
SYNTAX-DIRECTED DOCUMENTATION FOR PL360*

Dr. Harlan D. Mills
IBM

PL360, due to the efforts of Niklaus Wirth (ref. 1), is a phrase-structured programming
language which provides the facilities of a symbolic machine language for the IBM 360 com-
puters. It is defined by a recursive syntax and is implemented by a syntax-directed compiler
consisting of a precedence syntax analyzer and a set of interpretation rules, as discussed by
Wirth and Weber in reference 2.

Syntax-directed documentation refers to an automatic process which acquires program-
ming documentation through the syntactical analysis of a program, followed by the inter-
rogation of the originating programmer. This documentation can be dispensed through re-
ports or file query replies when other programmers later need to know the program structure
and its details.

The interrogation of an originating programmer consists of a relisting of the program
text, with certain syntactic entities, which are classified as documentation units, set off ty-
pographically in lines and labeled with an ordinal coordinate system and a sequence of ques-
tions about these documentation units. These questions are generated automatically by com-
pleting prestored skeleton questions with coordinates and/or programmer-generated identifiers.
The programmer's responses to the questions are stored and indexed to these documentation
units for retrieval.

A key principle in what follows is that the programming documentation process is man-
aged solely on the basis of the syntax of programs. The semantics of the documentation, as
embodied in programmer responses to interrogation, are not analyzed by the process except
in mechanical ways such as keyword indexing. In this way, a programmer's responses are
treated as "black messages" in the process, in analogy to the idea of a "black box." That is,
a programmer's responses are requested, accepted, stored, and later retrieved with no seman-
tic analysis of their contents.

SYNTACTIC PRELIMINARIES

We use the notation and definitions for PL360 in reference 1. In defining documenta-
tion units and lines, the following device is used. First, denote the grammar in reference 1
by G, which defines the language PL360, L(G). This grammar G will be transformed finitely
into a new grammar G* such that

L(G*) =

*Copyright © 1970, Association for Computing Machinery, Inc. Reprinted by permission.

105

106 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

<BLOCK>
<CASE ST>
<FUK 5T> :: FOR <ASS STEP> <UHIT> <00> <SIAIEMENF*>
<FUNC 06CL7>
<FUNC I0>
<FUNC
<GUTU ST>

IF <COND IHEN> <IROE PAKT> <STATEMENT»>

and such that G* contains syntactic en-
tities we want to classify as documenta-
tion units and use to define lines.

ir vwunu inert.* VIKUt KAKIJ *.i I * I t«tni »^ - . -. _ _IF <COND rneN> <siATE«eNr.> The basis tor the transformation or
"ROC OECI> ::. <PROC HD6> <s tATEHENr»> G into G * is a finite number of elemen-

tary steps as follows. If X is any finite
sequence of tokens and/or syntactic en-

<IF THEN ELSE ST> ::
<IF THEN ST> ::

1 <K REG A S S >
1

<PKOC>"C":""> tary steps as follows. If X is any finite<SEG OECL> ::* <SEG HEAO> BASE <K REG>
<SYN OCJ>

<HHILE ST> ::« <HHILE> <CONO D0> <STAT

Figure 1 .-Documentation units. side of a production rule in a grammar
Gk , and C4> is not a syntactic entity in

Gk , we can define a new production C4> ::= X and substitute C4> for X in the right side of
any rule we please in G*, to get a grammar G*+l . It is clear that L(G^+^) = L(G^) by this
construction. Then, we consider a sequence

where n is the (finite) number of additional syntactic entities we want to be defined in G*
which are not in G.

We note that even though additional syntactic entities can easily be introduced in a
grammar while retaining the identical language, the question of keeping it a precedence
grammar (ref. 2) is a delicate matter. This general point is not pursued here. However, we
use only transformations which label the entire right side of a rule; in this case the grammar
obviously retains its precedence properties.

In what follows, the grammar G is augmented to G* just to provide a basis for invoking
additional interpretation rules which define documentation files and generate questions. It
will also be apparent that the same device can be useful in extending syntax processing be-
yond documentation to questions of execution control and dynamic storage allocation in
multiprogramming operating systems. For example, better use of core may arise if core is
allocated to the machine code responding to syntactic entities such as "for statements" and
"while statements" rather than simply arbitrary "pages" of machine code which may break
up such natural units of execution.

DOCUMENTATION UNITS

We classify as a documentation unit any right-hand side of a rule which reduces to one
of the following syntactic entities in reference 1 :

<S!MPLE STATEMENT)
(STATEMENT)
<DECL>
(PROGRAM)

There are 1 9 such documentation units given in figure 1 . If the right-hand side is already
defined in G, it is used directly. Otherwise, a new syntactic entity is defined, with the under-
standing that G is augmented by each such definition, as described above.

SYNTAX-DIRECTED DOCUMENTATION FOR PL360 1 07

In effect, this classification of documentation rules is a convenience for identifying
productions whose recognition in an analysis corresponds to having additional interpretation
rules that deal with documentation processing.

Given a PL360 program, we consider every realization of such documentation units,
which can be structured on the basis of syntactic membership, as follows. A documentation
unit is a member of a second documentation unit if its program text is a subset of the pro-
gram text of the second. It is an immediate member if it is not a member of any third docu-
mentation unit, itself a member of the second.

