in disagreement with both the CO_{2} and the N_{2} measurements of Vinogrador et al.

 less than the $93^{\prime \prime}$ minimum amount dotermined by Vingoradov. An atmosphere of $933^{\circ} \% \mathrm{CO}_{2} / 7 \%$ He satisties the minimum CO_{2} requifement but because of the greater escape rate of lie both during and after the formation of venus, the amount of lle remaining is considered to be much less than that of Ne. Furthermore, the measurement mothod used by Vinogradov requires that the total quantity of gases such as Ile, Ne, and Ar which would remain in the gas analy\%er chamber alter the analysis was completed camot exeeed the 4% uncertainty in the CO_{2} measurements or the $2^{\prime \prime \prime}$ uncertainty in the N_{2} measuremerit. The $3^{\circ}{ }^{\circ}$ Ne we have assumed to exist in the atmosphere appears possible, but neither the suggested 12% Ne or $7^{\circ} \%$ lle which are required for $\bar{m}: 41.2 \mathrm{~g} / \mathrm{mole}$ are consistent with Vinogrador's measurement crors.* Finally, we can see in ligure $\overline{5}(\mathrm{~b})$ that the use of $\overline{\mathrm{m}}: 4.2 \mathrm{~g} / \mathrm{mole}$ to eliminate the average separation results in a poorer fit of the Venera 4 and Mariner $5 \mathrm{P}(\mathrm{T})$ profiles than does a 28° translation in pressure with $\bar{m} \cdots 43.3 \mathrm{~g} / \mathrm{mole}$. **

If a permanent constant-pereentage pressure-separation or the equivalent .mpled temperature-separation of the $P(T)$ profiles is a characteristic of the Vonus atmosphere and not due to measurement difficultios, matehing the shapes

[^2] Wo determine the mean-motecular-mass of the Venus atmosphere from this proeedure a mean-molecular-mass is obtained wheh lies in the interval th. 1 to 44.0 g/mole.

Because of the apparent lack of any satisfactory measurement-difficulty explanation for the uniform $28: \%$ separation we are led to assume that the separation is a characteristic of the Venus atmosphere and to seareh for some physical basis for this characteristic. We are unable to xelate the $28^{\prime \prime}$, separation to the longitudes of the measurement positions. In the body-fixed coordinates of Figure 6 there is shown a W° estward longitude progression of $0^{\circ}, 28^{\circ}$, and 90° for Veneras 4 and 5 , and the Mariner 5 exit. but there is no apparent redated progression in the separation of the $P(T)$ profiles in Figure 4. If, as suggested in bection 6 the true Venera 4 entry was 20° W of the position given by Avduevsley, the Vencra entry positions in Figure 6 are now more closely bunched. The resulting increased asymmetry of the lonera positions with respect to the Maxiner 5 exit and entry positions then suggests that the Mariner $\overline{6}$ day and night ${ }^{\prime}(\mathrm{T})$ profiles should show a longitude dependence, but it is seen that they are identical.

The lact that in the solar eoordinate system of Figure 1 the Venera measurements all have about the same separation in longitude from the Mariner measurements sugerests that the eanse of the 28°, separation is more simply related to the solay eoordinate system than to the body eoordinate system. Howerer, the location of the sun mear the position of the Mariner is simal exit introfuces an
asymmotry that hinders rolating the 2sía semaration to longitude for both the solar and body-fixed coordinate systems. In Figure 17 it can be seon that the positions of the Vencra and Mariner measurements in relation to the geometrice shape of the equatorial plane and to the phanct center-ot-mass also fat toprovide an explanation for the separation of the P (T) profiles.

Both the solar coordinate system of Figure 1 and the body-fixed coordinate system of Figure 6 have the latitude progression of $3,6.15$, and 30° for Voneras $6, \overline{5}, 4$, and Mariner $\overline{5}$ respectively but in Figure 4 we see no apparent related displatement of the $\mathrm{P}(\mathrm{T})$ profiles. It is possible, of eourse, that a nonlinear relation exists. Boyex and Guerin (1969), for example, show a nonlinear variation of the speed of the equatorial wind with latitude.

Ingersoll (1970) shows that the cffect of an equatorial band of high speed hori\%ontal winds is to ereate a decrease in the height of the isobars as latitude increases. His explanation can acount for the uniformity of thepressure separation of the Alariner and Vencra ${ }^{\prime}(T)$ profiles and furnishes a non-lincar decerase of isobar height with latitude. Howerer, the decrease of isobar height Which he obtains in going from the Venera positions near the equator to the Mariner $\overline{\text { a }}$ positions at $\sim 30^{\circ}$ from the equator is an order of manitude smaller

The modification of meresoll's work or the use of any other theory (o) obtiln the desired deerease of 2. ohm in isolar height encounters two dificulties. Beranse the hariner it pressuroprofile at 30° latitude is the radius reforence
 height with latitude is reflected as a 2. 万km increase in the Vencea determined value for tate semi-minor axis of Venus. The resulting Venera semi-minor axis value of $6057 \mathrm{~km} *$ is in reasomable agreement with the value of $6055.8-1.41 \mathrm{~m}$ obtained by Ash et al. (1967), but in poor agreement with the value of (6053.7 $\pm 2.2 \mathrm{~km}$ given by Melbourne et al. (1968).** The suggestion that Vencras $\overline{5}$, 6 , and 7 may have descended in regions where the surface was $2-3 \mathrm{~km}$ higher than Melbourne's radius value is only weakly tenable since a radius of 6053.7 km leads to an average surface pressure of 77 atmospheres. Muhteman (1970) concluded that CO_{2} alone could aecount for the opacity of the atmosphere for mierowaves if the surface pressure was as high as 78.5 atmospheres. Thus a surface pressure of 77 atmospheres accounts for almost all of the measured microwate opacity and essentially excludes the adelitional atmospheric attenuation measured by fejeldbo et al. (1971) in the vicinity of 40 km and also excludes the finding of Pollack and Morrison (1970) that a source of microwave opacity in addition to carbon dioxide is required to mateh the microware emission spectrum measurementis.

The second difficulty encountered if we attempt to ohtain a 2.5 km deerease in surface radius at 30° latitude is related to the fact that, excent for a minor temperature dependence, vonus isobars must follow the gravitational shape of

[^3]the plamer. The value of $(-5+10)(10)^{-6}$ for the d_{2} wratitational eofficient wh-
 counter with Vonus indicates that the difference between the potar and equatorial radius of the average gravitational ligure of Vents is of the order of iot metors rather than the required 2. bkm or more. * Howerer, the equatorial topography shown in Figure 16 , the equatorial equipotential profile of shapiro et al. (1972), and the radate maps of Goldstein and Rumsey (1570) and Camphell et al. (1!970) suggest that there is a probability, athough somewhat smath, that the enti separation wat eatsed by the existance of : imilar local depressions of roughty 2. कkm in the equipotential surfares at the Mariner 5 entry and exit positions. The possibility that these depressions are zomal rather than local seems to be ruted out by the fact that they were not observed as hot bands by the mierowate interferometer measurements of Sinchai et al. (1972) discussed below. But local depmessione, while explaning the 2s"; separation, lead asain to a semimajor axis value of bo57km.

Finally we shatl eximine the possibility of a latitude dependence of the height of Vemusisotborms as an explation for the separaton of the P(T)

[^4]profiles. Wo assume constant isobar height and using Figure it is seen that for a wiven isobar there is an increase in temperature with latitude or, in equivalent terms, an increase in the height of the isotherms with latitude.* This increase of temperature with latitude is consistent with the enhanced polar brightness observed by means of the microwave interferometer measurements of Sinclair et al. (1972). They find that the enhanced brightness is equivalent to that obtained for a spherical planet with both poles $16 \pm 2.5 \mathrm{~K}$ hotter than the cquator and that the temperature difference between the poles is less than 3 K . ** Thus we must search for those causes for Sinclair's 'hot poles" winich may at the same time contribute to an explanation of the separation of the $P(1)$ profiles.

Possible causes for "hot poles" are:
a) A concentration of internal planet-heating-sourees at the poles leading to
a higher temperature than at the equator.

[^5]b) Atmosphoric conditions leading to greater dised or indirect solar energy deposition in the polar region than in the equatorial region.
c) An oblate geometric planct figure and a spherical griavitational planet figure which result in greater atmospheric density at the poles than at the equator.
d) Greater planet surface-emissivity in the slar regisns than at the cquator.
c) Atmospheric conditions which encourage a larger rate of cnergy loss from the planet surface at the equator than at the poles leading to a cool equator.

No support has been found for a symmetrical distribution of internal planet heating sources which wouk lead to "hot poles'; nor have we been able to discern atmospheric conditions which would lead to greater solar energy deposition at the poles than at the equator. The analysis by Anderson and Efron (1969) of the Mariner 5 encounter with Venus indicates that the difference between the polar and equatorial radius of the Veneroid, the gravitational figure of Venus, is of the order of 100 moters. A crude estimate indicates that it is necessary for the polar radius of the peomedre figure to be $2 k m$ less than the polar radius of the Veneroid in order to obtain the atmospheric denity incrase required for the measured polar brightness enhancement. A consideration of Farth topography and of the Venus loporraphy measurements of Campoll of al. (1972) discussed in Soction 11 suggests that a 2 2m depression of both poles
below the Vencroid is a platible explanation for hot poles. But this explanation does not at the same iame contribute in any way to an explanation of the separation of the $P(I)$ profiles and thus we are reluctant to aceept it. It is possible, of course, that the two effects are not directly related and require separate explanations.

According to Sinclair et al. (1972) "substantial surface differentiation, with rock at the equator grading $t o$ sand at the poles, eould produce. . " the same effect as enhanced polar surface emissivity. The possibility must be considered that the poles are cooler than the equator and are covered with a condensate Which is fine grained and/or has a higher emissivity than the nominal phanet surface material with the result of a net brightening of the poles. This explanation is consistent with both our normal expectation of cold poles and with the possibility of a cloud of condensed material near the equatorial surface. ${ }^{*}$ but in order to explain the separation of the $P(T)$ profiles it is now required that the mid-latitude region be warmer that either the equato: or the poles.

There remains the possibility of a cold equator exphanation for "hot poles'. The visible evidene for athek cloud C 2 2** which is featureless in the red and infra-red and coners the entire light side of Venus, the S-band attenmation

[^6]evidence of Fictabo at a (1971) for thick lowor colods C: and ('.1 forming a wide band about the equator, along with possible Venera 7 evidence for chouds C5 and C6 suggests that the boundary of the Venus Heliosphere is well above the phanet surface. Below this boundary the principal souree of energy is the planet interior.* If the planet internal-energr-soures are uniformly distributed, any variation in surface temperature such as a cool equator, or any Wind system which lies beneath the boundary of the Heliosphere must have associated with it some variation in the structure and/or motion of the atmosphere which affects the rate of loss of energy from the planet surface, and the origin of this variation in the structure and motion of the atmosphere must lie above the boundary of the Heliosphere. It is elear that a major part of the equatorial band of high speed retrograde horizontal winds discussed in Section 6 Lies within the Heliosphere and must be examined both as to its ability to effect a cool equator** and its suitability in explaining the temperature separation of the P(T) profiles.

Both polar heating and equatorial cooling explamations, of Sinclair's results suggest the existone of a cireulation eell with eool air descending at the equafor and warming and rising as it tratels foward the pole. It is clear that such arefi would effert an incerase in isotherm he ight with latitude as is required in (xplatation of the separation of the $\left.\mathrm{p}^{2} \mathrm{~J}\right)$ profiles. The substantal equatorial

[^7]down-draft oltained below 18 km from our analysis of the Vencra 7 data, and shown in Figure 11, suggests that such a circulation may take place in the lower regions of the atmosphere. The Venera $4,5,6$, and 7 data inclieate that this down-draft may be permanent feature* in the vicinity of the equatorial morning terminator, but as yet no evidence has been found which indicates that the downdraft occupies a band about the equator as might be expected for a general equator-to-pole circulation.

If it is assumed that escape of energy from the planet surface takes place at the equator in relation to the equatorial band of high speed winds, and at the poles due to rising eurrents, a seareh must be made for evidence for these conditions in the $8-14$ micron** 1 . R. maps of atmospheric femperature by Murray ot al. (1963) and Westphat et al. (1965). In a number of instances. particularly when the sub-carth point is near the daxk side of the morning terminator, these maps yield temperature contours which are elongated in the direction of the equatorial wind belt and show an abrupt increase in temperature gradient above $1.5-20^{\circ}$ latitude in a pegion where we suppose the wind speed deereased rapidy. ${ }^{*}$. And in one instance near the south pole there is a 2500 km diameter hot region which suggests rising air currents. In general, howerer, the maps and the ir deseriptions indicate that if coupling exists between

[^8]the temperature contours and the equatorial and equator-pole circulations it is variable and may be influeneed by position of the sun and/or by temporal variations in atmospheric motions. Goody (1965) suggests that in this region "dynamical activity must be comparable to that on Earth and perhaps stronger."

3. Water vapor content

In Figure f in the vieinity of 300 k the Venerad and i , and the Mariner is $P^{\prime}(\mathrm{I})$ profiles eonverge. A carcful study of this apmarent boundary to the separation of the $P\left({ }^{\prime} \mathrm{l}^{\prime}\right)$ profiles is important to our further unckerstanding of the cause of the separation. We shall first consider whether error in the initial pressure and temperature measurements of the Venera 4 and 5 probes can be the cause of the convergence. Then we shall examine the effect on the convergence of error in the Marinet 5 measurements.

Five sourees from which initial Venera measarement error might arise have been identified: digital system "initial error", initial gauge-responseerror: systematic gate measurement-eror, frosting of the temperature sensor, and other-gauge interposition. In a digital data system we have no means for determining whether the first measurement number returned represents the beginning, center, or enc of the measurement erocoding interval. * Thus, for Veneras 4 and 5 , the first pressure and temperature measurement numbers must in each instance be less than or equal to the true values of pessure and tomperature which, if known, could increase the rate of comergence, mantain the profiles as they are, or sustain the unifom 2s'; semation. Initial gauge-response-crror is related to the ability of the gatge sensor to adjust itself to ambient conditions in the interval between deployment and the first measure-

[^9]and an appropriate gas inlet-system we estimate a total time-consiant of roughly 0.2 see and thus the crror in the initial pressure-gauge-response is assumed to be negligible. For the Venera 4 and 5 initial deseent speeds of 10 and $30 \mathrm{~m} / \mathrm{s}$ we estimate a temperature sensor time-constant of less than 2 seconds. * Since the temperature of the stowed sensors did not differ greatly from the ambient temperature at the time of deployment, we expect that negligible initial temperature measurement crror was obtained. Our estimates of possible systematic gauge error indicate that systematic error in either the pressure or the temperature, singly, is probably not sufficient, but that the combination of a deficiency in pressure with an cxcess in temperature is sufficient to achieve the observed convergence. Frosting of the temperature sensor would reduce the neasured temperatures and thus tend to restore the uniform $28^{\circ} \%$ separation. Error due to other-gauge interposition occurs when a pressure or temperature measurement switch-point is not recorded because information from another gatuge is being transmitted at the time. This kind of error can be significant and is seen in the Venera 4 temperature data given by Mickhnevich and Sokolov (1969).

It is apmarent at this point that there are enough sourees of sufficiently large error to imply that both the agreement of the initial Venera 4 and is $P(P)$ values and the eonverence of the Mariner and Venera profiles are fortuitous. The fact that the extrapolated Vencra 4 point of Vinogradov et al. (1970) shown

[^10]in Figure 7 supports the convergence an be attributed to its having been obtained, in part, by means of an extrapolation of the initial Venera fand prossure measurements. * 13ut it is also possible that these crrors were not realized, or that they cancelled, with the result that the initial Venera $P(T)$ values are correct. We are unable to determine the validity of the initial Venera $P(T)$ values, but because of the importance of the question of convergence we shall further examine the possibility of error in the Mariner $5 \mathrm{P}(\mathrm{T})$ profiles.

