
AUTOMATIC PROGRAM ANNOTATION (AUTONOTE)

Michael D. Neely
and

Judy W. Tyson
ARIES Corp.

Computer program documentation, the "maps" of the computing industry, is a very
neglected area of this industry. Countless hours are spent trying to find out what has been
done in the past, and time and money are wasted duplicating past efforts.

However, the poor quality of these "maps" is only a secondary effect of this neglect of
the field. The primary effect is the scarcity of tools that can be used in the documentation
process. A determination of what types of tools are needed still must be done. This paper
will attempt a preliminary identification of these tools.

Before those tools can be identified, though, the uses of the documentation to be pro-
duced must be determined. The most important uses are program maintenance, which in-
cludes enhancements and error detection and correction, and program development. Efforts
in these areas to develop tools that produce good documentation will be more than repaid.

This paper will try to identify some areas of program documentation that should be
automated and then will focus on a particular area and explore the possibilities of automa-
tion. In general, this discussion is directed at the assembly language program, but in some
areas the remarks are germane to metalanguages. The emphasis will be on the tools that are
needed, not on the means of providing those tools.

BASIC REQUIREMENTS

Program documentation usually consists of the program specifications, flowcharts, pro-
gram listing, and operating instructions. Because the specifications are written before the
program is and because means of automatically flowcharting programs are already available,
the program listing and operating instructions will be the topics discussed here.

The program listing contains coding, the machine language instructions generated by
the coding, and comments relating to the coding. When properly interpreted, the coding sup-
plies the most accurate "map" of the program. Interpreting the coding is one of the areas in
which automation can improve the use of the listing. The operating instructions provide the
information necessary to use the program. They specify the interface between the program,
the operator, and the peripheral devices. Some of the operating instructions can be produced
as a byproduct of interpreting the coding.

Most of the information needed by the maintenance programmer can be produced by
an analysis of the coding. This includes a set of consistent comments relating to the coding,

167

1 68 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

error identification, executive function identification, analysis of arithmetic operations, and
various cross-reference tables. Much of this same information is necessary in the development
of a program library but, in addition, it might be desirable to produce other types of infor-
mation, more general in content. These can be produced by the use of control cards to iden-
tify the information. We will consider each of these areas to determine what effect automa-
tion can have on the documentation process.

Comments

Program listings normally include comments provided by the programmer; in addition
to these comments, a means of automatically producing comments from the coding would
be helpful. These comments could be on two different levels: An analysis of the coding or
an analysis of the logic defined by the coding. This area will be explored in more detail in a
later section of this paper.

Error Detection

The objective of the error detection process would be to identify those errors that are
readily apparent from an analysis of the coding without going into a detailed analysis of the
logic of the program. It would be impossible, for example, to determine from the coding if
a program meets the program specifications. It would be possible, however, to spot other
errors that are related to the mechanics of coding.

Errors that could be readily detected include instructions using invalid operators, in-
valid operands, undefined program labels, or doubly defined program labels. For bank-ori-
ented computers it would be useful to identify areas where code spills over the end of a bank
or where an area of core is overlaid. Another possibility in this area would be the flagging of
instructions referencing items located in a different bank.

A different type of error would involve the use of computer registers. It would be pos-
sible to flag coding in which the contents of a register are destroyed. In this case, the register
is loaded with one value, then loaded with another value before the first value has been used.
In double-precision operations it would be possible to flag instructions that reference im-
properly aligned items.

Errors should be flagged whenever they are encountered in the coding; in addition there
should be an error summary at the end of the listing.

Operator Interface

Executive functions, mainly input- and output-related operations, are an important
segment of any program and therefore play an important role in the program documenta-
tion. It is necessary to specify which devices are used, the manner in which they are used,
and what operator interface is required for those devices. All these can be provided automati-
cally; in addition, AUTONOTE could associate calls to a particular device with the coding,
thus producing a cross-reference table of input/output (I/O) calls by device. It might also be
possible to associate buffer areas with the devices using those areas.

