
^^

AUTOIViATED ENGINEERING DESIGN (AED):
AN APPROACH TO AUTOMATED DOCUMENTATION

Charles W. McClure
SofTech

The automated engineering design (AED) system is essentially a system of computer
programs designed for use in building complex software systems, especially those requiring
the development of new problem and user-oriented languages. The AED system itself may
be considered to be composed of a high-level systems programming language, a series of
modular, preceded subroutines, and a set of powerful software machine tools that effec-
tively automate the production and design of new languages. The AED language itself is a
modification of ALGOL 60 to make it suitable for use as a systems programming vehicle.

The AED system was developed by Douglas T. Ross and associates over a 10-year
period while they formed the nucleus of the Computer Applications Group at the Massachu-
setts Institute of Technology's Electronic Systems Laboratory. Before their work on AED,
this group had developed the automatically programmed tools system for numerical control
of machine tools. So, it is natural that people with such extensive experience in the data
processing field would be concerned with the documentation of their own activities and
with providing facilities for the users of their work to effectively document their own new
developments in the software field.

It is necessary to define what is meant by documentation before it is possible to discuss
automated documentation. In a general sense, the term documentation refers to everything
that can be used by a human being to help understand a computer program or system. This
specifically includes flowcharts, listings, cross-references, and, of course, user manuals. This
discussion will be limited to the more mechanical aspects of the total documentation spec-
trum. User manuals, which are more appropriately considered in terms of the psychology
of human learning and communication, will be excluded from consideration.

In examining the process of software production, it may conveniently be divided into
the design, programming, testing, and production phases. This is illustrated in figure 1.
Current manual documentation methods ignore the process of documentation during many
of these phases. For an automated documentation facility to work properly, data that are
generated during all these phases must be captured and reasonably ordered. This is espe-
cially relevant in the programming and test phases, in which numerous individuals are in-
volved and in which errors, oversights, and shortcomings in the original software design are
discovered. In addition, the need for new and revised features unfolds as the understanding
of the problem matures through usage. These new and potentially valuable insights are fre-
quently lost during the current process, which tends to ignore documentation at these
points in the process. _

PRECEDING PAGE BLANK NOT FILMED
207



208 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

TOOLS
COMPILERS
ASSEMBLERS
LOADERS
DEBUGGING AIDS

COMMUNICATIONS

— USERS

RELEASE

Figure 1 .—Software production phases.

SofTech strongly believes that it is erroneous to view the problem of system documen-
tation as an annoying, mundane, and unfortunate concomitant of the software development
process. On the contrary, documentation is an important, challenging, and integral part of
the total software production picture. Major system software efforts are among the most
complex and difficult projects undertaken by man, especially when real-time physical phe-
nomena as well as the vagaries of human behavior play an important part in the overall suc-
cessful operation of the system. In software, the design-to-production cycle can never be
considered completely finished.

Even if present efforts toward the development of highly reliable programming tech-
niques are fully successful in the future, for major systems, the continuing evolution of new
user experiences that must be reflected in modified system behavior still will cause the docu-
mentation function to be of primary and lasting importance. In SofTech's view, documen-
tation is a natural part of the life cycle of a software system that comes to the fore not at a
certain stage of maturity of that system but must be essentially functional as a useful
problem-solving tool at each stage.

SofTech's many years of experience in major system development, maintenance, and
distribution have given rise to a clear definition of the ultimate goal toward which we strive.
This goal is the automated production of high-quality reliable and functional software in a
"software factory" environment with the automated production of documentation as an
integral process. It is not surprising that the production tools of the documenter and the
application of those tools in an orderly technology are closely related to the similar func-
tions required at the generative stages of software design and prototype construction. In



AUTOMATED ENGINEERING DESIGN (AED) 209

fact, it is the purposeful extraction of pertinent information from those production tools as
an easily acquired byproduct of the production process that best provides an orderly
approach to the solution of documentation problems. This is apparent because the docu-
menters must mentally disassemble a working major software system into its component
parts and examine the behavior of those parts in concert as well as separately. At the
present time this analysis is supported only by an informal collection of listings, flow dia-
grams, and sundry debugging aids, most of which have been humanly generated in a some-
times well-directed, but all too frequently ineffective, effort to provide the needed
information.

