General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
ON THE RELATIONSHIP BETWEEN THE GROWTH
AND EXPANSION PHASES OF SUBSTORMS
AND MAGNETOSPHERIC CONVECTION

F. S. MOZER

SERIES 13, ISSUE 63
JULY 5, 1972

UNIVERSITY OF CALIFORNIA, BERKELEY
ON THE RELATIONSHIP BETWEEN THE GROWTH AND EXPANSION PHASES OF SUBSTORMS AND MAGNETOSPHERIC CONVECTION

Technical Report

Forrest S. Mozer

July 3, 1972

Series 13, Issue 63

Nuclear Physics Research
Office of Naval Research
<table>
<thead>
<tr>
<th>KEY WORDS</th>
<th>LINK A</th>
<th>LINK B</th>
<th>LINK C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROLE</td>
<td>WT</td>
<td>ROLE</td>
</tr>
<tr>
<td>Growth Phase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substorms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetospheric Convection</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ON THE RELATIONSHIP BETWEEN THE GROWTH AND EXPANSION PHASES OF SUBSTORMS AND MAGNETOSPHERIC CONVECTION

F.S. Mozer

Physics Department and Space Sciences Laboratory
University of California, Berkeley, 94720

Reproduction in whole or in part is permitted for any purpose of the United States Government

Research supported in part by the Office of Naval Research under ONR Contract N00014-69-A-0200-1015; in part by the National Science Foundation under Grants GA-1317, GA-11259 and GA-17328; and in part by the National Aeronautics and Space Administration under Contract NAS 5-10362 and NAS-9-9052

July 5, 1972

*Submitted for publication in the Journal of Geophysical Research.
The concept of isolated substorms having two temporal phases was developed through analyses of worldwide surface magnetic field observations. These phases have been called UP-2 and UP-1 (Nagata and Kokobun, 1962; Nishida, Iwasaki and Nagata, 1966; Obayashi, 1967; Nishida, 1971) or the growth and expansion phases (McPherron, 1970). Recently the concept has been questioned experimentally through independent analyses of ground magnetometer data similar or identical to that which led to the formulation of the hypothesis (Akasofu and Snyder, 1972; Kawasaki and Akasofu, 1972; Matsushita and Balsley, 1972; Meng, et al., 1972). Thus, from the point of view of ground magnetometer data, the growth and expansion phases of isolated substorms are not accepted concepts.

However such concepts possess considerable theoretical interest because of the physical appeal of the model in which substorms occur in the following two steps:

1. Magnetospheric convection becomes enhanced. This enhanced flow leads to conditions of instability after a time delay during which the predominant feature is the increased flow of field lines and plasma. This time epoch might be called the growth phase of the substorm.

2. The instability that follows a period of enhanced convection triggers the expansion phase of the substorm, during which the most spectacular features of the substorm are observed.

Because this model has been fruitful in the development of substorm theories (Coroniti and Kennel, 1972 a, b, c), it is important to consider the definition of the growth and expansion phases of substorms in terms of the above processes rather than from ground magnetometer signatures. It is thus relevant to review experimental evidence for such temporal
sequences in magnetospheric convection during isolated substorms.

Balloon electric field measurements during nineteen isolated substorms have been averaged to produce such signatures of the growth and expansion phases of substorms (Mozer, 1971). The electric field data of Figure 1 summarizes this analysis through presentation of the average electric field measured near local midnight in a non-rotating frame of reference on a time scale whose zero is defined by the onset of the negative bay at the ground magnetometer below the balloon.

The pertinent temporal variations in Figure 1 are:

1. The existence of a westward electric field component for about an hour before the expansion phase of the substorm. Since this westward field causes sunward convection in the nightside auroral zone, it is the expected signature of enhanced magnetospheric convection during the growth phase.

2. The development of a southward electric field component at the time of the substorm expansion. While there is no generally accepted explanation of the origin of this component, it is clearly associated with plasma instabilities existing during the expansion phase.

Since there is experimental evidence from electric field measurements for the existence of growth and expansion phases of substorms, the validity of these concepts as defined in terms of magnetospheric convection becomes established if the electric field data are accepted. This data may be questioned from several points of view that are discussed below.