AUTOMATIC PROGRAM ANNOTATION (AUTONOTE) 169

Another interesting possibility is the identification of all input and output operations
on a particular data set. However, this would be more easily implemented with metalan-
guages than with assembly languages.

In the area of console communications it would be desirable to associate operator mes-
sages with the coding that produces the messages. When a response is required from the op-
erator, all valid responses should be listed and default responses should be specified.

Arithmetic Operations

For arithmetic operations, the documentation should specify the limits imposed on an
operation by the machine word size, mode of operation (single or double precision), or con-
stants that are used. Iterative operations should be identified, and the limits on the number
of iterations should be specified. These functions can be provided from an analysis of the
coding. In addition, it may be possible to analyze algorithms to produce the formulas de-
fined in the coding. In metalanguages it would be possible to specify the accuracy that would
be obtained in an arithmetic process.

Cross-References

Program listings normally have only one cross-reference table, an alphabetical list of
program labels with the instruction numbers in which the labels are referenced. Several other
types of cross-reference tables would be useful and could be produced easily during an anal-
ysis of the coding. In addition to the basic alphabetical cross-reference of all items, there
should be separate cross-reference tables for data constants, address constants, buffer areas,
subroutines, I/O calls, and labeled instructions. The tables of constants should identify any
duplicated items, and all tables should identify unreferenced items. In addition, there should
be a separate cross-reference table of undefined items. These various tables would aid the
programmer in debugging his program originally as well as in maintaining the completed
program.

When origin instructions to the assembler program are provided, AUTONOTE would
produce a basic core map showing the area used, the location of all origin statements, and
the location of any overlaid areas of core.

These are all basic items that should be provided in the documentation to aid the main-
tenance programmer. However, in addition to these items, many organizations require that
documentation be in a specified format. The information required for this documentation is
usually, or at least should be, included in the program listing in the form of comments. This
information includes program name, acronym, organization name, programmer, assembly date,
equipment configuration, source language, core requirement, execution time, and program
abstract. With the use of control cards, this information can be extracted from the program
to produce the documentation in the specified format. However, this capability should be in-
cluded only as an option, and the use of control cards should not be necessary to use the
other features of AUTONOTE.

1 70 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

AUTOMATIC COMMENTS

The possibilities of automation in the area of program comments should be explored
further. This area is particularly susceptible to automation because the current method, re-
lying on programmer-supplied comments, has several inherent disadvantages: Not all pro-
grammers comment programs in the same detail; the comments may be meaningful only to
the original programmer; and often program coding is changed, but the comments remain
the same. In addition, in metalanguages the programmer may not be familiar with the as-
sembly language that is generated and may not be able to determine from the coding what
is taking place.

To automatically comment a program, first, a set of comments would be associated
with the instruction set, as shown in figure 1 . Instructions that cause an alteration in the
sequential execution of code under certain circumstances would require more than one com-
ment. These comments would then be used to explain the mechanics of the operations. An
illustration of this technique is shown in figure 2. This process requires a limited ability to
look ahead in the coding to determine what is taking place, but it does not require a detailed
analysis of the logic defined by the coding. The automatic comments are provided in addi-
tion to the programmer's comments, not in place of those comments.

It would also be possible to comment a program by analyzing the logic, roughly the
procedure used by flowcharting programs, but that would require a greater effort in looking
forward and backward in a program and would be a duplication of the flowcharting process.
Because the program listing is considered a complement to the flowchart, production of
comments keyed to the coding should be an area of concentration.

Subroutines are an important element in any program, and the comments relating to
the subroutines are important for an understanding of the program. Good documentation of

subroutines is not only helpful to the main-
INSTR. AUTOMATIC COMMENT tenance programmer but also important in

the development of a subroutine library.
CRA CLEAR A Well-documented subroutines can prevent
STA STORE A IN xxxx needless duplication of effort in the devel-
U.A U>AD A FROM xxxx opment of new programs. Figure 3 shows
ADD ADD A TO xxxx an inustration of a relatively simple sub-
SUB SUBTRACT A FROM xxxx routine with the programmer's comments.
*" SHIFT A LEET x BITS Figure 4 shows the same subroutine with
LLL SHIFT B T0 A LEFT x BITS the addition of automated comments. These

A T° XXJK comments not only describe the processing
within the subroutine but also tell which

BIT l Of A=1 program registers are loaded prior to entry,
J° where the subroutine is called from, which
YES

items are for intemal use> which external
YES items are used, and which registers are mod-
NO

ENABLE INTERRUPTS 8t tlMJ ^^ MUCH °f

can also be provided in a cross-reference of
Figure 1 .—Instruction set and associated , . A ., , - .,

subroutines at the end of the programcomments.
listing.

