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A THEORETICAL ANALYSIS OF THE FREE VIBRATIONS OF

RING- AND/OR STRINGER-STIFFENED ELLIPTICAL

CYLINDERS WITH ARBITRARY END CONDITIONS,

VOLUME I - ANALYTICAL DERIVATION AND APPLICATIONS
X

By Donald E. Boyd and C. K. P. Rao

SUMMARY

An analysis was made in this study to determine the natural

frequencies and mode shapes of ring- and/or stringer-stiffened noncir-

cular cylinders with, arbitrary end conditions. Cases of circular,

noncircular, unstiffened, and stiffened cylindrical shells with various

end conditions were investigated and the following observations were

made.

1) Comparisons with previous results from experimental and analytical

studies of circular, noncircular, unstiffened, and stiffened cylindrical

shells with arbitrary end conditions showed this method of analysis to

be accurate.

2) The natural frequencies obtained in this study for a clamped-free

circular cylinder were slightly higher (for the whole range of m and n)

than those previously obtained experimentally. This discrepancy

increases as the number of circumferential waves decreases.

3) Comparisons with analytical results obtained previously for

stringer-stiffened, freely supported, circular shells showed that the



frequencies previously obtained (neglecting insurface inertias and

employing Donnell's shell theory) were slightly higher than those of the

present analysis. The discrepancies between the results decreased as

the number of circumferential waves increased, which is a typical

characteristic of Donnell's theory.

4) Comparisons with Forsberg's exact results for ring-stiffened

circular shells, showed that the results of the present analysis were in

error only by a maximum of 0.51% for zero-eccentricity rings and 1.75%

for negative-eccentricity rings.

5) Comparisons with Al-Najafi and Warburton's finite element and

experimental results (obtained for ring-stiffened circular shells)

showed that the results for freely supported'cylinders obtained from

the present analysis were closer to their experimental results than

their analytical results using the finite-element method. For the free-

free case, of the six experimental results presented, the results of the

present analysis were closer to the first three experimentally obtained

frequencies, whereas their finite element results were closer to the

next three frequencies.

6) The number of terms required in the displacement series for con-

vergence of results for ring-stiffened shells differed from problem to

problem. Shells with positive eccentricities needed more terms for

convergence than those with zero or negative eccentricities.



INTRODUCTION

Discussion

The free vibrations of ring- and/or stringer-stiffened circular and

noncircular cylindrical shells are of interest to designers of flight

and marine structures. Frequently, fuselages of flight structures and

hulls of submarines have noncircular cross-section due either to special

internal storage requirements or to imperfections occurring during man-

ufacture. The method of analysis developed in this report is capable of

evaluating the free-vibrational characteristics of ring- and stringer-

stiffened "singly" symmetric noncircular cylinders with arbitrary end

conditions.

Background

Solutions for the vibrational characteristics of the special cases

of unstiffened, circular, isotropic cylinders with specialized boundary

conditions have been available for many years. Recent investigations

have taken advantage of computers to analyze more complicated models of

shell structures. One of the most general cases that can be analyzed is

a stiffened, noncircular, anisotropic cylinder with arbitrary end

conditions.

Great attention has been paid to the application of the finite

element and finite difference methods of analysis because of their



generality and adaptability to the computer. However, computer storage

and the speed of execution are two important factors which have still

prevented economically feasible studies of shell structures. The closely

related and well-known Rayleigh-Ritz method was successfully employed in

the present study to obtain the vibrational characteristics of stiffened,

noncircular cylinders with arbitrary end conditions. This method may

provide significant economical advantages over the finite element and

finite difference methods. The limitation of the Rayleigh-Ritz method is

that the accuracy of the results is dependent upon the assumed mode

shapes. In cases such as stiffened, noncircular cylinders with arbitrary

end conditions (for which the displacement functions can be approximated

fairly accurately by a double finite series) the Rayleigh-Ritz method is

certainly advantageous to use.

Studies of noncircular cylinders are relatively few compared to

those of circular cylinders. The variable radius of curvature of the

cylinder causes difficulties in obtaining analytical solutions. If

finite trigonometric series are used to represent the components of the

assumed displacement functions, there will be coupling of the circum-

ferential terms due to noncircularity of the cross-section of the shell.

Furthermore, the resulting set of simultaneous equations is sufficiently

large that a digital computer must be used for the solution of the

general problem. , .

Kempner (1) presented energy expressions and differential equations

for cylindrical shells with arbitrary cross -sec tions. Kemp_ner_and_his_^

associates have used these equations to study a wide range of problems

dealing with statics, buckling and postbuckling (2-7) of a special class

of oval cylinders. Klosner and Pohle (8, 9, 10) studied the free and



forced vibrations of the same class of oval cylinders, but with infinite

length. An approximate method was used in which the frequencies of non-

circular cylinders were determined by perturbation of the equivalent

circular cylinder frequencies. Culberson and Boyd (11) obtained exact

free vibrational characteristics of the same class of oval cylinders

studied by Klosner and Pohle and showed that the approximate pertur-

bation technique is accurate for small eccentricities.

The displacement functions used by Boyd (12) in a static analysis

of noncirciilar panels subjected to uniform normal pressures were used in

a free vibrational analysis of noncircular cylindrical panels by Kurt

and Boyd (13).

Herrmann and Mirsky (14) investigated the longitudinal, torsional,

and flexural vibrations of elliptical cylinders. Malkina (15) also

studied the free vibrations of oval cylinders.

Sewall et al. (16, 17) carried out both analytical (by Rayleigh-

Ritz) and experimental analyses of elliptical unstiffened cylinders with

arbitrary end conditions.

Analyses of stiffened shell structures may be classified either as

"smeared," or as "discrete" depending upon the treatment of the

stiffeners. In the conventional smearing technique (which is reasonably

effective if the stiffeners are closely spaced) the effects of the

stiffeners are averaged out over the entire surface of the shell, thus

effectively replacing a stiffened shell by an equivalent orthotropic

shell. A discrete analysis (which is accurate irrespective of the

number and location of the stiffeners) treats the stiffeners a? discrete
• -

ejtastic structural elements.



The present analysis may be considered as an extension (to include

noncircularity) of the work in Refs. (l8 and (19) in which the free vibra-

ational characteristics of ring- and stringer-stiffened noncircular cyl-

inders with arbitrary end conditions were developed through the use of

a Rayleigh-Ritz technique. The stiffeners may be arbitrarily located

and all stiffeners need not possess the same geometric and material

properties; however, the stiffeners are assumed to be uniform along

their axes. The analysis considers the extension and flexure of the

shell and extension, torsion, and flexure about both cross-section axes

of the stiffeners. The stringers may have nonsymmetric cross-sections

but the rings are assumed to have "singly" symmetric cross-sections.

The rotary inertia of the shell is neglected.

The derivation of the energy expressions for noncircular cylinders

is described in the Method of Analysis section of this report. The

stiffener energies are presented in Appendix B. The compatibility

relations used in these equations are derived in Appendix A. The

elements of the mass and stiffness matrices are given in Appendix C.

Documentation of the computer program developed for this analysis is

given in Reference (20).



SYMBOLS

\Ak

D

Vee>exe
(ex) , (eQ)

> Erk

IR1, to IR101 o

to

to IR3

to

IR51 to IR518

Uto IR6

to IX5

to ISl

to IS2

yysjj,' xxrk

yzsji

length of the shell (except as noted in Figure 1)
f*li > +-W

cross-sectional area of the i, stringer, k ring

isotropic plate flexural stiffness

strains of shell (see eq. (1))

normal strains of stringer and ring, respectively

Young's modulus of shell

f~H t"V»
Young's modulus of i, . stringer, k ring

the torsional stiffness of the A stringer, k ring

thickness of shell

circumferential integrals of ring equations (see eq. C7)

longitudinal integrals (see eq. C3)

circumferential integrals of shell equations
(see eq. C2)

the moment of inertia of the i stringer, k ring
cross-sectional area, about y and x axes passing
through their shear centers

product of inertia of the H stringer cross-sectional
area about y and z axes passing through its shear
center



I , I the moment of inertia of the jfc stringer, k ring
zzs z cross-sectional area about z' axis

I ,1 . the moment of inertia of the i, stringer, k ring
•*•* cross-sectional area about axes parallel to y and x

axes passing through its centroid

I product of inertia of the t, stringer cross-sectional
area about axes parallel to y and z axes passing
through its centroid

I . , the moment of inertia of the H stringer cross-
sectional area about an axis parallel to z axis
passing through its centroid

K . total number of rings

L total number of stringers

M final value of m in the assumed displacement series

N final value of n in the assumed displacement series

q (t) generalized coordinate

R radius Of curvature of the shell

R . radius of the centroid of the k ring

t time

T kinetic energy

u,v,w longitudinal, circumferential, and radial displacements
of the middle surface of the shell, respectively
(see fig. 1)

u.,v.,w. displacements of an arbitrary point in the cross-
section of the ith stiffener in the x, 0, and z
directions

u .,v .,w . displacements of the shear center of the i stiffener
SCI SCX SCX . . ,. , , .

in the x, 6, z dxrectxons

u ,v ,w generalized coordinates for symmetric mode displace-
mn mn mn ° . ., . , r

ments u,. v, and w, respectxvely

u' ,v' ,w' generalized coordinates for antisymmetric mode
mn mn mn ,. , , ••J- .

dxsplacements u, v, and w, respectxvely

U strain energy



Vx)

Wm(x)

x, 6, z

xm(x>

zlsrzlrk

A --,Bnm,nm mn,mn

--
nm>mn 1101,1101

E — ,Finn, inn nm,mn

inn, inn mn,mfl

mn,mn ,ran

K. — ,a -- >mn,mn mn,mn

V

P

u)

Subscripts :

axial mode functions representing displacements in the
x, 9, and z directions

longitudinal, circumferential, and radial shell
coordinates (see fig. 1)

longitudinal, circumferential, and radial coordinates
of the stiffener, measured from its shear center

Bernoulli-Euler beam eigenfunctions

,th
y-distance of the shear center of the t, stringer from

the z axis passing through its point of attachment

y-distance of the centroid of the SL stringer from its
shear center

z-dlstance of the shear center of the i, stringer, k
ring from the middle surface of the shell

z-distance of the centroid of the A stringer, k
ring from its shear center

•

general axial mode function (see eq. 28)

elements of the stiffness matrix (see appendix C)

elements of the mass matrix (see appendix C)

Poisson's ratio

mass density of the shell

mass density of i, stringer, k ring

circular frequency

antisymmetric

refers to cylinder; centroid



k refers to the k ring

i, refers to the Jt, stringer

m, m identifies m and m longitudinal modal components

n, n identifies n and n circumferential modal components

r refers to rings

s refers to stringers

sc refers to shear center

Notes:

(1) A comma before a subscript denotes partial differentiation
with respect to that subscript;

e.g., u,x denotes ^ and w,Q0 denotes ^-.

(2) Superscript T denotes transpose of a matrix.

