
AUTOFLOW ENHANCEMENTS FOR DOCUMENTATION AND
MAINTENANCE OF SCIENTIFIC APPLICATIONS

Martin A. Goetz
Applied Data Research, Inc.

Most documentation of computer programs can be summed up in the phrase, "Even
when it's good, it's bad." Management may occasionally give documentation token priority,
but programmers seem to give it no priority at all, perhaps because of their training. Pro-
grammer training is either formal or informal. In formal training courses, documentation is
usually not a standard part of the curriculum; in informal or on-the-job training, it is usually
not even mentioned. This lack of training is a basic reason for the problem of documentation,
a problem that is compounded whenever management deemphasizes program documentation
simply because past experience has shown that what had been produced was generally
ineffective.

The chief reason that documentation is so poor may be that it has been considered a
manual process when it should have been considered a computer problem. Certainly, no one
considers compiling a manual process today, although, years ago, compiler functions were
performed manually.

The need for documentation seems to be obvious. The primary concerns of both man-
agers and programmers are program productivity, debugging, flexibility, integration, and
reliability. Good documentation helps to fulfill these purposes; poor documentation, on the
other hand, does not. Any organization can obtain good documentation, either manual or
automatic, if it concentrates on program organization rules; programming standards, includ-
ing the naming of tagged lines, proper commentary, modular programming, and restrictions
in the use of certain programming techniques; program monitoring and security, including
systematic recording of changes in programs, systematic recording of reasons for changes,
and protection of programs; technical overviews of programs (using tape recordings, if pre-
ferred); and parallel development of programs and documentation.

Program organization rules are important because, although good programmers have an
organized approach to writing programs, they, unfortunately, usually develop styles of their
own. Rarely will two programmers use the same organization. Because a programmer does
not work on a program forever, it is obvious that organization should not be permitted to
suffer from the idiosyncrasies of the individual programmer. The same can be said for pro-
gramming standards, which, by definition, can be effective only if they are both universally
published and observed.

If programmers followed consistent program organization rules and programming stand-
ards, much of today's documentation problem would not have arisen. The computer industry

PAGE BLANK NOT FlLMKU

10 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

is almost 20 years old; it should stop philosophizing about what ought to be and resolve this
unsatisfactory situation.

Only automated documentation of programs offers any hope for realizing what may be
called "accurate" program documentation. This paper will discuss how to improve automated
documentation and, specifically, how the AUTOFLOW system can be enhanced to provide
acceptable levels of documentation.

Given that programmers may cooperate only to a limited extent in documenting their
programs and that computer programs can be developed to generate information that could
not be produced manually, the following three elements are essential for an integrated docu-
mentation system within the framework of today's data processing environment:

(1) Logical analysis or graphic dissection of a program
(2) History and control of programs
(3) An understanding of the program
A flowchart produced by AUTOFLOW is much more meaningful than one that has

been produced manually. These logical flowcharts are accurate, present complete references
between all transfer points, and graphically portray the logical flow by automatic rearrange-
ment of those segments of the program that interact. Figure 1 is an example of a two-
dimensional AUTOFLOW flowchart from a FORTRAN program.

The number and type of cross-referenced reports produced by AUTOFLOW depend on
the source language being used. For COBOL, AUTOFLOW can produce four special reports:
procedure division summary, data name cross-reference listing, data division index, and data
record map. For PL/I, four special reports are produced: on-unit action blocks, label-
assignment cross-reference, duplicate declaration map, and condition prefix map. For
FORTRAN, the one special report is the nonprocedural statements listing. Other special re-
ports for FORTRAN could be produced by AUTOFLOW and would be of great value. Fig-
ures 2 through 10 are hypothetical reports that could be produced from a FORTRAN pro-
gram by systems such as AUTOFLOW.

Figure 2 illustrates the header information that is common to all reports. The informa-
tion includes the general title, FORTRAN analysis report; the user name, e.g., Goddard Space
Flight Center; and the system. The run time for the analysis and the data are also presented.
The report itself is essentially a listing of the local variables used by the program. The infor-
mation presented is the mnemonic label, the type of variable, the definition of the variable,
the line number where it is defined, the type and value of the definition, and then the ref-
erences made by other statements in the FORTRAN source program to the local variable.

References in all reports consist of the source line number and, in parentheses, the
AUTOFLOW page and box number. The variable labels in the first column are sorted alpha-
numerically. The label types are standard for IBM FORTRAN (integer 2, integer 4, real 4,
real 8, logical, etc.). The DECLARATIONS column specifies where and how the variable is
defined (i.e., through a data statement or an equivalence statement). If the variable is defined
by a data statement, the value of the definition will be shown. Doubly-defined variables
would be indicated by the notation DD in the definition area.

Figure 3, a cross-reference of statement numbers, lists only those statements that can
be referenced by other statements within a program, i.e., statements with statement num-
bers. The appropriate line number, flowchart location, and type of statement (e.g., format,

AUTOFLOW ENHANCEMENTS FOR DOCUMENTATION AND MAINTENANCE 1 1

AUTOFLOH CHART SET D E M O N 10/29/70
0401 NP *•** mNTfNTA ***«

1 r i SFT nc PO'JTINFS H.HAT«M ING THE USF &NH MISUS* OF VAHIOUS
2 c FORTRAN S T A T F M F . M T S . IT is NHT INTPNDFD TO PE a* FXANPIE OF
3 C GOOD, SENSIBLE OR EVPN PEASONABLF POCGPAMMING.

4 C

5 C

6 C

7 COMMON ICOMl (l '100l,RCOM3.RCOM3(1000.,RCOr-M1000l

R cn^HriN/iiRC*!/ico^ia
O NAMFLIST /NMLIST /N I .N2

10

11
12

13

"
1 ̂

16

1 1

19

2"
21

22

23

24

25

26

27

29

20

10

31

32

33

34

35

37

11

39

41

4?

43

45

46

47

48

49

50

51

52

53

54

55

56

57

5*
59

60

61

62

6?

