
MAKING AUTOMATED COMPUTER PROGRAM DOCUMENTATION
A FEATURE OF TOTAL SYSTEM DESIGN

Allan W. Wolf
System Development Corp.

The "paper-mill" character of large-scale computer software systems is a condition that
is all too familiar to anyone involved in the computer programming business. Program manuals,
design specifications, administrative reports, system descriptions, and user's manuals are just
a few of the kinds of documents necessary to support a big software system. These docu-
ments, besides being complex, abundant, and subject to change, are frequently afterthoughts
to the systems they support rather than part and parcel of the system design. This factor,
when coupled with deadline and money pressures, unfortunately leads to another all too fa-
miliar condition—inadequate documentation.

Program documents are too often fraught with errors, out of date, poorly written, and
sometimes nonexistent in whole or in part. This condition need not exist, however. Data
stored on the printed page should be accurate, accessible, and helpful to the user, and it can
be if a systems approach and existing computer technology are employed. This paper de-
scribes how many of these typical system documentation problems were overcome in a
large and dynamic software project.

The project that will be discussed is the U.S. Air Force Satellite Control Facility
(AFSCF) orbital prediction and command system. It is both large and dynamic and consists
of about 2.5 million machine instructions in some 900 programs, over one-half of which are
being modified during a typical 6-month period. The documentation supporting this system
amounts to some 65000 pages, and an average of 5500 new and modified pages are pub-
lished each month.

At one time there were numerous system problems that could be attributed to a lack
of quality in the software documentation. More than 10 subcontractors produce the satellite
computer program subsystems for AFSCF operations. It is common to have several of these
agencies simultaneously produce programs that must interact (or interface) with each other
and also with existing software. Before the development of the current system, this proce-
dure led to problems in computer storage sharing, program calling sequence interpretation,
interface data design, and other areas. In addition, there were all the usual problems associ-
ated with poor documentation.

(1) Users did not know how to call or use existing programs. Required input parame-
ters and data could not be determined, and, in some cases, it could not even be
determined whether routines existed to perform a particular function. Expen-
sive computer time was wasted experimenting, or essentially duplicate routines
were produced because it was felt to be cheaper than the process of decoding
existing ones.

87

PRECEDING PAGE BIANK NOT FILMED

88 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

(2) Analysts could not determine whether existing routines were adequate for certain
applications. References to the mathematical bases for programs were lost, or ori-
ginal work was never documented.

(3) Maintenance and development programmers spent much time and money attempt-
ing to modify programs. Great savings could have been realized if there had been
adequate standards and conventions or system documents to provide some insight
into what had already been done.

As the AFSCF system grew larger and more complex, and as these documentation prob-
lems manifested themselves in various ways, it became obvious that they would have to be
solved, or the system would become totally chaotic. System Development Corp, (SDC) was
given the task of designing and developing a new software system to support AFSCF. There
were several design goals for the new system, but the one of primary interest for this paper
was the alleviation of the types of problems emanating from inadequate documentation.

To fulfill this and the other design goals, a total systems approach was used. For docu-
mentation, this means that each system component was designed with the documentation
problem in mind, instead of a procedure that designs the system and considers documenta-
tion as an appendage to be developed after and around the basic design. Naturally, there
were compromises because of conflicts among the several goals, but the final result was a sys-
tem that directly incorporated features in the basic design that overcame many of the previ-
ous documentation problems. The systems approach encompassed such items as—

(1) Configuration management (a closely monitored software management scheme
that guides products through the various design, development, and acceptance
milestones)

(2) Standards and conventions (guidelines, restrictions, and quality assurance meas-
ures covering many of the program design and development activities; application
handled by configuration management)

(3) Collection of program information into central data banks to which all system
components will have access, permitting easy and accurate documentation)

(4) Interaction among executive, compiler, central data banks, and configuration man-
agement (to provide a check and balance system that will prevent errors)

(5) Automatic documentation (to provide timely and accurate documents)

Figure 1, which will be discussed in detail in the section entitled "Configuration Manage-
ment," shows the flow of new products through the milestones in the AFSCF system. This
illustrates the interaction among some of the items just mentioned.

This paper shows how the system approach guarantees the accuracy of various portions
of the documentation, provides the user with a total picture of the system, provides calling
sequence and internal information on the various system programs, and, in general, eliminates
many of the problems that typically arise from poor documentation. Specifically, the follow-
ing elements will be discussed:

(1) The data-base definition, or common pool of information (COMPOOL), which is
a data base in itself, contains descriptions for every program and piece of interface
data (between programs) in the system. It plays a major role in the generation of
automated documentation, the simplification of program maintenance, and the
minimization of program development costs.

