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NEW ASPECTS OF SUBSONIC AERODYNAMIC NOISE THEORY

by Marvin E. Goldstein and Walton L. Howes

Lewis Research Center

SUMMARY

A theory of aerodynamic noise is presented which differs from Lighthill's theory pri-
marily in the way in which convection of the noise sources is treated. The sound direc-
tivity pattern obtained from the present theory agrees better with jet-noise directivity
data than does that obtained from Lighthill's theory. The results imply that the shear-
noise contribution to jet noise is smaller than previously expected.

INTRODUCTION

The theory of aerodynamic noise was developed by Lighthill in two classic papers
(refs. 1 and 2). Lighthill showed that, in the absence of solid boundaries, aerodynamic
noise is produced in a fluid by turbulent stress fluctuations acting as acoustic quadru-
poles. In a moving fluid these quadrupoles are carried along by the mean flow at some
convection Mach number M For nearly parallel flows (as in jets), convection of the

c
quadrupole sources introduces a factor (1 - M cos 0) into the noise directivity pattern,

1where Q is the angle measured from the mean flow direction. In Lighthill's theory this
convective directivity factor dominates the directivity pattern of jet noise. However, it
has been found that, when experimentally measured values of M are used in the theory,

\j

the predicted directivity patterns do not give good agreement with experiment.
In the present report a possible alternative theory of jet noise is proposed. This

theory leads to a formula for predicting noise which differs from the formulas obtained
from Lighthill's theory in that the exponent -5 in the convective factor is replaced by the
exponent -3. This gives better agreement with existing experimental directivity data.

Since the present theory begins with a convected wave equation, it starts from a
more general point of view than Lighthill's theory. The effects of convection and refrac-
tion of the emitted sound waves by the mean flow are neglected, and the resulting wave

T'he exponent -5 was first obtained by Ffowcs Williams (ref. 3). Lighthill errone-
ously obtained an exponent -6.



equation is then solved for the far-field sound pressure by using the free-space Green's
function. Next, the source term (which involves the fluctuating Reynolds stress in es-
sentially the same way as Lighthill's source term) is evaluated by using the isotropic
turbulence model adopted by Lilley (ref. 4) and by Ribner (ref. 5). Finally, it is shown
that the directivity patterns of the far-field sound intensity obtained from this theory are
in better agreement with experimental data than those obtained from Lighthill's theory.

DERIVATION OF BASIC EQUATION

We begin by deriving an approximate wave equation very similar to Phillips exact
wave equation (ref. 6). However, it is convenient to derive this equation from first prin
ciples, instead of starting with Phillips equation, since certain approximations which we
shall make are most conveniently introduced during the derivation. As in reference 6,
we start from the Navier-Stokes equation

: _ i V p + ± V . e ( 1 )
Dt p p

and the continuity equation \

120+V - V = 0 (2)
p Dt

where

Dt at

p is the pressure, p is the density, V is the velocity, and e* is the viscous stress ten-
sor. (All symbols are defined in appendix B.) We also assume that the ideal-gas
relation

p = Rp0 (3)

holds. The velocity V can be expressed as the sum of a time-averaged part U and a
fluctuating part V*. Thus,

V '= U + V' (4)



Furthermore, suppose that the mean velocity is parallel to the Xj-coordinate axis and
varies only in the x^-direction in a locally Cartesian coordinate system (x,, x«, Xo).
Since refraction effects will be neglected, this is a reasonable assumption for a jet.
Thus,

U = iU(x2) (5)

The density can be expressed as

P = P 0 + P (6)

where p is the time-averaged density and p' is the fluctuating part of the density. Al-
though we shall allow the maximum mean-flow Mach number to be any value less than
unity, the Mach number of the turbulence will always be much less than unity. In fact,
for jet flows, the Mach number of the turbulence will be less than 0.1 or 0. 2 (ref. 7).
Hence, the turbulent flow is essentially incompressible. And the fluctuating part of the
density is essentially associated with acoustic waves and not with the turbulence.

As pointed out in reference 8, the interaction of the emitted sound with the turbu-
lence is negligible. This interaction is accounted for in the equations by the terms which
involve products of the turbulent quantities with acoustic quantities. Such terms will,
therefore, be neglected. We shall also neglect any terms which involve squares of acous-
tics quantities since these terms are assumed to be small.

It follows from equations (4) to (6) that the exact time-averaged form of the continu-
ity equation (2) is

Spn —=-
U—2 = - V. p'V

Since V* is the sum of turbulent and acoustic velocities, the assumptions discussed in
the preceding paragraphs imply that the right side of this equation can be neglected.
Therefore, assuming an initial uniform density upstream, the time-averaged density pQ

will be independent of position.
It also follows from equations (4) to (6) that

* o ' -*•
Dp _ dp TT Op TT' _ m I

Dt 9t 9x..