The relation of immediate membership defines a nested structure of documentation
units in a program, beginning with the program itself as the highest level documentation
unit and continuing through "blocks," "compound statements," etc., to "single declarations"
and "single statements" at the lowest levels. This nested structure can also be described as a
rooted tree, with the program as the root, and other documentation units as remaining inter-
mediate and endpoint nodes in the tree.

Notice any given statement or declaration may be included in the program text of
many documentation units. In fact, every documentation unit is a member of the program
and of every other documentation unit whose text contains it.

SYNTAX-DEFINED PROGRAM LISTINGS

Next, we consider the question of listing programs written in PL360 in a standard way
for readability and referencing during programmer interrogation and later examination.
When programmers make an informal effort to arrange their programs for readability, they
typically start each documentation unit, as defined above, on a new line and use indentation
to correspond in a general way with syntactical nesting in the program. We recognize that
the problem is a subjective one, but we give a syntax-defined listing algorithm which is be-
lieved to satisfy the intuitive intentions observed in informal programming efforts.

For the purpose of typographical listing, we partition a PL360 program or procedure
into a string of substrings. Each substring is to be a printed line, and the string of lines con-
stitutes a listing of the program. Associated with each line are two numbers: one which
specifies its order in the program or procedure, and one which corresponds to the indenta-
tion (or starting column) of the line. If a line exceeds the width of paper available, its con-
tinuation is further indented a standard amount.

The partition of a PL360 program or procedure into lines is defined by marking the
starting text for each documentation unit, and each label, BEGIN, END, ELSE, and . (dot)
symbol. The lines are numbered consecutively. The indentation number is the level of nest-
ing of the documentation unit it begins, if any, based on syntactic membership as described
above. The only lines not beginning a new documentation unit are BEGIN (in CASE state-
ments), END, ELSE, and . (dot). In each case they are indented according to the level of the
documentation unit which they help define. Labels are given the indentation level of the
program or procedure being listed.

To refer to a line from outside a procedure, we qualify the line numbers with the pro-
cedure name. While the concept of program is defined in PL360, no provision is made for
naming a program in the syntax.

108 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

For convenience, we introduce a
new basic symbol PROGRAM and the
redefinition

<PROGRAM>:: =
PROGRAM <ID> (STATEMENT)

which permits the naming of programs and
reference to documentation units by line
numbers, qualified by program names.

CANONICAL DATA FILE

For convenience in documentation
processing, we define a canonical data file
as consisting of a record for each documen-
tation unit of a program or procedure dec-
laration. Its function is not only to store
relationships between various syntactic en-
tities but also to provide data for driving
interrogation, report generation, and query
processing concerning the program or pro-
cedure. Each record describes three proper-
ties of the documentation unit: its coordi-
nates in the program text, its syntactic type,
and an identifier list. The coordinates are the
first and the last lines of the documentation
unit (which may be the same when text is
contained in a single line). The syntactic
type is the entity identified as a documen-
tation unit in figure 1. The identifier list
depends on the syntactic type—denoting
identifiers which are declared, assigned
values, used in assigning values, used in con-
trol logic, etc.

It is clear that a deeper syntactical
structure, described only informally here,
is relevant below the generic level of

documentation unit. For example, the identifier list itself is definable in terms of productions
within a documentation unit, and such productions determine whether each identifier is
being declared, assigned a value, used in a computation, used in control logic, etc. Thus the
additional interpretation rules required for documentation processing are distributed through-
out the syntax, all the way down to the identifier level, but are not discussed in detail now.

<BLOCK>
Ql PURPOSE OF BLOCK I COORDINATES)7
SI BLOCK (COORDINATES! IS TO (RESPONSEI.

<CASE ST>
01 PURPOSE OF CASE STATEMENT (COOROINATESI?
51 CASE STATEMENT ICOOROINATES) IS TO (RESPONSE!.
02 CASE SELECTED AT I COORDINATE!?
52 CASE SELECTED AT {COORDINATE! IS (RESPONSE!.

<FOR ST>
Ul PURPOSE OF FOR STATEMENT I COORDINATES!7
51 FOR STATEMENT (COORDINATES! IS TO IRESPONSEI.
U2 FOR CONDITION AT (COOROINATE I 7
52 FUR CONDITION AT (COORDINATE) IS TO (RESPONSE).

<FUNC DECLT>
Ql FUNCTION OPERATION AT I COORD I NATE I 7
SI FUNCTION O P E R A T I O N AT (COORDINATE! IS TO (RESPONSE} .

<FUNC I0>
0) PURPUSE OF FUNCTION S T A T E M E N T AT ICOORDINATE!7
SI FUNCTION S T A T E M E N T AT (COORDINATE! IS TO IRESPONSEI.

<fUNC ST>
Ul PURPOSE OF FUNCTION S T A T E M E N T AT (COORDINATE)?
SI FUNCTION S T A T E M E N T AT (COORDINATE) IS TO (RESPONSE) .

<GOTQ ST>
Ul CO TO WHERE AT (C O O R D I N A T E) 7
SI AT ICnnRQINATg l CONTaCL GOES TO (RESPONSE! .

01 PURPOSE 01- IF THEN ELSE STATEMENT (COORDI NATE SI 7
51 IF THEN ELSE STATEMENT AT (COORDINATES! IS To IRESPONSEI.
02 IF CONDITION AT (COORD!NATE)7
52 IF CONDITION AT (COORDINATE! TESTS (RESPONSE!.