F.4

65

66

67

6R

60

70

C

C

100

120

140

160

180

200

220

26C

2»0

300

C

320

340

150

3»0

400

420

44O

460

C

500

9000

0001

9002

DIMENSION RCn»2ll0001

D A T A Nl/1001/, N2/3'

ISTir.ER BCmi, ROUTES, ROUTF2

|NTFr,FP*2 HOUTE3, HOUT r4

LOGICAL LGH

F2 IX ,V I= (X - .O l l / 2 * !Y - .n i l / 2

RC.AOIN1L IST)

On 30PLM.N1

LCO"1«-L

C A L L R^OFR U5001

L-LCOMH

IciDCnillLll 100,120,140

A S S I G M ?20 TO ROUTE!

CO in lf-0

ASSIGN 3'0 TO ROUTE!

GO TO 160.

ASSir .N 360 TO "OUTE1

f.O Tn ROUTE 1, (320,340,3601

R'.Ol

\.a

A**! (R,S,N?1

IF(A.GT.BCOH1 IL » 1 GO Tn 260

CO TO 200

S-R

M • 33 - 1

C A L L W « I T C R I R , L »

IFtL.FQ.ll GO TO 301

on 210 11=2, L

On 2RP LLL-2.LL

RCOM4(LLLl»f lCOM4ULL l»cl (BCnM4(LLL- l) ,RCOM4(LLL-1 1,11

rON'lNUF

RnUT?2«l

LGL1». FALSE.

GO TO 3«0

»mjTE2-2

LC,ll..e»LSF.

GO TO 3BO

ROIJTE2-3

LGll-.TRUE.

GO TO (4no,420,440) .ROIJTE2

UR 1 TE 16, 90001 BC CHI (ll.L

GO TO 440

URITFI6.9001 |L

IFILGL1I GO TO 160

RCOH2IL »»0

GO TO 300

URITEI6, 90021

STOP

FORHAT(1X,><0' ,2110)

FORMAT! IX, ••0* , 1101

FORMATdX* »EOF« 1

ENP

Figure 1.-AUTOFLOW flowchart for FORTRAN program.

1 2 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

lC/2°/70 INPUT L I S T I N G At lTnFLHW CHAPT SET - nEMON

Ff l«TRAN "HOULE (NAMSO. l ISTl

C A R O NO *»•* CONTENTS **•*

1 SUBROUTINE R E A P E R (*l

2 C

i cnfMriN Br.n«i(nooi,'(cnM2iioooi,BCO«3iioooi.PCCi'<4
<• DIMENSION RCOM4UOOOI tFOK 1 OPO I tFO?(10001 .«01 t 101

5 co«fnN/iAncMi/Lfoil*

7 INTEC.FR F.OUK02

R EQUIVALENCE (E01.BCOH1I

o H E A L » 8 B C O H 2 , X 0 2

10 C

1 1 Pcani5,<!000,?ND.500IE01 ILCOM1AI

12 X - E 0 1 I L 1 C O K A I

H C A L L URITFR (K.LCOHUI

14 ICOMlA-LCrWA

15 RETURN

17 500 RFTURN1

in 9000 FORHAT(5flX, 15)

19 END

H NO *••* CONTFNTS

1 SUBPHUTINE WHITER IX,J»

2 C

> CHM^HN RCOMl(lOOOt,RCnM2t10001,BCOM311 0001,ACOH4<1000)

*. cnMMnN/LABCM2/UCOH2A, LCOH2B

•i B f A L * B X

6 C

7 W R I T E (6 , Q O O O » X , J

R G = ?3 * W

Q IFILCCM2A.GT.2ILCOM2A.LCOM2A-SORTI3.1

10 RETURN

n F-2i
12 0000 FnRHATI'0',F20.*,I10»

1 3 END

S T A T E M E N T LAPEL INDEX AUTOFIOW CHAPT STT - PfMnN

Pr-.PX NA"E PG.PX NAME PG.^X N6»*f Of;.qK NAM? £>r,.RX NAM

2."R 100 3.01 1 BO 3.11 2 HO 3.17 3*0 3.?3 **0

2.01 120 3.02 200 J.1* 300 3 . 1R 380 3.?* 460
2.0<» 1*0 3.03 2?0 3.1? 320 3. IP *00 3.25 500

2.10 160 1.05 260 3.16 3*0 3.21 420

10/20/70 PROCEDURAL STATEMENT LABEL INDEX AUTnFLIH C H A R T $F T - PEHIIN

PG.flX NAME PG.PX NAHF PG.RK NAMf DG.BX NAM

5.01 RF.AOER 5.00 500

10/29/70 PPOCEDUPftL STATFIfNT LABFL 1NPEX Al^nFinw CHART SFT - OFPW1N

PG.BX NAMf PC. BX NAME PG.BX NAME Pfi.M NAHE PG. IX

7.01 MRITE»

Figure 1 (continued).-AUTOFLOW flowchart for FORTRAN program.

AUTOFLOW ENHANCEMENTS FOR DOCUMENTATION AND MAINTENANCE 13

IO/2°/70

C O P T P A N »nnuLE

CMJRT T I T I E -

(000078) 2.

\C \00022) 2.

(000126) 2.

(000"*0> 2.

(COOOM 1 2.

(0000121 3.

(000013) 3.

I-MWMM 3.

(0"00<-M 1.

(f>004M 3.

(00104M 1.

(C00047) 3.

(0000401 1,

(0-0057) 3.

(O O O C 5 7) 1.

(00005BI 3.

(C00060I 3.

1000061) 3.

(0000621 3.

(000165) 3.

C H A R T T] Tl r -

(000011) 5,

(000017) 5.

CH1PT Till F -

C H A R T T IT IE -

(000007) 7.