MAKING AUTOMATED PROGRAM DOCUMENTATION A FEATURE OF TOTAL SYSTEM DESIGN 89

ASSOCIATE OK: -.;.C70R
(PROGR.V! :'SiG:v! & PP.ODUCTION)

I
PROGRAM DtSIGN DOCUMENT

Coiitai,-,s Program
Mati'.ercatics, Calling
Soquonc£, and System
Interface Information
Including New & Existing
Comcool Information

PROGRAM AND PROGRAMMING
DOCUMENT

INTEGRATION CONTRACTOR
) (PRODUCT QUALITY ASSURANCE)

| CRITIQUE DESIGN PREPARE
•*• SYSTEM INPUTS FROM

INTERFACE INFORMATION

I
Critique for Design and Document
Conformance to System Standards,
Prepare New Compool Inputs, Verify
that Usage of Old Items is Correct

INTERFACE DOCUMENT CONFIRM-
ING ALL SYSTEM INTERFACES
IN PROGRAM DESIGN

I
Document all Compool Information,
Calling Sequences, etc.

ASSEMBLE COMPOOL

I
Incorporate New
Compool Items

COMPILE PROGRAM

CRITIQUE PROGRAM
MING DOCUMENT

Critique Program Document for
Conformance to System Standards

I
PLACE PROGRAM
ON MASTER TAPE

T

TAPE CONTENTS
SET/USED
DOCUMENTATION

TURNOVER SYSTEM TO AIR FORCE
FOR OPERATIONAL SUPPORT

Figure 1 .—Product flow through AFSCF configuration management milestones.

90 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

(2) The configuration management scheme, although not specifically a part of the
software system, is so basic for insuring product quality that any discussion of
documentation would be incomplete without a description of it. How production
and quality assurance functions check and balance each other, and how new prod-
ucts flow through this controlled scheme will be discussed.

(3) The computer-produced documents, when combined with manually prepared por-
tions of the design and programming documents, provide high-quality, total-system
documentation. When and how these documents are generated and the information
that they contain will be discussed.

DATA-BASE DEFINITION

There are five basic elements in the AFSCF orbital prediction and command system
that will be referenced throughout this paper. These are COMPOOL, the library tape, the
master tape, configuration management, and the system programs. Of these, COMPOOL is
the most fundamental, for it provides, in one centralized location, the basic definitions, ref-
erences, and formats used by all the programs in the system.

Specifically, COMPOOL consists of names and calling sequence descriptions for all
AFSCF system programs, along with descriptions of all system intercommunication data.
Initially, COMPOOL takes the form of a punched card deck containing all the necessary de-
scriptive information in the prescribed format. A special COMPOOL assembly program then
processes these cards and compiles the data into tables that are an efficient input for the
system compiler. During the COMPOOL assembly, a tape is produced that contains all the
information on the input cards. This tape forms the basis for later COMPOOL updates, and
it also serves as an input to a program that generates all the COMPOOL documentation.
Data in the COMPOOL are organized according to the following hierarchy: blocks, tables
(or arrays), and items, blocks being the gross data sets and tables and items being subsets of
the blocks. As has been mentioned, COMPOOL also contains program descriptions and
calling sequences.

Figure 2 is an example of the program calling sequence that is a part of the COMPOOL
output. The explanation for labels a to e are as follows:

a: The notation SUBR indicates that the data that follow are for a subroutine (com-
puter program). All programs are identified by SUBR.

QlnAYS,A*lN=THETAGR.THETADOtl>I * X A T O M I C TIME TO
SIOfcREAL YlHE AND RAY6 CONVERSION SUOKOUTINE, X"S()8VK5323<

d COMPUTES SIDEREAL TIME (RIGHT ASCENSION AT V^£
GREENWICH) AND SIDEREAL RATE (EARTH ROTATION SOtiVKboSfbOO

>w HiTP} FROM AN INPUT ATOHIC TIME. */ S08VK532600
ITEM AOAVS 7T78jl>J **CURRENT OFFSET TIME** XXANO RATE PROCXKS08AN532700
ITEM AMIN IF! J X*ATOMJC TIMt. FL HINS FROM . OFFSET*/ S08AN532800
ITEM THETAGR rl $ X*SIDEREAL TIHEIRT ASOAT GRNCH.RADNS MOD 2Pi*i<so8AN532voo
ITEM THETADOT\F/S **SIDEREAL (EARTH ROT) KATE. RADl ANS/OAYX* S08AN533000

Figure 2. -Program calling sequence (excerpt from COMPOOL document).

MAKING AUTOMATED PROGRAM DOCUMENTATION A FEATURE OF TOTAL SYSTEM DESIGN 91

b: DOME represents the name of the program (the ¥= symbol precedes all COMPOOL
names).

c: These are input and output parameters. All parameters to the right of the =£ sign are
output by the program.

d: These are format definitions for the input and output parameters. The symbols I,
48, U, and F designate such information as floating, integer, signed, and the number
of bits occupied by this item. The general data structures are defined in a system
standards and conventions manual.

e: These are sequence numbers that permit updating the data definitions on tape with-
out having to work with the entire card deck.

The definitions, enclosed within the =£ ¥= symbols, are not required by the software system
but are supplied for almost all entries. This is, of course, one of the capabilities that makes
the COMPOOL document so valuable to users of the system.