<IF THEN ST>
Ql PURPOSE CF IF THEN STATEMENT ICOOROINATES 17
51 IF THEN STATEMENT ICOORDINATESI IS TO (RESPONSE).
U2 IF CONDITION AT I COORD I N A T E I 7
52 F CONDITION AT (COORDINATE) TESTS IRESPONSEI.

<K REG A s>
Ul ALUE OF «(0>l AT (COORDINATE I 7
SI ALUE OF KID>! AT (COORDINATE) IS (RESPONSE).

<NULL ST
Ul URPOSE OF NULL S T A T E M E N T AT ICOORDINATE 17
SI ULL S T A T E M E N T AT (COORDINATE) IS TO (RESPONSEI.

<P«OC OE L>
01 UTHOH UF PROCEDURE «IO>!7
51 UTHOR OF PROCEDURE «ID>! IS (RESPONSEI.
02 URPOSE Of PROCEDURE?
52 ROCEOURE [<ID» IS TO (RESPONSE).
U3 NIT AL OATA?
53 NIT AL DATA OF PROCEUURE «IO» IS (RESPONSES).
U* ROC SSING LOGIC?
S» ROC SSIKG LCGIC OF PROCEDURE «ID>! IS TO IRESPONSEI.
05 INA OATA?
S5 INAL DATA OF PROCEDURE l<10» IS (RESPONSE).

St. EFkRENCES FOR PROCEDURE «ID>I ARE IRESPONSEI.
<PROC ID

01 URPOSE OF PROCEDURE STATEMENT AT (COORDINATE I?
SI RUCEOURE (<PROC I0» AT (COORDINATE) IS TO IRESPONSEI.

<PRUGRAN
Ql UTHOR OF PROGRAM «1D»7
SI UTHOR OF PROGRAM «IO» IS (RESPONSE).
02 URPOSE OF PROGRAM 7
W HOGRAM «ID» IS TO (RESPONSEI.
0 3 N M I A L D A T A ?
SJ NIIIAL OATA OF PROGRAM «IO» IS IRESPONSEI.
04 PROCESSING LOGIC?
S* PROCESSING LOGIC OF PROGRAM «IO» IS TO (RESPONSE).
05 FINAL OATA?
55 FINAL OATA OF PROGRAM «IO» IS IRESPONSEI.
at DEFERENCES?
56 REFERENCES FOR PROGRAM «IO» ARE IRESPONSEI.

<SEG DECL>
NO QUESTION
NO STATEMENT

<STN OC2> IFOR EACH IDENTIFIER DECLARED!
01 SYNONYM «IO>! ID «ID>! AT (COORDINATE! 7
SI SYNONYM «IO>! TO «ID>I AT (COORDINATE) IS IRESPONSEI.

<T CELL ASS>
Ql VALUE OF «ID>! AT (COORDINATE!7
SI VALUE OF «ID>! AT (COORDINATE! IS IRESPONSEI.

<T OECL7>
Ul «(0>l AT (COORDINATE!?
SI «IG>I AT (CCDROINATEI IS IRESPONSEI.

<«MlLE ST>
01 PURPOSE OF WHILE STATEMENT (COORDINATES!?
51 WHILE STATEMENT (COORDINATESI IS 10 IRESPONSEI.
02 NHILE CONDITION AT {COORDINATE! 7
52 WHILE CONDITION AT (COORDINATE! TESTS (RESPONSEI.

Figure 2.—Skeleton question/statements for
documentation units.

SYNTAX-DIRECTED DOCUMENTATION FOR PL360 1 09

SYNTAX-DIRECTED INTERROGATION AND RESPONSE EDITING

We consider an automatic interrogation process, which uses the canonical data file to
complete prestored skeleton questions with program text coordinates and/or identifiers.
The interrogation process proceeds through the file, a record at a time, and generates a
series of questions from each record, depending on the syntactic type and identifier list
found therein. The responses to such questions, made by the programmer, are indexed to
the records which generated them.

A set of skeleton questions associated with different documentation units in PL360 is
displayed in figure 2. At the end of each interrogation, the programmer is given a final oppor-
tunity to volunteer any additional information.

Associated with each skeleton question in figure 2 is a skeleton statement which con-
tains the programmer's response to that question as one of its parts. These statements, filled
in with responses and other data from the canonical data file, as shown, represent basic unit
messages which can be assembled into reports and query replies.

The construction of skeleton questions and skeleton statements to elicit and edit pro-
grammer responses is a substantial and still open problem. It is evident that careless ques-
tioning can bury programmers in questionnaires and alienate them to the whole idea. Limited
experience (refs. 3 and 4) has indicated that skeleton questions should be terse and highly
selective. An involved question, which seems reasonable to read once or twice, can have a
very negative effect on a responder when repeated many times, even though this kind of
question requires no more effort to answer than a terse one. Thus a first principle in question
construction is that the burden of understanding what the question means must be put into
a separate orientation course, outside the interrogation itself, and the questionnaires must
be kept as short as practicable.

A second principle in question formation is that program text itself must be depended
upon for later programmer reference. The questions and responses are intended to illuminate
the program text, not to replace it. Otherwise, questions become too involved with points in
plain sight in the program text.

