>
‘s“"l\
L

b

SYNTAX-DIRECTED DOCUMENTATION FOR PL360~

Dr. Harlan D. Milis
IBM

PL360, due to the efforts of Niklaus Wirth (ref. 1), is a phrase-structured programming
language which provides the facilities of a symbolic machine language for the IBM 360 com-
puters. It is defined by a recursive syntax and is implemented by a syntax-directed compiler
consisting of a precedence syntax analyzer and a set of interpretation rules, as discussed by
Wirth and Weber in reference 2.

Syntax-directed documentation refers to an automatic process which acquires program-
ming documentation through the syntactical analysis of a program, followed by the inter-
rogation of the originating programmer. This documentation can be dispensed through re-
ports or file query replies when other programmers later need to know the program structure
and its details.

The interrogation of an originating programmer consists of a relisting of the program
text, with certain syntactic entities, which are classified as documentation units, set off ty-
pographically in lines and labeled with an ordinal coordinate system and a sequence of ques-
tions about these documentation units. These questions are generated automatically by com-
pleting prestored skeleton questions with coordinates and/or programmer-generated identifiers.
The programmer’s responses to the questions are stored and indexed to these documentation
units for retrieval.

A key principle in what follows is that the programming documentation process is man-
aged solely on the basis of the syntax of programs. The semantics of the documentation, as
embodied in programmer responses to interrogation, are not analyzed by the process except
in mechanical ways such as keyword indexing. In this way, a programmer’s responses are
treated as ‘‘black messages” in the process, in analogy to the idea of a “black box.”” That is,
a programmer’s responses are requested, accepted, stored, and later retrieved with no seman-
tic analysis of their contents.

SYNTACTIC PRELIMINARIES

We use the notation and definitions for PL360 in reference 1. In defining documenta-
tion units and lines, the following device is used. First, denote the grammar in reference 1
by G, which defines the language PL360, L(G). This grammar G will be transformed finitely
into a new grammar G* such that

L(G*)=L(G)

*Copyright © 1970, Associatioh for Computing Machinery, Inc. Reprinted by permission.

105

106 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

1 ok e and such that G* contains syntactic en
2 EE::éS{)EgL,) si= FOR <ASS STEP> <LIMIT> <DO> <STATEMENT®> ﬁtieS we Want tO classify as documenta'
UN

7 Core s> ii2 Goro <io> tion units and use to define lines.

8 <IF THEN ELSE ST> ::= [F <KCOND THEN> <TRUE PART> <STATEMENTS> . .

(3 GIFTMEN ST> o iie IF CCOND THEN> <STATEMENT®> The basis for the transformation of
L3

i% :::EE A:)EZn 212 <PROC HD6> CSTATEMENT®> G into G* is a finite number of elemen-
<PR >

15 <50 bEce> 1ix CSEG MEAD> BASE <K REG> tary steps as follows. If X is any finite

16 <SYN DC2> .

gL s 3% €T CELLY = <K REG> sequence of tokens and/or syntactic en-

19 <HHI:E ST 3t= CWHILED> <COND DO> <SVATEMENTS> tities Which OCCUI‘S aS part Of the right

side of a production rule in a grammar
G*, and (4) is not a syntactic entity in
Gk, we can define a new production (4) ;= X and substitute (4) for X in the right side of
any rule we please in Gk, to get a grammar G¥*1_ 1t is clear that L(Gkt1) = L(G¥) by this
construction. Then, we consider a sequence

G=G%G!, ... G"'=G*

Figure 1.—Documentation units.

where 7 is the (finite) number of additional syntactic entities we want to be defined in G*
which are not in G.

We note that even though additional syntactic entities can easily be introduced in a
grammar while retaining the identical language, the question of keeping it a precedence
grammar (ref. 2) is a delicate matter. This general point is not pursued here. However, we
use only transformations which label the entire right side of a rule; in this case the grammar
obviously retains its precedence properties.

In what follows, the grammar G is augmented to G* just to provide a basis for invoking
additional interpretation rules which define documentation files and generate questions. It
will also be apparent that the same device can be useful in extending syntax processing be-
yond documentation to questions of execution control and dynamic storage allocation in
multiprogramming operating systems. For example, better use of core may arise if core is
allocated to the machine code responding to syntactic entities such as “for statements” and
“while statements” rather than simply arbitrary “pages” of machine code which may break
up such natural units of execution.

DOCUMENTATION UNITS

We classify as a documentation unit any right-hand side of a rule which reduces to one
of the following syntactic entities in reference 1:

(SIMPLE STATEMENT)
(STATEMENT)
(DECL)
(PROGRAM)

There are 19 such documentation units given in figure 1. If the right-hand side is already
defined in G, it is used directly. Otherwise, a new syntactic entity is defined, with the under-
standing that G is augmented by each such definition, as described above.

SYNTAX-DIRECTED DOCUMENTATION FOR PL360 107

In effect, this classification of documentation rules is a convenience for identifying
productions whose recognition in an analysis corresponds to having additional interpretation
rules that deal with documentation processing.

Given a PL360 program, we consider every realization of such documentation units,
which can be structured on the basis of syntactic membership, as follows. A documentation
unit is a member of a second documentation unit if its program text is a subset of the pro-
gram text of the second. It is an immediate member if it is not a member of any third docu-
mentation unit, itself a member of the second.

The relation of immediate membership defines a nested structure of documentation
units in a program, beginning with the program itself as the highest level documentation
unit and continuing through “blocks,” “compound statements,” etc., to “‘single declarations”
and “‘single statements’ at the lowest levels. This nested structure can also be described as a
rooted tree, with the program as the root, and other documentation units as remaining inter-
mediate and endpoint nodes in the tree.

Notice any given statement or declaration may be included in the program text of
many documentation units. In fact, every documentation unit is a member of the program
and of every other documentation unit whose text contains it.

SYNTAX-DEFINED PROGRAM LISTINGS

Next, we consider the question of listing programs written in PL360 in a standard way
for readability and referencing during programmer interrogation and later examination.
When programmers make an informal effort to arrange their programs for readability, they
typically start each documentation unit, as defined above, on a new line and use indentation
to correspond in a general way with syntactical nesting in the program. We recognize that
the problem is a subjective one, but we give a syntax-defined listing algorithm which is be-
lieved to satisfy the intuitive intentions observed in informal programming efforts.

