

AED R-3553F April 30, 1970

ITOS D and E System Design Report

Prepared for Goddard Space Flight Center National Aeronautics and Space Administration Washington, D.C. Contract No. NAS5-10306

Volume III

۶.

(NASA-CR-130162) ITOS D AND E SYSTEM DESIGN REPORT, VOLUME 3 (Radio Corp. of America) 144 p HC \$9.25 CSCL 22B Unclas G3/31 54427

> RCA | Defense Electronic Products Astro Electronics Division | Princeton, New Jersey

ti

PREFACE

This report describes the system, spacecraft, and ground installation design, as well as related studies, for the ITOS D and E meteorological satellite system. The ITOS D and E design study program has been conducted by the Astro-Electronics Division of RCA Corporation for the Goddard Space Flight Center of the National Aeronautics and Space Administration, under contract NAS5-10306.

TABLE OF CONTENTS

Section				Page
T	SV	STEM DI	FSIGN	I-1
L	Δ	Introdu	ction	I-1
	п.	1 Mi	ssion Requirements	I-1
		2 Sve	stem Summary	I-2
•		2. Oju a	General	I-2
		ч. b	Spacecraft	I-2
			Orbit	I-5
		с. d	Ground Complex	I-6
	D	Sustem	Functional Description	I-7
	D.	1 Specielli	runctional Description	I-7
		I. Spa	Dhusical Description	I-7
		a.	(1) Configuration	I-7
			(1) Configuration	I-7
			(2) Central Equipment Module	I-1 T 10
			(3) Solar Array	1-10 T 10
·			(4) Thermal Control	1-10
			(5) Pitch-Control Loop	I-13
			(6) Separation Ring	1-13
		b.	Launch Vehicle Compatibility	1-16
		c.	Functional Description	I-17
			(1) General	I-17
			(2) Command Subsystem	I-17
			(3) Primary Sensors	I-18
			(a) Real-Time Data	I-18
. •			(b) Stored Data	I-18
			(4) Solar Proton Monitor	I-21
			(5) Communications Subsystem	I-21
			(a) S-Band Link	I21
•			(b) Real-Time Link	I-22
			(c) Command and Beacon Link	I-22
			(6) Power Subsystem	I-22
		d.	Subsystem Redundancy	I-23
			(1) Operating Goals	I-23
		2. Spa	acecraft/CDA Station Interface	I-25
		 a.	Command Link	I-25
		b.	Beacon Link	I-26
		~• C	Real-Time VHF Link	I-27
		d.	S-Band Playback Link	I-28
		ч. о	S-Band Real-Time Link	I-29
		3 I.O.	ball Ground Stations	I-30
		0, LU		I-30
		ä. L	Character of the Character Interface	1-30 1-30
		D,	Spacecrait/AP1 Ground-Station Interface	1-90
		c.	spacecrait/ VHKK Ground-Station	T 01
			Interface	1-31

v

Section

Page

4. Orbit Characteristics	1-31
a. The ITOS Orbit	I-31
b. Operational Effects of Orbit	1 01
Characteristics	I-33
(1) Spacecraft Sun Angle and	1 00
Eclipse Time	I-34
(2) Effect of Date and Time of	1 0 1
Launch	I35
(3) Effects of Injection Errors	I-35
5. Sensor Coverage	I-40
a. SR Radiometry	I-40
(1) General	I-40
(2) Spectral Response	I-40
(3) Resolution	I-41
(4) SR Image Characteristic	I-41
b. VHRR Radiometry	I-43
(1) General	I-43
$(2) Resolution \dots$	I-43
(3) Spectral Response	I-43
(±) VIER Image Characteristic	I-44
(1) General	I-44
(2) Spectral Considerations	I-44
(3) Angular Resolution	1-46
(4) VTPR Image Characteristics	1-46
d. SPM Radiometry	1-46
(1) General	1-47 T 47
(2) Sensors	1-47 L 47
6. ITOS Ground Complex	1-47 I-47
a. General	1-47 1-47
b. Command, Programming, and Analysis	T., T (
Centers	I-47
c. Command and Data Acquisition (CDA)	1.11
Stations	1-48
d. Spacecraft Checkout Facilities	I 10 I-49
e. Scope of Ground Equipment Coverage	I-49
System Operation	I-50
1. ITOS Mission Profile	I-50
2. VIRIA, SR and VTPR Radiometers. and	1 00
QOMAC Programming	I-53
a. General	I-53
b. Radiometer Programming	I-53

C.

Section

Π

	COMPANY DESCRIPTION	I - 53
	c. QOMAC Programming	I-54
	d. SR Recorder Programming	I-54
	3. CDA Station Contact Time	I-54
	4. Effect of Date and Time of Launch	I-57
	5. Use of Redundancy	I-57
	a. Philosophy of Redundancy	I-57
• •	b. Subsystem Component Selectivity	I-57
	(1) SR Subsystem	I-57
	(2) VHRR Subsystem	Í-58
	(3) VTPR Subsystem	I-58
	(4) Pitch Control Loop	I-58
	(5) Command Subsystem	
	THE AND STRUCTURAL DESIGN	II-1
ME	CHANICAL AND STRUCTURE DESIGN TO THE	II-1
A.	General	II - 4
в.	Design Approach	II - 4
	1. Requirements and constraint of the sign	II - 4
	2. Modifications to the ration of a	11-7
	3. Spacecrait Structure	II - 8
	4. Mechanishis	II-9
~	5. Stress Analysis	II-9
с.	Design Philosophy	II-9
	1. General Alignment	II-9
	2. Mechanical Angliniche	II-11
	3. Component Assembly	II-12
	4. Weight	·II-12
• .	5. Fabrication and Assembly	II - 14
	6. Integration of Electronic Equipment	II - 14
·	7. Interchangeability	II-15
D.	Structural Components	II - 15
	1. Separation Ring	II-17
	2. Baseplate Basels	II-18
	3. Equipment Mounting Panels	II-19
	4. Earth-Facing Access Faller	II-19
	5. Anti-Earth Access Paller	II-22
	6. Crossbrace Assembly	II-22
	7. Inermal relice and Deployment	
	8. Solar Array Structure and Deprogramme	II-22
	Mechanism and Attitude Control Coils	II-29
	9. Momentum and Attitude Control Control Control	

vii

Section		Page
	 10. Nutation Dampers	11-29 11-29 11-30 11-35 11-38 11-38 11-38
III	 THERMAL DESIGN	III-1 III-3 III-3 III-6 III-6 III-8 III-8 III-8 III-9 III-9 III-9 III-9 III-9
IV	 VEHICLE DYNAMICS A. Subsystem Description B. Initial Orientation Maneuver 1. Sequence 2. Biased Flywheel Operation C. Nutation Damping 1. General 2. Basic Design a. Mathematical Analysis b. Mechanical Configuration c. Pressurization 3. Damping Time Constant D. Attitude Sensing 1. General 2. Digital Solar Aspect Sensor 3. Infrared Sensors a. General b. Electronics 	IV-1 IV-4 IV-4 IV-6 IV-7 IV-7 IV-7 IV-8 IV-8 IV-9 IV-9 IV-9 IV-9 IV-11 IV-11 IV-11 IV-12 IV-14 IV-14 IV-15

Section

Page

E.	Magnetic Attitude Control and Momentum	
	Control	IV-24
	1. General	IV-24
	2. Coordinate System	IV-24
	3. Geomagnetic Field Equations	IV-26
	4. Quarter-Orbit Magnetic Attitude Control	IV-27
-	5. Unipolar Torque	IV-28
	6. Magnetic Bias Switch	IV-31
	7. Momentum Control After Pitch Lock	IV-31
	8. Magnetic Bias Control (MBC)	IV-32
	a. Spin Momentum Change (TSDIN)	IV-34
	b. Precession Due To Momentum	
	Correction (T _{DDEC})	IV-35
	9. Momentum Control Prior To Pitch Lock	IV-36
F.	Pitch Control	IV-43
•	1. General	IV - 43
	2. Pitch Sensing	IV-45
	3. Servo Design	IV-47
	4. Three-Axis Considerations	IV-49
	5. Component Description	IV-63
	a. General	IV-63
	b. Pulse Width Modulator (PWM) Error	
	Detector	IV-66
	c. Compensation Amplifier	IV-67
•	d. Gain Switching Circuit	IV-67
	e. Summing Amplifier	IV-68
	f. Power Amplifier	IV-68
	g. Torque Motor	IV-68
	h. Encoder	IV-70
	i. Encoder Electronics	IV-70
	j. DC-to-DC Converter	IV-70
	k. Pitch Sensor Threshold Amplifiers	IV-71
	1. Earth Blanking	IV-71
	m. Electronics Box	IV-71
	6. MWA Mechanical Design	IV-76
G.	Systems Interfaces	IV-76
	1. Power	IV-76
	2. Command and Control	IV-76
	3. Telemetry	IV-76

ix

Section

v

X

100

2

.

H.	Dist	urbance Analysis	IV-77
	1.	Residual Magnetic Dipoles	IV-77
	2.	Solar Torques	IV-82
	З.	Magnetic Losses	IV-86
		a. Hysteresis	IV-86
		b. Eddy Current	IV-86
	4.	Gravity Gradient	IV-86
	5.	Internal Rotating Components	IV-87
PO	WER	SUPPLY	V-1
Α.	Intro	oduction	V-1
в.	Func	tional Description	V- 2
	1.	General	V-2
•	2.	Solar-Cell Array	V6
	:	a. General	V-6
]	b. Components	V-6
		(1) Solar Cells	V-6
		(2) Solar Cell Cover Glass	V-7
		(3) Solar Cell Cover Glass Adhesive	V-7
		(4) Solar Cell Bonding Adhesive	V-7
		(5) Solar Cell Interconnection	V-7
		(6) Substrate	V-8
	, (Characteristics	V-8
		(1) Dimensions	V-8
	· ·	(2) Weight	V-8
	Ċ	I. Functional Description	V- 8
		(1) Design Parameters	V-8
		(2) Solar Cell I-V Characteristics	V-9
	e	Secondary Design Parameters	V-9
	t,	. Shunt Dissipator	V-9
	3. E	latteries	V-12
	a	. General	V-12
	. b	. Mechanical Design	V-12
	c	. Electrical Design	V-12
		System Considerations	V-14
	4. P	'ower Supply Electronics	V-14
	a h	. General	V-14
	U.	(1) Voltage Degration	V-15
		(2) Shunt Limiton	V-15
		(2) Charge Controllan-	V-16
		() Charge Comroners	V-17

Section		Page
	System Outputs	VI-56
	(1) Sensitivity and Radiometric	· · ·
	Accuracy	VI-56
	(2) Dynamic Range	VI-57
The second s	(3) Thermal Video Channel Outputs	VI-57
	(4) Synchronizing Signals	VI-57
· · · ·	(5) Telemetry	VI-57
3. Opt	ical System	VI-58
a.	Filter Wheel and Chopper	VI-58
b.	Field-of-View	VI-60
4. Ope	eration of Electrical Circuits	VI-60
a.	Data Channel	VI-63
b .	Calibration Sequence Logic	VI-64
C.	Staircase Generator	VI-65
d	Digital Data Interface	VI-65
е.	Thermal Control	VI-66
f.	Phase Reference Pickup Circuits (PRP)	VI-66
\mathbf{g}_{\bullet}	Power Supply	VI-66
h.	Torquer Drive	VI-67
i.	Scan Drive	VI-67
E. Solar P	roton Monitor	VI-69
1. Inti	roduction	VI-69
2. Ser	sor Assembly	VI-69
-• • a.	General	VI-69
b	Sensors	VI-72
	(1) Proton Sensors 1 and 2 ($E_n > 60$ MeV	
	and $E_n > 30$ MeV)	VI-72
	(2) Proton Sensor 3 ($E_{\rm p} > 10$ MeV)	VI-72
	(3) Electron Sensor $(100 \le E_0 \le 750 \text{ keV})$.	VI-72
	(4) Dual Channel Proton Sensors	
	(5 and 6)	VI-74
3 Dat	a Processing Electronics	VI-74
a.	General	VI-74
b .	Amplifier-Discriminator Chains	VI-75
C.	Pulse-Handling Logic	VI-75
d.	Data Commutator and Accumulator	
	Control	VI-75
е.	Data Accumulator	VI-76
f.	Floating Point Compressor	VI-76
g.	Processor Control	VI-76
h.	Data Sync (Box) Modification	VI-76
i.	Real Time Output	VI-77
1.	Remote Output	VI-77
kan	Power and Telemetry	VI-77

PRECEDING PAGE BLANK NOT FILMED

xii

Sention		
Decrion		Ρασο
VIT		
• •	DATA HANDLING	VII-1
	A. Introduction	VII-1
· ·	B. Scanning Radiometer Processor	VII-2
· · · · · · · · · · · · · · · · · · ·	1. General	VII-2
	a. Functional Description	VII-2
	(1) Multiplex Mode	VII-2
	(2) IR/Visible Backup Mode	VII-4
	D. Dual Processor	VII-4
	2. Requirements	VII-4
	a. Functional Operation	VII-4
	(1) Input/Output Functions	VII-4
	(2) Internal Functions	VII-5
	(3) Commutator	VII-8
	(4) Seven-Pulse Sync Generator	VII-8
•	(5) Time-Code Buffer	VII-8
	(6) Eight-Stage Divide Chain	VII-11
	(1) Sample-and-Hold Network	VII-11
	(b) Signal-Select Network	VII-12
	(9) Balanced Modulator System	VII-12
	(1) Insert C.	VII-12
	(1) Input Signals	.VII-14
	(2) Output Signals	VII-15
	3 Flootnicel Ob	VII-16
	2 Cincuit II	VII-16
	a. Circuit Elements	VII-16
	A Dhysical G	VII-16
C	Yom High D	VII-16
.	Processor	VII-16
	1. Real-Time Processing of VHRR Video	VII-17
	2. VHRR Video Recording	VII-20
li se	3. Playback	VII-24
υ.	Digital Data Processor	VII-24
	1. General Description	VII-24 VII-24
	a. System Function	VTI_94
	b. Frame Description	VII-24 VII-25
	(1) Recorded Digital Frame	VII-20 VII-25
	(2) Real-Time Telemetry Frame	VII-20 VII-20
	c. Telemetry Modes of Operation	V11749
	2. Interface Description	11-90

•

Section

Preceding page blank

	9	Eurotianal Operation	VII-45
	J.	Functional Operation	VII-45
		a. Frame Counter	VII_47
		D. Counter Decoder	VII-47
		d Commutator Shift Register	VII-47
		a Mode Control	VII-47
		f Clock Generator	VII-47
		g Commutator Input Cating and Buffers	VII-48
		b Commutator and Output Buffer	VII-48
		i Signal Conditioner	VII-49
		i Seven-Bit A/D Converter	VII-49
		k Parallel In/Serial Out Register	VII-49
		1 Sync Generator	VII-49
		m Time Code Undate Control and Shift	
		Register	VII-50
		n SDM and VTPR Input Buffer	VII-50
		o Bit Sunchronizer	VII-50
		p VTDR and SDM Register Control	VII-50
		mentan Bogot Concepton	VII 50
		q. Master Reset Generator	VII-50
		r. DC-DC Converter	VII-50
	4.	Electrical Characteristics	
		a. Power	V11-51
		b. Logic	V11-51
•		(1) Low Power \dots	
		(2) Design Flexibility	V11-51
		(3) Medium Scale Integration (MSI)	VII-51
-		(4) Reliability	VII-52
_	5.	Packaging	VII-52
Ε.	Sca	nning Radiometer Recorder	VII-52
	1.	General	V11-52
		a. Electrical Design	VII-53
	•	b. Mechanical Design	VII-61
	2.	New Design	VII-66
	3.	Functional Description	VII-68
		a. General	VII-68
		D. Record Mode	V11-68
		c. Playback Mode	V11-69
		d. Mechanical Design	V11-69
17	Ver	e. Telemetry	VII-71
r.	194	Concept	
	ч. Т.	General	V11-71
	4. 0	Internace Signals	V11-74
	J.	The transport Assembly	V11-74
	4.	Electronics Unit	· VII-77
		PRECEDING PAGE BLANK NOT PUT MED	

VIII

F. •

	, ,	
CC	OMMAND SUBSYSTEM	VIII-1
Α.	Function	VIII-1
в.	Design	VIII-7
	1. General	VIII-7
с.	Dual Command Decoder	VIII-8
	1. General Description	VIII-8
	a. Power and Signal Interfaces	VIII-8
	b. Decoder Data Format	VIII-9
	2. Functional Operation	VIII-9
	a. General Decoding Processes	VIII-9
	b. Detailed Circuit Description	VIII-17
	(1) Analog Circuits	VIII-20
	(2) Digital (Integrated) Circuits	VIII-21
	(3) Buffer Circuits	VIII-23
D.	Dual Time Base Unit	VIII-24
	1. General	VIII-24
	2. Response to Commands	VIII-24
	3. Time Base Generator Description	VIII-26
	4. Time Code Generator Description	VIII-26
Ð	5. Packaging	VIII-29
E.	Dual Command Programmer	VIII-31
	1. General	VIII-31
	2. Program Data Loading	VIII-32
	3. SR Subsystem Control	VIII-41
	a. SR Recorder Sequencing	VIII-41
	D. SR Control	VIII-42
	4. Programmer Interfaces	VIII-43
ъ	Command Distribution X 11 (Open	VIII-43
r.	Command Distribution Unit (CDU)	VIII-43
	1. General Characteristics	VIII-43
	2. Functional Description	VIII-47
	a. General	VIII-47
	b. Command Decoding	VIII-48
	c. Commands and Their Functional	
	Operation	VIII-49
	(1) General	VIII-49
	(2) Power Subsystem	VIII-51
	(3) Time Base Unit (TBU)	VIII-51
	(4) Programmer (DCP)	VIII-52
	(5) Scanning Radiometer (SR)	

Subsystem VIII-52 SRR Processor Control Logic (6) VIII-54

Page

· · · · ·	• * * •		Page
Section	•		•
		- Georging Radiometer Becorders	•
1		(7) Scanning Radiometer Recorders	VIII - 54
		(SRR) Transmitter	VIII-61
· · ·	ан н е	(8) VHF Real-Time Transmitter	
	•	(9) Vertical Temperature Trome	VIII-61
· · · · · · · · · · · · · · · · · · ·		Kadiometer	
• •		(10) Very High Resolution Radiometer	VIII-62
· · ·	· · ·	(VARR) Subsystem	VIII-66
•	•	(11) S Band Transmitter Subsystem	VIII-70
		(12) S-Bally Hanshitter Subsystem	VIII-72
	•	(13) Pitch Control Subsystem	VIII-72
•	·	(14) Attitude Control Cons	VIII-76
		(15) Squib Firing	VIII-78
	· •	(16) Solar Proton Monitor	VIII-78
		(17) Beacon Transmitter	VIII_79
		(18) Digital Data Processor	VIII-15 VIII-91
		(19) Beacon Telemetry Subsystem	
	d.	Special Operational Control Features	
•		(1) PTT Operation	VIII-87
		(2) Enable Tone Telemetry Request	VIII-87
	•		
IX	COMMUNIC	ATIONS	1X-1
•	A. Introdu	ction	1X-1
	B. Comma	nd Link	IX-1
	1. Ge	neral Description	IX-1
	2. Sig	nal Characteristics	IX-4
	3. An	tenna Subsystem	IX-5
	4. Du	al Command Receiver	IX-5
	5. Sul	osystem Analysis	IX-7
	C. Beacon	and Telemetry Link	IX-8
	1. Ge	neral Description	IX-8
	1. Ge a.	neral Description 3.9-kHz Channel	IX-8 IX-10
	1. Ge a. b.	neral Description 3.9-kHz Channel 2.3-kHz Channel	IX-8 IX-10 IX-11
	1. Ge a. b. 2. Sig	neral Description 3.9-kHz Channel 2.3-kHz Channel mal Characteristics	IX-8 IX-10 IX-11 IX-12
	1. Ge a. b. 2. Sig a.	neral Description 3.9-kHz Channel 2.3-kHz Channel mal Characteristics Housekeeping Telemetry	IX-8 IX-10 IX-11 IX-12 IX-12
	1. Ge a. b. 2. Sig a. b.	neral Description 3. 9-kHz Channel 2. 3-kHz Channel mal Characteristics Housekeeping Telemetry Command Data Verification	IX-8 IX-10 IX-11 IX-12 IX-12 IX-13
	1. Ge a. b. 2. Sig a. b. c.	neral Description 3.9-kHz Channel 2.3-kHz Channel mal Characteristics Housekeeping Telemetry Command Data Verification Solar Proton Monitor	IX-8 IX-10 IX-11 IX-12 IX-12 IX-13 IX-15
	1. Ge a. b. 2. Sig a. b. c. d.	neral Description	IX-8 IX-10 IX-11 IX-12 IX-12 IX-13 IX-15 IX-15
	1. Ge a. b. 2. Sig a. b. c. d. e.	neral Description	IX-8 IX-10 IX-11 IX-12 IX-12 IX-13 IX-15 IX-15 IX-15
	1. Ge a. b. 2. Sig a. b. c. d. e. f.	neral Description 3. 9-kHz Channel 2. 3-kHz Channel mal Characteristics Housekeeping Telemetry Command Data Verification Solar Proton Monitor Digital Solar Aspect Sensor (DSAS) Pitch and Roll Sensors Time Code Data	IX-8 IX-10 IX-11 IX-12 IX-12 IX-12 IX-13 IX-15 IX-15 IX-15 IX-17
	1. Ge a. b. 2. Sig a. b. c. d. e. f. g.	neral Description 3. 9-kHz Channel 2. 3-kHz Channel mal Characteristics Housekeeping Telemetry Command Data Verification Solar Proton Monitor Digital Solar Aspect Sensor (DSAS) Pitch and Roll Sensors Time Code Data Vertical Temperature Profile Radiometer	IX-8 IX-10 IX-11 IX-12 IX-12 IX-13 IX-15 IX-15 IX-15 IX-15 IX-17 IX-17

Section		Page
· ·	3. Dual Subcarrier Oscillator Assembly	IX-19
	4. Beacon Transmitter	IX-21
•	5. Antenna Subsystem	IX-24
•	6. Subsystem Analysis Summary	IX-26
· I	D. VHF Real-Time Video Link	IX-27
	1. General Description	IX-27
	2. SR Signal Characteristics	IX-27
• • • •	3. SR Processor	IX-30
•	4. Time Multiplexing of SR Signals	IX-33
· •	5. VHF Real-Time Transmitter	IX-33
	6. Real-Time Antenna Group	IX-35
	7. Subsystem Analysis Summary	IX-37
E	. S-Band Real-Time Video Link	IX-38
	1. General Description	IX-38
	2. VHRR Signal Characteristics	IX-39
	3. VHRR Processor	, IX-39
1.1	4. S-Band Transmitter	IX - 44
	a. Introduction	IX-44
	b. Design Approach	IX-44
	c. Description	IX-45
	d. Telemetry	IX-48
	5. S-Band Antenna	IX-48
	6. Subsystem Analysis Summary	IX-49
F.	, S-Band Playback Link	IX-50
	1. General	IX-50
	2. Signal Characteristics	IX-53
	a. VHRR Signals	IX-53
	b. SR Signals	IX-54
	c. Digital Data Signals	IX-56
····	3. Dual Multiplexer	IX-58
	4. S-Band Transmitter	IX-64
	5. S-Band Antenna	IX-65
· · · · · · · · · · · · · · · · · · ·	6. Subsystem Analysis Summary	IX-65
Y SD		
A SF	ITOS D and F Tost Dilosophy	X-1
А. Ъ	Space and E lest Philosophy	X-1
Д,	1 Toget Flow	X-1
	2. Itsl FlOW	· X-1
	2. VIDTATION	X-2
	o, incrinar-vacuum lests	X-2

Preceding page blank

TABLE OF CONTENTS (Continued)