Figure 3 shows a sample of the program interface data. The explanations for labels a and
b are as follows:

a: The notation BLK indicates a data block, V indicates the type of block (variable
length), and R means that the data are automatically retrieved and stored at set inter-
vals during a run to allow for restarts and subsequent runs. All entries are either
SUBR or BLK entries, although the type of block and the retrieval information may
vary. The balance of the information describes the data and format of the BLK in a
form that is similar to the calling-sequence item descriptions in figure 2. All of the
format information is defined in the system standards and conventions manuals.

b: The symbols C and I to the right of the sequence numbers indicate changes to and
insertions in, respectively, the previous version of COMPOOL, which was used to
produce this one.

TABLE
BEGIN
ITEM *OAJNO
ITEM *ASTAB

ITEM *ASTAT

ITEM *A£N(iIN

H 48 RV I **ORBIT ADJUST TAbLE PLUS POINTERS FOR
SUBROUTINE. *OOAR BLOCK. CONTAINS OROIT ADJUST
INFORMATION FOR A VEHICLE. **

V 64 P 10 J

I 8 U 0 0 S **OAJ NUMBC-R**
S 2 V(1NERT]AL) V(GEODETIC) V(GEOHAG) DBS

/^STABILIZATION TYPt**
S 2 V(PLANNEO) V(LOADED) V(EXECUTED) 0 10 J

STATUS OF THIS ADJUST
S 4 V(HAIN) V(SEC) V(RV1> V(RV?) V<RV3> VCRV4)
VCKV5) V(RV6> V(AMAIN) V(RHAIN) V(RSEC) 0 12 S
X((ENGINE TYPE**

ITE« XATIM F 1 0 $ **TIME. FL H1N FR OFFSET**
ITEM *ADUK F 2 0 S **BURN DURATION, MINUTES**
ITEM *AtU F 3 0 (SLUGS.SNAILS.StUGS) 1 **TOTAL VLH MASS

**SNAILS«<LBS.MIN2/E.R.)
ITEM *AFFN F 9 0 (SLUG*MN.SNAIL*HN,SLU(i*MN) S **FU£L FLOW

RATE

S06VK199100
S08VK199200
S06VK199300
S08A01994GO
S08AN199SOO
S08VE199600
S08AN199700
S08AKH99BCO
S08AN199900
S08AR200000
S08A02001CO
S06A0200200
S08A02003CO
S08AN200400
S08AN200500 A

**S08"S?00600UP C\
**S08WS20070CUP I
S08WS?D0800UP CI

**S08WS200900UP I/

Figure 3.—Program interface data (excerpt from COMPOOL document).

92 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

CBLK
ITEM
I.TtM
ITEM
ITEM
ITEM
ITEM
ITEM
ITEM

XPHYCON
XUE
XAU
X8LATE
XECC
XECLPT
XECLS1N
XECLCOS
XFE

141 CONSTANTSXX
ER,KM"5>S XXEARTU POLAR RADIUSXX

DEARTH KADI I/ASTRONOMICAL UMTXX

^S&Wl&ICITYXX
EG.RAD.DEG> $ XXECLIHTIC ANGLEXX

ilN Cir"fHE ECLIPTIC ANGLEXX
XXCCS Or THE ECLIPTIC ANGLEXX

XXFLATTtNING. EARTH, 1/£PSXX

S08ANi;l6;..Oi:

S08AN216300
S08AN216400
S08AN216500
S06AN216600
S08AN216700
SOSAN216800

Figure 4.-System constants information (excerpt from COMPOOL document).

Figure 4 shows an example of the system constants information (CBLK), which is simi-
lar in form to the VBLK interface data (fig. 3). The C means constant: If a program refer-
ences an item in this block, it is automatically loaded by the system executive each time the
program is operated. The set of three units in the item definition (examples noted by a) in-
dicates input, internal, and output units, respectively, for this item. These are nominal and
can be overridden on the program request cards.

It should be recognized that COMPOOL does not contain any system data itself. For
instance, the PHYCON block in figure 4 does not actually give the values of the constant,
but only the description. The constants will ultimately be placed in a block by the input of
their values and names (e.g., 10.25 and OMEGA, for Earth rotation rate) into a utility pro-
gram that uses the assembled COMPOOL to determine the proper block, format, and units
for the items. The PHYCON block would then be stored on tape for later use by the opera-
tional programs.

The operational programs will not use COMPOOL once they are compiled, however.
When a program is first written, COMPOOL items are referenced by name. When the com-
piler encounters one of these COMPOOL data (or program) references during a compilation,
the COMPOOL assembly tables are consulted, and the proper machine code is inserted for
manipulation of the data. No computer program in the system, then, contains any interface
data definitions, and the program does not directly reference any COMPOOL definitions,
it references only the data names.