For the purpose of typographical listing, we partition a PL360 program or procedure
into a string of substrings. Each substring is to be a printed line, and the string of lines con-
stitutes a listing of the program. Associated with each line are two numbers: one which
specifies its order in the program or procedure, and one which corresponds to the indenta-
tion (or starting column) of the line. If a line exceeds the width of paper available, its con-
tinuation is further indented a standard amount.

The partition of a PL360 program or procedure into lines is defined by marking the
starting text for each documentation unit, and each label, BEGIN, END, ELSE, and . (dot)
symbol. The lines are numbered consecutively. The indentation number is the level of nest-
ing of the documentation unit it begins, if any, based on syntactic membership as described
above. The only lines not beginning a new documentation unit are BEGIN (in CASE state-
ments), END, ELSE, and . (dot). In each case they are indented according to the level of the
documentation unit which they help define. Labels are given the indentation level of the
program or procedure being listed.

To refer to a line from outside a procedure, we qualify the line numbers with the pro-
cedure name. While the concept of program is defined in PL360, no provision is made for
naming a program in the syntax.

108 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

<BLOCK>

Q1 PURPOSE OF BLOCK {COORDINATES)?

S1 BLOCK (COOROINATES) 15 FO (RESPONSE).
<CASE ST>

QI PURPOSE OF CASE STATEMENT (CODRDINATESI?

S1 CASE STATEMENT (COORDINATES) IS TO (RESPONSE).

Q2 CASE SELECTED AT (COORDINATEN?

§2 CASE SELECTED AT (COORDINATE) IS (RESPONSED.
<FOR ST>

Wl PURPOSE OF FOR STATEMENT (COURDINATES)?

S1 FOR STATEMENT (COORDINATES) 1S TO (RESPONSE).

w2 FOR CUONDITION AT {COOROINATE)?

§2 FUR CONDITION AT (COURDINATE) IS TO (RESPONSE).
<FUNC DECLT>

QL FUNCTION OPERATION AT (COORDINATE}?

SL FUNCTION OPERATION AT (COORDINATE} 1S TO {RESPONSE}.
<FUNC 10>

Q1 PURPUSE OF FUNCTION STATEMENT AT (COORDINATES?

S1 FUNCTION STATEMENT AT (COORDINATE) 1S YO (RESPONSE).
<FUNC ST>

Ul PURPDSE OF FUNCTION STATEMENT AT (COORDINATE}?

S1 FUNCTION STATEMENT AT (COORDINATE) IS TO (RESPONSE).
<GOTg sT>

Q1 GO TO WHERE AT (CUGRDINATEN?

SL AY {CONRDINATE) CONTRCE GQES TO {RESPONSED,
<IF THEN ELSE ST>

QL PURPOSE OF IF THEN ELSE STATEMENT (COORDINATESE?

S1 IF THEN ELSE STATEMENT AT (COORDINATES) IS TO (RESPONSE).

Q2 IF CONOITIUN AT (COORDINATE}?

S2 1F CONDITION AY [COORDINATEY TESTS (RESPONSE).
<IF THEN ST>

Q1 PURPUSE UF IF THEN STATEMENT {COORODINATES)?

St §F THEN STATEMENT (COOROINATESE 15 TO {(RESPONSE}.

42 IF CONDITION AT (COOROINATEN?

$2 IF CUNDITION AT (CGORDINATE) TESTS (RESPONSE).
<K REG ASS>

Gl VALUE OF (<10>) AY (COOQRDINATEN?

S1 VALUE OF (<ID>) AT (CODRDINATE) 1S {RESPONSE).
<NULL ST>

Q1 PURPOSE OF NULL STATEMENT AT (COORDINATE}?

ST NULL STATEMENT AT (COURDINATE) IS TU (RESPONSEl.
<PROC DECL>

Q1 AUTHOR UF PROCEDURE (<ID>})?

S1 AUTHOR OF PROCEDURE (<ID>F 1S (RESPONSE).

Q2 PURPOSE OF PROCEODURE?

S2 PROCEOURE {<ID>) IS TO (RESPONSE).

U3 INITIAL DATA?

$3 INITIAL DATA OF PROCEUURE (<ID>) IS (RESPONSES).

Qe PROCESSING LOGIC?

Se PAUCESSING LCGIC OF PROCEDURE (<ID>} IS5 TO (RESPONSE).

Q5 FINAL DATA?

S5 FINAL DATA OF PROCEDURE (<10>) IS (RESPONSE),

Q6 REFERENCES?

S6 REFERENCES FOR PROCEDURE (<ID>} ARE (RESPONSE).
<PROC D>

Ql PURPOSE OF PROCEOURE STATEMENT AT (COORDINATE)?

$1 PRUCEDURE (<PROC 1D>) AT (CNORDINATE) 1S TO (RESPONSE).
<PRUGRAMD>

@l AUTHOR OF PRCGRAM (<ID»)?

SL AUTHOR OF PROGRAM (<ID>) 1S (RESPONSE).

Q2 PURPQOSE OF PROGRAM ?

$2 PROGRAM (<lD>} IS TO (RESPONSE).

Q3 ENLTIAL DATA?

$3 INITIAL DATA OF PROGRAM (<ID>) IS (RESPONSE)N,

Q4 PROCESSING LOGIC?

$4 PROCESSING LOGIC OF PROGRAW (CID>) 15 YO (RESPONSE).

Q5 FINAL DATA?

S5 FINAL DATA OF PROGRAM (<CID>) IS (RESPONSE).

Q6 REFERENCES?

S6 REFERENCES FOR PROGRAM (<ID>) ARE (RESPONSE).
<SEG DECL>

NO QUESTION

KO STATERENT
<SYN DC2> (FOR EACH IDENTIFIER DECLARED)

Q1 SYNONYM (<ID>) TO (<lD>) AT (COORDINATE)?

S1 SYNONYM (CID>} TO (<ID>) AT (COORDINATE) 1S (RESPONSE).
<T CELL ASS>

Ql VALUE OF {<ID>) AT {COORDINATE)?