Section					Page
		4.	Tes	t Implementation	X-4
			а. b.	Spacecraft Integration Prequalification Alignment and	X-5
				Calibration	X-6
			c.	Environmental Qualification	X-6
			d.	Final Spacecraft Calibration	X-6
		5.	Tes	t Equipment	X-7
			a.	Spacecraft Test Console	X-7
			b.	Target Control Rack	X-8
·		•	с. d.	Data Reduction Computer Spacecraft Test Configuration in	X-9
				Thermal-Vacuum	X-10
XI	GR	OUN	D ST	ATION EQUIPMENT	XI-1
	Α.	Int	roduc	tion	XI-1
	в.	Cor	mmar	nd, Programming, and Analysis Centers	XI-2
		I.	TOS	Evaluation Center/TIROS-TOS Check-	X 77 O
			out	Center (TEC/TTCC)	X1-2
•			а. ь	Now Equilities	X1-2 XI-2
		o .	υ. πΟς	New Facilities	XI-2
		4.	103	Functions	A1-3 VI-3
			h.	New Facilities	XI-3
	•	3.	Data	a Processing and Analysis Facility	M = 0
		- •	(DA	PAF)	XI-4
			a.	Functions	XI-4
			b.	Data Inputs	XI-4
				(1) SR Data	XI-4
				(a) Video Signal	XI-4
				(b) Flutter-and-Wow Signal	XI-4
				(2) VHRR Data	XI-6
		•		(a) Video Signal	XI-6
	•			(b) Flutter-and-Wow Signal	XI-6
	•			(3) Digital Data	XI-6.
		•		(4) Beacon Data	XI-9
				(5) CDA Station-Events Signals	XI-9
			c.	New Facilities	XI-9
		•		(1) SR Demodulator	XI-9
1		• .		(2) VHRR Demodulator	XI-10
				(3) Digital Translator	XI-10
				(4) Digital Signal Conditioner	XI-10

PRECEDING PAGE BLANK NOT FILME

Section

ŧ

	_	Land Data Acquisition Stations	XI-10
с.	Con	nmand and Data Acquisition Sumon -	XI-10
	1.	General Facilities	XI-11
	2.	Data Acquisition Factures	XI-11
	3.	Ground Station Requirement	XI-11
	4.	Radio Frequency Equipment	XI-11
		a. Introduction	XI-12
		D. Command Link	XI-12
		d Doal-Time VHF Link	XI-13
		G. S-Band Playback Link	XI-13 '
	F	Video Equipment	XI-14
	э.	o Introduction	XI-14
		b Demultiplexing	XI-15
		D. Tape Becorders	XI-15
		d Long Lines Interface	XI-21
		a A-Scan Display of Data	XI-21
		(1) S-Band Data	XI-21
		(i) SB Data \dots	XI-21
		(a) VHBB Data	XI-25
		(a) $AVCS$ Data	XI-26
		(d) Digital Data	XI-26
		(a) Boal-Time VHRB Data	XI-26
		(e) Real-Thic Thic Zan Contract	XI-26
		(2) Beacon Data	XI-26
		(3) Real-Time SK Data	XI-26
		f. Chart Recorder Display of Data	XI-27
D.	Pr	ogramming Commands and Equipment	XI-27
	1.	Satellite Commands	XI-27
		a. General	XI-27
		b. Direct Commands	XI-27
		c. Remote Command Poquirements	XI-28
	_	d. Additional Command Requirements	XI-28
	2.	Equipment Modifications	XI-28
		a. Command Rack 55, Drawer B	XI-28
		(1) Rey-Enabled Command Creating (1)	XI-28
		(4) Illinoit Automatic Opaulo offense it	XI-29
		D. Deacon Equipment	XI-29
		(1) Station Control Panel	XI-29
		(1) Becorder Playback Controls	XI-29
		(3) Oscilloscope Displays	XI-30
	•	Additional Equinment	XI-34
	3,	, Automat Equipment	

Section

E.	Long Lines	XI-34
	1. General	XI-34
	2. Channel Allocation	XI-34
	3. Long Line Utilization	XI-37
F.	RCA Astro-Electronics Division Checkout Facility	
	and Ground Station	XI-38
	1. General	XI-38
	2. Radio Frequency Signal Handling	XI-38
	3. Data Processing	XI-38
	a. S-Band Data	XI-39
	b. Beacon Data	XI-39
	c. Real-Time SR Data	XI-39
	4. Commands	XI-39
\mathbf{G} :	Launch Support Station	XI-39

APPENDICES

. A	ITOS D AND E STRESS ANALYSIS	A-1
В	MECHANICAL DESIGN PARAMETERS	B -1
С	COMMUNICATION LINK ANALYSES	C-1
.D	PERFORMANCE TESTS OF ITOS D AND E S-BAND ANTENNAS	D - 1

LIST OF ILLUSTRATIONS

· · ·	· · ·	
Figure		Page
I-1	ITOS D and E Satellite, Identification of External	
T O	Features	I-3
1-2 T 0	The ITOS D and E System	I-4
1-3 L-4	TTOS D and E Spacecraft Orientation	I-8
1-4	Songer Bield of Min	
ĭ_5	The sensor Field of View	I-9
I-0	TOS D and E Spacecraft Component Layout	1-11
I-7	Thermal Control Fence	1-14
I-8	ITOS D and E System Block Diagram	I-10
I-9	Geometry of the Sun-Synchronous Orbit	1-19
I-10	Seasonal Variation of Spacecraft Sun Angle for Afternoon	1-33
	AN Orbits	T 94
I-11	ITOS Spacecraft Time in Sunlight	1-34
I-12	Nodal Drift Rate Error vs Inclination Error	1-30
I-13	Nodal Drift Rate Error vs Mean Altitude Error	1-07
I -1 4	Spacecraft Pitch Attitude Offset vs Altitude	I-38
I-15	Effect of Launch Window and Injection Error on	1 00
	Mission Mode Sun Angle (Worst Case)	I-39
I-16	Typical SR Transfer Function	I-40
I-17	SR Image Characteristics	I-42
I-18	VHRR Image Characteristics	I-45
I-19	Launch to Mission Mode Events	I-51
I-20	Typical Ground-Contact Boundaries for Wallops	
	Island and Alaska CDA Stations	I-55
1-21	Typical CDA Station Contact Time	I-56
11-1 II-1	ITOS D and E Spacecraft Orientation	II-2
11-2	Basic Structure, Showing Panel Access Ports (Cutouts)	
TT 0 -	and Hinged Equipment Panel Opened	II-3
11-5 TT 4	Tros D and E Spacecraft Launch Compatibility	II5
11-4 11-5	Stud Mounting for Spacecraft Handling	П-8
11-0 TTC	Pront Access Panel	II-10
11-0 11_7	Easeplate (Panel No. 2) Layout	II-16
II-7 II-8	Equipment Panel No. 1	П-20
II-0 II-0	Cross Bross Assembly and The L. R.	II-21
II-10	TTOS D and F. Thormal Fence Assembly G. St.	П-23
II -11	Solar Panel Mechanical Configuration	П-24
II-12	Solar Panel Hydraulic Actuator	II-25
П-13	Solar Panel Retention and Reloand Machanian	II-28
II -1 4	Deployment of Solar Panel	11-31 II-31
II-15	ATCActuator Sensor Unit	11-33
		11-3/1

xxi

Figure		Page
П-16	ATC Louver and Hinge Assembly	II26
II-17	Spacecraft Alignment Reference Aves	11-30 11.20
III-1	Thermal Radiators	11-09 TTT 1
III-2	Thermal Control Fence	111-1
III-3	Net Heat Exchange Between Thermal Fenceplate and 20°C Spacecraft	111-3 111 - 5
III-4	Active Thermal Control Functional Characteristics	
III-5	Nodal Definitions for Analytical Thermal Model	
IV-1	Vehicle Dynamics Subsystem Block Diagram	. III~II
IV-2	Typical Signals Telemetered on 2 3-kHz Subcamion	
IV-3	Equipment Module Momentum Versus Spin Rate	10-5
IV-4	Liquid-Filled Nutation Damper	11-8
IV-5	Digital Solar Aspect Sensor Alignment Angles Relative	10-10
IV-6	Scan Lines of Attitudo Sensore	IV-13
IV-7 ·	Pitch and Boll Songon Floatnenics Die 1 Die	IV-15
IV-8	Attitude Sensor Configuration	IV-16
IV-9	Pitch Sensor Scan Comparis	IV-17
IV-10	Horizon Senson Dro. A multi-en O. (IV-19
TV-11	Pitch Horizon Dulas Official	IV-21
··· ···	Temperature Variation	
IV-12	Pitch Offset Versus Only	IV-22
IV-13	Orbital Coordinates	IV-23
IV-14	Spacement Coordinates	IV-25
IV-15	Unipolon Dulgo Made	IV-25
IV-16	Unipolar Terrera Grand the Constant of the Con	IV-29
10 10	Disturbance	
IV-17	Magnetic Momentum Vector Control, Simplified	IV-30
IV-18	Momentum Change Versus Torquing Period	IV-32
177 10	(Single Coll)	IV-35
17-19	Attitude Change Versus Torquing Period (Single Coil)	IV-37
17-20	Geometry for Momentum Control Prior to Pitch Lock	IV-38
10-21	Dipole Definition and Phasing for Momentum Control Prior to Pitch Lock	
IV-22	Commutation Time Versus Anomalia Analy	IV-39
IV-23	Time Between Required Momentum Coil Dipole	IV-41
TT7 94	Reversals Prior to Pitch Lock	IV-42
1V = 24 N/ 95	Ditch A in G transferred on Torquing Efficiency	IV-42
1v - 20	Pitch Axis Control Loop, Operational Block	
N 7 9.4	Diagram	IV-44
LV-20	Geometry of Horizon Pulse and Reference Index Pulse	IV-46

xxii

Figure		Page
IV-27	Open Loop Fine Gain Frequency Response of Single	
IV-28	Axis Pitch Servo Open Loop Coarse Gain Frequency Response of	IV-50
	Single Axis Pitch Servo	IV-51
IV-29	Open Loop Frequency Response of Tachometer Loop	IV-52
IV-30	Digital Computer Simulation of Pitch Loop System	IV-54
IV-31	Typical Gain-Phase Presentation for $G(s)$, $F(s)$,	
IV-32	Stability Study Worst-Case Regults (Dealiminary)	IV-59
IV-33	Error Detection	1V-62
IV-34	Operational Amplifier Simplified Schematic Diagram	IV-66
IV-35	Gain Switching Circuit Block Diagram	IV-07
IV-36	Summing Amplifier Simplified Schematic Diagram	1V-67
IV-37	Torque and Speed Characteristics for Inland Torque	1v-68
IV-38	Motor Model T-4437A Molecular Flow Loss of MWA Lubricant P-10	IV-69
	(Diethyl-Hexyl Sebacate)	IV-75
IV-39	Nutation Cone Angles Due to Transverse Momentum	IV-88
V-1	ITOS D and E Power Supply Subsystem,	
0	Block Diagram	V-3
V-2	Solar Cell I-V Characteristics	V-10
V-3	Power Dissipation versus Shunt Current (per	
	Shunt Dissipator)	V-11
V-4	Battery Pack, Schematic Diagram	V-13
V-5 V-6	Voltage (-24.5V) Regulator, Block Diagram	V-17
V-6	Shunt Limiter, Functional Block Diagram	V-18
V-7	Battery Charge Controller, Functional Block Diagram.	V-20
V-8	Specified Voltage Limit versus Temperature	V-21
V-9	TTOS D and E Acquisition and Pre-operational	
TT 10	Load Current Profile	V-25
V-10	TTOS D and E Operational Load Current Profile	V-26
VI-I	Scanning Radiometer Subsystem, Block Diagram	VI-5
V1-2	SR Scan Projection	VI-6
. VI-3	Scanning Radiometer, Block Diagram	VI-7
VI-4	SR Subsystem Timing	VI-11
V1-5	Scanning Radiometer, Optical Schematic	VI-13
V1-6	Scanning Radiometer, Detailed Optical Schematic	VI-13
VI-7	Att Optics Assembly	VI-15
VI-8	IR Response versus Displacement Angle	VI-17
VI-9	Visible Channel, Relative Spectral Response	VI-18
VI-10	IR Channel, Relative Spectral Response	VI-18
VI-11	Scanner Housing Module, Outline Dimensions	VI-21

Figure		
		Page
VI-12	Settling Time of Channel Amplifiers	
VI-13	Lenticular Lens Dispersing Characteristics	VI-25
VI-14	Sample Lens, Transmission Curve	VI-27
VI-15	Scanning Radiometer Mounted on UTOS D and D	VI-27
	Showing Locations of Transmitting and	
	Reflecting Targets	
VI-16	Typical Scan Line Showing Timing of Floatwice In-	VI-2 8
	Generated Functions	
VI-17	Composite Signal of Both IR and Visible Channel	VI-32
VI-18	Very High Resolution Radiometer. Optics Schematic	V1-34
VI-19	Relative Spectral Response of Visible Channel VHPP	. VI-35
VI-20	Relative Spectral Response of IR Channel of VHRR	V1-36
V1-21 VI 99	VHRR Electronics, Block Diagram	VI-37
VI-22 VI-22	Calibration Step Voltage Timing Chart	V1-39 V1-49
VI-24	Timing Diagram-Dual Polarity Pulse Circuits	VI-43 VI-44
VI-24 VI-25	Notar D	VI-45
VI-26	Motor Drive, Block Diagram	VI-46
VI-27	Brushlage DG m	VI-47
VI-28	VTPR Outpute	VI-48
VI-29	Full Calibration G	VI-53
VI-30	VTPR Option	VI-54
VI-31	VTPR Block Diagnon of The state	VI-59
VI-32	Cam Scanning Flootunit	VI-61
VI-33	Detector Response to Day	VI-68
	Alpha Particles	
VI-34	SPM Sensor Units	VI-71
VI-35	Data Sync Modification (SDND	VI-73
VII-1	SRPR Input-Output Data Format	VI-78
VII-2	SRPR Functional Block Diagnam	VII-3
VII-3	IR Channel Commutator Simplified Di	VII-6
VII-4	Time-Code Buffer Block Diagram	VII-9
VII-5	Eight-Stage Divide Chain Simplified Divide	VII-10
VII-6	Sample-and-Hold Network Simplified Block Diagram	VII-11
VII-7	Signal-Select Mode Network	VII-12
VII-8	Balanced Modulator System Block Dian	VII-13
VII-9	VHRR Processor Configuration	VII-13
VII-10	Control Translator (CT). Schematic Ronnegentati	VII-18
VII-11	Signal Routing Unit (SRU), Schematic Representation	VII-21
		1/11 121

Figure		Page
VII-12	Power Routing Unit (PRU), Schematic Representation	VII-22
VII-13	Signal Conditioning Functions (Channel No. 1 Only),	1 717 0.0
	Block Diagram	V11-23
VII-14	Recorded Data Word Sequence	VII-20 VII-20
VII-15	Recorded Digital Frame	VII-20
VII-16	Recorded Time Code Words	VII-20 VII-27
VII-17	Digitized Telemetry Word	V11-27 VII-28
VII-18	Digital Sensor and DDP Interface	VII-20
VII-19	Real-Time Telemetry Frame, Normal Mode	VII-30
VII-20	DDP Interface Diagram	VII-40
VII-21	Standard Interface	VII-43
VII-22	Relay Closure Output	VII-40
VII-2 3	Grounded Base Transistor Output	VII-44
VII-24	LP/DTL Output	VII-44
VII-25	Analog Telemetry Output	VII-45
VII-26	CDU Command Output	VII-46
VII-27	Digital Data Processor, Block Diagram	VII-54
VII-28	Signal Electronics, Block Diagram	VII-62
VII-29	Flutter-to-Torque Ratio versus Frequency	VII-63
VII- 30	Simplified Servo Drive, Block Diagram	VIII-3
VIII-1	Command Subsystem Block Diagram	$VIII_10$
VIII-2	Decoder Input and Output Interfaces	$\overline{\rm VIII}_{15}$
VIII-3	Decoder Logic Flow Diagram	VIII-10
VIII-4	ITOS D and E Decoder Block Diagram	VIII-10
VIII-5	Decoder Timing Diagram	VIII-15
VIII-6	Time Base Unit Interface Diagram	V111-20
VIII+7	Time Base Generator Logic Diagram	
VIII-8	Time Code Generator Block Diagram	V111-28
VIII-9	Time Code Outputs - Timing Diagram	VIII-30
VIII-10	Programmer Block Diagram	VIII-33
VIII-11	VHRR Record Timing Diagram	VIII-38
VIII-12	Proportional QOMAC Cycle	VIII-41
VIII-13	Dual Command Programmer Interface Diagram	VIII-45
VIII-14	Typical CDU Decoding Gate, Schematic Diagram	VIII-50
VIII-15	Decoder and CDU Interconnections	VIII-50
VIII-16	Dual Time Base Unit Selection	VIII-52
VIII-17	Programmer Selection	VIII-53
VIII-18	SR Control Logic	VIII-55
VIII-19	SR Processor Control	VIII-56
VIII-20	SRR Selection Logic	VIII-59
VIII-21	SRR Command Decoding Logic	VIII-60
VIII-22	VHF Real-Time Transmitter Control Logic	VIII-63

170 000

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

LIST OF ILLUSTRATIONS (Continued)

Figure

Page

VIII-23	VTPR Control Logic	VIII-64
VIII-24	VHRR Subsystem Control Logic	VIII-67
VIII-25	VHRR Recorder Control Logic	VIII-71
VIII-26	S-Band Transmitter Subsystem Control	VIII-73
VIII-27	QOMAC and Magnetic Bias Coil Control Logic	VIII-75
VIII-28	Momentum Coil Control Logic	VIII-77
VIII-29	Squib Firing Control Logic	VIII-78
VIII-30	Digital Data Processor Control Logic	VIII-80
VIII-31	3900 Hz SCO Beacon Telemetry Control	VIII-83
VIII-32	Beacon 3900 Hz SCO Telemetry Operation	VIII-85
VIII-33	Beacon 2300 Hz SCO Telemetry Operations	VIII-86
(X-1	Command Link	IX-3
IX-2	Command Receiver Block Diagram	IX-7
(X-3 DT-1	Beacon and Telemetry Link Block Diagram	IX-9
1.X-+ 1.X	Data Verification of a Valid Command	IX-14
1X-0	Data Verification Response to an Invalid Command	IX-14
LX-0	Solar Proton Monitor Real-Time Data Characteristics.	IX-16
1N-1 EX 0	Typical Roll Sensor and Pitch Index Telemetry	IX-18
- LX-3 - X-0	Dual Subcarrier Oscillator	IX-22
LN-9 85 10	Beacon Transmitter	IX-23
11-10	Beacon and Command Antenna Group	IX-25
4X~11 2V 10	VHF Real-Time Link, Spacecraft Equipment	IX-28
LC-12	VHF Real-Time Link, Typical APT Ground Station	
	Equipment	IX-29
13	SR Sensor Signal Characteristics Prior to Processing	
	by SR Processor and Time Multiplexing of	
1.4.F . 4 .	Channels by SR Tape Recorder	IX-31
IX-14	SR Signal Characteristics after Processing by the	
	SR Processor	IX-32
LX-15	SRR Time Multiplexing Circuits, Simplified Block	
*** .	Diagram	IX-34
LX-16	SR Signal Characteristics After Time Multiplexing	
	by SR Recorder	IX-35
IX-17	Real-Time Transmitter	IX-37
EX-18	S-Band Real-Time Video Link, Spacecraft Equipment	
IX-19	S-Band Real-Time Link, Typical Local User Ground	1X-40
IX 20	VHRR Signal Characteristics Prior to Time Multiplex-	IX-41
FX-21	ing of IR and Visible Signals Time Multiplexed IR and Visible Signals from the	IX-42
	VHRR Sensors	IX-43

Figure		Page
IX-22	VHRR Processor, Output Spectrum	IX-45
IX-23	ITOS D and E S-Band Transmitter	IX-47
IX- 24	S-Band Playback Link, Spacecraft Equipment,	
	Block Diagram	IX-51
IX-25	S-Band Playback Link, CDA Station Equipment,	T T 50
*** 0.0	Block Diagram	IX-52
IX-26	Composite Playback Spectrum	IX-53
IX-27	SR Recorder - MUX Interface	IX-01
1Λ -20 V 1	Concred Unit Test Flow	-03 X-2
N-1 V.9	ITOS D and E Spacegraft Test and Calibration	A-4
A-4	Program	V- 3
377 1	Program	Λ^{-0}
X1-1	Data Processing and Analysis Facility at NESC,	VI E
VI 9	DADAE Signal Dropogging Subgratem	X1- 0
A1-2	DAPAT Signal Processing Subsystem,	VI7
V T_3	S-Band Data Handling of CDA Stations	A1-1
M-9	Block Diagram	XI-17
XI-4	Demultiplexer Block Diagram	XI-19
XI-5	New Rack Configuration to Accommodate ITOS D and E	
	Demultiplexer Chassis	XI-20
XI-6	Ground Processing of VHRR Signal, Modified	
	Block Diagram	XI-31
XI-7	Ground Processing of Digital Data Signals,	
	Modified Block Diagram	XI-32
XI-8	Ground Processing of Scanning Radiometer Signal,	
NET : O	Modified Block Diagram	XI-33
XI-9	Long Lines Communications System	XI-35
XI-10 VI 11	Long Lines Unannel Allocations	XI-36
AI-11	Two Orbits	¥1-37
	Prototype Thrust Sine Vibration Level	A-3
	Prototype Lateral Sine Vibration Levels	A-4
	Design Random Vibration Levels - Prototype	A-5
	Composite Subcarrier Spectrum of Demodulated	
	Beacon and Telemetry Baseband	C-17
D-1	S-Band Antenna Test Model	D-2
D-2	Antenna Coordinates	D-3
D-3	Antenna No. 1 Pattern for $\beta = 0^{\circ}$, 180° Plane	D-4
D-4	Antenna No. 1 Envelope of Patterns for $\beta = 22-1/2^{\circ}$	
	to 167–1/2° Planes	D-4
D-5	Antenna No. 2 Pattern for $\beta = 0^{\circ}$, 180° Plane	D- 6

Figure		Page
D-6	Antenna No. 2 Envelope of Patterns for $\beta = 22-1/2^{\circ}$ to 167-1/2° Planes	D-6
D-7	ITOS D and E, Antenna No. 1, Directivity Contours	DU
	Relative to RHC Isotropic	D-7
D-8	ITOS D and E Antenna No. 2, Directivity Contours	
	Relative to RHC Isotropic	D-7
D-9	TIROS M ETM Antenna, Directivity Contours Relative	
	to RHC Isotropic. (For Gain, Subtract 3 dB for	
•	Hybrid and 1.3 dB Circuit Losses.)	D-8
D-10	TIROS M S-Band Antenna, Directivity Contours for	
	Antenna without Spacecraft Relative to RHC	
	Isotropic	D-8

LIST OF TABLES

Table

I-1	Spacecraft Subsystem Complement	I-24
I-2	Command Link Characteristics	I-26
I-3	Beacon Link Characteristics	I-26
I-4	Real-Time VHF Link Characteristics	I-28
I-5	S-Band Playback Link Characteristics	I-29
I-6	S-Band Real-Time Link Characteristics	1-30
I-7	Particulars of the ITOS Nominal Orbit	I-32
II-1	ITOS D and E Spacecraft, Estimated Weight Summary	II-13
 H-2	Actuator Sensor Characteristics	II-35
11-3	Mechanical and Physical Parameters of ITOS D and E	II-40
Ш-1	Spacecraft Thermal Control System Performance	
	Requirements	III-4
III-2	Thermal Paint Specifications	III-8
111-3	ITOS D and E Operational and Acquisition Flight	
··· ·	Temperature Predictions	III-13
IV-1	Damping Time Constants	IV-12
IV-2	Cross-Coupling Parameters Worst-Case	
	Combinations	IV-60
IV-3	Pitch Servo Parameters Matrix	IV-61
IV-4	PCS Electronic Specifications	IV-64
IV-5	Operational Power Requirements	IV-76
IV-6	Summary of Disturbance and Effects	IV-78
IV-7	Rotating Component Disturbances	IV-90
V-1	Summary of ITOS D and E Power Supply	
	Subsystem Parameters	V-4
V-2	Summary of Telemetry Characteristics	V-22
VI-1	Scanning Radiometer Parameters	VI-4
VI-2	VHRR Characteristics	VI-30
VI-3	Decoder Functions	VI-41
VI-4	Voltage Calibration Levels	VI-55
VI-5	Radiometer Filter Characteristics at 35°C	VI-63
VI-6	Solar Proton Monitor Detector Characteristics	VI-70
VII-1	Video, Telemetry Timing States	VII-5
VII-2	SR Processor Input and Output Functions	VII-7
VII-3	VHRRP Real-Time Operating Modes	VII-9
VII-4	S-Band Transmitter Deviations for the VHRRP	
	Operating Modes	VII-20
VII-5	Signals Sent to VHRRR as a Function	
	of Mode Selected	VII-24