In the discussion of the uniform 28% separation in Scetion 2 it is shown that the only recognizable source for substantial local error in the Mariner $5 \mathrm{P}(\mathrm{T})$ profiles is local distributions of polar substances. This fact suggests an examinution of the effect of the $\mathrm{H}_{2} \mathrm{O}$ content of the atmosphere. Shown in Figure 7 is an estimate of the combined water and iee content of the atmosphere by Vinogradov et al. (1970); the water vapor saturation curve; an extrapolated Venera $4 P(T)$ point by Vinogradov; and the Venera 4,5 , and 6 water vapor measurements deseribed by Vinogradov et al. (1968, 1970). Following the method of Corkum (1952), the estimated water and ice content were considered to behave like dielectric spheres imbeded in a homogeneous dielectric of CO_{2}, Ne, and water vapor, and an upper limit of one part in 10^{4} was obtained for the correction required for the Mariner 5 refractivity measurements. It is clear that inereasing Vinogradov's estimated water and ice content by as much a

[^11]dictor of 10^{2} would have a neghigible effect on the pressure and temperature calculated from the refractivits.

The Venera water vapor measurements shown in Figure 7 were obtatad by means of clectrolytic (c) and manometer (m) instruments. At $298 k$ Vencra 5 measurement $V 5 m$ is likely to be accurate since the manometer instrument is believed to have had a small range and a linear output. For measurements Vōe at 298 K and at 423 K both electrolytic instruments were saturated and the measurements thus set a lower-bound on the water vapor content at these temperatures at the time and place of the Venera 5 measurements. Saturation is expected within a cloud and thus the fact that Viom lies close to the saturation value in a region where a dense and continuous cloud C2* is believed to exist at all times can be interpreted as an indication of both the accuracy of V5m and the continuity in time and space of C 2 . For this reason we shall select the saturation curve to represent permanent planet wide conditions for the regior. $249.5 \mathrm{~K}(56 \mathrm{~km})$ to $285 \mathrm{~K}(52 \mathrm{~km})$. Venera 6 measurement $V 6 \mathrm{~m}$ is also believed to be accurate and is used with V6e and V5m to obtain the crude Venera 6 profile shown in Figure 7. For Venera 4 , Vte represents saturation of the electrolytic instrument and $V \cdot 4 m$ represents a water vapor content less than the minimam value measurable by the manometer instrument. Thus for an intial trial eorrection of the Mariner $5 \mathrm{P}(\mathrm{T})$ profiles we use the Venera ${ }^{\text {a }}$ water vapor profile.

- See Section 10.

The increase in refractivity due to the Vonera ${ }^{\circ}$ water vapor peofile was computed using the work of lissem and frome (1951) and was subtracted from the measured Mariner 5 refractivity. The resulting refractivity profiie was used to compute the corrected atariner $5 \mathrm{P}(\mathrm{T})$ profile given b , the dashed line in Figure 7. We find that the water vapor correction has restored the 28% separation both at the Vinogrador point and at the initial Vencra 4 and 5 measurement points. As a resulc of this additional consistency it shall be assumed that, despite our carlier firding of the possibility for significant error, the actual crror in the initial Venera 4 and 5 pressure and temperature measurements is small and that there is an initial $28^{\prime \prime}$ selparation of the Aariner and Venera $P(T)$ profiles.

At 315 K the Vencra 6 water rapor correction has resulted in a $45^{\circ} \%$ separa tion of the $\mathrm{P}(\mathrm{T})$ profiles. As an exereise we construct in Figure 7 a Mariner $\overline{\text { o }}$ water vapor profile which will everywhere result in a $28^{\circ} /$ separation of the Mariner $\overline{5}$ and Venera $\& \mathrm{P}(\mathrm{T})$ profiles. We then search for a possible justification for this procedure by examining the implications of the difference between the assumed Nariner 5 water vapor profile and the measured vener:a water rapor protile. If the proposed Mariner io water vapor prefile is correct. the Venera 4 and Mariner 5 data present a sub-adiabatie region at 302 K (49. 5 km) which, like the sub-adiabatic regionat 370 K , apparently extends from $30^{\circ} \mathrm{S}$ to $30^{\circ} \mathrm{N}$ in a band about the equator. Furthermore, the Venera $5 \mathrm{P}(\mathrm{T})$ dat:
obtained 18 months later suggests that in the vicinity of the equatorial mornime terminator the sub-adiabatic region at 302 k is either recurrent or permanent.

We now examine a number of possible implications of the difference between the Venera 6 water vapor profile and the water vapor profile proposed for the Mariner 5 entry and cxit positions:
a) The difference is due to small-scale and possibly variable conditions at the Venera 6 descent region.
b) The difference is longitude dependent. At the equatorial morning terminator the Venera 4, 5, and 6 water vapor profiles are identical and unchanging, and in the vicinity of the sub-solar and anti-solar points the Mariner 5 day and night water vapor profiles are identical and unchanging, but ditterent from the Vencra profile.
c) The difference is latitude dependent and unchanging.
d) The difference is time dependent and independent of latitude and longitude. The band of high speed retrograde hori\%ontal winds surrounding the equator' seems to have suceeeded in establishing identical day and night-side Mariner $5 \mathrm{P}(\mathrm{l})$ and water vapor profiles, despice the great separation of the measurement regions and the great difference in incident energr. This fact suggests that a difference between Venera 6 and Mariner 5 entry water vapor profiles, both of which are on the night-side, is not likely to be due to local and possibly variable small-scale conditions or to be related to longitude.

If it is assumed that. despite the band of high speed retrograde hori\%ontal winds, the Venera 4 water vapor profile differs from the Mariner 5 profile and is identical with the vencra 6 profile, the change in the water vapor profile with latitude must occur between the Yenera 4 position at $15^{\circ} \mathrm{N}$ and the Mariner 5 position at $30^{\circ} \mathrm{N}$. It is in this region that the increase in isotherm height with latitude indicated by the separation of the $P(T)$ profiles is obtained, but as yet wo are unable to explain how a sharp decrease in water vapor content at 310 K might be related to an upward displacement of the isotherms.

If it is assumed that the Venera 4 and Mariner 5 water vapor profiles are identical, then any change in the water vapor profiles with latitude must have taken place between the Venera 6 location at 6° latitude and the Venera 4 locntion at 15° latitude. It is in this region that Boycr and Guerin (1969) find a rapid decrease in the speed of the retrograde hori\%ontal winds with increasing latitude. We are left with the suggestion that the slow decrease of water vapor content with decreasing altitude shown by the Venera 6 water vapor profile may be due to the existance of higher wind speeds at low latitudes. *

Lastly we consider the possibility that at any time vertical distribution of water vapor is roughly the same within a 60° band surrounding the equator and that the difference between the Venera 6 and Nariner 5 water vapor profiles represents a change in the vertical distribution of water rapor with time.

[^12]Variations with time of the water vapor content in the vicinity of 20 to 30 km altitude may have been observed by Jones of al. (1972) in their measurements of 18.5 to 24.0 GIf Venus radiation (a) near inferior conjunction in 1964 , (b) during a period including the Venera 4 and Mariner 5 encounters with Venus in October of 1967, and (c) for a four month period starting in January of 1968. They suggest that during the Venera 4 and Mariner 5 encounters in 1967, the water vapor content in the measurement region wa: $.1 \%$ or less by volume and was essentially unobservable, but that near the 10 . inferior conjunction and also during the period from 3 months to 7 months following the Mariner 5 encounter with Venus the observations were compatible with the presence of possibly 3 times the minimum obscrvable amount of water vapor. The absence of water vapor in October of 1967 is, of eourse, consistent with the reduced water vapor content assumed for Mariner 5 in order to maintain the 28% separation of the Mariner and Vencra $P(T)$ profiles.* The subsequent measurements made by Jones et al. in 1968 indicate that a time interval of from 3 to 7 months may characterize the variability of the large-seale vertical distribution of water vapor. ** The water vapor measurements raise the interesting question of Where did the water go during the 1967 encounter and why.

[^13]
4. Winds data

Venus winds are obtained by means of the Venera 7 temperature and Doppler measurements published by Avduevsky et al. (1971a) and shown in Figure 8. Because of difficulties inherent in one-way Doppler systems and arising also from deterioration of the Venera 7 parachute, the Doppler data must be examined in detail.

The Doppler frequency depends mainly upon the rate-of-separation of the Venus probe transmitter and the Earth receiver caused by (1) the rate of separation of the centers-of-mass of Earth and Venus, (2) the rotations of Earth and Venus, and (3) the vertical and horizontal motions of the Venus probe as it descends to the surface.* That portion of the total separation-rate caused by Earth and Venus motions can be predicted accurately and has been subtracted by Avduevsky from the total separation-rate to obtain f_{D} which is thus related only to motion of the Venus probe relative to the Venus surface.

From 2.8^{m} to $13^{\text {m }}$ the Venera 7 probe descended with a reefed parachute. The abrupt change in the slope of f_{0} at 3.8^{m} in Figure 8 is found to be due primarily to the peak in the vertical wind profile shown in 44 km in Figure 11. At $13^{\text {n. }}$ the parachute reef was removed and the descent speed slowed abruptly. At $19^{\text {m }}$ there is an abrupt increase in f_{0} which, based on an exhaustive examination of conceivable causes, is believed to be due to the parting of a shroud line or to tearing of the canopy. From 19^{m} to 21^{m} there is a further increase in f_{0} which

[^14]suggests slowly occurring additional parachute deterioration. but it is interpreted later as due primaraly to a sharp rise in the horizontal wind protile shown at 19 km in Figure 11. Starting in the vicinity of 23.5^{m} there is an oscillation in f_{D} that continues with increasing period to 33.3^{m}. Based on Farth experience the regularity of the oscillation precludes the possibility that it was caused by atmospheric motions. Pendulum motion alone cannot be the cause of the oscillation because the length of the parachute lines suggested by the oscillation-periods would be far too large, and because the oscillation-periods continually increase. Further examination of the shapes of the individual oscillations suggests that the motion of the probe resembled to some extent the periodic swoop and glide obtained by an unbalanced glider. We propose that assymmetric parachute deterioration resulted in a combination of pendulum motion, and a swoop and glide motion during which considerable lift forces were obtained. Minima in the true descent speed occur at times of maximum lift and thus correspond to times of maximum horizontal speed. Figure 10 shows that the near zenith position of Earth results, at most, in a small Earth-component of horizontal speed and that, depending upon its direction, the component can either add to or subtract from the Earth-component of the descent speed.

At 33.3^{m} in Figure 8 oscillation due to swooping has diminished and there is a steady glide which developes almost constant lift. At 34^{m} there is an abrupt change in speed suggesting a second major deterioration of the parachute. However, an extrapolation of the new values of f_{D} backward in time forms an envelope
for the maxima of the preceeding oscillations. The fact that the maxima of f_{D} represent the time at which minimum lift occurred suggests that because of increasing turbulence in the flow past the parachute, or because of minor additional parachute deterioration at 34^{m}, the gliding was greatly reduced and the probe returned essentially to a standard "no-lift" descent. *

In Section 7 it is shown that there is a possibility of an eastward drift of the probe at $3.5 \mathrm{~km}\left(34^{\mathrm{m}}\right)$ above the mean surface. If this point is used as a reference, the wind profiles of Figure 11 and the shapes of the Doppler oscillations suggest the descent motions shown in Figure 9.** From Figures 9 and 10 it can be seen that under these circumstances the Earth-directed components of the swoop-and-glide metion cause a reduction in the Doppler speed.

After the Venera 7 data processing described later in this section was completed and the wind profiles shown in Figure 11 wore obtained, re-examination of the Doppler data led to several additional observations.

1. The uniformity in shape and amplitude of the oscillations between 24.1^{m} and 33.33^{m} suggests that throughout this period the plane of the swoop and glide motion remained fixed. The gradient in the estimated prograde or South-directed wind from 13 km to 4 km may have been the agent for maintaining this fixed direction.

[^15]2. In the region between 21.33^{m} and 23.55^{m} there are additional oscillations. The uniformity in amplitude of these oscillations suggests that the plane of oscillation remained fixed and that the oscillations were driven by the strong gradient in the retrograde wind between 17 and 14 km . The periods of the oscillations seem to be identical and approximately 5.4 sec , corresponding to an effective pendulum length of 6.5 meters for the Venera 7 parachute system. The amplitude of the oscillations coupled with the motions shown in Figure 9 indicates pendulum excursions of as much as 40° from the vertical. There are suggestions of oscillations in the Doppler data prior to 21.3^{m} but we are not able to determine the shapes or frequencies or to relate them to the wind profile. The amplitude of pendulum oscillation should inereas following the release of the parachute reef at 13^{m} and it is expected that the plane of the oscilations remains fixed in direction in the vicinity of strong gradients in the horizontal wind such as the gradient at 19 km . The detection of fixed plane oscillations in the Doppler data in the vicinity of 19.9^{m} to $20.6^{\mathrm{m}}(19.5 \mathrm{~km}$ to 18. 5 km) and their association with similar uscillations at 21.3^{m} to $23.5^{\mathrm{m}}(17$ to 14 km) would present additional evidence for the existence of the horizontal wind at 18 km .

An adritional Doppler data consideration fo: a one-way measurement system is the change in the frequency of the proise transmitter resulting from the temperature and shock enviromment obtained during deseent, at impact, and
after landing. Temperature induced frequency change is believed to be negligible during descent since the first evidence for drift in the Doppler frequency appears at about 5 minutes after landing. During descent the maximum shock occurred at the time when the parachute reef was removed and is believed not to have exceeded 4 g . Impact on the surface was at an estimated $13.5 \mathrm{~m} / \mathrm{s}$ with an estimated peak deceleration of as much as 1000 g if the landing was on a hard smooth surface, or 50 g if there was a 0.5 meter penetration of granular surface. The measured reduction of signal strength of a factor of 30 after landing is believed by Avduevsky et al. (1971b) to have been caused by a displacement of the antenna beam direction by 50° or more immediately after impact. This rolling displacement of the spherical descent probe suggests a hard impact with a minimum impact deceleration of 200 g or larger.

From these considerations it seems reasonable to assume that the mobe transmitter frequency remained essentially constant during the entire descent but changed by a discrete amount as a result of high shock during impact. A single correction to the transmitter frequency measured following landing should be sufficient to obtain the true Doppler frequency during descent from the measured Doppler frequency $\mathrm{f}_{0^{*}}$ * It will be implicit as we proceed that this correction, selected by trial and error, is a erucial parameter which at this stage in our knowledge of Venus influences. or is influenced by, almost every facet of our final Venus model - winds, temperature lapse-rate, clouds. and planet radius.

[^16]Our first use of the Venera 7 Doppler and temperature data was athempt to ohtain further evidence that $P(T)$ profiles remain unchanged with time at the equatorial morning-terminator region of the Venera measurements and that the sub-adiabatic regions at 16 and 40 km were permanent features of the atmosphere.* We computnd a family of Venera $7 \mathrm{P}(\mathrm{T})$ profiles by using the ideal gas law and the hydrostatic equation with (1) the temperature data, (2) a family of Doppler descent speed profiles displaced by the assumption of different initial values, (3) a mean-molecular-mass of 44.3 , and (4) a series of initial pressure values P_{o} - and with the assumption of no winds. In each instance these computed profiles showed substantial differences from the Venera 4,5 , and $6 P(T)$ profiles. The amplitudes and distribution of these differences wore such that the only satisfactory explanation was found to be the cxistence of winds. In Figure 4 the agreement between the Venera 4,5 , and $6 \mathrm{P}(\mathrm{T})$ profiles is good except in the region between 320 and 390 K where we believe there was difficulty in determining the proper Venera $\overline{5}$ and 6 profiles. Thus in order to further evaluate the Venera 7 measurements it is reasonable to start with the assumption of an unchanging structure for the lower atmosphere of Venus. As a result the original objective was abandoned. It is now assumed that the structure of the lower atmosphere in the ricinity of the Venera entries is unchanging, and an attempt is made to extract wind information from the Venera 7 data.

[^17]The procedure for obtaining winds requires that we determine (1) the true probe deseent speed, (2) the umperturbed probe deseent speed, and (3) the adjusted Doppler speed. ** As can be seen from the Doppler geometry shown in Figure 10 subtracting the true descent speed from the unperturbed deseent speed yields the vertical wind speed; and subtracting the true descent speed from the adjusted Doppler speed yields a horizontal-wind component. In this instance the Venera 7 Earth-Venus geometry limits the horizontal wind determination to East directed (prograde) or West directed (retrograde) components. ***

[^18]5. Vartical wints
first the true descent speed is detormined. The Venora d pressure and femperature values, shown in Figure 4 from 300 to 160 k , and the Venera 5 and (values form 460 bo 600 , are used with the hypsometrie formula* to obtain an average Venus temperature vis altitude profile $\mathrm{T}(\mathrm{h})$. $\mathrm{T}(\mathrm{h})$ is then used with the Vencra $7 \mathrm{~T}(\mathrm{t})$ profile to yield the true descent speed of the probe shown in Figure 10 by the heavy line from 3^{m} to 23^{m}.