The assumptions discussed in the preceding paragraphs again imply that the last term on
the right side of this equation can be neglected. We can therefore write



Dt at

so that the continuity equation becomes

V -
p at ax

Now it can easily be shown from the formula for entropy change in an ideal gas
(ref . 9) that

p yp Cp

where S is the entropy, C is the specific heat at constant pressure, and y is the
ratio of specific heats. Hence,

at ax c p a t

where we have put

n s 1 In -P- (8)
r P0

and have, for convenience, chosen prt to be the average far-field pressure. The fluc-
-» t> ^_ n

tuating velocity V can be decomposed into a turbulent part w plus an acoustic part
v", where v is called the acoustic particle velocity. Thus,

V1 = w + v (9)

Since the turbulence is essentially incompressible, we can suppose that

V • w = 0 (10)

Hence,

2
Notice that we are ignoring acoustic streaming.



Since v is an acoustic quantity, this shows that V • V is essentially an acoustic quan-
tity. In view of the assumptions previously described, we can, therefore, write

Dt Vat

Hence, it follows from equation (7) that

Dt lat 3xJ C
p

9 t

Upon using the vector identity

D _ g DV. 3V. 3V.

Dt 3Xj Dt 3x. 3x.

given in reference 6, this becomes

/a a \2 1 /a a \2 SV 9V

v- = .[A+u-L-\ n + JL[i. + u-i-\ s
Dt I at axj I c lat ax

where the summation convention has been adopted. After substituting equations (4), (5),
and (9) into this equation and neglecting the squares of acoustic quantities and the prod-
ucts of acoustic and turbulent quantities, we obtain

a DVi A a\2 1 /a a\2 HIT ̂ 9 9Wi 9WiJ-^_l=-fJ.+ u-L\ n+J_[l+u-U s + 2^--l + —J—* (ID
ax, Dt lat axJ c: \at axJ dx0 ax, ax, ax.i Y y p \ y < j i i ]

where we have put

W. = 6UU + w. (12)

with 6-- the Kronecker delta. Furthermore, using the fact that, for an ideal gas, the
speed of sound c is given by



the Navier-Stokes equation becomes

Dt p

Hence, upon taking the divergence of equation (13) and using the result to eliminate the
left side of equation (11), we obtain

sv aw. aw,
n - v • c^vn . 2 — —- = —J —-

dx2 axj axj ax.

This equation differs from Phillips' equation, (eq. (2.8) in ref. 6), which is exact, in two
important respects, namely the operator D/Dt in Phillips' equation is replaced by the
operator

at ax<

and the terms

av. avi

3x- 3x.
J

in Phillips' equation are replaced by the terms

,TT av,, aw. aw.
2 dU__2 + J i

ClXo OX* OX- OX*2 1 ^ ^ )

The derivation carried out above shows that these approximations amount to neglecting
squares of acoustic quantities and the interaction between acoustic waves and turbulence.
As pointed out in reference 8, for subsonic flow, the neglect of the interaction of the
sound with the turbulence is justified on the basis that the acoustic waves emitted by the
turbulence are of such long wavelengths compared with the size of the turbulent eddies
that they pass right through the turbulence without being significantly affected.



The changes in entropy are related to the heat conduction through the energy equa-
tion. However, for the high Reynolds numbers which are of interest in jet flows, the di-
rect effects of heat conduction and fluid viscosity are likely to be unimportant for cold
jets. Hence, we shall assume that the entropy is constant and that the speed of sound has
the constant value c . In addition, we shall neglect the viscous stress tensor e. Then,
equation (14) becomes

f-i + U
tat

2 9 9 riTT 3v9 3W. 3W.
n - C Vn - 2 ™_— *- = -J -1

dx ax.
(15)

x.

Upon substituting equations (4), (9), and (12) into equation (13), neglecting terms involv-
ing squares of acoustic quantities and interaction of the sound with the turbulence, the
X9-component of equation (13) becomes

at ax ax
. + Wl

at 3xJ
V

(16)

Then, by eliminating v« between equations (15) and (16), we obtain

at
fl + u JL
lat ax.

n - + 2c2 du

= ± + u
l3t 3XJV3XJ ax- at ax

(17)

Now, it follows, from equation (12) and the fact that U is a function of x« only, that the
right side of equation (17) can be written as

lat
u - 2

c- 3Xi

f + U - + w. —
3t 3x.. 3x,

iat Ll/\uXi 9xi,



However, it follows from equation (10) that

3w
w.

and

3w- 3 WjW.

3x. 3x.

Hence, equation (17) becomes

\3t

/ \£

fl + u -L-\ n - C
2v2n du d n

dx2 BXjSxg

= —+U
at ax

32(w.wj)

3x. 3x.
- 2

Since

„ » a dU
dx

ax,

and

uv2n vun - 2 du an
dx2ax2

this equation can be written as



where we have put

9x-3x. \J3t 9x

- 4
9x.