Similarly, the order of questioning is also important. Some experience indicates that a
"top-down" sequence is a better basis for questioning than "bottom-up." Fortunately, due
to the structure of PL360, interrogating documentation units in the order in which their
starting text appears gives a top-down approach, which seems easy to follow and reference
from both syntactic and typographical viewpoints.

It has been suggested that the matter of question formation might be related to the
problem of proving the correctness of programs. Naur (ref. 5) discusses an approach to prov-
ing the correctness of programs by "general snapshots," e.g., the state of all variables at
various points in programs. These general snapshots could be defined at the entries to and
exits from documentation units. This raises the possibility of forming such questions as:
"What variables can be modified in this documentation unit?" and "What relationships be-
tween the variables must hold (a) on entry to or (b) on exit from this documentation unit?"

At the moment, no suitable way of forming such deeper questions for automatic in-
terrogation is known. But this is an area where future progress may be possible.

1 10 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

DOCUMENTATION PRODUCTS

As already noted, two principal documentation products are-

Documentation reports: complete descriptions, in a prescribed format, of programs or
procedures.

Query replies: partial reports in response to queries made by programmers familiar with
programs or procedures to probe specific details.

It is to be noted that both interrogation and query reply processing lend themselves to
conversational techniques (ref. 4). The canonical data file can be used to drive a conversa-
tional interrogation of a programmer quite directly. Similarly, the same file, with an asso-
ciated file of indexed programmer responses, can be used to generate "computer-assisted
instruction courses" automatically when the subjects are particular PL360 programs or
procedures.

It should be emphasized that the documentation discussed is addressed to a programmer
who understands PL360 and will be reading the PL360 text concurrently. The documenta-
tion products are not intended to replace this text as the ultimate authority of what the
program does. Rather these products are intended to supplement the program text with
perspective, motivation, identifier meanings, processing rationale, etc. In this way it is ex-
pected to increase the power and precision with which a programmer can deal with the pro-
gram text, to modify it, to verify its functional logic, and to assure the integrity of a pro-
gramming system containing it.

The documentation products will not themselves fill needs of higher level documenta-
tion related to user directions, instruction manuals, etc. However, technical writers con-
cerned with such higher level documentation should find these products extremely useful
as source material.

DOCUMENTATION REPORTS

We define a standard documentation report with three parts:

(1) Program text
(2) Edited responses
(3) Cross-references

The program text is the relisted, labeled text used in interrogation. The typographical
arrangement of this relisting itself shows the overall syntactic structure of the program and/
or procedures.

The edited responses, listed in the same order as the questions which generated them,
proceed through the text in a systematic way so that one can refer back and forth between
the relisted text and the responses efficiently in reading them together. It is expected that
the program text and edited responses will be read together by programmers. It would be
feasible to intersperse the responses, as comments, in the text, but it seems more desirable
to treat them as separate documents with easy interference facilities.

In fact, as a programmer becomes more familiar with the details of a program, the
presence of extensive comments tends to inhibit the visual perception of program structure

SYNTAX-DIRECTED DOCUMENTATION FOR PL360 1 1 1

and logic: first, by simply taking up space and expanding the size of material to be looked
at; and second, by interrupting and masking typographical features corresponding to the
syntactical structure of the program.

The cross-references assemble identifer, function, and procedure usage into cross-
reference tables. Identifier usage in the text is categorized into "declared," "assigned,"
"used in assignments," and "used in control." It is expected that these cross-references serve
most of a programmer's needs for evaluating and/or modifying small programs or procedures;
for example, to assure that all implications of a changed data declaration are accounted for.

Note that such cross-references can be assembled directly by interpretation rules dur-
ing program analysis at the time various productions are recognized but then are referred to
only informally here.

One particular use of cross-references in PL360 of some potential importance is the
recognition of commonality of data references. In particular, the use of identifiers synony-
mous with hardware registers, which add considerably to the readability of PL360 text, can
be found with the aid of such cross-references.

QUERY REPLIES

It is possible to generate a documentation report for any size system of programs or
procedures, of course, as a sequence of documentation reports of all its component pro-
cedures and programs. However, where documentation reports for a small procedure can be
examined rather easily for any information in it, the human eye and mind cannot take in
the scope and details of a large system so readily. Thus simply listing a documentation re-
port of a large system, while perhaps of value as a hard-copy reference, is still unsatisfactory
for a programmer seeking to understand, modify, or augment a procedure interacting with
many other parts of the system. This may be even more critical for a system manager, who
is trying to verify the correctness of a new procedure and to assure that no ill effects occur
in the system in accepting that new procedure.

This very problem has motivated the foregoing acquisition of documentation as re-
sponses to specific questions so that the documentation can be indexed down to the state-
ment and identifer level. Thus the documentation in a large system can be enhanced by the
capability for automatic selective retrieval and analysis of documentation. In this sense, the
problem of a programmer is not so different from other information systems where data
must be stored for retrieval from many points of interest.

A query language for accessing the type of data in these documentation files can be
readily imagined and is not defined in detail here. Its output could simply be a selection of
edited responses, as defined above. As already noted, such a query capability would lend
itself well to conversational methods of programmer access to the documentation. Its capa-
bilities should include, for any given documentation unit, finding identifier usages, extract-
ing "purpose or' responses for all its members, identifying all branch points, and locating
all references to keywords in responses.