T A S L F C1F 1

INTROnuCTOR'

01 120

03 100

00 140

10 160

01 1»0

02 200

05 260

00

11 2HO

11

14 100

15 320

16 340

18 3PO

10 AOO

21 420

23 440

24 460

25 500

SUBRPUTINf

,01 PEAOER

.no 500

NON-»nCCru=

SUBROUT 1NE

01 WRITFR

•(INTENTS ANO »EFEPFNCpS «')Tf

r cnBHFNTS

(000025) 2.07

(000047) 3.14

(000025) 2.07

(000020) 2.01 (000027)

(0000611 3.23

(000037) 3.04

(0000351 J.03

(0000461 3.13

(000046) 3.12

(000047) 3.07 (000063)

(009031) 7.10

(0000311 2.10

(000-:5 3.15 (000054)

(OOC0571 3.18

(0000571 3. IB

(0000571 3. Ifl 1000059)

(0000231 2.05

PE,,R,.,

(0000?3) 2.05-X

(000011) 5.03

..L .T.TE.FNT,

WRITF ,R IX ,J>

10000411 3.06-X (0000131

IFtrTW CHART SF.T - PEMON

2.08

3.74

3.16

3.20

5.05-X

(000010) 7.06 (0000001 7.0*

CHART T ITLE - NON-PROCEDURAL STATEMENTS

Figure 1 (continued).-AUTOFLOW flowchart for FORTRAN program.

14 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

10/25/70

CHUT I tTLE - INTRPpiirTDBY COMMENTS

AUTOFLOW CHART SFT - nEMntg

• SET OF RnUTINFS ILLUSTRATING THF USF AND MISUSE OF VARIOUS

F O R T R A N S T A T E M E N T S . IT IS NOT INTENDED TO BE AN E«AMPLE IF

GOOD, SENSIBLE OR EVEN REASONABLE PROGRAMING.

10/J9/70

CHART TITLE -

AUTOFIOW C H A D T SF T - PEMOM

/ /
/ RFAO FRO* DF.V /
/ 1ML1ST /

f rv /

I LCOHIA - I

I ALTERNATE RETURN I

500 3.25

H TH RHUTFl

I SSS{6NJ3,,5?,TP Ii~ur" sTfi
| 3(.0 1.17 I

Figure 1 (continued).-AUTOFLOW flowchart for FORTRAN program.

AUTOFLOW ENHANCEMENTS FOR DOCUMENTATION AND MAINTENANCE 15

/ 1 flO /

03.73 >|
I

* »""oi

220 • 03

I .Fg. i •

BCOH3ILL - II

fiCn«»«|iLl> *FHRCOM«,1LIL -
1)t«CtlM'.(LLL -I) , I I

* * NO
• END OF nn •— *

• LOOP? •

03.07*—>

100

I ROUTF2 • I I

I IGL1 • .FALSE. I
* .—. .»

ROUTE2 * 3

LCL1 • .TPUF.

I CONPUTFO GO TO
I FOB RnUTEZ I

1 *00 *.lt |

.J28 3:!5_l

IF OUTSIDE THC RANGE

I «<UTF TO fifV /
/ 6 /

/ vi' FORMAT /
/ °ooo /

/ FROM THE L1ST /

• L IST • RCHHIU >,

P"

I f*mt 42?

list - i •

460

I BCONz7l7"~0

Tat,

j*

* 3.14.

* ... 300

• MAIT •

BFTU1N TO SYSTE"

Figure 1 (continued).-AUTOFLOW flowchart for FORTRAN program.

16 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

10/20/TP AUTOFIOW CHART SFT - nEMHN

CHA3T TITLE - NOI-PRnCFnijRAt, STATEPFNTS

rn-inr; ncnMH 10001 ,ncOH2<!iCOM3<loO!» iRCOHM 1000)

cmMON/LAicM/LCOM!A

NAMELIST /NMLIST /N1 .N2

DIMENSION ncnMJMioooi

DATA Nl/1001/i N2/V

INTFC.E" PCnMl, ROUTEl, AOUTF2

iriTrr.rp.*? RnuTF3t RnuTF.4
Lncicai icil

S T A T C M F N T FUNCTION OEFINITION: Fl(A,B,Nl-(A/2»0/2I••«

S T A T E K F N T FUNCTION DEFINITION: F2IX ,VI •(X-.011/2XY-.011 /2

0001 FORXATdX. ' -O' . I lOl

1002 FORHATUX.'EOFM

10/20/TO AUTOFinw CHART SFT - TENON

C H A R T T IT l f . suBPnilTINF RFA"FRI«I

/ REAOFR /

"T
02.0^—>| o^

^-^W-JSS-SK;;
/ via FORMAT /

/ 0000 /
/ INTO THE LIST /

I NOTE 02

• t 1ST - •
* F01tlCnwiAl •

W R I T F R H

500 I 00

• FXIT •

« icn«?A I

Figure 1 (continued).-AUTOFLOW flowchart for FORTRAN program.

AUTOFLOW ENHANCEMENTS FOR DOCUMENTATION AND MAINTENANCE 17

10/20/70 AUTOFLOH CHART SET - PENON

CHAPT TITlc - NTN-PRnCrPW"»AL S T A T F M F N T S

tD«MON BCn*lllOOO),BCtm2MOOO*,BCOWI1000).BtO'«*

n I HENS I ON PlCnN* t lOOOI.eOll 1000I*FQ2I 1000I.X01I 10)

INTEGER EQ1.XQ?

EQUIVALENCE (E01.BCOH1I

9000 FO<lNATI5ex.lM

10/79/70 AUTflHOW CHART SFT - PCHHN

C H A R T TITIF - sinPiijTiNe W ^ T T C R I X . J I

/"WRITER"}

03.06*«>

!_ 01

/ URITT TO OFV /

/ VIA FORMAT /'

/ FRO" THF IIST /

I NOTF 0?

• LIST • X, J *

• 04

* *
* *FALSE • •

» . LCOH2* .CT. 2 •

*

TRUE

05

' I 06

•"EXIT •

1G/Z4/TO •urnFirw THART SFT - OEHON

CVU*T TlTLf - «nM-«nr.?M|«M «iT4Tf«HTS

tOMKOM RCOM1 MnnOI,HCOH2UOOO»l8CO«3UOOOI,flCO"4(1000»

9000 FOUK'TI'O'.FJO.ttllO)

Figure 1 (concluded).-AUTOFLOW flowchart for FORTRAN program.

18
A

U
T

O
M

A
T

E
D

 M
E

T
H

O
D

S O
F C

O
M

PU
T

E
R

 P
R

O
G

R
A

M
 D

O
C

U
M

E
N

T
A

T
IO

N

07

ino

op-e-

o*

41
62

o0
1

03.0
C3.2

r- o
-

o
o

 —

-•

02
03

ui oj
in

CM in
<*

ino
Oo

o
 o

o

o
r
w

o
—

o
 o

 o
 -* -«

O
O

O
f

O
O

O
O

O
O

i
O

Q
O

O
O

U
J

U
J

O
O

f^
T

S
; rg

 *y o
«

^
*f z

^
f^

fifim
z

z
i*

*
!

