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LABYRINTH SEAL TESTING FOR LIFT FAN ENGINES

L. J. Dobek
Pratt & Whitney Aircraft Division
United Aircraft Corporation

! SUMMARY

This report presents the work accomplished under Contract NAS3-14409 from its initiation
on 18 February 1971 to completion of the technical program on 17 October 1972. The
specific objective of this program was to flow calibrate a buffered labyrinth seal under en-
vironmental conditions similar to those expected at the first-stage inner air seal of a lift fan
tip turbine.

Task I was a design analysis program which developed an equation for a generalized solution

of buffered labyrinth seals, The seal design which was selected for experimental evaluation

in an existing test rig was a combined single and two stage labyrinth seal. In such a seal,

buffer gas is introduced through radial orifices in the stationary seal land between the single
stage labyrinth and the double stage labyrinth. Gas splits and flows axially across the labyrinth.
The concept is to seal the high temperature tip turbine gas down stream of the single laby-
rinth from the ambient gas flow of the fan downstream of the two stage labyrinth. The seal
consists of an AMS 5660 nickel alloy machined ring of continuous knife edges mounted on
arotor disk. The land is formed by the 1.D. of the buffer gas manifold coated with METCO
601 plasma spray abradable material. The substrate material is AMS 561 3 stainless steel.

operating clearances ranging from 1.27 x 10™ meters (.050 inch) to less than .254 x 10
meters (.010 inch). The analysis considered thermal and structural response of the seal
components,

Experimental evaluation of the seal was accomplished in two builds. In build I, a cold static
seal clearance of approximately 1.27 x 10°3 meters (.050 inch) was used. The clearance in
build 2 was set at .302 x 10-3 meter (.020 inch). A room temperature static unidirectional
flow calibration was performed for each build. From the results, the buffer gas orifice flow
coefficient was determined to be 0.8. The unidirectional gas flow across the double and
single labyrinths compared favorably with analytical predictions.

The two directional flow calibration was made at a sealed gas pressure of approximately
172.4 x 103 N/m2 (25 psia). Buffer gas pressure was varied from 200.7 x 103 N/m2 (30
psia) to 262 x 103 N/m2 (38 psia). The ambient gas compartment was evacuated to less
than 124.1 x 103 N/m2 (18 psia) for all test points. Buffer gas temperatures were set at
294°K (70°F), 394°K (250°F) and 461°K (370°F). Primary gas was heated as a result of
mixing with buffer gas leakage except during test points at which 922°K (1200°F) air
was delivered to the primary gas compartment. The calibration was performed at a com-
bination of the above pressures and temperatures at rotor speeds from static to 5950 rpm.



Calibration results of the buffer orifice flows and its subsequential flow split across the single
and double knife edge labyrinths showed good correlation with analytically determined values
at static and dynamic conditions. Buffer orifice flows were measured to be within 10 percent
of predicted values at the larger knife edge clearances and within 20 percent at the smaller
clearances. The flow split across the labyrinth seals for any measured orifice flow was found
to be in the range of 11 percent of the calculated value.

Il INTRODUCTION

Advanced flight engines present continuing requirements for high operating speeds, large
engine structures of minimum weight, and maximum operating efficiency. In combination,
these requirements lead to large-diameter rotating air seals which must operate at high speed,
and with minimum clearance, in a relatively flexible structure. Such seals, and particularly
fan seals, have the potential for large radial excursions due to maneuver loads, engine surge,
dynamic unbalance loads, and structural creep. In order to use minimum-clearance labyrinth
seals under these conditions, it is desirable to incorporate an abradable material in the seal-
ing land. Most of the wear resulting from a rub will then occur in the land, and only a local
increase in seal leakage will be experienced.

The specific intent of NASA-Lewis Contract NAS 3-14409 was to design, analyze, fabricate,
and rig test a buffered abradable labyrinth seal for a lift fan engine application. Selection
of a “‘buffered” abradable type labyrinth seal was made over a “‘straight-thru” type because
the buffered scheme eases the differential thermal response of the seal and structural com-
ponents at transient conditions. Clearance control becomes simpler and there is a reduction
in the risk of knife edge interaction with the land. Also, it can be expected that the hot
turbine gas leakage to the fan air flow stream would be eliminated. The design was to be
functionally similar to the first stage turbine seal concept for the two-stage turbine shown
on National Aeronautics and Space Administration - Lewis Research Center drawing No.
CR-6550807. It was not the intent of this contract to duplicate the structural and thermal
response of any particular seal application. The seal was designed for testing in an existing
test rig used previously under Contract NAS 3-7605 with its seahng diameter to be at

least 71.12 x 10-2 meters (28 inches).

Basic seal design requirements included a relatively high operating temperature and a minimum
clearance at high operating speeds while maintaining the lowest possible weight. These re-
quirements imply a highly stressed rotating member in which creep and distortions due to
thermal effects-and pressure loads are important design considerations. The stationary part

of the seal does not experience inertia loads but does operate at elevated temperatures, is
exposed to pressure loading, is able to wear under rubbing conditions without inducing wear
on the knife-edge, and does preferably experience dimensional changes in operation which

correspond to those.of_the.rotating member. -In-consequence;-the-labyrinth seal'becomesa™ = -

highly sophisticated component in the lift-fan engine application.



I1l. CONCLUSIONS AND RECOMMENDATIONS

The calibration of an abradable buffered labyrinth seal under this contract revealed the

following:

Results of the static unidirectional flow calibration of the buffered labyrinth design
at two cold gap clearances demonstrated good correlation between measured and
calculated air flows.

Experimental calibration of the seal buffer gas orifices revealed the flow coefficient
(0.8) to be higher than would be selected in conventional practice.