(3) Dots over quantities denote differentiation with respect to
time.
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METHOD OF ANALYSIS

The analytical method employed in this analysis was the well-known

Rayleigh-Ritz (i.e. "assumed modes") energy technique. At the outset

the strain and kinetic energies of the shell, ring, and stringer were

derived. The compatibility relations were developed to express the

displacements of rings and stringers in terms of the displacements of

the median surface of the shell. The total strain energy of the shell

and that of rings and stringers were combined to obtain the total strain

energy of the stiffened cylinder expressed in terms of displacements of

the shell median surface. The total kinetic energy of the stiffened

cylinder was similarly formulated. Finite series were assumed repre-

senting the circumferential,-axial, and radial displacements of the

median surface of the shell and satisfying the shell kinematic boundary

conditions. Simple trigonometric functions were used to describe the

circumferential displacement distributions and beam functions were chosen

to describe distributions along the axis of the shell. The assumed

displacement functions with undetermined coefficients were substituted

into the total energy expressions of the structure, and the regular

eigenvalue problem was formulated by minimizing the action integral.

11



Geometry

Strain-displacement relations; The classical theories of thin

shells and beams were used to derive the energy expressions for the

shell and the stiffeners, respectively. The geometry of the middle sur-

face of a typical elliptical shell is illustrated by Figure 1. The

three orthogonal coordinates x, 6, and z locate points within the struc-

ture and u, v, and w are the corresponding displacement components. The

variable radius of curvature of the shell cross-section is expressed as

a function of the 9 coordinate. The following Kempner (1) relations were

used to determine strains at points within the shell:

e = u. - zw,
x x xx

eee - l£ + -I- (z IT v-w Yi) - -\ + wl~ R + R + z r l\ 'eAR/ R J + WJ- -

U'9 (R+z) z(2R+z)
R+z R V'x R(R+z) W'x9

where e , and eQ are normal strains of x- and 9-oriented line elements,x o

respectively, and e Q is the distortion angle between these two linexo

elements. Furthermore, u, v, w, and R refer to middle surface (z=0)

values .

For the stringers and rings the normal strains were expressed as

~where~the~subscripts~s—and-r-indicate~arbitrary- points— in— the— string er-

and ring, respectively. (e ) is the normal strain of the stringer in
x s

the x direction, and (e ) is the normal strain of ring in the 9

direction. R is the radius of the centroid of the ring.
cr

12



z,w

Figure 1. Geometry of an Elliptical Shell.
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Compatibility relations: The geometric details of eccentric

stiffeners are shown by Figures 2 and 3. The compatibility equations

relating the displacements of any point in the stiffener cross-section

to those of its shear center are presented in Appendix A. The following

equations were derived to determine the displacements in the stiff-

eners;

For the stringers: u = u - z'w - y'v (4)& s scs . scs,x J scs,x v '

x' z' / \
For the rings: v = v - u - - I w - v )6 r scr R scr,9 R \ scr,e scr/scr . scr >0

w = w + x'w (5)
r scr scr,x

where the subscript sc identifies the shear center, and the coordinates

x', y', and z' are measured from the shear center of the stiffener.

The following compatibility equations relating the displacements of

the shear center of the stiffener to those of the shell's median surface

were derived and are presented in Appendix A.

For the stringers:

u = u - z- w, - y v,scs Is x Is x

scs Is ̂  R

For the rings:

u = u - z, w,
scr Ir 'x

z, : \ z,
= 11+ lr ) lr

Vscr ~ \ R /V ~ R W'6

w = w (7)
scr

14
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«^ V U

EXTERNAL RING DETAIL

Figure 2. Geometric Details of an Eccentric Ring Stiffener
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EXTERNAL STRINGER DETAIL

Figure 3. Geometric Details of an Eccentric Stringer Stiffener
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Strain and Kinetic Energies

Shell energies: From Reference (1), the strain energy in an isotro-

piCj elastic body subjected to small strains e , efi, and e fl is

U = f -,-.E .-pe
a + e2Q+ 2ve e + (

1:v? e2 0 1 d(vol) (8)
2a a, L x 9 x6 2 x9 J v ' v '

vol <• ~ '

For a shell of uniform thickness h, the above expression can be written

as

E

h
a ZTT 2

U = £ \ \ \ \ e2 + e2 +2ve eQc •„,, ..3. J J J |_ x 9 x9
' 0 0 -h

2

] (R + z) dz d9 dx (9)

where E is Young's modulus and v is Poisson's ratio of the shell.
•

After substituting the Equation (1) into the Equation (9) and inte-

grating over .the thickness of the shell, we obtain the strain energy of

the shell in terms of the displacements of its median surface; i.e.

"

0 0

(1-V) u,0v.

3 f f-2u, w,J L x xx
0 0

1-v) .. .. 2v _ .. 3(l-v) ... .. . „_ s . w>299JLt u, w, - -^ v, », - "^VV|/ v, w, „ -f Rw +a 9 x9 R 9 xx R 'x 'X9 xx

( W W ' 99 + W ' 99 W ) + R( W ' xx W ' 99 + W'99W'

17



o o

+ w'eew-e) + JT (S,/™'* + w'ew) + v (D ,e(
w''=w«e

+ w.9̂ 0] <ie dx (10)

where

E h3

D

The last integral in Equation (10) vanishes for constant R. The first

two integrals are equivalent to those developed by Miller (21) and by

Egle and Soder (19).

Neglecting the contribution of rotary inertia, the shell kinetic

energy may be written as

a n

Tc = PchJ I [u2 + v3 + w2 1 R de dx (11)

0 0

where p is the mass density of the shell and the dot represents the

time derivative.

Ring energies; The ring is assumed to be subjected to normal

strains and shearing strains due to twisting. The cross-section of the

ring is assumed to be symmetric with respect to the outward normal to

the shell surface through the line of attachment. The total strain

energy in K rings due to normal strains is

2rr

Ur=I HrJ J dArkRcrd9

k-1 0 A, r X-

rk

18



Using the strain-displacement relation of the ring (Equation (3)) the

above expression may be written as

K E 2-n

U =Y -~ \ \ r^-Fv2 +w2 + v w + w v 1 dA , d0 (13)ur L 2 J J R L r,9 r r,Q r r r.eJ _„ rk v

k-1 0 A . cr X^k
rk

Substituting the first set of compatibility relations of the ring

(Equations (5)) into Equation (13) and performing the integration over

the cross-section of the ring, the strain energy of the ring due to

extension (normal strain) may be written in terms of the displacements

of its shear center as

U = U (u , v , w ) (14)
r r ^ scr scr scr
ext ext

The function U (u , v , w ) is given in Appendix B. Com-
i SC1T • SC1T SC1T
ext

bining Equations (7) and (14) results in

Ur = Ur (u, v, w) (15)
ext ext

The function Ur \ (u,v,w) is also given in Appendix B.
ext

The strain energy due to twisting of the rings may be written as

(Reference 27)

k ? r
 Uscr,9 W'x6'*

+ -S— R d6 (16)2 • J L D 3 R J c r v '
k=l 0 R cr Cr X=Xk

where (GJ) , is the torsional stiffness of the k ring. Substitution

of Equations (7) into Equation (16) results in

Ur = Ur (u,v,w) (17)
tor tor

The function Ur (u,v,w) is given in Appendix B.
tor

The kinetic energy of the ring is

19



*r - * I -* f I [*.•
 + *; + *.• L < R« de (18)

k-l 0 Ark • "k

Substitution of Equations (5) into the above equation and integrating

over the cross-section of the rings, and then substituting the Equations

(7) into the resulting expression we have,

Tr = Tr(u, v, w) (19)

The function T (u, v, w) is given in Appendix B. Note that Equation (19)

includes both translation and rotation effects.

Stringer energies: The stringer is assumed to be subjected to both

extension and twisting. The cross-section of the stringer may be non-

symmetric. The strain energy due to normal strain in the stringer is

or, introducing Equation (2),

a

• [ f [u 1 dA .dx (21)
J J I s,x J si

„ =y •*
s t L, ,
GXt 1=1 0 A Q~QJL

Substitution of Equation (4) into the above equation and integrating

over the cross-section of the stringer, and then substituting

Equations (6) into the resulting expression we obtain

U = U (u,v,w) (22)
5 . oext ext

The function Us (u,v,w) is given in Appendix B.

The strain energy due to twisting of the stringer may be written as

^Tr-Trl" dx (23)u

20



where (GJ) . is the torsional stiffness of the JL stringer. Thus,
SJ&

v, w
\ « V. I \ ~VM "V ~~

Us "I —2
tor .A=l o

r r 'xfl 'x '* 'x9 n
I —22- + —£ - 2 x XB dx (24)

J L 3 2 2 J_

The kinetic energy of stringer is

L a

1-1 0 A8J

combining Equations (4, 6, and 25) and integrating the resulting

expression over the cross-section of the stringer results in

TQ = T (u.v.fc) (26)
S S

The function T (u, v, w) is given in Appendix B.
S

Displacement Functions ,

The displacements, u, v, and w were assumed to be double finite

series. Each term of the series is a product of a circumferential and

an axial modal function weighted by a time-dependent generalized

coordinate (unknown amplitude coefficient). The assumed displacement

functions were:

M* N*

u(x, 9, t) = y y (u cos n9 + u' sin n9) U (x) eLa5t

Z-j Z-* ron inn in
m=0 n=0

M* N*

v(x, 9. t) = / ) (v sin n9 - v' cos n9) V (x) ev » » ' LJ LJ ^ mn mn mv '
m=0 n=0

M* N*
TT* V i luit

w(x, 9, t) = > > (w cos n9 + w sin n6) W (x) e (27)t—i LJ inn TPT> • .. m
m=0 n=0
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where U (x), V (x), and W <X') are the axial mode functions which satisfym m m

at least the kinematic boundary conditions of the stiffened shell. Also,

u , v , and w are unknown amplitude coefficients of the symmetric

circumferential modes, and u7 , v' . and w' are those associated
mn mn mn

with the antisymmetric modes.

In this analysis the axial mode functions U (x), V (x), W (x) were
m m m

expressed by a single function $ (x) such thatm

U (x) = ̂ - § (x)
mv ' dx mv

(28a)

Vm(x) = §m(x)

Vx> - §
m<

x)

The following functions were implemented in this analysis.

Boundary Condition

Freely supported:

Clamped- free:

Clamped-clamped:

Free-free:

Function Used

* f-r\ V? <Mn mTTX
m ~ a

$ (x) = X , Characteristic function of
m ' m

a Clamped-free beam.

§ (x) = X , Characteristic function of
m m

a Clamped-clamped beam.

$Q(x) = 1

»!(*)-!-*

$ (x) = X , , Characteristic function
m m-1

of a Free-free beam, (ms 2)

Eqn. No.

(28b)

(28c)

(28d>

(28e)

The characteristic functions X , their derivatives and eigenvalue

properties are tabulated in Reference (22).
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The Frequency Equation

The total strain energy of the stiffened shell was obtained by

combining Equations (10, 15, 17, 22, and 24). Similarly, the total

kinetic energy was obtained by combining Equations (11, 19, and 26).