C
L

O
oQ

.
»
-

U
J

X
0
. U

^
.

-J
 t

1
 <

 1
Z

C

. U
J

BY
N
POH

NC.a V
.

<
 z

o
 w

o
 in

Header information

cc «
>
-

C
n
 LJ

o
 o

u
. C

o
 ac

Coc
>

O
O

O
O

—

' O

—

 O
»
.

—
 —

—

Q

r*

(C
 Ifl

C
X

 lu
O

 O
 -i

«
J

l
^

O
O

O

O
O

C
J

O

*T
O

C

T
 —

O

r
I -*

 ^
m

 *M
 »

O
 u

y

—

O
n
 2

Oo

ARA

•
f*

v
+

fN

J -*

if\
t

X3

-< ro
 i«

i ^
u* U

i U
l U

«

. —
 rg

C
_ u u

o
: ^ z a of a a ci <

A
U

T
O

FL
O

W
 E

N
H

A
N

C
E

M
E

N
T

S FO
R

 D
O

C
U

M
E

N
T

A
T

IO
N

 A
N

D
 M

A
IN

T
E

N
A

N
C

E
1
9

o<aca. »-
U

J
3.

a. o_

—
 U

. I
un

<
>

U

i Z
-<

<

 2
.

z a. iu

crO
 O

a.u.
.. o
1<

 U
l

IT

U
C

Z

U
 U

J
OL

a
a. uj

oo*••C

O
 h

- O
 O

 O

—
 O

 —
 •-" -I

o
 o

 o

rv

O

O

 O
 C

M
 o

j
O

O
O

O
O

O
l
T

t
C

J
O

O
U

i
O

O
O

O

o
z

z

z
z

z
r
z

o
U

O
O

U
-

C
O

O

C
C

.
U

z
U

.C

3 i a.
• o

u ot,

o
o

o
u

o
o

o
o

o
o

o
o

o
o

o
o

t
j
o

o
o

 —
 *v

V

W

 V

3uOIgurn

20 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

computational, or assignment), are specified. Again, all references to each statement number
are listed by line number and AUTOFLOW page and box references.

Figure 4 is a cross-referenced listing of global variables used by the specific program
that is being analyzed. This report is very similar to the local variable report, except that it
lists only those variables that reside in blank or labeled common data areas. The information
presented in the report includes the label mnemonic, the type of label, its definition, data
used in the label, and all references to the label by other statements in the FORTRAN source
program. The label type is broken down not only by data type (integer, real, logical, etc.)
but also by the type of common area (whether it is blank common or label common and, if
label common, by the mnemonic name of the label common area).

Figure 5 is a summary of all of the variables used in all of the programs input to a
single AUTOFLOW run and is similar to the local variable report for a specific FORTRAN
program. It contains essentially the same kind of information presented in the local variable
report, mnemonic label for a variable, the type of variable, the definition of the data for the
variable, and all references to that variable. The unique aspect of this report is that it does
not reference only those local program variables that are accessible within a specific program
but rather those variables that can be passed between programs through a common data area.
In the references column, program identification, line number, and AUTOFLOW page and
box number are indicated.

Figure 6 is the program subroutine usage report. This presents the names of subroutines
within an individual program, the call parameters that are used by or passed to the subrou-
tine, and any references (by line number and AUTOFLOW page and box number) to that
subroutine in the specific FORTRAN program being analyzed. In the call parameter area,
the variable name that is being passed to the subroutine and some additional information
are found. If a global variable is being passed to a subroutine for its own use, an ampersand
is appended to the mnemonic label in the CALL statement. A second type of variable that
may be passed is a dummy variable, one that is not directly used by the program. This is a
variable that has been passed to the present subroutine by a calling subroutine. A dummy
variable is indicated by the pound sign appended to it. A third parameter is a return address,
indicated by an asterisk. The call parameter portion of the listing also specifies the levels of
all variables that are local to the program.

Figure 7, the system subroutine usage report, is very similar to the program subroutine
usage report. The name of the program containing the call, the subroutine name, and the
local, global, and dummy parameters passed to the called subroutines are specified. The re-
port summarizes all subroutine usage within all program modules processed in a single
AUTOFLOW run. Briefly, this listing establishes the hierarchy of subroutine calls among
the modules for a given execution.

Figure 8 is the DO loop analysis report for a specific program. This listing indicates the
complexity of the DO loop control within the program. The body of the report presents the
source and flowchart locations of the start of the loop, the variables used for starting and
ending values, and the increment used for the variable counter.

The complexity map, a bar diagram constructed of X's, depicts the logical structure of
DO loops in a histogram format. This histogram graphically portrays the nesting effect.

A
U

T
O

FL
O

W
 E

N
H

A
N

C
E

M
E

N
T

S FO
R

 D
O

C
U

M
E

N
T

A
T

IO
N

 A
N

D
 M

A
IN

T
E

N
A

N
C

E
21

••*

U
J

oa
o0
"

0u/h
-

0

ZaOO
C

ex1C
orU

>

U
J

Z

3
U

J
U

U

J
_
J

. w
-

c
c

: o

«
—

•—

k
—

_i ui
at

u
. X

<
i

u
j z

<
1
 X

.
<

a. uj
c.-

</> >-
L;

(
-
'
>

C

1

c: v>
<

u
.

c

c
L

C

1_ w

l_l
*

u
>

<

Q
C

<

U
.

Z

u
*OEV
*a

-*o±

w
U

J

—
•

^
3ZAJûK

V
I

U
l

zIUaU
J

u.U
J

C
L

•M
.

XOa.U
J

Z_
j

v>U
J

z
 z

<
 a

tuJt-
..