Measured air flows through the double knife edge seal to the ambient compartment
during dynamic testing were lower than the calculated values.

Measured flows through the buffer orifices during dynamic seal testing showed
good correlation with calculated values at the large ‘“‘cold” knife edge gap. Re-
ducing the knife edge clearance did not result in the same good correlation between
measured and calculated buffer flows, reflecting the increased sensitivity of the
discharge coefficient (o)) with decreasing seal clearance.

Measured knife edge clearances during dynamic testing were consistently tighter than
predicted values due to the higher than anticipated rotor temperature and resultant

rotor-growth- —_

The seal stator rub-strip of METCO 601 demonstrated excellent abradable char-
acteristics with a deep knife edge penetration. No significant knife edge wear or
distress resulted.

In consideration of the above observations the following conclusions can be made of this
seal in the range of conditions studied:

The flow equations developed were proven to be within 20 percent accuracy in
calculating airflows across the seals.

The flow coefficient for a particular buffer orifice configuration should be obtained
experimentally.

Acceptable analytical methods are available to calculate buffer air flow.

Based on test and analytical experience gained during this contract it is recommended by the
Contractor that:

For specific geometric configurations, the buffer orifice should be experimentally
calibrated to insure accurate determination of the flow coefficient.



®  In selecting the minimum cold seal gap, a thorough thermal and flow analysis of the
specific seal design and surrounding structure is necessary to minimize the possibilities
of a severe seal rub.

L Further experimental and analytical investigation is necessary to accurately select
the Egli parameters used in calculating air flow through the double knife edge seals.

IV TECHNICAL PROGRAM

The technical program effort under NASA-Lewis Contract NAS-3-14409 consisted of three
separate tasks. Task I included the design analysis of a buffered abradable labyrinth seal that
could be evaluated in an existing test rig. Effort here also included the detail seal design and
the detail design modification of a seal rig which would be used for evaluation of the seal.
Task 11 entailed the procurement of the test seal and rig hardware. Experimental evaluation
of the seal, and analysis of the test results were conducted in Task 111.

A. SEAL DESIGN ANALYSIS

The seal design was documented for this contract, based upon analytical and design studies
of a buffered abradable labyrinth seal for the control of turbine gas path leakage in a tip-
turbine driven lift fan. The design analysis was performed on a seal similar in cross-section
to an engine seal but reduced toa 71.12 x 10-2 meter (28 inch) diameter to operate in an
existing test rig.

The specific steps performed in independently determining the seal characteristics are pre-
sented in the flow, thermal, and structural analysis sections. Integration of these three inde-
pendent analyses is then presented in the seal performance analysis section.

1. Flow Analysis

Flow analysis of the buffered labyrinth seal consisted of examining three separate intercon-
nected flow paths. Figure 1 is a schematic diagram of the flow system. W, is the flow of
buffer air through orifices to an intermediate location between the knife edges Py, TI). Wy
is the flow through the double knife edge to ambient air (PA.Tp) and Wy is the flow through
the single knife edge to the primary region (PP,TP). The buffered labyrinth seal design con-
cept further requires that the following pressure relationships apply to the flow system:

Case I Pp>P>Pp > Py ; Wi = W+ W3 (Eq.1)
Case I PB> PI =PP>PA ; Wi = Wy (Eq.2)

CCaselll | PRSP <Pp>P, LW = Wy — W3 (Eq.3)



The relative magnitude of P depends on the flow areas in the system, and the three continu-
ity equations defined as Cases I, II, and III are the only flow relationships which could apply.
Cases II and III result in an unfavorable thermal situation, which will be examined in more
detail in the thermal and structural sections of this report. Case I, in which W3 flow exists
and is always from the intermediate location to the primary region, is the only situation
which can be allowed to exist. This restriction places a maximum allowable value on knife
edge clearance.

Orifice flow (W) is defined by the equation (ref. 1):
Wl =N0 [KfAOY\/2g pB(PB -PI) ] (EQ-4)
No = number of orifices
Ao = orifice area

ppg = density of buffer air

Ppg = pressure of buffer air

Py = pressure of intermediate air p

Pp -P
Y= ion factor = / k| \ox [Pr)&k+D B *1 (Ea.5)
expansion factor k-1|\ Pg - Py k PB_—(Ref. 1

k = specific heat ratio

K¢ = flow coefficient = .6 for square edged orifices
If geometry and buffer air conditions are chosen, W becomes a function of Py alone.
The Egli analysis (ref. 2), which is generally applied to muiti-stage labyrinth seals, is particularly
relevant when analyzing “straight through” seals in which flow carry-over between knife edges
is significant.

W = Agern/eo Py (Eq.6)

A = leakage area

¢ = flow function = function of N, Pd/Pu

« = flow coefficient = function of t, e/t

v = carry-over factor = function of N, e/s



Pu = upstream pressure

py = upstream density

N = number of knife edges
e = knife edge clearance

t = knife edge thickness

s = knife edge spacing
Pd = downstream pressure

The values of ¢, a and =y are obtained from the graphs in Figure 2. The specific equations for
W5 and W3 are:

W2 =A¢2 (a'y\/gpIPI—) Where Pd = PA N=2 (Eq7)
W3 = A¢3 (a\/gpIFI ) Where Pd = PP’ N=1 (EQ-8)

The carry-over factor is unity for a single knife edge. Values used for knife edge thickness
and spacing are .048 x 10—2 meter (.019 inch) and 409 x 10—2 meter (.161 inch), respec-
tively. Specifying the knife edge clearance (e), W, and W3 may be expressed as functions of
intermediate pressure Py.