Substituting Equations (27 and 28) into the total energies of the

stiffened shell, the strain energy expression becomes a positive definite

quadratic function of the generalized coordinates u , v , w , u' ,
mn mn mn mn

v7 , and w . Furthermore the kinetic energy expression becomes a
mn mn r

positive definite quadratic function of the generalized velocities u ,
mn

O o ° ' 0/ ° 'v , w , u , v , w .
mn mn mn mn mn

The total strain energy of the structure may be written as

M* N* M* N*
"̂* K** V* X"1

U = i ) / / / K qq (29)total Li t-t t-i £-1 mn,mn inn nffifi
m=0 n=0 m=0 ii=0

where

a, 3 IT *2 „0 IL . , 0 U, _ , ^ .
total total „= K.

mn,mn
5 - 5 - 5 - K - . __
oq «<!-- oq__ oq-_ mn,mnTnn .inn mn inn

are known , as elements of the stiffness matrix.

The total kinetic energy of the structure may be written as

M* N* M* N*

T ,= 1 ) 7 7 7 * * -- ci q-- (30)total Lt LJ Li LI mn,mn TunTnn
m=0 n=0 ffl=0 n=0

where M _- are the elements of the mass matrix.
mn,mn

The mass and stiffness matrices obtained by the above operations

were used together with Hamilton's principle to formulate the regular

eigenvalue problem resulting in
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|"Kss

T
KL sa

Ksa

Kaa _

- u)3

" M
ss

TMsa

Msa

Maa

qs

qa

(31)

where K, and M represent stiffness and mass matrices of size

3(M +1)(N*+l), q and q denote the symmetric and antisymmetric mode
S 3.

vectors, respectively, and superscript T denotes the transpose of a

matrix.

In Equation (31) the off-diagonal submatrices of both the

stiffness and mass matrices vanish if the cross-section of the

stiffened shell is symmetric with respect to the vertical axis (where

9=0). Thus, the above equation is uncoupled into two equations; one

for symmetric, and the other for antisymmetric modes. The equation for

the symmetric mode problem may be written as,

TA D E"
T

D B F

T TLE F c_

- c o 2

N NN P"

NNT Q R

T T_p R s_

u

V

=w

= 0 (32)

Each letter in the stiffness and mass matrices represents a submatrix

(presented in Appendix C) of order (M*+l)(N*+l).
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COMPUTER SOLUTION

General

A computer program (20) was developed to find the eigenvalues and

eigenvectors of Equation (32). The mass and stiffness matrices were

generated in this program and the frequencies and mode shapes were

computed using the subroutine EIGENP (23). The Oklahoma State University

IBM Model 360/65 computer was employed for this project.

The input data to the program may be categorized into four kinds.

The first kind is general data. For example, the title of the problem,

number of terms considered in the assumed displacement series, whether

or not the cross-section of the shell is circular, the number of

stiffeners, etc. The other three kinds of data are shell data, stringer

data, and ring data.

The radius of curvature (R) of the shell was considered to be a

function of the 9-coordinate. The expressions for R, fc)>Q> and (R), ,K. 0 6

were calculated (considering elliptical cross-section) in the function

subprograms (RSHL), (RRRT), and (RSHLT), respectively. This procedure

was used.to make the computer program capable of analyzing arbitrary

singly symmetric stiffened oval cylinders. However, only elliptical

cylinders were considered in the present study.
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Natural Frequencies and Mode Shapes

If the number of circumferential and axial terms considered in the

& "ft
assumed displacement series are M and N , respectively, (including

m = 0, and n = 0, when needed) then the order of the stiffness and mass

matrices is 3M N . Equation (30) may be written as

K M

w

= 0 (33)

where

u

u

u,

0 0

0 1

0 2

VN*
ui o

U12

V0 0

02

VN*
l 0

1 2

V * *M N

w

w

w

0 0

0 1

0 2

WON*
w

w
1 0

1 1
Wl 2

•

VN*

K= Stiffness Matrix J

M= Mass?MatrixJ

m= The natural frequencies from ; Equation (33) in radian/sec.

If the matrices K and M became singular due to the presence of

zeroes in some of the rows and columns, the matrices were condensed by

eliminating those rows and columns of zeroes. The subroutine called

EIGENP (23), with double precision, was used to calculate the frequencies

of Equation (33) and the resulting eigenvectors
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u

V

w

Once the eigenvalues and eigenvectors were obtained, the corresponding

mode shapes were found.
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NUMERICAL RESULTS

Introduction

The analysis described in this report was substantiated by com-

paring the results of this study with some of those obtained by previous

investigators. Some parametric studies of stiffened noncircular

cylinders were made and are also presented in this chapter.

Comparison With Known Solutions

This section presents the comparison of natural frequencies for

(1) an unstiffened circular cylinder with various boundary conditions; (2)

ring- and/or stringer-stiffened circular cylinders with various end •

conditions; (3) unstiffened noncircular shells with various end

conditions; and, (4) ring- and stringer-stiffened elliptical cylinders.

Comparison of results for the unstiffened circular shells :

Forsberg (24) presented exact frequencies for a freely supported

unstiffened circular cylinder, obtained by solving the differential

equations of motion. The results of this analysis and those of

Forsberg1s exact solution are compared in Table I. Both the analyses

"used—the~Flligge—shel-1— theory-.'—As—is-evident_from__the_Tab.le_JE,_good

correlation exists between the frequencies of both the analyses. Such
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. . TABLE I

COMPARISON OF ANALYTICAL FREQUENCIES OF A FREELY
SUPPORTED UNSTIFFENED CIRCULAR CYLINDER,

OBTAINED BY THE PRESENT ANALYSIS
AND FORSBERG (Hz.)

.n

2

3

4

m

1

2

3

1

2

3

1

2

3

4

PRESENT
ANALYSIS

778

2449

4253

628

1458

2682

974

1304

2021

2947

FORSBERG3

778

2449

4253

627

1458

2681

974

1303

2020

2946

a) Reference (24), figure 3(a).
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type of accuracy was expected because the assumed mode functions

satisfy the freely supported boundary condition exactly.

Comparisons were also made with the results of Reference (16) for

the same boundary condition and m = 1 and 2. These are presented in

Table II. In Reference (16), Sewall et al., using Sander's shell theory

(25), applied the Rayleigh-Ritz method as in our analysis. As is evident

from Table II, excellent comparisons were obtained.

Figure 4 shows a comparison between the analytical and experimental

results of Reference (17) and those of the present analysis (for m = 1)

considering a clamped-free, unstiffened, circular shell. The frequency

curves reveal that this analysis yields results similar to those of

Reference (17). The slight differences might be attributed to the

difference in the shell theories. Comparisons were also made with the

experimental results of Park, A. C. et al., (26) and the analytical

results of Egle and Soder (19). These are presented in Table III. In

this comparison four-place accuracy was obtained between the analytical

results of Egle and Soder and the present analysis. The discrepancy

between the analytical and experimental results increases as the number

of circumferential waves decreases. Egle and Soder speculated in Refer-

ence (19) that the shell end may not have been absolutely fixed in the

experiments.

The experimental and analytical results of Reference (16) for free-

free circular shells were used to establish the validity of the present

analysis for this boundary-condition case. Table IV shows the com-

parison of the results for-m =~1 and—2-.—The-present analysis yielded

four-place accuracy.
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TABLE II

COMPARISON OF ANALYTICAL FREQUENCIES OF A FREELY
SUPPORTED UNSTIFFENED CIRCULAR CYLINDER3,

OBTAINED BY THE PRESENT ANALYSIS
AND SEWALL (Hz.)

n

1

2

3

4

5

6

7

8

9

10

11

12

13

14

m =

PRESENT
ANALYSIS

1565.3

894.1

529.8

338.6

235.6

182.1

162.2

166.9

188.6

221.3

261.7

308.0

359.5

415.6

1

SEWALL
(Ref 16)

1565.0

894.1

529.8

338.6

235.6

182.1

162.2

166.9

188.6

221.3

261.7

308.0

359.5

415.6

m =

PRESENT
ANALYSIS

2309.3

1782.4

1314.9

968.4

726.3

560.3

448.6

377.2

338.1

325.7

335.0

361.0

399.6

447.5

2

SEWALL
(Ref 16)

2309.0

1782.0

1315.0

968.4

726.3

560.3

448.6

377.2

338.1

325.1

335.0

361.0

399.5

447.5

a) The geometry of the shell is given in Reference (16)
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Figure 4; Comparison of Experimental and Analytical Frequencies of
Clamped-Free Circular Cylindrical Shell (Hz).
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TABLE III

COMPARISON OF ANALYTICAL AND EXPERIMENTAL FREQUENCIES
OF A CLAMPED-FREE UNSTIFFENED CIRCULAR CYLINDER3

(Hz.)

n

2

3

4

5

6

7

8

EGLE & b

SOBER

104. A

55.6

52.0

..

-

139.1

182.6

m = 1 ;

PRESENT b

ANALYSIS

104.4

55.6

52.0

71.6

101.8

139.1

182.6

PARKS °
et al.

87 . 2.
95. 1&

51.5

50.4

70.9

101.4

138.8

182.2

' m • = 2

EGLE & b PRESENT b

SODER ANALYSIS

508.2

281.3

177.9 177.9

135.4

132.0

154.2 154.2

191.2 191.2

PARKS C

et al.

-

-

168.5.
170. 2&

132.8

128.8..
130. 1&

153.6

191.3

a) Reference (19), configuration 1, p. 28.

b) Flugge shell theory, insurface inertias included.

c) Reference (26), model 1.
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TABLE IV

COMPARISON OF ANALYTICAL AND EXPERIMENTAL
FREQUENCIES OF A FREE-FREE UNSTIFFENED

CIRCULAR CYLINDER (Hz.)

n

1

2

3

4

5

6

7

8

9

10

11

12

13

14

PRESENT3

ANALYSIS

2012.0°

7.5

19.0

34.2

53.4

76.6

104.1

135.7

171.4

211.4

255.6

303.9

356.5

413.3

m = 1

SEWALLb

ANALYSIS

2014.0°'

7.5

19.0

34.2

53.4

76.7

104. 1

135.7

171.5

211.5

255.7

304.1

356.7

413.5

SEWALLb

EXPERIMENT

-

7.7

18.9

35.7

53.0

76.4

103.8

135.3

170.7

210.2

253.0

305.5

352.0

412.5

PRESENT
ANALYSIS

2288.0

1613.0

1066.0

716.9

504.4

375.4

299.8

262.6

253.6

266.5

294.8

333.9

381.2

434.7

m = 2

SEWALL
ANALYSIS

2293.0

1616.0

1068.0

717.8

504.8

375.6

299.9

262.2

253.4

266.3

294.7

334.0

381.1

434.7

SEWALL
iXPERIMENT

-

-

-

-

-

377.3

299.1

257.4..
262. 1&

248.8
249. 3,

268.8

290.9

327.6

-

436.6

a) Flligge shell theory; 6 even, and 6 odd axial mode functions
considered.

b) Reference (16).

c) Extensional frequency.
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Comparison of results for stringer-stiffened circular shells:

Egle and Sewall (18) presented frequencies obtained for a ̂stringer-

stiffened, freely supported, circular cylinder using a method similar to

that of the present analysis but using the Donnell shell theory and

neglecting the insurface inertias of the stiffened shell. The shell

theory used in the present analysis was modified to Donnell theory in

order to compare the results of this analysis with those of Egle and

Sewall. Table V gives the comparison between the frequencies for m = 2.