Page

LIST OF TABLES (Continued)

Table

•	·	
VII-6	Commutator Inputs for Real-Time Telemetry	VⅡ-31
VII-7	DDP Interface Signal Inputs	VII-41
VII-8	DDP Interface Signal Outputs	VII-42
VII-9	SR Recorder Command and Control Signals	VII-55
VII-10	SR Recorder Characteristics	VII-56
VII-11	Record Mode Required Torque	VII-64
VII-12	Playback Mode Maximum Required Torque	VII-65
VII-13	VHRR Recorder Characteristics	VII-72
VII-14	VHRR Tape Recorder Signal Data	VII-74
VII-15	VHRR Recorder and Spacecraft Interface Signals	VII-75
VIII-1	ITOS D and E Commands	VIII-4
VIII-2	Decoder Output Interface Signals	VIII-11
VIII-3	Decoder Data Format	VIII-13
VIII-4	Counter States	VIII-22
VIII-5	T _o Word Format	VIII-35
VIII-6	Rephasing Word Format	VIII-36
VIII-7	QOMAC Program Word Format	VIII-39
VIII-8	Dual Command Programmer Inputs	VIII-44
VIII-9	Programmer Outputs	VIII-46
VIII-10	VHRR Control Function Activation Corresponding	
	to S/C Commands	VIII-66
VIII-11	VHRR Modes	VIII-69
VIII-12	Telemetry Priorities	VIII-82
IX-1	Summary of ITOS D and E Communications Links	IX-2
1X-2	Command Receiver Specifications	IX-6
IX-3	Types of Telemetry Allocated to 3.9-kHz SCO	IX-10
IX-4	Types of Telemetry Allocated to 2.3-kHz SCO	IX-11
IX-5	Dual SCO Assembly Characteristics	IX-20
IX-6	Beacon Transmitter Specifications	IX-24
IX-7	VHF Real-Time Transmitter Specifications	IX-36
IX-8	Abbreviated Specifications of ITOS D and E	
	S-Band Transmitter	IX-46
IX-9	VHRR Recorder Channel Assignments	IX-54
IX-10	VHRR Channel Signal Parameters	IX-55
IX-11	SR Channel Signal Parameters	IX-57
IX-12	Digital Channel Signal Parameters	IX-58
IX-13	MUX Input Signals	IX-60
IX-14	SRR Playback Selection Modes	IX-62
IX-15	MUX Output Signals	IX-64

LIST OF TABLES (Continued)

Fable		Page
IX-16	S-Band Carrier Deviations and Resultant RF Link	
*** 17	Baseband S/N Ratios	IX-65
IX-17	Video Chamala	IX-66
V 1	Temporatures and Durations for Thermal-Vacuum	
X-1	Temperatures and Durations for Therman (deduning	X-4
VI1	Control and Indicator Interface	XI-12
А1-1 VI-9	Demultiplexer Functional Parameters	XI-16
XI-3	Tape Recorder Channel Assignments	XI-22
XI-4	Long Line Channel Data	XI-23
XI-5	Demodulator Signal Characteristics	XI-24
XI-6	Characteristics of Long Lines Data Channels	XI-36
C-1	Slant Ranges for Circular Orbit	C-2
C-2	Path Loss for Command Link as a Function of Elevation	
0 2	Angle	C-4
C-3	Worst-Case RF Command Link Calculation	C-5
C-4	Improvement in Command RF Signal Margins with	
-	Various Alternate Command Transmitter/Antenna	
	Combinations	C-7
C-5	Required Worst-Case Command Receiver IF Bandwidth	C-9
C-6	Interface Levels at the Command Receiver Port	C-10
C-7	Subcarrier-to-Noise Ratios at Receiver AGC Threshold	C-14
C-8	Principal Distortion Products and Relative Amplitude	C-18
C- 9	CDA Ground Station Parameters (Beacon Reception)	C-19
C-10	Subcarrier Noise Power Computations	C-20
C-11	Modulation Loss of Beacon Subcarriers	C-20
C-12	Worst-Case RF Beacon Link Calculation	C-22
C-13	Worst-Case Link Calculation for 3.9 kHz Channel	C-23
C-14	Worst-Case Link Calculation for 2.3 kHz Channel	G-24
C-15	S/N Contribution by the Long Lines	C-25
C-16	Real-Time Link Parameters (Field Stations)	C-26
C-17	Worst-Case Baseband S/N Ratios of VHF Real-Time	A 90
	System at the Field Stations	C-29
C-1 8	Variation of RF Margin with Elevation and	<u> </u>
	Nadir Angles	C-32
C-19	Worst-Case S-Band Keal-Time Link Calculation	0-34
C-20	VHRK Keal-Time Subcarrier S/ N Ratios	0-34

LIST OF TABLES (Continued)

Table Page C-21 VHRR Real-Time Link Baseband S/N Ratios C-35 C-22 Summary of VHRR Real-Time Ground Station RF Parameters C-35 C-23 Overall S/N Ratios VHRR Real-Time Data C-36 C-24 CDA Station RF Parameters C-37 C-25 Worst-Case S-Band Playback Link Calculation C-39 C-26 Worst-Case Subcarrier Signal-to-Noise Ratios, S-Band Playback Link C-40 C-27 Baseband S/N Ratios of S-Band Playback Link C-43 C-28 Worst-Case Overall SR Baseband S/N Ratios at DAPAF End of Long Lines C-45 C-29 Worst-Case Overall VHRR S/N Ratio at DAPAF End of Long Lines C-46

APPENDIX A

ITOS D AND E STRESS ANALYSIS

I. INTRODUCTION

The analysis presented in this appendix provides verification that the ITOS D and E structure can safely withstand the design load levels with a safety factor of 1.15 without permanent deformation and with a safety factor of 1.25 without failures. The design loads in the analysis are for full vibration levels although the actual input levels may be notched to protect the MDAC attachment fitting during qualification tests as was done for TIROS M (Ref. C, steps 33 and 55).

The ITOS D and E specified input levels are two-thirds of the TIROS M test levels at the structural natural resonances. (See pages A3 to A5 for a comparison of these loadings.) The margins of safety for structural parts that are common to both the ITOS D and E and TIROS M have been adjusted to reflect this decrease in load, and are summarized in Section III on pages A11 and A12. The redesigned front panel and other structural elements affected by the front panel redesign have their margins of safety listed on page A10.

The top section of the front panel has been stiffened by increasing the depth of the panel from .88 inch to 1.50 inches in this region. This has been done to keep the local lateral frequency of the top section, which now supports black boxes, above 28 Hz and thereby preventing any undesirable vibration coupling with the spacecraft lateral resonances which would tend to drive the ITOS spacecraft resonance below the desired minimum value of 20 Hz. The top section is stress analyzed for an anticipated amplification response factor of Q = 10 (Ref. page A13) and has large margins of safety.

The sides of the front panel have large longitudinal slots for Vertical Temperature Profile Radiometer (VTPR) fields of view. This region has been suitably reinforced by enclosing the periphery of the slot with a channel section and by adding an additional skin to the free channel flange side. This area is critical for sinusoidal vibration inputs in the lateral Y-Y direction at the spacecraft resonant frequency (Ref. page A20).

The bottom portion of the front panel supports two 35-pound Very High Resolution Radiometers (VHRR)*. These units are mounted on channel-shaped beams which are attached to the front panel. A brace located at the centerline of the front panel and attached to the baseplate provides additional support for the VHRR's. The stress analysis for the loads from the VHRR's starts on page A28. In addition, the bottom portion of the front panel is also checked for the overall spacecraft loadings (Ref. page A25).

*This analysis was made with these VHRR weights. The VHRR's are now lighter (i.e. 20 pounds instead of 35 pounds).

As in TIROS M, analysis sinusoidal vibrations are the critical environmental conditions. The ITOS D and E structure has also been analyzed for a constant-acceleration unidirectional load in thrust (Ref. pages A47 to A54). The structure can safely withstand a maximum constant load of 28.2g.

Weight reduction of the two VHRR's from a total of 70 pounds to 39.4 pounds, plus the relocation of the VHRR's on the earth viewing access panel, has eliminated the need for the channel-shaped brackets, (pages A-29 to A-46).

- - - ·

	REUFFEL & ESSER CO.	- V		
		500 500 500 500 500 500 500 500 500 500		
	type Lateral	Sine Vibrat	ton kevels	IRO
				ž v
				S S S S S S S
				RESS
				S AN
		<i>Esz</i> :		L Y Y
				2
B B H				
	E TOS DAE			an a
	√			
				ل
				Ŕ
		οφ 		4
Fr	equency ~ Hz	· · ·		

1

7

•

•

	Prepared fo	or:	Report No	
Actor Electronica	Approved:		Project:	
Astro Electronics Division	Date:	· · · · · · · · · · · · · · · · · · ·	Contract No	
Princeton, New Jersey	Subject: _	ITOS D&E STRESS ANA	LYSIS Pag	ge No. <u>A6</u> of

II. LIST OF SYMBOLS

M.S.	Margin of Safety	
K	Load Factor	
Res.	Resonance	
I	Moment of Inertia (in. ⁴)	
f	Actual Stress (lbs/in. ²)	
F	Allowable Stress $(lbs/in.^2)$	
A	Area $(in.^2)$	
Р	Load (lbs)	
ℓ,L	Length (in.)	
У	Deflection (in.)	
fn	Natural Frequency (Hz) (CPS)	
W	Weight (lbs)	
g,G	Gravitational Constant (32.2 ft/sec^2)	
v	Shear (lbs)	
M	Bending Moment (in. lbs)	
E	Young's Modulus (lbs/in. ²)	
Q	Amplification Factor	
R	Reaction Load (lbs)	
b	Width (in.)	
t	Thickness (in.)	
С	Distance to Outermost Fibers (in.)	
Т	Torque (lb in.)	
N	Maximum Allowable Constant Acceleration Level in Thrust (Number of g's)	
Astro Electronics	Prepared for:	Report No.
-----------------------	---	------------------
Princeton, New Jersey	Subject:ITOS D&E STRESS ANALYSIS	A7 Bage No of
W	Load per Unit Area (lbs/in. ²)	
m	Reciprocal of Poisson's Ratio	
M'	Bending Moment per Unit Length (in lb./in.)	

SUBSCRIPTS

Fat	Fatigue
cr	Crippling
x,y,z	Coordinate Directions
b	Bending
t [.]	Axial, tension
f	Flange
S	Shear Direction
n .	Normal Direction
su	Shear Ultimate
A11	Allowable
TOT	Total
br	Bearing

REA		Prepared for: Report Approved: Project	No
Division	• •	Date: Contra	ct No
Princeton, New Jersey		Subject: _ ITOS D&E STRESS ANALYSIS	Page No òf

III. TABLE OF AMINIMUM MARGINS OF SAFETY

THE MARGING OF SAFETY (M.S.) LISTED IN THIS REPORT ARE CALCULATED FROM THE FOLLOWING RELATIONSHIP :

M.S. = ALLOWABLE STRESS ACTUAL STRESS X F.S.

WHERE: F.S. = FACTOR OF SAFETY

WHEN THE ALLOWAIGLE SPRESS IS THE ULTIMATE OR FRACTURE STREAMSTH OF THE MATERIAL, THE F.S. USED IS 1.25, WHEN THE ALLOWABLE IS THE YIELD STREAMSTH OF THE MATERIAL, THE F.S. USED IS 1.15. OF THESE THE MARGINS OF SAFETY DALLY THE LOWEST IS REPORTED.

MARGINS OF JAFETY FOR ITEMS NOT MODIFIED FROM TIROS M WERE ASTAINED IN THE FOLLOWING MANNER USING LOAD FACTOR K=TIROS MLOAD/ITOS DELOAD

(M.S.) I TOS DE $\begin{bmatrix} 1 + (M.S.) \\ TROSM \end{bmatrix} K - 1$ THE TIROS SINUSOIDAL VIBRATION INPOTS ARE: 1.5 × 1705 DEE VIBRATION INPUTS. REF PG A3 & A4) FOR TIRDS M ITEMS CRITICAL AT SPACE CRAFT $1 \times = 1.5 \left(\frac{T_{1705} \times W_{E16HT}}{1705} \right) = 1.5 \times \left(\frac{720}{770} \right) = 1.4$ RESONANCES

	Prepared for:	Report No.
	Approved:,,	Project:
Division	Date:	Contract No.
Princeton, New Jersey	Subject: IT Del STRESS ANALYS	IS Page No

K= 1:5

2) FOR ITEMS CRITICAL AT LOCAL RESONANCE

SINCE THE ITEMS NOT ANALIZED IN THIS REPORT REMAINED THE SAME AS IN TIRUS M, IT IS VALID TO RATIO THE MARGINS OF SAFETY AS EXPLAINED ABOVE. CRITICAL MARGINS OF SAFETY FOR CHANGED STRUCTURE

Neton Electronics REF. P. ITERA CRITICAL CONDITION TYPE OF STRESS M.S. FRONT PANEL TOP CNANNEL Y EXCITATION JC RES. BENDING FATHELE AIT 1.54 STRINGER YEXCITATION SIC RES BENDING CEIPPLING A17 1.37 WEB LAT. EXCITATION J/C RES. SHEAR BUCKLING A23 .83 CHANNEL Y EXCITATION J/C RES. AXIAL FATISUE A27 .31 BKT ATTACHMENTS X EXCITATION PANEL RES. RIVET TENSION A3L. .16 VHRR BETS. ZEXCITATION PANEL RES. BENDANG FATIGUE Subject: A AO .15 Appro BASEPLATE I EXCITATION PANEL RES. BENDING CRIPPLING RIB A45_ 1.34 ITOS 0 G STRESS ANALYS Z Page . 2 . . 5 Ο

CEITICAL	Maggins	OF SAFETY POR	UNENANCED SPACE	CURE_		Astro E Division Princeton
ITERA	TIBOS AA DAYOS ASO.	CEITICAL CONDITION	TYPE OF STRESS	TTROS N ASS	ITOS DAE MS	lectro
BASGRATE	1769705-					डे हे 🖾
RIS	-6	Z EXCIT. PORTE EES.	BENDING - GEIPPEING	.87	1.91	S S
INTERCOSTAL	-7,8	ZERCIP. AMAGL RES.	RNET BRG. AT SPLICE	17	,76	
EQUIP. OMACLEC	-4	X EXCIT. SIC RES.	BEALDING WELD	.09	.63	
BASEPLATES	-2,3	YEXCIT S/C RES.	BENDING YIELD	03	.44	νà.
CHANNEL		YEXCIT SIG RES.	BENDING YIELD	.06	.48	
SEIN	-82	Z GACIT PAASE RES.	BENDING CEIPPLING	.27	.91	ŚŪ>
RIB	-60	ZEXCIT PRIMEL RES.	TORSION	.00	,50	ubjec
EREMPINENT PANEL	1769707-					
INTERNER CHONINGL	-9,10,16	X EXCIT. PANEL RES.	BENDIALS CRIPPLING	.26	-39	
MITEENAL CHERREL	-9,10,16	XEXCIT. PANEL BES.	RIVET BRG. AF SPLICE	.01	,52	Ĩ
NE ETICAL CHANNEL	-5,6	X EXCIT SIC RES.	AXIAL BUCKLING	.38	.85	
SKIAL	-11	YEXGIT. J/CRES.	SHEAR BUCKLING	.00	,40	
TOP CHANNEL	- 3	X EXCIT. PANEL RES.	BEALDING FATIGUE	.53	1.30	So and a second se
BACK PANEL	1769709 -		· · ·			TR.
INTERCASTAL	- 5	X EXCIT. S/C RES.	BENDING CRIPPLING	.31	.83	in the second se
R/B	-27	YEXCIT 3/C RES.	BENDING FATIGUE	,14	.60	70
BRACE	-40	YEXCIT SIC RES.	ATTACHMENTS	,06	.48	
SKIN	-17	YEXCIT SIC RES.	SHEAR BUCKLING	.40	.96	LY
SEPARATION RING	1769712 -					- Projec - Contr - STS
	5-	LAT EXCIT S/C RES.	BUCKLING AT CENTER	.41	.97	act:
01	-2	. 81	FAT. WEAR VEE CLAMP	.09	,53	No.
11	-2		FAT UPPER WEB	,09	,53	, aŭe
11	- 2		FAT UPPER FLANGE	.09	.53	No
• • •						AL
						<u>a</u> n
	÷		· ·			

a. –

ITEM	TIROS M DAG. NO.	CRITICAL CONDITION	TYPE OF STRESS	TIROS M NAS	ITOS DJE MS	Astro Divisic Princetor
CROSS BRACE	1769716 -					, , , , , , , , , , , , , , , , , , ,
CHANNELS	- 5, 6, 7, 25	Z EXCIT PANEL RES.	BENDING FATIGLE	,20	.80	ev Ctr
SPLICE AT CENTER	11	ZEXCIT PAREL RES.	RIVET BRG. YIELD	.08	.62	oni 🕅
END ATTACH.	11	ZEXCIT PONEL RES.	RIVET BRG. YIELD	.30	.95	S . K
KNEE BRAGE	"	Z EXCIT PINEL RES.	ATTACH BRG.	.11	.67	
SOLAR PANEL	1769625 -					÷ .,
HONEYCOMB	-1, 2, 3	LAT. EXCIT PANEL RES.	INTER CELL BUCKLING	.06	.59	
DRAFFER AMACH		XEXCIT. SIG RES.	BRG FIELD	.26	.76	
					·]	App Date Subj
						ect:
						ă l
EASCALA BACT.	1762711-1	ZEXCIT. PANEL ES.	BENDING FATIGUE	,31	,97	11
	•					80
					. 1	ğ
					-	S .
			$d_{\rm eff} = d_{\rm eff} + d_{\rm$, , , , , , , , , , , , , , , , , , ,		20
						SS SS
	:					æ
	· ·				1	CX S
						Pro Co
•						ntra
						Pa
	•					te z
						° N
·						0 2
، ، ، ، ،	•	· · · · · · · · · · · · · · · · · · ·		· · ·		
		· · ·				

	Prepared for:	Report No
	Approved:	Project
Astro Electronics	Date	
Division		Contract No A13 *
Princeton, New Jersey	Subject: <u>ITOS DEE STRESS</u>	ANALYSIS Page No
IK. FRONT PANEL		
THE MOST CR	ITICAL LOADING 1.	N THE FOR SECTION
IS DUE TO THE K	HONMETERS AND T	wo black boxes
MOUNTED TO THE	TOP GNANNEL.	AND FIRST STRING-
ER. THESE ITEMS	S WILL BE SUBJEC	TED TO A LATERAL
LOADING OF 1.	S AT A Q OF	10. DURING
LATERAL SINE	VIBRATION. (REF	B)
	· · · · · · · · · · · · · · · · · · ·	
179 2 4 1	17 24	
1 6.2 #	6.2 1	
	\$	· · · · · · · · · · · · · · · · · · ·
	RAD RAD	IOMETERS = 12.3 EA.
	BLACK	K BOXES = 6.2 # ER.
12.0-0		
37.8		
	•	
Tile and in an una		
	MOMENT WILL DEE	OR AT MID SPAN
AND IS EQUAL	FO :	
Ad - i elia	$(\int (22)(20) + (2)(1)$	2)7
17 - 1.5(10)		$c \cdot f = c \cdot f \cdot f \cdot h \cdot c \cdot \delta \cdot s$
• •		
THIS MOMENT	ACTS ON THE SC	ECTION A-A AND
15 DISTRIBUTED	TO EACH BEAM	IN THE SECTION
IN PROPORTION 7	TO THE INERTIAS.	
TOP CHANNEL	STEINGER T	= 105 (1)4
4	۲ <u>۲</u>	
		$s = -0734 / N^4$

Iror = .1784 1N4 REF. P. A14, A15

SECTION A-A

	Prepared for:	Report No.
Astro Electronics Division	Date:	Project: Contract No
Princeton, New Jersey	Subject: ITOS DAE STRESS ANALYS	A14 SIS Page No

TOP CHANNEL - SECTION PROPERTIES

* EFFECTIVE SKIN WIDTH = 302

	- <i>1.2</i>	1.00
ł	3	\$
1.5	-0	
<u> </u>		,09
	- 75 -	

· · ·					
170m	A	7	Ar	AYZ	Io
() 1.5×.09	.135	.75	.1012	.076	.0253
Q .66 x .09	.0594	,045	,0027	.00012	,00004
3. Usx. 09	.0594	1.455	.0867	.126	.00004
@ 1.2x .04	.048	1.52	.073	.111	,00001
E'	.2978		,2636	.3/3/	.0254

 $\overline{V} = \frac{\overline{Z} \cdot A Y}{\overline{Z} \cdot A} = \frac{.2636}{.2978} = .886 \text{ iN}.$

Iy = ZAY2 + Z. Io - (ZAY) 7 Iy = .3131 + .0254 - (.2636)(.886) In = . 105 IN 4

•	ITEAA	A	×	AX	Ax2	Io
	O 1.5 x .09	. 135	.045	.006	,00027	,00009
	Q.66×.09	.0594	.375	.0223	.00835	,00316
	3.66x.09	.0.594	.375	.0523	.00835	.00316
•	@ 1.2 x . 04	,048	.60	.0288	,01728	,00576
	E.	.2978		.0794	,03425	.01817

 $\bar{X} = \frac{2}{3}\frac{AX}{A} = \frac{.0794}{.2978} = .267 IN.$ Ix = ZAX2 + ZIO - (ZAX) X = ,025 Ix = .085 IN4

· .		
	Prepared for: Report No	
	Approved: Project:	
Astro Electronics	Date: Contract No	
DIVISION	Al	.5
Princeton, New Jersey	Subject:	

STEINER - SECTION PROPERTIES * EFFECTIVE SKIN WIDTH = 301

-1.2	DA ITEAA	1	1	AY	AYZ	Io
	O 1.5 × .06	.09	.75	.0675	,0506	.0168
1.5 0	0, 565 × . 06	.0339	.03	.00102	,00003	,00001
	3,565×,06	,0339	1.47	,0498	,0733	.00001
.06	@ 1.2 x .04	.048	1.52	,0731	.111	,00001
+.6250	E!	.2058		.1914	.2349	.0168

- = ZAY = .1912 = .931 IN.

I.y = ZAY2 + Z. I. - (Z'AY) F

Iy = . 2349 + . 0168 - (.1914) (.931)

I_{Y}	=,0734 IN "				· ·	· ·
	ITEM	A	×	ÀX	Axz	Ιο
	1.5 x . 06	.09	.03	.0027	,aaas	.000027
	Ø .565 × .06	.0339	,3125	,01059	,00331	.0009
-	3,565 x .06	.0339	.3125	.01059	.0033/	.0009
	@1.2 x .04	.048	,60	.0288	.01728	.00576
	ET	.2058		,05268	.02398	.007587

 $\bar{X} = \frac{ZAX}{ZA} = \frac{.0526B}{.245B} = .256 IN.$ Ix = ZAX² + ZIO - (ZAX)X Ix = ,0181 1N4

	Prepared for:	Report No
Astro Electronics	Approved:	Project:
Division Princeton, New Jersey	Subject ITOS D&E	STRESS ANALYSIS Page No
For	BENDING LOADS,	THE CRIPPLING AL-

3.625 - .06"

2024 - TA AL. HL.