From $23^{\text {nh }}$ to the surface the true descent speed must be estimated. Aecounted for in the estimation are (1) the change in the sign of the gradient in the horizontal wind as reduced from the shapes of the Doppler oscillations shown in Figure 9, (2) the wind-speed and the speed changes near the surface diseussed in Section 7, and (3) the limits placed on vertieal wind apoeds at the beginning of probe deseent. We assume that the large retrograde horizontal wind at $21^{\text {m }}$ (18 km) is replaced at $2: 3.5^{-m}(14 \mathrm{~km})$ by the small prograde or south-directed wind discussed in Sections 6 and 7 , and as a result the adjusted Doppler speed from $23.5^{\prime \prime \prime}$ to the surface must be essentially the same as the true descent speed. Howerer, it is neeossary to consider the small corrections to the adjusted boppler sped needed to remore the barth eompenents of (1) pendulum motion, (2) hori\%ontal glide speed, and (i3) estimated horizontal what speed. In
 the horizontat wind seoms to have catused large amplitude pendulum motion,

[^19]the firth component of the pendulum motion was~i $1 \mathrm{~m} / \mathrm{s}$. In the lift region from 23. $5^{\prime \prime \prime}$ to $34^{m}(14$ to $3 . \operatorname{skm}$) the aradient of the horizontad wind is estimater (o) b smaller bessibly a factor of 100 anci thus the pentulum motion component is expected to be negligible and is ignored. The horizontal ghide speed cannot be aceurately determined from the arailable data. We estimate, however, that its average Farth component was about 20% of the peak-to-peak amplitude of the oscillation of the adjusted Doppler speed. The low-speedboundary of the oscillations of the adjusted Doppler speed was raised* by the estimated amount. ** The estimated horizontal wind in the lift region is shown in Figure 10 and is developed in sections 6 and 7 . For either a prograde or a South-directed horizontal wind the maximum correction to the true descent speed is less than $0.4 \mathrm{~m} / \mathrm{s}$ and the total correction to the distance deseended is less than 0.1 km . These corrections are ignored. The preceeding corrections are small and result in a difference between the adjusted Doppler speed and the estimated true deseent speed that is everywhere less than $1 \mathrm{~m}, \mathrm{~s}$. *** The pesulting estimated true descent speed is shown in the lift region of Figure 10 b the heary line. *** In Section 11 there is a discussion of sereral of the eonsorquences catused by a major deriation from this estimated trus descent spered.

[^20]Next wo determine the unperturbed descont spered. During umerturbed deseent by parachute, the deseont specel is inversoly proportional to the splater root of the atmospheric density. Atmospherice density is obtanor through use of the ideal gas law and the hydrostatic equation with the Fenera 7 'f(t) data, the computed and estimated true deseent speed, the measured mean-molecularmass, and a Venera reference pressure-point of 6.85 atmospheres at $456.3 k$, We assume that there is no wind and negligible lift at the Venus surface, use the true deseent speed obtained at the surface as our referenee speed, and from the atmospheric density compute the unperturbed deseent speed for the entire descent. In performing this calculation it is necessary to introduce the indieated step changes in the deseent speed at $133^{\text {min }}$ where the parachute reof was remored and at $19^{\text {th }}$ where major parachute damage oceurred. The true deseont speed is subtracted from the unperturbed deseent sperd to obtain the vertical wind protile shoin in Figure 11.

In the bift region, howerex, the differene between the true deserent sperd and the unperturbed descent speed also eontains an apparent vericel wind due to lift. This "lift-wind" must be removed dither from the difference or from the true deseent speed. The dashed tine of leigure 10 shows the true desernt sued with the "lift-ivind" removed. This no-lift eurve eorresiponds roughly to the upper emporpe of the oscillations of the adjusted boppler speed, but with the dfect of the small prograde we south-direeted wind removed. The small

[^21]difference between the dashed eurve and the dotted eurve at $31^{\text {m }}$ is believed to represent the effect of unanticipated additional lift that developed during this portion of the flight contrary to our assumption that lift disappared completely during a portion of each swoop-glide cycle. In regions where there are high gradients in the vertical wind, inertia delayed the probe's response to changes in the wind. The maximum inertia-correction applied to the computed rertical wind profile was $-0.5 \mathrm{~m} / \mathrm{s}$ at 46 km .

Variations in the Venus atmosphere with time and position, error in the Venera 7 temperature data, exror in the estimation of the true deseent spead, and error in the measured mean-molecular-mass could lead to uncertainties of the magnitude of the up-draft at 22 km . With the given data, however, we eannot determine any means for removing the large gradient in the vertical wind at 15 to 20 km . The prominence of this gradient and the gradient at 41 to 44 km argues strongly that there must be some evidence for them in the Venera 4,5 , and 6 measurements. Our examination of these measurements confirms the presence of the gradients although we find only their average effects, i.e., a small net down-draft in the vicinity of 19 km and a small not up-draft in the vieinity of $44 k m$. The net down-draft at 19 km is in agreement with our wind profile but the net up-draft at 44km indicates that our down-draft should be decreased by about $1 \mathrm{~m} / \mathrm{s}$ in the region 30 to 42 km . * The Vencra 7 up-drafts at 22 km and

[^22]$45 k m$ are consistent with the evidenee diseussed in sections and 10 for pre cipiuation at 19 km and for clouds C 5 and $\mathrm{C}: 3$ in the vicinity of 22 km and 45 km .

The association of the up and down-drafts at 42 km with the equatorial subadiabatic temperature lapse-rate region at 40 km discussed in section 1 , and with the equatorial high speed retrograde horizontal wind layer shown in Figure 11, suggests that the up and down-drafts also occupy an equatorial band. The Venera 5 and σ pressure and temperature measurements and the Venera 7 data suggest that the up and down-drafts at $20 k m$ are a recurrent or permanent feature in the vicinity of the equatorial morning-terminator but as yet no evidence has been found which suggests that they occupy a banci abotit the edraior.

6. Hori\%ontal winds

The horizontal-wind-component shown in Figure 11 is obtained by subtracting the true descent speed from the adjusted Doppler speed and multiplying the difference by the cotangent of the angle of Earth from the zenith as shown in Figure 10. It is assumed, as in computing the vertical wind, that there are no winds at the surface and thus the true descent speed at the surface is used as the reference value for obtaining the adjusted Doppler speed. In the lift region, we must estimate the horizontal speed. Our estimation, shown in Figure 11, considers (1) the change in the sign of the gradient in the horizontai \because ind as dedued from the shape of the Doppler oscillations in Figure 9, (2) the wind speeds at the surface discussed in Section 7 , and (3) the dissipation near the surface of the down-draft at 15 km discussed in Section 7. The change in shape of the Doppler oscillations suggests that the down-draft should be channeled into either a prograde or pole-directed wind. The hot pole considerations in Section 2 along with the South-of-the-equator location of Venera 7 desceni suggest that the down-draft should be channeled toward the south-pole, sinee the estimated prograde or South-directed wind is small, the difference between the true descent speed and the adjusted Doppler speed is not distinguishable in Figure 10 in the resion from $23.5^{\text {t" }}$ to impact.

In regions where there are high eradients in the hori\%ontal wind, inertia delayed the probe's response to changes in the wind velocity. The maximum inertia correction applied to the computed horizontal wind profile was $-10 \mathrm{~m} / \mathrm{s}$
at 45.5km. Possible errors in the Doppler frequency-correction and in the geometry of the sub-Earth and impace points, * along with the possible errors presented in the preceeding discussion of vertical winds, could lead to hori\%ontal wind uncertainties of $5-20 \mathrm{~m} / \mathrm{s}$ over much of the measurement region, but use of the maximum permissible error still leaves the large retrograde winds at 18 km and 44 km . The possibility that a portion of the high retrograde wind at 47 km was due to horizontal motion remaining from the high speed entry was studied, but it was found that the terminal speed for the probe with parachute undeployed would have been reached prior to first Doppler measurements taken at 2.8^{m} with the parachute deployed.

The dot-dash line at the bottom of Figure 11 is the Venera 4 wind data given by kierzhanovich et al. (1969), ** and is equal to the difference between the adjusted Doppler speed*** and the unperturbed deseent speed. As shown in Figure 10 this difference is the vector sum of the vertical wind speed and the vertical projection of the Earth-directed component of the horizontal wintcomponent. **** If, as suggested by the Venera 4, 5 , and 6 temperature and pressure measurements; the vertical winds in the vicinity of the equatorial morning terminator from 15 km to 49 km altitude are a permanent feature of

* Error ill our knowledge of the coordinates of the impact position may be the greatest contribution to error in the horizontal wind-compotient. It affects both the magnitude and direction of the horizontal wind but not its shape.
* We have changed the sign of Ker hhanovich's data for reasons discussed later
* : I, this instance the adjusted Doppler speed is uncorrected for frequency drift obtained during the flight to Venus and during entry into the Venus atmoshhere.
* * The Venela 4 Doppler geometry is, however, different from Venera 7
this region; if the vertical and horizontal winds in this region are only mildly latitude dependent; and if the horizontal wind in the region is predominently zonal and retrograde, the Venera 7 vertical wind W_{7} should be able to be added to the Venera 4 difference data V_{K} to reconstruct a Venera 4 horizontal windcomponent $U_{4} \therefore\left(W_{7}, V_{K}+W_{o}\right) C$ which is roughly identical to the Venera 7 horizontal wind-component shown in Figure 11. W_{0} is the specd correction associated with the Venera 4 transmitter frequency change which occurred prior to parachute descent, and C is the Venera 4 Doppler geometry constant. For the best fit, which is shown by the upper dot-dash line in Figure 11, our value of $W_{0} \cdot 9.5 \mathrm{~m} / \mathrm{s}$ is close to Kerzhanovich's suggested limit values of $\pm 6 \mathrm{~m} / \mathrm{s}$, and our value of $\mathrm{C}=4.5$ lies within the range 2.8 to 5.2 suggested by Kerzhanovich.

Although we obtain a satisfactory matching of the Venera 4 and 7 horizontal wind profiles, two expedients are required. New coordinates are necessary for the Venera 4 entry location, and the sign of the Venera 4 difference data given by kerzhanovich must be changed. The Venera 4 entry is generally believed to have oceurred $15^{\circ} \mathrm{N}$ and $5^{\circ} \mathrm{E}$ of the sub-Earth point. The new location at $15^{\circ} \mathrm{N}$ and $15^{\circ} \mathrm{W}$ of the sub-Farth point lies, however, within the region allowed by the ambiguity and error in the method used for determining the entry location. We have been unable to find any combination of vencra 4 entry geometry and $\mathrm{E}-\mathrm{W}$ or $\mathrm{N}-\mathrm{S}$ winds which can eliminate the requirement for these changes. It can be seen from Figure 11 that if the Vencra 7 vertieal wind is
added to the Venera 4 difference data without the suggested change in sign, the high speed horizontal wind at 45 km at the Venera 4 location at $15^{\circ} \mathrm{N}$ would be essentially eliminated.

Because of the relatively large error in determining the true deseent speed of Venera 7 in the region from 45 to 47 km , the calculated Venera 7 horizontal wind-component of $125 \mathrm{~m} / \mathrm{s}$ could be in error by as much as $50 \mathrm{~m} / \mathrm{s}$. A wind speed of $125 \mathrm{~m} / \mathrm{s}$ is consistent, however, with the speed of $110 \mathrm{~m} / \mathrm{s}$ obtained by Boyer and Guerin (1969) from their analysis of the average period of the retrograde rotation of the permanent Y cloud features seen in ultra-violet light in the vicinity of $70 \mathrm{~km}(0.01 \text { atmos. })^{*}$ Boyer and Guerin's measurements are in agreement, with the Doppler measurements of cloud motion in this region by Guinot (1965) and Guinot and Feissel (1968) at 5500-5700A. Recently N. P. Carleton (1972) has measured the Doppler component of the $8710 \AA \mathrm{CO}_{2}$ line originating in the vicinity of $60 \mathrm{~km}(0.1$ atmos.) in the equatorial region and finds retrograde winds of roughly $100 \mathrm{~m} / \mathrm{s}$ at 20° to 30° East and West of the sub-solar point. The spacial distribution of the in situ Venera 4 and Venera 7 winds data. Boyer's photographic wind-measurements, Guinot and Feissel's, and Carleton's Doppler wind measurements, the congruent Mariner and Vencra $P(1)$ profiles, and the identical Mariner temperature profiles eombitu to present eridence for a wide band of high speed retrograde winds surrounding the

[^23]equator and extending from the one atmosphere level at 46 km to above the 0.004 atmosphere level at 75 km . *

Boyer and Guerin (1969) find a distinct change in the speed of the visible clouds with latitude. The average rotation period is 4 days from 0 to 5° latitude, and at 5° they obtain an almost linear increasc to a period of 6.5 days at 15°. If it is assumed that this latitude effect extends from 70 km downward to 35 km and affects both the horizontal and vertical Venera 4 winds, the profile shown by the dotted line in Figure 11 is obtained. The improved agreement in shape between the Venera 4 and Venera 7 horizontal wind profiles in the region between 20 and 40 km suggests that the latitude dependence of the wind speed may extend downward to 35 km at $15^{\circ} \mathrm{N}$.

[^24]7. Winds near the surface

The Venera 7 unperturbed deseent speed and adjusted Doppler speed profiles are found to differ slightly in the region from the surface* to 3.5 km . When the profiles are constructed to have the same speed at the suriace, it is found that at 3.5 km the adjusted Doppler speed is lower than the unperturbed descent speed by $0.4 \pm 0.2 \mathrm{~m} / \mathrm{s}$. This speed difference could be due to: (1) a prograde wind component that increases by $2 \pm 1 \mathrm{~m}$, s from the surface to 3.5 km , (2) a Southdirected wind which increases by greater than $2 \pm 1 \mathrm{~m} / \mathrm{s}$ from the surface to 3.5 km , (3) additional parachute deterioration which increases the descent speed by $0.4-0.2 \mathrm{~m} / \mathrm{s}$ as we approach the surface, (4) a smooth glide with a horizontal speed of $1 \div 0.5 \mathrm{~m} / \mathrm{s}$ directed to the East at $3.5 \mathrm{~km}\left(34^{\mathrm{m}}\right)$ and rotating to the West at $0.5 \mathrm{~km}\left(37.5^{\mathrm{m}}\right)$, (5) vertical convection which increases in speed by 0.4 $\pm 0.2 \mathrm{~m} / \mathrm{s}$ from the surface to 3.5 km , or (6) some combination of smaller individual values of the above. Since no wind gradient is evident from the Doppler data in the first 0.1 km above the surface it is assumed that the down-draft shown at 14 km in Figure 11 is the only source for either a prograde or a Southdirected hori\%ontal wind. A two dimensional analysis of the down-draft suggests an upper limit to the horizontal wind speed of from 1.5 to 2 m ; s in the vieinity of 12 km and a decrease in speed to $0.1 \mathrm{~m} / \mathrm{s}$ or less at 3.5 km . We do not obtain the required minimum values of 1 to $: 3 \mathrm{~m} / \mathrm{s}$ at 3.3 km . Aeditional parachute deterioration as a solution requires a small but fairly miform rate of
deterioration over a periodof 3.5 minutes. No basis can be found for either accepting or rejecting this solution. A crude estimate for the lift coefficient of the parachute indicates that hori\%ontal speeds of as much as $10 \mathrm{~m} / \mathrm{s}$ were caused by the gliding which occurred directly above 3.5 km and thus it is reasonable that some horizontal glide speed remained despite the transition at 3.5 km . At the required horizontal glide speed of $1 \pm 0.5 \mathrm{~m} / \mathrm{s}$ negligible lift would be dereloped and, since the frograde or South-directed wind derived from the downdrafi is greatly diminished below 3km there is a negligible wind gradient and the glicle path would be free to rotate.