A design constraint exists in which the intermediate pressure cannot be iess than the primary
air pressure (the later pressure is dictated by performance requirements) since this condition
would cause primary air flow across the seal (Case 11I). When the intermediate pressure is
equal to the primary pressure (Case II), a maximum allowable clearance is established although
in practice the seal would not be designed to operate to this limit

Using the Case I flow relationship, the continuity equation (eq.1) is used to obtain inter-
mediate pressure for various values of seal clearance for any given size and number of buffer
gas orifices and buffer gas pressures, Pg.

If: Wl =W2+W3

then: NO (Kf AO Y\/ 2ng (PB - PI ) = A(bzot‘)‘\/ gpIPI
+ Ad30/801P] (Eq. 9)

- -For-a-buffer-gas manifold with 152 orifices of 5.3 x 10 737 meters (. 210 mches) diameter, a

curve of 1ntermed1ate pressure versus seal clearance for two separate buffer air pressures of
200.7 x 103 N/m (30 psia) and 241.3 x 103 N/m (35 psia) is shown in Figure 3. Asshown



in the figure, seal clearance may not exceed 1.27 x 1073 meters (0.050 mch) and 2. 16 x 1073
meters (0.085 inch), respectively, when a primary air pressure of 172.4 x 103 N/m (25 psia)
exists. Should the clearance exceed these values at the stated condition, primary compartment
gas will flow through the seal resulting'in unfavorable thermal response of the components.

The effect of buffer air temperature on the three seal air flows (W, Wo, W3) when t.ie buffer
pressure is held constant at 174 x 103 N/m2 (30 psia) can be studied in Figures 4, 5, & 6.
The changes in seal air flows for different buffer pressures while the buffer air temperature
remains constant at 294°K (70°F) are shown in Figures 7, 8, and 9.

As shown in Figures 6 and 9, the primary air flow, W3, reaches a maximum value tiien de-
clines with further increases in knife edge clearance. This may be explained by examining
Equation 8 and the inter-relationship of its constituents: flow area, A; flow function, ¢; and
intermediate pressure, Pj. As presented in Figure 3, at any given ambient condition at the
knife edge, intermediate pressure decreases as the knife edge clearance (flow area, A) in-
creases. This reduction in primary pressure resultsin the selection of lower values for the
flow function, ¢ in Figure 2, as the pressure ratio PP/PI increases. The flow function dimin-
ishes in value and its non linear rate of change becomes more rapid as the pressure ratio ap-
proaches 1.0. In contrast, the flow area is proportional to the knife edge clearance and its
rate of change increases at a constant rate as knife edge clearance increases. Therefore, W
will arrive at a maximum value then deminish when the rate of change at which the value of
¢ decreases exceeds the constant rate of change in the flow area.

2. Thermal Analysis

Seal design analysis has shown_that heat_transfer and_temperature_distribution_within the_seal

are the prime factors affecting seal clearance. A detailed thermal analysis (ref. 3 and 4) in-

dicated that a layer of insulation between the seal stator and the primary gas path is needed
to improve clearance control and to aid in preventing overtemperature of the abradable ma-
terial on the seal stator. The thermal effects of secondary seal design changes were also evaluated.

Basic studies to determine the effect of operating conditions on seal temperature distribution
were conducted.

Results of the effect of operating conditions on the test seal are presented in Figures 10-13.

In Figure 10 the temperature distribution across the stator portion of the seal is shown when
an axially translating secondary seal piston ring was employed. The analysis was performed
for a primary air temperature of 1033°K (1400°F), a buffer temperature of 450°K (350°F),
and an exhaust or ambient temperature of 294°K (70°F). However, the design selected for
the contract test program was of resilient sheet metal which allows less heat transfer to the
stator than the axially translating piston ring which was analyzed prior to seal design selection.
Therefore, the analysis presented here yields a conservative temperature profile.

Figures 11, 12, and 13 relate the changes in stator temperature distribution resulting from
changes in seal operating conditions. In Figure 11, buffer air flow to the primary gas path
side of the seal has been reduced to zero, allowing 1033°K (1400°F) air to penetrate into

the intermediate region of the seal. The average temperature and axial thermal gradient in
the stator then increase significantly and the maximum temperature in the abradable material
is raised to 732°K (857°F), an increase of over 250°K (450°F). This flow situation, once
established, tends to be self-generating because the primary air mixes with buffer air flowing
to ambient and causes further thermal growth of the stator.



As seal clearance diminishes, the intermediate pressure increases resulting in a larger AP across
the knife edges. The gas flow velocities increase correspondingly. Higher heat transfer co-
efficients result on the stator surfaces exposed to this increase in velocity. However, the
change is not as dramatic to the surfaces exposed to ambient gas flows. This is because the
percent change in the ambient pressure drop is less than the percent change in the primary
pressure drop resulting in a lesser increase in ambient flow velocity than in primary flow vel-
ocity. Figure 12 describes the effect of increasing heat transfer film coefficients as indicated
on the stator surfaces exposed to buffer air flow in the seal clearance. These decreases in
average stator temperature, axial thermal gradient and maximum abradable temperature are
all less than 5.6°K (10°F). Figure 13 shows the effect of reducing buffer air temperature to
394°K (250°F). The average stator temperature is reduced by more than 44.4°K (80°F)
indicating that the stator temperature level is very sensitive to buffer air temperature. Rotor
temperature distributions are shown in Figures 14 and 15. Figure 14 represents the normal
operating condition with 450°K (350°F) buffer air while Figure 15 represents a primary air
flow reversal condition. The 294°K (70°F) ambient air temperature is the dominant factor

in the control of rotor metal temperatures. Rotor displacements caused by these temperature
distributions are described in the structural analysis discussion.