	ITEM	岁/七	Per	A	P
•	()	9.85	34500	.0276	950
	3	.12 r	50000	.0150	750
•	E			.0426	1700

THEREFORE :

Fer = 1700 = 39800 PSI

THE CHANNEL IS A MACHINING WITH .090 M THICK FLANGES THE CRIPPLING ALLOWABLE WILL EXCEED THE FATIGUE ALLOWABLE FRT = 40,800 PSI BY COMPARISON WITH THE ABOVE CALCULATIONS.

MARAN	Prepared for:	Heport No
Astro Electronics	Approved:	, Project:
Division	Date:	Contract No
Princeton, New Jarsay	Subject: ITO3 D&E STRE	SS ANALYSIS Page No.
TOP SECTION ((CONF.)	ĸĊġĸĸġĸĸġĸĊġĸĊġĸĊġĸĊġĊĊĸġĊĸĊġĊĊġĊĊġĊĸġĊġĸĊŎĊĸġĊĸġĸĊŎĬĸĊŢĊĸĊŎĬĸĊŢĸĊġĸĊġĸĸġĊĸġĊĸġĸĸġĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸĸ
THE MORSE	WT TREEN BY EA	CN BEAM 15:
CHANAGE ; MC	= <u>2578(.105)</u> = . .1784	1520 IN LBS
STEINSEE : AA.	s = <u>2578 (.0734)</u> .1784	: 1058 IN LBS -
The sector	10	1 DEADA IN FAILAIN
THE BENDIN	OG JTLESS IN EAC	A BEARA 13 FOONS
FEDRI:	AAC	
F6	$=\frac{I}{I}$	
AFAILE		
foc -	<u> </u>	2820 PSI
	· · ·	
F65 =	<u> </u>	13400 PSI
		•
•		
THE BEAMS	S ARE MADE OF	2024 - T3 AL AL
THUS : E=10	07 PSI FAT = 4	0800 PS1, Fer= 39800 ps
THE ADARESI	als of safety a	ee: Ref. P.
CILANNES: M	$25 = \frac{40800}{12880(1)5)} = /$	= 1.54
•	16060 (1.60)	
STRINGER: M	$5 = \frac{1}{13600(1.25)} = 1$	= 1.37
and the second		
THE ABOVE THIS AREA OF	MALCINS OF SAFETY THE STELLTURE U	ARE HIGH BECAUSE IAS DESIGNED BY

STIFFNESS LEQUILEARENTS, LEF. PG. A19

_____ Report No. _ Prepared for: Approved: _ ___ Project: _ Astro Electronics Date: _ Contract No. _ Division A18 Subject: ITOS DEB STRESS ANALYSIS ____ Page No. ___ot . Princeton, New Jersev TOP SECTION (CONT.) FREQUENCY CHEER FOR A BEAM WHIGH IS SYMMETRICALLY LOADED AS IN THE SKETCH ON FG. AJS: , THE STATIC DEFLEC-TION UNDER THE LOAD IS GIVEN BY : ya = - Fa' [32 - 4a] FROM SUPERPOSITION OF CASE 12 TABLE III IN REF. E USING THIS EQUATION, THE DEFLECTIONS ARE: $y_{R} = \frac{12.3(7.9)^{c}}{6(10^{7})(.1784)} \left[3(37.8) - 4(7.9) \right]$ UNDER RADIOMEREES 42 = 5850 × 10-6 IN. $\mathcal{Y}_{58} = \frac{6.2(12)^2}{1.10^2(1.1784)} \left[3(37.8) - 4(12) \right]$ UNDE**L** HACK BOXES 403 = 5500 × 10-6 IN. NOW, THE NATURAL FREQUENCY FOR A SINGLE MASS SYSTEM IS GIVEN BY : Fo = 2TT \ 7/4. WHERE: Q = GRAVITATIONAL CONST. = 386 IN/SEC2 4 = DEFLECTION UNDER 1 9 IN INCHES

Prepared for: Report No. -Approved: Project: . Astro Electronics Date: Division _ Contract No. ____ A19 Subject: ____ ITOS DEE STRESS ANALYSIS Princeton, New Jareany l'aŭe isu FREDUGALLY CHECK (COALT.) THE PREQUENCIES THEN, ARE: fe = 1 386/5850 × 10-6 = 40.88 CPS AD MAGTERS FBB = 277 386/5500 × 10-6 = 42.16 CPS FOR BLACK BOXES FROM DUNKERLEY'S RULG ! $\frac{1}{p_{P}} = \frac{1}{p_{2}} + \frac{1}{p_{2}^{2}} = \frac{1}{(40.88)^{2}} + \frac{1}{(42.16)^{2}}$ f = 29.3 Hz

THE TOP SECTION WAS LOCALLY STIFFENED BY INCREDING THE CROSS-SECTIONAL AREA TO PREVENT THE EQUIPMENT IN THIS AREA FROM DYNAMICKLY COUPLING WITH THE SPACE CRAFT NATURAL FREQUENCY MODES AND DRIVING THEM BELOW THE MINIMUM SPECIFIED VALUE OF 20H, A MINIMUM TOP SECTION LOCAL FREQUENCY OF 40% ABOVE THE MINIMUM 20Hz (OR 28 Hz) WAS THE DESIGN GOODL

	Prepared for: Repor	t No
Astro Electronico	Approved: Projec	t:
Division	Date: Contra	ict No
Princeton, New Jersey	Subject: ITCS DEE STRESS ANALYSIS	A20 Page Not

FRONT PANGL

BECAUSE OF THE SIMILARITY IN STRUCTURE THE LOADS ON THE ITOS FRONT RONGL WILL BE FOUND BY RATIOING THE SAME LOADS ON THE TIRDS FRONT PANEL ACCORDING TO WEIGHT AND INPUT J LOADS. THUS :

LOAD = LOAD TIROS WIRDS / INPUT GITOS

= (OAD TIEOS (770 7/ 1.5 7

LOAD, TOS = LOADFIBOS (.6975)

LOAD	FIROS	1005
V	/359	948 ^k
P	412#	287

TIERS LOADS R.6.3.2 OF REFA

Astro Electronics Division	Prepared for: Approved: Date: Subject:	Report No Project: Contract No TRESS AKALYSIS A21
FEONT BUEL	(contr.)	
.060"		88" (ECTION 1 1 - 3 4"

SECTION 2 L=1.65

SECTION 1,2

THE WEB WILL AET AS A SLOTTED BEAM WITH THE SMEAR AND AXIAL LOADS BEING DISTRIBUTED ACCORDING TO THE RELATIVE SECTION INERTIAS. THE WORST STRESS WILL BE COMBINED BENDING AND COMPLESSION AND WILL OLLUR AT THE ENDS OF THE WEB CUT-OUTS.

SECTION 1 $I_{,} = \frac{2(.000)(3.4)^{3}}{12} + 2(.06)(.88)(\frac{3.4}{2})^{2} = .567 \text{ in}^{4}$ 6, 5 3, 4 = 1.70 IN.

A, = 2(.040)(3.4) + 2(.06)(.88) = .378 IN2

 $\frac{5\epsilon c r_{ION} 2}{I_{2}} = \frac{2(.040)(1.65)^{3}}{I_{2}} + 2(.06)(.88)\left(\frac{1.65}{2}\right)^{2} = .102 IN^{4}$ C2 = 1.65 = .825 IN. Az = 2(.040)(1.65) + 2(.06)(.88) = .238 12

Prepared for: _ _ Report No. _ Project: Approved: Astro Electronics Date: _____ Contract No. _ Division A22 ____ Page No. ___of . Subject: __ ITOS DEE STRESS ANALYSIS Princeton, New Jersey FRONT PANEL (CONT.) STOT = A, + A2 = . 616 IN2 Iror = I, + 22 = ,669 IN# THE SHEAR IS DISTRIBUTED A.5 1 $V_{i} = \frac{V(I_{i})}{I_{rec}} = \frac{(948)(.567)}{1669} = 803 #$ $V_2 = \frac{V(I_2)}{I_{TAT}} = \frac{(948)(.102)}{.169} = 145^{\frac{4}{5}}$ AT THE END OF THE JLOT THE MOMENT IS EQUAL TO A1; = 6.5 Vi AND THE COMBINED STRESS 15 : $f_{i} = \begin{pmatrix} M_{c} \\ F \end{pmatrix}_{i} + \frac{C}{F}$ THE STRESSES IN THE SECTIONS THEN ARE : $f_{1} = \frac{(6.5 \times 803)(1.70)}{567} + \frac{287}{610} = 15650 + 470$ f, = 16,120 PSI $f_2 = \frac{(6.5)(145)(.825)}{107} + \frac{287}{111} = 7620 + 470$ f2 = 8090 PSI

	Prepered for:	Report No
	Approved:	, Project:
Astro Electronice	Date:	Contract No.
Princeton, New Jaraby	Subject: TTOS DEE STRESS	ANALYSIS Page No.
FROMP PANEL	(CONT,)	nander i fanske sprinse ferste streften de seren streften en seren streften van de seren seren in de seren ser U
	Constant and a second and the second	
THE EATIEN	E ALLOWARLE FOR 20	24-73 15
Ffor	= \$0,800 P31 EE	F. A _
Newce m	e marsin of safety	13:
	\$0\$00°	-
16	180 (1.25) -1 = 1.0	<i>92</i>
	· · ·	· .
		· · · · · ·
WED SAME		· · · · · · · · · · · · · · · · · · ·
The saw	IBULSA SMEAP STRE.35	MILL DECUP OU
SEGTION 1	AND WILL BE EDI	
A		
130 ×	$(2LE)_{1} = \frac{803}{3.4(.08)}$	= 2950 PSI
The pll	OWARLE PRIVEL BUCKLIN	US STRESS IS
GILEAS BY:		
P&11.	$= \frac{\pi^{2} \mathcal{K}_{3} \mathcal{E}}{12(1-\mu^{2})} \left(\frac{t}{b}\right)^{2}$	REF. D
antes :	JA = . 3	
	Ks=5.4 FOR alb=	20/3.4 = 6
THEAJ 6		
Fail #	$\frac{\overline{5,2}(3,4)(10^7)}{12(.91)}\left(\frac{.040}{3.4}\right)$	2 = 6760 PS1

THE SHEAR MARGIN OF SAFETY 15 THEREFORE: $ANS = <math>\frac{6760}{2950(1.85)} - 1 = .83$

AED 561 6-69

REAT Prepared for: . _ Report No. _ Approved: Project: . Astro Electronics Date: _ Contract No. _ Division A24 Page No. Subject: ITOS DAE STRESS ANALYSIS Princeton, New Jersey WEB SHEAR (CONT.) AT THE FULL SECTION : V=948# 6=5.2 $f_3 = \frac{\sqrt{4}}{43} = \frac{948}{9(2)(.04)}$ a=9.0f= = 1317 PSI AGAIN, USING REF. D AND HAVING a/6 = 9/5.2 = 1.73 -> K3 = 6.5 WE FIND THE SHEAR BUCKLING ALLOWABLE TO BE : $F_{all} = \frac{\pi^2(6.5)(10^7)(.040/5.2)^2}{12(1.91)}$ Fall = 3480 PS1 THE MARGIN IS THEN : $M5 = \frac{3480}{1312(1.25)} - 1 = 1.11$

WILL GRASSEIENCE "EDERING" WHICH WILL GENERATE THE P LOADING, SHOWN ABOVE, IN THE FRONT PANEL ABOUND THE CUTOUT. THIS LUADING IS RE-ACTED AT FOUR MARD POINTS (A) AND PRODUCES BENDING IN THE LOWER SECTION OF THE FRONT PANEL

	Prepared for:	Report No.
	Approved:,	Project:
Division	Date:	Contract No.
Princeton, New Jersey	Subject. ITOS D&E STRESS /	ANALYSIS Fage hot
BOTTON SECTION	(coor)	ĨĸĸŎĸĸŎĸĬĬĬĸŴŶġĔŢĊĸĬĊĸĔĔŢĸĬĊĸĸĊĸĊĔĸĸĊĸĊĹĬĸĊĔĸĸĔĿĸĊĔĸĊŎĸĊŎĸĊŎĸĊŎĸĊŎĸŎĸŔĸ
	(CONT.)	· · ·
WHICH CAUSE	ES BEAMS () & C) FU	FEEL TENSION
AND COMPRESSI	ON ALTERNATELY.	
THE LOAD	P May BE FOUND	BY RATIOINS THE
SAME TIROS LO	DAD ACCORDING TO	WEIGHT AND
INPUT & LOAD	S. THUS:	
LOAD, TOS = L	OAD TREAS [WITOS] [INPU	IT GTIRUS
P =	$\frac{6/30}{2} \left[\frac{770}{720} \right] \left[\frac{1.5}{2.3} \right]$	
P=	2140 135	
THE MOME	ENT CAUSED BY PIS	• :
14=(12)(2	140) = 25700 N LB.	
ASSUMING	S, CONSERVATIVELY, T	HAT THIS MOMENT
IS TAKEN AS	A COUPLE BY BEA.	MS O & O EACH
CARRYING A	LOAD P', WE A	AVE :
	$\frac{M}{6.5} = \frac{25700}{6.5}$	
' <u>-</u> ' حر	- 3920 LBS.	
OF THE	TOUO BEAMS (O S(2)) WHICH WILL
CARRY THIS C	LOAD, BEAM O HAS TH	TE SMALLER SECTION
PROPERTIES, WE -	SHALL, THEREFORE, ONC	ECK BEAM () .
FOR 2024 . TA	L ALUM ALLOY	
الاهر 201 م ع	Fzy = 38000 PSI	•

Astro Excitorics Division Princeton, New Jacky	Prepered for Approved: Date: Subject:	r:	DAE S	TRESS ANAI	Report No Project: Contract No SYSIS	A27 Page No
Borrow Sererious	(Cassr.	2		<i>,</i> •	•	
62	· ·	ITOM	b/t	* Fer	A	P
T FR.10F	-	1	9.85	34 500	.0551	1900
.88"063"		. 2	14	47000	.0324	1525
.68"		S	-12r	50000	.0300	1500
	1.665"	4	4.9	48500	.0390	1890
		S.			1565	6815
	Ĭ,					
The COSIPI	PLING A	06604	VBLE	5 15 2		
Fer s	815 = 4 65	3500	o ps			• .
HOUSUSE, TH	ミッジペナル	6UE	ALI	LOWABLE	0,5	

For - do, BOUPSI IS MORE CRITICAL THAN FER. THE ACTUAL STRESS IS : f = PIA = 3920 - 25000 PSI

Heaves: $MS = \frac{40800}{25000(1.25)} - 1 = .31 (ULTIMATE)$

MS = 38000 25000 (1.15) -1 - 32 (YIELD)

	Prepared for:	Report No
	Approved:,	Project:
Division	Date:	Contract No.
Princeton, New Jersay	Subject: ITOS DAE STRESS ANALY	SIS Page No of

Very High Resolution Radiometer (VHRR)

The bottom portion of the front panel is subjected to Local Loads from two VHRR's, each weighing 35 lbs. The structure is critical for the sinusoidal vibration input Loads, gi, of 1.5g in the lateral and 2.3g in the thrust directions. Design vibration amplification factors are determined from the Improved TOS Mechanical Test Model Test (Ref B) and are equal to X-X direction (lateral & parallel to panel) = 10.0 Y-Y direction (lateral & perpendicular to panel) = 7.5 Z-Z direction (thrust) = 10.0 The load from each VHRR unit is equal to P=Wg.Q. Then

 $P_{\chi} = 35 \times 1.5 \times 10 = 525 \ \text{lbs}$ $P_{\chi} = 35 \times 1.5 \times 7.5 = 394 \ \text{lbs}$ $P_{\chi} = 35 \times 2.3 \times 10 = 805 \ \text{lbs}$

These loads act independently of each other.

	Prepared for:	Report No.
	Approved:	Project:
Astro Electronics Division	Date:	Contract No
Princeton, Naw Jestery	Subject: TTOS DAE STRE	SS AMALYSIS rage INO
	n an	an de la constant de
The	VHRR's are att	ached to the

For Lateral Load Pz = 525 lbs

Load Assumptions:

1. The VHRR acts as a rigid body. 2. All the lateral load Px is reacted by the baseplate and is carried by the web of the shear bracket. 3. The C.G. of the VHRR falls within 1 inch of the web of the shear bracket (See figure). as The moment caused by the eccentricity between the load and web of the sheri bracket is reacted by a couple load

	Prepared for: Report No
	Approved:, Project:
Astro Electronics Division	Date: Contract No
Princeton, New Jersey	Subject:ITOS D&E STRESS ANALYSIS Page Noot

between the 16 unch spaced brackets. This load is equal to P= Px/16 = 33 lbs, and acts along the length of the brackets, and is small enough to be ignored in the stress analysis. 5. The load by acts in the plane of the baseplate skin. 6. Each VHRR Load are reacted by 4 bolts attached to the brackets (See sketch).

Shear Bracket

The shear bracket reacts the Load from both VHRR's. The total load on the bracket is then equal to

P= 2x Px = 2x 525 = 1050 lbs.

The shear bracket is attached to the two VHRR "B" brackets by four 5/32" rivets.

Privet = P/A = 1050/A = 262.5 (65. (in tension)

	Prepared for:	Report No.
	Approved:,,	Project:
Astro Electronics Division	Date:	Contract No.
Principion New Jareau	Subject: ITOS DES STRESS ANALYS	IS Page ivo.

The ultimate static tensile strength for a \$/32 inch protruding head rivet in the 0.090 inch thick shear bracket is equal to $P_{ev} = 758$ lbs. Ref D pg D.1.28 The shear bracket is captured between the two UHPR "B" brackets and the rivets will be subjected to alternating loads from 0 to maximum. The allowable tension allowable for the rivet will be assumed to equal 50% of the static value.

PAU = . 50 × 758 = 379 65

 $M.S = \frac{379}{262.5 \times 1.25} - 1 = .16$

The shear bracket in turn is attached to the front panel by three sist rivets. Show Allowable = B = 575 lb/rivet RefDp. D.1.21 M.S = 3× 575 -1= .31

	Prepared for: Report No	
	Approved: Project:	
Division	Date: Contract No	
Princeton, New Jersey	Subject: ITOS DEE STRESS ANALYSIS Page No o)f
		Martina adversión met

Shear in Web As = shear area = 3×,09" = .27 Inch P= 1050 lbs

fs = P/As = 1050/.27 = 3890 psi

M.S. is large

Loads on VHRR Brackets

Since the shear load Px is reacted by the shear bracket, this load must come through bracket "B" via bolt location #3 and #4. The moment due to the 3.5 inch eccentricity of the CGabove the VHRR supports is reacted as a couple load between Bracket "A" and Bracket B.

On Bracket "B" Pm = 3.5 Px/16 = 114.8 LBS $P_{s} = P_{x} = 525 \ lbs$

	Prepered for:	Report No
	Approved:	. Project:
Division	Date:	Contract No.
Princeton, New January	Subject: DER STRESS ANALY	SIS ASS

On Bracket "A" $P_s = 0$ Pn= 114.8 665 Beaming over the above loads to the 4 bolt attachment points results in the following bolt loads. Rns Km2 Rosa Pno 7 5.5 Ph = 11 4.8 45 Rng R= 525 6 Rni 3.0 RSAM Bracket B Breeket A Rni = 35 Pn = 74,36 $R_{n2} = \frac{3.0}{9.6} P_{n} = 40.5 lb$

Rn3 = - Ph 2 17.0 45 RS& 3 - R = 77.8 6.

		· ·
	Prepared for:	Report No.
	Approved:	Project:
Astro Electronics	Date	Contract No
Division	Subject TTOS DER STORSS ANAL	A34
Princeton, New Jersey	Subject. <u>ATOO DEM DITABOO FILLE</u>	
$R_{n4} = \frac{5}{6}$	$\frac{75}{75} \times 114.8 = 97.8 \ lbs$	
$R_{54} = 5$	75 × 525 = 447.2 lb.	S
6.	75	
Bracket A		
The loc	al load at bolt	Location = I
Loads the	flange in bendin	9
		\$ Rn1 = 74.3 #
$M = .625 \times 10$	$4.3 = 46.4 \text{ in } 66 \cdot 125 \text{ for } F$	
For an eff	ective flange .625-	
width, $b = 1.5$	inches the	
bending st	ress is equal	← /.20 -œ
to	BKt	A @ Bolt =1
Q GAA	lax Ala	
$T_b = \frac{1}{bt^2}$		، دم
	· · · · · · · · · · · · · · · · · · ·	
	M.S. is Lo	inge
This loading	is not as critu	cal as the
Load from	vibration in the	e throst
direction ((Ret page A39).	· · · · · · · · · · · · · · · · · · ·

	Prepared for:	Report No
	Approved:,,	Project:
Asto Escontes Division	Date:	Contract No.
Princeton, New Jersey	Subject: _ ITCS DAS STRESS ANALYS	IS A35

Bracket B The maximum load normal to the flange occurs at Bold # 4. Rn4 = 97.8 Rng = 97.8 lbs. $R_{s1} = 447.2^{\pm}$.125 Bracket "B" has an .50---end plate which will 1.50 read 1/2 of the local .090 Load. Therefore the - 1.15--Slange bending moment as equal to ME 1 (.50 × Rpd) = 1×-50× 97.8=24.5 m/6 which is not critical by comparison with M= 46.4 in 16 of Bracket "A" (Rel 13 A34 The loads from Bolt 4 will result in twisting and bonding of the entire section. The torgue on the section is equal to T= 13 Rs4 -. 50 Rna

Astro Electronics Division Princeton, New Jersey	Prepared for: Approved: Date: Subjec: ITCS D&B_STRESS	Report No. , Project: Contract No. A36 ANALYSIS Page No.
$T = \frac{1.5}{2}x$ The shear	447.2 - 97.8 x.5 - - stress due Z	= 286.5 mlb.
is equal $f_5 = \frac{3}{\Sigma_1}$	$\frac{T}{5t^2} = \frac{3 \times 286.5}{(1.15 \times .125^2)}$	+1.5×.09 ² +1.15×.09 ²)
$= 2$ $F_{50} = 3$	1800 psi 7,000 psi	
Bolt #4 is attachment maximum be	$M.S. = \frac{370}{2180}$ $I.5 inches away$ $point to the from to the from the$	$\frac{00}{100 \times 1.25} - 1 = .36$ from the out panel. The them equal to

The bracket is approximately a 1.125×1.500×.092 channel. From Section A3,14 of Ref D the

	Prepared for: Report No
	Approved: Project:
Astro Electronics	Date: Contract No
Princeton, New Jareany	Subject: ITCS DEE STRESS AMALYSIS Page 40

section properties of the section are I = 0414 IN. y = .360 m. 1.125c = 1.125-,360 = .765 in, - 11500---- $f_{b} = \frac{M_{c}}{I} = \frac{671 \times -761}{10414} = 12,400 \text{ psc}$ Ffat = 40,800 psi M.S. is large The bending stresses, there have a small effect on the combined bending and torsun strases and consequently are ignored.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

Prepared for: Report No. Approved: Astro Electronics Date: Contract No. _ Division A38 Subject: _____ ITOS DAE STRESS ANALYSIS _____ Page 10. Princeton, New Jersey For Thrust Load Pg = 805 165. The bending moment at the bolt plane is equal to $M = 3.5 R_{f} = 3.5 \times 805 = 2820 \text{ in lb.}$ Proportioning this bendens moment to Bracket "A" and Bracket "B" according to their distances from the VHRR center of gravity MA = 6 M = 1058 in lb. MB = 10 M = 1762 in lb Similarly for the shear loads $V_{A} = \frac{6}{16}P_{3} = \frac{6}{16} \times 805 = 302 \ ls.$ VB = 10 Rg = 10 × 505 = 503 (65 The shear loads will be equally reacted by two bolts at each bracket and the bending moments by normal couple Loads.