PROGRAMMER ADAPTATION

In the final analysis, it is expected that the important issues in making such a syntax-
directed documentation process effective will be the soundness of the structural approach,

112 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

PROCEDURE NAGICSOUARE IR6I;
CUMMENT THIS PROCEDURE ESTABLISHES A HAGIC SQUARE OF ORDER N, IF N IS

000 AND 1 < N < 16. X IS THE MATRIX IN LINEARIZED FORM. REGISTERS
RO...R6 ARE USED. AND REGISTER RO INITIALLY CONTAINS THE PARAMETER
N. ALGORITHM ItB COMM. ACH 5 I AUG. 19621 ;

BEGIN SHORT INTEGER N$UR:
INTEGER REGISTER N SYN ROi I SYN Rl, J SVN R2t XX SYN R3.
IJ SYN K4. K SYN R5:
NSQR :- N; Rl :« N • NSOR; NSQR : = Rl;
1 :» N » 1 SHRL 1: J : = N;
FOR *. :• 1 STEP 1 UNTIL NSOR DO
BEGIN XX :• I SHLL 6; 1j :* J SHLL 2 * XX; XX :B XIIJ);

IF XX -.« 0 THEN
BEGIN I :* I - I: J s- J - 2;

IF 1 < 1 THEN I :- I * N;
IF J < 1 THEN J :« J * N;
XX :» I SHLL 6; IJ :• J SHLL 2 » XX;

END:
X I I J I :* K;
I :- I « 1; IF I > N THEN I :« I - N;
J J« J * 1; IF J > N THEN J :» J - N;

ENU;
ENO

Figure 3.—Procedure Magicsquare (ref. 1, p. 53).

PROCEDURE HAGICSQUAHE IK6I;
BEGIN

SHUKT INTEGER NSOR;
INTEGER REGISTER K SYN RQ,
IJ SYN R4. K SYN R5;
NSUR :- N;
Rl := N * KSQR;
NSJK := Rl;
I ;» N * 1 SHRL 1;
J :* N;

SVN R2, XX SVN R3,

BEGIN
XX :
I J '

30
31
32
33
34

I SHLL 6;
J SHLL 2 * XX;

xx =• xtui;
IF XX -.= 0 THEN

BtGIN
I :» I - 1;
J :- J - 2;
IF I < 1 THEN

1 := 1 * N;
IF J < 1 THEN

J :• J + N;
XX :- I SHLL 6;
IJ :- J SMIL 2 *

END:
xc IJ) :* K;
I :« I * l;
IF 1 > N THEN

I :* I - N;
J :« J » l;
IF J > N THEN

J :- J - N;
END;

Figure 4.—Syntax-defined listing of Magicsquare.

rather than niceties of question phras-
ing or report formation. This is be-
cause programmers, as human beings,
have a large capacity to adapt to mat-
ters of English usage but a small capac-
ity to deal with extended program syn-
tax structures in detail.

In the interrogation process, pro-
grammers will soon learn how to phrase
their responses gracefully in matters of
English usage such as parts of speech
and tense simply by examining the
edited responses which their answers
generate. Also, they will learn how the
details of their rationale should be al-
located among responses by experi-
ence in interrogation and by examin-
ing the resulting documentation
reports. It will still take ability to doc-
ument programs, but an ability which
is adapted to the automatic process
being used to acquire and dispense
the documentation.

For example, a programmer new
to the process may respond to a ques-
tion about a block by going into the
details of statements inside the block.
After going through several interroga-
tions and realizing he will be ques-
tioned about the included statements

later anyway, he will learn to confine his response about the block to the block as a unit.
Similarly, by learning that conditions for branching IF statement will be taken up sepa-
rately, a programmer, following the treatment of the IF statement as a unit, will address his
response to the IF statement itself.

In using the documentation of others, a programmer, from his own experience as an
originating programmer, will be aware of the questions which generated the responses. He
will know, simply by examining program text himself, what questions were asked about any
documentation unit or identifier he may be interested in and where they were asked. Thus
he can exert considerable intelligence in selective queries of documentation files.

AN EXAMPLE

Figures 3 to 9 simulate the foregoing methods on a sample PL360 procedure, found in
reference 1, showing the relisting and interrogation, the canonical data file, a set of responses,
a documentation report, and, finally, a set of query replies.

T r

SYNTAX-DIRECTED DOCUMENTATION FOR PL360 113

CUUh-
DINAIt

UUC.

UNIT
I U E N T I F I E R S

17
10
17

NSUK,

Hi N
NSUK .

Figure 5.-Canonical data of
Magicsquare.

FILE KEY QUESTION

Figure 3 is a PL360 procedure named by Magic-
square, just as formulated by Wirth (ref. 1), including
the typography. This procedure, adapted from an
ALGOL procedure published in the Algorithm depart-
ment of Communications of the ACM (ref. 6), builds
magic squares of odd order n when 1 < n < 16.

Figure 4 is a syntax-defined and labeled relisting of
the same PL360 procedure Magicsquare, less comments,
with its typography determined by the rules already
given for recognizing lines and their indentation. This
relisting is independent of the typography of the pro-
gram text in figure 3. It is expected that such a standard
yet flexible form of program text will, in itself, help
programmers read each other's programs.

