
A SCAN PROCESSOR AS AN AID
TO PROGRAM DOCUMENTATION

Dr. Paul Oliver
UN I VAC

Documentation is an integral part of program development. It serves as a link be-
tween the programmer and the program user or analyst. Good documentation provides
the information necessary to use or analyze the program. The investment of program de-
velopment costs is protected by a document that meets the needs of the potential program
user. The following reasons (ref. 1) are generally given to justify documentation:

(1) Documentation is a permanent record that is used in debugging, as a source of
future reference, to reduce cost of personnel turnover, and as a project history.

(2) Documentation encourages standardization of coding conventions and the de-
scription of computer operations.

(3) Documentation provides the means with which to estimate the extensiveness
of program changes and to schedule computer operations.

(4) Finally, and perhaps most importantly, documentation represents a communi-
cation link with other programmers and with the nonprogramming community.

The case for documentation is a valid and substantial one but cannot be universally
applied. The cost of documentation is certain, but its use is not. It can be safely said that
heavily used programs implemented on large configurations should always be documented,
as should interactive systems because the nonlinear nature of such systems makes them
unusually difficult to analyze and debug without adequate documentation and because
of the cyclical nature of production work usually found in business or administrative data
processing installations.

Program documentation can be separated into two categories: documentation for
program use and documentation for program analysis, modification, or extension. The
former contains detailed instructions to evaluate the program's capability and to use the
program readily, whereas the latter should provide a detailed development of the problem
and program logic. This paper concerns itself only with documentation aids for program
analysis.

Documentation can be broken down into chronological phases. The documentation
to be performed during the program design and planning stage is probably the most impor-
tant but is not readily amenable to automation. Postmortem documentation is also impor-
tant, but aids in this area involve mostly text-processing systems, which are outside the
scope of this conference. The programmer can best be helped in the documentation proc-
ess during the programming.

PRECEDING PAGE BLANK NOT FILMED
245



246 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

Despite its importance, it is a well-known fact that documentation is woefully ne-
glected. Even the well-intentioned programmer can always find more urgent demands for
his time. It is, therefore, important that a system be provided whereby his program deck,
e.g., FORTRAN source code, can be operated on by a processor whose output would pro-
vide meaningful documentation, much as the deck is operated on by the compiler. This
would remove much of the documentation burden from the programmer. Use of the proc-
essor would, of course, require that certain conventions and practices be followed in the
coding, but these can be kept at a minimum. An example of such a processor would be one
that produces a flowchart of the given program. Several such processors are available, al-
though most are of dubious quality. The production of a flow diagram is certainly one of
the functions that the processor should perform. A more fruitful function would perhaps
be the scanning of a collection of source language statements to produce listings of the
variety of symbols found, arranged in any of several ways that might suit a user's purpose
and related to the lines of coding in which the symbols occur. Thus far features to produce
indication of general program flow (the flowchart production subsystem) and a tabular
analysis aid (the symbol scanner) have been included. A concise representation of the
"decision stations" in a given program should also be included in the documentation. De-
cision tables provide an attractive way of accomplishing this and can be produced in an
automatic fashion relatively easily (ref. 2). A decision table subsystem is also included as
part of the scan processor. Each of these functions and subsystems shall now be examined
in turn.

THE FLOWCHART PRODUCTION SUBSYSTEM

A flowchart is one of the means available by which visual representations (the block
diagram) of relatively abstract concepts (the programs or systems) can be provided to pro-
grammers, analysts, and managers. Flowcharting has been documented ad nauseam, and
such documentation will not be repeated here. The reader unfamiliar with the American
National Standards Institute (ANSI) standard flowchart symbols and their usage will find ref-
erence 3 useful. It suffices for the purpose of this discussion to say that flowcharts show the
path of data as they are processed by a system or program, the operations performed on the
data, and the sequence in which these operations are performed. One generally distinguishes
between a system flowchart which describes the flow of data through an entire system, and
program flowcharts, which describe what takes place in a program. Program flowcharts are
the only concern of this paper.

There are several flowcharting programs available from computer manufacturers or
independent software firms. The quality of the flowcharts produced varies considerably
among these various sources, and there appears to be little in the way of standardization.
This is not overly disturbing because some do not believe that flowcharting needs to be
standardized. This attitude is generally taken by those who regard flowcharting as a very
"personal" thing. Once the automatic production of flowcharts is discussed, however, this
is no longer a personal matter. Thus, one of the features of the flowcharting subsystem is
that the ANSI convention should be followed, although the system need not be capable of
producing all the standard ANSI symbols. The majority of flowcharting needs could be



A SCAN PROCESSOR AS AN AID TO PROGRAM DOCUMENTATION 247

satisfied by the basic outlines for input/output, flow, and processing. To these would be
added the outlines for connectors, decisions, subroutines, and terminal points. It would
also be desirable to include some (currently) nonstandard symbols to reflect characteris-
tics of higher level languages, such as vertical parentheses (block structure such as that
present in ALGOL or PL/I) and DO loops. Historical circumstances-have resulted in flow-
chart symbols that are often more suited to describing assembler language programs than
FORTRAN programs, for example.