There remains the possibility that there is vertical convection which increases in speed by $0.4-0.2 \mathrm{~m} / \mathrm{s}$ from the surface to 3.5 km . Avduevsky et al. (197(0)) have studied Venus vertical convection in two dimensions for a double vortex cell* in a dry viscous atmosphere with a $30 \mathrm{k} / \mathrm{km}$ lapse rate at the surface and obtain rextical convection speeds of the order of $35 \mathrm{~m} / \mathrm{s}$. Based on this study and the measured Venera 7 lapse-rate of $17.5 \mathrm{~K} / \mathrm{km} \mathrm{at} 3 \mathrm{~km}$. ** the speed difierence of $0.4 \mathrm{~m} / \mathrm{s}$ ohtatined at 3 . 5km is too low by ahost two orders of maynitude. Because there is considerable noise in the Doppler signal and the difference between the unperturbed descent speed and the adjusted boppler speed is small we are mable to obtain a sped diflerence profile which can be eompared with the lapseraie profile of fighe l:3 watermino if they are related in any way.

[^25]- See Section 8 .

The following possibilitios must be considered: (a) the lapse-1ate of $17 . \overline{\text { a }}$ K/km at 3 km is much too high; (b) the vertical convection speed change is too low; (c) Avduevsky's theoretical convection speeds are too large, or (d) some combination of the above. In Section 11, we will show that attempts to significantly lower the lapse-rate by assuming larger descent speeds below 1 bkm fail because, as shown in Figure 15, they result in obtaining an updraft at 45 km which is too large to allow the Venera probes to descend and they result in atmospheric pressures at the surface which are too high to allow the explanations of Muhleman (1968), of Fjeldbo et al. (1971), and of Pollack and Morrison (1970) for the measured microwave attenuation. Any attempt to increase our convection speed change in the region from 0.5 to $3.5 k m$ is restricted by an upper limit to the speed differenee of $1.1 \mathrm{~m} / \mathrm{s}$ olbtained by comparing the Doppler "descent" speed with the unperturbed deseent speed obtained for the extreme case of an isothermal atmosphere. This upper limit to the speed difference is still less than Arducrski's convection speeds by more than an order of magnitude. We have not attempted to extend the theoretical estimates of the vertical convection speed obtained by Arducrsky. It would be worthwhile: for example, to determine whether a major decrease in convection ipeed is achiered by extending his work to a three dimensional ease where the panet surface is corered by elosely spated double vortex cerls associated with predjutation and a low Wing cloud as suggested in hections 9 and 10 .

For oury Vonus model wo shatl assume that the horizontal wind: between 0. 5 and 3. Bkm altitude have a negligible gradient and are of the order of $0.1 \mathrm{~m} / \mathrm{s}$ as suggested by the amalysis of the down-draft at 14 tims: and that the measured 0.4 $-0.2 \mathrm{~m} / \mathrm{s}$ speed difference at 3.5 km is due to the combined effect of a small inerease in vertical convection speed and a slow side-wise probe glide covering 90 to 180° along a circular path.

According to donca and Green (1970) surface winds of $0.5 \mathrm{~m} / \mathrm{s}$ or greater at 100 meters altitude are required if dry particles are to be lifted from the Venus surface. We find no basis for predicting equatorial, mid-latitude, or polar region surface winds which are larger than the estimated $0.1 \mathrm{~m} / \mathrm{s}$ surface winds at the Venera 7 landing position. Thus, any dust in the atmosphere is expected 10 result from other souteres such as the collecting of cosmic rlust or the injection of clust by volcanic activity.

א. 'ICmperature lapse-rate near the surface
Wo now examine the Vencra 7 temperature profile in figuxe of in the region from 26^{m} to the surface. From 26^{m} to 34^{m} the change in the slope of the temperature profile is almost directly moportional to the change in the descent speed shown in Figure 10 and thus the profile holds no surprises. At 34^{nr} lift ceases and the average descent speed shows an abrupt increase of roughly $10^{\circ} \%$ The apparent attendant increase in the slope of the temperature profile should also amount to $10^{\circ} \%$, but is found to be 65% and thus indicative of a high superadiabatic lapse-rate. $13 y 37^{\text {m }}$ the temperature profile has changed from highly super-adiabatic to become almost isothormal. Following inpact the temperature decreases. In order to better understand the behavior of the temperature profile after $3 t^{m}$ we attempted a reconstruction of the data, but the reeonstruction siclded only the minor revisions suggested in Figure 12. In Figure 13 we show the resulting temperature lapse-rate profile for the region near the surface.

It is assumed that the behavior of the temperature profile near the surface was not callsed by erratic operation of the temperature measuring instrument. Typically, these instruments are simple and extremely rugged and there has been no evidence for temperature gatuge malfunction on the Vencra 4. 5,6 , and 7 probes. Neither the high super-adiabatic lapse-rate at akn nor the near isothermal lapserate at the surface could have resulted from unterounter-for increases and deereases in descent speed obtained from changes in the parachute and or from rertical winds since the Dopller data of Figure a limits
possible speed ehanges to an order-of-magnitude tess than the refuired minimum speed-change of 65%. Attempts to reduce the $17.5 \mathrm{~K} / \mathrm{km}$ maximum value of the lapse-rate at 3 km by moans of varying the curve comnecting the reconstructed data points, along with estimates as to possible dati reconstruction orror suggests that the lapse-rate maximum cannot be less than $15 \mathrm{~K} / \mathrm{km}$, or approximately twice the adiabatic value.

The lapse-rate obtained for the surface is influenced by the region of uncertainty in the reconstructed temperature data in Figure 12 and by the assumption that the lapse-rate is monotonically decreasing and positive in the region from 2 km to the surface. For these condizions we find that the lapse-rate at the surface can lie within the interval $3.5-3.5 \mathrm{k} / \mathrm{km}$. However, in view of the requirement for a small lapse-rate obtained from the combined microwave interferometer data of Sinclair et al. (1972) and the equatorial topography data of Campbell et al. (1972)* we further restrict the possible range of the surface lapse-rate and assign a value of $2.5 \pm 2.5 \mathrm{~K} / \mathrm{km}$ to the Venera 7 landing position and to a band surrounding the Venus equator.

[^26]
9. Procipitation

There appears to be a diserepancy between the Doppler and temperature profiles shown in Figure 8. At 19^{m} the change in the Doppler frequency corresponds to a factor of two increase in the dascent speed but the expected attendant increase in the slope of the tomperature protile does not occur until $21^{m}, 120$ seconds later, and at that time the slope of the temperature profile increases by slightly more than the expected factor of two. Since curve-drawing through digital data usually results in some smoothing it is expected that the true change in the slope of the temperature profile is greater than is indicated. It is expected that the true temperature profile is more nearly isothermal as we approach 21^{m} and/or steeper following 21^{m} than is indicated in Figure 8. An explanation of the temperature discrepancy should satisfy this requirement.

An examination of the response of temperature measuring instruments which are belicved to be similar to the IS-164A, Venera 4 thermometer described by Avduevsky et al. (1969) showed that the 10 K and 120 second lag indicated by the temperature profile cannot be attributed to slow instrument response. Even for the slowest inetruments the maximum uncorrected lag was less than 1.5 K and 6 seconds. After correction, or for an instrument specifically designed for descent probe use, likely values for temperature measuremont lag are less than 0.5 K and 2 seconds. Nor can speed changes resulting from parachute changes and from winds serve as an explanation since from 21^{m} to 24^{m} there is no evidence in the Doppler data of even a small fraction of
the required factor of 2 inerease in speed. The possibility that a shary decrease in the temperature-lapse-rate of the ambient atmosphere suppressed the effeet on the temperature profile of the abrupt descent speed increase at 19^{m} (20.7km) and was followed by a sharp increase in lapserate starting at $21^{m}(17.8 \mathrm{~km})$ was considered and discarded. We are unable to explain the resulting lapserate profile shown by the dot-dash line of Figure 13. A temperature change suppression due to lateral transport of the descent probe system by the horizontal wind at 18 km is found to require a gradient of $-3 \mathrm{~K} / \mathrm{km} *$ in the horizontal $\mathrm{tem}-$ perature profile. A gradient of this magnitude could be obtained by a downdraft of cool air which spreads laterally.** However, the temperature suppression begins at $20.7 \mathrm{~km}\left(19^{m}\right)$ in the presence of the up-draft shown in Figure 11 and ends at $17.8 \mathrm{~km}\left(21^{m}\right)$ well before the down-draft is fully dereloped. A downdraft explanation of temperature quirk would be more plausible if the quirk occupied the region between 14 km to 17 km where the down-draft is fully dereloped.

Finally, because of the presence of an up-clraft in this region, it is necessary to consider the possibility that the temperature quirk was caused by condensation or precipitation acting upon the temperature measurement system. *** It is not likely that condensation or precipitation on the body of the descent

- The measured temperature at $21^{1 \mathrm{n}}$ is 10° lower than that given by a descent-speed-determined extrapolation from 19 m ; and based on the horizontal wind speed profile of Figure 11 the change is obtained over a hormontal distance of approximately 3 km .
* On Eath the lateral spreading of a down-draft from a mature thuncerstorm can cause horirontal temperature gradients of greater than $11 \mathrm{~K} / \mathrm{km}$.
** Up-drafts are regarded as a necessary, but not sufficient condition ior precipitation.
vehicle caused the temperature quirls since for a system designed to thermally decouple the descent vehicle from the temperature sensor a 10 K discrepancy seems large. The temperature-sensing element itself may have become "frosted" or moist from its contact with the atmosphere. "Frost"would present the greater problem. Gravity and blowing would tend to prevent accumulation on the sensor of a layer of liquid which was thick enough to result in a 10 K crror in following the ambient air temperature, but the latent heat of melting would allow frost to establish the 10K discrepancy for short periods. Solid or liquid precipitation are both assumed to be relatively incffective; both would blow away and the latter would also drain. A non-aqueous "wet snow," it would seem, might present a substantial measurement problem since it resists both blowing and flowing and would attempt to pack the sensor and/or the sensor protector, or portions of them, with a thick relatively long lasting blankct. Furthermore a long constant-temperature melting period followed by a rapid rise in temperature fulfills the requirement stated earlier for a temperature profile Which is near isothermal prior to 21^{m} and/or steeper following 21^{m}. The data suggests that in the region of high horizontal wind shear at 19 km the parachutesuspended descent probe system experienced the same large-excursion oscillations that are indicated in the similar wind shear region at 16 km on the low edge of the wind layer*, and that at a time of maximum excursion when the

[^27]temperature moasuring instrument was displaced to point in a sidewise direcetion, it aceumulated "wet smow".

A stucly of the various ways in which "frost" or "wet snow" might explain the quirk in the temperature profite suggests that the fusion temperature of the "frost" or "wet snow" material was $556-6 \mathrm{k}$ at a pressure of 17 atmospheres. Typical candidate materials are FeCl_{3} and $1 \mathrm{lgCl}{ }_{2}$.

The quirk in the Venera 7 temperature dat: is highly visible. If "wet snow" is a continuous event in this altitude region in the vicinity of the morning terminator we would expect to find the same effect in the Venera 5 and 6 temperature data. In the reports on Vencia 5 and 6 we cannot find a similar temperature perturbation, but in the Vencral 7 report by Avduevsky et al. (1971a) individual Venera 5 and 6 points are plotted and there is a faint suggestion of the effect. Although, according to the Venera 7 data, the effect should amount to possibly 10 K , the large encoding interval of 17 K , the requirement for sharing the telemetry with a number of other instruments, or the possibility of the use of different iemperature sensor configurations may have partially or completely prevented the effect from appearing in the Venera 5 and 6 measurements. It is possible, of course, that "wet snow" at the morning terainator is intermittent. At this time it cannot be determined from the data whether "wet snow" at i 9 km would be a local veneral 7 effect or whether it would be continually associated with the down-draft at 191 mm and thus possibly an equatorial morning ferminator effect.

It is of interest to speculate in regard to the reason for the behavior of the Vencra 7 temperature measurements following landing on the Venus surface. In Figures 8 and 12 it is seen that the output of the temperature mosurement instrument either chifted stowly downward after landing or was reduced abruptly at about 38^{m}. The reduction of the strength of the radio signal from Venera 7 by a factor of 30 immediately following landing suggests a rolling displacement of the spherical descent probe of 50° or more and a landing shock of the order of 200g. Thus, it is likely that after the landing motion had ceased the temperature sensor pointed in a near horizontal direction; and in this attitude it may have been exposed to direct access by "rain" or "wet snow"*. It is possib!", of course, that lanrling shock andy or the gradual rise in the internal temperature of the probe which led finally to the probe's destruction could have been the cause of the decrease in temperature gauge output following impact.

As discussed in Section 7, Ronca and Green (1970) require a wind speed of $0.5 \mathrm{~m} / \mathrm{s}$ or greater at 100 meters altitude in order to lift particles from a dry Venus surface. If the surface is dampened by precipitation, additional cohesion of the surface material would be expected and a higher minimum wind speed would be required for lifting particles from the surface.

Recent radar measurements, described in section 10 . suggest that if precipitation existed at the surface and/or at 19 km , it was of low density, or intermittent, or local with a scale of 200 km or less.

[^28]
10. Clouds

There are indications of clouds at or more altitude regions above the Venus surface. Rea (1972) and Chamberlan and smith (1972) discuss two-layer cloud models for the visible global clouds with an optically thin upper cloud or haze and a dense lower cloud. Rea places the top of the thin upper cloud C. at $78 \mathrm{~km} *$. An analysis of the $1.05 \mu \mathrm{CO}_{2}$ band and the $0.8189 \mu \mathrm{H}_{2} \mathrm{O}$ line by Regas et al. (1972) indicates that C 1 is not uriform and confirms Potter's (1969) conclusion that it has scattering propertios resembling terrestrial cirrus clouds. Boyer and Guerin (1969) have analyzed the ultraviolet observations of C1. They conclude that it has two permanent features each having the shape of a horizontai I^{\prime} lying on the equator** and that the Y features, which are recorded on sketches made as early as 1903, have an average retrograde rotation period of 3.995 Earth days ($111.4 \mathrm{~m} / \mathrm{s}$). At times the Y fatures are covered by higher clouds and thus C 1 is not a single cloud but comprises two or more layers moving at different speeds. They find other features of duration as small as one day and obtain a spectrum of instantancous cloud speeds ranging from 68 to $229 \mathrm{~m} / \mathrm{s}$. Spectral and polarization studies of C 1 suggest that it meets the requirements of llapke's (1972) dirty hydrochloric acid cloud. In order to reconcile the high water vapor content measured in the vicinity of 50 km by the Vencras 4,5 , and 6 with the low water vapor content obtained by spectroscopic

[^29]means Chamberlain and Smith (1972) have investigated the hypothesis that a clear region may separate C1 and C2. This possibility is illustrated in Figure 13. Rea places the top of the dense lower cloud C2 at 55 km . * When the sumlit side of Venus is viewed from Earthwith a resolution of roughly 100 km C2 appears featureless in near-infrared and in red light, but in pale yellow light quasi-permanent low contrast features are seen. These features have dimensions ranging from several hundred kilometers to 4000 km or more and have been thought by Mintz (1961) to be related to a circulation pattern centered about the sub-solar point. Because of the near identity of the day and night-side Mariner 5 temperature profiles and the existence of the broad band of high speed equatorial winds in this region it is assumed that the day and night-side structure of C 2 are similar. When viewed from Earth in the 8 to 14μ thermal infrared with a resolution of roughly 400 km C 2 is found to be continuous over the entire planet but with a large-scale day-to-day variability in its temperature contours which according to Goody (1965) indicates the presence of strong dymanical activity in this region. Limb darkening at 8 to 14μ suggests that the region near the top of C 2 is bumpy and irregular or according to Samuelson (1968) that visibility within the cloud is large. For the purpose of our model we suppose that the base of C 2 is in the region shown in Figure 13 where the Venera water vapor measurement profile intersects the water vapor saturation curve.

[^30]The existence of cloud C3 at 45 km is indicated by the Mariner 5 S -band ray-path attenuation measurements of Fjeldbo et al. (1971). The fact that the attenuation is roughly identical on the day and night-sides, and the spacial relation of the attenuation profiles to the large retrograde horizontal winds measured by Veneras 4 and 7 , and to the up-drafts measured by Veneras 5, 6, and 7 suggests that C3, the retrograde horizontal wind at 46 km , and the up-draft* may be associated recurrent or permanent features in this region and occupy a band about the equator from $30^{\circ} \mathrm{S}$ to $30^{\circ} \mathrm{N}$. **

The maximum in the night-side S-band attenuation-coefficient curve at 38 km in Figure 13 along with the results of an analysis of the night-side attenuation by Rasool (1970) shown in Figure 14 suggest the existence of a night-side cloud of HgI_{2} at 38 km at the time of the Mariner 5 measurements. Since a similar maximum is not seen in the day-side attenuation coefficient profile, this cloud may be either local, or enhanced or less diffuse on the night-side. Or the maximum could be the result of unexplained flucutations in the Mariner 5 signal. The continued increase with decreasing height of both the day and nightside attenuation-cocfficient curves suggests the existence of an additional but more poorly defined cloud C 4 at 35 km and suggests that C 4 occupied a band around the equator from $30^{\circ} \mathrm{S}$ to $30^{\circ} \mathrm{N}$ at the time of measurement but no evidence has been found which either supports or precludes its recurrence or permanence.