Figure 5 shows the contents of the canonical data
file generated by procedure Magicsquare. All further
interrogation, response editing, and other documenta-
tion processing will use this canonical data file and not
the program text. This particular file contains 31 rec-
ords with some 157 separate items of data in them: two
coordinates, a syntactic type, and an average of about
two identifiers per record.

Figure 6 gives the syntax-directed interrogation of
Magicsquare, using the canonical data file and the skele-
ton questions of figure 2. There are 48 questions in all,
which refer to the coordinates of the relisted program
text and represent a systematic coverage of the text.
A final question gives a programmer an opportunity to
volunteer additional information not already solicited
by the previous questions.

Figure 7 contains a set of responses to the inter-
rogation of figure 6. There is a file key associated with
each question, which is used to label responses so that
they may be indexed to the proper questions. The
author has presumed to speak for "programmer
Wirth" in constructing these responses.

Figure 8 provides a resulting documentation re-
port in the three sections described already: source
code, edited responses, and cross-references. For a
short procedure or program such as this one, it is

expected that a documentation report itself will be sufficient to allow a programmer to
find out anything he wants to know about the procedure or program.

34, 1

34,3

34,4

34,9

J4,6

34, 1
J,
if.
4,
<•,
4,
<,,

4,
t>.

/ 7.
e a,

10,3

0, J
1. 3
2.1
3.1
4. 1
5.2
5.2
6,2
1,1
8 1
9 2

1 2
I 2
2 2

4 2

7 2
8 2
a 2
9 2
0 3

31 3
31 3

f

,
,
,
,
,
,
,
,
,
,

.

,

•

.

(

,
,
,
,

t

,
32 32,
1.34.7

UtHOR OF PROCEDURE MAGICSQUARE?

N1T1AL DATA?
RUCESSING LOGIC?
IN L D A T A ?
EF RENCES7
UM OSE OF BLOCK 2,34 ?
SO AT 3 ?

A 4 7
A 4 ?
A 4 7

X T 4 7
J T 4 7

A 4 7
ALUE OF NSQR AT 5 7

ALUt OF NSQR AT 7 7
ALUE OF

URPOSE 0
OR CONDI
UkPOSE U
ALUE Of
ALUE OF
ALUE OF
URPOSE O
F CONDI T
URPOSE 0
ALUE OF
ALUE OF
URPOSE 0

UftPOSE 0
F CONOIT
ALUE GF

ALUE GF

ALUE OF
URPOSE O
F CONDI T

VALUE GF
ALUE GF
URPOSE 0
f CONDI T
ALUE GF

AT d 7

FDR STATEMENT 10.33 7
ION AT 10 7

bLOCK 11.33 7
X AT 12 7
J AT 13 7
X AT 14 7

IF THEN STATEMENT 15,25 7
UN AT 15 7

BLOCK 16,25 7
AT IT 7
AT 18 7
IF THEN STATEHENT 19.20 7

IF THEN S T A T E H E N T 21,22 7
ON AT 21 7

AT 22 7

J AT 24 7

AT 21 7
IF THEN STATEHENT 28.29 7

ON AT 28 7
AT 29 7
AT 30 7
IF THEN STATEHENT 31,32 7

ON AT 31 7
AT 32 7

Figure 6.—Syntax-defined interroga-
tion for Magicsquare.

114 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

FILE KEV RESPONSE

2.34.1

4.4,1

HBER 20, 1966.

HE ORDER, N, OF THE MAGIC SUUAHt DESIRED.
'AIN DIAGONALS

ARftV OUT THE PROCEDURE MAGICSQUARE.
IE NUMBER OF ENTRIES IN THE MAGIC SQUARE.
It ORDER INUNBtR Of ROMS AND tLUUHNSt OF THt MAGIC SQUARE.

INTERMEDIATE VALUE N FOR NSQR.

8,B,1 INITIAL VALUE FOR I.
9,9,I INITIAL VALUE FOR J.
10,13,1 FILL MAGIC SQUARE W I T H INTEGERS.

MAGIC SOUARE.

l*.2».l KEG

26,26.
27,27.
26.29.
28,29,

IS COLUMN INOEX IN CORRECT MANGE 7
COLUMN INDEX IN CORRECT RANGE.
X. OfFSCT FQft ROM 1 Of WAS1C SQUARE.
I OFFSET FOR ROW I AND COLUMN J OF MAGIC SQUARE.
FINAL INTEGER VALUE AT POINT 1, J IN MAGIC SOUAME.
RON INDEX STEPPED ALONG DIAGONAL.
RESTORE RON INDEX TO CORRECT RANGE. IF NECESSARr.
IS RON INDEX IN CORRECT RANGE?
ROM INDEX IN CORRECT RANGE.

Figure 7.-Interrogation responses for Magicsquare.