AUTOMATIC PROGRAM ANNOTATION (AUTONOTE) 171

STAK LDA

SNZ

JMP

STA

IRS

IRS

IRS

JMP

JMP

*BUFA

$+2

*BUFB

BUFA

BUFB

NOWD

STAK

EXIT

*LOAD A FROM INPUT BUFFER

*A=0

*YES-GO TO THIS LOCATION+2

*NO-STORE A IN OUTPUT BUFFER

FILL OUTPUT BUFFER *INCREMENT FWA INPUT BUFFER

*INCREMENT FWA OUTPUT BUFFER

*WORD COUNT=0

*NO-GO TO STAK

*YES-GO TO EXIT

*

BUFA

INBF

BUFB

OTBF

NOWD

DAC INBB FWA INPUT BUFFER

RES 10 INPUT BUFFER

DAC OTBF FWA OUTPUT BUFFER

RES 10 OUTPUT BUFFER

DATA -10 WORD COUNT

Figure 2.—Operation comments.

This type of documentation provides adequate information for maintenance program-
mers and the information needed to develop a program or subroutine library.

As for the format of the documentation, AUTONOTE would begin each listing with
the set of instructions and their associated comments (fig. 1). Then would come the program
with the automatic comments. These comments would not replace the programmer's com-
ments but would be in a separate column. Thus, for each instruction, there could be two
sets of comments. As an option, the programmer could use control cards to suppress the
listing of automatic comments in sections of the program. Errors would be marked at the
point of origin, and there would also be an error summary at the end of the listing with a
separate list of error codes and their meaning. After that would come the cross-reference
table of all items and the individual cross-references. Figures 5 and 6 show examples of
cross-references for data constants and address constants. In addition to the standard list
of label, location, and reference points, this list contains the value of the item and a list of

172 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

* CHECKSUM ROUTINE

* X=FWA

* A=LENGTH

*

CCCK DAC

TCA

duplicate items. For bank-oriented
computers there would be a core
map. If control cards are used to
request lists in a specified format,
these would follow the cross-ref-
erence tables.

ADDITIONAL CAPABILITIES

CLGH

CHEX

STA

CRA

STA

LDA

ADD

STA

IRS

IRS

JMP

JMP

DATA

DATA

CLGH

CHEX

*0

CHEX

CHEX

CLGH

$-5

*CCCK

COMPUTE CHECKSUM

DONE

NO

YES

CHECKSUM

There are many possibilities
for expanding a system such as
AUTONOTE. For example, with
the use of a cathode ray tube it
would be possible to "page"
through a program. The sequential
flow of the program could be in-
terrupted to look at subroutines,
with the flow resuming at the end
of the subroutine. It would also be
possible to modify programmer
comments at the on-line terminal
or edit those comments to produce
a program or subroutine abstract.
Subroutines could be selected for a

CHECKSUM COUNTER library in this manner, and the li-
brary could then be queried from
the terminal.

Of course, a system like this
presents many challenges as well as
opportunities. There are several tech-
nical problems that would have to be

resolved. For example, in assembly languages it is often difficult to identify I/O devices or to
define record layouts. Indexing and indirect addressing would also present problems for the
analysis.

The assembly language program has been the topic of this presentation; other types of
programs present different problems and possibilities. In metalanguages it is easier to define
record layouts and identify I/O devices, and it might be possible to identify and define blocks
of logic, but detailed comments might be redundant, as most metalanguages are at least
partially self-documenting. Another possibility would be to use the intermediate output of
compilers, the assembly language program, as the input to AUTONOTE.