- Up drafts are often asscciated with clouds and are regarded as a necessary, but not sufficient, condition for precipitation.
**The increase in the measured Mariner 5 attenuation coefficient shown in Figure 13 is concurrent with a decrease in the proposed Mariner 5 water vapor distribution and suggests that the material causing the S -band attenuation may absorb) water vapor.

At 22 km , the up-draft and the indication for precipitation obtained from the Venera 7 measurements suggest cloud layer C5. It must be noted that C2, C3, C4, and C5 each occur at positions where there is a maximum in the lapserate profile shown in Figure 13. If the presence of a maximum can be regarded as a condition indicating the presence of a cloud in the Venus atmosphere, the Venera 5, 6, and 7 data suggests that C5 existed in the vicinity of the morning terminator over a period of 18 months and is a recurrent or permanent feature at the equatorial morning terminator. However, the data does not preclude the possibility that C 5 also occupies a band about the equator. The shape of the Venera 7 lapse-rate curve, and the possibility of precipitation and mild vertical convection indicated by the Venera 7 measurements suggest the existence of C6 at 3 km , but the horizontal extent of C 6 is unknown.

The distribution of clouds of condensed materials above the surface of Venus is determined by the spacial and temporal patterns of large. intermediate, and small scale atmospheric temperature, circulation, precipitation, and evaporation conditions. Thus the fact that the equatorial band of high speed horizontal winds may extend downward to the region of C 3 and that an equatorial band of vertical winds may exist in this same region suggests that the eondensed material which comprises C3 may be more concentrated and/or more continuously distributed in an equatordal band at 45 km than elsewhere, but there is no information which precludes the presence of this material in varying amounts and at different altitudes over the remainder of the planet including the poles.

The vertical extent of C 3 , shown as 4 km in Figure 13, is determined by the same conditions that determine the horizontal distribution and in addition by the spacial and temporal pattern and magnitude of large, intermediate, and small scale vertical winds. On Earth the vertical extent of a single condensate, water and ice clouds, ranges from 0.1 km to 17 km or more; the height of the cloud bases ranges from 0 to 12 km or more; and there may be 2 or more cloud layers with separation of 0.5 to 12 km or more between the layers.

There are indications that there may be additional clouds of condensates. In the region from 35 to 50 km where the Venera temperature and wind data suggests two cloud layers, Rasool (1970) has examined the Mariner 5 signal attenuation and with the assistance of the work of Lewis (1969) has suggested the possible existence of the five layers shown in Figure 14.* In our processing of the Venera data a number of small features encountered in the wind and temperature-profiles suggested additional layer structure in the atmosphere. It is clear, however, that for layers C3 to C 6 and for the possible additional layers positive identification will require more definitive measurements.

In view of the ability of high frequency radar to detect precipitation in the presence of ground and sea returns, the equatorial topography measurements of Campbell et al. (1972) were examined to determine whether precipitition from C6 may have been detected in the region from 0.5 km to 4 km with the result that the measurements at $7840 \mathrm{Mll} \%$ obtaned a higher apparent surface than Was observed at 430 MII\%. The search indicated that if ${ }^{2} 6$ does exist and is of

[^31]sufficient density for detection, it is intermittent, and/or its vertical and hori\%ontal scales are less than 0.8 km and 3000 km respectively. * According to Ingalls and Shapiro (1972) a preliminary search of the Venus radar reflection measurements at 7840 MHz obtained during July of 1972 and of the measurements made near the times of previous inferior conjunctions indicates that any returns from clouds or precipitations must be 10^{-3} or less of the surface echo. This result suggests that P5 and any precipitation resulting from global cloud C2 or from equatorial bands C3 or C4 must be of low density, intermittent, and/or local with a scale of 200 km or less.

Further study must be made to determine the extent to which the cloud structure shown in Figure 13 would lend itself to the theories of Schubert and Whitchead (1969) and of Malkus (1970) in establishing the retrograde winds shown in Figure 11 at 18 km and 45 km .

[^32]11. Planet radius and topography

The Venera 7 temperature measurements and truc descent speed are used to obtain an altitude profile of temperature. This temperature profile is used with a reference pressure of 6.85 atmospheres obtained from the Venera 4,5 , and 6 measurements at 456.3 K ; with a reference planet radius of $6085.0 \mathrm{~km} \mathrm{ob}-$ tained from the average Mariner 5 pressure data for $\overline{\mathrm{m}}=43.3$;* and with the assumption of spherical isobars to obtain the pressure vs radius values given in Table 2 from 6105 km to Venera 7 impact at 6055.5 km . The Venera 5 and 6 measurements of pressure given in Table 1 are referred to the Table 2 pressure profile to obtain the radius values at which altitude measurements were made** and the altitude measurements are used with these radius values to yield the radius at the surface. It is assumed that the smallest altitude measurements give the smallest absolute error. The Venera 6 and 7 surface radius values of 6055 and 6055.5 are in good agreement with the values of 6053.7 and 6055.8 obtained by Melbourne et al. (1968) and by Ash et al. (1967).

[^33]Table 1. Venus Radius Measurements

Method	Altitude Marker	Pressure Atmos.	Radius km	Altitude km	Surface Radius km
Vencra 5	1	6.5	6085.5	43.8 (34.9)	$6041.7(6050.6)$
	2	14.8	6076.6	34.9 (25.2)	6041.7 (6051.4)
	3	27.5	6068.8	25.2 (15.9)	6043.6 (6052.9)
Venera 6	1	6.8	6085.1	27.8	9057.3
	2	19.8	6073.1	18.1	6055.0
Venera 7	Estimate the true descent speed from 15 km to the surface to obtain				6055.5
Earth-based	Ash et al. (1967)				6055.8 ± 1.4
	Melbourne et al. (1968)				6053.7 ± 2.2
	Camplsell et al. (1972)				6050.0 ± 0.5

The 11.4 km difforence in the Vencra 5 and 6 surface height measurements in Table 1 is puzzling. Lyttleton (1969) states that due to a contraction of about 250 km in radius during its formation "Venus can be expected to have formed folded and thrusted mountain systems at its surface" and with its reduced gravity "it is possible that the corresponding features might be even more impressive than their terrestrial counterparts. The. . . higher temperature and pressure on Venus seems unlikely to affect the conclusion, for the strengths of most rocks change only slightly with temperature so long as this is not near their molting point, and any slight reduction of strength for this reason would probably be
more than offset by the large ambient pressure. . . ."* The highest local feature that has been seen on the Venus surface by larth mased wadar has been described by smith et al. (1970) as about 2 km high and extending about 150 km in longitude, and was obtained with a resolution of 251 km in longitude and 200 km in latitude. The 11.4 km difference in the surface height measurements of Vencra 5 and 6 was obtained with only slightly greater resolution in longitude than Smith's measurement, but with considerably greater resolution in latitude. ** Since the Venera 5 and 6 surface height difference is 6 times the height of Smith's peak and in a region near the equator*** which has apparently been carcfully observed by Earth radar we must assume that the difference escaped radar observation because it is in the North-South direction where reduced radar resolution is obtained. In Figure 6 we see that the Venera 5 and 6 entry positions are indeed separated in a North-South direction and by about 300 km . Despite this seemingly reasonable solution to the problem there are a number of misgivings that remain: (a) because of the uncertainty in determining the entry position of Venus probes it would not be surprising if the true separation of the Venera 5 and 6 entry positions was East-West rather than North-South; (b) the supposed 300 km separation is greater than the 200 km latitude resolution of the radar observations; (c) the large elevation difference is unique; and (d) it is not directly associated with substantial adjaceni East-West differences.

[^34]Further eonsideration suggests that the 11.4km difference in the Venera 5) and 6 surface height measurements could be due to (a) surface range confusion caused by large excursion pendulunt-motion of the descent probe, (b) Venera 5 altimeter malfunctioning, or (c) Vencra 5 altimeter confusion by means of simultancous returns from the surface and from precipitation in the vicinity of 10 km and/or 20 km above the mean surface. There is evidence for large-excursion pendulum-motion of the Venera 7 descent probe, and also evidence for the possibility that the winds causing this motion represent frequent or permanent equatorial morning-terminator conditions* affecting Veneras 5, 6, and 7. But altimeter confusion due to this cause is rejected for the reason that the large decrease in signal amplitude obtained at the required excursion angles should have readily identified this difficulty. It is clear from the data of Table 1 that in several respects the Venera 5 altimeter performed well. The fact that the proper distance betwcen altitude measurements was obtained suggests that the $\Delta \mathbb{f} / \mathbb{T}$ characteristic for the fiequency modulated altimeter was stable. The fact of three altitude measurements, rather than two, as in the case of venera (6, indigates that the altimeter power output, receiver sensitivity, and antenna system were unimpaired. The only altimeter malfunction which we can suggest at this time must lie in the circuitry used for the identification of the returnsignal frequency-filter assigned to each of the pre-selected altitudes. Since the proper sequence of the pre-selected altitude returns was apparently

[^35]observed, a malfunction must consist of a filter identification-mumber shift which eaused each filter to become identified as the next higher altitude filter. In parentheses in Table 1 we present the radius values which are obtained for Venera 5 when we reduce those altitudes given by Avduevsky to the next lower value with a final altitude estimate of 15.9 km based on the average interval between the preceeding ranges. The resulting radius measurement of 6052.9 km is close to the Venera 6 and 7 measurements and the Earth-based radar measurements of Melbourne ct al. (1968) and Ash et al. (1967). Precipitation in the vicinity of 10 and 20 km above the mean surface would be properly placed for confusing the Venera 5 altimeter. But if the signal returned by precipitation at the estimated altimeter frequency of 770 MHz was of sufficient strength to have confused the altimeter, the λ^{-4} increase in signal return at 7840 MHz would have been sufficient to present a major obstacle to the Venus topography measurements of Campbell et al. (1972) unless the precipitation was local with a scale of 200 km or jess. The existence of high density local precipitation at 20 km is consistent with the Venera 7 evidence for precipitation at 19 km and hish density local precipitation at 10 km and/or 20 km is also consistant with radar nieasurements which indicated that any cloud or precipitation returns are 10^{-3} or less than the surface echo. * The greater range of the Venera 5 altimeter suggests that either its sensitivity and, or power output were greater than that of the Venera 6 altimet \cdots and thus it was more capable of detecting precipitation,

[^36]or that the surface ieneath Venera 5 was of higher reflectivity than the surface beneath Venera 6.

At this time we are unable to determine whether or not an 11.4 km difforence in planet radius values is a valid interpretation of the Venera 5 and 6 altimeter measurements. For the purpose of our model we shall assume that the interpretation is not valid and that the true values for the altitude of Venera 5 are given in parentheses in Table 1.

For our estimate of the Venus radius we assume that the smallest altitude measurements are the most accurate.* We take the average of the Venera 5, 6, and 7 radius measurements to diminish the effect of possible small-scale surface-height variations and we obtain a value of 6054.5 km in the vicinity of the Venera measurement region near the semi-minor axis of the equatorial plane, see Figure 17. This result is almost centered between the values of $6053.7 \pm 2.2 \mathrm{~km}$ and $6055.8 \pm 1.4 \mathrm{~km}$ measured by Melbourne et al. (1968) and Ash et al. (1967). We assume according to Smith et al. (1970) that $\mathrm{a}-\mathrm{b}==$ $1.1 \pm 0.4 \mathrm{~km} * *$ and obtain a semi-major axis radius of 6055.6 and a mean-equatorial-radius of 60551 km . Muhleman (1970) concluded that CO_{2} alone could account fur the total opacit, of the atmosphere for microwaves if the surface pressure was as high as ? 5 atmospheres. Thus our finding of an average surface radius of 6055 km which corresponds to a surface pressure of 71

[^37]atmospheres suggests the existence of the microwave loss at 6100 km * discovered by Fjeldbo et al. (1971) in their analysis of the Mariner 5 data and/or the source of microwave opacity suggested by Pollack and Morrison (1970) in explanation of the microwave emission spectrum measurements. **

In a more recept paper Campbell et al. (1972) obtained a smaller value, $6050 \pm 0.5 \mathrm{~km}$, for the Venus radius. Our sole means for reducing the Venera 6 and the assumed Venera 5 radius values from 6055 km and 6052.9 km , respectively, to 6050 km lies in the assumption of a 3 to 5 km decrease in the radius of the reference isobar as we go from the Mariner reference positions at $\sim 30^{\circ}$ latitude to the Venera positions nearer the equator. This solution is the opposite of our earlier requirement for an increase in isobar height as the equator is approached in order to explain the uniform 28% separation of the $P(T)$ profiles and it further complicates the variable isotherm height explanation of the separation of the $P(T)$ profiles given in Section 2.

For Venera 7 there is an additional expedient. We can also obtain a surface radius of 6050 km by means of an average increase of $6 \mathrm{~m} / \mathrm{s}$ in the estimated true descent speed in the region from 23^{m} to impact. This increase results in the large up-draft shown at 47 km in Figure 15. In the presence of this up-draft the Venera 4, 5, and 6 probes would not have descended. They would have ascended, starting at the moment of parachute opening. The Venera 7 probe would have descended to 25 km where the parachute reef was removed and

[^38]would have then ascended to 35 km and hovered. A comparison of the Venera 4 , 5, and 6 probe descent-distances oltained from the hypsometric formula with those descent distances obtained using the ballistic coefficients for the respective probe descent systems shows that the average up-draft in the region 20 to 47 km is likely to be less than $1 \mathrm{~m} / \mathrm{s}$ instead of the $30 \mathrm{~m} / \mathrm{s}$ shown in Figure 15. On the basis of the maximum permissible average-vertical-wind, together with the assumptions of an unchanging Venus lower atmosphere and spherical isobars, we find that the Venera 7 surface radius cannot be reduced to less than 6055 km .

A further difficulty associated with the use of increased descent speed to reduce the Venera 7 surface radius value is that we obtain a pressure of 100 atmospheres* at 6050 km and this high pressure presents difficulty in explaining both Muhleman's (1970) microwave loss requirement for 78.5 atmospheres of CO_{2}, and the resulting requirement of Fjeldbo et al. (1971), and of Pollack and Morrison (1970) for less than 78.5 atmospheres. We encounter this same difficulty if we assume that veneras 5, 6, and 7 all landed in locally-elevatedregions for which the atmospheric pressure is in the vicinity of the Venera 7 value of 71 atmospheres, or, if we assume that the final Vencra 6 radar altimeter measurements and corrected venera 5 altimeter measurements were both too small by 25 to $30^{\prime \prime}$.

A similar disparity between space-craft and Earth-based methods for radiue measurements exists for Mars where recent measurements have

[^39]yielded a mean-equatorial-radius of 3398.7 km by oceultation (Kliore, 1972) and $3394 \pm 2 \mathrm{~km}$ by Earth-based radar (Shapiro, 1972). No relation has as yet been established between this +4.7 km difference and the corresponding +5.0 km difference for Venus.

In summary, we obtain a mean radius of 6055 km for the geometric equatorial figure and, based on the J_{2} measurements of Anderson and Efron (1969) discussed in Section 2, we obtain this same mean radius for the polar gravitational figure.