NAGICSQUARE PROGRAM T E X T

DURE MACICSQUARE fR4 l i
IN

SHORT INTEGER NSUA:

• NSOR;
Rli

• 1 SMRL I;

< 1 STEP I UNTIL NSQR DO

IF J < I THEN
J I- J * Nl

II I- I SHLL *(
U I

21
29
10
11
32

END I
XI IJI I- Hi
1 i- I • I t
IF I > N THIN

I i- I - Nl
j t. j + n
IF J > N 1MEN

J i. J - Nl
ENOI

t END

UGICSOUARE EDITED RESPONSES

UEttMBER 20, 1V64.
PROCEDURE MAGICSQUARE IS TO ESTABLISH A NACIC SQUARE OF ORDCR N. IF N

S ODD AND I < N < 26.
NITIAL D A T A OF PROCEDURE MAGKSOUARE IS THE ORDER, N, OF THE MAC1C
QUtut DESIRtO.
ROCESSINC LOGIC OF PROCEDURE MACICSQUARE IS TO FILL SQUARE MTRII

SUCttSIVE INTEGERS ALOHG CERTAIN Ol ACQMALS AMD T«FI •.,tiY«>&>»--.£.
0 Chi^t HMilC'lOUAKE PROPERTY. THt MATRIX TO BE FILLED IS ASSUMED
O CONTAIN ALL ZEROES INITIALLY.
INAL DATA OF PROCEDURE MACICSOUARE IS THE MAGIC SQUARE X 45 A MATRIX
N LlNEARlJEO FROM.
EFtREMCES FOR HAGICSQUARE ARE ALGORITHM 111, CONN ACM, AUGUST 14*2.

ki M. KRAUCH1K. MATHEMATICAL RECREATIONS, » 1W,
LOCK 2,14 II TO CARIT OUT THE PROCEDURE NACICSQUARE.
SQR AI 3 IS THE NUMBER Of ENTRIES IN THE NACIC SQUARE.

AT 4 IS THE ORDER I NUMBER OF ROMS OR COLUMNSI OF THE MACK 3

161C SQUARE.
t IME

ASIC SOUARf.

HUE FOR IERO.
I AT * IS THE X OFFSET fOR ROM I, COLUMN J OF NAGIC SQUARE.
AI * IS TME NEK1 INTEGER VALUE &QIN& INTO THE MACIC SftUiHt.

II Uf OF NSQR AT •, IS INTERMEOIAIE VALUE FOR NSQR.
'LUt Of Rl »r 6 IS TEMPORARY STORAGE OF NSOR.

THE NJtGIC SQUARE.
VALUE OF I At a IS INIT *L VALUE H3* I.
VALUE OF J AI 4 IS INIT AL VALUE FOR J.

fALUE Of IJ it 13 IS X OFFSET FO* ROM I AND COLUMN J OF MACtC SQUARE.

HI DIAGONAL

i IS TO FIND STARTING LOCATION FOR NEXT DIAGONAL TO BE

AI I/ IS MED ROM INDEX OF S T A R T I N C LOCATION.
AI l» IS NEn COLUMN INDEX Of STAHtING LOCATION.

ATEMENT 14,20 IS TO HtMORt ROU INCEX TO CORRECT RANGEi

IlStS IS ROM INOEI OUT OF RANGE?

RANGE.
If NECESSARY.

21.H.2 If CONDITION IT 21 USTS IS COLUMN INDEX IN CORRECT RANGE?
22,ii,I VALUE OF J AI 22 IS COLUMN INDEX IN CORRECt RANGE.

24.;*^l VALUE Of IJ AI II IS I O F F S E T fOH *OM I Of COLUMN J OF NACIC WUAHf.
2»,lb. 1 VALUE Of XII JI

DIE .
VALUE Of I
IF TMEU STA
MtCtSSW).

II 2* IS I O F F S E T FOR MOM
U AT 26 IS FINAL INTEGER VALUE AT POINT I.

I 2T IS MOM INDEX STEPPED ALONG DIAGONAL.

TCI RANGE?
AI 29 IS ROM INOEX IN CORRECT RANCE.

IAGONAL.

IF NECESSAMV.

VALUE CF j AT)i is COLUMN'

MACICStlUAHt CROSS REFi

DATA CROSS REFER

I UA 7.12.17.20.23.27.29: UC 19,21;I : 'OC 4; AS 6,1.17.20.2
Ui DC *; AS 13.24; UA
JJ OC *; AS 9,IB.22.10.
»; DC *;'AS in: u» 10.2
NACICSOUARE: OC l!
N: oc *; UA »,fr,a,9.20.
NSQRi DC 1; AS 5.7; UA
ROl UA J.4.I,9,20.22.29
Rli AS 4,1,1?.20,27,29: UA 7,12,17,20,21.27,29; UC 19,21;
R2i AS 9,II.22,10,31; UA 11. II .22 ,2* . ».3I i UC 21.11;

AS 12.I*.2); UA 11.24! uc i):

> I*:

.FUNCTION CROSS REFERENCES

NO FUNCTION CRUSS REFERENCES.

PROCEDURE CROSS REFERENCES

NO PROCEDURE CROSS REFERENCES.

Figure 8.—Documentation report for Magicsquare.

SYNTAX-DIRECTED DOCUMENTATION FOR PL 360 115

UUERY: ALL REFERENCES TO K

QUERY R E P L Y :

<,,*,, 6 K. AT 4 IS THE N E X T INTEGER VALUE GOING INTO THE MAGIC SQUARE.
10.33.1 FOR S T A T E M E N T 10,33 IS TO FILL MAGIC SQUARE W I T H INTEGERS.
10.33.2 F-OR CONDITION AT 10 IS TO S T E P K THROUGH INTEGERS FROM 1 TO NSQR.