C
X
 Z

z

a
. u

j
<
 <

 r
cc

z
0

0

a

—
oc

v»
ex

vi
•*V
)

z0h-af<jU
l

O

U
f

a>tw

i>•4moC
D

U
N

OfnOtnmr*
«r -*

*o
O

0

-
•

0

fM

f*
>

m

N

O

U

J

O

O

O

tf\
O

«
T

 -O

«
T

^
 c

r ̂

^
p« o

 -^

o

o
 o

 o

o
f*4

*
t

•&

(V
tG

 ^
*f

r<
j

1C

<M
 O

o
 o

 o
 o

o

*J/
»

*

•

>
fc

 *<
*

*
_
J
 -J

 -J

—
 *

t-
2
T

U

l U
S

 U
/

4
_
r ^

i
—

 a
. oc oe

a
- —

>
<

u

^

-j a>
 «c au

 as
o

-J

0
3

O

V
I

U
J

zU
J

ocU
J

u.U
J

ec

*•XCD

OO
k

•*U
J

•M^I/I
U

J

zQ
C

«* v>
U

J

h
-

a
 z

a
. u

j
^
 XzoV

I
V

)
<V
I

Xo^ôc_JU
J

o

U
i

•>.J

tAOin^
4

O

0

in

m
0

O

•-*
f+

0

0
0

in

in

in
O

U

J

U

l U
J

O

O

•*• a
r z

z
—

—

^
- O

 0

O

-^

T

—
 Z

Z

Z

•*

«
-•

*
4

O
0

0

o

o

•*
*r

CD
0f-O•*

C
7*

-4
1

0

O

O

u
 o

 o
 o

o

o

^

^
f+

f+

o
o

£
X

C

L
eu

9C
<

-a

O

— '
-J

-j cu
 a

. cu
 C

L
ci ^

u
 _

*
cu

u

O

.

U
J

^
J

2
:

U
J

ccU
J

u.U
J

oC

^X0

oeU
J

1-ec2

V
»

**
Z

Z

u
i

<

Z
a

z
o

o
O

*•"

oe
v>

&

v>V
)

oH
-

ÎUO

U
f

a.>^^

i

oooir*
IU

U

J
 U

J
 U

J

O
z
 z

 -r z

*»
O

O

(_

t O

O
"

i=
 z

 i=
 z

0ino*p*oo

u
 c

 o
 o

o

o

"V•-•

(J

O
X

0
4

T

-a

u

>> <
 rg

<•- c. o w
 o

v <-* c*

C
D

O

H

O8cU30
0

22
A
U
T
O
M
A
T
E
D
 M
E
T
H
O
D
S
 O
F
 C
O
M
P
U
T
E
R
 P
R
O
G
R
A
M
 D
O
C
U
M
E
N
T
A
T
I
O
N

^luC3<a
om_*.̂uCU

J
t-<1a

ccu
.

z
H

"
U

.
a
.
u

Ca
.

*-
U

J
X

a
 O

I/I
J

 U
J

—
 U

. K

>
 *-'

2

C
, U

J
<

 fc
O

 H
-

^

C

J
 ̂

<
1

G

L

I"

a
.

<
:

»
-

C
a

u

C
 C»V̂

!

<Z

t*\•o**

*J-

£*«—
•

H
-

OZa
.

O*^u
.

41

t/>
U

J
_
J

C
C

Mac«
;

_
j

<C
J

O_
j

U
.

0U
J

i/12
.

U
J

H
-

V
I

»t

U
J
uU

J

Q
C

U
i

u.U
J

ac

Xcc•

a.
"•" .
U

J
ZI-*
_
J1X0C
LU
J

UZ«roca
 z

ex
uj

<* zzoi/1to«
j

ZQ»—Q
C

_
j

U
J

O

U
J

exH.JU
i

cr<_
j

*»s*t
moC

D
in

 —

—
 ' O

u
 in

• o
O

 IM
«- f«i
rt •*

—
 O

r-
•

u
 in

• o

^
 "

inN

|O
f

Z

0

<
 U

J
x
 o

e

^
^oinO••4|

orU
J

C
J

U
J

oc

r-Q^
f

O
C

M

0
 <

->

O

1a
1

U
J

P
1 C

.'

x
 a

.

-*"

Z
 t-

U
 J

L

i.O0V

>

4

O

^
 a

.
CO

inousom^oino(Vr-t

—
 '

.
-
.

^

—
 0

C
*

^
4

»
*•

•
o

«
••

o
 in

•
•

*
 o

<n
f*

f\i *^
o

o

o
 ̂

*r
«o

CM
*T

^

fM
 1O

C
I
I

t

U

J
Z

Z

Z

0

H
I

-
*

M
 <

<

«a

<
i uj

X
X

X

O

C

^
-»

—

+
>

—

 o
*r

tr
*^

•*• •
CM

o

••-'
o

 m
•

•
•

• o

o

o

o

o
 •*•

CM
<r

^p
rg

4
)

^
r

if
rv

 IQ
C

I
I

I

1

^

z

z

r
z
 c

j
<

<

<
t

<

U

J
a.

x

i.
x

c
c

inv
4

O
^

«
^

0

O
0

o

o
o

o
o

o
o

o

i
o

 i
r
 o

 i
i ^

-
 i

i
0

1
o

t
o

r a

o
r
a

c
a

o
c

o

c
U

J
|
U

_
'l

_
^

|
L

i
J

U
J

|
U

J
U

J

1
 U

J

3
>

a
L

-
£

lo
:
-
t
i(

x
J

z
a

c

ec
^

-j-
#

*

•
^
 ^

p

-
J

-
J

v
J

^
^

*

U
J

L
u

U

J

it<3
IM

m

*r

-̂
x

r
x

x
C

J

C
J

C
J

C
J

o

o

o

^
cu

a.
C

D

-*

inOh»oVo

*• •»

0
 0

tn
 r-

o
 o

V
 •
•
»

i
o1

1
cc

cc
U

J U
J

o
 »

-
4
 *

*

a
 3ino

9

ôetocU
J

£a3

o
 o

 o

1
1

1
a

cr oc
LU

 U
J U

J

ot
3: X

+*. *
*r

? J-
£

z

^

^

a
.

rg

rsi

. C
J

O
O

-

-I
W

u
i

J
£

lo.2'1-1rt>"e3Ô•aV
*
MooC
A
3E<uC

/3

^011,
(y-.£>

f
T

)

.L,
.!_

A
U

T
O

FL
O

W
 E

N
H

A
N

C
E

M
E

N
T

S FO
R

 D
O

C
U

M
E

N
T

A
T

IO
N

 A
N

D
 M

A
IN

T
E

N
A

N
C

E
2
3

U
J

Oa.-
or»*4OU

J
H

-
«au

erU
J

f-z
K»

U
J

a
. o

oa. K-
U

J
 i

X
a
. o

O

V
»

_J U
J

*- u
. a

:
>

>
-

U
J
 Z

^
 C

J
4

4
3

.
U

J
^
 a

 u
j

v
i

4

Q
C

V

I
^

a. 4
•—

»- c

»
-

a
 c

z
>

C
O

o

u
. o

a
ttc

4

V
)

V
I

Z

0r\i

U
J

*-
Uifau**at

XO
J

a.U
J

fjvtU
J

zocU
J

u
.

a
.