3.  Structural Analysis

Stresses and deflections in seal stator and rotor components were calculated to predict the
effects of pressure, temperature and speed on seal clearance and structural integrity. A gen-
eralized analysis for axisymmetric shell structures, with either continuous or periodic loading
over the circumference, was programmed for solution on a digital computer (ref. 5).

Figure 16 illustrates the effects of axisymmetric pressure loading and temperature distribution
on the seal stator structure. The radial growths indicated in Table I of the following section 4
are accompanied by angular displacements of the stator structure which are caused by axial
thermal gradients. The angular displacement causes some degree of clearance variation over
the length of the seal which has been neglected in the seal flow analysis.

The effects of pressure, temperature and speed on the rotor structure are shown in Figures

17 and 18. Average radial growth is low because the bulk of the rotor structure is close to
ambient temperature. Angular displacements are due to the combined effects of axial thermal
gradients and axial pressure loading. The angular displacements of the rotor tend to match
those of the stator at a given operating condition.

4.  Seal Performance Analysis

The independent effects of gas pressure, temperature, and rotor speed on seal clearance and
seal leakage data have been analyzed. Combinations of each of these parameters are now
defined and the resulting seal clearances and leakage rates predicted.



The resulting seal clearance at a given operating condition is controlled by thermal growth
of both the rotor and stator and also by the elastic growth of the rotor due to speed. Elastic
deflections of the rotor or stator due to gas pressure loading were considered to be negligible.
Seal pressures, however, may affect seal clearances to a minor degree by altering the heat
transfer and temperature distribution within the seal assembly. This effect was not studied
in the design analysis. When seal clearance is known, the seal leakage becomes a function of
both pressure and temperature. The relative velocity between the rotor and stator surfaces
is believed to have little effect on seal leakage at a given seal clearance.

Operating conditions expected in the seal evaluation are presented in Table I. In addition,
the analytically calculated seal performance, knife edge clearance and seal air flows are
shown. The seal clearance is first calculated from thermal and dynamic conditions. With
clearance known, seal air flows are then obtained from the curves in Figures 4-9.

The first condition, Case A, presented in Table I, is a ““cold” flow static calibration which
provides a check of the effective seal area of both the single and double knife edge seals at
assembly. In Case B, the effect of a rotor speed of 6961 rpm on seal clearance and subse-
quently on seal air flow is presented. The effect of increasing the air temperature of both
the buffer and primary air supply 394°K (250°F) and 922°K (1200°F), respectively, on seal
air flow is found in Case C. Here, the combined radial growths of both the rotor and stator
are considered. Case D defines the effect of further increase in buffer gas temperature to
450°K (350°F) on clearance and seal flow. In Case E, the effect of increasing the ambient
air temperature level to 367°K (200°F) is shown.

The final two cases, F&G are repeats of cases A&B respectively exceptthat the-buffer-air
pressure was increased from 200.7 x 103 N/m2 (30 psia) to 241.3 x 103N/m2 (35 psia).

At the higher buffer air pressure, the maximum allowable seal clearance is .216 x 10—2

meter (.085 inch) as obtained in Figure 3. This value is larger than the maximum expected
clearances in Cases C, D, & E. Thus, if the buffer air pressure is maintained at 241.3 x 103
N/m2 (35 psia), the proper sealing flow condition is held for all expected operating clearances.

B. SEAL AND RIG FINAL DESIGN

The final design of the buffered abradable labyrinth seal is functionally similar to the first-
stage turbine inner air seal concept for the two-stage tip turbine design as it is shown on
NASA-Lewis Research Drawing No. CR 655807. The scheme selected for rig evaluation,
and shown in Fig. 19, consists of a rotating knife edge ring mounted on the test rig rotor
disk and a stator manifold assembly mounted from the test rig spool case through radial po-
sitioning lugs.

1. Principal Seal Features

The labyrinth seal ring, shown in Figure 20, is continuous and incorporates integrally mach-
ined knife edges with a tip diameter of 71.12 x 1072 meters (28 inches). The seal ring engages
snap diameters on the rotor disk and side plate which closely controls the concentricity of
the ring to the rotor. Axial location of the ring is assured by closely controlled tolerances

at the butt joints of the related components. The seal ring and other rotor components are
machined from AMS 5660 nickel alloy material.



The seal stator assembly, Figure 21, includes the buffer gas manifold, an abradable, rubstrip,
and an insulating ring. The abradable material is METCO 601 plasma sprayed coating of
aluminum powder filled with polymer particulates. The coating is applied directly to the
AMS 5613 manifold 1.D. Holes through the I. D. of the manifold permit buffer gas to pass
into the intermediate pressure cavity formed by the single and double knife edges with the
rub strip. Buffer gas enters the manifold through eight (8) equally spaced fittings around
the manifold O.D. to insure uniform internal pressure distribution. The side of the mani-
fold exposed to the primary gas compartment is protected from the high temperature gas
by an insulating ring. Concentricity of the buffer gas manifold relative to the knife edge
seals is adjusted by four positioning lugs which also support the manifold in the spool case.
The lugs are designed to permit free radial growth of the manifold.

2. Rig Description

The primary gas duct and rig secondary seal knife edge are incorporated into a subassembly
and welded into the rear case. The duct is a semitoroidal structure with an opening to one
side allowing primary gas communication to the vicinity of the test seal. The inside of the
duct is insulated to reduce heat losses and to keep the duct walls as cool as practical. Four
primary gas inlet fittings are located alternately with and in the same plane as four exhaust
ports. Baffles are located between the ports allowing the gas to circulate toward the buffer
gas manifold. The rig secondary seal knife edge is riveted to the [.D. of the primary gas duct
and is in the same axial plane as the land bolted to the rotor side plate. This secondary seal
prevents the impingement of hot gas on the rotor 1.D.