 $R_{SI} = R_{S2} = V_{A}/2 = 302/2 = 151 \text{ lbs}$ $R_{DI} = R_{D2} = M_{A}/8.5 = 1058/8.5 = 124.5 \text{ lbs}$ $R_{S3} = R_{S4} = V_{B}/2 = 503/2 = 251.5 \text{ lbs}$ $R_{D3} = R_{D4} = M_{B}/6.5 = 1762/6.5 = 271. \text{ lbs}$

The normal loads R_{n3} and R_{n4} locally loss the flanges in bending (Ret pizz. A3A) At Bar 4. $M = \frac{1}{2} (.50 \times R_{n4}) = \frac{1}{2} \times .50 \times 271 = 67.75 \text{ in 16.}$ $f_{b} = \frac{6M}{5t^{2}} = \frac{(6)(67.75)}{(1.5)(.125)^{2}} = 17.344 \text{ price}$

Astro Electronics Division Princeton, New Jersey	Prepared for:	Report No. Project: Contract No. A40 RLYSIS Page No.
At Bold about the	bolt hole, but no	re florage width end plate. Then,
M=. Let the e	500 Rn3 = (.500)(271) = Hective width $b = 2$ M (()(1357) 2	135.5 inlb oo malus, then
$b^{=} \overline{b}$ In addite	the flange	benden; stras,
flange. f _t = -	RS3 where Az = /1/	15 x.09= .1035m2
= 2 The man	5 251.5/.1035 = 2400 pri cimum stress is e	Ref SRETCH PG. A35 equal to
$f = f_b - F_{Each} = 40$	$f_{f_{e}} = 26000 + 2400 = 1000000000000000000000000000000000$	28400 psi
FUC	$M.S = \frac{40}{284}$	$\frac{500}{100 \times 1.2T} = -1 = .15$

Prepared for: Report No. Approved: _ Project: _ Astro Electronics Date: __ Contract No. ___ Division Subject: ITOS DEE STRESS ANULYSIS ____ Page .vei. ___ Princeton, New Jersey V. OTHER ITENS BRACE & BABGPLATE The brace reacts Loads from the VHRR's that act normal to the place of the front panel. From thrust vibration, 13 = 805 165/onit The total bending moment from the two VHRR's from thrust is equal to M= 2×5B Ret Sketch p. A29 = 2×5×805 = 8050 cm (b. Proportioning the moment between the VHRR brackets, the bendeng moment reacted at the brace plane is good To $M = \frac{10}{16}M = 5030$ in (b. This moment is reacted as a complete load between the brace attackment point and the baseplate, 6 metres aprest

	Prepared for	Beport N	0
	Approved:	Project:	
Astro Electronics	Date:	Contract	No
Division Princeton, New Jersey	Subject. ITOS DAE	STRESS ANALYSIS	A42 Page Net
Pc	= Mbrace =	= 838 Cbs.	
The L	oad from t	he Y-Y later	-a(
vibration	input is les	s critical the	in the
thrust Con	ad since th	e Lota: Load	Jr 0221
The VHRK	s is only	•	
$P_{=}$	$2P_{y} = 2 \times 394 =$	= 788 65.	
The lo	ads on the	brace and	buicple 2
are deter	-mined from t	the geometry	aj Jollaw,
826 th	↓ Y	V	
5.50		- 2	
2	~		
		.09 Typ-off-	<u>\$</u>
	-1-7.75	Section	h A - A
9.50	10-		
Brace	PE B	•	
Y	B S	Rib	· ·
	Le		
Basel	slate -		

AED 561 6-69
Report No. ______ TROBAD Prepared for: Approved: _ _ Project: ___ Astro Electronics _____ Contract No. _____ Date: ____ Division Subject: ITOS DER STRESS ANALYSIS Princeton, New Janaey The axial load in the brace is equin. to $P = \frac{9.50}{7.75} P_c = \frac{9.50 \times 838}{7.75} = 1027 \ Lbs$ The stress in the brace is equal to f = PbyA = 1027/(2x.09 + .91x.09) = 3920 psi M.S. is Large The load from the trace is readed at the baseplate by two components. Rot > A42 P = 1027× 7.75 = 838 Lbs and P2 = 1027 × 550 = 595 455 The P, load can be reacted by tenn. in the baseplate skin and is obviously not critical. The R load acts normal to the base plate plane and is reacter by the ribs. A simplified and conservative

Astro Electronics Division Princeton, New Jersey	Prepared for: Approved: Date: Subject: ITCS D&R STRRS	Report No.
stress the C	analysis is gu local stress ette	en below for ect of the P2
2000. 1.0- 1.0-	B B B B B B B B B B B B B B B B B B B	Baseplate Separation A Rmg

The P2 load is beamed over to points I.

pn Beam A. The shear at point 1 is then equal to

VI = P2/2 = 595/2 = 297.5 1/2s The maximum bendong moment on Beam A

is then equal to

 $M_A = \frac{7.4}{2}V_1 = 1101$ in the at the t.

On Beam B the maximum moment occurs at point D.

	Prepared for:	Report No.
	Approved:,,	Project:
Astro Electronics	Date:	Contract No.
Princeton, New Jersoy	Subject: ATOS DEE STRESS ANAL	YSIS A45
		an a

The shear load at the support point is equal to $V_2 = \frac{V_1(37 - 7.4)}{37} = 23865$ and M, = 7,41/2 = 1761 in (b. (Critical value) Both beams have the same section properties. From page 6.1.4 of Ret A. I/C = . 206 in at skin surface (upport) I/c = . 139 m³ at lower surface Fer = 25080 psi (upper) Ret A pg 6.1.6 For = 16,040 pri (lower) FFat = 40,800 psi Then f= M/I/C. At upper surface of baseplate rub

$$M.S. = \frac{25080}{8550 \times 1.25} - 1 = 1.34$$

	Prepared for:	Report No.
	Approved:	Project:
Astro Electronics	Date:	Contract No
Princeton, New Jersey	Subject: ITOS DEE STR	A46 Page No Page No
Baranta and an and	u han da an	unden eine an andere geschen der einen einen der der der eine seinen under einen andere der der der der seine s
At	lower surtage of	- haran lute ril

f= 1761/.139 = 12670 pri

M.S. = 40800 1267071,25-1 = 1.58

	Prepared for: Report No
	Approved:,, Project:
Astro Eiscronics Division	Date: Contract No A47
Princeton, New Jeresy	Subject: TTOS DEE STRESS ANALYSIS Page No

M CONSTANT ACCELERATION

The maximum allowable constant acceleration level, N, that the spacecraft can safely withstand is calculated in this section for loading in the thrust direction. The spacecraft is accelerated in the forward direction.

Front Panel

This area is critical for the local loads from the VHRR. The worst stress condition occurs in the flamp of the channel f= 28400 psi (Ref. p A40) for the response load Bg = 805 (Ref. p H31) in vibration. in the thrust direction from the 35 pound VHR. The critical stress in the flampe due to constant

	Prepared for:	Report No.
Astro Electronics	Approved:,,	Project:
Division	Date:	Contract No.
Princeton, New Jersey	Subject: ITOS D&E STRESS ANALYSI	S Page No of

acceleration is due to yield. The allowable yield stress is equal to Fey= 40,000 psi for 2024-T4 Al. AL. The constant acceleration stress is equal to $f = \frac{28400 \times 35 N}{805} = 1235 N$

Equating this stress to the allowable with a yield safety factor F.S=1.15

1235 N = 40,000 1.15

M = 28.2 g's.

Baseplate (Ret. A. Section 6.1)

The stress levels in the base plate for a constant acceleration load can be determined from the formulas for the bending moment per unit width for a uniformly loaded square plate simply

	Prepared for:	Report No.
Actor Gastroia	Approved:,	Project:
Division	Date:	Contract No.
Princeton, New Jersey	Subject: ATOS DAY STRESS ANALYSI	S Page No.

supported along its edges. $f = \frac{2208 \text{ ws} f'(m+i)}{m t^2}$ Ret E. Formula 30 P. 224 where I is the length of the side of the plate. For a plate $f_b = \frac{GM}{A^2}$ The bending moment per unit width is then found by equating fo M' = .2208 w l'(m+1)6m For the baseplate (Ret. A p. 6.1.7) L= 37.0°, m= 3.0 for Al.Al. The baseplate weight is equal to W=22546 Then w= 225 N/2? Substituting these values into the equation for M'. $M' = \frac{(.220f)(225N)l^{2}(3+1)}{(6)l^{2}(3)} = 11.00N$

Prepared for: Approved: Astro Electronics Date: Division Contract No. _ A-50 Page No. _ of Subject: ITOS DEE STRESS ANALYSIS Princeton, New Jersey The rub spacing is equal to b= 7.5 in (Ret. A. P. G. 17) The bending moment on the rib is M = bM' = (7.5)(11 N) = 82.5 N.For a typical section I/c = .206 in; I/c = .139 in Ferupper = 25,080 psi, Fer = 46,040 psi (Ref. A p. 6.1.4, 6.1.6) Fay = 20,000 pri For 2024 T4 ALAL f, = M/(I/c) for = (82.5N)/.206 = 402N fb lower = (82,5N)/.139 = 594 N Using a satety factor of S.F. = 1.25 for altimate Loads and S.F. = 1.15 for yield loads Fupper = 25080/1.25 = 20100 = 402 N N = 50Flower = 46040/1.25 = 36,800 psi (Not critical) or Flower = 40,000 /1.15 = 34,800 psi (Critical) 34,800 = 594 M , and M=58.5

AED 561 6-69

	Prepared for:	Report No
	Approved:	_, Project:
Astro Effectronics Division	Date:	Contract No
Princeson, New Janesy	Subject: ITOS D&E STRESS	ANALYSIS Page No

The base plate intercostals are spliced. The critical load occors at the splice. at joint 3 of beam BDB (Ret. A. P. 6.1.20,6.1.21) The bending moment at the splice is approximately 90% of the maximum bending moment on the baseplate.

Maplice = .90 M = .90 × 82.5 N = 74.4 N. The intercostal splices are attached to the reb flanges which are 2.085 in apart.

 $P = \frac{M_{splice}}{2.085} = \frac{74.4N}{2.085} = 35.7N$

where the splice load, P, is taken by three rivets critical for yield in bearing. Pory = 631 lb/rivet. Using a S.F.= 1.15.

 $35.7N = \frac{3 \times 631}{1.15}$

	Prepared for:	Report No.
Astro Electronics	Approved:,,	Project:
Division	Date:	Contract No
Princeton, New Jersey	Subject: ITOS D&E STRESS ANALYSI	S Page No of

Cross Brace (Ref. A Section 6.7)

The cross brace was analyzed for a 60 g smusoidal input load. with a maximum bending moment Msine 2400 in lb. Loading a beam uniformly instead of sinusoidally increases the maximum bending moment. Moniform = The Msine The bending moment due to constant acceler-ation is then equal to $M = (\frac{TT}{8})(\frac{2400}{8})N = 49.4N$ $I/c = .0904 \text{ in}^3$ Ret. A p. 6.7.7, 6.7.8 Fey = 40,000 psi Fey/S.F. = 40,000 /1.15 = 34800 psù For/S.F. = 45,500/1,25 = 36400 pri Fcr = 45500 psi f= M/(I/c) = 49,4 N/.0904 = 34800

	Prepared for:	Report No
	Approved:,	Project:
Astro Electronics Division	Date:	Contract No
Princeton, New Jersey	Subject: ITOS DEE STRESS AL	A53 ALYSIS Page No

The cross brace channels flanges are spliced at the intersection of the braces. The splice attachments are critical for the rivets in bearing. The flanges are 2.in. apart. The load is taken by three rivety with a bearing yield allowable P= 498 665 (Ret. A p 6.7.9). Then using a S.F. = 1.15 for yield.

$$\frac{3 \times 498}{1.15} = \frac{M}{2} = \frac{49.4 \text{ N}}{2}$$

$$\frac{M = 52.6}{100}$$

$$\frac{M = 52.6}{100}$$

$$\frac{M = 52.6}{100}$$

The ring buckling allowable is

$$F_{cr} = 9450 \text{ psi}$$
 (conservative) Ref 6.6.14
 $f = P/2\pi Rt$; $R = 18.5 \text{ in.}, t = .060 \text{ in.}, S.F. = 1.25$
The S/C weight is $W = 770 \text{ Clos.}$ Then $P = 770 \text{ N}$
 $\frac{9450}{1.25} = \frac{770 \text{ N}}{2\pi (18\pi)(.00)}$ $N = 68.5$

* ED 561 6-69

	Prepared for:	Report No.
Astronics	Approved:	<u> </u>
Division	Date:	Centract No.
Princetory New Jorsey	Subject. ITOS D&E STRESS	ANALYSIS Page No

Attachment Box Structure to Baseplate

The attachment of the equipment panels, the front panel and the back pinel to the baseplate channels were critical at the Tiros M spacecraft Lateral vibration resonant frequencies. The maximum load at the attachment Was P= 6165 lbs with a M.S. =. 06. At constant and bratem the total Load is equal to P= WeN where We is the spacecraft weight less the paseplate and separation ing weights. $W_e = 770 - 225 - 12 = 533 \ U_{s}$ Most of the total load will be corried by the equipment panel attachments because of the more heavily lorded equipment panels. Allow the front and back

1 FD 561 5.64

mm	Prepared for:	Report No.
	Approved:,	Project:
Astro Eschorecs Division	Date:	Contract No.
Princeton, New Jenney	Subject: TTOS DEE STRESS ANA	LYSIS Page No. 1
	An	ungen kynnen per sen fan de fan fan de fa F

panels to each be 25% as effective in reacting the total load as an equipment penel P= Per + Per + .25 Per +.25 Per Than PER = . 4P or each equipment panel reacts 40% of the total load. Then 6165×1.06 = (.40) (533 N) on the on the equipment panel attachment

•

.

M= 30.7

Astro Electronics Division Division Subject: ITOS Dee STRESS ANALYSIS Page No	BAT	Prepared for:	Report No
Proceton New Jerson Subject: ITOS D&E STRESS ANALYSIS Page No	Electronics	Approved:,,	Project:
	n. New Jersey	Subject: ITOS D&E STRESS ANALY	YSIS Page No

EPERGAEES

TIRDS M SPEEDS REPORT, JULY 17, 1967

B. IMPROVED TOS (ITOS) TEST ANALYSIS REPUET FEB. 1, 1962

- C. ITOS SPACECRAFT VIBRATION TEST PROCEEDURE TP-V-1975000 REV. B NOV. 4, 1969
- D. ANALYSIS & DESIGN OF FLIGHT VEHICLE STRUCTURES, BRUNN, TRI-STATE DEFSET GIT
- E. FORMULAS FOR STRESS AND STRAIN-ROARK IV EDITION MCGRAW-HILL BOOK CO

APPENDIX B

MECHANICAL DESIGN PARAMETERS

This appendix is a summary of design parameters assumed in the mechanical configuration of the ITOS D and E spacecraft design.

ITEM

1. Launch Compatibility Envelope

ASSUMPTIONS

- a) A 3/4" (min) annular clearance envelope between the spacecraft and I.D. of fairing at STA 687.696, increasing linearly to a 1-3/8" annulus at the top of the spacecraft (STA 633.47). For definition, see Launch Compatibility Drawing (Fig. II-4).
- b) Move fairing annular reinforcing ring at STA 672.98 to STA 670.10 and ring at STA 638.98 to STA 642.48.
- c) Required radial clearance envelope in the area of the Marmon clamp is a 2.75" annulus added to the 37.75" O.D. of the MDAC attach fitting, i.e., clamp will be retained within a 43.25" diameter when bolts are cut and Marmon clamp halves open up.

ASSUMPTIONS

a) Eccentricity effects on the launch vehicle, due to imbalance, are within acceptable levels; i.e., during booster, turn-around, and spin-up phases.

*These numbers do not reflect a reduction in VHRR weight, which reduces the total spacecraft weight from 775 lbs to 735 lbs.

ITEM

2. <u>Spacecraft Imbalance*</u> (in launch configuration)

> RCA Ref. Letter #1963 dtd. 1/28/70

- Static 1,705 in-lbs
- o Dynamic
 - I₁₂ (Yaw-Roll Plane) = +6.6 in-lb-sec²
 - I₁₃ (Yaw-Pitch Plane) = -10.7 in-lb-sec²
 - I₂₃ (Roll-Pitch Plane) = -6.0 in-lb-sec²
- 3. Spacecraft Spin-Up*

b) Separation springs will be forcematched to minimize coning effects during spacecraft separation from launch vehicle.

- a) Impart momentum of 213±20 inlb-sec during second stage/spacecraft spin-up which for the ITOS D and E inertia is approximately 2.7±0.3 rpm.
 - NOTE: Higher ITOS D and E spacecraft inertia requires lower spin-up, to achieve equivalent stored momentum.

- 4. Sensors
 - a. Solar Proton Monitor (SPM)
- 1) Same Sensor Assembly as used on TIROS M; i.e., field-of-view, mounting and configuration remain status quo.
- Electronics one added connector, otherwise, same as used on TIROS M.

^{*}These numbers do not reflect a reduction in VHRR weight, which reduces the total spacecraft weight from 775 lbs to 735 lbs.

ASSUMPTIONS

ITEM

- 4. Sensors (Continued)
 - b. Scanning Radiometer (SR)

c. Vertical Temperature Profile Radiometer (VTPR)

- Same Sensor Assembly as used on TIROS M; i.e., field-of-view, mounting and configuration remain status quo.
- Sun shield will be modified to incorporate a visible fused silica calibration target. Exact configuration is not defined as yet.
- 3) Electronics outline will remain the same as used on TIROS M.
- 1) Configuration per "Barnes" Outline Drawing #204701-1031.
- 62° 54' total earth scan, 31° 27' each side of sub-satellite point, normal to orbital plane.
- VTPR inclined 17° 27' with respect to roll/pitch plane when mounted to structure.
- 4) Approximately once in every 20 minutes of operation the VTPR mirror rotates 60° from its zero scan position to view cold space, and an additional 70° to view a self-contained calibration patch.
- 5) Alignment mirrors are provided on the instrument (total 3).
- 6) Three mounting bosses on each of two sides provide same hand configuration to be fastened to each of two spacecraft equipment panels.
- 7) Uncompensated momentum ≤ 1 in-oz-sec.

ITEM

4. Sensors (Continued)

- c. Vertical Temperature Profile Radiometer (VTPR) (Continued)
- d. Very High Resolution Radiometer (VHRR)

8) Weight of instrument 20 lbs. max.

ASSUMPTIONS

б.

9) Since sensor is mounted internal to equipment module, spacecraft thermal control will limit VTPR housing between zero to 30°C.

- 1) Sensor configuration, including electronics per outline drawing SK 1976879
- 2) Configuration of motor and sensor electronics not fully identified.
- Weight of sensor and electronics ≈20 pounds.
- Uncompensated momentum ≤1 in-oz-sec.
- 5) Field of view see Figure II-3.
- 6) Sensor is essentially thermally decoupled from the spacecraft. Normal screw fastening to the structure (without RTV interface) is adequate.
- 7) All non-sensory elements and the I.D. of the cooler will be covered by thermal blankets.

APPENDIX C

COMMUNICATION LINK ANALYSES

1. ORBITAL CONSTRAINTS

a. Link Geometry and Path Losses

The ITOS D and E satellites will orbit the earth at an altitude of 790 nautical miles. Given orbit altitude, the slant range, R, may be calculated from the following formula:

R =
$$-r \sin \psi + [r^2 (\sin^2 \psi - 1) + (r + H)^2]^{1/2}$$
 nautical miles

where

r is radius of earth = 3440 nautical miles,

 ψ is ground antenna elevation angle, and

H is altitude of the statellite = 790 nautical miles.

The corresponding free space path loss, L, at a given frequency of transmission, is*

 $L_{(dB)} = 92.45 + 20 \log f + 20 \log d$

where -

f

d

is the frequency of transmission in GHz

is slant range in kilometers = range in nautical miles x 1.852.

Slant ranges as a function of ground antenna elevation angle for a satellite orbit of 790 nautical miles are given in Table C-1.

b. View Angle Subtended by Earth

In the determination of the required spacecraft antenna coverage in the earth locked operational mode, an important parameter is the half angle of the

*Reference Data for Radio Engineers, Fifth Edition. Howard W. Sams Co., 1968, pg. 34-3.

C-1

TABLE C-1. SLANT RANGES FOR CIRCULAR ORBIT

Elevation Angle	Slant	Range*	
(Deg.)	<u>(</u> Naut. Mi.)	(K M)	(Statute Mi.)
0	2460.8	4557.5	2831.9
5	2179.4	4036.2	2508.0
10	1935.3	3584.1	2227.1
15	1727.0	3198.4	1987.4
20	1551.5	2873.4	1785.5
25	1404.9	2601.8	1616.7
30	1282.8	2375.8	1476.3
35	1181.6	2188.3	1359.7
40	1097.6	2032.8	1263.2
45	1028.2	1904.2	1183.2
50	970,8	1798.0	1117.2
55	923.7	1710.7	1063.0
60	885.4	1639.7	1018.9
65	854.6	1582.7	983.5
70	830,5	1538.1	955.8
75	812.5	1504.7	935.0
80	799.9	1481.4	920.5
85	792.5	1467.6	912.0
90	790.0	1463.1	909.1

cone subtended by the earth. The half-cone angle, α , may be calculated from the following formula:

$$\alpha = \arctan\left(\frac{R}{R+H}\right)$$

where:

R is the radius of earth = 3440 nautical miles

H is the altitude of the satellite,

÷.;

For the ITOS D and E mission, H = 790 nautical miles and therefore the half-cone angle $\alpha = 54.4$ degrees. The corresponding solid angle is given by the expression

 $\psi = 2\pi (1 - \cos \alpha)$ steradians

which for the ITOS D and E mission is $\psi = 2\pi$ (0.4183) steradians. This expression is used to compute command link received noise.

2. COMMAND LINK ANALYSIS

a. Path Loss

Using the formulas previously described in paragraph 1, the approximate path losses as a function of ground antenna elevation angle for a satellite orbit of 790 nautical miles are listed in Table C-2.

b. **RF Power Margin Calculation**

Sufficient signal level must be provided at the input of the dual command receiver to reliably operate the command decoder decoding circuits. The dual decoder is designed to respond to input levels equal to or greater than its threshold value of 0.70 volt rms. The command receiver output is 0.77 volt rms when the input level is -107 dBm, which is the receiver agc threshold. The summary of link calculations is given in Table C-3. These figures are identical to those of TIROS M.

The link calculations show that the worst-case input rf level to the receiver is 3.0 dB above the -107 dBm agc threshold in the unstabilized mode and 10.0 dB above the agc threshold in the normal operation stabilized mode, using 1 kW of command transmitter power. In the stabilized mode, 200 watts of command transmitter power are sufficient to provide a 3 dB margin above the agc threshold. The link calculations have been performed under the assumption that the Avien, Inc. ground antenna is used mounted on the 85-foot dish. This antenna has a gain of 12 dB and a 3-dB line loss. The performance margin may be improved above the values shown in the table by increasing the transmitter output power and/or using a. higher efficiency command antenna. The net improvements in signal margin, achievable by several available command transmitter/antenna combinations, are shown in Table C-4.

TABLE C-2. PATH LOSS FOR COMMAND LINK AS A FUNCTION OF ELEVATION ANGLE

Elevation Angle ψ (Degrees)	Path Loss, L (dB)
0	149.1
5	148.0
10	147.0
15	146.0
20	145.0
25	144.2
30	143.4
35	142.7
40	142.0
• 45	141.5
50	141.0
55	140.5
60	140.2
65	139.9
70	139.6
75	139.4
80	139.3
85	139.2
90	139.2

[ORBITAL ALTITUDE (NAUTICAL MILES) = 790 FREQUENCY (MHz) = 148.56]

C-4

TABLE C-3. WORST-CASE RF COMMAND LINK CALCULATION

	Unstabilized		Stabilized	
Parameter	Panels Stowed	Panels Deployed	Panels Deployed	Remarks
Transmitter Power	60.0 dBm	60.0 dBm	60.0 dBm	1 kW normal operating level
Ground An- tenna Gain	12.0 dB	12.0 dB	12.0 dB	Avien antenna
Line Losses Transmitter- to-Antenna	- 3.0 dB	- 3.0 dB	- 3.0 dB	
Path Loss	-1 48.0 dB	-148.0 dB	-148.0 dB	5 degree elevation
Polarization Loss	- 3.0 dB	- 3.0 dB	- 3.0 dB	Circular-to- linear
Spacecraft An- tenna Gain	- 14.0 dB	- 14.0 dB*	- 7.0 dB	Min. Spec. Limit
Passive Circuit Losses:				, c
Bandpass Filter Loss (148 MHz)	- 2.5 dB	- 2.5 dB	- 2.5 dB	Max. Spec. Limit
Notch Filter (2) Losses	- 1.0 dB	- 1.0 dB	- 1.0 dB	Max. Spec. Limit
Spacecraft Cable Losses	- 0.3 dB	– 0.3 dB	- 0.3 dB	Max. Spec. Limit
Stub and Reflec- tion Losses	- 0.7 dB	- 0.7 dB	- 0.7 dB	Max. Spec. Limit
Hybrid Insertion Loss	- 0.5 dB	- 0.5 dB	- 0.5 dB	Max. Spec. Limit
Hybrid Power Splitter	- 3.0 dB	- 3.0 dB	- 3.0 dB	Power split between two receivers
*Except Begion IV of Antenna Pattern.				