We shall now attempt to relate the topograph cal measurements of Campbell et al. (1972), shown in Figure 16, to the microwave interferometer measurements of Sinclair et al. (1972). In addition to the enhanced polar brightness at 11.1 cm wavelength discussed in Section 2, Sinclair et al. obtained measurements indicating an East-West brightness asymmetry. From their measurements we obtain a longitude profile of the equivalent temperature difference between the East and West equatorial limbs of a spherical surface having the maximum difference of $18 \pm 8 \mathrm{~K}$ shown in Figures 1, 6, and 17.*

No support has been found for explanations of the East-West temperature difference based upon appropriate distributions of surface material emissivity, surface material particle size, or internal planet energy sources. Despite the fact that the position of the maximum East-West temperature difference as shown in Figure 1 strongly suggests a diurnal effect, this explanation is not satisfactory. From the work of Golitsyn (1970) and Gierasch et al. (1970) it is elear that the high heat capacity of a massive atmosphere reduces the diurnal

[^40]temperature variation at the surface to several degrees at the most. Lewis (1971) suggests that there may be chemical reactions which would further reduce diurnal effects at the surface of Venus. Above an altitude of 30 km , clouds, the equatorial band of high speed winds, and the reduced density of the atmosphere would combine to prevent a substantial contribution by this region to a diurnal brightness-temperature variation at 11.1 cm . * It is also unlikely that the East-West temperature difference is caused by an atmospheric density distribution at the surface which varies in relation to the displacement of the center of mass from the geometric center of the planet, since Figure 17 shows that the measured displacement is roughly symmetric with respect to the hot and cold regions. **

We are left with the possibility that Sinclair's East-West temperature difference profice results from the combined effect of changes in surface temperature and atmospheric density associated with the surface-height profile of Campbell et al. As an exereise, we assume that the Venus surface is isothermal, perform a crude conversion of Sinclair's measured East-West limb temperaturedifferences to obtain equivalent atmospheric denisty-differences, and then convert the density-differences to obtain the equivalent suriace-height-differences between the East and West limbs. The surface-height-differences are divided

[^41]by two and plotted with alterntiting signs at 180° intervals are shown as circles and crosses along the height reference line at the bottom of Figure 16. The longitude of each circle is that of the West limb at the time of measurement. The longitude of each cross is that of the East limb. The solid curve at the bottom of Figure 16 is the profile of the surface-height-difference between the East and West limb as obtained from Campbell's height profile and is plotted with respect to the longitude of the West limb. A proper comparison of Campbell's surface-height-difference profile and the converted temperaturedifference measurements of Sinclair must take into account that the resolution of Sinclair's measurements is considerably less than that of Campbell's. We compensate for this difference in resolution by degrading the resolution of Campbell's surface-height-difference profile in a manner crudely consistent with the resolution of Sinclair's measurements and obtain the dot-dash line in Figure 16. The good agreement between the dot-dash curve and Sinclair's converted temperature-difference data suggests that Sinclair's East-West temperature assymetry results primarily from atmospheric density variations determined by the Venus topography and that in a band about the equator the variation of planet surface temperature with height is small. Estimates which take into account the crudeness of our methods suggest an upper limit to the surface lapse rate of $5 \mathrm{~K} / \mathrm{km}$ with more reasonable values ranging from $2.5 \mathrm{~K} / \mathrm{km}$ to isothermal.

12. Atmospheric structure

The atmospheric structure given in Table 2 is derived from the Marincr 5 and the Venera 4, 5, 6, and 7 measurements and is intended to represent conditions in the equatorial region. Below 6056 km we use the lapse-rate of $2.5 \mathrm{~K} / \mathrm{km}$ obtained from the comparison of the inferometer measurements of Sinclair et al. with the topography measurements of Campbell et al. From 6056 to 6104 km the Venera data is used with radius values based on the Mariner 5 pressure vs radius measurements and the assumption of spherical isobars.*

From 6104 to 6130 km the average Mariner 5 temperature profile is transformed to obtain a temperature profile which is representative of the equatorial location of the Venera probes. First we correct the Mariner 5 data to account for the water vapor content given by the dashed saturation-line and the dotter? Mariner 5 profile shown in Figure 7. Then an altitude profile of the temperatureclifference of the $\mathrm{P}(\mathrm{T})$ profiles shown in Figure 4 is constructed and this temperature-difference profile is extrapolated to 6130 km where it vanishes. The extrapolated temperature-difference profile is then used to transform the Mariner 5 temperature profile.

At 6140 km we select a Mariner temperature data integration constant $T_{0}-159 \mathrm{~K}$ which results in a temperature minimum of 153 K at 6137 km . The 153 K minimum temperature is derived from the $1_{2} \mathrm{O}$ nixing ratio of 10^{-6}

In Sections 3 and 11 we have seen that the deviation of the planet from a sphere is less than 0.1 km for the average polar gravitational figure and 0.6 km for the average geometric equatorial figure.

Table 2. Atmospheric structure derived from the Mariner 5 and Venera 4, 5,6 , and 7 measurements with $\overline{\mathrm{m}}=43.3 \mathrm{~g} / \mathrm{mole}$

Height km	Radius km	Temp. ${ }^{\circ} \mathrm{K}$	Pressure Atmos.		Density $\mathrm{g} / \mathrm{cm}^{3}$	Density $\mathrm{n} / \mathrm{cm}^{3}$		Gravity $\mathrm{cm} / \mathrm{s}^{2}$
-12.0	6043.0	778.0	1.45 E	02	9.83E-02	1. 37 E	21	988.5
-11.0	5044.0	775.5	1.39 F	02	9.43F-02	1.31 F	21	ห88. 2
-10.0	5045.0	773.0	1.31 E	02	8.91F-C2	1.24E	21	987.9
-9.0	6046.0	77C.5	$1.23 E$	02	9.42E-0?	$1.17 E$	21	887.6
-8.0	5047.0	768.	$1.16 F$	02	7.9GF-C2	$1.11 E$	2.1	RR7.3
-7.0	6048.0	765.5	1.09 F	02	$7.525-02$	1.04E	21	887.0
-6.0	6049.0	763.0	1.03 E	02	7.10E-02	9.87E	20	8R6.8
-5.0	6050.0	760.5	$9.66 E$	01	6.70E-02	9.32E	20	A96. 5
-4.0	6051.0	$758 . \mathrm{C}$	$9.09 E$	01	$6.335-02$	8.80 E	20	886.2
-3.0	6052.0	755.5	8.55E	01	5.97E-0?	R. 30 E	20	985.9
-2.0	5053.0	753.0	R.04E	01	5.64E-02	7.34 F	20	985.6
-1.0	6054.0	750.5	$7.56 E$	01	5.32F-02	$7.39 E$	20	895.3
0.0	6055.0	748.0	7.11 E	01	5.02F-02	$6.97 E$	20	885.0
1.0	5056.0	745.5	6.68 E	01	4.73E-02	6.58 E	20	884.7
2.0	6057.0	736.5	$6.29 E$	01	$4.50 E-C 2$	6.26 E	20	884.4
3.0	6058.0	720.0	$5.90 E$	01	4.32E-02	6.01F	20	884.1
4.0	5059.0	705.0	5.53E	01	4.14E-0?	5.75E	20	8R3.8
5.0	5060.0	694.6	5.17 F	01	3.93E-02	5.47 E	20	883.5
6.0	6061.0	685.0	$4.84 E$	01	3.73F-02	5.19E	20	883.2
7.0	5062.0	675.0	4.52 E	01	3.54E-02	$4.92 F$	20	883.0
8.0	6063.0	664.2	4.22E	01	3.36F-02	4.67F	20	882.7
9.0	5064.0	653.8	3.94E	01	3.19E-02	4.42 E	20	त82.4
10.0	6065.0	643.3	3.67 E	01	3.01E-02	4.19F.	20	88?.1
11.0	6066.0	632.7	3.41 E	01	2.85E-02	3.96E	20	8ヶ1.8
12.0	5067.0	622.4	3.17 E	01	$2.69 E-02$	3.74E	20	881.5
13.0	5053.0	612.4	$2.95 E$	01	2.54F-02	3.53F	20	881.2
14.0	6069.0	6,03.0	2.73E	01	2.39F-02	3. 225	20	880.9
15.0	5070.0	593.7	2.53 E	01	2.25E-C2	3.13F	20	880.6
16.0	6071.0	586.5	$2.34 E$	01	2.11E-02	$2.93 E$	20	880. 3
17.0	6072.0	579.0	$2.16 E$	01	$1.97 E-C 2$	2.74F	20	880.1
18.0	5073.0	571.0	2.005	01	1.85E-c2	2.57E	20	879.8
19.0	5074.0	563.?	1.84 E	01	1.73E-02	2.40E	20	879.5
20.0	5075.0	554.5	1.70F	01	1.62E-02	2,25E	20	879.2
21.0	5076.0	54 ¢.8	1.55E	01	$1.51 \varepsilon-02$	2.10E	20	878.0
22.0	5077.0	53 c.?	1.43 E	01	$1.41 F-02$	$1.96 E$	20	878.6
23.0	5078.0	526.3	1.32 E	01	$1.32 E-02$	1. 346	20	878.7
24.0	5079.0	515.7	1.?1E	01	1.2RE-C?	1.72F	20	878.0
25.0	5080.0	505.7	$1.10 E$	01	$1.15 E-C 2$	1. KOF	20	977.7
26.0	5081.0	495.3	$1.01 E$	01	1.07E-02	1.49 E	20	877.4
27.0	508?.C	435.7	9.16F	00	9.96F-C3	1.38E	20	977.2
28.C	6083.0	476.0	9.33 E	00	9. $24 \mathrm{LE}-03$	1. 29 E	20	875.9
29.0	5,084.0	4EF. 0	7.5GE	00	H.57F-0.3	1.19 F	2.	876.6
30.0	5095.0	4Sf.?	6.95 E	10	$7.93 \mathrm{E}-\mathrm{C} 3$	1.10 E	20	975.3
31.0	5086.0	447 P ?	6.19F	00	7. $31 E-03$	1.02F	20	875.0
32.0	60¢7.c	438.0	5. ¢ AF $^{\text {c }}$	00	6.73E-07	9.36F	19	Q75.7
33.0	5088.0	429.3	5.03 F	00	6.1 RE-03	8. 595	17	875.4
34.0	5099.0	420.5	4.52 E	00	$5.67 E-C 3$	7.98F	19	975.1
35.0	no 0 C. 0	$41 C .3$	4.05 F	00	$5.215-C 3$	$7.24 F$	19	974.9

${ }^{*} g_{0}-885.0 \mathrm{~cm} \mathrm{sec}^{-2}$ at $R_{0}=6055 \mathrm{~km}$ according to Lyttleton (1969)

Table 2 (continued)

Height km	Radius km	$\text { Temp. }_{o_{K}}$	Pressure Atmos.	Density $\mathrm{g} / \mathrm{cm}^{3}$	Density $\mathrm{n} / \mathrm{cm}^{3}$		Gravity $\mathrm{cm} / \mathrm{s}^{2}$
36.0	5091.0	401.3	3.62F 00	4.75E-03	6.617	19	974.6
37.0	5092.0	392.5	3.2.2E 00	4.34E-0.3	$6.03 F$	19	874.3
33.0	6093.0	384.5	2.97F 00	3.94E-03	$5.47 F$	19	874.0
39.0	5094.0	377.5	2.54E 00	3.55F-0.3	4.94F	19	873.7
40.0	6095.0	こ71.0	2. 25 F 00	3.21E-03	$4.45 E$	19	873.4
41.0	6096.0	365.3	2.99F 00	2.88E-C3	4.00 E	19	873.1
42.7	5097.0	358.3	$1.76 E 00$	2.59E-03	3. 59F	19	872.9
43.0	5098.0	350.0	1.54 E 60	?. $33 E-C 3$	3. 24 E	19	872.5
44.0	5099.0	34?.5	1.35 E 20	2.00F-0.3	2.90E	19	872.3
45.0	5100.0	334.1	1.18500	$1.87 \mathrm{~F}-03$	2. GOE	19	972.0
46.0	6101.0	326.0	1.03E OC	$1.675-03$	2.32E	19	871.7
47.0	5102.0	32 Ac	8.96F-01	$1.49 F-0.3$	2.07E	10	E71.4
48.0	6103.0	315.7	7.75E-01	1.32F-C3	$1.83 E$	19	- T1.1
49.0	5104.0	304.5	$6.69 E-01$	1.16F-03	1.61%	19	870.8
50.0	6105.0	299.0	5.75E-D1	1.02E-03	1.41 F	19	870.5
51.0	6106.0	293.0	4.94E-01	8.89F-C4	1.24E	19	870.3
52.0	$6107 . \mathrm{C}$	28.5	$4.22 E-C 1$	7.825-04	1.03F	19	870.0
53.0	6108.0	275.0	-. $598-01$	6.R9E-04	9.58 E	18	869.7
54.0	5109.0	$26 \in .5$	3.04F-01	6.01F-C4	8. 36 E	18	869.4
55.0	6110.0	257.0	2.55E-01	5.24E-C4	7. 29 E	19	869.1
56.0	5111.0	249.5	2.13F-C1	4.52E-04	6. 2 RF	18	868.9
57.0	6112.0	247.0	1.78E-01	3.8c5-04	5.28E	18	868.6
59.0	6113.1	24.3.0	1.4RE-01	$3.21=-04$	4.47E	18	868.3
59.0	5114.0	241.5	$1.23 \mathrm{~F}-01$	2.685-04	3.73 F	18	868.0
60.0	6115.0	237.5	2.02E-01	2.26E-04	3.14E	18	867.7
61.0	5116.0	235.0	R.3OE-02	1. 38F-04	2.62E	19	867.4
62.0	6117.0	232.5	6.91E-02	1.575-C4	2.13E	18	867.2
63.0	511800	229.7	$5.59 F-02$	$1.31 \mathrm{E}-04$	1. 825	19	866.9
54.0	5119.0	224.5	4.66E-0?	1.10E-04	1.52E	19	P66.6
65.0	5120.0	220.0	3. AOF-C?	9.13E- 55	1. 278	19	RE6. 3
56.0	5121.0	215.5	3.09E-02	7.54E-05	1.05E	18	866.0
67.0	6122.0	212.5	2.51E-02	6.23E-05	$8.65 F$	17	855.7
68.0	5123.0	208. 5	2.02E-02	5.12F-C5	7.12F	17	865.5
69.0	$5124 . \mathrm{C}$	205.0	1.6.3E- 02	4.19E-05	5. 82E	17	965.2
70.0	5125.0	200.5	$1.30 \mathrm{E}-02$	$3.43 E-05$	4.70F.	17	964.9
71.0	6126.0	196.C	$1.04 E-02$	2.79F-05	3. ABE	17	864.6
72.0	5127.0	191.0	9.22E-03	2.27E-05	3.15\%	17	854.3
73.0	5128.0	187.0	6.47E-0.3	1.83F-05	?. $54 E$	17	864.0
74.0	6129.0	193.C	5.08E-03	$1.45 \equiv-C 5$	2.045	17	863.8
75.0	6130.0	$18 \mathrm{C}$.	$3.96 F-03$	1.15E-05	1.61 F	17	ع63.5
75.0	$5131 . \mathrm{C}$	179.0	3.0AF-03	7.1CF-06	1.265	17	963.2
77.0	$6132 . C$	177.0	2.40E-C3	7.155-C6	9.93F.	16	86
78.0	f133.0	175.0	1.965-03	5.00F-06	7.78E	16	962:6
77.0	6134.0	172.0	$1.43 E-03$	4.40E-05	$6.11 E$	15	962.4
80.0	5135.0	162.0	$1.09 E-0.3$	3.57F-CK	4. Q6E	16	8ち2.1
81.0	613E.0	155.5	3.24E-04	2. $\mathrm{ACE}-\mathrm{C} 5$	3. 99F	15	96
82.0	6137.0	153.0	6.165-04	2.13F-06	2. 365	16	8 F
8?, 0	f, 138.0	154.0	$4.60 E-04$	1.5AE-O6	2.19F	16	A61
84.0	5139.0	156.5	3.45F-04	1.1AE-CE	1.62F	16	860.9
R5. 1	5140.0	159.5	2.59E-04	a.R3F-C7	1.20F	16	REO.7

obtained for this region be kuiper et al. (1969) along with the HCl content determined by Connes et al. (1967).

Use of Table 2 should b: limited to a band about the equator extending from $20^{\circ} \mathrm{S}$ to $20^{\circ} \mathrm{N}$ and to an altitude of 75 km . At high latitudes the temperature profile is not sufficiently known, and above 75 km we find evidence in the Mariner 5 measurements for a possible day-night variability in the temperature profile.

