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ABSTRACT

The problem considered 1s the design 6f é feedback
system contalining a linear, time—invariant, minimum-phase
plant, whose paramefers are known only within given bounds,
'such that the time—response of thé system remains within
specified iimits. A quasi-optimal design, for given design
constraints, is one which minimizes the effect of white
sensor-noise on the input to the plant. Horowitz and Sidi
have presented a method for the design of such a.quasi—
optimal, linear time-invariant system.

This report investigates the use of the non-linear device
known as the Cléggvlntegrator in the design of such a system.
The describing-function of the Clegg Intégrator has the same
magnitude characteristic, apart from avséale factor, as the
'linear»ihtegrator, bﬁt has 52° less phase—lag; at all ffe-
quencies, than the linear integrator; thus; wheﬁ useﬁ in a
feedback system, 1t provides a larger stability margin‘than
thé linear integrator. This property allows fhe non-linear
feedback syétem to be desligned so tﬁat the séhsér*ﬁoise is
afﬁenuated more than in the linear design.

The non-linear time-response is.calculéted-in terms'of an
equivalent iihear representation, and the reduced phase-lag in
the'frequency;domain 1s seen to correspond; in general, to
smaller overshoot in the time-response. In order to obtain
satisfactory steady~state response, the non-iinear device 1s

modified by putting a linear integrator in paréllel with 1it.

1o



It isrshown that for glven bounds on plant-ignorance and
time-response tolerances, the non-linear féedback system can
be designed such that‘the effect of white sensor-nolse on the
plant-input 1s smaller than in a linear design. .A method is
developed for implementing the non-linear deSign in terms of

an equivalent linear design by Horowitz’and Sidi's method.



CHAPTER 1

STATEMENT OF THE PROBLEM

1.1 Introduction

An important, fundamental problem in éontfol 1s the design
of a system whose performance remalns within specified limits
despite the uncertalnty in the parameters of a vital system
portion denoted as the plant. In Fig. 1.1, let P(s) be the
tfansfer-funcfion of a linear, time-invariant, minimum-phase
‘plant whose pérameters assume values within a given range.

Note that we are not considering the case of a time-varying
plant whose parameters change duriﬂg the time an input signal
is present; rather,'we’suppbse the plant to be constant whiie
a signal 1is being applied, but allow it to change between
successive applications of the input; or élsé) we may take

the plant parameters to be fixed but known dnly within'certain
tolerances.

Given such a plant P(s) with the range bevalues of 1ts
parameters,lénd given a fange of acceptable'overall systeﬁ
performance; such és, for eﬁample, bounds for its step-response
as in Fig. 1.2, the problem (for design'with linear, time-
Invariant elements)'is to find fixed cémpenséting functions
G(s) and F(s); such that the response of the'closed—loop system
of Fig. 1.1 lies within the specified bounds for all values

of the plant-parameters within the given range.



1.2 Principle of Linear Designl1A

The general principle underlying a linear design for
thls problem can be described as follows: the closed-loop

transfer-function in Fig. 1.1 is

T(s) b cls) . F(s) L(s)
R(s) N(s)=0 1+L(s)
where
L(s) = P(s) G(s)

With s = ju, if |L(jw)| >> 1, then T(jw) % F(jw), and is thus
quite insensitive to changes in L(jw) (caused by changes in
P(jw)), so long as |L(jw)| remains much larger than 1. In a
linear design, a minimum-phase G(s) 1s so dhdsen that -
|L(jw)| >> 1 for all possible plant-conditions, over a

frequency-range 0 < w < w whose width w, depends on the

c

response specifications. Thus T(jw) % F(jw) for 0 < w < W, s

indépendent of the actuai plant conditilon, andvif w, is
properly chosen, the closed-loop time—respbnsé_essentially
depends oan(jw) and can be made quite insensitive tq changes
in the plant. |

‘We note from Fig. 1.1, hdwevér, that the transfer-

function betwéen the noise-source n(t) in the feedback sensor

and the input z(t) to the plant is

ey 2 2| L1 (e )
| .N(s). R(s)=0 P(s) 1+L(s) :

i &>




I S (w)

nn = spectral density of n(t)

Szz(m) = spectral density of z(t), then,
,

Szz(w) = Snn(m) |B(Jw) |, and

00 .

"1 _ 1/2
z = | =— S (w)dw .
rms o 22 _

-~ 00

Considering B(Jw) for w >> w,, where |L(jw)| << 1,

\B(jm5|2 X |E%iﬂ%|2 = |G(jm)‘2, and if |G(jw)| > 1, the sensor
P(jw :

noise—components at such frequencieé are amplified at the input
to the plant and tend to produce saturation.

|G(Jw)| > 1 implies that |[L(jw)| > |P(jw)|, a condition
that occurs when the plant is unable to prdvide the required
loop-gain which must then be supplied by the compensation
G(Jw) . Thé condition |L(jw)| > |P(Jjuw)]| caﬁ occur over a wide
frequency-range even when |L(Jw)| < 1 over that range, as
1llustrated in Fig. 1.3 with P(s) = T and

(s+1)

L(s) = P(s)G(s) = 2048
s(s+8)(s+16)2

|L(jw)| < 1 for all w > 8 rad/sec but |G(jw)| > 1 until w
exceeds about 40 rad/sec. Fig. 1.4 shows lG(jm)|2 as a
function of w on linear scales, and it is seen -that the
frequency-range 8 < w < 40 (throughout which L(jw) < 1) is,
in fact, the significant range for the amplifiéation of sensor-
nolse at the plant-input.