«LJ_fiw0w.+co62 . n) '1 + con) (18)

(19)

INTERPRETATION OF BASIC EQUATION

Equation (18) is the starting point of the present analysis. We shall suppose that the
turbulent and mean flows are given. Then, since the terms on the right vanish outside of
the jet, we can treat the right side of equation (18) as a source term. Since no inter-
action between the sound wave and the turbulence is allowed once the sound is emitted,
from the acoustical viewpoint each turbulent eddy acts independently. The sound is sim-
ply convected and refracted by the mean flow. In fact, the left side of equation (18) is a
wave equation for the quantity r in a parallel flow with velocity U varying only in the
x«-direction and with the term accounting for the direct refraction of the sound by the ve-
locity gradients neglected (see ref. 10). The source terms on the right side represent
the production of sound by the turbulence. The consequences of equation (18) coincide
with those of Lighthill's theory if the mean flow is negligible, but otherwise (as we shall
see) equation (18) can lead to different results.

NEGLECT OF CONVECTION AND REFRACTION EFFECTS

The operator (3/3t + U B/Bx.j on the left side of equation (18) is the time derivative
in a coordinate system moving with the local mean velocity U, which we shall see is
roughly equal to the velocity at which the individual sound sources move. This time de-
rivative therefore roughly has the effect of multiplying the term on which it operates by
the average angular frequency n of the sound in a coordinate system moving with the
source. Hence, if the wavelength 2ircQ/n is large compared with the jet diameter, the
first term on the left side of equation (18) can be neglected by comparison with the second
term at all points within the jet. On the other hand, since U is only nonzero within the

2 2jet, the operator in the first term reduces to 3 /3t outside the jet. However, the



operator 3/3t roughly has the effect of multiplying the term on which it operates by the
average frequency w of the sound in a fixed frame. Hence, if the typical wavelengths
27rc /w and 2irc /SI are large compared to the jet diameter, we can replace the oper-
ator on the left side of equation (18) by the free -space wave operator.

-§1 - c V^T cov

at2

Now the data in references 11 and 12 show that these typical wavelengths vary from
around 6 to 10 jet diameters. Hence, we shall make the assumption described in the pre
ceding paragraph and replace equation (18) by

- 4
ax.

dU
dx2

(20)

This approximation amounts to neglecting the convection and refraction of the sound by
the mean flow; an approximation which is also made in Lighthill's theory.

SIMPLIFICATION OF SOURCE TERM

Within the jet the acoustic velocity is certainly negligible compared with the flow
velocity

Wi = 5liu (12)

Thus, within the jet the x«-component of the momentum equation (16) can be written as

w. = + U

And since the source term in equation (20) vanishes outside the jet, we can substitute this
expression into the source term to obtain

10



4 J_dU _ 3 + u _ 3 _ \
3xj dx2 et

(21)

We now introduce the vector potential A by

(22)

Then, as shown in books on electrodynamics (e.g., ref. 13, sec. 5.3), since V • w = 0,
this equation implies that

w = V x A (23)

and

V • A = 0 (24)

Thus, in particular,

3 A

where is the permutation symbol. Upon substituting this into equation (21) and re-
calling that U is a function of x2 only, we obtain

_§_
3x.

» (25)

Now, as suggested by Lilley (ref. 4) and demonstrated by others (refs. 14 and 15),
in a jet shear layer the mean velocity gradient dU/dXn (mean shear) is slowly varying
over the narrow strip along the center of the mixing region where most of the turbulent
energy occurs. Hence, terms corresponding to the variation in dU/dx2 should only
make a small contribution to the source term and, therefore, will be neglected. Thus,
we will assume that

11



dU . .= constant
dx2

Then equation (25) becomes

2 \ 2 /
[1+U-2-W,. (26)

where we have put

1H.A, (27)

This equation is similar to Lighthill's equation in that it is an ordinary inhomogeneous
wave equation for a uniform medium containing a quadrupole source. However, it differs
from Lighthill's equation in the important respects that the dependent variable is T in-
stead of the condensation (i. e., (p - p )/p ) and the quadrupole source term is consider-
ably different from Lighthill's.