~
j

4

PTUPNP

oV
)

C
Ju

z
 •

<
 ec

„
 >

x. >
4

 X
OC
I

0
 3

O
 C

J
at ft
a. •*at^zua.uU

J
V

I

•4aaU
J

xâ4.J_
J

4U
J

M̂
.̂

OL
J

accV
I

to
-o

O

T

fx*
rr»

o

o
1*1

•-*

*

*

O
C

O

f

u

*
-

U
J

Q
F

**•
J*

O(XaD
O

cdonc•̂oh
ri

3c031£i_£3G
O

E

24
A
U
T
O
M
A
T
E
D
 M
E
T
H
O
D
S
 O
F
 C
O
M
P
U
T
E
R
 P
R
O
G
R
A
M
 D
O
C
U
M
E
N
T
A
T
I
O
N

*
ri

IUso
.

oo*y^*-uo^
-

<

cc.

i
~

•
J»
_J<

U
J

^
X

4

4^

IP^
X

—

L
L
i

^

•—

^
i/i

o
>-

oc
l/l

(U_>
c

»
/>

or o
D

O

*»^
»

vi
<

V

I/I

V
<z

l««•
c•*

<f
U

J
r

•
N

-
j«r—DCJC

zat3H
-

WC
L

O
t/1

 ^

£
7

.J
 O

4

Z

<
 *

-1J
 *

<. cc>
0
3
3

 >
V

)
ZX
.

Z

J

U
j C

_l
*—

It

l/> *
>V

)
»ac<^_»*ia>ooureuU
J

v>I/)4a.i/iKU
J

^>a.«n<O
b

om
*

<UC
D_>

toU
J1**AJLUo.

<Ioo•J
_
l

W

&

X
«a

c
c

a

•a
 ».

t_i
iu

 a

a
.

ft
jl

3
Eau»

Z

L
J

*
-

^
*a

UM
Z

a-

XIDOa.U
J

ZXC
L

U
J

<r
U

J
u
.

U
J

GC.

_
J

<

U
j —

o
 z

<
 a

t
3

 cc
U

J
U

"^
 V

»
1- 1
O

 L
J

a •£•
CD

H

3

*

l/l

r cc
U

J
 «»

V
)

V
I Xa

.
g1

fc

at<>z0a.onraM>ccU
J

U
J
ra.u.jjou
.
I^

•

.

-0O0W•M1

»
4

X̂lf»

-*

O

o

w
»

•
o

rj
—

o

m

(M

|ac
1

U
J

z

a
<

U

J
x

o
c^

^
'

»
*

X
»*

«*

c*
a

U
-

U
J

u.Jl

IMa£O0
0

s?3c'ao1^
j

eo

C
/0|

(*J

Iu.

A
U

T
O

FL
O

W
 E

N
H

A
N

C
E

M
E

N
T

S FO
R

 D
O

C
U

M
E

N
T

A
T

IO
N

 A
N

D
 M

A
IN

T
E

N
A

N
C

E
25

o•o

Oa.<o

Io
vta.oo

1caa,o

DC<
 O

z
 z

X

X

X
X

X

X
 X

X

 X
 X

X

0
0300

auz

zo
 t-

<J •-

o
 o

00 00

o•o
o

 o
CD

o

26 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

Additional information, such as an exit from within a loop to a statement external to the
loop, is also shown by the histogram. A nest of three loops is represented by three vertical
bars. The longest bar represents the initial DO loop, the next longest represents the second-
level loop, and the shortest represents the third-level loop. The second part of this listing
is the DO loop analysis summary, which specifies the loop level and the number of loops of
different levels used in the program.

Figure 9 is the assigned GO TO analysis by program. This listing presents the sequence,
page and box numbers, and statement number of all the assigned GO TO statements in a
FORTRAN program. Additionally, variable names used in the branch list for each assigned
GO TO are presented. The right side of the report lists all references to particular assigned
GO TO statements. If one of the variables in the branch list is not defined within the pro-
gram, this variable name will be listed with a dollar sign indicator. This is particularly help-
ful since undefined variables used in assigned GO TO statements will result in unpredictable
destinations for the branch. The logic analysis section of this report presents program condi-
tions that are probable program errors (e.g., undefined labels, unreferenced statements, un-
defined variables, or transfers into a DO loop).

Figure 10 is the statement usage and complexity factor report, which presents a weighted
summary of statement types within a program. On the left side of the report is the state-
ment type (such as assigned GO TO, computed GO TO, dimension, value, and computational)
and the number of each type within a program. The listing also contains the information
needed for the complexity factor analysis. The assigned weight factors and the weighted
values automatically assigned to the different types of statements. The user may override the
default values and assign his own weighted factors at execution time. The product of the
number of statements of a particular type and the weight factor for that type is the usage
factor. At the bottom of this report is a summary which shows the total number of state-
ments in the FORTRAN program, the total weight (the sum of all the usage factors), and
the program complexity (the computed value of the total weight divided by the total num-
ber of statements). Program complexities range from 0.1 to 0.9. A factor of 0.5 would indi-
cate that the program is of average complexity. The complexity factor is a useful guide for
effective programmer assignment.

HISTORY AND CONTROL OF PROGRAMS

A program represents a considerable asset to an organization because it is usually
costly to develop and is used to control functions within an organization ranging from the
performance of simple accounting operations to the control of space flight programs.