The frequencies of Egle and Sewall are slightly higher than those of the

present analysis, evidently attributable to their neglect of the inplane

inertias. It is evident from Table V that the discrepancy between the

results of both the theories decreases as the number of circumferential

waves increases, which is a typical characteristic of Donnell theory.

Comparison of results with ring-stiffened circular shelly;

Forsberg (24) obtained exact solutions for the natural frequencies of

ring-stiffened circular cylinders. Bushnell (27) obtained the natural

frequencies of ring-stiffened segmented shells of revolution using an

energy method in conjunction with the method of finite differences.

The compatibility relations and the energy expressions used by Bushnell

are similar to those of the present analysis. Table VI presents the

frequencies obtained by Forsberg, Bushnell, and the present analysis for

freely supported circular cylinders with three rings of both zero and

negative eccentricity. The frequencies of this analysis which are

presented in Table VI were obtained by considering 12 even and 13 odd

axial mode functions in the assumed displacement series. The results of

this analysis are in excellent agreement with the exact frequencies

obtained by Forsberg and the approximate frequencies of Bushnell. The
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TABLE VI

COMPARISON OF FREQUENCIES OF A FREELY SUPPORTED CIRCULAR
CYLINDER3 WITH THREE SYMMETRIC AND INTERNAL RING
STIFFENERS, OBTAINED BY THE PRESENT ANALYSIS,

BUSHNELL, AND FORSBERG (Hz.)

n m

1

2 2

3

1

3 2

3

1

4 2

3

FORSBERGb

788

2219

3796

1155

1661

2617

1988

2132

2535

SYMMETRIC

BUSHNELL0

787

2219

3802

1152

1660

2619

1982

2130

2539

PRESENT*1

ANALYSIS

787

2219 .

3801

1152

1660

2618

1988

2141

2548

FORSBERG

999

2254

3710

2087

2397

3073

3161

3085

3014

INTERNAL

BUSHNELL

987

2264

3741

2066

2382

3068

3120

3023

3019

PRESENT
ANALYSIS

994

2252

3711

2081

2386

3066

3142

3032

3030

a) Reference (24), figure 3(a).

b) Exact solution obtained by solving the equations of equilibrium.

c) Reference (27), an energy formulation is used in conjunction
with the method of finite differences.

d) Energy expressions of ring are similar to those of Reference (27),
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maximum discrepancy encountered for the case of zero eccentricity ring

stiffener was 0.51% and 1.75% for the negative eccentricity, ring-

stiffened case. The external ring-stiffened shell of Forsberg was also

studied but the frequencies obtained did not converge for 12 even and

13 odd axial mode functions in the assumed displacement series; hence

those results are not presented in this report.

Comparisons were also made with some of the results of Al-Najafi

and Warburton (28), for freely supported and free-free ring-stiffened

circular shells and are presented in Table VII. Their results were

obtained using a finite element technique employing five elements per

bay. Significant reduction in the order of the matrices was obtained in

their study by considering the symmetry of the structures and neglecting

insurface inertias. The results of the present analysis given in Table

VII were obtained by considering circumferentially symmetric and 10

even and 10 odd axial mode functions in the assumed displacement series

but including insurface inertias. The values for the frequencies con-

verged for 15 even and 15 odd terms but the difference between the

results for 10 terms and 15 terms was rather small. Hence, in order to

compare on the basis of the order of the matrices, the results of 10

terms was chosen for comparison. It is evident from Table VII that the

frequencies of the present analysis for the freely supported case are

lower than those of the finite element method (except for m = 3) and

are also closer to the experimental values. For the free-free case,

the finite element results were observed to be .closer to experimental

values than the results of the present analysis, except for m = 1 and 2.

In general, the agreement between the results of this analysis and those

of the finite element and the experiment is good.
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TABLE VII

COMPARISON OF FREQUENCIES OF RING-STIFFENED CYLINDERS,
OBTAINED BY RAYLEIGH-RITZ AND FINITE

ELEMENT METHODS (Hz.) :
(n = 4); d = 0.25 in.

FREELY SUPPORTED

m RAYLEIGH-3

RITZ

1

2

3

4

5

6

7

8

9

10

1867

2089

2651

3415

4239

4925

5846

6585

7330

8079

FREE -FREE

FINITE1" Expr,™ m RAYLEIGH- FINITE
ELEMENT ' RITZ ELEMENT

1873 1867 0C

2091 2076 ,:•• 1°

2650 2600 2

3429 3355 3

4270 ; - . 4

5022 - 5

- ~- 6

:- • - 7

: 8 .•

• .. - -,...- ' 9

1550 1547

1538 1537 :

1889 •. 1895

2303 . 2290

3075 3044

3955 . 3920

4910 -

5548

6349

7103

EXPRTL.

,1551

1539

1890

2287

3044

3916 .

- .

-

. • -

-

a) Present Analysis, number of terms considered in the displace-
ment series is 10.

b) Reference (28).

c) Rigid body modes.
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In order to show the rate of convergence of the results of this

study, the frequencies were obtained with different assumed numbers of

terms. These results are presented in Tables VIII and IX for the

freely supported and free-free ring-stiffened shells studied by Al-

Najafi and Warburton. Tables VIII and IX show that the rate of con-

vergence of frequencies is rather rapid.

Comparison of results with ring- and stringer-stiffened circular

shells: Park, A. G. et al. (26), presented a considerable amount of

experimental information on the frequencies and mode shapes of stiffened

and unstiffened circular and elliptical shells with clamped-free ends.

Egle and Soder (19) compared their analytical results'with those of

Park's experimental results for a clamped-free circular cylinder with

three equally spaced internal rings and sixteen internal stringers.

The same shell was analyzed by the present analysis and comparisons are

indicated in Table X. Because the cross-section of the stiffened shell

was symmetric with respect to both the vertical and horizontal axes,

the frequencies of even and odd circumferential modes were able to be

evaluated separately. It is interesting to notice in Table X that the

results of the present analysis are consistently lower than those of

Egle and Soder. This improvement in the frequencies may be attributed

to the improved stiffener theories of the present analysis. The fact

that the discrepancy between the analytical and experimental

frequencies decreases with the increase in wave numbers n and m

suggests that the boundary conditions of the experiment and the theory

may not match.

The results of the present analysis were obtained with 10 axial

mode functions and 3 even and 3 odd circumferential mode functions.
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TABLE VIII

SPEED OF CONVERGENCE OF FREQUENCIES OF FREELY
SUPPORTED RING-STIFFENED CIRCULAR CYLINDER3

(Hz.), n=4

m ^s.

1

2

3

4

5

6

7

8

9

10

5
V,

2032.29

2136.32

2682.82

3446.09

4263.22

4924.91

5877.52

6613.81

7348.25

8098.23

10

1867.32

2089.33

2651.32

3414.67

4239.00

4924.59

5845.98

6585.41

7329.87

8079.40

12

1853.29

2076.62

2640.59

3414.65

4238.98

4924.58

5845.97

6585.39

7321.17

8072.23

14

1841.82

2067.81

2634.31

3409.95

4238.97

4924.57

5845.97

6580.90

7316.42

8067.25

15

1841.83

2067.81

2634.30

3409.94

4235.32

4924.47

5841.54

6580.89

7316.41

8067.24

a) Reference (28), figure 2(c).

b) Number of terms considered in the displacement series.

c) Axial wave number.
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TABLE IX

SPEED OF CONVERGENCE OF FREQUENCIES OF FREE-FREE
RING-STIFFENED CIRCULAR CYLINDER3

(Hz.), n = 4

\̂
1*
2*

3

4

5

6

7

8

9

10

5
\

1591.53

1585.73

2046.65

2380.46

3127.52

3979.47

4973.26

5595.02

6439.71

7189.93

10

1549.60

1538.16

1888.92

2303.22

3075.50

3955.27

4909.71

5548.42

6348.83

7102.58

12

1546.82

1537.45

1823.09

2300.84

3067.22

3952.06

4836.28

5542.69

6312.89

7096.81

14

1546.13

1536.33

1816.19

2299.44

3066.92

3951.22

4833.91

5540.21

6309.63

7093.99

15

1544.91

1535.35

1816.05

2299.35

3066.66

3950.53

4833.57

5539.64

6308.67

7091.25

* Rigid body modes.

a) Reference (28), figure 2(c).

b) Number of terms considered in the displacement series.

c) Axial wave number.
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TABLE X

COMPARISON OF ANALYTICAL AND EXPERIMENTAL
FREQUENCIES OF A CLAMPED-FREE
RING- AND STRINGER-STIFFENED

CIRCULAR CYLINDER (Hz.)

n

2

4

6

m

1

2

3

1

2

3

1

2

3

PRESENT3

ANALYSIS

100.2

432.2

907.0

207.6

276.0

437.2

308.5

345.9

402.6

EGLE & b

SODER

105.8

433.9

-

216.9

285.9

447.1

315.0

353.8

414.0

PARK °
et al.

80.2,
88. 2&

-

-

184.6

251.5

397.0
430.4

' •

-

-

a) n = 2, 4, 6; m = 1 to 10.

b) Reference (19).

c) Reference (26), model IS.
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The reason for considering fewer number of circumferential terms than

the axial terms is that the coupling between the circumferential mode

functions (due to the presence of stringers) is rather weak. This was

also noticed experimentally by Scruggs et al. (29). The coupling

between the axial mode functions (due to the presence of rings) is

considerable; hence 10 terms were considered in the longitudinal

direction. To determine whether or not 10 terms were sufficient for

obtaining reasonably well-converged frequencies, M* was increased to

30 and only one circumferential term was used. The comparison between

these results is shown in Table XI. Since the difference in the results

was found to be negligible, it was concluded that 10 terms were suffi-

cient for convergence.

Comparison of results with unstiffened noncircular shells: Having

established satisfactory results for stiffened and unstiffened circular

shells of arbitrary end conditions, comparisons were then made for

unstiffened noncircular shells. Sewall et al. (16, 17) presented

analytical and experimental results for elliptical shells with arbitrary

end conditions. Tables XII and XIII compare the analytical symmetric

and antisymmetric frequencies for freely supported elliptical shells of

eccentricities of 0.526 and 0.760 for m = 1. It is evident from Tables

XII and XIII that the agreement between the results of both Sewall and

the present analysis is generally satisfactory and is excellent for n

less than 10.

Comparison of results obtained for elliptical shells .with free-

free and clamped-free end conditions were also made and are presented

in Tables XIV and XV, respectively. The results of this analysis

44



TABLE XI

CONVERGENCE OF FREQUENCIES OF CLAMPED-FREE RING- AND
STRINGER-STIFFENED CIRCULAR CYLINDER (Hz.)