A number of controls insure the integrity of the COMPOOL document. First, the over-
all design of the system rules against the inclusion of programs in the system that are not in-
cluded in COMPOOL. For instance, both the executive and compiler print error messages if
a program is used that does not exist in COMPOOL. Second, interface data items cannot be

'used at all if they are not in COMPOOL before compilation. (However, test and development
COMPOOL's may be used before formal submittai of the program for inclusion in the sys-
tem.) Third, the configuration management system, discussed in the next section, insures
that all programs and data in the system are properly entered in COMPOOL. Consequently,
the COMPOOL document is a current, thorough, and accurate guide to the descriptions and
calling sequences for all system programs and the descriptions and formats of all interface
data. COMPOOL and the COMPOOL document simplify program access, use, and mainte-
nance in several ways:

MAKING AUTOMATED PROGRAM DOCUMENTATION A FEATURE OF TOTAL SYSTEM DESIGN 93

The document is always current because it is produced automatically with each COM-
POOL update; it does not depend on the update being done manually. (The actual document
production is discussed in the section entitled "Automated Documentation.")

Users can quickly ascertain whether a system program already exists to meet a certain
requirement and, if it does and can be called by another program, what calling parameters
are necessary. The document excerpts discussed in this section indicate the various COM-
POOL entries and the amount of information that is available to the users.

Availability of the COMPOOL document helps maintenance and development person-
nel decipher portions of programs that reference COMPOOL data. Also, well-documented
and accessible data definitions aid considerably in the production of new and modified
programs.

The ability to reference data by name instead of having to include actual values in a
program eliminates many mistakes and insures consistency in program results. This, in turn,
aids in keeping the program and documentation in close harmony.

Constant data can be changed in one place, and all program references are automati-
cally made to the new value. This is because the data can only be called by name in the pro-
gram. The compiler converts this name to a location reference, and all references are made
to this single location. The actual value of the constant need never be stated in the program,
it need only be given in the library tape document (described in the section entitled "Auto-
mated Documentation"). The automated documentation of constants in a single location,
then, is made possible by COMPOOL.

COMPOOL table or format changes require the recompiling of the programs that ref-
erence the altered items. However, programmers are not burdened with manual modification
of data and definitions in the several programs that may require recompilation. All such
modifications are accomplished automatically by the interaction between the COMPOOL
and the compiler. Thus programmer errors are eliminated.

The next section will show how the configuration management scheme for the AFSCF
software interacts with the software to keep the system user's information sources current
and accurate.

CONFIGURATION MANAGEMENT

The COMPOOL document and COMPOOL itself are extremely valuable aids in the
standardization and use of the software system. They offer no guarantee, however, that
programs will conform to all system standards or that other program documentation will be
adequate. To insure that deliverable products are complete, correct, and consistent, checks
on product development, adequacy, and compliance with schedules and standards and bal-
ances among the skills, methods, and resources available to do the job effectively and effi-
ciently are needed. In AFSCF operations, these checks and balances are provided by a con-
figuration management system.

Configuration management refers to the planning, direction, and control of all factors
affecting the state of the system. Some examples of configuration management tasks in the
AFSCF system are new program scheduling, review of inputs and determination of COM-
POOL content, determination of programs to be included on the master tape, and quality

94 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

assurance through the critique and testing of new programs and documents. The balance of
this section explains who fulfills the configuration management role in AFSCF, how prod-
ucts flow through the check and balance system, and what some of the specific controls are
that provide for quality documentation.

Agencies and Responsibilities

The customer, while having ultimate authority over the system configuration, lacks
adequate manpower to directly manage the overall effort. At the same time, the program
production, or associate, contractor is too involved with costs and schedules to provide the
necessary unbiased support, particularly in the area of quality assurance. Consequently, a
third party, known as the integration contractor, is employed to support the customer's
configuration management efforts, particularly in the quality assurance and product
acceptance areas.

For the past 9 years, SDC has fulfilled this role for the AFSCF software system. The
specific tasks performed in this integration role are the detection, definition, and resolution
of interface problems (between contractors, programs, and hardware); checking individual
programs for conformance to design specifications, standards, and conventions; integration
of the programs into a complete computer program subsystem; and validation of the sub-
system to insure that all elements of the package are operational and compatible.

Product Development

The checks and balances, then, are between the integration contractor and the associ-
ate contractor. Figure 1 delineates the roles of these two contractors as new computer pro-
grams pass through the AFSCF product development cycle. The configuration management
scheme, based on U.S. Air Force Exhibit 61-47B, was designed by SDC specifically for
AFSCF. The following are some aspects of this scheme that aid in securing quality documen-
tation and a quality software system.

The mathematical development for a program is presented in the program design docu-
ment (step 1, fig. 1). The integration contractor has time to evaluate and digest this infor-
mation (steps 2 and 3, fig. 1) before the actual program release. The integration contractor
also reviews the design document to insure that provision has been made to place new inter-
face data elements in COMPOOL, to properly use the existing COMPOOL information, and,
in particular, to insure that no data are imbedded in the program that should be COMPOOL
definitions.