Other desirable products of the flowchart subsystem would be the option of produc-
ing a source listing of the program being processed. It would also be desirable to obtain
listings of all jumps, for example, as results of GO TO and IF statements, sorted by source
and destination of the jump, and of all statement labels or numbers encountered. Box num-
bers should be included in the printed flowchart, and these numbers would be included in
the above listings. Thus, in the listing of all labels and statement numbers, there would
also be an indication of the flowchart box number pertaining to a given label or statement
number.

These features are by no means exhaustive of those possible in a flowchart program
or, in fact, of those available in existing programs, but they are sufficient to produce a
flowchart that provides meaningful information about the program. Furthermore, applica-
tion of these features would require no more than the invocation of the flowchart subsys-
tem on the part of the programmer. Such features as options to indicate the type of box
to generate for a given statement (overriding the standard option) or options to control
the analysis of instructions could also be included. These may indeed be useful, but they
would require the programmer to specify these options in his program, which would alter
the program itself and thereby defeat the very aim of an automated documentation proc-
ess. If the programmer were willing to take the time to specify options and provide details
to the processor, the processor would not be needed in the first place because it would be
as easy for the programmer to take that very same time and produce the flowcharts with
pencil and template.

THE SYMBOL SCANNER

Broadly speaking, the purpose of the symbol scanner is to scan a collection of source
language statements and produce a sorted listing of the symbols found, the programs or
subroutines in which they were found, the lines in which the symbols are defined, if appli-
cable, and the lines in which the symbols are referenced. The scanner must be a general-
purpose one in the sense that it should be usable on a variety of higher level language pro-
grams as well as on a given assembler language program.

It is important that the user be given the option of specifying which symbols or
classes of symbols are to be included or ignored during the scan. This is particularly impor-
tant for debugging purposes. The user could, for example, identify all program loops by
making one pass on the program during which only the symbol DO is looked for. Likewise,
he could identify all possible sources of a floating-point comparison error by performing a
scan for symbols beginning with numerics only. The default option would be to include all
symbols in the scan. A first-level selection capability could be provided through options



248 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

that specify "ignore strings beginning with an alphabetic character" or "ignore strings
beginning with numeric or special characters." Finally, a more detailed selection capability
could be provided enabling the programmer to specify, through data cards, that specific
symbols are to be ignored or that only certain symbols are to be included in the scan.

The listing produced by the symbol scanner would be useful in program optimization
as well as debugging. The placing of statements such as "PI = 3.14159 ..." in a FORTRAN
DO loop is a well-known faux pas, but one which nevertheless often occurs. Many compil-
ers will catch such misdeeds, but some will not. A listing of all occurrences of loops in a
FORTRAN program may encourage the programmer to perform a little nonautomated
optimization of his own.

DECISION TABLE SUBSYSTEM

Decision tables have been known and used for some time by programmers and sys-
tems analysts involved in business or administrative data processing. However, their use is
not widespread among programmers in general. This is regrettable because decision tables
constitute an excellent way of assembling and presenting related items of information to
express complex decision logic in a way that is easy to visualize and understand. Complex
programs, such as those associated with interactive display systems, are rendered complex
by the torturous decision logic present. Decision tables are a powerful tool with which the
programmer or analyst can follow the labyrinths of complex programs.

In addition to illuminating decision logic, decision tables have the distinct advantage
of being understandable to a nontechnician like a manager or administrator.

Essentially, decision tables can indicate "if... then" relationships occurring in a pro-
gram. The structure and use of decision tables are adequately described in the literature
(ref. 4). The following example should suffice to give the unfamiliar reader a feel for the
decision table format. Consider these lines of FORTRAN coding:

IF (A.EQ.B) GOTO 15
X= 5
Y= 10
GO TO 20

15 IF (C.LT.D) GO TO 25
X= 10
Y= 5

20 RETURN
25 X = Y

RETURN

The decision logic of this short piece of programming expressed in decision table format is
shown in table 1.



A SCAN PROCESSOR AS AN AID TO PROGRAM DOCUMENTATION

Table 1.—Decision Logic

249

Condition
A.E.Q.B.
C.LT.D

X= 5
X = 10
X= Y
Y= 10
Y= 5
GOTO 15
GO TO 20
GO TO 25
RETURN

Rule number
1
Y
Y

X

X

X
X

2
Y
N

X

X
X

X

3
N
Y

X

X

X

X

4
N
N

X

X

X

X

The horizontal and vertical double rules serve as demarcation: Conditions are shown above
the horizontal double rule; actions, below; the portion to the left of the vertical double rule
is called the stub, and the portion to the right consists of entries. Each vertical combination
of conditions and actions is called a decision rule.