(Circumferentially Symmetric)

n

2

m

1

2

. 3

a

99.32

428.66

903.77

b

100.19

432.19

906.96

a) N* = 2, M* = 30.

b) N* = 6, M* = 10.
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TABLE XII

COMPARISON OF ANALYTICAL FREQUENCIES OF FREELY
SUPPORTED ELLIPTICAL CYLINDERS3 (Hz.)

e = 0.526, m = 1

n

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

SYMMETRIC

PRESENTb

ANALYSIS

2550.2

1439.7

876.6

524.1

335.5

234.3

184.2

156 .9

160.1

189.7

221.5

260.8

307.6

348.9

405.7

SEWALLC

2550.0

1440.0

876.6

524.1

335.5

234.3

184.2

157.1

160.2

189.8

221.9

261.9

308.1

359.5

415.6

ANTISYMMETRIC

PRESENT
ANALYSIS

-

1685.7

888.9

524.2

335.6

234.3

184.2

156.9

160.2

189.4

221.8

261.7

307.9

355.8

413.9

SEWALL

-

1686.0

888.9

524.2

335.5

234.2

184.2

157.0

160.2

189.8

221.9

261.9

308.1

359.5

415.6

a) The geometric and material properties of the shells
are given in Reference (16).

b) Number of terms used is 13.

c) Reference (16).
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TABLE XIII

COMPARISON OF ANALYTICAL FREQUENCIES OF FREELY
SUPPORTED ELLIPTICAL CYLINDERS3 (Hz.)

n

0

1

2

3

4

5

6

7

8

9

10

11

12

13

. 14

e = 0.760,

SYMMETRIC

PRESENTb

ANALYSIS

2611.8

1237.7

785.1

491.1

319.8

-

-

138.5

140.0
&

177.8

182.3
&

226.1

221.7

261.6

310.6

378.4

464.8

SEWALLC

2612.0

1238.0

785.2

491.1

319.4

-

-

138.5

140.1
&

- 178.3

184.1
&

226.9

223.9

263.6

307.3

359.4

, 417.1

m = 1

ANTISYMMETRIC

PRESENT
ANALYSIS

-

1855.7

858.5

492.5

318.9

226.6

-

138.5

140.1
&

178.5

184.0

223.5

259.2

296.9

338.6

399.6

SEWALL

-

1856.0

858.5

492.4

319.4

226.9

-

138.5

140.1
&

178.3

184.1

223.9

263.6

307.3

359.4

417.1

a) The geometric and material properties of the
shells are given in Reference (16).

b) Number of terms used is 13.

c) Reference (16).
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TABLE XV

COMPARISON OF ANALYTICAL AND EXPERIMENTAL
FREQUENCIES OF A CLAMPED-FREE
ELLIPTICAL CYLINDER (Hz.)
a = 12.95, b = 11.01

- m = 1

SYMMETRIC
rv

1

2

3

4

5

6

7

8

9

10

11

12

13

14

PRESENT3

ANALYSIS

736.6

384.2

212.4

133.6

97.5

94.6

113.2

138.4

171.2

210.0

253.6

301. 4

353.8

409.8

SEWALL
ANALYSIS

739.2

390.6

217.5

136.4

99.5

95.9

114.2

139.6

171.4

210.1

253.7

301.7

354.1

410.7

SEWALL
EXPERIMENT

'

-

201.9
&

201.1

129.5
&

129.1

96.4

94.2
&

93.1

115.1

141.8
&

140.6

176.0

217.2
&

217.1

260.4

309.5

365.0

423.6

ANTISYMMETRIC

PRESENT
ANALYSIS

838.0

387.6

212.4

133.6

97.5

94.6

113.2

138.4

171.2

209.9

253.5

301.6

354.9

412.8

SEWALL
ANALYSIS

840.1

394.1

217.5

-

99.5

95.9 .

114,2

136.4

139.6

171.4

210.1

253.7

301.7

354.1

410.7

SEWALL
EXPERIMENT

-

-

204.8

134.0

100.2

94.5

116.5

142.3

176.2

216.3

260.8

310.6

•

-

a) N* = 20, M* = 2.
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are similar to those obtained analytically by Sewall. Also included are

Sewall's experimental results and analytical results obtained by Klosner

(9, 10).

Comparison of results with ring- and stringer-stiffened elliptical

shells: Park, A. C. et al. (26) presented experimental frequencies and

mode shapes for a clamped-free elliptical cylinder with four equally

spaced internal rings and sixteen internal stringers. This shell was
V ; ,

also analyzed by the present analysis, and some comparisons are pre-

sented in Table XVI. Due to the symmetry of the cross-section with

respect to both the vertical and horizontal axes, the frequencies of

even and odd circumferential modes were evaluated separately. As is

evident form Table XVI, the theoretical results are consistently

higher than the experimental results. The discrepancy between

the analytical and experimental frequencies may again be attributed to

the possible difference in the boundary conditions of the experiment

and the theory. However, storage limitations of the IBM 360/65 computer

prevented the consideration of a sufficient number of terms in the dis-

placement series to assure convergence of frequencies. The results of

the present analysis were obtained with 5 axial mode functions and 6

even and 6 odd circumferential mode functions.

Studies of Stiffened Noncircular Cylinders

Having obtained satisfactory comparisons with known solutions of

the circular, noncircular, unstiffened, and stiffened cylindrical shells,

two studies of stiffened noncircular shells were made. This section

presents the results of those studies.
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TABLE I

COMPARISON OF ANALYTICAL AND EXPERIMENTAL FREQUENCIES OF
A CLAMPED-FREE ELLIPTICAL CYLINDER3 WITH FOUR RINGS

AND TWELVE STRINGERS

n •

1

2

3

4

m =

PRESENTb

ANALYSIS

177.92

92.08

151.75

- •

1

PARK0

163.5

60.8..
79. 7&

141.1

. -

m =

PRESENT .
ANALYSIS

_

- .

242.64

377.68

2

PARK

_

- .

226.7

352.6

a) The geometry .of the stiffened shell is
given in figure 32, model 4S, Park, A. C.
et al., dynamics of shell-like lifting
bodies, Part II, the experimental investi-
gation. AFFDL-TR-65-17, Part II, June, 1965.

b) Rayleigh-Ritz method N* = 12, M* = 5.

c) Experimental results.
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Study of the effect of number of stringers; Egle and Soder (19)

studied the variation of the minimum frequency of a stringer-stiffened,

circular cylinder with the number of stringers, keeping the total cross-

sectional area (LA ) and the total torsional stiffness (L G J ) of the
s s

stringers constant. This is a reasonable approach for studying the

explicit effect of the number of stringers. However, the implementation

of "total" stringer properties being constant while the number of

stringers is varied is more difficult in the experimental study than in

the analytical study.

In order to avoid this difficulty in the present study, the cross-

sectional properties of all the stringers were assumed to be the same

while their total number varied. Table XVII presents the variation of

the natural frequencies of various circumferential modes of an internal

stringer-stiffened freely supported elliptical cylinder with the number

of equally spaced stringers. The geometric and material properties of

the stringers are given in the footnotes of Table XVII. In order to

visualize the variation of the frequencies of various circumferential

modes with the number of stringers, some of the results of Table XVII

are plotted in Figure 5. As is evident from Figure 5, the overall

effect of the stringers is a lowering of the frequencies. This effect

is greater on the frequencies pertaining to lower circumferential wave

numbers. The rate of decay of frequencies due to the presence of

stringers is greater for small numbers of stringers and diminishes with

an increase in the number of stringers.
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TABLE XVII

STUDY OF THE EFFECT OF NUMBER OF STRINGERS ON
THE FREQUENCIES OF A FREELY SUPPORTED

ELLIPTICAL CYLINDER3 (Hz.)
e = 0.760, m = 1

X
1

3

7

9

11

13

0

X

1238.0

491.1

139.5

183.5

226.6

263.7

380.0

- 2'

1159.0

470.4

121.1

184.2

214.8

262.1

373.7

4

1090.0

448.3

121.1

184.3

212.7

256.5

368.5

8 \

984.5

450.2

122.7

145.7

208.5

258.1

347.8

16

831.3

433.7

114.5

141.9

204.9

224.6

290.6

a) The geometry and material properties of the unstiffened shell are
given in Reference (16).

b) Circumferential mode number.

c) Number of equidistant internal stringers. The properties of the
stringers are:

Agj£ = 0.1037 sq. in.

I , = 0.005957 in?
yysjfc

I . = 0.001285 in?
ZZSJ&

= 0

= .912.5 Ib.-in?

=.:-0.2340 in.

y2sJL = °'° in>

p , = 0.0002588 lbs.-scc?/in?
SJo .

E . = 10.6 ^ 107 lbs.-sec.3/inf
sJ6
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4 8 12
NUMBER OF STRINGERS

16

Figure 5. Study of the Effect of Number of Stringers
on the Natural Frequencies of a Freely
Supported Elliptical Cylinder with
e = 0.760, m = 1.
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Ring- and stringer-stiffened elliptical cylinders; This section

presents results for a stiffened, noncircular freely supported cylinder

with large numbers of rings and stringers. The frequencies of the

unstiffened freely supported elliptical cylinder with e = 0.760 are

presented in Table XVTEI. To study the effect of large numbers of ring

and stringer stiffeners, 16 internal stringers and 11 internal rings

were added to the above elliptical shell. The geometric and material

properties of the rings and stringers are assumed to be the same and are

listed in the footnotes of Table XVII. The frequencies and the mode

shapes of this shell were obtained using the present analysis. Table

XVIII presents some of the frequencies. Figure 7 shows some of the

axial mode shapes and Figure 8 shows some of the circumferential mode

shapes. To visualize clearly the effect of the large number of rings

and stringers on the natural frequencies, some of the frequencies pre-

sented in Tables XII, XIII, and XVIII are plotted in Figure 6. The

results presented in Table XVIII were obtained with 5 axial mode func-

tions and 6 even and 6 odd circumferential mode functions. It is quite

evident from Figure 6 that the frequency curves of the ring- and

stringer-stiffened shell under consideration, are more or less similar

to those of the unstiffened shell; however, they are bodily shifted to

the left. The minimum frequency of the stiffened shell is more than

three times the minimum frequency of the unstiffened shell. The fre-

quencies of the stiffened shell are consistently higher than those of

the unstiffened shell. It should be noted that even though the ratio of

number of rings to number of stringers in this problem is about 3:4,

the effect of rings is predominant. Figure 6 reveals that the frequency

curves for various m values tend to merge as n increases. The
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TABLE XVIII

FREQUENCIES OF 16 STRINGER3 AND 11 RING3 INTERNALLY
STIFFENED FREELY SUPPORTED ELLIPTICAL CYLINDER13

WITH e = 0.760 (Hz.)

c
n

1

2

3

4

5

6

7

d
m

1

741.0

444.9

437.9

743.7

1155.0

1868.0

2924.0

3

1703.0

1303.0

974.3

973.5

1340.0

1998.0

2959.0

a) The stringers and the rings have
identical material and geometric

. properties which are given in the
footnotes of Table XVII.

b) The geometric and material pro-
perties of the shell are given in
Reference (16).

c) Circumferential mode number.

d) Axial mode number.
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Figure 6. Comparison of Frequencies of Unstiffened, and Ring-
and Stringer-Stiffened Freely Supported Elliptical
Cylinder with e = 0.760.
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-1.0L

AXIAL MODE m = l, n = 1 ; 741.0Hz

-LO
A X I A L MODE m = 3, n = 3; 974.3 Hz

A X I A L MODE m= 5, n= 5 ; 1739 Hz

Figure 7. Axial Modes
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AXIAL MODE m = 7, n = 7; 3615 Hz

Figure 7. (Continued)
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l.Or

-1.0L

CIRCUMFERENTIAL MODE m= 1, n = l ; 741.0 Hz

1.0

0 H 1 1-

77"

-1.0
CIRCUMFERENTIAL MODE m = l, n=2; 444.9 Hz

-1.0L

CIRCUMFERENTIAL MODE m = l, n = 3; 437.9 Hz

Figure 8. Circumferential Modes
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-1.0L

CIRGUMFERENTIAL MODE m = l, n = 4; 743.7 Hz

CIRCUMFERENTIAL MODE m=l, n = 5; 1155 Hz

-1.0L

CIRCUMFERENTIAL MODE Tn = l,n = 6; 1868Hz

Figure 8. (Continued)
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-1.0L

CIRCUMFERENTIAL MODE m=l, -n=7; 2924 Hz

Figure 8. (Continued)
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l.Or

-1.0L

CIRCUMFERENTIAL MODE m = 3, n = L ; 1703 Hz

-1.0L

CIRCUMFERENTIAL MODE m=3, n = 2; 1303 Hz

CIRCUMFERENTIAL MODE m=3, n = 3 ; 974.3 Hz

Figure 8. (Continued)
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-1.0L

CIRCUMFERENTIAL MODE m=3, n = 4; 973.5 Hz

-1.0
CIRCUMFERENTIAL MODE m=3 ,T i = 5; 1340 Hz

1.0 r

-1.0 L

CIRCUMFERENTIAL MODE m = 3, n = 6 ; 1998 Hz

Figure 8. (Continued)
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I.Or

-1.0L

CIRCUMFERENTIAL MODE.