An intermediate spool case and front case complete the basic rig layout. The spool case
contains the buffer gas manifold concentricity adjustment lugs and supports. Buffer gas
supply fitting pass-through holes and hand holes for servicing the prox1m1ty probes and ad-
justment lugs are provided around the circumference of the case. '

The front case, which completes the ambient compartment, contains access holes (with
covers) by which the labyrinth seal can be visually examined to a limited degree. Measure-
ment of seal gap with feeler gages is also accomplished through these holes. Buffer gas flow
to the ambient compartment is exhausted from the rig through fittings in the front case.

The spool case and front case each contain a groove to support metal static seals. The buffer
gas manifold is trapped between the two static seals to establish its axial location and pro-
vide sealing without restraining the radial growth of the manifold.

C. SEAL PROCUREMENT AND INSPECTION — TASK 11

Task II required that the contractor procure the components of the abradable buffered
labynnth seal designed under Task I. Procurement also included one spare labyrinth seal . ... - - -

" ring, special proximity probes and ¢ adapter parts for mounting the seal in the test rig.
Modifications to the existing test hardware as defined under Task I also were required.
Inspection of the test seal components and test rig modifications were completed in accord-
ance with the contractor’s established practice and the inspection was approved by the
NASA Project Manager.
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D. EXPERIMENTAL EVALUATION — TASK 11

The objective of the experimental test program was to flow calibrate a buffered labyrinth
seal under environmental conditions similar to those expected at a first-stage lift fan tip
turbine inner air seal. The flow calibration of the seal, as a function of knife edge clearance,
buffer gas temperature and pressure, and the pressures and temperatures of the ambient and
primary gas streams was performed in a thirty-point test program. The data was then used
to validate the analytical design system developed under Task I.

1. Facilities and Instrumentation

. To provide the various gas flows required, the rig was serviced by the air system shown
schematically in Figure 22. Air delivered to the test stand was heated by an alcohol burner
and directed, as needed, to the rig primary compartment. Buffer gas was heated by mixing
hot gas from the same burner with cold air from a second source. Rotor cooling air was
delivered to the rig unheated. All three air supply flows were measured by orifice flow-
meters. The buffer gas which flows across the double knife edge was measured by an orifice
flowmeter located in the ambient compartment exhaust line. The gas flow across the single
knife edge was determined by the difference between the buffered gas supply flow and the
ambient exhaust flow. Rig leakage was estimated to be less than the accuracy of the flow
measuring devices and, was therefore, considered negligible.

In addition to the gas flows, other measurements include rig compartment air pressures and
temperatures, component surface temperatures and radial changes to the seal gap. All of

these parameters were measured by conventional Sensors: Pressure-taps-were-connected-to
gages on “U” tubes and chromel-alumel ty pe thermocouple outputs were either recorded
automatically or manually from potential type read out devices. Eddy current type
proximity probes were used to measure the seal gap and data was recorded from a digital
voltmeter and oscilloscope.

The proximity probes were mounted in the buffer gas manifold in radial “pass through”
tubes. The probes were threaded into the manifold I.D. end of the tubes, as shown in
Figure 19. The head of the probes protruded through holes in the abradable rubstrip and
measured the distance to the platform between the two widest spaced knife edges. This
arrangement minimized errors due to differential thermal expansion between the buffer gas
manifold and the proximity probes. The probes were statically temperature calibrated
before installation and displacement calibrated statically after installation into the rig. The
rig, assembled and installed in the test cell, is shown in Figure 23.

2. Build 1 Seal Testing with Static Cold Clearances of .127 x 10-2 Meter (.050 Inch)
The test seal as it was installed in the rig is shown in Figure 24. The buffer gas manifold was
adjusted to establish an average knife edge gap of .124 x 10’2 meter (.049 inch). Testing

was initiated following the 15 point program shown in Table II.

The first six points were obtained at static (no speed) conditions with room temperature
air. Points 1 through 3 were designed to obtain the variation of flow as a function of the

11
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pressure ratio, PI/PP, across the single knife edge which separates the intermediate pressure
cavity from the primary gas compartment. Primary gas pressure, Pp, was set and measured
directly. Intermediate pressure was measured by sealing the ambient compartment (no
flow) and measuring that pressure (P 4) which would be the same as Pj. Similarly, points 4
through 6 were designed to obtain the variation of flow as a function of the pressure ratio,
PI/PA, across the double stage knife edge labyrinth segments that separate the intermediate
pressure cavity from the ambient compartment. While these test points were recorded, the
primary gas compartment was sealed (Pp = PI) and the ambient compartment was vented to
atmosphere, P, = 101.4 x 103 N/m2 (14.7 psia). The results of points 1 — 3 are shown in
Fig. 25 and points 4 through 6 are shown in Figure 26. By measuring Py in the above
manner, the pressure drop through the buffer gas manifold orifice holes could be determined
and the flow coefficient through the orifice holes could be calculated. Analysis of the static
test results indicated that the flow coefficient for the buffer gas orifices should be 0.8
rather than the predicted value of 0.6 from the Design Analysis. A static flow calibration of
the orifices is presented in Figure 27. Based on the pressure drops across the single and
double stage labyrinth seal, the analytically calculated uni-directional flows across the seals
were found to be in close approximation to the measured values at these pressure drops.