Many programs have a life span far in excess of 5 years. A case in point is the IBM 650
program, which was simulated on the IBM 1401 after the IBM 650 was removed. The IBM
1401 is now being simulated on the IBM 360 and will shortly be simulated on the IBM 370.
Rumor has it that the IBM 650 program was actually simulating an IBM 604 tabulating
function.

Programs survive intact over long periods of time because they are infrequently run
and, therefore, not economical to re program, or nobody really knows their contents (the
fear factor). In general, today's software technology is in such a deplorable condition for

A
U

T
O

FL
O

W
 E

N
H

A
N

C
E

M
E

N
T

S FO
R

 D
O

C
U

M
E

N
T

A
T

IO
N

 A
N

D
 M

A
IN

T
E

N
A

N
C

E
27

U
J

Oa
0f»0U

J

0̂

XD

ttU
J

Z
*—

U

J
t
t

O

£
•

a
 *-

u
j X

a. o
to _/ uj
—

 u
.

X

>

U

J
 Z

0

<

-i a

.
Z

C

. U
J

C
4

V

>

N

-

O

^

U

 >
•

0
^

C
C

V

-
U

J
or <

«r

^- c

t3
tt e

—

o
 o

^

Jz

r̂*\

O*

cc-
U

J
3
"

to*

^
Oz»_ttoOvk
U

a
t

U
)

Z
 u

.-
—

 a.
a. o
••

V

I
a. v>
occoca

— j

X0f̂fia.^U
l

_
J

a
*

Moc•*fr—a*-U
J

Ata4

•
J

O0oo«
••

oô••*orrvcco
•

tvorjO1*̂cpt**jil0o•i.'»••4n»

Oa0̂3v»wi/>_̂
j

<facCacccU
J

sc-U

•

C
J

"•z_J

zto*
4X•«
1<
. 4

.
CC

U
t

^5

•*

t
f
 <

a
 4̂«

j
a.JCU
J

oc^^^^zu"«
3

«
]

-
Ja.

U
J

tt>U
J

h
*

_
l

•

.,0.
o

 c
v
a

z
 z

-o-*
x
 a

j o
»
-

M

-
 O<

C
->

0

U
J

U

J
 O

t
J
 U

 ̂
Z

i£

 Z

cc ac
U

J U
J

•
u. u. v»
U

J
 U

J
 Z

at a
 <

.
z
 2

 a

S
3

S

iu
C

L
-J

O
eu

o
<

X

 J
"—

U

J
ac o

 o
«
 Z

 0u.
o

 o
 o

u
j Q

0

K
^
 0

 3
u
j u

j o
ac

Z
U

J *-
•

u. u. to
U

J

U

J
 ̂

tt

0

 <
X

z
 u

j ac
3

Q

C
I-

tMzCD rg *rt

UJ UJ

a
j tC

4
 <

•

a oc
<

 -^

o
 a

\j \j
^
 ̂

tt
CC

u
. u

.

CC
tt

z
 *

 z
3

3
3

n «•
U

J

U

-
H

-
H

-

CJ O
x

a
c
 a

egCcfl
C

J
L
^

Oo•oc.2?l/)*2iiO
S3oo

£

28
A

U
T

O
M

A
T

E
D

 M
E

T
H

O
D

S O
F

 C
O

M
PU

T
E

R
 PR

O
G

R
A

M
 D

O
C

U
M

E
N

T
A

T
IO

N

uo<o

orU
J

»—

U
J

OCL
t-

LU
 -L.

a
t. o

m

_
j

L
L
I

—
• u. ac

t/i
<
i

_
>

0

<
J

<

X

z

a
. u

j
«
i «

/i t-</»
z

»
-* >

«

O
C

<
/)

ec
<i

H
-

U
CC

U
l

o
 o

u
. u

fc

<<z

«/>ccoyu
.

£XU
J

_Ja.

0oo
,
 ,
 ̂

<

o
•• <x
X

^
^

O
C
o
 ̂

a
 z

O

U
J

O
k

X
!

U
J

H
-

•0H
-

l/»

O
h

-
o

o
o

'
>
'm

rn
tf>

o
o

>
^

n
o

^
tM

*
>

<
r<

j4
>

*
M

rn
iD

<
^

3
 u

>ec
o
 o

U
J

^

—

L

L

i
-

t
o

^
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O

W
l

*
-

<
 3

E

a
 z

cc cv
«-•

2
.

0
 Z

•J
0

-J

U
J

U

»
/»

U

.
O

Q
.

*-
O

U

J

U
l

l/>
>

o

u

o

^

>
-

h
-

O

Z

Z

0

Z
o

o

 u
j

a

u
j

z

_
i 2

u
>
 •-

X

tb

 Z
J

M

_
l

O

C
X

J

_
J

Z

>

1

t^

^
U

J
»

-
Z

<
^

L
iJ

h
-
 *

-

IU
<

«

&
U

.
j£

•
•

O
_

j
U

t
—

^

>
<

l
*
-
C

O

O

L
>

U

J

L

3

_

J

(
^
^
i
-
r
i
-
i

^

?

.
£

.
*
-e

;«
«

i(E
Z

«
—

 v
>

x
»

/
l
|
_

)
C

j
L

.
'^

'"
-
t
J

t
J

O
i
3

C
3

U

Z
O

U
J

U
j
^

^
-
O

C
f
c

^
^

<
'v

ju
o

c
.o

c
u

ju
.u

.c
*
-
«

-
'ja

c
o

c
w

"
'<

/»
*
<

^

Jt•
^o

•
tn

*••
>.
a

v
i

•a
h-

1

X
.

X

U
J

D

X
V

),
U

J
^

»—

<
a

»
-

o

^
acu

_i
a

<

•
0

1

£
•

fS
I•

0

C
-4

*

<•»
*

*4

•
C

O

t~

•
X

•

u

v

U
J

*
-

2

XU
J

-J

-J
4

a
.

*
-

X
u

u
^-

u

a

u

D
.