Figure 8. (Continued)

= 3, n = 7; 2959 Hz
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Conclusions

1) There is weak circumferential modal coupling due to the presence of

stringers in both circular and noncircular cylinders.

2) The stringers contribute more to the total kinetic energy of the

structure than to the strain energy. Therefore, the stringers tend to

reduce the natural frequencies.

3) The rings contribute more to the strain energy than to the kinetic

energy of the structure. Therefore, the rings tend to increase

the natural frequencies. The influence due to the presence of rings

is more than the stringers.

4) Reasonably accurate results for ring- and stringer-stiffened shells

may be obtained by considering the same number of circumferential mode

components as are necessary when the stringers are not present.

5) The reduction-of-frequencies effect due to the presence of. stringers

is greater on the frequencies associated with the lower circumferential

wave numbers.

6) The rate of decay of frequencies due to the presence of stringers

is greater for small numbers of stringers and diminishes with the

increase of number of stringers.
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APPENDIX A

DERIVATION OF THE COMPATIBILITY RELATIONS

The compatibility relations of the stiffeners were derived based

on the assumption that the stiffeners are attached to the shell along a

line of attachment of infinitesimal width. This assumption is probably

valid when the stiffeners are closely riveted with a single row of

rivets.

The displacement vector of any point in the cross-section of the

ith stiffener can be written (in vector algebra notation) as

i = { r f o r . r i n g
I s*sci J ' rJ " L"i/sciJ ' . I s for stringer (Al)

where q. = The displacement vector of an arbitrary point in the

cross-section of the stiffener;

q . = The displacement vector of the shear center of the

stiffener;

oj = The angle of rotation vector of the stiffener;

R . . = The position vector of the point with reference to the

shear center.

These vectors may be expanded as follows:

u

qi = Vi

usci

<1 = < v .sci 1 sco.

•Wsci'

= r,s
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(B

(JO.

k U)

where (see for example, Reference (30))

wsci,e SCi
xi R R

i = r,s
. .

sex sci

D9i = -'sci.x

U) . =
Z 1.

- Uscr.e

scr
for rings

v for-stringers
scs,x

Also, (see Figures 2 and 3)

x

R , = 0
r/scr

R
s/scs

where the vector components x', y', and z' are referenced to the shear

center (sc).

Substituting the above equations into equation (Al), the compati-

bility relations of rings and stringers result.

For the rings:

1 /- (A2)

X W
scr,x
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For the stringers:

r = i q rJ {^scsJ

-z w
scs,x

/w nil scs ,9

scs

'( scs ,B
7 \ R =

- y vscs,x

V X

SCS A

" R /scs

V V

scs A
R /

(A3)

scs scs

Another set of compatibility relations were obtained to relate the

shear center displacements of the stiffeners to those of the shell at

the line of attachment by replacing r by scr, q by q, z by z , x'
S C TL -LIT

by x , and R by R in equation (A2) and s by scs, q by q, z by
ĵ ir scir scs

zi > y' by y , and R by R in equation (A3).
Is J.s scs

For the rings:

{vJ - W

-z, w,
Ir 'x

-x

T >e

x, w.
Ir 'x

Ir \ R
(A4)

The cross-section of the ring was assumed to be symmetric with respect

to the normal to the shell surface. Hence, the above equation reduces

to

-Z- W,
Ir 'x

-zIrV
!l! Z\
R " R/

0

(A5)
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APPENDIX B

ENERGY EXPRESSIONS OF RINGS AND STRINGERS

Ring energy functions:

K E 2n

Ixt Uscr> Vscr> Wscr ^ 2 Q Rcr \ zzrk^Rscr/'9̂  Uscr»e

!___,. 2 ^

'scr.gg + R ; AR^^/.A-scr^-scr^' "scr,99-Scr,9
zzrk 2 zzrk / 1 ^ f , \u u u u u s c r e J
scr

- I ( l } ju w + w u 1 - Z2rk(u w
zzrk\R /.A scr, 9 scr, x scr,x scr,8J R lscr,99 scr,xscr y - scr -

QQ - , , 0 ,scr,x scr, 99 J L rk p 3 R rk 2rkJ scr, 9ix scrscr

scr 1. rk 2rk Ro/,^ J ^R_/S£> scr scr,9

)v „ . + v w +w
a

xscr

.
scr ,9 scr/ L R a J \ scr, 9 scr, 99 scr, 99 scr,9

SC t ix

k ^ R~~J ( R ~ ~ ~ V W + W V
^ c r > 9sc r ,9 scr ,9scr ,9

. o C ̂  S C X^ U

•Stxrk / 1 \ / + • - ' ' - '
Rscr • scr '9 ScrWscr>e9 Wscr'eeVsc

I i ((^— ) i (v w +w vxxrk ^Rom^/.Q
J V scr scr, 9 . scr, 9 scr/ rk \scir y " .

,jwscr+ wscrvscr,a/ rk 2rk\R - /,^\ scr scrscr ' ' scr
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scr scr/ 3 wscr,ee xxrk \\R /, J s c r . e
scr scr y

scr

A , z. .
rk 2rk
Rscr

rk 2rk ^«. ,,nscr '9

+ I , w2 \ d8
zzrk scr,x

TxXrk^ 1 \ f \
iCT ^RTZ',fl VW,99Wscr,9 + ̂ scr Jwscr,99 /scr y

Vwscr,eewscr + Wscrwscr,e9 /

( ^ } ( w A « + w w )\R /,fi\ scr,6 scr scr scr,9/

3

'scr

where

xxrk xxcrk rk 2rk

K TT r • • ' . A
T / \ V T, rx zzrk 3 „ zzrk rk 3
r (u, v, w) =^ Erk J<—— - u -2r-r- u w + — v
ext k-1 0 RcrRscr

I I A I
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Stringer Energy Functions:
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\ SA ISA"' 2s!L

+
AsAZlsAy2sA

yzsjfc R

R
+2

'' A .zsi
R

AsX,y^ _2 ,
- ' ' x . x9 R

vw

0-2
R

T z

Y
,^ - I
9

T V Z

yzsA IsA IsA » 2

.+2 -
R'

dx

9=9,

(B6)

85



APPENDIX C

MATRIX ELEMENTS AND INTEGRALS

The matrix elements of Equation (32) and the circumferential and

longitudinal integrals involved in these elements are presented in this

appendix. The closed-form expressions for the longitudinal integrals

were obtained with the help of a table of formulas for integrals derived

by Felgar (31) . The circumferential integrals were evaluated numeri-

cally using the 8-point Gaussian quadrature method with four subintervals,

The elements of the mass and stiffness matrices of a ring- and

stringer-stiffened noncircular shell may be written as follows:

Contribution of the Noncircular Shell

Amn mn = Si IS1l IXl + (SsISls + S3isls) n^ IX2

D -- = S4 nISl5IX3 - S^ISlglXsluii y mn

E -- = S4 IS15IX3 -S5 IS15IX + S3 nnIS!7 IX3nui jinn i

Bmn -- = SinnlSlelXg + (S2IS19 + Sa IS12)IX2 + S5 IS2 IX 5mn ) UULI i

F — O T* T C 1 TV O •« T O 1 TV i O _ T O 1 TV " O T C10 TV^^ ~~ •" O H A O 1 Q-LA. g ~ O fjJlJ,o 1 gJ_A 4 *r 2> AU.J.O JLgiAg ~ D 7.1.0Z glA4mn jtnii i

-S5IS22 (l-n2)IXs+ S5SlS21IX5

+ S5IS14)IX5 + SgjISl^Xi + (n3 n3- n3-n:

mn.mn

-S7ISlg (nlXg + nTJCi) + SennISl2IX3 + S5 nnIS2, + (nn 2

2--n)IS23 + (n*n - n)IS24 IX5 - &, (nIS25 IX3 + nIS2

N -- = 2 p hISl IX2mn,mn Kc *

V — = 2 p hISl9 IX5,mn rc
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S -- = 2 p hlS^ IX5 (Cl)
mn,mn Kc

where ISliL to IS23 are circumferential integrals, IXX to IX5 are

longitudinal integrals, and Sx to S8 are constants defined in Appendix D.

The circumferential integrals are defined as follows:

TT

1511 = JR cos n6 cos n9 d9

0

TT

1512 = — sin n9 sin n9 d9
J R
0

TT

r iISl, = sin n9 sin n9 d9
R 3

0

TT

1514 = — cos n9 cos n9 d9

o*3 .
TT

1515 =J cos n9 cos n9 d9

0

TT

IS1S =J sin n9 sin n9 d9

0

TT

P I1517 = J — sin n9 sin n9 d9

0 R

TT

1518 = - cos n9 cos ii9 d9
« K

o
TT

ISlg = J R sin n9 sin n9 d9

0

n

IS2i = J ^{Q) } sin n9 sin n9 d9
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TT

IS23 = f — (£) sin n9 cos n9 d9
J u3 R 'fi
0 R 6

rr

sin n9- coS n9 d9(v) si

o e

TT

J a >R/,Qcos n9 sin n9 d9
0 R B

TT

IS25 = f (i) cos n9 sin n9 d9 (C2)
J \ R / JQ .

6

The matrix elements of the antisymmetric mode equations for the

shell are identical in form to the above equations and are obtained by

interchanging Sine terms with Cosine terms and vice versa. Furthermore,

TT must be replaced by -r- . It was found that if the cross-
»9 K >9

section of the shell is symmetric with respect to the horizontal axis of

the shell, there is no coupling between the even and odd terms of n and

n. Thus, in the analysis of elliptical cylinders, two computations must

be made in both the cases of symmetric and antisymmetric modes (with

respect to the vertical axis); one with all even terms of n and n, and

the other with all odd terms of n and n.