13. Summary

(a) There is evidence that at the time of the Mariner 5 and Venera 4 measurements a prominent sub-adiabatic region existed at 370 K (40 km) and extended around the equator from $30^{\circ} \mathrm{S}$ to $30^{\circ} \mathrm{N}$. Water vapor considerations suggest that there may have been a similar sub-adiabatic band at 302 K (49.5 km) during this sarine period.
(b) We conclude that the uniform 28% separation of the $\mathrm{P}(\mathrm{T})$ profiles is a churacteristic of the Venus atmosphere. It was anticipated that this effectcould be explained by a variation in isobar height but we have been led by Sinclair's 'hot poles", by the radar measurements of the equatorial radius, and by the Mariner 5 measurements of the average polar gravitational shape to interpret the effect as a latitude dependence of the height of the isotherms in the region below 6130 km .
(c) The data suggests that little of the incident solar energy reaches the Venus surface directly or by scattering and that Sinclair's "hot poles" may be due to a cooling of the planet surface in the equatorial region resulting from the presence of the band of high-speed retrograde equatorial wind. (d) If the profile of the temperature-differences between the $P(\mathrm{~T})$ curves is indeed the equivalent of a constant percentage pressure separation we conclude that the mean-molecular-mass of the atmosphere lies between 43.1 to $44.0 \mathrm{~g} /$ mole.
(e) The assumption of a constant pereentage pressure separation of the $\mathrm{P}(\mathrm{T})$ profiles or an equivalent temperature-separation leads to the conclusion that
if water vapor is the principle polar eompound in the vicinity of 50 km , the Venera 5 measurements of the maximum water-vapor content are correet, and that the water-vapor content below 50 km (300 K) may decrease with increasing latitude and/or may be variable with time. The latter suggestion is consistent with the results of the microwave measurements of Jones ef al. (1972). (f) The combined winds measurements of Boyor and Gucrin, Carleton, and Veneras 4 and 7 indicate that the 4 -day ($110 \mathrm{~m} / \mathrm{s}$) retrograde wind occupies a band about the equator which extends from above the top of eloud C1 at 78 km downward to the one atmosphere level at 46 km . The speed of the wind appears to be latitude dependent, decreasing at 15° latitude to possibly 0.60 of the equatorial value.
(g) At the equatorial morning-terminator at the time of the Venera 7 entry the high speed retrograde wind at 46 km decreased to roughly $15 \mathrm{~m} / \mathrm{s}$ at 40 km and remained at this value down to 19 km . At 18 km altitude (20 atmospheres) there was a retrograde wind layer of roughly 3km thickness, and with a peak speed of $35 \mathrm{~m} / \mathrm{s}$. Below 14 km we assume a prograde or south-directed wind decreasing from 1.5 to $2 \mathrm{~m} / \mathrm{s}$ at 13 km to roughly $0.1 \mathrm{~m} / \mathrm{s}$ at 3 km .
(h) The data suggests that horizontal winds at the surface are of the order of $0.1 \mathrm{~m} / \mathrm{s}$ and thus incapable of lifting dust from the surface. Any dust in the atmosphere is expected to result from other sourees such as tre collecting of cosmic dust or the injection of dust by voleanic activity.
(i) The latitude dependence of temperature indieated by the sepmation of the $P(1)$ profiles and by sinclair's hot polos, and the Venora 7 low altitude vertieal wind profile, suggest the possibility of a low altitude equator-to-pole eiredation with hot air rising at the poles.
(j) The association of the up and down-drafts at 42 km with the equatorial subadiabatic lapse-rate region at 40 km , with the equatorial high speed retrograde horizontal wind, and with the Maxiner 5 attenuation-coefficient profile suggests that the up and down-drafts occupy an equatorial band.
(k) The Venera 4, 5, 6, and 7 data suggests that the up and down-drafts at 20 km are a permanent feature in the vicinity of the equatorial morningterminator but as yet no evidence has been found which suggests that they oceupy - band about the equator.
(1) In our model the visible thin global cloud or naze C1 extends downard from 78 km to a clear region which i assumed to start at 63 km and ends at the top of the visible dense global cloud C 2 at 55 km . At times C 1 consists of several layers moving with different speeds. It is assumed that the base of C2 is at 52 km and is determined by the Venera water vapor profile.
(m) The existence of Cloud C:3 in the region from 47 to 43 km is indicated by the Marince 5 attenuation-coefficient measurements. These measurements and their spacial relation to the Venera 7 up-draft measurements and to the hiph speed retrograde wind band suggest that C3 may be a recurrent or permanent feature in a band about the equator from $30^{\circ} \mathrm{S}$ to $30^{\circ} \mathrm{N}$.
(n) Jhe Marincr 5 attenuation-coefficiont moasuremonts also suggest a night. E o oloud of Hg_{2} at 38 km at the time of measurement and a cloud C 4 at 37 to B3kim oceuying a band about the equator at the time of measurement.
(0) Cloud (5 at 25 to 20lim is based upon the Venera up-draft and lapse-rate measurements and upon possible Venera 7 evidence for precipitation at 19 km . There are indications that C 5 and its associated up-draft are recursent or permanent equatorial morning-terminator features but the data does not preclude a greater extent to C 5 . The possible evidence for precipitation seen at 19 km suggests a material with a fusion temperature of $556 \pm 6 \mathrm{~K}$.
(p) The shape of the Venera 7 lapse-rate curve, and speculation concerning Venera 7 evidence for precipitation and mild vertical convection suggest the existence of C 6 at 3 km , but the hori\%ontal cxtent of C 6 is unknown. Precipitation associated with C6 would be expected to have a fusion temperature in the vicinity of 740 K .
(q) The Venera 7 data indicates that the temperature lapse-rate at the surface lies between 0 and $7 \mathrm{k} / \mathrm{km}$. The microwave interterometer mosasurements of Sinclair et al. (1972) combined with the radar topographical measurements of Campleell ex al. (1972) indicate that below 6056 km in a band about the equator an upper limit to the lapserate is $5 \mathrm{k} / \mathrm{km}$ with more reasonable values ranging from 2. $5 \mathrm{k} / \mathrm{km}$ to isothermal.
(r) The mean radius of the planet is found to be $6055-2 k m$ and in conjunction with a mean surface temperature of 748 K y ields a mean surlace pressure
of 71 atmospheres. This pressure value is consistent with the microwave attenuation studies of Muhleman, of Fjeldbo ei al., and of Pollack and Morrison. Acknowledgements

In our attempt to examine and relate all of the Venus data we have benefited from discussions with a large number of people engaged in Venus studies. We express our appreciation to each. We thank G. Fjeldbo for furnishing the Mariner 5 atmospheric pressure and temperature data. We are particularly indebted to R. E. Samuelson for his careful nading of the paper and extensive suggestions for its improvement.

REFERE:NCES

Anderson, J. D. and L. Efron, 1969: Mass and dynamical oblateness of Venus. Bull. Am. Astron. Soc., 1, 231-232.

Ash, M. E., I. I. Shapiro, and W. R. Smith, 1967: Astronomical constants and planetary ephemerides deduced from radar and optical observations.

Astron. J., 72, 338-350.
Avduevsky, V.S., M. Ya. Marov, and M. K. Rozhdestvensky, 1968: Model of the atmosphere of the planet Venus based on results of measurements by the Sovict automatic interplanetary station Venera 4. J. Atmos. Sci., 25, 537-545.

Avduevsky, V.S., M. Ya. Marov, and M. K. Rozhdestvensky, 1969: Results of measurement of parameters of the atmosphere of Venus by the Soviet probe Venus 4. Kosmicheskic Issledovaniya, 7, 233-246.

Avduevsky, V.S., MI. Ya. Marov, and M. K. Rozhdestvensky, 1970a: A tentative model of the Venus atmosphere based on the measurements of Veneras 5 and 6. J. Atmes. Sci. , 27, 561-568.

Avduevsky, V.S., M. Ya. Marov, A. I. Noykina, V.I. Polezhace, and F.S. Zavelevich, 1970 b: Heat transfer in the Venus atmosphere. J. Atmos. Sci. , 27, 569-579.

Avduevsky, V.S., M. La. Marov, M. K. Ro\%hdestvensky, N. F. Borodin, and V. V. Kerzhanovich, ly71a: Landing of the automatic station Venera 7 on
the Venus surface and preliminary results of investigations of the Venus atmosphere. J. Atmos. Sci., 28, 263-269.

Avduevsky, V.S., M. Ya. Marov, M. K. Rozhdestvensky, V. V. Kerzharovich, N. F. Borodin, and O. L. Ryabov, 1971b: The results of the Venus atmospheric measurements made by the landing station Venera 7. Presented at the 1971 COSPAR meeting.

Boyer, C. and P. Guerin, 1969: Etude de la rotation, en 4 jours, de la couche exterieure nuageuse de Venus. Icarus, 11, 338-355.

Campbell, D. B., R.F. Jurgens, R. B. Dyce, F.S. Harris, and G. H. Pettengill, 1970: Radar interferometric observations of Venus at 70 centimeter wavelength. Science, 170, 1090-1092.

Campbell, D. B., R. B. Dyce, R. P. Ingalls, G. H. Pcttengill, and I. I. Shapiro, 1972: Venus: Topography revealed by radar data. Science, 175, 514-516.

Carleton, N. P., (1972), Personal communication.
Chamberlain, J. W., 1965: The atmosphere of Venus near her cloud tops. Astron. J., 141, 1184-1205.

Chamberlain, J.W. and G. R. Smith, 1972: Spectrum of Venus with a doublecloud model. Astrophys. J., 173, 469-475.

Comnes, P., J. Connes, W.S. Benedict, and L. D. Kaplan, 1967: Traces of HCl and HF in the atmosphere of Venus. Astrophys. J., 147, 1230-1237.

Corkum, R. W., 1952: Lsotropic artificial dielectric. Proc. IEEE, 40, 574-587.

Essen, L. and K. D. Froome, 1951: The refractive indices and dielectric constants of air and its principal constituents at $24,0 \mathrm{C} 9 \mathrm{Mc} / \mathrm{s}$. Proc. Phys. Soc. London, B 64, 862-875.

Fjeldbo, G. and Von R. Eshelman, 1968: The atmosphere of Mars analyzed by integral inversion of the Mariner IV occultation data. Planet. Space Sci., 16, 1035-1059.

Fjeldbo, G., A.J. Kliore, and V.R. Eshelman: 1971: The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments.

Astron. J., 76, 123-140.
Gierasch, P. and R. Goody, 1970: Models of the Venus clouds. J. Atmos. Sci., 27, 224-245.

Gierasch, P. J., R. Goody, and P. Stone, 1970: The energy balance of planctary atmospheres. Gcophysical Fluid Dynamics, 1, 1-18.

Goldstein, R. M. and H. Rumsey, Jx., 1970: A radar snapshot of Venus. Science, 169, 974-977.

Golitsyn, G. S., 1970: A similarity approach to the general circulation of planetary atmospheres. Icarus, 13, 1-24.

Goody, R., 1965: The structure of the Venus cloud veil. J. Geophys. Res., 70, 5471-5481.

Guinot, 13. and M. Feissel, 1968: Measure spectrographique de mouvements dans l'atmosphere de Venus. J. des Observateurs, 51, 13-20.

Guinot, B., 1965: Measures de la rotation de Venus. C.R.Acad. Sci., 260, 431-433.

Hansen, J. E. and S. Matsushima, 1967: The atmosphere and surface temperature of Venus. A dust insulation model. Astrophys. J., 150, 1139-1157. Hapke, B., 1972: Venus clouds: A dirty hydrochloric acid model. Science, 175, 748-751.

Hunten, D. M., 1971: Composition and structure of planetary atmospheres. Space Sci. Rev. , 17, 539-599.

Ingalls, R. P. and I. I. Shapiro, 1972: Personal communication. Ingersoll, A. P., 1yiJ: Motions in planctary atmospheres and the interpretation of radio occultation data. Icarus, 13, 34-46.

Jones, D. E., D. M. Wrathall, and B. L. Meredith, 1972: Spectral observations of Venus in the frequency interval 18.5-24.0 GHz; 1964 and 1967-68, Pub. Astron. Soc. Pacific. 84, 435-442.

Kerzhanovich, V.V., V. M. Gotlib, N. V. Chetyrkin, and B. N. A adreev, 1969: Results of determining the dynamics of the atmosphere of Venus from data of measurements of the radial velocity of the interplanetary probe "Venera-4". Kosmichskie Issledovaniya, 7, 592-596.

Kliore, A., 1972: Personal communication.
Kuiper, G. P., F. F. Forbes, D. L. Steinmetz, and R. I. Mitehell, 1969: High altiiade spectra from NASA CV - 990 jet. II. Water vapor on Venus. Comsin. Lunar Planct. Laij, 6 (No. 100), 209-228.

Lewis, J.S., 1969: Gcochemistrv of the volatile clements on Venus. Icarus, 11, 367-385.

Lewis, J.S., 1971: Venus: Surface temperature variations. J. Atmos. Sci., 23, 1084-1086.

Lyttleton, R. A., 1969: On the internal structures of Mercury and Venus. Astrophys. and Space Sci., 5, 18-35.

Malkus, V. V. R., 1970: Hadley-Halley circulation on Venus. J. Atmos. Sci: , 27, 529-535.

Marov, M. Ya., 1972: Venus: A perspective at the beginning of planctary exploration. İcarus, 16, 415-461.

Melbourne, W.G., D. O. Muhleman, and D. A. O'Handley, 1968: Radar determination of the radius of Venus. Science, 160, 987-988.

Mickhnevich, V.V. and V.A. Sokolov, 1909: A model atmosphere of Venus based on the results of direet temperature and density measurements. Kosmicheskie Issledovaniya, 7, 220-232.
Mintz, Y., 1961: Temperature and circulation of the Venus atmosphere. Planet. Space Sci., 5, 141-152.
Muhleman, D.O., 1970 : Interferometric observation of the Venus atmosphere. Radio Sci. , 5, 355-362.
Murray, B. C., R. L. Wildey, and J. A. Westphal, 1963: Infrared phoiometric mapping of Venns through the 8 - to 14 -micron atmospheric window. J. Gcophys. Res., 68, 4813-4818.
Nikander, J. and C. Boyer, 1970: Displacement of the clouds of Venus. Nature, 227, 477.

Phinney, R. A. and D. L. Anderson, 1968: On the radio occultation method for studying planctary atmospheres, J. Geophys. Res., 73, 1819-1827. Pollack, J.B. and D. Morrison, 1970: Venus: Determination of atmospheric parameters from the microwave spectrum. Icarus, 12, 376-390. Potter, J. F., 1969: Effect of cloud scattering on line formation in the atmosphere of Venus. J. Atmos. Sci. , 26, 511-517.

Rasool, S. I., 1970: The structure of $V \in n u s$ clouds - summary. Radio Sci., 5, 367-368.

Rea. D. G. , 1972: Composition of the upper clouds of Venus. Rev. Geophys. Space Phys., 10, 369-378.

Regas, J. L., L. P. Giver, R.W. Boese, and J. H. Miller, 1972: Theoretical interpretation of the Venus 1.05 -micron CO_{2} band and the Venus $0.8189-$ micron $\mathrm{H}_{2} \mathrm{O}$ line. Astrophys. J., 173, 711-725.

Ronca, L. B. and R. R. Green, 1970: Aeolian regime on the surface of Venus. Astrophys. Space Sci., 8, 59-65.

Samuelson, R.E., 1968: The particulate medium in the atmosphere of Venus. J. Atmos. Sci., 25, 634-643.

Schubert, G. and J. A. Whitehead, 1969: Moving flame experiment with liquid mercury: Possible implications for the Venus atmosphere. Science, 163, 73-73.

Shapiro, I. I., 1972: Personal communication.
Shapiro, I. I., G.H. Pettengill, G. N. Sherman, A.E.E. Rogers, and R. P. Ingalls, 1972: Venus: Radar determination of gravity potential. Submitted to Science.

Sinclair, A. E.C., J. P. Basart, D. Buhl, and W. A. Gale, 1972: Precision interferometric observations of Venus at 11.1 cm wavelength. Astrophys. J., 175, 555-572.

Singer, S. F., 1970: How did Venus loose its angular momentum? Science, 170, 1196-1198.

Smith, W. B., R. P. Ingalls, I. I. Shapiro, and M. E. Ash, 1970: Surface height variations on Venus and Meroury. Radio Sci., 5, 411-423.

Suess, H. E., 1964: Remarks concerning the chemical composition of the atmosphere of Venus. Zeits. F. Naturforshung, A 19, 84-87.

Surkov, Yu. A., B. M. Andreichikov, O. Ni. Kalinkina, I. M. Grechishcheva, D. M. Sheinin, and A. I. Mochalkin, 1970: Instruments for investigating the composition of the atmosphere of Venus, used in the interplanctary stations Venera-4, Venera-5, and Venera-6. Kosmicheskic Issledovaniya, 8, 777-783.