Dynamic points 7 through 12 were run at a constant rig speed of 3480 rpm. Buffer gas
pressure and temperature were varied to calibrate the buffer gas as it splits and flows across
the single and double stage labyrinths. The primary gas compartment was maintained at
approximately 170.3 x 103 N/m2 (24.7 psia). The ambient compartment pressure was
minimized to the capability of the exhaust plumbing, less than 122.0 x 103 N/m2 (17.7

psia) at the higher flows. At test points 13 and 14, primary gas, which in previous points

was heated only as a result of mixing with the buffer gas, was heated to approximately 922°K
(1200°F). Point 15 was a static test point and provided a flow calibration at a.127 x 102
meter (0.050 inch) knife edge gap. The results of the above test points are tabulated in

Table II.

The calculated flows in Table II were determined by using the measured knife edge gap
during the test and with the orifice flow coefficient of 0.8 derived from the six (6) static,
unidirectional calibration test points. '

At the completion of the first fifteen (15) test points, the buffer gas manifold was removed
and examined. Debris suspended in the buffer gas air supply left witness markings, shown
in Figure 28, indicating uniform flow distribution from the orifice.

No damage was noted to either the rubstrip or to the labyrinth seal. The abradable'mater-
ial was machined off and the manifold was recoated. The recoated abradable material was
machined to provide a nominal .061 x 10°2 meter (0.024 inch) gap with the knife edges.

3. Build 2 Seal Testmg With Static Cold Clearance of 061 x 10°2 Meter (- 024 in.)

The recoated buffer gas manifold was reinstalled in the rig and adjusted to establish an
average knife edge gap of .061 x 102 meter (.024 inch). The rotor runout, as measured by
the proximity probes, was approximately .0051 x 102 meter (.002 inch). The continuation
of the test program followed the schedule shown in Table III.



The first six static points were run in the same manner as in previous testing. The flow
calibration across the single labyrinth is presented in Figure 29 and the calibration across
the two stage labyrinth is presented in Figure 30. Figure 31 is a flow calibration of the
orifice holes.

Dynamic points 22 through 24 were run at a constant rig speed of 3480 rpm. Buffer gas
pressure and temperature were varied to calibrate the buffer gas as it splits and flows across
the single and double stage labyrinths. The primary gas compartment was maintained at
approximately 186.1 x 103 N/m2 meters (27 psia). The ambient compartment was mini-
mized to the capability of the exhaust plumbing, less than 110.3 x 103 N/m2 (16 psia) at
the higher air flows. At test points25 through 29, the primary gas, which in previous points
was heated only as a result of mixing with the buffer gas, was heated to approximately
922°K (1200°F). At the same time the rig speed was increased to approximately 6000 rpm
(5000 at point 25). While attempting to set test point 26, three of the four proximity
probes failed from an apparent rub. Survival of one of the probes indicated that the man-
ifold was eccentric to the rotor at this time since all probes were initially set at the same
static displacement from_the rotor. Point 30 was a static test point and provided a flow
calibration at .061 x 10'2 meter (.024 inch) seal gap.

At the completion of the test program, the rotor runout, as measured by the proximity
probe, was found to be approximately .0051 x 10-2 meter (.002 in.) while the seal gap was
measured at .0599 x 10-2 meter (.0236 inches) average. The manifold was then removed
from the rig and the seal components were examined. Grooves in the rub strip caused by
the knife edges were evident. The rub was not a full 360° nor was the depth of the

penetration symmetrical about the vertical axis indicating that the manifold became out of ™

round and eccentric to the rotor. The maximum depth of the grooves was .076 x 102
meter (.030 inch). The only wear noted on the knife edges was some rounding off of the
edges.

Results of the dynamic testing at the reduced clearance are presented in Table III along with
the analytically calculated values.

4. Analysis of Experimental Evaluation

Tables 1T and I present the seal air flows measured during the dynamic test portion of the
seal evaluation for each test condition set. In addition, for each of these test combinations,
the predicted air flows are presented for comparison along with the measured parameters
used in calculating these flows. To further demonstrate the correlation between test and
analytical seal air flows, six (6) test points from Tables II and III were plotted on the
analytically generated curves shown in Figures 32, 33, and 34. Data for the analytical
curves was obtained from measured compartment pressures and temperatures. Data from
the first build with the 1.27 x 103 meter (.050 inch) cold gap clearance is shown by curves
7,9, and 11 while data for the second build with the .61 x 1073 meter (.024 inch) cold gap
clearance is presented by curves 22, 23, and 24.

As shown in Figure 32, good correlation between the analytical and measured buffer air
flows is demonstrated for the larger cold gap clearance. Measured buffer flows at the

13
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reduced cold gap clearance, however, do not fall as close to the analytical curves. It should
be noted that at the smaller seal clearance the knife edge discharge coefficient («) varies
more for small deviations in clearance than it does at the larger clearance (Figure 2). There-
fore, small differences between actual and measured clearance would have a greater effect
on the relationship between analytical and experimental air flow at the smaller clearance.

In addition, the effect of the knife edge tip radius on the flow coefficient is not known and,
therefore, was not used in the analytical computation. With the present system, the buffer
air flow at the lower seal clearances can be predicted within 20 percent of the experimentally
measured flows. To obtain accuracy in the 7 percent range as demonstrated with the larger
clearance, greater accuracy in determining the knife edge discharge coefficient is needed.

Figures 33 & 34, demonstrate the correlation between measured and calculated ambient and
primary seal air flows at the same conditions considered in Figure 32. Predicted ambient

air flows are consistently higher than measured values, whereas, predicted primary flows fall
lower. Referring back to Figures 25 and 26, excellent correlation was found between the
analytical and measured flows during static calibrations. With a lower ambient flow, the
actual primary flow is consequently higher. Referring back to Tables II and IlI, the flow
split across the knife edges for any measured orifice flow is in the range of 10 to 13 percent.