The longitudinal integrals may be defined by a general axial mode

f unc tion

§
m • • .

as follows;
a

IX = f **i J m
0

a

1X3 - f * '3 J m

-rll .9- dx
m

«- dxm
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IX j = I § $- dx
J m m
0

a

IX4 = f $ §- dxJ m m
0

a

IXC -J § f - dx
m m

(C3)

0

Substituting Equations (28b to 28e) into the above equations, the

longitudinal integrals for various boundary conditions may be written

as:

For freely supported cylinders:

2a

IX3 = -IX3 = -IX, m TT
2a

^ 5 - 2

K! to IX5 = 0

For clamped-free cylinders:

m

a P (2 + a P a)
m m m m

For m = m

For m -^ m (C4a)

IX2 =

m = m

, m m

m = m

.m+m 3 - o; P-)m m m

IX,

m m

m = m

,--P- - a p )m m m - m m
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IX4 ~

a P (2 - or P. a)m m m m

4p-(Q' Pmv m m m [(-1, m m
m

IXc

a

0

m = m

m

m = m

m t m (C4b)

For clamped-clamped cylinders:

'• IX

IX2 = -IX3 = -1X4 =

~ 2)

m = m

m m

m = m

m m

IX,
m = m

m / m (C4c)

For free-free cylinders:

m = 0

IX j. = IX2 = IX3 = IX4 =0

IX5 = a

ixi = ix2 = ix3 = 1X4 = ix5 = o

IXj = IXS = IX3 = IX5 = 0

IX4 =

m = 1

ixx = ix2 = ix3 = ix4

ixt = ix3 = ix4 = b

IX2 = ; IX5 =

IX, = IX, = IX= = 0

IX= = 0

m = 0

m = 1

m 2 2

m 2 2 even only

m > 2 odd only

m = 0

ffl = 1

m 2 2
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IX2

IX4 =

4
a

4
a

m ;» 2

ixi = ix3 = ix4 = ix B = o

40 .01 .m-1 m-1
IX o =

X = 1X4 = IX5 = 0

IX2 =

IX s =

4
a

' - 2VlPm-l

m > 2 odd only

m 5 2 even' only

m > 2 odd only

m a 2 even only

m 5 2 even only m = 0

m > 2 odd only

m > 2 odd only

m s 2 even only \ m " = 1

m > 2 odd only

m s 2 even only

IX;

IX, =

ot , , , ,
m-1 m-1 m-r m-1

(-1)
m + m - 2

+ (-D
m + m - 2

m = m

m j m

m = m

m m

m = m

m m

2: 2
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1X4, =

i-lHm-l
a)

_vm = m

' Q?— * p — i / r*tn~ x ni"" 1 if
4 L

5-1
m ^ m > m ^ 2

m = m

m / iffl
/

(C4d)

The longitudinal integrals in Equations (C4a, C4c, and C4d) vanish if

m+m is odd and are nonzero if m + ffi is even.

Contributions of Stringers

= ) ( SS cos n0 cos n0)A . __
mn,mn

D . --mn,mn

1=1
6=0

SS 13

A

SS;

= )^.i-SS + — SSSO TJT~) cos n0. sin n6 \
/e

Emn,mn
I4 cos n9 cos n9 -SSg cos n9 cos n9

SS

Bmn,mn

_ cos n9 sin 59
ia n -

SS g SSg

SS 21

R n cos n9 sin n0

SS14 SS15

SS 3 + SS 22

R'

SS33 SS2a 8857 v
+ —-— - —-— - ) sin n9 sin

R R _ a /
SX IX,

sin n9 sin n9
: —

. R2 9=9,
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SS 18

+ SS12 ) sin n0 cos n9 + ( - jfi sinn9 sinn9
• • . . R • -

n sin n9 sin n9 + ( SS21 H —) sinnG cos 59
R

SSgg

SS28 + ~~5 Sin n6 COS(

/S^ao &£>27\

-v— + —r si

+<\(GJ\JL S

SS
sinnO sin

R3

- sin n9 sin n9 >^ TV.
j_x.2

=9,

L

Cmn,mn = /S SS3cos n9 cos n9 + SSecos n9 cos n9 H nn sinn9sinn9
\ R 2

. &=l ..
SS14 _ _ /SS17

• + SS10 cos n9 cos n9 + nn sin n9 sin n9 - I—-—
R2 V R

SS18\/ _ _ \
H — ) ( n cosn9sinn9+ n sinn9cosn9y

SS25 /_ _ _ \
H —— In cos n9 sin n9 + n sinn9 cos n9 )

2 ^ / * •• ~ \
H — ( n cos n9 sin n9 + n sin n9 cos n9 )

SS37 _. .
nn s in n9 s in n9 IX

R 2 = ax/

- sinn9 sinn9 *\
"* / J-X2

/ fl=fiR2 9=0,

93



L

N _ = / < Ti . cos n6 cos nO^ IX
mn,mn £-i\ / fl_fi'

T£

P *aa • —p

..i """a
NN -r = ) \ ( -Ti a + '-5- - T29 + ~5~ ) cos n9 sin n0 > Ba

L T/li
P -- = )\ - IT* + T13 ) cos n9 cos n9 + (-— —
mnmn L\ \ 8 13 / V R

=l

T3°\_ _ V.
- -=— )n cos n9 sinn9 J> IX

mn,mn
i=l

T

2

9=6.• . &

T7 T8 T19 T20 T32 T33

v T 3 + ^ + 1"+ T l 8 +"^"~+ T 3 1 +~"~
A-l R R

T34\ SI T4 T9 T6i\ >. y? * 9 8

- ) sin n9 sin nQ \ TX.S +<( T! + — + — + —
R ' /e=e xx .3 o2 R

T13 T14 T18 T31\
+ —— + + + )s inn9sinn9 > IX,

R _2 n2 r.3' S^n-n
. 5

R R R - 9 = 9

rV//T5 T12 T6 T13 T15

mn,ffin ^ j \ _ 3 3 R R 2 2
. . K. K K K
J6=l

T39\ \ y/1!1 TS Ts4
+ - — ) n sin n9 sin n9 > IX B +< ( - + — + -

R2- /e-9^ VR3 R R2

Tso T33 T33 T38x _ ^
) n sin n9 sin n9 > IX2

3/ =R R R R3

-23 -35

R R- + Ti7 + T30 + -g- T38

37\ . V >*/ lf

-r-) sinn9 cos 59 > IX2 - < f-r-
r ^ a — ft ^ "•

—— ) sin n9 cos 59^- Q _ IXsR / '— o=t)»
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S --
mn ,mn

T3 + T9 + T14y cos n9 cos 59^ IX2 +\(T4 + T9

• Ti 4 + TI o + T.,1 ) — sin n9 sin n9 ^
X* JL 55 JAy o • S"

P3 S fi-f
Q=Ql

X cos n9 cos n9 IX5 +\ T

rp

— sinn9 s±nnQ^> IX2 -

T*2\ _ _ -
r— I (n cos n9 sin n9 + n sin n9 cos n9 )
R '

„ V- cos n^ sinrie-T27 ^r

=9A

T4 1 - T2 6 - T 3 7 a

sin n9 cos 1 1 , ^n - - > IX

(C5)

where SS^ to SS30 and Tj to T43 are constants defined in Appendix D.

Contributions of Rings

K

Anui y

Emn

— =/ Ci i^i^IRliXi H - C i n n I R 4 1 X i +Ci ( IR4 2 nn3+n2n IR43 )Xmn LJ
k=l

+ C.2 ! nn IRls X i

K

__ = / C in^Rlo X i- C A n3 n3 IRli X 1+ C i nIR44Xi- C4 nr,mn Li . x • * • * • *
k=l

.- C 4 n 3 n I R 4 3 Xx- C4 nn2IR42X1 .+ C2lnii I R l 6 X i

nn

Bmn, -- = ) ICann IR13+ C 3nn IR l i jXs + (c5 IR2!+ cs IR22 + C7,mn o » / \
k=l
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4C8 IR24)nfiX3 -^CUIR13 + Cl3IR3i + C13IR33) nn

4C3 IRAiXs 4 C3 (lR43il 4 IR43n) X2 4 (cs IR519

4Ca{lR51 4 IR52 } + C8{lR53 4 IR54} + C18 IR55)x3

4 |c9 (nIR57 4 nIR5s )4 C19(nIR59 4 nIR58 J4 C5 (nIR510

4 nIR5n)4 Cs (nIR5i34 nIR513J 4 C6(nIR515 4 nIR514)

4 Ce(nIR5174 nIR5ie)jX2 4 |c13 IR6! 4C i 7 IR63

4C 13 IR63JX2 4 |C 17^nIR64 4 nIR6 54iilR61o 4

4C12(nIR68 4 nlR6 7J4 Cx ̂ nlM^ 4 n!R45 J4 C3o

4 nIR69)} X3

4 C2 nIR!3 4 (e8IR24v
4 C9IR23 4

k=l

\ _a /
4 CsIR22j nn 4 C9IR23n 4 ^C14IR12 4 Cx 5IR32

\ _a •(• V 2
4 CialRSjnn*' 4lC14IRl2 4 ClsIR32)n 4 C3n IR42

' \ /

4 C3IR43nii'4 C3nIR4j.4 C5IR510 4 C s( IR5124IR514J

4C 8IR5164 Cl9IR584JC9IR57 4C 5 IR5n 4 Cl9IR53

4 C s (lR513 4 IR515) 4 C 8IR517} nn 4 {c5IR5ls 4 C B(lR5x

4 IR52) 4 C g(lR53 4 IR54 ) 4 C 18IR55j- n 4 C 9IR56

4 (c 12IR66 4 C30IR68 4 C 13(lR6lo 4 IR64)} n3 4^ 17(lR65

4 IR6n) 4 C12IR67 4 Cx 4lR4 s'4 €3 OIR6 9} nn 4

4 C17IR62 4 C12IR63| n 4 C1S (lR64 4 IR61O)

4 C14IR44\X2 . .
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C -- = > C3n3 nlRli X^ + CiIRl.X, + C3 IR1SX2 +inn ,nin / . ° *• j. « * o .=
k=l

C8IR22 + C8IR24)n2 .n3X2+ C l oIRlin2n2X1- C4(n3

n2)IRla-X1+' C9(n+ii2)IR23X2+ (c12IR3]+ Cx 7IR32)n
3u3X£

1SIR33+ C14IRl2yiT+nTC2 + C3 nnIR41X2 + C3^IR43nn"

nIR43Jx2 + C10IR41nn:X1 + ClO(nn3IR43+ n2nIR43)x1

/- V f f • \- C 4\nIR45 + nIR44yXi+ ^C5IR518 + Cg^IRS]. + IRS

( \\ ( f
-f Cx 8IR5 5 + C8 {IR54 + IRS 3)j nri Xg + { C5 fnii TIRS x 0

\ /
+ n2nIR51iJ+ Cg^nnTlRSij, + n2nIR51 3 + nii^RSj

+ n2nIR51 5J+ Cg^nn^RSxg + nii^ERSiTJ-J

+ n2nIR59)j-X.2 + C9(nIR57 + nIR5s)x2

+ IR63)+ C17IR62}x3nii +{c12.(nn3IR6a + n2nIR67)

f — - \ I -
+ C3Omn*TR68 + n nIR69)+ ClsmnT!R6lo -I- n nIR6n

\ / N

nn2IR64+ n2nIR6^)|x.2 + |cls(nIR65 + n!R64 + nIR6n

n!R610)+ Ci4(nIR45 + nIR44)|x2 + (c21IRl7 + C2SIR15

k=l

K
r / _\

1 L, \Ci33IR14 + C23IRl7nn/ Xl

k=l

K

I -C38IR14 - G3gnnIRl7 - C,

k=l

K .