When the integration contractor receives the program (step 4, fig. i), it is manually
compared with the programming and design documents. The two products must conform
before the program is accepted. This conformance is also required for design logic or any
other portion of the design document that could cause problems in later development or
analysis work. Programmer analysts rather than computer programs are used to perform
these checks. This work is done manually for the simple reason that although the automatic
flowchart program can track any arithmetic and logic, no automated method exists that will
deduce mathematical derivations or the logical bases of certain techniques from the program
(computer code) itself.

MAKING AUTOMATED PROGRAM DOCUMENTATION A FEATURE OF TOTAL SYSTEM DESIGN 95

The conformance between programs and the COMPOOL items they use is imposed by
the system itself. The COMPOOL inputs are prepared from the design document (steps 2
and 5, fig. 1), and the program is then compiled with this COMPOOL. This procedure auto-
matically forces conformance between the program and COMPOOL and also guarantees that
the program matches the design document (in the COMPOOL area), the design document
being the source of COMPOOL inputs. It follows, then, that COMPOOL, the COMPOOL
document, the program, and the design document are all consistent.

Quality Control Measures

The system standards and conventions are enforced throughout the review of the docu-
mentation and the final program acceptance. There is a single standards and conventions
document for the AFSCF orbital prediction and command system. Briefly, some of the
areas covered by this document are-

(1) COMPOOL inputs—conventions, format standards, necessary description infor-
mation, block sizes, etc.

(2) Data cards—format standards, use of special columns, error processing conven-
tions, etc.

(3) Documentation—format and content standards, program calling sequence, illus-
tration conventions, etc.

(4) Executive interface—illegal instruction standards, input/output (I/O) usage, pro-
gram size requirements, successor call and nesting standards, compiler usage, etc.

(5) I/O usage—choice of units, access methods, record sizes, internal tape label infor-
mation, lines per page, and heading information required by system

(6) Messages/error detection—requirements for error messages, error message output
devices, system error messages, etc.

This list is only a sample of the areas covered; however, it indicates the extent to which
the system is governed by standards and conventions. How these restrictions and guidelines
aid the documentation task can be illustrated with an example of input parameters for time.
Suppose that the time "1330 hours, 59.2 seconds, 3 June 1970" was an input parameter on
a data card. The possible variations in input format for these data are almost innumerable.
Some of the possibilities are:

3 6 70 13 30 59.2,

3 6 1970 1330 59 2,

3 JUNE 70 13 30 59.2,

JUNE 3 1970 1330 59 2

Definition of a standard input format for this example accomplishes several things. The pro-
gram documentation is easy to read, the interpretation of each of the parameters comprising
the time is unnecessary because there is only one format, and typographical errors are of
little concern because a single format removes all ambiguity or misunderstanding. Users can
quickly format data cards without fear that a particular program does things a b'ttle

96 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

differently. Finally, a common system program can be used to convert the time input to
different reference bases, thus relieving the programmer of a task that would have to be
tested, with both the test and program logic requiring documentation. The development
and enforcement of system standards, then, can be a great step forward in the solution of
documentation problems. The application of standards, incidentally, is generally enforced
by the program system as well as by the configuration management scheme. This is because
many of the standards have to do with interfaces among existing system programs; violations
in these circumstances generally result in error messages and unsuccessful computer runs.

When a new or modified version of a program is delivered to the integration contractor,
that program must have a unique identification to differentiate it from all other versions of
the same program. That identification is known as the "mod." The mod identifier is com-
piled with the program and is automatically transmitted whenever the program is loaded
onto the master tape. Because the configuration management scheme "freezes" the program
upon formal submittal to the system (by directing that the programs be stored on specially
controlled tapes), all listings bearing the same mod number are guaranteed to be identical
and are an accurate reflection of the program bearing that mod on the master tape. Similarly,
the master tape has an identification that is printed out on all computer runs, logs, etc. This
identification changes whenever a change occurs in the master tape.

Automated documentation is produced and maintained for each version of the master
tape. This documentation shows the exact contents, including program mods, of the tape.
Because each configuration of master tape and program is unique and because each is cov-
ered by documentation, all guesswork concerning the identification of a configuration un-
dergoing maintenance or troubleshooting is removed. The high degree of interdependence
among the system programs in the AFSCF system makes knowledge of the correct config-
uration particularly essential because different versions of the master tape may be current
at the same time in support of different projects.

Many phases of configuration management, such as change control and scheduling, are
not discussed here, not because they are unimportant to documentation, in fact, they are
quite important, but because their importance is somewhat less tangible and more difficult
to explain. The aspects that are presented, however, show how a strong quality assurance
endeavor, backed by software expertise and well-defined standards and procedures, can
greatly improve the quality of system documentation.

AUTOMATED DOCUMENTATION

The AFSCF automated documentation touches on all elements of the system: COM-
POO_L, master tape, library tape, configuration management status information, and all the
computer programs. Figure 5 shows these elements and the inputs and outputs that com-
prise the automated documentation scheme. A major factor in the functioning of the auto-
mated documentation is the centralization of data: the master tape contains all the pro-
grams and configuration information, the library tape and COMPOOL contain data normally
found only in the individual computer programs, and the status information provides com-
plete details for the three areas of status shown in figure 5. Along with the centralization of
data, of course, the accuracy of the documentation depends on the use of the strict config-
uration management methods described in the previous section.