WHICH MILL A P P E A R IN THE MAGIC SQUARE.
26*26 ,1 VALUE OF X l l J I AT 26 IS FINAL INTEGER VALUE AT POINT I,J IN MAGIC

SUUARE.

CUEKY: ALL BRANCHES

UUERY R E P L Y :
10.J3.2 FOR CUNOI ION AT 10 IS TO S T E P K THROUGH INTEGERS FROM 1 TO NSQR.

HIGH W1L AP AR IN THE MAGIC SQUARE.
15.25,2 F CUNUIt ON 15 T E S T S IS DIAGONAL FILLED IAN INTEGER A L R E A D Y STORED

POINT ,Jt
1<J,20,2 CONDIT ON 19 TESTS IS ROW INDEX OUT OF RANGE ?
21*22.2 CONDIT ON 21 TESTS IS CULUMN INDEX IN CORRECT KANGt 7
20*29,2 CUNDIT ON 28 TEST 1$ ROW INDEX IN CORRECT RANGE 7
31*32,2 CONOIT ON 31 TESTS IS COLUMN INDEX IN CORRECT RANGc ?

UUEKV: LL REFERENCES TO KEYWORD 'DIAGONAL* IN RESPONSES

OUEK R E P L Y :
1,34,'. OCESSING LOGIC UF PROCEDURE MAGICSUUARE IS TO FILL SJUAHE M A T R I X W I T H

C E S S 1 V E I N T E G E R S ALONG C E R T A I N DIAGONALS AND T H E I R E X T E N S I O N S TU
SURE MAGIC SQUARE PROPERTY. THE M A T R I X TU BE FILLED IS ASSUMED TO
MAIN ALL ZEROES I N I T I A L L Y .

15.25.1 THEN S T A T MEM 13.25 IS TO BEGIN NEW DIAGONAL IF CURRENT DIAGONAL
ALREAD F LLED.

15*23,2 CONUIT ON AT 15 T E S T S IS DIAGONAL FILLED (AN INTEGER A L R E A O r STORED
POINT ,J 7

16.25.2 OCK 16, 5 $ TO FIND S T A R T I N G LOCATION FOR NEXT DIAGONAL TU BE
LLED.

27*27 .1 LUE OF A 27 IS RUW INDEX STEPPED ALONG DIAGONAL.
30*30,1 VALUE OF A 30 IS COLUMN INDEX STEPPED ALONG DIAGONAL.

UUEHY: ALL USES IN ASS1GMEMS OF IJ

QUERY REPLY:

14, 14,1 VALUE OF XX AT 14 IS CURRENT VALUE OF POINT I.J IN MAGIC SQUARE.
26*26 ,1 VALUE OF XdJ I AT 26 IS FINAL INTEGER VALUE AT POINT I.J IN MAGIC

SQUARE.

Figure 9.—Some query replies for Magicsquare.

Figure 9 indicates how certain queries might be used to probe more specifically into
the procedure via syntactic, identifier, or response keyword criteria. Note in each case a
subset of the edited responses of a full documentation report is simply compiled according
to a query condition.

In all these listings, the file keys have been listed to make the storage/retrieval process
transparent. In practice, they could be suppressed in documentation reports and query
replies.

ACKNOWLEDGMENTS

The author acknowledges useful suggestions from referees, particularly on some spe-
cifics of PL360 and on the automatic formation of questions. The relationship between
proving the correctness of programs and the interrogation process was suggested by a referee.

REFERENCES

1. Wirth, N.: PL360, A Programming Language for the 360 Computers. J. Ass. Computing Machinery
15: 37-74, Jan. 1968.

2. Wirth, N.; and Weber, H. Euler: A Generalization of ALGOL, and Its Formal Definition: Pt. I.
Commun. Ass. Computing Machinery 9(1): 13-23, Jan. 1966.

3. Mills, H. D.; and Dyer, M.: Evolutionary Systems for Data Processing. IBM Real-Time Systems
Seminar, Nov. 1966, pp. 1-9.

4. Meadow, C. T.; and Waugh, D. V.: Computer Assisted Interrogation. Proc. AFIPS 1966 Fall Joint
Comput. Conf. Vol. 29, Spartan Books, Inc., pp. 381-394.

1 1 6 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

5. Naur, P.: Proof of Algorithms by General Snapshots. BIT 6: 310-316, 1966.
6. Collison, D. M.: Algorithm 118, Magic Square (Odd Order). Commun. Ass. Computing Machinery

5(8): 456, Aug. 1962.

DISCUSSION

MEMBER OF THE AUDIENCE: Could you in the running program have asked some
questions beforehand, such as what are the ranges of your variables, so that this could be
incorporated into the program for error analysis? Could you also use this question-and-
answer sort of thing for compiling optimization, so that you actually had a sort of interac-
tive compiler? Do you think these kinds of things might be feasible?

DR. MILLS: Well, I think they probably can. I have not thought about them, but I
think that what you say sounds reasonable. I really laid out a very austere kind of thing. It
is easy for the mind to boggle at the idea of trying to do computer-assisted interrogation of
almost any subject. The computer programs are particularly well structured. I mean we can
actually define the syntax. But doing this in other areas may be far-fetched.

MEMBER OF THE AUDIENCE: How long would it take to develop this system?
DR. MILLS: Well, what I described here to you is a paper system because we do not

have PL360. But I hope I can get a couple of graduate students to do this quickly.