S1 VALUE OF (IKID>) AT (COORDINATE) IS (RESPONSE}.
<V DECLT>

Q1 (<ID>) AT (COORDINATE)?

$S1 {<10>) AT (CCORDIMNATE) IS (RESPONSE).
<MHILE ST>

Ql PURPOSE OF WHILE STATERENY (COORDINATES)?

S1 WHILE STATEMENT (COOROINATES) IS TO (RESPONSEL.

Q2 wWHILE CONDITION AT (COORDINATE) ?

$2 WHILE CONDITION AT (COQROINATE} TESTS (RESPONSED.

Figure 2.—Skeleton question/statements for

documentation units.

For convenience, we introduce a
new basic symbol PROGRAM and the
redefinition

(PROGRAM) 1=
PROGRAM (ID) (STATEMENT)

which permits the naming of programs and
reference to documentation units by line
numbers, qualified by program names.

CANONICAL DATA FILE

For convenience in documentation
processing, we define a canonical data file
as consisting of a record for each documen-
tation unit of a program or procedure dec-
laration. Its function is not only to store
relationships between various syntactic en-
tities but also to provide data for driving
interrogation, report generation, and query
processing concerning the program or pro-
cedure. Each record describes three proper-
ties of the documentation unit: its coordi-
nates in the program text, its syntactic type,
and an identifier list. The coordinates are the
first and the last lines of the documentation
unit (which may be the same when text is
contained in a single line). The syntactic
type is the entity identified as a documen-
tation unit in figure 1. The identifier list
depends on the syntactic type—denoting
identifiers which are declared, assigned
values, used in assigning values, used in con-
trol logic, etc.

It is clear that a deeper syntactical
structure, described -only informally here,

is relevant below the generic level of

documentation unit. For example, the identifier list itself is definable in terms of productions
within a documentation unit, and such productions determine whether each identifier is
being declared, assigned a value, used in a computation, used in control logic, etc. Thus the
additional interpretation rules required for documentation processing are distributed through-
out the syntax, all the way down to the identifier level, but are not discussed in detail now.

SYNTAX-DIRECTED DOCUMENTATION FOR PL360 109
SYNTAX-DIRECTED INTERROGATION AND RESPONSE EDITING

We consider an automatic interrogation process, which uses the canonical data file to
complete prestored skeleton questions with program text coordinates and/or identifiers.
The interrogation process proceeds through the file, a record at a time, and generates a
series of questions from each record, depending on the syntactic type and identifier list
found therein. The responses to such questions, made by the programmer, are indexed to
the records which generated them.

A set of skeleton questions associated with different documentation units in PL360 is
displayed in figure 2. At the end of each interrogation, the programmer is given a final oppor-
tunity to volunteer any additional information.

Associated with each skeleton question in figure 2 is a skeleton statement which con-
tains the programmer’s response to that question as one of its parts. These statements, filled
in with responses and other data from the canonical data file, as shown, represent basic unit
messages which can be assembled into reports and query replies.

The construction of skeleton questions and skeleton statements to elicit and edit pro-
grammer responses is a substantial and still open problem. It is evident that careless ques-
tioning can bury programmers in questionnaires and alienate them to the whole idea. Limited
experience (refs. 3 and 4) has indicated that skeleton questions should be terse and highly
selective. An involved question, which seems reasonable to read once or twice, can have a
very negative effect on a responder when repeated many times, even though this kind of
question requires no more effort to answer than a terse one. Thus a first principle in question
construction is that the burden of understanding what the question means must be put into
a separate orientation course, outside the interrogation itself, and the questionnaires must
be kept as short as practicable.

A second principle in question formation is that program text itself must be depended
upon for later programmer reference. The questions and responses are intended to illuminate
the program text, not to replace it. Otherwise, questions become too involved with points in
plain sight in the program text.

Similarly, the order of questioning is also important. Some experience indicates that a
“top-down” sequence is a better basis for questioning than “bottom-up.”” Fortunately, due
to the structure of PL360, interrogating documentation units in the order in which their
starting text appears gives a top-down approach, which seems easy to follow and reference
from both syntactic and typographical viewpoints.

It has been suggested that the matter of question formation might be related to the
problem of proving the correctness of programs. Naur (ref. 5) discusses an approach to prov-
ing the correctness of programs by ‘‘general snapshots,” e.g., the state of all variables at
various points in programs. These general snapshots could be defined at the entries to and
exits from documentation units. This raises the possibility of forming such questions as:
“What variables can be modified in this documentation unit?” and “What relationships be-
tween the variables must hold (a) on entry to or (b) on exit from this documentation unit?”

At the moment, no suitable way of forming such deeper questions for automatic in-
terrogation is known. But this is an area where future progress may be possible.

110 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION
DOCUMENTATION PRODUCTS

As already noted, two principal documentation products are—

Documentation reports: complete descriptions, in a prescribed format, of programs or
procedures.

Query replies: partial reports in response to queries made by programmers familiar with
programs or procedures to probe specific details.

It is to be noted that both interrogation and query reply processing lend themselves to
conversational techniques (ref. 4). The canonical data file can be used to drive a conversa-
tional interrogation of a programmer quite directly. Similarly, the same file, with an asso-
ciated file of indexed programmer responses, can be used to generate “computer-assisted
instruction courses” automatically when the subjects are particular PL360 programs or
procedures.

It should be emphasized that the documentation discussed is addressed to a programmer
who understands PL360 and will be reading the PL360 text concurrently. The documenta-
tion products are not intended to replace this text as the ultimate authority of what the
program does. Rather these products are intended to supplement the program text with
perspective, motivation, identifier meanings, processing rationale, etc. In this way it is ex-
pected to increase the power and precision with which a programmer can deal with the pro-
gram text, to modify it, to verify its functional logic, and to assure the integrity of a pro-
gramming system containing it. v

The documentation products will not themselves fill needs of higher level documenta-
tion related to user directions, instruction manuals, etc. However, technical writers con-
cerned with such higher level documentation should find these products extremely useful
as source material.

DOCUMENTATION REPORTS

We define a standard documentation report with three parts:

(1) Program text
(2) Edited responses
(3) Cross-references

The program text is the relisted, labeled text used in interrogation. The typographical
arrangement of this relisting itself shows the overall syntactic structure of the program and/

~ or procedures.