Prediction of seal operating clearance was not as expected. Measured values consistently
averaged lower than predicted clearances. Initially, when predictions were made, it was
assumed that the rotor could be cooled and maintained below 311°K (100°F). However,
in meeting primary air temperature requirements, the rotor cooling air was insufficient to
maintain the rotor temperature at the expected level, therefore, resulting in larger thermal
rotor growth and thus lower seal gaps. These rotor iemperature measurements are docu-
mented in Figure 35 and Table 1V of Appendix 1.
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Figure 20 OD of Labyrinth Seal Ring Showing Knife Edge Seals
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Figure 21 Seal Stator Assembly
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Figure 23

Figure 24

Rig Installed in Test Cell

Test Seal Installed in Rig
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T/C #
Per
Fig. 35
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TABLE IV

DYNAMIC TEST — ROTOR AND SEAL STATOR TEMPERATURES

7

OK (OF)

304
304
304
303
303
296
300
301
301

(88)
(88)
(88)
(86)
(86)
(73)
(80)
(82)
(82)

311 (100)
311 (100)
311 (100)
313 (104)
313 (104)
313 (104)
320(117)
320(117)
320 (117)
320(117)

308

(95)

320 (116)

305
304
304
301
301
301
305
304
304
305
303
303
304
303
302

(90)
(88)
(88)
(83)
(82)
(82)
(89)
(88)
(87)
(90)
(85)
(85)
(87)
(85)
(84

8

°K (OF)

304
304
304
303
303
296
300
303
303

(88)
(83)
(88)
(85)
(85)
(73)
(81)
(86)
(86)

311 (100)
311 (100)
311 (100)
313 (103)
313 (103)
313 (103)
321 (118)
321 (118)
321 (118)
321(118)
316 (109)
321 (118)

305
305
305
303
303
301
305
305
304
300
303
303
303
303
303

(90)
(90)
(90)
(85)
(85)
(83)
(90)
(89)
(88)
(80)
(85)
(85)
(85)
(85)
(85)

9
°K C°F)

385 (233)
385 (233)
385 (234)
389 (240)
389 (240)
384 (231)
338 (148)
389 (240)
389 (240)
373 (211)
374 (213)
355 (180)
368 (203)
371 (208)
371 (208)
324 (123)
323 (121)
323 (121)
323 (122)
324 (124)
324 (124)

386 (236)
389 (240)
390 (242)
391 (245)
389 (241)
390 (242)
393 (248)
390 (243)
393 (248)
361 (190)
389 (240)
390 (242)
393 (247)
390 (243)
390 (243)

TEST POINT

10
oK (OF)

392 (246)
392 (246)
392 (246)
390 (243)
390 (243)
375 (216)
332(138)
391 (245)
393 (248)
396 (253)
396 (253)
375 (216)
394 (250)
394 (250)
394 (250)
375 (216)
375 (216)
375 (216)
375 (215)
375 (215)
375 (215)

393 (248)
390 (242)
390 (242)
390 (242)
388 (238)
388 (238)
391 (245)
389 (241)
390 (242)
361 (190)
388 (238)
388 (238)
388 (239)
388 (238)
388 (238)

11
oK (oF)

445 (342)
445 (342)
446 (343)
444 (339)
443 (338)
437 (327)
351 (173)
443 (338)
444 (339)
435 (324)
435 (324)
401 (262)
430 (314)
431 (316)
431(316)
355(179)
354 (178)
354 (178)
355 (180)
355 (180)
355 (180)

444 (340)
450 (351)
452 (354)
455 (360)
453 (355)
455 (359)
455 (360)
450 (350)
456 (362)
405 (269)
451 (353)
451 (353)
454 (358)
451 (353)
450 (350)

12
oK (oF)

458 (364)
458 (365)
458 (365)
455 (360)
455 (360)
450 (350)
354 (177)
455 (360)
455 (360)
454 (358)
454 (358)
415 (287)
448 (347)
449 (349)
449 (349)
394 (250)
394 (249)
394 (249)
394 (249)
394 (249)
394 (249)

459 (367)
454 (358)
455 (360)
455 (360)
451 (353)
454 (358)
456 (362)
454 (358)
456 (361)
405 (270)
397 (255)
399 (258)
399 (259)
398 (257)
399 (258)

13
°K (°F)

331(137)
333 (139)
333 (139)
319 (115)
319 (115)
314 (105)
311(100)
320 (116)
320(117)
331(137)
331 (137)
329 (132)
328 (130)
327 (129)
327 (129)
320 (116)
319 (115)
319 (115)
319 (115)
319 (115)
319 (115)

404 (268)
344 (159)
349 (168)
323 (121)
312 (102)
310 (99)
317(111)
312 (102)
313 (103)
343 (158)
371 (208)
328 (130)
323 (122)
323 (121)
318 (112)

14
oK (oF)

400 (260)
401 (263)
402 (264)
390 (243)
390 (242)
380 (225)
339 (150)
390 (242)
390 (242)
380 (224)
380 (225)
362 (192)
374 (213)
375 (216)
375 (216)
329 (132)
328 (130)
328 (130)
328 (130)
328 (130
328 (130)

519 (475)
434 (330)
423 (482)
394 (250)
373 (212)
379 (222)
384 (232)
376 (218)
382 (228)
397 (255)
444 (339)
440 (333)
393 (248)
385 (233)
386 (236)
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Per
Fig. 35
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22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

DYNAMIC TEST — ROTOR AND SEAL STATOR TEMPERATURES

22
°K (OF)

297
297
297
297
297
297
294
297
298
298
298
298
300
301
301
294
294
294
294
289
293

293
295
293
294
295
295
295

292
282

292
291

(75)
(75)
(75)
(75)
(75)
(75)
(70)
(75)
(76)
(76)
(76)
(76)
(81)
(82)
(82)
(70)
(70)
(70)
(70)
(60)
(67)