Tyler, G. L. and H. T. Howard, 1969: Refractivity of cexbon dioxide under simulated Nartian conditions. Radio Science, 4, 899-904.

Vinogradov, A. P., Yu. A. Surkov, and C. P. Florensky, 1968: The chemical composition of the Venus atmosphere based on the data of the interplanetary station Vencra 4. J. Atmos. Sci., 25, 535-536.

Vinogradov, A. P., Yu. A. Surkov, B. M. Andreychikov, O. M. Kalinkina, and I. M. Grechishcheva, 1970 Chemical composition of the atmosphere of Venus. Kosmicheskie Issledovaniya, 8, 578-587.

Westphal, J. A., R. L. Wildey, and B. C. Murray, 1965: The 8-14 micron appearance of Venus before the 1964 conjunction. Astrophys. J. , 142, 799-802.

Figure 1. The positions of the Venera probe clescents (Avduevsky et al., 1971b) and the wo regions in which the Mariner 5 radio signals passed through the Venus atmosphere

 Figure 3. Mariner 5 day-side and night-side temperature profiles based on $100 \% \mathrm{Cl}^{2}$ a
250 K changes the temperature below 65 km by less than 1 K (Fjeldio et al., 1971).

Figure 4. A comparison of Venera 4, 5, and 6. and Mariner $5 P(T)$ profiles.

Figure 5. The average Mariner $5 \mathrm{P}(\mathrm{T}$) profile is transformed to fit the Venera $4 \mathrm{P}(\mathrm{T}$) data points (a) by a 20% increase in pressure and (b) ty changing \bar{m} from 43.3 to Figure 5. The average $41.2 \mathrm{~g} /$ mole.

$$
\theta \quad \begin{gathered}
i \\
i \\
i
\end{gathered}
$$

NORTH

Figure 6. The positions of the Venera probe descents (Avduevsky et al., 1971 b) and the two regions in which the Mariner 5 radio signals passed through the Venus atmosphere are shown in their for Venera 8. The positions of the semi-major and semi-minor axes of the equatorial ellipse were determined by Smith et al. (1970). The recent equatorial :opography measurements of Campbell et al. (1972) suggest that a and b should be moved -20 to the west. The zero meridian, as adopted by the IAU (1970), passes through surface feature a and was selected so that the sub-Earth point was at 320° longitude at $0^{\text {h }}$ June 20 , 1964. Due to the synchronous or near

Figure 7. The effect of water vapor on the Ma:iner $5 \mathrm{P}(\mathrm{T})$ profite is shown. To preserve the uniform 28% separation of the $\mathrm{P}(\mathrm{T})$ profiles we require the water vapor profile shown by the dotted cunve The estimated water and ice content shows no effect on the Biariner P(T) pronle. Venera water vapor mant
electrolytic (e) and manometer (mi) instiuments and in a number of instances represent upper or lower bounds to the water vapor content.

Figure 8. The Venera 7 data. The Doppler data shown is representative; part of the Doppler data has been omitted in order to simplify the discussion.

Figure 9. A schematic of the direction and kinds of probe descent motion suggested by the Venera 7 Doppler frequency and wind profiles. The vertical and horizontal scaies Figure 9. A have been distorteci in order to simplify the discussion. The view is from the north pole looking at the equatorial plane.

(
Figure 11. The solid tines are the verticai wind and a component of the horizontal wind obtained from the Venera 7 data. The dashed lines are estimated values. Kerzhanovich's Venera 4 wind data is shown by the lower dot-dash curve. The upper dot-dash curve represer
data to the measured Venera 7 horizontal wind-component. The dotted tine shows the possible effect on the Venera 4 data of a latitude dependence.
Figure 11

Figure 12. A moposed revision of the Venera 7 temperature profite immediately before and after impact. The dashed line represents the possible response from an Figure 12. A moposed revision of the venera 7 temperature
axcumulation of "tvet snow" by the temperature sensor.

 pue 'a!! adiatatic lapse rate for the Venus atnosphere, the
the positions at which cloud layers and precipitation may exist.

Figure 14. The 5 layer mercury-compound attenuation profile show in by the
$40-$
$30-$
$20-$
$10-$
$100-$
$90-$
$80-$
$70-$
$60-$
$50-$
$40-$
$30-$
$20-$
$10-$
$0-$
$-10-$ (03S/Sy313W) OヨヨdS ONIM

Figure 15. Venera 7 winds computed by means of a "true" descent speed which results in a surface radius of 6050 km
 ∞

 position is given for Venera 8 . Shown also are the directio- of Earth it inferior conjunction and the $1.5 \pm 0.3 \mathrm{~km}$ displacement of the center-of-mass of Venus irom
 from the data of Campbell et at. (1972) shown in Figure 16

[^0]: - Articles by Gierasch and Goody (1970), fiunten (1971), and Marov (1972) furnish an excellent background for the developments presented in this paper.
 " All altitudes are referred to a nominal planet radius of 6055 km obtained in Section 11. The atmospheric structure is given in Table 2.

[^1]: To convert from measured refractivity $N(h)$ to nressure we use the relations $N(h) \quad n(h) \bigcup_{i} f_{i}(t) u_{i}$, $P(h) \quad n(h) k T(h)$, and $T(h) \quad T_{0} N_{0} / N(h): m /[k N(h)] \int_{h}^{h} N(h) g(h)$ the where $i_{1} \quad n / h$ is the fraction of constituent

[^2]: *We have studied the descriptions of the equipment and techniques used by Vinogradiov and conchude that the error limits of his measurements are reasomable. See also Surkov et al. (1970).

 * The water vapor correction described in Section 3 has not been appled to the Marmer 5 curves in Fiqure 5.

[^3]: * See Section 11.
 - Since the majority of the Earth based ratiar measurements were made near the time of inferior conjunction, see F igure 17, the results are beleved to be based toward a semminor axis value.

[^4]: - Primordial Venms according to Singet (1970) might be expected to have had a prograde shm with a perion 10 to 20 hours. I or a flud body this would correspond to molar radus depresis: of roughly 100 hm and 30 b an respectively For the present rotation period of 243 days we obtain a polar radus depresson of the order of 100 meters for a fluat body.

[^5]: In the Venera measurement region the pressure separation of the $P(T)$ profiles is a constant 28% of the pressure independent of altitude. But the tenperature separation is somewhat variable with altitude and thus a simple temperature transformation between the Mariner and Venera $P(T)$ profiles will not be su!ficient. It is possible, however, that a simple temperature transformation is the proper first order solution and that the unresolved temperature differences represent second order eftects in the Venus atmosphere. The identification and explanation of secund order efferts will require extensiva in situ Venus measurements such as those planned in the Venus Pioneer program.

 * The magnitude of the inferred pole temperature is based on the assumption of a spherical Venus model with 99.35 : CO_{2}, and with surface pressure, temperature, and radus values of 106 atmospheres, 751 K , and 6050 km . Although the substitution of a new model cannot change the fact of the measarement of enhancedbrightnes at the poles it would be worthwhile to uttain an improved value for the inferred pole temperature. Our suggesterd un: lel is developed in this baper and comprises a spherical planet with the atmospheric structure given in Table 2 and the water vapor profiles discussed in Section 3. The model should also attempt to assess any possibie effects due to the preciphtation and clouds discussed in Sections 9 and 10 .

[^6]: -Sections 9 and 10

 - Sectron 10

[^7]: - Hansen and Matsushima (196\% discuss this possibility for the case of a dust cloud. We find no evidence at the surface for winds of sufficient strength to rase dust and as discussed in Section 10 would substitute conclensates for dust. It is possible, however, that there exists dust of valcanic c : cosmic origin.
 "Therooling rate at the equator is repuret to bo roughly 8 greater than that at the poles.

[^8]: -See Section 5

 - According to Chamberlan (1965) this emission or iginates from a region whete the atinospheric: temperature 15 255K. Corresponding pressure and altitude from Table 2 are 0.25 atmos. and 55 km . The source of this emission is believed to be the tof, yortion of the dense visible global cloud C? discussed in Setion 10
 -• Sne Section 6

[^9]: * In the example of digital measurement shown in figure 12 consider the problem of constructing the true temperature profile if the first measitement return had ocrurred at $34.5^{\text {m }}$

[^10]: - An exammation of the response of temperature measuring instruments which are believed to be similar to the IS. 164 A , Venera 1 thermometer described by Avduevsky et al. (1969) showed that for the slowest instruments the maximum timeronstant was less than 6 seconds. After correction, or for an instrument specifically designed for descent probe use. likely values for the temperature measurement time constant are less than 2 seconds.

[^11]: * The temperature value for Vinograxov's point is obtamed by the extrasolation of his water vapor measurement to intersect the saturation line.

[^12]: - The sharp decrease in Mariner 5 water vapor content at $315 \mathrm{~K}(47.3 \mathrm{~km})$ in Figure 7 corresponds to an apparent minimum in the Venera 4 horizontal wind sjeed at 47.3 km in Figure 10 . We do not attempt to relate the two effects at this time because of uncertainty as to the proper procedure for analysis of the Venera 4 winds data.

[^13]: The Mariner 5 and Venera 6 water vapor prefiles yield average water vapor mixing ratios of $1.1(10)^{-4}$ and 2.5 (10)-4 for the region from 0 to 60 km . Total water vapor content i; $9 \mathrm{~g} / \mathrm{cm}^{2}$ and $20 \mathrm{~g} / \mathrm{cm}^{2}$ respectivels'.

 * It should be noted that there is a large change in the solar coordinate longitade of the sud-Earth point on Venus between the time of the October 1967 encounter and the efid of the measurement period 3.7 inonths following this encounter. Thus the increased water vapor content which was nbserved could be described as either a iransient or longitude effect. Earlier in this section we dismiss the possibitity of a long:tude effect

[^14]: - There are in addition transmission media and equipmint contributions to the Doppler frequency. These effects are smali and the error remaining after their correction is negligible.

[^15]: - During descent the Reynolds numbers associated with the probe and its parachute are reughly two orders of magnitude greater than the critical value of $3.5(10)^{5}$. Thus we are unable to associate anomalous descent speed changes with a Reynolds number transition
 * No:e from Figures 9 and 14 and from Table 1 that Venera 7 landed at a position 0.5 km higher than the mean surface

[^16]: *The required frequency correction $د^{f} \mathrm{O}$. $16 \mathrm{H} /$ corresponds to an impact speed correction of $-5.2 \mathrm{~m} / \mathrm{s}$.

[^17]: - The sub-adiabatic region at 16 km is seen in the venera 5 and $6 \mathrm{P}(\mathrm{T})$ arcfiles in the vicinity of 990 K in F igure 4 . See also Figure 13.

[^18]: - The unperturbed probe descent speed is obtained by removing the affects of lift, glide, and vertical winds from the true probe descent speed.
 * The measured Doppler frequency is corrected for the frequency change obtained at impact, multiolied by the secant of the angle of Earth from the renith, and then converted to speed.
 : Our atislysis indicates that the 11.3° displacement of Earth from the cenith cited by Avduevsky is toward the East, and that the North. South displacement is negligitale.

[^19]: ${ }^{*} h_{2} \cdot h_{1}(R \bar{T} / \operatorname{mg}) \ln \left(P_{1} / P_{2}\right)$.

[^20]: * In accordance with the geometry shown in Figure 9.
 - Estimated maximum values for the Earth-directed components of the horizon-glide-speed varied from $0 \mathrm{~m} / \mathrm{s}$ at 23 m to 2 m / s at 34^{m}.
 .. Except in the interval $33^{\prime \prime \prime}$ to 34^{m} where the correction went from 0.9 to $2.0 \mathrm{~m} / \mathrm{s}$.
 *.. For ease in presentation we show a smoothed curve

[^21]: - See Table 2.

[^22]: - An upper limit to an updraft at 45 km at $15^{\circ} \mathrm{N}$ is set by the $10 \mathrm{~m} / \mathrm{s}$ parachute descent speed that would be obtained by Venera 4 in this region in an unperturbed atmosphere Venera 4 must be allowed to descend. If vertical and hori.ontal wind speeds are assumed to have the same latitude dependence determined by Boyer and Guerin (1969) and discussed later in this section we obtain an upper limit of $17 \mathrm{~m} / \mathrm{s}$ to the Venera 7 vertical wind speed at 45 km .

[^23]: - Boyer and Guerin (1969) find a spectrum of cloud speeds ranging from 68 to $229 \mathrm{~m} / \mathrm{s}$. Nikander and Boyer (1970) find fower and upper lumits for the velocity of individual clouds of $89 \mathrm{~m} / \mathrm{s}$ and $205 \mathrm{~m} / \mathrm{s}$ respectively.

[^24]: -In an interview with the Novasti press agency, A. P. Vinogradov has reported on the analysis of the new data on Venus from the Venera 8 prote. There is practically no movement of the atmosphere at the surface, and weak winds begin to occur only at altitudes of several kilometers. However, at 15.20 km above the surface, wind velocity exceeds $50 \mathrm{~m} / \mathrm{s}$. and above 45 km it reaches a velocity of $100 \mathrm{~m} / \mathrm{s}$. $\mathcal{E} \mathrm{EOS}, 15,1151-1152$). The altitude reference is not specified

[^25]: - The vertical current rises at the center of the cell and semarates at the ton. Vertical and hormontal dimensions of the cell are approximately a scabe height, $1.0 ., 16 \mathrm{~km}$.

[^26]: - See Section 11. Preliminary processing of the data of Campbell et al. indicates that the Venus surface may be essentially isothermal.

[^27]: - See Section 4 and F igure 9.

[^28]: - A material with a fusion temperature in the vicinity of 740 K . The distribution of proipitation on the Venus surface, the rate of precipitation, the electrical conductivity and viscosity of the precontating liguid, and the porosity of the Venus surface must be consistent with the average dielectric constant of $4.4 \pm .4$ measured by Sinclart et al. (1972) and with the features of the Venus radar maps of Goldstein and Rumsey (1970), and Campibell et al. (1970).

[^29]: - At approximately 175 K and 0.002 atmos., see Table 2 .
 " Each Y has a total length of roughly 2000 km .

[^30]: At approximately 260 K and 0.27 atmos., see Table 2

[^31]: - Rasool's model assumes particle diameters of 20 microns and peak concentrations varying from 330 io 400cm-3, These particle sices and concentrations are simitar to those for Earth cumulus congestus ciouds in which visilility is reduced to roughly 10 meters

[^32]: * The repeatabılity of vertical measurements was 0.2 to 0.5 km .

[^33]:

 * The Venera 5 and 6 pressure values ail fall above the region in which estimation of the true descent speed was necessary to complete the computation of the Venera 7 atmospheric structure, and thus their surface radius values are unaffected by the estimation.

[^34]: *"Once contraction has commenced, it may contribute importantiy to the continued production of heat within Venus."
 **Morizontal resolution , the Venera 5 and 6 altimeters is of the ordar of $15 k \mathrm{~m}$.

 * *Within 15° of Smith's peak.

[^35]: Sections 6 and 6 .

[^36]: *See Section 10.

[^37]: * It should be noted that the Venera 5 and 6 radius values shown in Table 1 converge as the probes approach the surface.
 * The results of Campbell et al. (1972) shown in Figure 16 confirm Smith's value for a b.

[^38]: See Figure 13.

 * The preliminary Venera 8 surface pressure of 87.1 ± 1.5 atmos. implies a radius of 6051.7 km , and with the Venera 5,6 , and 7 results yields a mean-equatorial-radius of 6054.3 km [74 atmos.!

[^39]: - If for $\overline{\mathrm{m}} 43.3$ we substitite m 41.2 we obtain 93 atnos.

[^40]: - Sinclair ol.tained a maximum difference of 14 ty K. Our curve fitting of the data yields a sligh tly higher value

[^41]: * The winds are apparently so efficient in their distribution of solar energy that the first evidence of a possible diurnal temperature difference in the Mariner 5 data occurs at 73 km where according to 7 fable 2 the atmospheric density is $2(10)^{-4}$ times that at the surface.
 * Shapiro et al. (1972) have obtained the height relative to the mean planer radiu'; of the gravitational equipotentia surface apound the equator. A comparison of this height profile with the equatorial topography profite of Camplell at equator. A comparisonetion of the displacement of the Venus center-of-mass obtained by Smith et al. (1970) and shown in Figure 17.