Means of reducing the cost of software must be developed if the software industry is to
continue expanding as it has in the past. AUTONOTE may represent a step in the right di-
rection. It will provide reliable, consistent documentation of programs, something that has
been lacking in the past. It would be a useful tool for the maintenance programmer, it would

Figure 3.—Programmer's subroutine comments.

AUTOMATIC PROGRAM ANNOTATION (AUTONOTE) 173

*
*
*
* CHECKSUM ROUTINE

* X=FWA

* A=LENGTH

*

CCCK DAC

TCA

STA

CRA

STA

LDA

ADD

STA

IRS

IRS

JMP

JMP-

CLGH

CHEX

*0

CHEX

CHEX

0

CLGH

$-5

*CCCK

COMPUTE CHECKSUM

DONE

NO

YES

*LOADED PRIOR TO ENTRY:

*A,X

*ENTERED FROM CARD NOS.

*247,654

*RETURN ADDR CALLING PROG

*TWO'S COMPLEMENT A

'*STORE A IN CHECKSUM COUNTER

*CLEAR A

*STORE A IN CHECKSUM

*LOAD A INDIRECT FROM X

*ADD A TO CHECKSUM

*STORE A IN CHECKSUM

INCREMENT X

*CHECKSUM COUNTER=0

*NO-GO TO THIS LOCATION-5

*YES-GO TO RE'lURN ADDR CALLING PROG

CLGH

CHEX

*

*

*

*

*

*

*

it

DATA

DATA

CHECKSUM COUNTER

CHECKSUM

*INTERNAL ITEMS:

*CLGH

*EXTERNAL ITEMS:

*CHEX

*MODIFIED AT EXIT:

*A,X

*A=CHEX

Figure 4.—Automated subroutine comments.

aid in the development of program libraries, and as a bonus it would be useful as a debug-
ging tool during the original development of a program. This is the type of tool that is
needed to begin the war on soaring software costs.

1 74 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

* DATA CONSTANTS

.618 627Al

A2

A3

A4

A5

A6

A7

A8

511

512

513

514

515

516

517

518

000001

000002

000003

000004

000005

000006

000007

000010

497

480

502

312

452

379

411

701

510

580 603

718

AHIH 103 177777 123 347

ALOW 102 000001 121 214 390

*DUPLICATES:

*AL ALOW VALUE: 000001

Figure 5.-Cross-references for data constants.

1^ L

AUTOMATIC PROGRAM ANNOTATION (AUTONOTE)

* ADDRESS CONSTANTS:

AFIL 202 AFL1 218 .327 339

BFIL 311 BFL1 114 256 423

CFIL 119 CFL1 489 522 679

DFIL 450 DFL1 560

175

409

ZFIL 332 AFL1 510 736 759 840

*DUPLICATES:

* AFIL ZFIL VALUE: AFLl

Figure 6.—Cross-references for address constants.

1 7 6 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

DISCUSSION

MEMBER OF THE AUDIENCE: I believe I disagree with a lot of what you said. I
think that translating what the machine is doing into another statement does not help at
all. This is what our documentation assembly level has done for so long. What we really
need is information that attempts to describe what the machine is doing in relation to a
definition of specifications of that job and how it relates to that part of the specifications.
In other words, what you really need to know most of the time is: What was to be achieved?

NEELY: I agree. This is only going to tell you what he did achieve. I think debugging
the program originally would be the main use of it. No doubt this is not a panacea for the
industry or for the documentation process.

MEMBER OF THE AUDIENCE: The purpose of a comment is to describe the function,
and I think that if you can get a well-commented program you are at least halfway to good
documentation of that program. If you discourage the people or provide something that
gives you essentially a description of the microcode, the fact that you are loading and stor-
ing really gives you very little. It is important not to have programs that are uncommented
because one comment should describe maybe five or six instructions and give a functional
description. If you encourage people not to do that, you are really going in the wrong
direction,

NEELY: I agree with you that we should not replace the programmer's comments by
any means, but this would be used in conjunction with his comments.