The edited responses, listed in the same order as the questions which generated them,
proceed through the text in a systematic way so that one can refer back and forth between
the relisted text and the responses efficiently in reading them together. It is expected that
the program text and edited responses will be read together by programmers. It would be
feasible to intersperse the responses, as comments, in the text, but it seems more desirable
to treat them as separate documents with easy interference facilities.

In fact, as a programmer becomes more familiar with the details of a program, the
presence of extensive comments tends to inhibit the visual perception of program structure

SYNTAX-DIRECTED DOCUMENTATION FOR PL360 111

and logic: first, by simply taking up space and expanding the size of material to be looked
at; and second, by interrupting and masking typographical features corresponding to the
syntactical structure of the program. _

The cross-references assemble identifer, function, and procedure usage into cross-
reference tables. Identifier usage in the text is categorized into “declared,” ‘“‘assigned,”
“used in assignments,” and “used in control.” It is expected that these cross-references serve
most of a programmer’s needs for evaluating and/or modifying small programs or procedures;
for example, to assure that all implications of a changed data declaration are accounted for.

Note that such cross-references can be assembled directly by interpretation rules dur-
ing program analysis at the time various productions are recognized but then are referred to
only informally here.

One particular use of cross-references in PL360 of some potential importance is the
recognition of commonality of data references. In particular, the use of identifiers synony-
mous with hardware registers, which add considerably to the readability of PL360 text, can
be found with the aid of such cross-references.

QUERY REPLIES

It is possible to generate a documentation report for any size system of programs or
procedures, of course, as a sequence of documentation reports of all its component pro-
cedures and programs. However, where documentation reports for a small procedure can be
examined rather easily for any information in it, the human eye and mind cannot take in
the scope and details of a large system so readily. Thus simply listing a documentation re-
port of a large system, while perhaps of value as a hard-copy reference, is still unsatisfactory
for a programmer seeking to understand, modify, or augment a procedure interacting with
many other parts of the system. This may be even more critical for a system manager, who
is trying to verify the correctness of a new procedure and to assure that no ill effects occur
in the system in accepting that new procedure.

This very problem has motivated the foregoing acquisition of documentation as re-
sponses to specific questions so that the documentation can be indexed down to the state-
ment and identifer level. Thus the documentation in a large system can be enhanced by the
capability for automatic selective retrieval and analysis of documentation. In this sense, the
problem of a programmer is not so different from other information systems where data
must be stored for retrieval from many points of interest.

A query language for accessing the type of data in these documentation files can be
readily imagined and is not defined in detail here. Its output could simply be a selection of
edited responses, as defined above. As already noted, such a query capability would lend
itself well to conversational methods of programmer access to the documentation. Its capa-
bilities should include, for any given documentation unit, finding identifier usages, extract-
ing “‘purpose of”’ responses for all its members, identifying all branch points, and locating
all references to keywords in responses.

PROGRAMMER ADAPTATION

In the final analysis, it is expected that the important issues in making such a syntax-
directed documentation process effective will be the soundness of the structural approach,

112 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

553,&:,‘3‘,’",:;2'&:33;%5,(;“gl;;s“:“Ms o MAGLC SQUARE OF OROER M. [F N IS rather than niceties of question phras-
e R ¢
R NG Ak Usko. AND REGISTEA RO INITIALLY CONTAING THE BARAMETER ing or report formation. This is be-
.N. ALGURITHM 118 CDHN.' ACH 5 (AUG. 1962) ; .
ash::lézf:'ﬂ;g:gggz E‘:gc;‘ ROy I SYN Rl, J SYN R2, XX SYN R3, Cause programmers’ aS human belngs’
1J SYN R4, K SYN H .
NSQR := Ni Rl = N ® NSQR; NSQR := R1: have a large capacity to adapt to mat-
fon N': : SNRII; ::U:Tl:: :;QR o0 :
BEGIN XX :-S:Esutt 6 14 3= J SHLL 2 ¢ XXi XX 1= X(1J); ters of Enghsh usage but a small capac-
IF XX ~= 0 THEN
BEGIN [ox 1= L3 J im d = 2 ity to deal with extended program syn-
IF 4 < 1 THEN J == J ¢ N; . .
R A tax structures in detail.
T N e i et et o In the interrogation process, pro-
J o= g+ 15 IF J >N THEN J 2= § ~ N;

ot : grammers will soon learn how to phrase
their responses gracefully in matters of

Figure 3.—Procedure Magicsquare (ref. 1, p. 53). English usage such as parts of speech
and tense simply by examining the
edited responses'which their answers

| PROCEGURE MAGICSQUAKE (Kol generate. Also, they will learn how the

3 TS e s details of their rationale should be al-

1J SYN R&, K SYN RS;

located among responses by experi-

5 Ni

) z * NSQR; R . . .

! NSUR Bx LG eL 1 ence in interrogation and by examin-
9 J = N§ - . -

1o FOR K ix 1 SIEP 1 UNILL NSOR DO ing the resulting documentation

1 e ﬂuiﬁgt 5 xxs reports. It will still take ability to doc-
14 Xx = X(1J)3 ey .

15 ".;Z%;F ? THEN ument programs, but an ability which
17 = - 13 . .

18 gma-a is adapted to the automatic process

3 '] Then being used to acquire and dispense

22 Jd = J ¢ N3 .

2 . ol e the documentation.

25 ND 3

2 X ek For example, a programmer new
%a T to the process may respond to a ques-
30 J = g+ 13 . . .

4 SRR tion about a block by going into the
33 ND; . . .

30 o details of statements inside the block.

After going through several interroga-
tions and realizing he will be ques-
tioned about the included statements
later anyway, he will learn to confine his response about the block to the block as a unit.
Similarly, by learning that conditions for branching IF statement will be taken up sepa-
rately, a programmer, following the treatment of the IF statement as a unit, will address his
response to the IF statement itself.

In using the documentation of others, a programmer, from his own experience as an
originating programmer, will be aware of the questions which generated the responses. He
wiil know, simpiy by examining program text himself, what questions were asked about any
documentation unit or identifier he may be interested in and where they were asked. Thus
he can exert considerable intelligence in selective queries of documentation files.

Figure 4.—Syntax-defined listing of Magicsquare.