Sh
«

0o*r•a"o.
Eou•acaw>C

4
C

/3
3t .
c1*
—C
Q

^
^

0
01o

b
H

3E

»
IUX

AUTOFLOW ENHANCEMENTS FOR DOCUMENTATION AND MAINTENANCE 29

the latter reason Programs such as The LIBRARIAN, an adjunct to the AUTOFLOW system,
are available to monitor program activity; produce histories of changes; retain copies of old
versions of programs; protect programs against unauthorized use; and provide complete
indexes that give dates of modifications, reasons for changes, and other information neces-
sary for the orderly maintenance of programs and data.

UNDERSTANDING THE PROGRAM

The next questions to be asked concern the function, organization, and reason for
organization of a program. All these questions can be answered by "picking the brains" of
the programmer and the designer.

Given the aversion of most programmers to documentation, the tape recorder can be
a very effective means of obtaining vital information. It is probably much easier for many
programmers to sit down and record on a cassette all the details of program development
than for them to take the time to write everything down. The taped information can be
easily transcribed and converted to a machine-readable form for input to a system such as
TEXT EDITOR. This system can be used to produce a finished document for permanent
retention as the program history and enables a user to specify format, alter content, and
expedite production of hard-copy documentation with a minimum of manual effort. In
short, the programmer need only talk about his projects, and a final record of such dis-
cussions can be automatically produced.

The final issue that is critical for the overall effectiveness of documentation is whether
it actually reflects the current status of program development. Outdated documentation can
be only partially useful at best, and totally misleading at worst. The systems discussed,
AUTOFLOW, The LIBRARIAN, and TEXT EDITOR, assure all users that the documentation
will be not only accurate, standardized, and complete but also timely and readily available
whenever needed.

CONCLUSION

In summary, the critical needs in the area of effective program documentation involve
the integration of normal programming activities with the requirement for more comprehen-
sive documentation. The ultimate solution to these needs lies in automated documentation
systems that can reduce clerical effort on the part of the programmer, provide timely and
accurate documentation whenever needed, analyze program design and structure, expedite
maintenance and debugging operations, protect source programs from loss or damage, and
provide an understanding of the program. Computer programs can do this and can do it
better, faster, and more economically.

DISCUSSION

MEMBER OF THE AUDIENCE: I understand that AUTOFLOW is applicable to
FORTRAN; is it also applicable to other programming languages?

GOETZ: AUTOFLOW can be applied to all of the major languages in use today, includ-
ing second-generation programming languages and various types of FORTRAN.

30 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

MEMBER OF THE AUDIENCE: To your knowledge, does anyone else employ the
tape recorder in the way that you have discussed, and what benefits does it offer to program-
ming personnel?

GOETZ: Although I am certain that it must be used elsewhere, I cannot provide any
specific organization names. The technique makes it easier for the programmer to record
information. The information generated is actually of better quality than that which would
be produced if the programmer were required to write his documentation, since the pro-
grammer becomes too self-conscious when he is writing.

MEMBER OF THE AUDIENCE: Do you have any intention of writing a manual de-
scribing the entire procedure that could be marketed?

GOETZ: We have no current plans for doing that.
MEMBER OF THE AUDIENCE: You have mentioned that AUTOFLOW is available

for several different language systems. Does this diversity also extend to different computers?
GOETZ: AUTOFLOW is not available for many machines; it is available for the Spectra

70 series, the Honeywell series, and the IBM 7090 and 360 series.
MEMBER OF THE AUDIENCE: Is there an extended AUTOFLOW available for the

CDC 6600?
GOETZ: No. The AUTOFLOW system is written in assembly language and cannot be

transferred between machines. No AUTOFLOW was written for the CDC 6600. We do ac-
cept 6600 programs-assembly language and the various FORTRANS, I believe-but the
AUTOFLOW system does not operate with them. Also, the extended versions of the FOR-
TRAN analysis are hypothetical systems that have not yet been constructed. The flowcharts
and reports used in my paper were manually produced.

MEMBER OF THE AUDIENCE: What use is made of the tape recorder in the develop-
ment of the user documentation?

GOETZ: The program documentation, providing the internal logic of the program, can
best be obtained with the use of the tape recorder, but the user documentation is some-
thing quite different. It should be well organized and produced in a more formal way than
the program documentation.

MEMBER OF THE AUDIENCE: Do the American National Standards Institute (ANSI)
flowchart standards constrain the actual communication of information because of restric-
tions placed on the size and proportion of symbols and the lack of symbols needed to ter-
minate and then continue a line that is not related to the flow of the data or the logic of
the program? Since symbols in modern languages can have as many as 30 characters, the
standards, to a certain extent, inhibit communication because the programmer must limit
what he says.

GOETZ: Our current standards do not quite conform to ANSI standards. The width
of a process box, for instance, must be related to its length, according to ANSI standards,
but AUTOFLOW will produce a process box of virtually any size, so it could be 50 or 100
lines long. We are upgrading our system so that it will conform completely to ANSI stand-
ards, which will restrict or inhibit somewhat the flowchart produced. The user will then
have the option of having ANSI or AUTOFLOW standards.

MEMBER OF THE AUDIENCE: Do you consider the ANSI standards to be adequate
or archaic?

AUTOFLOW ENHANCEMENTS FOR DOCUMENTATION AND MAINTENANCE 3 1

GOETZ: We think that they are somewhat archaic, but they are standards, and we are
willing to conform. Therefore, we are producing the option.

MEMBER OF THE AUDIENCE: Consider a program that was written without AUTO-
FLOW in mind. If the program were then analyzed by AUTOFLOW, which would be the
most useful: analysis portion or the flowchart portion?

GOETZ: It would depend upon who would be using the report. For the original pro-
grammer, the analysis portion will suffice in many cases. For debugging and making program
alterations, the flowchart is especially useful and would probably be a necessary aid if those
functions were being performed by someone who was not the original programmer. The level
of the programmer's training would also be a consideration.

MEMBER OF THE AUDIENCE: To what extent is AUTOFLOW used to document
and maintain itself?

GOETZ: The entire system is written in Assembly language and contains chart codes in
the comments portion of the program. By putting these chart codes in the program and con-
sidering what the assembly language coding represents, we obtain very good narrative state-
ments and comments. The very low personnel turnover that we have reduces considerably
the need for producing flowcharts for maintenance purposes.