Table 1 is of the limited entry type. The entire condition or action is written in the
stub, and the entry shows only, for each case, whether the condition is true, false, or not
pertinent (Y, N, or blank) and whether a particular action should be performed (X or
blank). An extended entry table would show part of a condition or action in the entry side
of the table. Also, numbers indicating the order of a set of actions could be used in place of
the X's. A mixed entry table is a combination of these two types.

It should be clear from this brief example that a limited entry decision table would be
quite easy to construct and present as printer output. The information necessary to construct
the table is easily obtainable, and the format lends itself to printing on a standard printer. It
would be desirable to produce such tables in a modular fashion. A single table might be pro-
duced for a given program showing only decisions causing transfer of control. Then, a deci-
sion table for each of the transfers would be produced giving the detailed decision logic for
the corresponding segments of coding.

It might be argued that decision tables would be redundant in light of the inclusion of
the flowchart subsystem. Such is not the case. The flowchart's primary purpose is to provide
a visual representation of program flow, of which decision points are only a portion. In con-
trast, decision tables isolate the decision points, giving only the decision logic of a program,
unencumbered by other particulars. Rather than being redundant, these two forms of pro-
gram representation are complementary.

INVOKING THE SCAN PROCESSOR

This special, documentation-producing system could be used in much the same way as
one calls a compiler. This could possibly, perhaps probably, result in its seldom being used
because a distinct effort would be required on the part of the user. Perhaps a more fruitful



250 AUTOMATED METHODS OP COMPUTER PROGRAM DOCUMENTATION

approach would make the calling of the scan processor an option on the compiler or assem-
bler request card. The scan processor could then be implemented as a subsystem of the com-
piler or assembler for a given language. In addition to making the processor easy to use, this
approach would take advantage of the fact that the information required by the three sub-
systems discussed above is generally obtained as part of the compiling or assembling proce-
dure. The additional overhead incurred when the documentation option is exercised as part
of a FORTRAN compilation, for example, could be decreased by such means as allowing
the user to specify the number of columns per card to be scanned; for example, 72 for
FORTRAN.

SUMMARY

The proposed processor would provide simple yet meaningful documentation for pro-
gram analysis in the form of flowcharts, a "dictionary" of symbols, and decision tables. This
documentation would be obtained with a minimum amount of effort on the part of the pro-
grammer and would be called from the program source deck itself. This is an important point.
Each of the proposed subsystems could be far more sophisticated and comprehensive than is
suggested here. This would in turn require a considerable increase in effort on the part of the
user, and experience has shown that the amount of documentation attempted by a program-
mer varies inversely with the amount of effort required. It is also important to note one
glaring shortcoming of the system proposed. The scan processor would give little or no in-
formation on data representation. This is a serious omission because data representation is
the very essence of programming. Unfortunately, the documentation of data allocation and
encoding does not readily lend itself to automation and will have to depend on the doubtful
diligence of the programmer.

The processor suggested here would provide minimal documentation for use by program-
mers, analysts, and management. It would also, hopefully, provide an aid to the manual pro-
duction of comprehensive, professional, and standardized program documentation.

REFERENCES

1. Chapin, Ned: Paper presented at ACM Professional Development Seminar on Documentation Tech-
niques (Washington, D.C.), 1969.

2. McDaniel, Herman: Decision Table Soffrvare. Brandon Systems Press, 1970.
3. Chapin, Ned: Flowcharting With the ANSI Standard: A Tutorial. ACM Computing Surveys. June 1970.
4. McDaniel, Herman: An Introduction to Decision Logic Tables. John Wiley & Sons, Inc., 1968.

DISCUSSION

MEMBER OF THE AUDIENCE: I would like to comment upon the presentation. I
appreciate very much your introduction of decision tables in this. I think that decision tables
are really probably the best way to document a program, show the analysis, and essentially
wrap up a lot of this stuff very simply. It solves a lot of the problems that occur with flow-
charts. The length of data names is no problem, and they can be as long and as descriptive
as desired. You have programs that process these decision tables directly in the code. They
are very easily checked again for errors and logical omissions, etc. I would really like to see



A SCAN PROCESSOR AS AN AID TO PROGRAM DOCUMENTATION 25 1

someone take these decision tables, which are essentially self-documenting, and possibly go
back from the source code to decision tables.

DR. OLIVER: I think, quite frankly, that the business community knows a great deal
more about data processing than the R&D community. Documentation to them is a money
matter, a practical matter, a managerial matter. So business does not object to simple and
economical solutions to documentation.