+ CsoIRZiy + C3gIR2g .+ C33IR2g
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+ C33IR210 + C3SIS16 + C37IS17

K

R — =Y (2C34nIRl7 + 2C31nIR28 + 2C3OnIR27 + 2C33nIR2lomnnin i—> \

2C33nIR29 + C35ISlgS + C39lSl2n + 2C 37iSl,ji X

mn,nin
k=l

K

Smnmn
k=l

|c30nnIR27 + C33nnIR2lo + C33nnIR29J X

10IS13 + C;

(C6)

where IRli to IR6ji are circumferential integrals and X1= §'$11
m m X = X k

and X2= § §-| and Cx to C4O are constants defined in Appendix D.
k

The circumferential integrals are defined as follows:

TT

IRlj. = l-~ cos n9 cos n9 d9
R R2

0 cr scr

n
IR13 = J — cos n9 cos nQ d9

0 cr scr

TT

r _ L
J R
0

IRl3 = I -— cos n9 cos n9 d9
cr

TT

IRl4 =1 R cos n9 cos n9 dQ

0

TT

I -i- sin n9 sin n9 d9
J _ „ a
0 cr "scr
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TT

IR19 = I — sin n8 sin ii9 d6

0 cr scr

n

IR17 = I sin n9 sin n9 d9

0 Rcr

TT

IRle = J R sin n9 sin ii9 d9

TT

i = - cos n9 cos n9 d9
n * R3
0 cr

n

IR22 = I — ̂ — - cos n9 cos n9 d9
J R R 3 R 3

0 RcrR Rscr

TT

IR23 =J - — - cos n9 cos n9 d9
cr

TT

r iIR2 4=1 - - — cos -n0 cos tie d9

0 RcrRRscr

TT

IR25 = --- sin n9 sin ii9 d9
R R3

0 crR
SCr

TT

IR26 =J - : - sin n9 sin n9 d9

0 RcrR
scr

r RIR27 = -Ŝ sin n9 sin n9 d9
R 2

0 R

r RIR28 =J -jp- sin n9 sin n9 d9

0
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TT

10

IR3,

184

TT

3 = / _ 1•;
0

rr

o *;,.*

TT

IR4,

cos

TT

TT

cos a

» c°8

COS rtC
de

ioo



n
sin n9 sin n6 d9• J R-Mlir-)

««» f*s+-v *cr scr

TT

IRS = J _i (I) - (—M sin n9 sin n9 d9
• ' D P V K / > f i XK^^y > Q. R R x~ '8 \~scr
0 cr scr

TT

IRS5 =| — (^) Is-*—J sin n9 sin n6 d9= J —i (|) (jT1-)
J D PD X R / » Q XK '.
n R RR »e scr 'ft0 cr scr

n

sin n8 cos n9 d9f JL(T)
J R \R/,
0 cr

TT

IR57 =J - — ^— J cos n9 sin nQ de
nV 'Q

0 cr

TT
f i ' / 1 \

IR5B = I —- l^-J sin n9 cos n8
• -0 P 3 *• >Q

'8

0 Rcr"scr

n

IR59 = J {•£) cos n6 sin n9 d9
n R R2

0 cr scr

TT

1 I - I __ - ._ ..« CQS nQ dQ

cr

TT

IR5X1 = I ^hr (Z) cos n9 sin n6 d6= J jj-^g- (^)
<^«* 'cr

TT

IR512 = J — (±] sin n9 cos n9 dG
_ R RR3

0 cr scr

TT

IR513 = J —^— (£ J. cos n9 sin n9 d6

0 cr scr
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TT

IR514 = J^—(_^) si
J. R R2R scr''0

sin n9 cos n9 d9
, R R
0 cr scr

TT

1S = [ — — - (- - )
2 '

IR51S = — — - - - cos n9 sin n9 d9
n R R2R scr '90 cr scr

TT

1

n RR -0 cr scr

TT

IR517 = J — (^T—) cos n9 sin 59 d9
. R RR0 cr scr

TT
|3

IR518 - J ^- {(|) } sin n9 sin n6 d9
L K 'cr '9

n

IR6i = ! — i V p J J sin n6 sin **9 d6

R R
0 cr scr

TT

r L ' * * ' " ' sin n9 sin n9 d9IR6* -J ̂ (tJ^J,

TT

f ^R (R), (r"), sin ne sin ^e de
cr '9 scr '90

TT

iR64 = VFJ sin n^ cos n^d®
J R R X R / ' f l
0 cr scr

TT

IR6S = I (-) cos n9 sin n9 d9
J
n R R V R /»90 cr scr

n

IR6« = I — (^) sin n9 cos ri9 d9
^ R RR V R / '90 cr scr
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TT
f* i /1 \

IR67 = r I —) cos n9 sin n9 d9
._ R RR R'?90 cr scr

n

IR68 = I —-—(^r~) sin n9 cos n9 d9= I - (;r^) si
R R 2 •«'*

TT

IR69 = - V" c o s n 0 s i n

0 cr

- VS"^)
R R 2 • « *

n

IR610 = j ^ — £ (^ — ) sin n9 cos iie d9
'cr scr '9

TT

IR6n = f z-̂ (̂ -) cos n9 sin n9 d9= f 5-^(5^-) cos n6 sin
J R R X R 'cr "scr'9u

(C7)

The quantities Xx and Xs for different boundary conditions are

defined as follows:

For freely supported cylinders:

3 mrr x. mn x,_ mmrr K TcX, = 2 cos cosa a

mn x, mrr x,
X2 = 2 sin sin

a a (C8a)

For clamped-free cylinders:

XT = P P- (sinh P x, + sin p x^ - a (cosh P x, - cos p x, jflsinh P-x,1 mm L KmHc m k m\ m k m k/J.l mTc

+ sin P-x, - 01- (cosh P-X^ -"cos P-X, )f
m K m \ m K m k/J

X2 = i cosh P x^ - cos P x, • - of ( sinh p x, - sin P x, Jrl cosh P-x,
V . m k m k m \ m k m K / J * « m k

- cos p-^ - a- (sinh p^ - sin P-xJ) (c8b)
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For clamped-clamped cylinders:

Expression is same as clamped-free but a *s and
m •

P 's are different.

For free-free cylinders:

m = 0

X, =0 |
n

X2 = 1 ) -

X, = 0

= 0

m = 1 ..

= 0

X2 = cosh P_ nx^ + cos p_ x, - of- n( sinh P_ ,x_m-1 K m-lTc m-l\ m-1 K m S 2

Sin P

• m

m = 0

m = 1

p..
i = -^li{.sinh P- -x, - sin p - . ' x ,

a 1 m-1 Tc m-1 k

- a- ,1m-1 V
cosh P- -x, + cosrm

-x,
-llc

8- ,x, }rFm-l k/J

Xa = I— - Tf i cosh P- -.x, + cos p- .x,V. a 2J A m-1 k m-llc

-ex- , (sinh P- -x,+ sin P- ,x. )}
m-1 > m-1 Tc m- lk / J

s 2
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m 2s 2

X2 - cosh cos

a = 0

sin

m = 1

m a 2

(C8c)
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APPENDIX D

CONSTANTS OF MATRIX ELEMENTS

This appendix contains the constants used in equations (Cl, C5,

and C6) of Appendix C. These are various combinations of the stiffner

properties given in the list of symbols.

s = 24D
1 h2 .

_ 12D(1-V)
83 = h*

S3 = D(l-V)

„ 24DV
4 = "T~h2

Ss = 2D

Ss = 3D(1-V)

57 = 2DV

58 = 4D(1-V)

SS3 = E..I
s& zzsi,

SS3 = E .13 . .
si yys&

SS4 = E .A .z4 sjl si

SS5 =

SSS = 2 E .1 ,z, ,6 si, zzsi, 1st,

7 si zzsJi
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SS E .A za = n ,**• « £, *8 Si, Si, Isi,

O O ^ T7 A
SSg - fc

SJj
A

s^

= 2 E ,4

SSj.2 - E
a

ss13 = ES

5514 = Eg

5515 = 2

= E .1

SSj.9 - E£

SSso = E
e

SSsi = Eg

8832 = 2

8833 = 2

8834 = EC

SSg5 = E£

SS2 6 = 2

883 7 = 2

SS^ = Es/yzsA

8839 = E^I.
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00 3<

Tl

T2

T3

3 - V1
yzsA3 1st,

= P «A „
s* sA

^ T1

= P fl1

zzs£

\7T7.C ft.

Iyya£>

T5 = 2 T4

Ts = 2 P.Aiz

T8

T9

^sjj zzsA

= 2

= 2 n A .Z

= 2 n .A .Z0~HsA sjl

T i 5 = 4

Tie

Ti7

Tie

Tl9

Tso

2 n .Apsj& s

= 2

108



133

PsfcV8*'
,-Hsfc

Tss

129

, z

133

138

Cv \09



= 2 ErkArk

C3 = 2 E ,1 ,J rk xxrk

C4 = 2 E , I , z, ,* rk zzrk Irk

K = 2 E . A zf ,5 rk rk Irk

C - 2

ErkArkzlrk

2 ErkArkZlrk

4 E , A . zf , z_ ,rk rk Irk 2rk

C14 = 2E r l

GIB = 6 Erf

Cia = 2 Erl

C17 = 4 ErkArkzlrkz2rk

C18 = 4 E^r

C a i =2 (GJ)rfe.

Caa = 2 prkArk

Cag - 2 prkI22rk

110



= 2. i

- 2 CGJ)rkZlrk
o

CSQ = 2

C27 =4 (GJ) , z, ,7 v rk Irk

= 4

C29 =

= 2 PrkArkZlrk

= 2 prkArkzlrk

6 3 2 = 2 P 1rkxxrk l rk

= 2

= 4

= 2

37 = 4

C 3 8 =8 Prk
A

rk
z
lrk

z
2rk

C39 = 12

40 PrkArkZlrkZ2rk

111



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON. D.C. 2OS46

OFFICIAL BUSINESS

PENALTY FOR PRIVATE USE J3OO FIRST CLASS MAIL

POSTAGE AND FEES PAID
NATIONAL AERONAUTICS AND

SPACE ADMINISTRATION
451

POSTMASTER: If Undeliverable (Section 158
Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be
conducted SQ as to contribute . . . to the expansion of human knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof."

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS
TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons. Also includes conference
proceedings with either limited or unlimited
distribution.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include final reports of major
projects, monographs, data compilations,
handbooks, sourcebooks, and special
bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and
Technology Surveys.

Details on /he availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

N A T I O N A L A E R O N A U T I C S A N D S P A C E A D M I N I S T R A T I O N

Washington, D.C. 20546