RETARDED POTENTIAL SOLUTION OF BASIC EQUATION

The retarded potential solution of equation (26) for r which vanishes at infinity is

r(x)=JL_ 1-̂ —
4«?./*i*J

-+U(y9) 6

fly
^ dy (28)

where r= |x - y| and the vectors y and x now denote source and receiver points, re-
spectively. In addition, 6/6y- indicates partial differentiation with respect to y^ with r
held fixed. Now, for any function F(y,r,t),

_6F_ = 9F_ 9F_9£_ = 9F_ 3F_

where S/Sy- denotes partial differentiation with x fixed and 3/axj denotes partial dif-
ferentiation with y fixed. Then,

12



62F 32F ^ 32F + 32F + 32F

Upon inserting these results in equation (22), using the divergence theorem and the fact
that

as y — °°

we obtain

r =
47TC

<£+ ,U(y2)-^
at ax.

v

dy

Since

^ /-
cQr 3t

it follows from equation (19) (since U vanishes outside the jet) that, when r is large
enough so that x is in the radiation field of each turbulent eddy (so that terms of higher
order in 1/r can be neglected, see ref. 1), the preceding equation for r reduces to

an
at

„ i f <xi - yi)(xi - yj
4»cJ J r3

1 -
U(y2) • ( x - y )

cor at
(29)

Since (p - p )/p is certainly very small in the radiation field, it follows from equa-
tion (8) that

(30)

which is equal to the condensation in the radiation field.

13



SOLUTION IN TERMS OF SPECTRA

We shall assume that the turbulence is statistically stationary in time. Then we
shall suppose (as usual, in order to ensure the convergence of the Fourier integrals
which will be introduced below) that T^, = 0 for Jt| > T, where T is some large time
which will be put equal to infinity at the end of the analysis. We now introduce the
Fourier transforms

P =

/

c

.

dt

Then, upon using the asymptotic approximation (30), the Fourier transform of equa
tion (29) becomes

-iu>P = iu3
>

1 -
U(y9) • (x - y)

cor
dy (31)

In the far field of the entire flow, the spectral density of the intensity is given by
(ref. 16)

3u,i2
Po'oM

2T

Substituting equation (31) into this relation and using the convolution theorem gives, in
view of equation (27),

'ir n3
1 -.

(31a)

14



where the operation of taking the real part is certainly justified since I is real. (This
operation is performed for convenience in subsequent manipulations.) Also,

j wkwi

ft* C
 dU86li€2jm —

is a fourth-order, two-point, time-delayed turbulence correlation tensor where
~r\ = z* ~ y*. The primes indicate that the quantities are to be evaluated at z" = y + rf and
i + T, while the unprimed quantities are evaluated at y and t. The overbar denotes the
average

/

T

f ( t , t + T ) = — I f ( t , t + 7 ) d t

The term w.w. w{w'7, which does not contribute to I (x), has been introduced for con-
1 ] K 6 ^ ( , _ t _^

venience. Upon changing the variables of integration from y and z to y and 7? and
collecting terms, the equation for I C x ) becomes

(33)

FAR-FIELD EXPANSION OF SOLUTION

Because the distance j rf| over which the correlation dtij^^ is nonzero is certainly
smaller than any overall dimension of the region of turbulence, we can always suppose
that the observation point x is sufficiently far away from the flow so that

|x - y| » (51

Therefore, upon expanding the integrand in equation (33) and neglecting terms of order
\TJ\/r, we obtain

15



where we have put

?= x - y

and

r rU

is the cosine of the angle 6 between the direction of mean flow and the direction of ob
servation.

Now,

U(y2 + T/2) = U(y2)

since dU/dy2 is assumed to be constant. For the range of |?fj over which the correla-
tion ^-jjj, is nonzero, the ratio of the second term to the first term on the right side of
this expression is of the order of the ratio of the transverse correlation length to the
thickness of the mixing region, since for jets the change in U(y2) occurs over the width
of the mixing region. It can be seen from the results presented in references 14, 15,
and 17 (also see discussion in ref . 7) that this ratio is of the order of 1/6 to 1/10.
Hence, we shall neglect the second term compared with the first and replace U(y2 + rjn)
by u(Yo) in equation (27). Since this U now represents a sort of average velocity over
the eddy, we shall set it equal to the "eddy convection velocity" U (y«). In fact, as
pointed out by Lilley (ref. 4) and verified experimentally in reference 15, the chief noise-
emitting eddies are confined to a narrow strip in the center of the jet mixing region; and
in this strip (ref. 15) the eddy convection velocity is very nearly equal to the local mean
speed U. (See refs. 15 and 17 for a discussion of the convection velocity.) Upon collect-
ing terms, equation (34) now becomes

ffC ririrkr 7/I J_UL_£
JJJ r6

(35)

16



where

is the eddy convection Mach number.