C-5

	Unstabilized		Stabilized	
Parameter	Panels Stowed	Panels Deployed	Panels Deployed	Remarks
Receiver rf Power (each receiver)	-104.0 dBm	-104.0 dBm	- 97.0 dBm	
Command Re- ceiver agc Threshold	-107.0 dBm	-107.0 dBm	-107.0 dBm	0.77 volt at decoder
rf Margin Above agc Threshold	+ 3.0 dB	+ 3.0 dB	+ 10.0 dB	

TABLE C-3. WORST-CASE RF COMMAND LINK CALCULATION (Continued)

c. Receiver Bandwidth Requirements

The minimum if, bandwidth of the receiver should be able to handle the modulation bandwidth, the maximum doppler shift, and the maximum frequency offsets due to frequency instability in the transmitter and in the receiver local oscillator.

(1) DOPPLER SHIFT

The doppler shift is indicated by the following expression and is a maximum at the minimum elevation angle:

$$\Delta F = \frac{FV}{C} \cos B,$$

where V is the spacecraft velocity, C is the velocity of light, and B is the angle between the ground station and the direction of the spacecraft velocity vector. At the command link frequency of 148 MHz, the maximum doppler shift is ± 2.9 kHz, or a total of 5.8 kHz.

(2) FREQUENCY STABILITY

The receiver local oscillator stability is specified at ± 0.005 percent maximum, yielding a maximum frequency instability of ± 6.4 kHz or a total of 12.8 kHz over a temperature range from -15 to $\pm 60^{\circ}$ C. The if filter center frequency stability is specified at ± 3 kHz or a total of 6 kHz.

Command System	Transmitter Power (kW)	Antenna Gain* (dB)	Ground Line Loss (dB)	Improvement in rf Signal Margin (dB)
ITA-120H Transmitter and	1.0	12.0	-3.0	+0.0 (reference)
Rod Antenna	2.5			+4.0
ITA-120H Transmitter and	1.0	13.6	-3.4	+1.2
RSI Disc-on-Rod Rod Antenna	2.5			+5.2
Hughes HC-300 Transmitter and . RSI 9 Disc-on-Rod Rod Array/SATAN Pedestal Antenna	2.5	23.7	-1.7	+17.0
GE-4BT91A1 or ITA-2500H Transmitter and RSI 9 Disc-on-Rod `Array/SATAN Pedestal Antenna	5.0	23.7	-1.7	+20.0

TABLE C-4. IMPROVEMENT IN COMMAND RF SIGNAL MARGINS WITH VARIOUS ALTERNATE COMMAND TRANSMITTER/ ANTENNA COMBINATIONS

*Handbook of NASA/GSFC Tracking, Data Acquisition and Communications Antennas, Oct. 1964; N 65-18255

(3) MODULATION BANDWIDTH

The modulation bandwidth is a maximum of ± 11.3 kHz or a total of 22.6 kHz. This is the bandwidth required when the highest frequency FSK tone is being transmitted.

(4) WORST-CASE IF BANDWIDTH

The required if. bandwidth is obtained by adding all the individual frequency instabilities and uncertainties, as shown in Table C-5.

The worst-case bandwidth of 47.6 kHz corresponds to a 6 dB signal loss in the highest FSK sideband of the IF signal. This loss corresponds to an effective modulation index loss from m to 3/4 m, or a 2.5 dB loss in the receiver output signal level.

Table C-5 also includes the expected if. bandwidth requirement based on measured receiver oscillator drift over the predicted spacecraft baseplate temperature range of ± 10 to $\pm 30^{\circ}$ C. This data was obtained from environmental tests of eight TOS dual command receivers. The results shows that, even though the worst-case calculation indicates a 6 dB signal loss in the highest FSK sideband of the if. signal, the actual operating environment will not produce this worst-case condition.

The expected signal loss due to IF filter and local oscillator drift characteristics is less than 1 dB compared to a 6 dB signal loss for the worstcase conditions.

d. Interference Signals

The presence of interference signals is unavoidable due to the physical proximity of the beacon, real-time, and S-band transmitters. Interfering signals might produce a desensitization of the receiver, reducing the effective threshold margin. Intensive tests on the TIROS M receivers have shown that for the interfering signals at frequencies around 136 MHz (12 MHz away from command frequency) negligible desensitization occurs if the interfering level is maintained below -30 dBm. Interfering signals lying in the receiver passband have to be maintained below -113 dBm. The interference levels from the transmitters and the required isolation between the transmitters and the command receiver port are given in Table C-6.

The total interference level in the receiver if. passband is the sum of the interference powers of the first six entries in Table C-6. The resultant interference level is -117.2 dBm, which is low enough to prevent receiver desensitization.

	Receiver Temperature Range		
	-15°C to +60°C	+10°C to +30°C	
Transmitter Instability*	0.4 kHz	0.4 kHz	
Receiver Local Oscillator Instability (Spec.)	12.8 kHz	5.2 kHz**	
Receiver if. Filter Instability (Spec.)	6.0 kHz	6.0 kHz	
Total Receiver Frequency Uncertainty	19.2 kHz	11.6 kHz	
Doppler Shift	5.8 kHz	5.8 kHz	
Maximum Modulation Bandwidth	22.6 kHz	22.6 kHz	
Worst-Case if. Bandwidth Required	47.6 kHz	40.0 kHz	
Command Receiver if. Bandwidth Spec. ±1 dB	40.0 kHz Min.	-	
• -6 dB	48.0 kHz Min.		

TABLE C-5. REQUIRED WORST-CASE COMMAND RECEIVER IF BANDWIDTH

*Telegram 13/2238Z Oct. GMOR

**Predicted values based on measurements of 8 command receivers.

Frequency (MHz)	Transmitter Level at Command Port (dBm)	Allowable Interference Level at Command Receiver Port (dBm)	Minimum Isolation Required (dB)
148 108	-100 - 50	-125 -125**	25 25*
148 108	- 80 - 50	-125 -125**	45 25*
148 108	- 90 - 70	-125 -125**	35 5*
136.7	+ 24	- 40	64
137.5	+ 37	- 30	67
	Frequency (MHz) 148 108 148 108 148 108 136.7 136.7	Frequency (MHz)Transmitter Level at Command Port (dBm) 148 -100 (dBm) 148 -50 148 -80 -50 108 -50 148 108 -90 -70 136.7 $+24$ 137.5 $+37$	Frequency (MHz)Transmitter Level at Command Port (dBm)Allowable Interference Level at Command Receiver Port (dBm)148 -100 -125 108 -125 $-125**$ 148 -80 -125 -125 108 -50 $-125**$ $-125**$ 148 108 -90 -70 -125 $-125**$ 136.7 $+24$ $+24$ -40 137.5 $+37$ -30

TABLE C-6. INTERFERENCE LEVELS AT THECOMMAND RECEIVER PORT

*50-dB image rejection is provided by the receiver internal circuitry.

**Effective interference level in the if. passband.

e. Random Noise Temperature

The overall link noise temperature consists of the receiver noise temperature, the noise temperature due to prereceiver circuit losses, the cosmic noise temperature, and the earth noise temperature. The receiver noise temperature is the most important contributor to the overall link noise temperature.

(1) RECEIVER NOISE TEMPERATURE

The noise figure, F, of the receiver is specified at 10 dB max. This corresponds to a receiver temperature of

$$T_{\rm R} = 290^{\circ} ({\rm F}-1) = 2610^{\circ}{\rm K}.$$

(2) PRERECEIVER CIRCUIT NOISE TEMPERATURE

The prereceiver circuit includes all cables and filters between the antenna and the receiver input. The losses in the prereceiver circuit contribute noise power proportional to the actual thermodynamic (thermal) temperature of the loss elements, T_t , and is given by

$$\mathbf{T} = \left(\mathbf{1} - \frac{1}{\mathbf{L}} \right) \mathbf{T}_{\mathbf{t}}$$

where L is the circuit loss expressed as a power ratio.

Consider T_t to be approximately equal to 333°K, and the circuit loss to be equal to 5 dB. This corresponds to the 8 dB maximum spec loss between antenna and receiver, less the 3 dB power-splitting loss of the hybrid coupler which does not contribute noise power. Then:

$$T = \left(1 - \frac{1}{3.16}\right) 333^{\circ} K = 227^{\circ} K.$$

The noise power is split equally between the two receiver channels, which yields an effective circuit noise temperature, at the input of the receiver, of

$$T_c = \frac{227^\circ}{2} = 113.5^\circ K.$$

(3) COSMIC NOISE TEMPERATURE

For a broad beam antenna, such as the spacecraft command antenna, the value of the cosmic temperature, T_s , may be assumed to correspond to the average sky temperature which is 1200°K at 148 MHz.*

*L.V. Blake, Antenna and Receiving-System Noise Temperature Calculation, U.S. Naval Research Laboratory Report 5668 (AD-265-414) Sept. 19, 1961. However, since the earth covers a significant portion of the sky (108.8-degree subtended angle), a correction, ΔT , proportional to the fraction of solid angle intercepted by the earth should be applied. The correction, ΔT is given by

$$\Delta T = (T_s) \times \frac{\text{(solid angle subtended by earth)}}{4\pi \text{ steradians}} \circ K$$
$$= 1200 \circ K \times \frac{2\pi (1 - \cos 54.4^\circ)}{4\pi} = 251^\circ K$$

The effective sky temperature is:

$$T_{so} = T_s - \Delta T = 1200 - 251 = 949^{\circ} K$$

The worst-case effective temperature at the receiver port, T_{se} , is obtained by 1 taking the lowest (measured) 6.7 dB loss from antenna to receiver into account.

$$T_{se} = \frac{949^{\circ}K}{4.7} = 202^{\circ}K.$$

(4) EARTH NOISE TEMPERATURE

The radio black-body temperature of the earth is 254° K.* The contribution of the earth noise temperature at the command antenna is given by

$$\Gamma_{\rm E} = \frac{(\text{solid angle subtended by earth})}{4\pi \text{ steradians}} \times (T_{\rm Earth})$$
$$= \frac{2\pi (1 - \cos 54.4)}{4\pi} \times 254^{\circ} \text{K} = 53.2^{\circ} \text{K}.$$

There is a 6.7-dB (4.7 power ratio) loss between receiving antenna and receiver port which yields the effective earth noise temperature at the receiver port of

$$T_{Ee} = \frac{53.2^{\circ}K}{4.7} = 11.3^{\circ}K.$$

*Reference Data for Radio Engineers, 5th Ed. Howard W. Sams Co. 1968., pp 34-5.

(5) TOTAL IF NOISE POWER

The overall system noise temperature is then given by the summation below:

Receiver	2610.0°K
Prereceiver Circuit	113.5 °K
Cosmic	202.0°K
Earth	11.3°K ⁻
System	2936.8°K

The system noise temperature at the receiver input port is then $T_{sys} = 2936.8^{\circ}K$. The noise power in the if. is N, and N = $kT_{sys} B_{if}$.

where

k = Boltzman's constant = 1.38×10^{-23} Joules/°K and

 B_{if} = Receiver if. noise bandwidth = 48 kHz.

The total if. noise power is

 $N = 1.38 \times 10^{-23} \times 2.9368 \times 10^{3} \times 48 \times 10^{3} = 1.94 \times 10^{-15} \text{ watts or}$

N = -117.1 dBm for an if. bandwidth of 48 kHz.

f. Carrier-To-Noise Ratio

For an if. bandwidth of 48 kHz and a receiver rf power input of -107 dBm, corresponding to the receiver agc threshold, the if. carrier-to-random-noise ratio is

 $C_{if} N_{if} = -107 \text{ dBm} + 117.1 \text{ dBm} = 10.1 \text{ dB}.$

The if. carrier-to-interference ratio at rf power threshold is

$$-107 \text{ dBm} + 117.2 \text{ dBm} = 10.2 \text{ dB}.$$

The total average power of combined random noise and interference is

$$P_n$$
 total = -114.2 dBm.

The overall carrier-to-noise ratio (including interference power) at the receiver agc threshold is

$$\frac{C}{N_{t}}$$
 = +7.2 dB for an if. bandwidth of 48 kHz.

Note that the actual worst-case expected value is above this value by the calculated rf margins shown in Tables C-3 and C-4.

g. Subcarrier Signal-to-Noise Ratio

The command system performance is not limited by the 7.2-dB carrierto-noise ratio in the if. The parameter of importance is the subcarrier-tonoise ratio in the subcarrier bandwidth, B_{sc} , which is given by the expression:

$$(S/N)_{sc} = m^2 \frac{B_{if}}{B_{sc}} \cdot \frac{C}{N}$$

where m is the carrier modulation index.

The subcarrier-to-noise ratios for random noise only and for total noise and interference are given in Table C-7 where the signal-to-noise ratios of both FSK subcarriers have been corrected for the calculated 2.5 dB possible modulation loss due to the worst-case possible upper sideband attenuation.

TABLE C-7.	SUBCARRIER-TO-NOISE RATIOS AT RECEIVER
	AGC THRESHOLD

Subcarrier	Bandwidth (Hz)	Random Noise Only S _c /N _c (rms/rms)	Random Noise and Interference (rms/rms)
FSK 2	1575	21.6 dB	18.7 dB
FSK 1	1103	23.1 dB	20.2 dB
TONE 2	810	27.0 dB	24.1 dB
TONE 1	585	28.4 dB	25.5 dB

The frequencies $f_c + \Delta f$ and $f_c - \Delta f$ are extracted by two bandpass filters having a ± 2 percent bandwidth. These tones are subsequently envelope-detected and trigger a threshold device. Next, they are integrated and digitally processed. The detected-pulse signal-to-noise ratio is improved by 5.4 dB above the subcarrier signal-to-noise ratio by the tone filters. This yields a demodulated signal-to-noise ratio in excess of 24.1 dB rms/rms (27.1 dB peak/rms). This corresponds to a bit-error probability of less than 1 part in 10⁶, which quite adequately meets system requirements.

3. BEACON LINK ANALYSIS

a. Receiver IF Bandwidth Requirements

(1) RECEIVER IF INFORMATION BANDWIDTH

A signal-to-noise ratio of 38.4 dB rms/rms is obtained at the 3.9kHz channel demodulator threshold of 12 dB. A margin of 5.3 dB above the 12dB fm threshold of the subcarrier demodulator is obtained in the operational mode with the phase index of the highest subcarrier frequency (3.9 kHz) set at 0.50 radian. With this phase index, a negligible amount of power lies outside the first pair of 3.9-kHz sidebands of the carrier frequency. Since the bandwidth of the 3.9 kHz subcarrier is 703 Hz, the rf information bandwidth is then:

Information bandwidth -2(3, 900) + 703 = 8,503 Hz.

(2) DOPPLER SHIFT

At a ground antenna elevation of 5 degrees, the maximum doppler shift at 136.77 MHz is ± 2.65 kHz or a total of 5.3 kHz.

(3) TRANSMITTER FREQUENCY UNCERTAINTY

The transmitter frequency instability is ± 0.005 percent or ± 6.8 kHz, which yields a total of 13.7 kHz.

The total rf bandwidth is:

Information	8.5 kHz
Doppler Shift	5.3 kHz
Instability	13.7 kHz
Total rf bandwidth	27.5 kHz

The ground station phase-lock loop receiver tracks the frequency shifts due to doppler and transmitter frequency uncertainty. Therefore, the if. bandwidth of the receiver need only be wide enough to pass the 8.5-kHz information band-width. It has an if. bandwidth of 30 kHz which is adequate to handle the total rf bandwidth.

b. Subcarrier Phase Deviations

The rf input into the phase lock loop receiver can be expressed as $g(t) \approx A_c \cos (w_c t + \phi(t))$, where $\phi(t)$ is the phase modulation due to the two subcarriers of frequencies (f_A) and (f_B) . The $\phi(t)$ is given by

$$\phi(t) = b_A \sin w_A t + b_B \sin w_B t.$$

The output of the phase lock detector is proportional to $\sin \phi(t)$. It can be shown* that the demodulated subcarriers are

$$2J_1 (b_A) J_0 (b_B) A_c \sin w_A t$$
 (for subcarrier f_A)

$$^{2J}_{1}$$
 $^{(b}_{B})$ $^{J}_{o}$ $^{(b}_{A})$ $^{A}_{c}$ sin $^{w}_{B}$ t (for subcarrier $^{f}_{B}$)

The individual subcarrier signal-to-noise power ratio is given by:

$$S_c/N_c = 2J_1^2 (b_A) J_o^2 (b_B) \left(\frac{Pc}{\eta B_{scA}}\right)$$
 (for subcarrier A)

where

 $Pc = A_c^2/2$ is average carrier power,

is if. noise density (watts in 1 Hz), and

B is subcarrier bandwidth.

 $J_0\,(\!b_A^{\phantom i}),\ J_1\,(\!b_A^{\phantom i})$ are Bessel Functions of the first kind.

For small phase indices, the subcarrier signal-to-noise power ratio expression becomes approximately equal to $\frac{b^2}{2 \eta B_{sc}}$.

It is desirable to design the system such that both subcarriers have approximately equal margin above the fm threshold. The phase deviation b_B of the 2.3-kHz subcarrier was selected to satisfy the following equation:

$$\frac{\mathbf{b}_{A}}{\sqrt{\mathbf{B}_{scA}}} \approx \frac{\mathbf{b}_{B}}{\sqrt{\mathbf{B}_{scB}}}$$

^{*}B. D. Martin, <u>The Pioneer IV Lunar Probe: A Minimum Power FM/PM</u> System Design, JPL TR-32-215, 1962.

The subcarrier bandwidths are given below:

Channel A (3.9-kHz subcarrier IRIG channel No. 9)

Center Frequency	3.9 kHz
Deviation (Δf)	\pm 7.5 percent of center frequency
Baseband (f_m)	59 Hz
Subcarrier Bandwidth	703 Hz
Rf Carrier Phase Index	0.50 radian
Channel B (2.3 kHz)	· · · · · · · · · · · · · · · · · · ·
Center Frequency	2.3 kHz
Deviation	±20 percent
Baseband	160 Hz
Subcarrier Bandwidth	1240 Hz
Rf Carrier Phase Index	0.70 radian

As in TIROS M, the 3-dB attitude data bandwidth is 160 Hz. In order to obtain a reasonable demodulated baseband signal-to-noise, a nonstandard deviation has to be selected. With this deviation, the composite subcarrier spectrum extends from 1.68 to 4.25 kHz. A voice dhannel of the long lines can handle a spectrum extending from 1.60 to 4.4 kHz. An increase of subcarrier deviation beyond ± 20 percent would extend the composite subcarrier spectrum beyond the capacity of a voice channel of the long lines. The composite spectrum is shown in Figure C-1.

Figure C-1. Composite Subcarrier Spectrum of Demodulated Beacon and Telemetry Baseband

c. Distortion Products

The distortion signals from the phase detector can be shown to be as follows:

The calculated principal distortion products, and their relative amplitudes with respect to the 3.9 kHz subcarrier are shown in Table C-8. It can be observed that all the distortion terms fall outside the subcarrier spectrum. In addition, the subcarrier filters will provide at least 20-dB attenuation of the intermodulation products.

Term	Frequency (kHz)	Relative Amplitude (dB)
f _A - ^{2f} B	0.7	-22.8
, ^f B	2.3	+ 3.2*
fA	3.9	0.0 (Ref)*
f _B - 2f _A	5.5	-25.7
$3f_{B}$	6.9	-29.4
$2f_{B} + f_{A}$	8.5	-22.8
$f_B + 2f_A$	10.1	-25.7
3f _A	11.7	-38.2
*Desired output terms shown for reference.		

TABLE C-8. PRINCIPAL DISTORTION PRODUCTS AND RELATIVE AMPLITUDE

C-18
d. RF Link Calculation

The circularly polarized beacon signal is intercepted by the 85-foot parabolic dish antenna system, using polarization diversity reception. The ground station parameters are summarized in Table C-9.

TABLE C-9.	CDA GROUND STATION PARAMETERS
	(BEACON RECEPTION)

Antenna Gain*	27.6 dB at 136.77 MHz
Polarization	Polarization diversity reception (-1.0 dB)
Receiver Noise Figure	4.5 dB
IF Bandwidth	30 kHz

(1) SYSTEM NOISE TEMPERATURE

The receiver noise temperature, ${\rm T}^{}_{\rm R},\,$ corresponding to a noise figure, F, of 4.5 dB is

$$T_{\rm B} = 290 \, ({\rm F-1}) = 522^{\circ}{\rm K}$$
.

The sky noise temperature at 136 MHz for 95 percent of the sky is taken to be . $T_s = 1400^{\circ}K.*$

The total effective system temperature is

$$\Gamma_{\rm sys} = 522 + 1400 = 1922^{\circ} {\rm K}.$$

The noise power density at if. is then

$$\eta = KT_{SYS} = -165.8 \text{ dBm in 1 Hz}.$$

Using the above value for η , the noise power for each subcarrier has been derived as shown in Table C-10.

*NRL Report 5668 (AD-265-414)

Subcarrier Channel	3.9 kHz	2.3 kHz	PLL*
Subcarrier Bandwidth	703 Hz ·	1240 Hz	200 Hz
Subcarrier Bandwidth in dB-Hz	28.4 dB-Hz	30.9 dB-Hz	23 dB-Hz
Noise Power Density in 1 Hz	-1 65.7 dBm	-165.7 dBm	-165.7 dBm
Subcarrier Noise Power *Phase-Locked Loop	-137.3 dBm	-134.8 dBm	-142.7 dBm

TABLE C-10. SUBCARRIER NOISE POWER COMPUTATIONS

(2) LINK LOSSES

The space loss is -147.3 dB at 5 degrees elevation, 790 nautical miles altitude, at 136.77 MHz.

(3) SUBCARRIER MODULATION LOSSES

The demodulated subcarrier power is given by $2J_1^2$ (b_A) J_0^2 (b_B) P_c

where P_c is the total carrier power, b_A is the peak phase deviation produced by the subcarrier of interest, and b_B is the peak phase deviation of the second subcarrier. The factor $2J_1^2$ (b_A) J_o^2 (b_B) is the fraction of the carrier power recovered in the subcarrier. It is the modulation loss. The loss in the carrier frequency term is J_O^2 (b_A) J_o^2 (b_B).

The beacon transmitter deviation sensitivity can vary ± 12.5 percent from the nominal value. The resulting modulation losses are shown in Table C-11.

	Modulation Loss			
Signal	Unfavorable Tolerances	Nominal	Favorable Tolerances	
Carrier	-2.10 dB	-1.65 dB	-1. 25 dB	
3.9 kHz Subcarrier	-11.80 dB	-10.40 dB	-9.18 dB	
2.3 kHz Subcarrier	-8.38 dB	-7.20 dB	-6.19 dB	

TABLE C-11. MODULATION LOSS OF BEACON SUBCARRIERS

(4) WORST-CASE RF LINK CALCULATIONS

The worst-case link calculations are tabulated in Tables C-12, C-13, and C-14.

e. Estimated S/N Degradation in Long Lines

The signal-to-noise ratios given previously cover only the link and receiving equipment noise. The multiplexed subcarriers at the CDA receiver output are transmitted via long lines to NESC/Suitland. These lines introduce additional noise.