It may be possible that the westward electric field data of Figure 1 represents a spatial rather than temporal variation. For example, the
westward electric field might be constant in time and exist over a confined spatial region that is fixed in a non-rotating frame of reference. The balloon might then rotate into this region to produce a westward field variation with time that is due to a spatial structure. This explanation is unlikely in view of the relatively few simultaneous balloon electric field measurements at separated longitudes in the auroral zone (Mozer and Manka, 1971; Mozer, 1971), which indicate that the westward field enhancement is a temporal effect. It is virtually ruled out by consideration of substorm related energetic particle flux variations in and near the nighttime synchronous satellite orbit (Lezniak and Winckler, 1970; Bogott and Mozer 1972). An example of such data is given in Figure 2, in which the particle fluxes from the Berkeley energetic particle detector on ATS-5 showed increases associated with the expansion phase of a substorm at about 0705 UT (0005 LT). For about thirty minutes prior to this event, the particle fluxes decreased slowly to levels below the detector thresholds, which are represented by the horizontal groups of data points at times such as near 0700 UT. This relatively slow decrease of flux precedes many substorms and is interpreted as the inward movement of the radiation belt in the enhanced westward electric field existing during the substorm growth phase. Some justification for this interpretation is provided by simultaneous measurements of equatorial particle fluxes and ionospheric electric fields (Mozer, Bogott, and Tsurutani, 1972). Since the particles of Figure 2 gradient-B drifted in longitude through hundreds of degrees during the flux decrease, it is impossible to attribute this decrease to a spatial structure of temporally constant electric fields, but instead it must be associated with a temporal increase in the convection.
As is well known (Cummings, et al, 1968; Fairfield and Ness 1970; Coleman and McPherron, 1970; Camidge and Rostoker, 1970; Russell et at, 1971) and as is illustrated in Figure 2, the magnetic field in the equatorial plane at $\sim 6R_e$ often becomes tail-like during an ~ 1 hour period before the expansion phase and becomes dipole-like during the expansion phase. These facts may be interpreted as evidence of enhanced convection during the growth phase since such convection brings the tail-like magnetic field geometry closer to the earth. Because the magnetic field structure has a large spatial scale, the inward motion of the magnetic field geometry must be due to a temporal rather than spatial variation in the westward magnetospheric electric field. It should also be mentioned that considerable further particle evidence for the growth phase of substorms exists (Hones, et al, 1967; Vasyliunas, 1968; Hones, et al, 1970, Schield and Frank, 1970), much of which also requires that the enhanced convection occurring before substorms is a temporal and not spatial effect.

In summary, it is suggested that the definition of the growth and expansion phases of substorms should rest on magnetospheric convection theories and data because of the ambiguities in interpretation of ground magnetometer records from which these concepts arose originally. Data such as that discussed above offers strong evidence for the validity and usefulness of the concepts of the growth and expansion phases.
REFERENCES

Akasofu, S.-I., A study of polar cap and auroral zone magnetic variations, preprint, 1972

Bogott, F.H. and F.S. Mozer, Observations of the nightside trapping boundary at the synchronous orbit, preprint, 1972

Coroniti, F.V. and C.F. Kennel, Polarization of the auroral electroject, J. Geophys. Res., 77; 2835, 1972a

Hones, E. W., Jr., J. R. Asbridge, and S. J. Bame, Time variations of the magnetotail plasma sheet at 18R_e determined from concurrent observations by a pair of Vela satellites, J. Geo. Res., 76, 4402, 1970

Kawasaki, K. and S. -I. Akasofu, A study of polar cap and auroral zone magnetic variations, preprint, 1972

Meng, C. -I., B. Tsurutani, K. Kawasaki and S. -I. Akasofu, Cross-correlation study between interplanetary magnetic field and the AE index, preprint, 1972

Mozer, F. S. and R. H. Manka, Magnetospheric electric field properties deduced from simultaneous balloon flights, J. Geophys. Res., 76, 1697, 1971

Nishida, A., Interplanetary origin of DP electric fields, review paper given at IAGA symposium, Moscow, August, 1971

ACKNOWLEDGEMENTS

This work was supported in part by the Office of Naval Research under contract N00014-69-A-0200-1015; the National Aeronautics and Space Administration under contracts NAS 5-10362 and NAS 9-9502 and the Atmospheric Sciences Section of the National Science Foundation under grants GA-1317, GA-11259 and GA-17328.
FIGURE CAPTIONS

Figure 1. Fifteen minute averages of the electric field data obtained during 19 balloon flights, presented in a nonrotating coordinate system.

Figure 2. Energetic particles and magnetic field observations made on ATS-5 in synchronous orbit during an isolated substorm.
UNIVERSAL TIME
OCTOBER 4, 1970

LOG FLUX (cm\(^{-2}\) sec\(^{-1}\) ster-kev\(^{-1}\))

40 KEV ELECTRONS
75 KEV ELECTRONS
120 KEV ELECTRONS
60 KEV PROTONS
120 KEV PROTONS
ATS-5 MAGNETOMETER