INTRODUCTION OF MOVING COORDINATES AND NEGLECT OF RETARDED TIME

When TJ is transverse to the flow, the changes in r* • ?f/rc over the "eddy" cor-
relation distance are small compared with the change in r over the eddy decay time.
Hence, we can neglect the term F • rj/rc in

exp ICO L-LJ1 . Tl

However, when 77 is in the direction of the mean flow (see ref. 16), the changes of the
correlation with respect to time are much more rapid since the eddies are moving with
the flow. In order to compensate for this, we introduce a set of coordinates which move
with the convection velocity U_. Thus, we introduce the new variable

\s

(36)

where U is in the y..-direction. Following Ffowes Williams, we define the moving-
axis correlation function by

(37)

Upon introducing this change of variable into the integral in equation (35) and noting that
the Jacobian of the transformation is unity, we find that

f ririrvri / ^ I -iw(l-M cos e)r C (iw/c

/ -^ ' ' M' cos e / e / e
J r6 ' J J

(38)
_

dTdy

17



Now let I denote a typical correlation length of the turbulence, let M be the char-
acteristic Mach number of the turbulence, and let TJ denote a typical decay time of the
moving-axis correlation. It is shown in reference 7 (see sec. 3, eq. (17)) that

Tfco

However, for jet flows the maximum turbulent velocity is about one -tenth, and certainly
not more than two-tenths, of the maximum mean-flow velocity. Consequently, for sub-
sonic flows

co

This shows that £ • r/c r is negligible in comparison with (1 - M cos 6)r. Hence, we
— ». — »• O C— . •

can set £ • r/cQr equal to zero to obtain

C -MI-M cos e)r r _
I e / Rli^(y> 4>& I _UJL_£ (i. M --- *' '- " "c ' "+ -~- -^- •- (39)

Following Ribner (ref. 5) we let I (x|y) denote the intensity at the point x caused by
the sound emitted from a unit volume at y. Then,

and it follows from equation (39) that

2 2
(4Q)

Ke I ̂  f R$w(y,f, DdTdr
J J

where

- MC cos e)

18



is the frequency which would be observed in a frame of reference moving with the eddy
convection Mach number M .c

We can now write, in view of equations (32) and (37),

where

Riik7 (y»^ > T) = wiwiwkw; - wiwi wkw; (42)1JA.6 1 J J V 6 1 J A t

f\r £ T^ = A TI/'TI/* ^4^\V j j s j •' ~ m k 7 \ ***/

,(y,T, T) =ATOA1 (44)

We shall now show, under the relatively mild restriction that the turbulence is
locally homogeneous and incompressible, that the volume integrals of the correlations
CD k, and QJJ.J, can be expressed in a simple way entirely in terms of two-point ve-
locity correlations.

LOCALLY HOMOGENEOUS TURBULENCE; REDUCTION

OF CORRELATION VOLUMES

The theory of incompressible, locally homogeneous turbulence is developed in ref-
erence 18 and in chapter 4 of reference 19. The assumption of local homogeneity implies
that any two-point, two-time correlation function, say Q(y,z, T), is a function only of
77 = z - y and T.

19



It follows from equation (22) that

,~ - . dy'

3r?(1) IT? -7?(1)|

where the double primes denote quantities evaluated at y" and t and where
77^ =z- y*". Or, since the Jacobian of the transformation £* ' — TJ' ' [where

= r - Uc(y2)r] is unity,

-(1)

where

(45)

is the two-point, time-delayed, triple-velocity correlation. Thus,

,rd)

Hence, upon using equation (Al) derived in appendix A, this becomes

y Qm,kZ d^4e^Py 41)Rp, -^mrp ftr*pt (46)

It is shown in reference 20 that this integral is indeed convergent (see remarks immedi-
ately proceeding equation (6. 17) of ref. 20).

In order to evaluate the volume integral of Qmn, notice that it follows from equa-
tion (22) that

20



_ empq€nrs
m n | y - ' dy" dy'

empqenrs

167T2

/W4/J-
J q s [J ̂ p

|y _ y..|-l _i_ |z - y" - dy'

where the triple-primed quantities are to be evaluated at y'" and t + T and where
-j%\ — _
77V ' = y'M - y". The integral in square brackets was evaluated in the appendix of refer-
ence 21 and found to be

27T

Hence,

8n I wqws"-

Or since the Jacobian of the transformation ~^ ' —77^ where p '
unity,

_ U (y2)T is

qsv

where

(47)

is the two-point, time-delayed, second-order velocity correlation tensor. Hence,

21



/v?». »> fy q y
The double integral was evaluated in appendix I of reference 4 by using the methods

of reference 21 and found to be

-I/{242142'
Hence,

y Qn (48)

It is shown in reference 20 that this integral is indeed convergent (see remarks on top of
p. 386, ref. 20).

Upon using the identity €ykeiZm « S^Sj^ - 5jm5M and the fact that £^=-6^,
it follows from equations (41), (46), and (48) that

J RrjkZ

(49)

The first two integrals on the right side of equation (49) represent the self noise and the
shear noise, respectively (refs. 22 and 4). This terminology was introduced by Lilley in
reference 4 to indicate that the former term represents noise generated by turbulent-
turbulent interactions, whereas the latter term represents noise generated by turbulent -
mean-shear interactions. The last integral represents a coupling between the shear
noise and the self noise.