Quite a different state of affairs would prevail if the vast amounts of relevant informa-
tion which appeared briefly and then evaporated in the process of initial construction and
assembly had been saved as a part of the development process. For example, the documen-
tation job would be greatly facilitated if the compiler used to compile a program left in a
data bank not only the basic symbol table information but also the cross-reference infor-
mation concerning external functions defined in or needed by that compilation, the linking
loader had left behind its records of program module placement, and the system generation
program had retained all relevant information including commentary by the programmer
who made some last-minute adjustments, for example, to overlay linkage characteristics.
Furthermore, if all of this information were ordered and collected in an automatically
generated data bank as a byproduct of the software machinery, it would be essentially free
of human error. This information could be combined with other features of the software
production methodology, such as the requirement that appropriate commentary be incor-
porated in each module of a hierarchically assembled system. Before such an assembly
operation would be considered complete and acceptable to the system, the body of infor-
mation available to the system would attain some real substance and would provide a firm
basis for a well-structured approach to the documentation task.

The value of this approach can be appreciated by noting that the construction of over-
lays (to permit a program to execute within a core memory constraint) has been a problem
for a great many programmers using various computer systems. Yet an acceptable overlay
structure can be produced quite mechanically if the program and data interrelations are
clearly stated. This acceptable structure may be improved if frequency of usage informa-
tion is available.

Programmers attempting to document their activities can benefit by having a high-level
language uniquely tailored to order their thoughts and supply direction to the computer.
The nouns of such a problem-oriented language are such things as program modules and
system assemblies. The adjectives of the language are the various states of those modules,
such as unedited source deck texts with commentary. The verbs correspond to the control
of the various assembly operations cited above as well as the disassembly operations needed
to unfold a structured program to gain access to internal points. With this accomplished,
software probes or statistical measuring submodules nested within this language and inter-
locked with its features can be employed. Once a change has been made, the same set of
tools controlled by the high-level language will record the updated information about what
was changed, why, and how, as the single change must be reflected throughout the entire



2 10 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

system. This language could easily be used through a graphics-oriented terminal, thus pro-
viding the combined capabilities of high-level metalanguage with the most effective com-
puter hardware man-machine communications capability available.

This description of the documentation function as an integral and natural part of the
software factory of the future may seem Utopian at first, but such a view does not do it
justice. Instead, it provides the overall vision whereby order can be brought out of our
present chaos. It provides a yardstick whereby current and proposed methods can be eval-
uated and also provides a concrete series of subgoals, many of which are immediately
achievable as natural adjuncts to present documentation methods.

Another major aspect of the documentation retrieval problem that also merits particu-
lar attention is the language in which the system itself communicates its wealth of informa-
tion back to the programmer. It is in this area that the various forms of computer graphics
can play a particularly important role. The thought processes that accompany the detective
work associated with debugging and design can be rapidly overloaded by unending detail.
The information must be presented in a way that is most readily assimilated by the human
mind. In debugging, even more so than in many other activities, it is very important that
the programmer be able to maintain intellectual momentum in pursuit of an idea. This can
be greatly aided by use of on-line graphic displays. Here again, the key to successful efforts
must lie in the conscious treatment of the graphical displays as a proper language, not
merely as a picture-making capability, coupled with appropriate information and data
structuring for the data base.

It should thus be obvious that the data base must be content addressable, or be pro-
vided with "backward" threaded lists. Perhaps a simple example will demonstrate this need.
Consider that the description of a tape file has been stored in the data base so that all pro-
grams that are to manipulate that tape obtain the details of its format from the data base.
It is clear that reassembling the program will not only incorporate the latest changes to the
program but also all modifications to the file description. But how are we to know which
programs should be reassembled unless the data base retains the information about which
programs do in fact rely on a generic file description?