AN EXAMPLE

Figures 3 to 9 simulate the foregoing methods on a sample PL360 procedure, found in
reference 1, showing the relisting and interrogation, the canonical data file, a set of responses,
a documentation report, and, finally, a set of query replies.

CUUK~
DinaTES

by 34 12 FAGICSUUARE, RO
2134 1

3,3 18 NSQK

494 16 Ny 1o J¢ XXy £y
545 17 NSUR, N
b6 10 ®1, N» NSYR
1,7 17 NSUK, R1
LRy 10 e N

.9 10 J» N
106,133 E] Ky NSQR
t1,33 1

12:12 10 XXy 1
13,13 10 1Je Jy XX
Lay s 1 Xk, X{IN)
15425 9 xx

Loeld 3

17,47 10 1, 1
18,10 1o e J
19,20 9 1

20,20 10 Ie 14 N
21,22 9 J

22422 10 Je Joe N
23,23 10 xXe 1
24,24 10 14, 4y XX
20,26 17 Xy IJy K
27,27 1w 1, 1
28,29 9 be N
29.+29 10 Iy I, N
30, 30 10 Je J
31432 9 Je N
32432 10 Jr Js N

SYNTAX-DIRECTED DOCUMENTATION FOR PL360

puc. IVENTIFIERS

UNLT

K

Figure 5.—Canonical data of

FILE KEY

1e3441
Ly3442
1334,3
1934,%
1,34,5
IAELTY)
25341
343,1
“rhel
4e6,2
“e4r3
dohyh
4ehy S
4e4et
ETETRY
646,11
Te741
8,8,1
9591
10,33,1
10,33,2
11,33,1
1241241
13,13,1
Leglianl
15,251
15¢25.2
16,251
17,17,1
18418, L
19420,1
19,2042
£0420.1
21,2241
2162242
22,2241
23,23,1
24424,1
20642641
27,27,1
2842941
28,29,2
29,29.1
30,30,1
31,3241
31,3242
32,32,1
Le34,7

Magicsquare.

QUESTION

AUTHOR OF PRUOCEDURE MAGICSQUARE?
PURPOSE OF PROCEDURE MAGICSQUARE?

INITIAL DATA?
PRULESSING LOGIC?
FINAL DATA?
REFLRENCES?

PUHPOSE OF BLOCK 2,34 ?
NSQR AT 3 ?

N AT 4 2

1 AT 4 7

J AT & 7

XX AT 4 7

14 AT 4 7

K AT &4 7

VALUE OF NSQR AT 5 7
VALUE OF R1 AT & ?
VALUE OF NSQR AT 7 7
VALUE OF | AT 8 ?
VALUE OF J AT 9 ?

PURPUSE OF FOR STATEMENT 10,33 ?

FOR CONDITION AT 10 7
PUHPOSE UF BLOCK 11,33 ?
VALUE OF XX AT 12 ?

VALUE OF IJ AT 13 ?

VALUE OF XX AT 14 7

PURPOSE OF [F THEN STATEMENT
IF CONDITIUN AT 15 7

PURPUSE OF BLOCK 16,25 ?
VALUE OF 1 AT 17 ?

VALUE OF J AT 18 7

PURPQOSE QF IF THEN STATEMENT
1F CONDITION AT 19 ?

VALUE OF 1 AT 20 ?

PURPOSE OF IF THEN STATEMENT
IF CONDITION AT 21 ?

VALUE OF J AT 22 ?

VALUE OF xx AT 23 7

VALUE OF 1J AT 24 ?

VALUE OF X{1J) AT 26 7

VALUE OF I AT 27 7?7

PURPOSE OF IF THEN STATEMENT
i1F CONDITION AT 28 ?

VALUE OF [AT 29 7

VALUE QF J AT 30 7?7

PURPOSE OF I[F THEN STATEMENT
If CONDITION AT 3% ?

VALUE OF J AT 32 7

ANY FURTHER COMMENTS 7

15,25

19.20

21422

28,29

31,32

~

-~

?

~

Figure 6.—Syntax-defined interroga-

tion for Magicsquare.

113

Figure 3 is a PL360 procedure named by Magic-
square, just as formulated by Wirth (ref. 1), including
the typography. This procedure, adapted from an
ALGOL procedure published in the Algorithm depart-
ment of Communications of the ACM (ref. 6), builds
magic squares of odd order n when 1 <n < 16.

Figure 4 is a syntax-defined and labeled relisting of
the same PL360 procedure Magicsquare, less comments,
with its typography determined by the rules already
given for recognizing lines and their indentation. This
relisting is independent of the typography of the pro-
gram text in figure 3. It is expected that such a standard
yet flexible form of program text will, in itself, help
programmers read each other’s programs.

Figure 5 shows the contents of the canonical data
file generated by procedure Magicsquare. All further
interrogation, response editing, and other documenta-
tion processing will use this canonical data file and not
the program text. This particular file contains 31 rec-
ords with some 157 separate items of data in them: two
coordinates, a syntactic type, and an average of about
two identifiers per record.

Figure 6 gives the syntax-directed interrogation of
Magicsquare, using the canonical data file and the skele-
ton questions of figure 2. There are 48 questions in alli,
which refer to the coordinates of the relisted program
text and represent a systematic coverage of the text.

A final question gives a programmer an opportunity to
volunteer additional information not already solicited
by the previous questions.

Figure 7 contains a set of responses to the inter-

rogation of figure 6. There is a file key associated with

each question, which is used to label responses so that
they may be indexed to the proper questions. The
author has presumed to speak for “programmer
Wirth” in constructing these responses.

Figure 8 provides a resulting documentation re-
port in the three sections described already: source
code, edited responses, and cross-references. For a
short procedure or program such as this one, it is

expected that a documentation report itself will be sufficient to allow a programmer to
find out anything he wants to know about the procedure or program.

114 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

FILE KEY RESPONSE

l1edaal NIKLAUS WIRTH, STANFORD UNIVERSITY, DECEMBER 20, 1966.

1e3402 ESTABLISH A MAGIC SQUARE OF ORDER N, IF N IS ODO AND 1 < N € 16,

1,34,3 THE ORDERy N, DF THE MAGIC SQUAREL DESIRED.