Equation (49) cannot be further simplified without introducing some additional as-
sumptions about the turbulence. We first introduce the joint normality approximation.

22



REPRESENTATION OF FOURTH-ORDER CORRELATIONS

IN TERMS OF SECOND-ORDER CORRELATIONS

It is argued by Batchelor (ref. 18) that the part of the joint probability distribution of
the velocities at a fixed time associated with the energy-bearing eddies is approximately
normal, at least insofar as the velocities at two points are concerned. This approxima-
tion is better for some purposes than others. Thus, in reference 18 (p. 176) it gives
reasonably accurate predictions about the relation between the second- and fourth-order
correlations. This relation (ref. 18, eq. (8. 3. 11) is found to be (see ref. 23, sec. 2.1.7
for derivation)

wiwiwkwi = wiwi wkwZ + wiwk wiwz + wiwz wiwk at T = 0 (50)

But, by extending the reasoning used by Batchelor in section 8.2, we can argue that,
when the velocity correlations in the moving frame are separated in time as well as in
space, their correlation will be subject to even more random influences from the neigh-
boring flow than when they occur at the same time. In accordance with the central limit
theorem , these influences will tend to ensure further the normality of the joint probability
distribution. Hence, we have even more reason to expect equation (50) to be valid with
r ± 0, and we can now write from equation (42)

T)RJZ $> £ r) + Ru <y » £ T)Rjk(y> £ T)

so that equation (49) now becomes

/ R5kZ d^= / <RikRjZ

(51)

RESULTS FOR ISOTROPIC TURBULENCE MODEL

In order to deduce the jet-noise directivity pattern from equations (40) and (51), it is
necessary to make some additional assumption about the turbulence. Perhaps the sim-

23



plest plausible assumption is that made by Ribner and Lilley (refs. 4, 5, and 22) namely
that the turbulence is locally homogeneous and isotropic. A more refined model for the
turbulence (assumption of axisymmetric turbulence) is given in reference 24 . However ,
since (as we shall see) the convective factor dominates the overall directivity pattern
(i.e. , at least insofar as the overall intensity itself, but not its spectral density, is con-
cerned), it is felt that the assumption of isotropic turbulence will suffice for predicting
the directivity of the intensity. We shall, therefore, assume that the moving -axis corre-
lation tensors are isotropic tensors. Thus, it is shown in reference 18 (p. 42) that the
general third -order isotropic tensor which is symmetric in its second two indices is

where C, D, and E are functions of y and T and are functions only of the magnitude

£ of I" and not its direction. Hence, _we put

= c* + D ( + + E

Then

And, therefore, upon noting that only even functions of £. can contribute to the integral,

we find that

sum on

= 0 (52)

/
2 •* r 2 ~*D£n d£ = / D£. d£. This shows that the coupling term in equation (51)

vanishes.
It is shown in reference 24 that the second -order isotropic correlation tensor is

RijfyJ .^A^j+BCy (53)

where A and B are functions of y and r and are functions only of the magnitude £
of 4 anc^ n°t °f its direction. It is also shown in reference 24 that the requirements of
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continuity dictate that the functions A and B are related to a single function F by

(54)

Hence, upon noting that only even functions of & contribute to the integral, we find that

<62p6jq -

(no sum on

j) A ("(2^ (no sum °n

= ± 6.7(1 - 6y.) I [5F + 2^ 5£)r d^ (no sum on
3 J* ^

where we have used the fact that for any function

j2dif=i fim

Hence, upon integrating by parts, we find that

j) /* - 62j) / sum on j) (55)
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Finally, it follows from equations (53) and (54), after applying some routine manipula-
tions given in appendix C of reference 25, that

(56)

Hence, upon substituting equations (52), (55), and (56) into equation (51) and using the re
sult in equation (40), we obtain

32A0r
2 - !6 cos2 e (cos2 e + sin2 e sin2 «tf & fe^r ffa d?dy2/ J J

where the azimuthal angle y> is given by sin Q sin (p = rg/r.

EQUATIONS FOR AXISYMMETRIC FLOWS AND TOTAL INTENSITY

The total intensity I(x|y) at each point is obtained by integrating the spectral density
of the intensity over all frequencies. Thus,

/

oo

Substituting equation (57) into this expression shows that

J£|y) = . .. P°
cos

2 /£_ / R2 dl\ - li cos2 6 (cos2 6 + sin2 0 sin2 <p) f^HT /lL /"LWy to 3 WWy
(58)

As indicated by Ribner (refs. 5 and 22), for round jets it is appropriate to average the

26



intensity over the azimuthal angle <p. When this is done, equations (57) and (58) become,
respectively,

327T3c0
ir2 (l - Mc cos 0)2

x 2 f cos Sir /R2 d?dr-^/cosi£JLco^\/dU\2 f Qr f 2 R dfdy J 3 v 2 y^ y y
(59)

cos

X
f cos 6 + cos (60)