Published measurements on the long lines* have shown the subcarrier-to-noise ratio to be 33.0 dB rms/rms for the beacon and telemetry channel over a bandwidth of approximately 3000 Hz from Gilmore to NESC/Suitland. The long lines from Wallops to NESC/Suitland have a better ratio (-44.5 dB). The design goal for both lines is 23 dB rms/rms.

With this subcarrier-to-noise ratio, the demodulated baseband S_0/N_{LL} contributed by the lines alone (i.e., assuming a noiseless subcarrier into the line) is given in Table C-15. The signal-to-noise ratio due to the link S_0/N_0 is combined with the long line S/N to yield the overall S/N at Suitland. The ratios are combined according to the following equation:

$$\frac{N_{T}}{S_{o}} = \frac{N_{J,L}}{S_{o}} + \frac{N_{o}}{S_{o}} \cdot$$

*TOS Communications Test Results, Report TER-111, Telcom, Inc., prepared for ESSA-NESC, March 30, 1966.

TABLE C-12. WORST-CASE RF BEACON LINK CALCULATION

	Unstab	oilized	Stabilized	Re-
Parameter	Panels Stowed	Panels Deployed	Panels Deployed	marks
Transmitter Power	24.0 dBm	24.0 dBm	24.0 dBm	spec value
Transmitting Circuit Loss	- 2.0 dB	- 2.0 dB	- 2.0 dB	spec value
Spacecraft Antenna Gain	- 9.5 dBi	- 14.5 dBi**	- 9.5 dBi	over linear isotropic
Space Path Loss	-147.3 dB	-147.3 dB	-147.3 dB	5 de- gree elevation
Diversity Re- ception Loss*	- 1.0 dB	- 1.0 dB	- 1.0 dB	
Receiving An- tenna Gain	27.6 dB	27.6 dB	27.6 dB	85 foot dish
Total Re- ceived Power	-108.2 dBm	-113.2 dBm	-108.2 dBm	
Received Noise Spec- tral Density	-165.8 dBm/Hz	-165.8 dBm/Hz	-165.8 dBm/Hz	T _{sys} = 1922°K
Carrier Modu- lation Loss	- 2.1 dB	- 2.1 dB	- 2.1 dB	
Received Car- rier Power	-110.3 dBm	- 115.3 dBm	-110.3 dBm	
PLL Noise Power	-142.7 dBm	-142.7 dBm	-142.7 dBm	PLL band- width =
				200 Hz
PLL Signal - to-Noise Ratio	32.4 dB	27.4 dB	32.4 dB	
*If one of the diversity channels falls below threshold, a 3 dB loss is incurred.				

**Except Regions III and IV of Antenna Pattern.

<u> </u>	Unsta	bilized	Stabilized	Re-
Parameter	Panels Stowed	Panels Deployed	Panels Deployed	marks
PLL Threshold	6.0 dB	6.0 dB	6.0 dB	as- sumed***
PLL Margin above Threshold	26.4 dB	21.4 dB	26.4 dB	
***F. Gardner - Theory of Phase Lock Techniques, Wiley, 1964.				

TABLE C-12. WORST-CASE RF BEACON LINK CALCULATION (Continued)

TABLE C-13. WORST-CASE LINK CALCULATION FOR 3.9 kHz CHANNEL

	Unstabilized		Stabilized	
Parameter	Panels Stowed	Panels Deployed	Panels Deployed	Kemarks
Total Received Power	-108.2 dBm	-113.2 dBm	-108.2.dBm	from Table C-12
Subcarrier Modulation Loss	- 11.8 dB	- 11.8 dB	- 11.8 dB	from Table C-11
Received Subcarrier Power	-120.0.dBm	-125.0 dBm	-120.0 dBm	·
Subcarrier Noise Power	-137.3 dBm	-137.3 dBm	-137.3 dBm	from Table C-10
Subcarrier-to- Noise Ratio	17.3 dB	12.3 dB	17.3 dB	rms/rms
FM Detector Threshold	12.0 dB	12.0 dB	12.0 dB	assumed
Subcarrier Margin	5.3 dB	0.3 dB	5.3 dB	5° elevation
Baseband S/N at Subcarrier Threshold	38.4 dB	38.4 dB	38.4 dB	

TABLE C-13. WORST-CASE LINK CALCULATION FOR 3.9 kHz CHANNEL (Continued)

Parameter	Unstabilized		Stabilized		
	Panels Stowed	Panels Deployed	Panels Deployed	Remarks	
Worst-Case Base- band S/N	43.7 dB	38.7 dB	43.7 dB	rms/rms in 59 Hz band- width	
	52.7 dB	47.7 dB	52 .7 dB	p-p/rms in 59 Hz band- width	

TABLE C-14. WORST-CASE LINK CALCULATION FOR 2.3 kHz CHANNEL

	Unstabilized		Stabilized	
Parameter	Panels Stowed	Panels Deployed	Panels Deployed	Remarks
Total Received Power	-108.2 dBm	-113.2 dBm	-108.2 dBm	from Table C-12
Subcarrier Modula- lation Loss	- 8.4 dB	- 8.4 dB	- 8.4 dB	from Table C - 11
Received Sub- carrier Power	-116.6 dBm	-121.6 dBm	-116.6 dBm	
Subcarrier Noise Power	- 134.8 dBm	-134.8 dBm	-134. 8 dBm	from Table C-10
Subcarrier-to- Noise Ratio	18.2 dB	13.2 dB	18.2 dB	
FM Detector Threshold	12.0 dB	12.0 dB	12.0 dB	assumed
Subcarrier Margin	6.2 dB	$1.2\mathrm{dB}$	6.2 dB	5° elevation
Baseband S/N at Subcarrier Threshold	31.9 dB	31.9 dB	31.9 dB	
Worst-Case Base- band S/N	38.1 dB	33.1 dB	38.1 dB	rms/rms in 160 Hz bw.
þ	47.1 dB	42.1 dB	47.1 dB	p-p/rms in 160 Hz bw.

C-24

Subcarrier	Baseband Link S/N at Threshold	Baseband Long Lines S/N	Net S/N	Bandwidth
2.3 kHz (± 20 percent dev.)	31.9 dB rms/rms	46.7 dB rms/rms	31.8 dB rms/rms	160 Hz
3.9 kHz (±7.5 percent dev.)	38.4 dB rms/rms	55.7 dB rms/rms	38.4 dB rms/rms	59 Hz

TABLE C-15. S/N CONTRIBUTION BY THE LONG LINES

The long lines are not expected to produce any appreciable degradation of the demodulated baseband signal-to-noise ratio.

4. VHF REAL-TIME LINK ANALYSIS

a. Receiver Bandwidth Requirements

The significant information bandwidth is: $bw = 2 (f_d + f_H)$ where f_d is peak deviation and f_H is maximum modulating frequency.

The visible channel of the radiometer has baseband components up to 1.2 kHz. For the visible channel, $f_H = 2.4 + 1.2 = 3.6$ kHz. The maximum $f_d = 10$ kHz; thus, an information bandwidth of 27.2 kHz is required to include all the significant sidebands.

The doppler shift of the signal is 5.3 kHz, while the allowance for transmitter instability is 13.8 kHz (2×0.005 percent of 137.5 MHz). The total bandwidth required is therefore 43.6 kHz. The 50-kHz if. bandwidth of the present APT field station receivers is therefore adequate.

b. **RF** Link Calculation

The results of the link analysis are summarized in Table C-16.

The receiver is assumed to have a noise figure of 4.5 dB maximum, the corresponding receiver noise temperature is 522°K. A sky noise temperature of 1400°K is taken for the carrier frequency of 137.62 MHz.*

Assuming a received circuit loss of 1.0 dB, the effective sky noise temperature at the received input is 1110°K. The equivalent noise temperature of the

*NRL Report 5668 (AD 265414)

Parameter	Worst-Case Value	Remarks
Transmitter Power	+37.0 dBm	5 watts min.
Transmitting Circuit Losses	- 1.8 dB	spec value
Transmitter Antenna Gain	- 3.5 dB	spec value over circular isotropic
Polarization Loss	- 3.0 dB	Linear to circular
Path Loss (5 degree elevation angle)	-147.4 dB	137.62 MHz
Receiver Antenna Gain	+12.5 dB	
Receiver Circuit Losses	- 1.0 dB	assumed value
Received Power	-107.2 dBm	
Effective Noise Temperature	1692°K	
Predetector Noise Bandwidth	50 kHz	
Equivalent Noise Input	-119.3 dBm	
C/N ratio	+12.1 dB	50 kHz bandwidth
Threshold	+12.0 dB	
Rf Carrier Margin	+ 0.1 dB	
Am Subcarrier S/N	+29.7 dB	4 kHz bandwidth
Video peak-to-peak rms noise:		
1.2 kHz video bandwidth	+35.0 dB	
900 Hz video bandwidth	+36.4 dB	
450 Hz video bandwidth	+39.5 dB	

TABLE C-16. REAL-TIME LINK PARAMETERS (FIELD STATIONS)

received circuit losses is 60° K. The effective system noise temperature at the received input is then $522 + 1110 + 60 = 1692^{\circ}$ K.

In the 50 kHz if. bandwidth, the resulting noise power is then -119.3 dBm. The corresponding carrier-to-noise ratio is therefore +12.1 dB.

RF Link Contribution to Signal-to-Noise Ratio

C.

The signal-to-noise ratio at the output of the receiver can be determined by first calculating the signal-to-noise ratio at the discriminator output (subcarrier) and then determining the signal-to-noise ratio after the am detector (baseband). The subcarrier signal-to-noise ratio is:

$$(S/N)_{sc} = \frac{3\Delta f^2 B_{IF}}{2\left[3f_{sc}^2 + \frac{B_{sc}^2}{4}\right] B_{sc}} \frac{C}{N} = 29.7 \text{ dB rms/rms},$$

where C/N = 12.1 dB (worst-case)

 $\Delta f = 8 \text{ kHz (worst-case),}$ $f_{sc} = 2.4 \text{ kHz}$ $B_{sc} = 4.0 \text{ kHz, and}$ $B_{IF} = 50 \text{ kHz.}$

The baseband S/N can be calculated from the subcarrier-to-noise ratio. The peak subcarrier voltage into the transmitter is $A_p = 2.8$ volts p-p. The minimum voltage is $A_m = 0.11$ volt p-p. This yields the AM modulation index, m, with respect to the unmodulated subcarrier:

$$m = \frac{A_p - A_m}{A_p + A_m} = 92.5 \text{ percent.}$$

The peak fm deviation, Δf , corresponds to the peak subcarrier level A_p and not to the unmodulated subcarrier level, A_o . The peak subcarrier level and unmodulated subcarrier levels are related by the expression:

$$A_{o} = \frac{A_{p}}{1+m}$$

Assuming an output filter bandwidth equal to the maximum modulation frequency f_m , and a subcarrier filter bandwidth $B_{sc} = 2 f_m$, the output power signal-to-noise ratio becomes:

$$\frac{S_0}{N_0} = \left(\frac{m}{1+m}\right)^2 \left(\frac{S}{N}\right)_{sc} rms/rms.$$

Alternatively, the S_0/N_0 can also be obtained directly by the following equation.*

$$\frac{S_{o}}{N_{o}} = \left(\frac{2m}{1+m}\right)^{2} \frac{\Delta f_{c}^{2}B_{IF}}{16\left[\frac{f_{m}^{3}}{3} + f_{sc}^{2}f_{m}\right]} \cdot \frac{C}{N} rms/rms$$

where m = 0.925, $\Delta f_c = 8 \text{ kHz}$,

$$B_{IF} = 50 \text{ kHz}, f_{sc} = 2.4 \text{ kHz}, \text{ and}$$

 $(C/N)_{IF} = 12.0 \text{ dB}$ at threshold,

For a video bandwidth $f_m = 1.2$ kHz:

$$S_N = 12.0 + 13.9 = 25.9$$
 dB rms/rms at threshold.

At 5 degrees elevation:

 $S_N = 25.9 + 0.1 = 26 \text{ dB rms/rms}$ (worst-case).

To obtain the peak-to-peak signal/rms noise ratio, +9 dB is added to the rms/ rms S/N, yielding: S_0/N_0 at carrier threshold = 34.9 dB p-p/rms, and worstcase S_0/N_0 at 5 degrees elevation = 35 dB p-p/rms.

Table C-16 lists the resulting worst-case S_0/N_0 ratios for various output (video) filter bandwidths.

d. CDA Station Margins

Rf margins available at CDA stations which monitor VHF real-time transmissions are higher than those computed for the field station data link. Minimum CDA ground-antenna gain is 27.0 dB versus a field station gain of 12.5 dB; therefore, the link margins and all signal-to-noise ratios increase by a minimum value of 14.5 dB.

*Final Report for HRIR Real-Time Transmission Study (AED R-2534), Contract NAS5-3776, October 15, 1964 (with $m = (1 - \alpha)/(1 + \alpha)$.

Overall Baseband Signal-to-Noise Ratio

e.

The signal-to-noise ratios given in Table C-16 are the link contributions only. The scanning radiometer sensor S/N ratios are approximately:

 $(S/N)_{IR} = 45 \text{ dB p-p/rms}$ Infrared channel (450 kHz bandwidth)

 $(S/N)_{VIS} = 44 \text{ dB p-p/rms}$ Visible channel (900 kHz bandwidth).

The signal-to-noise ratio of the SR recorder used to obtain the time multiplexed output is approximately:

 $(S/N)_{SRR} = 38 \text{ dB p-p/rms}$

The resulting overall system S/N ratio (worst case) at the field stations is shown in Table C-17.

Contributing Parameter	IR Channel (450 Hz Bandwidth) p-p/rms	Visible Channel (900 Hz Bandwidth) p-p/rms
Sensor	45 dB	44 dB
SR Recorder	38 dB	3 8 dB
RF Link	39.5 dB	36.4 dB
Overall System	35.2 dB	33.7 dB

TABLE C-17. WORST-CASE BASEBAND S/N RATIOS OF VHF REAL-TIME SYSTEM AT THE FIELD STATIONS

5. S-BAND REAL-TIME LINK ANALYSIS

a. Receiver Bandwidth Requirements

The significant information bandwidth, by Carson's Rule is: bw = $2(f_d + f_h)$, where f_d is the peak carrier deviation and f_h is the maximum modulating frequency. The maximum modulating frequency is determined by the upper frequency subchannel in the two-subcarrier backup mode, which has a center frequency of 230 kHz, a baseband frequency of 35 kHz and a deviation index of unity. The maximum modulating frequency is therefore 230 + 2x35 = 300 kHz. The peak carrier deviation is the sum of the subcarrier deviations, or 50 + 150 = 200 kHz. Thus the total information bandwidth is: bw = 2(200 + 300) = 1.0 MHz. This is the receiver bandwidth required when using a receiver* with an afc system compatible with fm modulation of the carrier. If such a receiver is not used, bandwidth allowance for the long-term transmitter stability and for the maximum doppler shift must also be included. In this case the minimum bandwidth of the ground receiver is 1.24 MHz, as tabulated below:

Information	2(200 + 300)		= 1	,000.0 kHz	
Doppler Shift at	1697.5 MHz	2x32.8	=	65.6 kHz	
Total transmitte	er instability at 1697.5 MH	±0.005% Hz	=	169.8 kHz	

1,235.4 kHz

Utilizing a receiver bandwidth of 1.25 MHz will degrade the rf margin by approximately 1.0 dB from the figure obtained for the 1.0 MHz receiver.

b. **RF Link Calculations**

(1) SYSTEM NOISE-TEMPERATURE

The overall system noise-temperature comprises contributions from cosmic noise within the main beam of the antenna and earth noise as seen by the antenna side lobes, line losses, preamplifier noise, and receiver noise. Preamplifier noise-temperature is the major contributor to the overall system noise-temperature.

For example, receivers that automatically center the peak modulation spectrum in the passband, such as DEI models TMR-70 or TR-711, Scientific Atlanta model 410A and others. The contribution of the cosmic sky noise and earth noise as seen by the antenna sidelobes, is approximately 70° K for a typical parabolic antenna at 5 degrees elevation angle at 1700 MHz. A 1.0 dB antenna feed and preselector circuit loss will reduce this figure to 56 K. The noise-temperature contribution of the preselector circuit loss will be $(1 - 0.794) 290^{\circ}$ K = 60° K. A conservative noise figure for the receiver is 10 dB. A preamplifier with a gain of 17 dB** will reduce this receiver noise contribution to $(10 - 1) 290^{\circ}$ K/50 = 52° K.

The preamplifier noise-temperature is the major contributor to the overall system noise-temperature. With the selected spacecraft transmitter power of 5 watts and the requirement to utilize a 10-foot diameter antenna on the ground, an uncooled parametric preamplifier front-end is mandatory. An off-the-shelf paramp** will provide an equivalent noise-temperature of 101°K. The overall system noise temperature is then as follows:

Antenna temperature (sky + earth noise, 5 deg. elevation,			
1 dB circuit loss)	=	56°	К
Preselector circuit losses (1 dB)	=	60°	Κ
Preamplifier (uncooled paramp, 1.3 dB NF)	=	101°	Κ
Receiver (10 dB NF, 17 dB preamp gain)	=	52°	Κ
Overall system noise temperature	=	2 69°	K

(2) PATH LOSSES

The propagation losses have been computed, as described in Section IX of this report, for various elevation angles. The results are listed in Table C-18.

(3) S-BAND ANTENNA PERFORMANCE

The performance of the S-band antennas, with the new spacecraft mounting configuration and the new sensor outlines is described in detail in Appendix D of this report. The maximum and minimum measured gain figures are summarized in Table C-18.

(4) RF MARGIN CALCULATION

The worst-case link calculation assuming 5 degrees elevation, a 1.0-MHz receiver IF bandwidth, a 10-foot diameter parabola receiving antenna, and

US Naval Research Laboratory Report 5668 (AD 265 414) Sept. 19, 1961.

**Micromega model L1100G

^{*}L.V. Blake, Antenna and Receiving-System Noise-Temperature Calculation,

TABLE C-18.	VARIATION OF	F RF MARGIN	WITH ELEVATION AND	NADIR ANGLES

Elevation (degrees)	Nadir (degrees)	Slant Range (km)	Mea Anten Maximum (dB)	sured na Gain Minimum (dB)	Propagation Loss (dB)	Combined Min. Antenna Gain & Propagation Loss (dB)	Worst Case C/N Margin over FM Threshold (dB)
0	54.4	4557.5	+5.8	+1.9	-170.2	-168.3	0.2
5	54.1	4036.2	+5.8	+1.9	-169.2	-167.3	1.25
10	53.2	3584.1	+5.8	+2.0	-168.1	-166.1	2.4
15	51.8	3198.4	+5.8	+2.0	-167.1	-165.1	3.4
20	49.8	2873.4	+5.7	+2.1	-166.2	-164.1	4.4
30	44.8	2375.8	+5.8	+1.1	-164.6	-163.5	5.0
40	38.5	2032.8	+5.9	+1.5	-163.2	-161.7	6.8
50	31.5	1798.0	+5.0	-0.4	-162.1	-161.7	6.8
60	24.0	1639.7	+4.5	-2.3	-161.3	-159.0	9,5
90	0.0	1463.1	+0.0	-1.3	-160.3	ʻ -15 8.8	9.7

C-32

a 1.3-dB noise figure parametric amplifier front-end is given in Table C-19. A margin of 1.25 dB above a conservative 12 dB f_m threshold is obtained with the 5-watt spacecraft transmitter. The variation in rf margin with changing ground antenna elevation and spacecraft antenna nadir angle is given in Table C-18.

(5) SUBCARRIER SIGNAL-TO-NOISE RATIO CALCULATION

The subcarrier signal-to-noise ratio is given by the expression:

$$\left(\frac{S}{N} \right)_{sc} = \frac{3 \Delta f_c^2 B_{IF}}{2 \left[3f_{sc}^2 + \frac{B_{sc}^2}{4} \right] B_{sc}} \cdot \frac{C}{N} \quad (rms/rms)$$

where

C/N	==	13.25 dB (worst case)
Δf_{c}	=	300 kHz for the normal mode of operation (1 subcarrier, 80 kHz)
Ŭ	=	50 kHz for the backup mode subcarrier No. 1 (80 kHz)
	=	150 kHz for the backup mode subcarrier No. 2 (230 kHz)
B _{if}	=	1.0 MHz
fsc	=	80 kHz for the normal mode subcarrier or for backup mode
		subcarrier No. 1.
	=	230 kHz for backup mode subcarrier No. 2
B _{sc}	=	140 kHz

The resultant subcarrier S/N ratios are listed in Table C-20.

(6) RF LINK CONTRIBUTION TO BASEBAND SIGNAL TO NOISE RATIO

The baseband signal-to-noise ratio is given by the expression:

$$\left(\frac{S}{N}\right)_{bb} = \frac{\Delta f_{sc}^{2} \Delta f_{c}^{2} B_{if}}{4\left[\frac{f_{h}^{5}}{5} + \frac{f_{sc}^{2} f_{h}^{3}}{3} - \frac{f_{L}^{5}}{5} - \frac{f_{sc}^{2} f_{L}^{3}}{3}\right]} \frac{C}{N} (rms/rms)$$

where

$$\Delta f_{sc} = 35 \text{ kHz}$$
$$f_{h} = 35 \text{ kHz}$$
$$f_{L} = 0$$

and Δf_c , f_{sc} , B_{if} and C/N are the same as previously defined.

TABLE C-19. WORST-CASE S-BAND REAL-TIME LINK CALCULATION

No.	Parameter	Value	Remarks
		26 00 dBm	5 watta
	Total Transmitter Power	36,99 dBm	o walls
2	Transmitting Circuit Loss		Ant #1 5 dog alow
3	Transmitting Antenna Gain		Ant #1, 5 deg elev.
4	Transmitting Pointing Loss	100.10 dB	
5	Path Loss	-169.18 dB	•
	Range = $2.180+03$ nmi	•	
	Frequency = 1697.50 MHz		
	Elevation = 5.00 degrees	E Z AD	
6	Polarization Loss	57 UB	a gaumiori
	Receiving Circuit Loss		assumed
8	Receiving Antenna Gain	32,00 dB	10-100t parabola
9	Receiving Pointing Loss	50 dB	
10	Net Circuit Loss	-138,05 dB	
11	Total Received Power	-101.06 dBm	
12	Received Noise Spectral Density	-174.30 dB/Hz	
	System Temp = 269.0 Deg. K		
13	Received Power/Noise Spec.		
	Density	73.25 dB/Hz	
	Dessived Noise Dower	-114 30 dBm	
14	F Received Noise Power IF Bandwidth = 1000, 00 kHz	-114.00 ubii	
15	Carrier to Noise Batio	13, 25 dB	
16	Threshold CNR	12.00 dB	
17	Performance Margin	1.25 dB	
	i criormance margin	1,20 42	<u> </u>
*As	sumes 0.54 illumination factor.		

TABLE C-20. VHRR REAL-TIME SUBCARRIER S/N RATIOS

Mode	Subcarrier No.	S/N Ratio (rms/rms)	Margin Above 12 dB fm Threshold
Primary	1	29.27 dB	17.27 dB
Backup	1	13.71 dB	1.71 dB
	2	14.93 dB	2.93 dB

C-34

The resultant baseband S/N ratios are listed in Table C-21, where a value of 8 dB has been used to convert between rms video level to p-p video level, (9 dB theoretical loss 1.0 dB allotted to sync pulse and dc restore).

	Subcarrier	Baseband Link S/N Ratio			
Mode	No.	(rms/rms)	(p-p signal/rms noise)		
Primary	1	37.57 dB	45.57 dB		
Backup	1	22.00 dB	30.00 dB		
	2	22.78 dB	30.78 dB		

TABLE C-21. VHRR REAL-TIME LINK BASEBAND S/N RATIOS

c. VHRR Real-Time Ground Station RF Parameters

A summary of the required minimum rf parameters for local real-time VHRR ground stations is shown in Table C-22.