THE IDEAL ENVIRONMENT

The ideal environment and long-term future goal is a comprehensive, totally computer-
automated system that provides a rich, system-independent metalanguage for assembling
software systems, tearing them apart, examining them under specific test conditions, modi-
fying master source program files, and other tasks. The nouns in this control metalanguage
are master file names, loading and overlay patterns, and test procedures, while the verbs in-
clude compiling, loading, updating, debugging, and data base query actions.

The system design provides that any changes made to a master file will be rejected by
the system unless all required updates are completed, including documentation updates and
updates to related programs affected by the original change. Management control reports
are also automatically provided, such as reports of schedule slippage and accuracy of main-
tenance estimates versus actual performance.



AUTOMATED ENGINEERING DESIGN (AED) 21 1

The primary user control device for this system is a graphics terminal, which is particu-
larly adapted to rapid rifling through source files, program editing, display of program flow,
and documentation updating. The research in machine-aided cognition by Dr. Engelbart at
Stanford University has demonstrated the power and utility of such devices.

The behavioral scientist will play a central role in the development of the language by
providing the needed human engineering. He will insure that the language is properly
matched to the skill level, human limitations, and working conditions of the maintenance
programmers. He will also criticize the management control reports and the user/mainte-
nance project communication facilities to tune these important interfaces for maximum
compatibility.

The data base required for effective operation of the maintenance facility is initially
constructed by the computer by stripping off program information at each stage of software
production, somewhat along the lines of the COMPOOL facility of JOVIAL and the AED
insert file control mechanism. Compilers, assemblers, loaders, and other software produc-
tion tools already produce listings, load maps, subroutine cross-reference printouts, and
other aids as natural byproducts of their function. These valuable aids form a major por-
tion of the needed data base, although at present these data are not retained and cross-indexed
automatically by the computer for later use. Original program documentation and facts
discovered at each stage of the maturing of the software form another important compo-
nent of the data base.

FACTORS WHICH INHIBIT EFFECTIVE DOCUMENTATION

The engineered documentation environment described above is at present not a reality.
Without engineering tools and disciplines, documentation efforts suffer from several in-
hibiting factors including—

(1) Lack of program understanding by programmers, compounded by poorly engi-
neered and programmed software

(2) Lack of automated software tools for maintaining, updating, and distributing
documentation of systems to users

(3) Communications gap among the programmers about status of known errors and
correction schedule

(4) Lack of automated testing techniques to insure that modifications do not in
themselves create additional errors

(5) Interference and cross-coupling between several programmers simultaneously
changing and correcting related programs

(6) Inability of programmers to reproduce error conditions, at least in a sufficiently
simple environment to isolate a single problem effectively

THE PATHWAY TO THE GOAL

Given the gap between the ideal environment and the present-day facilities, an
evolutionary path to the goal is needed. A graceful degradation of the ideal to fit the
present-day hardware and operating system limitations provides a usable facility whose



2 1 2 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

expansion and elaboration insure the needed incremental progress toward the ideal. Many
of the programming aids needed to carry out the actions of the metalanguage already exist
in present computer software libraries:

(1) Automated flowchart aids such as AUTOFLOW to produce quick, accurate flow
diagrams directly from source program statements

(2) Machine-language listings showing the primitive steps compiled to carry out
statements in a high-level language

(3) Symbol prints to show memory locations and other values associated with user
variables

(4) Load maps showing program layout when executing the program
(5) Cross-reference maps showing interactions among program modules
(6) Library statistics showing the names and sizes of programs called in from software

libraries
(7) Traces of program flow showing argument values and machine conditions at

selected points during program execution
(8) Linkage tables showing names, locations, and lengths of selected programs
(9) Timers and program counters which illustrate dynamic characteristics of program

operation

It is clear that many of the needed software tools are now available. What is missing is
the overall system which will permit each of the components of the system to retrieve the
data that it needs to perform its function without asking for additional information from
the programmers. It is clear that if processors are going to obtain information from the
data base, then it is desirable that each processor store information in the data base for the
use of other processors. This is the essence of the software factory of the coming decade.

The software factory provides the framework within which the programmer func-
tions and, in particular, should provide both the present processors and the data base
discussed above.

SofTech feels that the AED approach permits us to work toward this final goal in the
most direct manner now possible.