DISCUSSION OF EQUATIONS FOR FAR-FIELD IMTENSITY; COMPARISON WITH

LIGHTHILL'S THEORY AND RIBNER'S QUADRUPOLE MODEL

The first term on the right side in either equations (59) or (60) represents the self
noise, and the other terms represent the shear noise (refs. 22 and 4). The factor
(1 - M cos 0) in equation (60) represents the effect on the directivity pattern of the
convection of the noise sources by the mean flow. The results of the present theory dif-
fer from those of Lighthill's theory (as corrected by Ffowcs Williams in ref. 3) prin-
cipally in that Lighthill obtains an exponent of -5 instead of -3 for this factor (refs. 2
and 7). Ribner (ref. 5) refers to this term as the "convection factor. " Because of the
large exponent, it is believed to be the most important factor in determining the direc-

3
tivity pattern of the jet noise.

The term in brackets in equation (60) represent the actual generation term for the
jet noise. It is composed of a self-noise part and a shear-noise part. The directivity
pattern associated with this term is called by Ribner in reference 5 the "basic" direc-

«*This may not be true near the jet axis where refraction effects may be dominant.
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tivity pattern of the jet noise. This pattern is a result of the quadrupole nature of the
noise source.

In order to represent the "basic" directivity pattern given in equation (60), it was
necessary to make some assumptions about the turbulence. These assumptions are the
same as those made by Ribner (ref. 5) to deduce the basic directivity pattern implied by
Lighthill's theory. Hence, it is appropriate to compare the basic directivity pattern ob-
tained herein with that obtained by Ribner. The two results are almost identical. Thus,
the self-noise term is the same in both cases and the directional dependence

4 2cos 6 + cos 6

of the shear-noise term is also the same in both cases. The time derivative of the cor-
4 2relation volume multiplying (cos 0 + cos 0)/2 in Ribner's model will reduce to the time

derivative of the correlation volume

obtained herein if the mean shear dU/dyg is assumed to be constant over this volume.
Thus, the two shear -noise terms differ only by a small numerical factor.

Ribner (ref. 5) attempted to carry his model further and estimated the ratio of the
maximum shear noise to the self noise by making an assumption about the scalar F
appearing in the turbulence correlation R... Thus, (in the present notation) he assumed

where L is a longitudinal correlation length and g(r) is a function of the time delay.
With this assumption he shows that the ratio of the maximum shear noise to the self noise
is proportional to

a4g(r)

8r

7=0

7=0

(61)
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And by assuming g(i) = e , he determines this ratio to be equal to 1/4. However,
it is easy to show that upon choosing g(r) to be a decaying exponential times a low-
degree polynomial, the coefficients of the polynomial can be adjusted to make the
ratio (61) equal to zero or to any other value. Hence, it is not possible to use Ribner's
argument with any confidence to estimate the ratio of the shear noise to the self noise.
However, if it is assumed that the maximum shear noise is less than or equal to the self
noise, the "basic" directivity associated with the noise sources will be small compared
with the directivity due to the convection factor f 1 - M cos 0) • K will be seen subse-
quently that this assumption leads to excellent agreement with the experimental data.

COMPARISON WITH EXPERIMENT

In this section we compare the predictions of the present theory with experimentally
observed results on jet noise. The most striking comparison occurs when the theory is
compared with the observed directivity data.

The directivity patterns of the far-field intensity of noise from round jets have been
measured by a number of investigators. We shall compare the present theoretical direc-
tivity patterns with those found in the most recent experiments. In order to make this
comparison, it is necessary to know the relation between the convection Mach number of
the eddies M and the jet Mach number M,. Measurements of these Mach numbers are
presented in references 15 and 26 to 28. There is general agreement among the various
investigators. Their results show that the convection velocity is fairly constant across
the mixing region and that in the center of the mixing region, where the most intense tur-
bulence occurs, the relation M = 0. 63 Mj holds. (As indicated previously, most of the
turbulent energy lies in a narrow region centered along the center of the mixing region.)
We shall use this relation in comparing the theoretical results with experiment.

As explained in the preceding section we shall neglect the effect of the shear noise on
the directivity pattern, and therefore this pattern will be completely determined by the
convection factor (l - MC cos 0) • This quantity is compared in figures 1 to 4 with the
recent experimental results of Olsen (ref. 29), Lush (ref. 11), and Krishnappa and
Csanady (ref. 30) and with the older data of Howes (ref. 12). In all cases the level of the
theoretical directivity curve is determined by putting it through the experimental data at
90° to the jet axis, where the convection effect is zero. The curve corresponding to the

These data are an improved version of the data in ref. 29 and will be presented as
an AIAA paper.
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present theory is shown as a solid line. For comparison purposes, the directivity factor
predicted by Lighthill's theory is shown as a dashed line. In order to be as fair as pos-
sible, the effects on the directivity of the shear noise are also neglected in the repre-
sentation of Lighthill's theory. Including the shear noise would make the disagreement
between the predictions of Lighthill's theory and the data greater in all cases shown. It
can be seen from the figures that the present theory always agrees well with the data,
and at least as well as Lighthill's theory at all jet Mach numbers. The agreement be-
tween Lighthill's theory and the data is poor at the higher Mach numbers. Both theories
and the data tend toward better agreement as the jet Mach number is reduced, primarily
because the convection factor tends to unity as M approaches 0.