ITELTYY FILL SQUARE MATRIX #ITH SUCCESSIVE INTEGERS ALONG CEATAIN DIAGONALS
AND THEIR EXTENSIONS TU ENSURE MAGIC SQUARE PROPERTY. THME MATAIX TO
BE FILLED [S ASSURED TO CONTAIN ALL ZEMGES INITIALLY. .

+34,5 TME MAGIC SQUARE X AS A MATRIX IN LINEARIZED FORM.

ls34se ALGORITHM |18, COMM ACM, AUGUST 1962, P 436; M. KRAITCHIK,
MATHEMATICAL AECREATIONS: P 149,

2,34, CARRY OUT THE PROCEDURE MAGICSQUARE.

3:3,1 THE NURBEA OF ENTARIES IN THE MAGIC SQUARE.

LI THE ORDER |NUMBER OF RDWS AND CDLUWNS) OF THE MAGIC SQUARE.

4r4,2 THE HOw INDEX FOR THE NEXT INTEGEX VALUE GOING INTO THE MAGIC SQUARE.

“rdyd THE COLUMN INOEX FOR THE NEXT INTEGER VALUE GOING INTO THE MAGIC
SQUARE .

R TRY INTERMEDIATE VALUE IN X DFFSET CALCULATION AND TO TEST X VALUE FOR

48,5 THE X OFFSET FOR ROW §, COLUNN J OF MAGIC SQUANE.

44506 THE NEXT [INTEGER VALUE GOING [NTO MAGIC SQUARE.

505,1 INTERMEDIATE VALUE N FOR NSOR,

6,001 TEMPORARY STORAGE OF NSQR

Telsl EINAL VALUE OF NSQR, THE NUMBER OF ENTRIES LN THE MAGIC SQUARE.

B48,1 INITIAL VALUE FOR 1.

999y 1 INITIAL VALUE FOR J.

10,33, 1 FILL MAGIC SQUARE wITH INTEGEAS.

10,33,2 STEP K THADUGH INTEGERS FROM 1 TO NSQA, WHECH WILL APPEAR IN THE
MAGIC SUUARE,

11433,1 FIND CORRECT LOCATION I[N MAGIC SOUARE FUR INTEGER K.

12,1241 X OFFSET FOR ROW [OF MAGIC SQUARE.

13,13,1 X OFFSET FOR ROW | AND COLUMN J OF NAGIC SQUARE,

CURRENT VALUE OF POINT 1, J IN MAGIC SQUARE.

ideingy
1552541 BEGIN NEW DJAGONAL I[F CURRENT DIAGONAL 1S ALREADY FILLED.

15425,2 1S OIAGONAL FILLED (AN INTEGER ALREADY STOURED AT POINT 1,417
164 25,1 FINU STARTING LOCATILN FOR NEXT DIAGONAL TO BE FILLED.
17,17.1 NEW RO% INDEX OF STARTING LOCATION.

18,48,1 NEW COLUMN |NDEX OF STARTING LOCATIUN.

19,20.1 RESTORE AOW INDEX YD CORRECT RANGE, (F NECESSARY.
19,20,2 1S5 ROw INDEX QUT OF RANGE?

204 20,1 ROWw INDEX [N CORRECT RANGE.

210221 RESTORE COLUMN INDEX YO CORRECT RANGE, IFf NECESSARY.
21,222 1S COLUMN INDEX IN CORRECT WANGE 7

22422014 COLUMN INDEX IN COMRECT AANGE.

23, 23,1 X OFFSET FOR ROw 1 OF MAGLC SQUARE.

240264,1 X OFFSET FOR ROW | AND COLUMN J OF MAGIC SQUARE.
28642641 FEINAL INTEGER VALUE AT POINT 1, J IN MAGIC SQUARE.
27,21 ROW INOEX STEPPED ALONG DIAGONAL.

28,29,1 RESTORE ROW SNOEX TO CORRECT RANGE, IF NECESSARY.
28429:2 1S ROw INOEX IN CORRECT RANGE?

294291 ROW INDEX [N CORRECT RANGE.

30,301 COLUMN INDEX STEPPED ALONG OJ AGON.

31,3251 RESTORE COLUMN INDEX TO CORRECT IMGE. 1F NECESSARY.
31,32,2 1S COLUMN INDEX KN CORRECT RANGE?

32,32,1 COLUNN INDEX IN CORRECT RANGE.

1e34,7 N0,

Figure 7.—Interrogation responses for Magicsquare.