(63)
(72)
(68)
(69)
(71)
(72)
(72)

(66)
(48)

(66)
(64)

23
oK (oF)

385 (234)
385 (234)
385 (234)
387 (237)
387 (237)
388 (239)
333 (139)
386 (236)
387 (237)
396 (254)
395 (252)
349 (168)
355 (180)
358 (184)
357 (183)
312 (102)
311 (101)
311 (101)
313 (103)
313 (103)
313 (103)

392 (246)
389 (241)
389 (240)
390 (242)
389 (241)
389 (241)
390 (243)

388 (238)
390 (242)

389 (240)
390 (242)

TABLE 1V (Cont’d)

24
OK (OF)

441 (335)
441 (335)
442 (336)
447 (345)
447 (345)
449 (348)
356 (182)
445 (342)
445 (342)
395 (251)
371 (209)
379 (222)
389 (240)
292 (246)
390 (243)
321(118)
320 (116)
320 (116)
322 (120)
323 (122)
323 (122)

TEST POINT

25
oK (OF)

503 (445)
501 (442)
501 (442)
489 (420)
488 (419)
489 (420)
355 (179)
489 (420)
489 (420)
455 (360)
403 (266)
442 (336)
473 (392)
474 (393)
474 (394)
408 (275)
408 (275)
408 (275)
405 (270)
391 (245)
404 (267)

26
oK (oF)

544 (520)
542 (515)
540 (513)
511 (460)
526 (487)
532 (498)
363 (193)
531 (496)
531 (497)
509 (457)
436 (325)
495 (431)
539 (510)
539 (510)
539 (510)
492 (426)
491 (425)
491 (425)
488 (419)
459 (367)
488 (418)

27
oK (oF)

507 (453)
507 (453)
503 (445)
497 (435)
497 (435)
496 (434)
350 (170)
505 (449)
504 (447)
546 (523)
328 (130)
496 (433)
546 (523)
545 (522)
545 (522)
530 (495)
529 (493)
529 (493)
526 (488)
511 (460)
525 (485)

INOPERATIVE THERMOCOUPLE
INOPERATIVE THERMOCOUPLE

864 (1095) 865 (1098) 876 (1117) 721 (838)

454 (357)
450 (350)
446 (344)
448 (347)
447 (345)
444 (340)
444 (340)

540 (512)
471 (389)
494 (430)
467 (381)
469 (384)
485 (413)
468 (382)

500 (440)
529 (493)
509 (457)
495 (432)
515 (468)
493 (427)

497 (435)
513 (463)
506 (452)
496 (433)
502 (444)
494 (430)

INOPERATIVE THERMOCOUPLE
440 (332) 607 (632) 632 (678) 586 (596)
444 (340) 523 (482) 628 (671) 632(678)
INOPERATIVE THERMOCOUPLE
442 (336) 498 (436) 509 (453) 483 (410)
445 (342) 466 (380) 493 (428) 491 (424)

28
oK (OF)

472 (390)
476 (397)
480 (405)
466 (380)
470 (386)
473 (391)
339 (150)
478 (400)
483 (410)
492 (426)
346 (163)
479 (402)
529 (492)
529 (492)
528 (492)
531 (497)
531 (497)
530 (495)
530 (495)
514 (465)
530 (494)

467 (381)
456 (362)
465 (377)
466 (380)
467 (381)
454 (358)

517 (471)
604 (627)

428 (310)
453 (355)

29
oK (OF)

462 (372)
466 (379)
469 (385)
459 (367)
461 (370)
464 (375)
339 (150)
468 (382)
475 (395)
438 (418)
355 (180)
470 (387)
523 (482)
523 (481)
522 (480)
529 (492)
529 (492)
529 (493)
528 (490)
523 (482)
526 (487)

460 (369)
450 (351)
456 (361)
459 (367)
455 (360)
450 (351)

505 (449)
589 (600)

426 (308)
450 (350)
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APPENDIX Il

LIST OF SYMBOLS

— Leakage area ~ meters2 (inchz)

— BRuffer gas supply orifice area ~ meters> (inchz)

— Flow coefficient ~ dimensionless

— Number of knife edges

— Number of buffer gas supply orifices

— Ambient gas pressure ~ N/m2 (psia)

_ Buffer gas pressure — N/m2 (psia)

— Intermediate pressure ~ N /m2 (psia)

— Primary gas pressure ~ N/m2 (psia)

— Downstream pressure ~ N/m2 (psia)

— Upstream pressure ~ N/m2 (psia)

— Temperature ~ °K (°F)

— Ambient gas temperature ~ °K (°F)

— Buffer gas pressure ~ °K (°F)

— Primary gas pressure ~ °K (°F)

— Buffer gas flow ~ kg/sec (1bs/sec)

— Ambient gas flow ~ kg/sec (Ibs/sec)

— Primary gas flow ~ kg/sec (lbs/sec)

— Expansion factor ~ dimensionless

_ Knife edge clearance ~ meters (inch)

_ Heat transfer film coefficient ~

joules

BTU

hr m2 °K

(

hr m?2 °K

)
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LIST OF SYMBOLS (Cont’d)

k — Ratio of specific heats ~ dimensionless
s — Knife edge spacing ~ meters (inch)
t — Knife edge thickness ~ meters (inch)

AP — Pressure differential ~ N/m2 (psia)

a  — Flow coefficient, function of N, P4/P
v  — Carryover factor, function of N, e/s.
P — Buffer gas density ~ kg/m3 (lbs/ft3)
Py — Upstream gas density ~ kg/m3 (lbs/ft3)

¢  — Flow function, function of t, e/t
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