Parameter	Value	
Antenna		
Type	Parabola on tracking pedestal	
Size	10-foot minimum	
Polarization	Right-hand circular	
Preselector Loss	1.0 dB max	
Preamplifier:		
Type	Uncooled paramp	
Noise Figure	1.3 dB max (101°K)	
Gain	17 dB min	
Receiver:		
Type	FM	
AFC	Mean-of-peaks type	
IF Bandwidth	1.0 MHz	
Noise Figure	10 dB max	
Demodulator		
Type	2 FM Subcarrier	
Bandwidth	140 kHz (each subcarrier)	
Baseband Output Bandwidth	35 kHz	
Daboballa Output Dullaman		

TABLE C-22. SUMMARY OF VHRR REAL-TIME GROUND STATION RF PARAMETERS

d. Overall Baseband Signal-to-Noise Ratios

The VHRR sensor signal-to-noise ratio is specified as 45.2 dB (p-p/rms) for the IR channel and 43.7 dB (p-p/rms) for the visible channel. The overall baseband S/N ratio at the baseband demodulators will include contributions for the individual S/N terms tabulated below:

VHRR Sensor	IR Channel Vis Channel	S/N (p-p/rms) 45.2 dB 43.7 dB	
VHRR Process	sor	49 dB	(estimated)
Link		see Table C-21	
Demodulator		: 49 dB	(estimated)

The overall baseband output signal-to-noise ratio at the ground station demodulators will therefore be as listed in Table C-23.

TABLE C-23.	OVERALL S/	'N RATIOS VH	HRR REAL-TIME	DATA

Mode	Subcorrier	S/N Ratio (p-p signal/rms noise)		
	No.	IR Data	Visible Data	
Primary	1	40.8 dB	40.2 dB	
Backup	1	29.8 dB	29.7 dB	
•	2	30.5 dB	30.4 dB	

6. S-BAND PLAYBACK LINK ANALYSIS

a. Receiver Bandwidth Requirements

The significant information bandwidth, by Carsons Rule is: $bw = 2(f_d + f_h)$, where f_d is the peak carrier deviation and f_h is the maximum modulating frequency which is determined by the highest frequency subchannel, which is the VHRR flutter-and-wow subchannel at 500 kHz. The spectrum of this subchannel can extend up to 501 kHz. The peak carrier deviation is the sum of the deviations of all the subcarriers, or 25 + 25 + 160 + 160 + 80 + 25 + 285 + 35 + 80 + 50 = 925 kHz. Thus, the total information bandwidth is bw = 2(501 + 925) = 2.852 MHz. Since the CDA station receiver has an afc system compatible with fm modulation, this is the minimum receiver bandwidth required. Thus, the present if. bandwidth of 3.0 MHz is satisfactory.

b. **RF Link Calculations**

(1) CDA STATION RF PARAMETERS

The rf link calculations for the S-band playback link have been calculated using the CDA station parameters shown in Table C-24.

Parameter	Value
Antenna Gain (measured*)	47.75 dB
Antenna Noise Temperature (sky + earth noise, measured)	170°K
Receiver Noise Figure	2.2 dB
Receiver Predetection Bandwidth	3.0 MHz

TABLE C-24. CDA STATION RF PARAMETERS

(2) SYSTEM NOISE-TEMPERATURE

The system noise-temperature, T_{sys} , is equal to the receiver noise-temperature plus the antenna noise-temperature. The receiver noise-temperature is given by:

 T_R = (Noise Figure -1) 290°K

Noise Figure = 2.2 dB = power ratio of 1.66-to-1;

*P. Lantz, Handbook of NASA/GSFC Tracking, Data Acquisition, and Communications Antennas, X-525-64-222(N65-18255), October 1964. hence

$$T_{R} = (1.66-1) 290^{\circ}K = 191^{\circ}K$$

The measured antenna noise temperature is

$$T_{ANT} = 170^{\circ} K^{\circ}$$

$$T_{sys} = T_R + T_{ANT} = 191 + 170^{\circ}K = 361^{\circ}K.$$

The receiver noise density is given by

$$P = kT_{sys} = -173 \text{ dBm in 1 Hz}$$

where k is Boltzman's constant.

(3) PATH LOSSES

The propagation losses are identical to those previously calculated for the S-band real-time link, and are listed in Table C-18.

(4) S-BAND ANTENNA PERFORMANCE

The spacecraft S-band antenna performance is described in detail in Appendix D of this report. The maximum and minimum gain figures in the ITOS D and E configuration are summarized in Table C-18.

(5) RF MARGIN CALCULATIONS

The worst-case link calculation, assuming the CDA station rf parameters of Table C-24 at 5 degrees elevation above the horizon is given in Table C-25. A margin of 11.95 dB above a conservative fm threshold of 12 dB is obtained with the 5-watt spacecraft transmitter. This is an improvement of 6.2 dB over the TIROS M/ITOS-1 figure. The difference is due to:

a) Use of a 5-watt transmitter instead of 2 watts,

- b) Reduction in transmitting circuit losses from -4.2 dB to -0.7 dB by removal of the hybrid splitter and use of two separate S-band antennas,
- c) Spacecraft antenna gain degradation from 3.2 dB to 1.9 dB due to the new mounting and sensor configurations.

No.	Parameter	Value	Remarks
1	Total Transmitter Power	36.99 dBm	5 watts
2	Transmitting Circuit Loss	 70 dBm	estimated
3	Transmitting Antenna Gain	1.90 dBm	Ant #1, 5
4	Transmitting Pointing Loss	0.00 dBm	deg. elev.
. 5	Path Loss Range = 2, 180 nmi Frequency = 1697.50 MHz Elevation = 5.00 Degrees	-169.1 8 dBm	
6	Polarization Loss	57 dBm	· .
7	Receiving Circuit Loss	0.00 dBm	
8	Receiving Antenna Gain	47.75 dBm	measured
9	Receiving Pointing Loss	50 dBm	
1Ø	Net Circuit Loss	-121.30 dBm	
11	Total Received Power	- 84.31 dBm	
12	Receiver Noise Spectral Density System Temp = 361.0 Deg. K	-1 73.03 dBm/Hz	
13	Received Power/Noise Spec. Den.	88.72 dBm/Hz	
14	Received Noise Power IF Bandwidth = 3000.00 kHz	-108.25 dBm	
15	Carrier-To-Noise Ratio	23.95 dBm	
16	Threshold CNR	12.00 dBm	
17	Performance Margin	11.95 dBm	

TABLE C-25. WORST-CASE S-BAND PLAYBACK LINK CALCULATION

(6) RF DEVIATION ALLOTMENTS

The allotment of rf carrier deviation among the various data subcarriers was optimized with the assistance of a link analysis program available on a time-shared computer. The following criteria were used, as a basis for optimization:

- a) Total peak deviation should be compatible with the CDA station receiver IF bandwidth of 3.0 MHz.
- b) All video channels should have approximately the same baseband S/N ratio, better than 40 dB p-p/rms.

- c) All fm subcarriers should have at least 3-dB margin above the demodulator threshold, assumed to be 12 dB.
- d) Ratio of highest-to-lowest deviation subcarrier should be no greater than 15-1 in deviation.
- e) Digital data channels should have a minimum baseband S/N of 20 dB (p-p signal/rms noise).
- f) Flutter and wow channels should have a minimum baseband S/N of 32 dB (2 σ p-p signal/rms noise).
- g) Pilot tone subcarriers should have a minimum of 3-dB margin above PLL acquisition threshold, assumed to be 10 dB rms/rms.

The resultant carrier deviations are shown in Table C-26.

Channel	Peak Carrier	Subcarrier Frequency	Subcarrier Bandwidth	Rf Link
Channer	Δf_c (kHz)	(kHz) f _{sc}	(kHz) B _{sc}	Ratio (rms/rms)
SRR-A F & W	25	12.5	1.5	59.96
SRR-B F & W	25	25.0	2.0	52.70
VHRR Video	160	88.0	99.0	40.51
SRR-A Video	160	212.0	64.0	35.17
Digital-A	80	300.0	32.0	29.17
Pilot Tone No. 1	25	300.0	0.1	44.13
SRR-B Video	285	388.0	64.0	34.96
Pilot Tone No. 2	35	450.0	0.1	43.53
Digital-B	80	460.7	14.0	29.04
VHRR F & W	50	500.0	4.0	29.69

TABLE C-26. WORST-CASE SUBCARRIER SIGNAL-TO-NOISE RATIOS, S-BAND PLAYBACK LINK.

C-40

(7)

The subcarrier signal-to-noise ratios are given by the expression*;

$$\left(\frac{S}{N}\right)_{SC} = \frac{3\Delta f_c^2 B_{IF}}{2\left[3f_{SC}^2 + \frac{B_{SC}^2}{4}\right] B_{SC}} \cdot \frac{C}{N} (rms/rms)$$

where

C/N = 23.95 dB (worst case)

 $B_{if} = 3.0 MHz$

and Δf_c , f_{sc} and B_{sc} are as given in Table C-26.

The resultant subcarrier S/N ratios are listed in Table C-26.

It can be seen from Table 3-26 that sufficient margin is maintained above the 12 dB fm demodulator threshold value in all the fm subcarriers.

(8) RF LINK CONTRIBUTION TO BASEBAND S/N RATIO

In the case of fm subcarriers, the baseband signal-to-noise ratio is given by the expression:

$$\begin{pmatrix} \frac{S}{N} \\ \frac{S}{N} \end{pmatrix}_{bb} = \frac{\Delta f_{sc}^{2} \Delta f_{c}^{2} B_{IF}}{4 \begin{bmatrix} \frac{f_{sc}^{5}}{H} + \frac{f_{sc}^{2} f_{H}}{3} - \frac{f_{L}^{5}}{3} - \frac{f_{sc}^{2} f_{L}^{3}}{3} \end{bmatrix} \frac{C}{N} (rms/rms)$$

where

 Δf_{sc} , f_{H} are as shown in Table C-27.

 $f_{T_i} = 0$

and Δf_c , f_{sc} , B_{if} and C/N are the same as previously defined.

^{*}J. Fargot & P. Magne, Frequency Modulation Theory, Permagon Press, 1961, P 117.

The resultant baseband signal-to-noise ratios are listed in Table C-27, where the following values have been used to convert from rms signal levels to p-p signal levels:

VHRR Video:	8 dB (9dB theoretical, less 1 dB allotted to sync pulse and dc restore amplitudes)
SR Video:	7.8 dB (9 dB theoretical, less 1.2 dB allotted to sync pulse and dc restore amplitudes)
VHRR and SR F&W:	12 dB (2 σ value)
Pilot Tone:	9 dB (cw signal)

In the case of am subcarriers, the baseband signal-to-noise ratio is given by the expression*:

The baseband signal-to-noise ratio of the digital data channels may be obtained by first computing the baseband signal-to-noise ratio of an equivalent am subcarrier having the same peak carrier deviation and a subcarrier modulation index $m_{SC} = 1$. Noting that the waveshape of the band-limited digital data is very nearly sinusoidal, it can be shown** that a double sideband suppressed carrier signal, such as the Digital-A channel, under equal peak envelope amplitude conditions delivers four times, or 6 dB greater, output signal-tonoise ratio than the equivalent am signal. Similarly, it can also be shown** that a single sideband suppressed carrier signal of the same peak amplitude, such as the Digital-B channel, delivers 9 dB greater output signal-to-noise

- *C. Devieux, Final Report for the HRIR Real-Time Transmission Study, AED R-2534, Appendix II, Oct. 1964, with $m_{sc} = \frac{1 \alpha}{1 + \alpha}$.
- **Downing, Modulation Systems and Noise. Prentice-Hall; Inc., 1964, Sect 4.4.

ratio than the equivalent am signal. The resultant baseband signal-to-noise ratio ratios based on these assumptions are shown in Table C-27, where a figure of 9 dB has been used to convert between rms signal levels and p-p signal levels for the digital channels. The tabulated signal-to-noise ratios are the rf link contributions only.

TABLE C-27. BASEBAND S/N RATIOS OF S-BAND PLAYBACK LINK

Channel	Peak Subcarrier Deviation (kHz) △f _{sc}	Baseband Bandwidth (kHz) ^f h	Baseband (rms/rms)	S/N Ratio (p-p/rms)
SRR-A F & W	0.075*	0.5	50.02	62.02
SRR-B F & W	0.15*	0.5	50.02	62.02
VHRR Video	14.5	35.0	39,17	47.17
SRR-A Video Visible IR	$13.25\\13.25$	18.75 9.38	$\begin{array}{c} 39.26\\ 48.30\end{array}$	47.06 56.10
Digital-A	n/a	16.0	29.15	38.15
Pilot Tone No. 1	n/a	0.1	44.13	53,13
SRR-B Video Visible . IR	13.25 13.25	18.75 9.38	39.04 48.07	46.84 55.87
Pilot Tone No. 2	n/a	0.1	43,53	52.53
Digital-B	n/a	16.0	28.43	37.43
VHRR F&W	0.30*	0.5	36.04	48.04
*2 σ value				

c. Baseband Signal-to-Noise Ratio of Video Channels

The overall baseband signal-to-noise ratio of each channel includes contributions from the sensors, the spacecraft signal processors, the spacecraft tape recorders, the multiplexer, the rf link, the demultiplexer, the ground station tape recorders and the long lines. The individual noise sources are independent. Consequently, the total noise power at the Data Processing and Analysis Facility at Suitland, Md. is the sum of the individual noise powers properly referenced to the same signal level and measured in the same baseband bandwidth.

(1) SR VIDEO OVERALL SIGNAL-TO-NOISE RATIO

The SR video signals are processed in the spacecraft SR processor and then recorded as an FM subcarrier in the SR tape recorder. The SR tape recorder is later played back at 20.833 times the record speed over the multiplexer and S-band link. The 20.833:1 speedup increases the baseband, deviation and subcarrier bandwidth by a factor of 20.833, resulting in no net change in S/N due to the processing. The multiplexer shifts the signal frequencies by linear translation for simultaneous transmission by the S-band link. At the output of the ground receiver, the SR subcarriers are separated from the composite signal and linearly translated back to the original frequencies by the demultiplexer. The signals are then recorded and later played back at 1/4 the record speed over the long lines. The 4:1 slowdown reduces the baseband, deviation and subcarrier bandwidth by a factor of 4, resulting again in no net change in S/N due to the processing. The long lines wideband channel A has a measured S/N of 30 dB rms/rms over a measured bandwidth of 19 kHz*. At the long lines interface, the baseband of the SR signal is 4.7 kHz for the visible channel and 2.35 kHz for the IR channel, and the subcarrier deviation is ± 3.3 kHz.

The effective S/N contribution of the long lines referred to the baseband output of the fm demodulator is therefore**:

$$\left(\frac{S}{N}\right)_{LLo} = 3D^2 \left(\frac{B_{SC}}{2B_m}\right) \left(\frac{S}{N}\right)_{LL}$$

where

 $D = \frac{3.3 \text{ kHz}}{4.7 \text{ kHz}} = 0.702$ for the visible channel and $\frac{3.3 \text{ kHz}}{2.35 \text{ kHz}} = 1.4$ for the IR channel.

*ESSA Memorandum S24 dated June 26, 1969

**Downing, Modulation Systems and Noise, Prentice-Hall, Inc. 1964. Sec 5.2.

$$B_{SC} = 19 \text{ kHz}$$

$$B_{m} = 4.7 \text{ kHz for the visible channel and } 2.35 \text{ kHz for the IR}$$

$$Channel.$$
and
$$\left(\frac{S}{N}\right)_{LL} = 1000 (30 \text{ dB})$$

The resultant noise contribution of the long lines is 34.8 dB rms/rms (43.8 dB p-p/rms) for the visible channel and 43.7 dB rms/rms (52.7 dB p-p/rms) for the IR channel.

The overall S/N ratio at the end of the long lines can now be determined by combining the contributions of the individual S/N ratios given in Table C-28.

	Contributing Parameter	IR Channel (2.35 kHz Bandwidth) p-p/rms	Visible Channel (4.7 kHz Bandwidth) p-p/rms	
	SR Sensor	45 dB	44 dB	
	SR Processor	49 dB	49 dB	
	SR Recorder	39 dB	39 dB	
• •	Multiplexer	49 dB	49 dB	
	RF Link	56 dB	47 dB	
	Demultiplexer	49 dB	49 dB	
	Ground Recorder*	52 dB	52 dB	
·	Long Lines	53 dB	44 dB	
	Overall System	37 dB	36 dB	
	*Coloulated from Mincom G-100 Tane recorder W&F spec at 15 ins			

TABLE C-28. WORST-CASE OVERALL SR BASEBAND S/N RATIOS AT DAPAF END OF LONG LINES

*Calculated from Mincom G-100 Tape recorder W&F spec at 15 ips playback speed.

(2) VHRR VIDEO OVERALL SIGNAL-TO-NOISE RATIO

The VHRR video signals are processed in the spacecraft VHRR processor and then recorded as an fm subcarrier in the VHRR tape recorder. The VHRR tape recorder is later played back at the same speed over the multiplexer and S-band link. The multiplexer merely passes the VHRR subcarrier signal, without translation. At the output of the ground receiver, the VHRR subcarrier is separated from the composite signal and doubled in frequency by the demultiplexer.

The doubled subcarrier signal is then recorded and later played back at 1/8 the record speed over the long lines. The 8:1 slowdown reduces the baseband, deviation, and subcarrier bandwidth by a factor of 8, resulting in no net change in S/N due to the processing. At the long lines interface, the baseband of the VHRR signal is 4.38 kHz and the subcarrier deviation is ± 3.62 kHz. The effective S/N contribution of the long lines referred to the baseband output of the FM demodulator can be calculated in the same manner as for the SR case and is 36.5 dB rms/rms or 45.5 dB p-p/rms.

The overall S/N ratio at the end of the long lines can now be determined by combining the contributions of the individual S/N ratios given in Table C-29.

Contributing Parameter	IR Channel (4.38 kHz Bandwidth) p-p/rms	Visible Channel (4.38 kHz Bandwidth) p-p/rms	
VHRR Sensor	45 dB	44 dB	
· VHRR Processor	49 dB	49 dB	
VHRR Recorder	39 dB	39 dB	
Multiplexer	49 dB	49 dB	
RF Link	47 dB	47 dB	
Demultiplexer	49 dB	49 dB	
Ground Recorder*	47 dB	47 dB	
Long Lines	45 dB	45 dB	
Overall System	36 dB	36 dB	
*Calculated from Mincom G-100 Tape Recorder W&F spec at 7.5 ips			

TABLE C-29. WORST-CASE OVERALL VHRR S/N RATIO AT DAPAF END OF LONG LINES

APPENDIX D PERFORMANCE TESTS OF ITOS D AND E S-BAND ANTENNAS

1. SUMMARY

Tests have been made of the proposed ITOS D and E S-band antenna arrangement. These tests included measurement of the patterns of both S-band antennas, of the VSWR of both antennas, and of the isolation between the two antennas. Test results** show the proposed antenna configuration to be acceptable and capable of meeting required mission performance. As compared with the TIROS M antenna, there is some attenuation of antenna gain in certain regions due to the projection of the spacecraft sensors into the fringes of the antenna field. This attenuation, however, is offset by the increase in transmitter power and the use of two antennas, which eliminates the hybrid coupler and its attendant loss.

2. DESCRIPTION OF TESTS

A full-scale mock-up was built of the proposed configuration of the ITOS D and E earth-facing panel, including approximations of the sensor contours (see Figure D-1). In this configuration, the S-band antennas were located by ray-tracing to avoid interference with the required coverage regions of the spacecraft sensors and to minimize antenna coverage obstruction by the sensors. The mock-up was built to fit the AED antenna pedestal, having a mounting that could accommodate either of the two antennas on the axis of rotation. The coordinates used to describe the antenna performance and the antenna arrangement is shown in Figure D-2; the antenna numbering is completely arbitrary. Antenna 1 was a flight unit, Serial 04; Antenna 2 was the ETM* dipole mounted on the serial 01P base.

For the antenna pattern tests, the mock-up was attached to the antenna pedestal. A right-hand circularly polarized (1 dB axial ratio) S-band source (1697 MHz) was located about 40 feet away to illuminate the test region. The ground between the source and the pedestal was covered with rf absorbers to reduce the ground reflections to an acceptable level. The source antenna was connected to an amplitude-modulated S-band generator and TWT amplifier. The test antenna was connected to a crystal detector and the detected 1000-Hz modulation was fed through amplifiers to a pattern recorder.

The VSWR and isolation tests were made outdoors with the mock-up supported off the ground and the antennas pointed up and away from any reflecting structure. The VSWR was measured through a 4-foot section of RG-9 cable with a

**These tests were performed with larger VHRR's.

^{*}Engineering Test Model

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

PRD 219. The isolation was measured by the substitution method, using the calibrated attenuator of the signal generator as the standard.

3. RESULTS OF TESTS

The results of the antenna pattern measurements, traced from the original pen recordings, are summarized in Figures D-3 through D-6. The performance of each antenna (see Figure D-1 for identification) is shown together with the present TIROS M specification requirement. Also shown is the relative path loss versus nadir angle and the ground station elevation angle for a spacecraft in a 790 - nautical mile orbit.

Figures D-3 and D-4 show the performance of Antenna 1. Figure D-3 shows the pattern taken in the $\beta = 0^{\circ}$, 180° plane. This is the plane through the momentum wheel axis and the nadir, and through the SR and VHRR protrusions. The frequency of the ripple in the central part of the pattern ($0 < \alpha < 30^{\circ}$) is consistent with the reflections and diffraction off a large reflecting surface located where the VHRR is located. Figure D-4 is the envelope of seven patterns between $\beta = 22-1/2^{\circ}$ and $\beta = 167-1/2^{\circ}$. In both of the above cases, the patterns satisfy the specification requirements although the performance is marginal at $\alpha = 55^{\circ}$ (left side of Figure D-4).

6

Figure D-3. Antenna No. 1 Pattern for $\beta = 0^{\circ}$, 180° Plane

Figures D-5 and D-6 show the performance of Antenna 2. Figure D-5 shows the $\beta = 0$, 180° plane; the frequency of the ripple is reduced in the central region because the antenna is closer to the VHRR envelope. However, the ripple now causes the pattern to fall below the specification requirement. The same thing happens in the envelope of the other patterns shown in Figure D-6.

The important factor of the coverage required for system operation can be appreciated by comparing the region of non-conformance against the relative path loss. This curve can be interpreted as the gain level which would provide a constant signal/noise from horizon to horizon. The minimum nonconforming point in any of the measured patterns is 3-1/2 dB greater than this level. The central contour of the TIROS M specification was determined originally by the patterns produced by the antenna, not by the gain required by the system. The intent was to produce a simple contour which described the minimum gain versus angle of a typical antenna mounted on TIROS M. In the present situation, however, the operational requirements should be reconsidered and the specifications should be changed accordingly. A suggested change is shown in Figure D-6.

The isolation between the two antennas was measured at 1690, 1700, and 1710 MHz and found to be a constant 32 dB. The VSWR of both antennas was measured and found to easily meet the specification requirement of 1.5/1. Further analysis of the data is needed to pin-point the exact values.

4. DIRECTIVITY CONTOURS

The preceding data of Figures D-3 through D-6 is presented in a different manner in Figures D-7 and D-8. In these figures, the data has been plotted as contours of constant directivity on rectangular representation of the ϕ , θ coordinates of the spacecraft. This representation is useful to determine the actual directivity levels attained during a spacecraft-to-ground contact. For comparison, the data of TIROS M is shown in Figure D-9 and an approximation of the basic antenna, plotted from limited data, is shown in Figure D-10. Comparing this figure with the other plots illustrates the distortion introduced by the spacecraft body and sensors.

5. CONCLUSIONS

The proposed ITOS D and E S-band antenna configuration is completely acceptable. The gain contours delineated in the TIROS M S-band antenna specification, as updated for ITOS D and E, should be modified to accept the performance described by the reported measurements.

Figure D-5. Antenna No. 2 Pattern for $\beta = 0^{\circ}$, 180° Plane

D-6

Figure D-7. ITOS D and E, Antenna No. 1, Directivity Contours Relative to RHC Isotropic

Figure D-8. ITOS D and E Antenna No. 2, Directivity Contours Relative to RHC Isotropic

D-7