TeTsl VALUE GF NSOR AT 7 IS FIMAL VALUE OF NSQR, THE MUMBER OF ENTRIES IN
THE MAGIC sQuaR

MAGICSQUARE PROGRAM TEXT

1 PROCEDURE MAGICSQUARE (Ré); 80401 VALUE OF 1 AS L VALUE #OR 1.
2 Beein 49,1 VALUE OF J 1S INITISL VALUE FOR J.
3 SHORT INTEGER WSQA: 10,331 FOR STATEMENT 10,33 1S TO FILL MAGIC SQUARE WITH INTEGERS.
« INTEGER REGISTER N SYN RO, I SYN RL, J SYN R2, XX SYN R3s 10,33, FOR CONDLTION AT 10 §$ TU STEP x FMAOUGH INTEGERS FROM T 7O WSOR.
1d SYN R&, K SYN KS§ WHICH WILL APPEAR TN VHE MAGIC SQUARE.
s NSQR ze N: 11,33,1 BLOCK 11,33 (S 1O FEND COARECT LOCATION IN WAGIC SQUANE FOR INTEGER K.
. RL 3= N @ MSOR: 12012,1 VALUE OF XX AT 12 IS X OFFSET FDR ROw I OF WAGIC SQUARE.
7 NSOR 3= 13 1201301 VALUE OF 12 4T 13 1S x OFFSET FOR AOW | ARO COLUAN) OF MAGIC sQuare.
x [RERLONE 34318,0 YALUE OF XX AT 14 IS CURRENT ¥ALYE OF POIKT v 4 1w MAGIC SQU
15025, IF THEN STATEREMT 15,25 [S 10 SEGIN NEW DIAGONAL IF CURRENT nucnnn
10 m- K i» 1 STEP 1 UNTIL NSQR DO 1S ALREADY FILLED.
11 €GIn 15,25,2 JF CONDITION AT 15 TESTS 1S DIAGONAL FEILLEO (AN INTEGER ALREADY STORED
12 AR 1e L SMLL &3 AT POINT [,4)7
134 14 36 2 SHLL 2 ¢ XK; 164251 BLOCK 16,25 IS TO FIND STARTING LOCATION FOR MEXT DIAGONAL 1O 6E
1e XX 1= XE0JIG FILLED.
15 1F XX =z O THEN 17,17,1 Valuk CF 1 AT 17 15 wEw ROw [NDEX OF STARTING LOCATION.
is 18,10,1 VALUE OF J AT §B 1S NEw COLUNN INDEX OF STakTING LOCATION.
17 10,2001 1% THEM STATEWENT 19,20 IS TO RESTORE ROM INCEX ¥O CORRECT RANGE, IF
18 NECESSARY.
19 19,20,2 1F CONDITION 47 19 TESTS 15 ROW INOEX OUT OF MANGE?
20 20,020,1 VALUE OF 1 AT 20 IS ADw JMDEX IN CORRECT RAMGE.
21 21,2241 1% THEN STATERENT 21,22 IS TO RESTURE COLUNN INOEX TO CORRECT RANGE.
22 16 NECESSARY.
23 21,22,2 Lf CONDITION 43 21 TESTS IS COLUMN INOEX IN CORMECT RANGE?
24 14 10 5 SHLL z o reg 22,221 VALUE OF J AT 27 IS COLURN INDEX [N CORRECT MANGE.
25 [T 23423,1 YALUE OF XX AT 23 IS X QFFSET FOR #0W 1 OF WAGIC SQUARE.
26 PO 5 2442441 VALUE OF IJ a7 24 IS x OFFSET $OR #OW I OF COLUMN J OF MAGIC SQUARE.
27 1am Lo 20026,1 VALUE QF X(14) AT 26 1S FINAL INTEGER VALUE AT POINT L. J IN MAGIC
F1) ESE © SQUARE .
29 1m0~ w3 27.27,1 vaLug 121 IS AOW INDEX STEPPED ALONG 01AGONAL
30 4w ges 28,291 IF THEN suvuuv 20029 15 10 RESTURE AOW INDEX TO CORMECT RANGE. IF
n 1 3 > N THEN NECESSARY.
32 ERTRET 20,29,2 1 CONDITION &7 28 TESTS 1S ROW INOEK (N CORNECT RANGE?
33 EnD; 29,29¢1 VALUE OF | 4T 29 IS ROW INDEX N CORNECT RANGE.
3¢ o 3U.350,1 VALUE CF 2 &Y 30 IS COLUMN INDEX STEPPED ALONG DI1AGONAL.
31¢32¢1 IF THEN STATERENT 31,32 [S TO RESTORE COLUMN INOEX TO CURRECT RANGE.
RAGICSOUARE EDITED RESPONSES 1F MECESSARY.
31,3202 IF COMDITION AT 31 TESTS 1S COLUMN INDEX [N CORMECT RANGE?
3243201 YALUE CF J AT 32 IS COLUMN INDEX IN CORRECT RANGE.
FILE KEY EDITED RESPONCE 13007 NO FURTHER COMNENTS.

123441 AUTHOR OF nn(fount MAGICSQUARE TS WIKLAUS WIRTN, STANFORD UNMIVERSITY.
UVECEMBER 20,

NAGICSQUARE CRDSS REFEREMCES

Lodee2
L34,

1434,4

Lleda,s

LIS LY

PROCEDURE ncl(.snuﬂt £S TO ESTABLISH A MAGIC SOUARE OF ORDER W, EF %
15 000 AND 1 < N ..
INITIAL DATA OF rmcwuu: MAGICSQUARE IS THE OROER, N, OF THE WAGIC
SQUAME DESIRED.

OCESSING LOGIC OF PROCEDUAE MAGICSQUAAE IS TO FILL SQUARE ll'lll
WK SUCESSIVE IMTEGERS ALONG CEMTALN DUACOMALS AND. THE
T EhSuke RACICTSQUARE PROPERTY. THE MATAIA TO 8€ FILLED IS Aswutu
VO CONTAIN ALL ZEROES INITLALLY.
FINAL OATA OF PROCEDURE MAGICSQUARE IS THE WAGIC SQUARE X AS & MATRIX
IN LINEARIZED FRON.
MEFLRENCES FOR MAGICSQUARE ARE ALGORITHN 113, CONN ACH. AUGUST 1942,
P oa3a: M. BRATTOMIR, WATMEMATICAL RECREATIONS, P 149,
BLOCK 2,34 13 TO CARRY DUT THE PROCEQURE WAGICSQUARE.
NSOA AT 3 IS THE NUMBER OF ENTAIES IN THE MAGIC SQUARE.
N AT & IS THE ORDER (NUNBER OF AQWS OR COLUMNS) OF THE NAGIC SQUAAE.
1 AT & IS THE ROW KNOEX FOR THE NEXT INVEGER VALUE GOTWG NTD ThE
MAGIC SQUARE.
J AT & 1S TME COLUMN INDEX FOR THE NEKT INTEGER YALUE GDING INTD THE
MAGIC SOUARE.
X2 AT 4 1S INTERMEOIATE VALUE IN X CFFSET CALCULATEION AND TO TEST X
VALUE FOR ZERD,
1 AT & 13 THE X GFFSET FOR ROW 1, COLUNN J OF NAGIC SOUARE,
% AT & 1S THE MERT (NTEGER VALUE GOING INIQ TME WAGIC SQUARE.
VALUE QF NSOR AT 5 [5 INTERMEDIATE VALUE FOR NSQA.
VALUL OF R1 Af & 15 TERPONAKY STURAGE OF WSQR.

DATA CROSS REFERENCES

B:0C A 17,20,27,291 UA T.12017,20:23:27,29; UC 19,2

141 DC 45 AS 13,245 VA Le265

A5 9,18.22,30.133; A 431
103 UA 10,283 WL 107

5 uC 28,313

A3: aS §2,18.23; UA 13,242 uc
13,205 UA 14,283
105 A 10,265 WC 102

X(Labe AS 201 UA 16
XKt OC &: AS 124040235 UA 13,24, UC 1S3

UNCTION CROSS REFERENCES

NO FUNCTEDN CRUSS REFERENCES.
PAOCEOURE CROSS REFENEMCES
MO PAOCEDURE CADSS REFEREMCES.