MAKING AUTOMATED PROGRAM DOCUMENTATION A FEATURE OF TOTAL SYSTEM DESIGN 97

PROGRAM DESIGN DOCUMENTS

1 ' 1»

DATA
SYSTEM

CONSTANTS

DATA BANK OF
DESIGN CHANGE ALL SYSTEM STATUS DATA

INFORMATION

SOFTWARE ERROR &
CORRECTION REPORTS^

PROGRAM, DOCUMENT, &
ERROR CORRECTION
DELIVERY REPORTS

DESIGN
CHANGES

ERROR
REPORTS

PRODUCT
DELIVERY
STATUS

iTION

1
j COMPUTER PROGRAM DECK

j
1

If

R PRODUCED
TAPE DOCUMENT

R PRODUCED
FLOW DIAGRAM

BASIC SYSTEM ELEMENTS

COMPOOL
MASTER TAPE
LIBRARY TAPE
CONFIGURATION MANAGEMENT

EXECUTIVE
MONITOR

SYSTEM PROGRAMS UTILITY PROGRAMS
COMPILER
OPERATIONAL PROGRAMS

Figure 5.-Automated documentation scheme.

98 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

The documents depicted in figure 5 are not necessarily useful as separate entities but
are quite useful when taken together as a system document. For instance, the library tape
document provides the names and values of system constants, but the COMPOOL document
provides the actual description of the data. The master tape documentation is supported by
the configuration management data base, which describes significant features of the new pro-
gram mods and the status of all errors and corrections affecting the tape. COMPOOL and
library tape documents and the automatic flowcharts complement the manually produced
mathematic and logic documents of individual programs. The balance of this section de-
scribes some of these computer-produced documents.

COMPOOL Documentation

The actual production of the COMPOOL document is governed by a program that ac-
cepts the list tape (effectively a card image tape), places heading information on the page,
and then prints approximately 50 lines of card images. The heading information is requested
by a program control card and consists of date, document name and number, starting page
number, etc. This program is general purpose; it will accept all AFSCF system list tapes as
input and will allow sources of input to be alternated so input cards can be used to annotate
information coming from the tape. Figure 6 is an example of the heading output of this
program.

Library Tape Documentation

In most systems, the library is the respository for programs, but, in the AFSCF system,
the library tape contains the system constant information. The basic form of the input to
the library tape program is punched cards, with a list tape being produced along with the
library tape itself. Both tapes are processed by the same program that produces the COM-
POOL document. Figure 7 is a sample of the library tape document. All the element names
are COMPOOL entries, and the sample shown here conforms with the COMPOOL entries in
figure 4.

Master Tape

The master tape contains all the computer programs in the system. During the compila-
tion of a program, the compiler sets up tables containing information on all COMPOOL ref-
erences (both programs and data). These tables are then transferred to the master tape when
the program is loaded onto the tape. The program that documents the master tape references
these tables, and, along with a log of the programs on the tape, it can produce complete set/
use references for all programs and data items. This output can then be placed in the indi-
vidual program documents (see fig. 1) for subsequent use by the system users and mainte-
nance personnel. Samples of the master tape documentation are shown in figure 8.

System Status Documentation

Figure 5 shows the three areas of status information that are handled by computer
documentation. The types of data in the data bank include

2. o *

MAKING AUTOMATED PROGRAM DOCUMENTATION A FEATURE OF TOTAL SYSTEM DESIGN 99

SYSTEM DEVELOPMENT CORPORATION
15 JUNE 197Q 44 TM-<l_)-4164/3i«/00

Figure 6.-Page heading produced by automated documentation program.

ELEMENT *PHYCON/G S ADO 062700
rf3E 0.6.556775t»4 S ADO 062800
XAU 0.234547106+5 & ADO 062900
X9LA.TE 0.9933054E+0 S ADC 063000
XECC' 0.81820fc-i S ADO 063100
*ECLPT RAO 0.40"»206212 S ADG 063200
X c C L S I N 0.397881208 S ADG 063300
XcClCOS 0.917436945 S AOQ 063400
XFE 0.298250E+3 S ADC 063500

Figure 7.-Values of system constants (excerpt from library tape document).

(1) Design changes—descriptions of all proposed design changes, identified by control
numbers. Status conditions include accepted for future implementation, rejected,
and pending action.

(2) Error reports—descriptions of all reported errors in the AFSCF software system,
identified by control number and program or by document number, priority,
responsible agency, etc.

(3) Product delivery status—description of all program, document, and program cor-
rector deliveries, identified by control number, delivering agency, applicable error
report numbers for correctors, etc.

Special report-generating programs employ these data for regular status reports and
user information documents when new master tapes are released to the customer. These
programs can produce reports with data sorted by control number, status (open or closed
problems, scheduled or rejected design changes, etc.), program names, priority of problem,
etc. The programs also compile status summaries for the three areas of information. Sample
outputs are shown in figure 9.