\s

CONCLUDING REMARKS

A theory of aerodynamic noise has been developed which differs from Lighthill's
theory primarily in the way the convection of the noise sources is treated.

For high subsonic convection velocities, the present theory provides much better
agreement with directivity measurements than does Lighthill's theory. For moderate
and low subsonic velocities, both theories and the experiments tend toward agreement,
as expected.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, November 3, 1972,
501-04.
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APPENDIX A

EVALUATION OF

In order to evaluate this integral, notice that

47T for £ >

™ for ?*•' <
£

where dr is the element of solid angle centered about £ = 0 and
Hence, if SR is any sphere of radius R about £ = 0,

= =

/R2 * X)
.d| =47r | fL -L_

2 6

and

(Al)
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APPENDIX B

SYMBOLS

A function in isotropic tensor (eq. (53))

A vector potential

B function in isotropic tensor (eq. (53))

C function in isotropic tensor

C specific heat at constant pressure'

c speed of sound

c average sound speed

D jet nozzle diameter, function in isotropic tensor

D/Dt a/at + v • v
E function in isotropic tensor

e* viscous stress tensor

F arbitrary function of y~, r, and t; function of £, defined in eq. (54))

f arbitrary function

g( T) time dependence of correlation tensor

I(x) far-field intensity

I(x|y) intensity at x due to unit volume of turbulence at y

I (x) spectral density of far -field intensity

I (x|y) spectral density of far-field intensity of sound emitted from point y"
A

i unit vector in x..-direction

L correlation length

I eddy correlation length

M convection Mach numberc
My jet-exit Mach number

t\
P Fourier transform of (p - PO)/PO

C
0

p pressure

p average pressure in far field

O\ ., (D moving-axis, vector-potential correlation tensors
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R gas constant; radius of sphere about £ = 0

y '_/__ I moving-axis velocity correlation tensors

R- i ( V , £ , T ) moving-axis, turbulence velocity correlation tensorimkn ' '
/?e real part

&• v (y>^>T) fixed-axis turbulent correlation tensor

r distance from source point to field point, |x - y]

r. component of r; x. - y^

S entropy

T large time duration

T.. Fourier transform of T-.

t time

U,U mean velocity

U , U convection velocity
c* c*

V,V- total fluid velocity

V* fluctuating part of velocity

v",v. acoustic part of fluctuating velocity

W,W. incompressible velocity

w turbulent part of fluctuating velocity

x, x. Cartesian coordinates; location of observation point

y , y ' , y ' , y " j z location of source point

r (a/at + u a/ax^n
•y ratio of specific heats

6- Kronecker delta

partial derivative with r fixed

permutation tensor

z - y

z - y"

component of TJ
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6 temper ature

Q angle between mean flow direction and observation direction

? ^-

|. component of £

n r'1 In (p/pQ)

p density

p' f fluctuating part of density

p average density

T time delay

TV characteristic decay time of moving -axis correlation

7- turbulent stress tensor

<p azimuthal angle

fi cu(l - M,. cos e)
C

co circular frequency

ojf characteristic frequency of second-order correlation

Superscripts:

quantity evaluated at y*1 and t + T

" quantity evaluated at y" and t

"' quantity evaluated at y"' and t + T
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Jet-exit
Mach number.

15 45 60 75 90 105
Angle from jet axis, 8, deg

120 135 150

Figure 1. - Experimental directivity data of reference 29. Jet nozzle diam-
eter, 5.08 centimeters (2 in.).

Jet-exit
Mach number.

15 30 45 60 75 90
Angle from jet axis, 0, deg

105 120

Figure 2. - Experimental directivity data of reference 11. Jet
nozzle diameter, 2.54 centimeters (1 in.).
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Figure 3. - Experimental directivity
data of reference 30. Jet nozzle
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(al) Jet-exit Mach number, 0.71 (bl) Jet-exit Mach number, 0.71.
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(a2) Jet-exit Mach number, 0.90. (b2) Jet-exit Mach number, 0.90

(a) Jet nozzle diameter, 12.7 centimeters (5 in.). (b) Jet nozzle diameter, 7.62 centimeters (3 in.).

Figure 4. - Experimental directivity data of reference 12.
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