Figure 8.—Documentation report for Magicsquare.

SYNTAX-DIRECTED DOCUMENTATION FOR PL360 115

QUERY: ALL REFERENCES TO Kk
QUERY REPLY:
LYRIE] K AT 4 IS THE NEXT INTEGER VALUE GOING INTO THE MAGIC SQUARE.
109331 FOK STATEMENT 10,33 IS TO FILL MAGIC SQUARE WITH INTEGERS.
10+33,2 FOR CONDITION AT 10 IS TO STEP K THROUGH INTEGERS FROM 1 TO NSQR.
WHICH WILL APPEAR IN THE MAGIC SQUARE.
2642601 VALUE OF XCIJ) AT 26 IS FINAL INTEGER VALUE AT POINT 1.,J IN MAGIC
SUUARE.
CUERY: ALL BRANCHES
QUERY REPLY:
10433,2 FOR CUNDITION AT 10 IS TO STEP K THROUGH INTEGERS FROM 1 7O NSOR.
WHICH WILL APPEAR I[N THE MAGIC SQUARE.
15¢25,2 IF CONDIVION AT 35 TESTS IS DJIAGONAL FILLED (AN INTEGER ALREADY STORED
AT POINT 14J) 7
19420,2 IF CONDITION AT 19 TESTS 1S ROW INDEX OUT OF RANGE ?
24e22+2 IF CONDITION AT 21 TESTS IS CULUMN INDEX I[N CORRECT RANGE 7
28¢29:¢2 IF CUNDITION AT 28 TEST IS ROW INDEX IN CORRECT KANGE 7
3)¢32,2 IF CONDITION AT 31 TESTS IS COLUMN INDEX IN CURRECT RANG: ?
QUEKRY: ALL REFERENCES TC KEYWORD *OIAGONAL® IN RESPONSES
QUERY REPLY:
143404 PROCESSING LOGIC UF PROCEDURE MAGICSUUARE IS TO FILL SQUARE MATRIX WiITH
SUCESSIVE INTEGERS ALONG CERTAIN DIAGONALS AND THEIR EXTENSIONS TO
ENSURE MAGEC SQUARE PROPERTY. THE MATRIX TO BE FILLED IS ASSUMED TO
CUNTAIN ALL ZEROES INITIALLY.
15¢25,1 IF THEN STATVEMENT 15,25 1S TO BEGIN NEW DIAGONAL IF CURRENT DIAGONAL
1S ALREADY FILLED.
15942542 IF CONDITION AT 15 TESTS 1S DIAGONAL FILLED {AN INTEGER ALREAQY STORED
AT POINT 1,412 .
16¢25,2 BLOCK 16,25 IS TO FIND STARTING LOCATION FOR NEXT DIAGONAL Tu BE
FILLED.
27+27,+1 VALUE OF 1 AT 27 15 RUW INDEX STEPPED ALONG DIAGONAL.
30,30, VALUE OF J AT 30 1S COLUMN INDEX STEPPED ALONG DIAGONAL .
QUERY: ALL USES [N ASSIGNMENTS OF IJ
QUERY HEPLY:Z
L14¢14,1 VALUE OF xX AT 14 IS CURRENT VALUE OF POINT L,J IN MAGIC SQUARE.
26926,1 VALUE OF XULJ) AT 26 1S FINAL INTEGER VALUE AY POINT I,J IN MAGIC
SQUARE .

Figure 9.—Some query replies for Magicsquare.

Figure 9 indicates how certain queries might be used to probe more specifically into
the procedure via syntactic, identifier, or response keyword criteria. Note in each case a
subset of the edited responses of a full documentation report is simply compiled according
to a query condition.

In all these listings, the file keys have been listed to make the storage/retrieval process
transparent. In practice, they could be suppressed in documentation reports and query
replies.

ACKNOWLEDGMENTS

The author acknowledges useful suggestions from referees, particularly on some spe-
cifics of PL360 and on the automatic formation of questions. The relationship between
proving the correctness of programs and the interrogation process was suggested by a referee.

REFERENCES

1. Wirth, N.: PL360, A Programming Language for the 360 Computers. J. Ass. Computing Machinery
15: 37-74, Jan. 1968.

2. Wirth, N.; and Weber, H. Euler: A Generalization of ALGOL, and Its Formal Definition: Pt. I.-
Commun. Ass. Computing Machinery 9(1): 13-23, Jan. 1966.

3. Mills, H. D.; and Dyer, M.: Evolutionary Systems for Data Processing. IBM Real-Time Systems
Seminar, Nov. 1966, pp. 1-9.

4. Meadow, C. T.; and Waugh, D. V.: Computer Assisted Interrogation. Proc. AFIPS 1966 Fall Joint
Comput. Conf. Vol. 29, Spartan Books, Inc., pp. 381-394.

116 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

5. Naur, P.: Proof of Algorithms by General Snapshots. BIT 6: 310-316, 1966.
6. Collison, D. M.: Algorithm 118, Magic Square (Odd Order). Commun. Ass. Computing Machinery
5(8): 456, Aug. 1962.

DISCUSSION

MEMBER OF THE AUDIENCE: Could you in the running program have asked some
questions beforehand, such as what are the ranges of your variables, so that this could be
incorporated into the program for error analysis? Could you also use this question-and-
answer sort of thing for compiling optimization, so that you actually had a sort of interac-
tive compiler? Do you think these kinds of things might be feasible?

DR. MILLS: Well, I think they probably can. I have not thought about them, but |
think that what you say sounds reasonable. I really laid out a very austere kind of thing. It
is easy for the mind to boggle at the idea of trying to do computer-assisted interrogation of
almost any subject. The computer programs are particularly well structured. I mean we can
actually define the syntax. But doing this in other areas may be far-fetched.

MEMBER OF THE AUDIENCE: How long would it take to develop this system?

DR. MILLS: Well, what I described here to you is a paper system because we do not
have PL360. But I hope I can get a couple of graduate students to do this quickly. '