Flowchart Documentation

The individuality of programmers affects flowcharts more than any other portion of a
program document. Although symbols can be standardized, the level of detail is very diffi-
cult to regulate, flowchart accuracy is almost as difficult to monitor as program accuracy,
and the flow invariably reflects what the programmer wants the program to do and not
necessarily what it does. An automatic (computer) flowcharter overcomes all these prob-
lems; it is consistent in level of detail and reflects exactly what the program does. Further-
more, it is available as soon as the program is available, which is much more timely than the
typical manually produced diagram.

100 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

9,5

'-lii.i-D "!.',3T5« TAPE DIRECTORY PASE 7

-"^v-j 7r,o-;C (''3^26'-") .•<if5'J;3 WS

P301 D C C O O <^i
=;JT^ANCES x.;

C 6 0 6 0 (r>

ELEMENT

'LK I*

LOG OF MASTER TAPE CONTENTS

I
?:f'LTfIX

*3 (I6LK) »J

ENVIRONMENT LISTING FOR PROGRAMS

2JUL7.J

2JUU7C

X I C P

>- 'Pt -YC^M (C 3 L K / J

X T 4 . J IS

_DY xDOPt XJfiTE

XLJIVcRSE XDOri\' U XDfitK

1C IS REFERcvCED bY

XSYS9ES

3S (T3L<) * IS REFERcvCED bY

XJiD U xlJEi-.SiL u XDI i<E ij

REFERENCES TO PROGRAMS

Figure 8.-Excerpts from computer-produced master tape documentation.

The AFSCF system has an automatic flowchart program (FLOW) that is currently ap-
plied to a majority of the system program-documents.

FLOW is designed specifically to work with the system compiler (JOVIAL) and to
analyze JOVIAL language statements. It will recognize direct, or machine, code, but it
merely sets these off in a box on the diagram.

FLOW accepts prestored tape or card decks (of the object program), and a printer then
outputs the flowchart. A more ideal output device for a flowcharter is a plotter, but there

MAKING AUTOMATED PROGRAM DOCUMENTATION A FEATURE OF TOTAL SYSTEM DESIGN 101

•••• sun"*'? or onr»s • CIOSEU ••>.

0»r PROG.NAKt MID-HOD ?«!• S T A T U S >U8?r!». Oft lCi ORF i)*TE 5/U QATE HQM OISPO- PAOOiNAHE MIO*MOD NTH ••CHANCED DA T A

Il»2 STKON

I1I9I (OtpLOT

P74UI "tD CI.OSEO

U0» CLOSED

12100 son CLOSED

E/U

E/U

0*1

CO,

sue

SDC

soc

06/07/69

11/13/69

07/20/70

07/20/70

NE»

"6"

Hi"

tO SITION S/U

'U.l fE'lD «C»DIO

P11,L 'E«0 (DEPLOY

m*a TOO .

aiouE TOO •

T21$E TOO

<Ot»LOI T]10C CO" C^OStO OP> «OC U/30/69 07/14/70 «E« Pll.l PENH <D€PtOT T2HE Tot

SUMMARY INFORMATION

• •• DRFuS ON OPERATIONAL SUBSBTBrffi CLOSCD SINCE 8/14/78 • 27 •••

HlOH PRIORITY • 1
Z2280

MEDIUK PRIORITY • 13
22023 Z20SO Z2118 Z2138 £2l.4B 221*7 Z»163 22166 22172
22182 Z2235 22238

LOW PRIORITY • 13
2l8»» Z20l3 22022 221*8 jaiS* Z2l»i Z2234 Z82S7 J225J
22267 Z2271 22292

SUMMARY INFORMATION

<OECOR 076 CO £05 Z16«3 02/0«/70
OCT»L CORRECTORS TO KDECOR TO CORRECT THIS ORr. TwESt-OCTALS SUBMITTED
17-10-69 HILL CORRECT THE PROBLEM ONLY AFTER1 A NEK COMPOOL IS BUILT TO
INC"E*SE THE NUMBER or BITS IN »P»SREV. « CCR HAS BEEN SUBHITTEO.
S/U 02/04/70 DRF Z1643 KBECOR EOS 074 RD MTH SUBMITTED

EXPLANATION ACCEPTED. CLOSURE MILL BE POSTPONED UNTIL INTFGRATION
or cc».

STATUS FOR SPECIFIC ERROR REPORT

Figure 9.-Excerpts from computer-produced system status reports.

are no plotters available in the AFSCF hardware inventory. Examples of the construction of
various flowchart symbols made with printer characters are shown in figure 10.

FLOW can produce flowcharts at several levels of compression. The initial level is ap-
proximately one box per input statement. Starting at this level, a set of seven rules is
applied to collapse the diagram. The amount it can be collapsed depends ultimately on the
logic of the program. In any case, the prime value of this capability is that the amount of
collapsing can be controlled at many interim points between the first and ultimate

1 02 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

levels. Thus, flowcharts can be produced that are shorter than the initial level but are still
at a level of detail that fully reflects the program logic.

FLOW produces the charts in a form that is suitable for inclusion in a document. The
output is small enough that it is suitable for the conventional 8V2- by 1 1-in. page, and all
heading information, such as document number, page numbers, and date, are provided.

The program offers options for processing only portions of a program; complete state-
ments in JOVIAL can be output rather than their translations, etc.

The basic advantage gained by the use of FLOW (or any flowcharting system) is that
it permits timely and accurate logic flows of the program to be made. In the AFSCF soft-
ware system there is the additional advantage of being able to cross-reference FLOW output

127

.0809, ,»,
.• *.

,• IS •.
.• CHN<$IS> »;YES -—

».GR 7 <TRUE» .•»»»»»C08i3>
*. .» ••--

*. , . OCTERR
. .*

* NO

,0810, **•«••••*••••••••*•••«••••*
* SET OCONI INCREMENT I •
• BY 1. •
••••»••••••*•*•••»»••**•••

t« IS •,
YES ,* I LO LCOt •'. NO

<TRUE»

*t I
•

.0813. OCTERR 4 2 ENTRIES
••••••«*•«•••*•••»••••»»»*
••ENTER PROCEDURE ••
••TUOERR, »•

,0814, 4 2 ENTRIES
•••••••••••*•••••••«•*••

* RETURN FROM PROCEDURE *
••*•••••••••*•••••••«••»

•••••••••••••••••»**•**«
• PROCEDURE FuDERR *
••••••«•••*•*••••«•••«

4

Figure 10.-Automatic flowcharter output.

MAKING AUTOMATED PROGRAM DOCUMENTATION A FEATURE OF TOTAL SYSTEM DESIGN 103

with the library tape and the COMPOOL documentation. This provides the equivalent of an
annotated flowchart with considerably more information content than is available from flow-
charts of self-contained programs.

CONCLUSIONS AND RECOMMENDATIONS

The benefits and advantages of the AFSCF system, thorough, accurate, timely, and
automated program documentation, are features that would be desired by the users of any
system. The question of how to relate the design concepts in this paper to other systems can
be considered with the following three facts concerting both this paper and the AFSCF
system.

First, the purpose of this paper is not to show specifically how a system should or
must be designed but rather to show what can be accomplished by integrating documenta-
tion into the basic design. It is unlikely that the same design would be the best approach in
any other system, but certainly the principles of design, such as centralization of data, rigid
control of the configuration, and program-imposed standards, are valid in other systems.

Second, the AFSCF system was designed under ideal circumstances in that the com-
piler, executive, monitor, and configuration management techniques were all part of the
design effort. This is a tremendous advantage over having to develop a system around al-
ready existing compilers and executives, the most common approach to system design.

Finally, the cost of a potential error is so high that AFSCF invests very heavily in "in-
surance" procedures. The rigid configuration management controls described in this paper
are a good example of that. Certainly, it is expensive to critique and review every document
and intensively test every program brought into the system. Controlling the master tape,
library tape, and COMPOOL is also expensive, but the cost of losing one satellite because
of software errors makes the error "insurance" an excellent investment. There are some
systems for which errors may be less costly and would not warrant the type of procedures
that AFSCF employs.

In spite of the specialized aspects of the AFSCF system, the design concepts are valid
for any system. For instance, the centralized data approach is highly desirable, but it is not
necessarily practical to implement this approach in an already existing system. However, a
data base containing all the desired information for documents can be compiled by requiring
that information be incorporated in each program in the form of "pseudodata" (information
not required by the compiler, such as comments). These pseudodata must not affect operation
of the system compiler. A preprocessing program could then be used to extract this informa-
tion for documentation. Further, setting standards for the pseudodata and incorporating
legality checks on these standards in the preprocessor would help one secure information
with a minimum of manual intervention.

Standards and conventions are of value even if they are not rigidly enforced; this is
particularly true for documentation content and input formats. The mere fact that programs
are produced under standards can provide the user with a good deal of information, even
without the use of any specific program documentation. Furthermore, programmers will
generally conform to reasonable standards and conventions if they are available. The real
interest in automated documentation is not the production of documents; it is making

1 04 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

information available, and standardization can help make information available with fewer
documents.

Finally, whether the system is large or small, designed from scratch or only added, the
key point is to plan the documentation and not let it just happen. The planned approach,
along with some application of the principles presented here, will guarantee better quality
documentation for any software system.

DISCUSSION

MEMBER OF THE AUDIENCE: Does the master tape documentation consist of the
text or is it a set of module text descriptions?

WOLF: Basically, it is an index, containing program names, dates of loading, number
of cells used, etc. One can go from the master tape documentation to the COMPOOL docu-
ment, which contains the text. The several documents discussed, taken together, constitute
the system document.

MEMBER OF THE AUDIENCE: How often do you produce a master tape?
WOLF: At the present time, one is produced every 2 months, although the need for

documentation in certain circumstances will occasionally shorten this period to a few days.