It 1s, therefore, desirable to reduce IL(Jw)I as rapidly
as possible beyond the frequency-range 0 < w ftmc, in which

sensitivity-specifications require it to be large. However,



in a minimum-phase transfer—fﬁoction, rapld'attenuation in
the magnitude characteristlc 1s accompanied by a large phase-
lag, and a 1imit is set to the rate of attenuation of |L(juw)]|
by the stability requirement that the phase-lag of L{jw) cannot
_ exceed 180° till IL(Jm)I hasvbecome less than 1, for all
possible plant-parameter values. Thus, as a result of the
relation between the magnitude and phase functions of L(jw),
the attenuation of [L(jw)| has to be gradual until [L(jw)| has
become less than 1 at a phase-lag less than l80°, for all
plant-conditions. |

We may'define an optimal design L(s) for the-above
problem_aS»one‘which satisfies the'specifications on_closed-
loop response while minimizing the effect of sensor noise om
the input to the plant. This definltion takes 1nto acoount
the power spectrum of the noise source. This problem has not
yet been,solved. Another problem, which approximates the
above when the sensor—noise is wbite, 1s deflned as follows:
Let q = (number of finite poles - number of finite zeros) of L(s).

Then, for large |s|, L(s) has the asymptotic form

L(s) % (1.1)

o |
.ol_

For a given q, the optimal L(s) is defined as that whioh meets
Athe specifications on closedéloop response and has the smallest
possible value'of k in Equation (1.1).

This problem of optimal linear design has been investi-
. gated by Horowitz and Sldi[l 2], who have established the
existence and_properties of the optimal design for a class of

problems, and developed a procedure for its implementation.



1.3 Design with Non-Linear Elements

The fixed relation that exists between the magnitude and
phase of a transfer-function sets a limit tc the maximum rate
of attenﬁation of |L(jw)| possible in a stable linear
system, over a frequency-range thaﬁ is important in regard to
amplification of sensor-noise. Can this limitation, inherent
~in a linear design, be overcome by the use cf_non—linear
devices in the compensation? Suppose there is_a non-linear
device with é describing—fuﬁction in which the magnitude
characteristic 1s assoclated with a smaller_phéseflag than
that due toitbe same magnitude characteristlic in a linear,
time—invariantvdevice. Such a device would}appear to permit
a sharper reduction‘in the magnitude of the 1ocp describing
function than:that allowed in a iinear designl. We are then
led to the.queétion,l"Using such a non-linear device, can the
specifications on response, in the problem‘stafed above, be
met with a compensation which produces a Sﬁaller noise output
"than the cpfimal linear design for‘the same problem?"

This'repOrt presents the-resulté of én in&estigéticn of
this quéstion; in which the non-linear devicé is the Clegg
Intégratort3’g]. If is.shown that -the non-iinear device
leads to a dcsign with a sméller effect of sensor nolse than
in the optiﬁél'linear design, for croblems of two-degree-of-

freedom design.



CHAPTER IT

- ANALYSIS OF NON-LINEAR RESPONSE

2.1 The Clégg,Integrator

This device[3’u] i1s a non-linear integrator obtained

from a 1inéar integrator merely'by arranging 1ts output to
be reset to zero whenever the input signal crosses zero and
changes sign. .Between conseéutive zero-crossings of the
input, the device is Juét a linear integratof; It can»be 7
simulated on the analogue computer by using logic circuits
to detect zero—crossings.of the input and to switéh a linear
integrator between "reset" and "compute" modes. The simula-

tion'we used is shown in Fig. 2.1.

DeSéribing Function of the Clegg Integraﬁor

If a non-lineaf device produces a periqdic output y(t)

to the sinusoidal input x(t) = A sinwt,'its describing-

function is defined as the complex ratlo

BeJe
A

where B sin(wt+6) 1s the fundamental componenf in the Fourier
series expansion of y(t).

When the ihput to the Clegg Integrator 1is x(t) = A sinwt,
its output y(t) has the periodic waveform shbwn in Fig. 2.2,

and 1s given, over the first period, by the expression



A A
-5 coswt + o , 0 <wt <
y(t) =
B coswt - A , m<wt<2n
W w L=
i.e. y(t)'=.4 % coswt + f(t) , where f(t) is a square wave

of amplitude % and period 21 .

The Fourier series for f£(t) is.

f(t) = LA [}inwt + 1 sin3wt + 1 sinSwt + ..E]
Tw 3 5

and, therefofe, y(t) has the Fourier series

|+

y(t) = [—— sinwt - A cosw{] + ﬂé 1 sin3wt + sinbwt + ..:}-
w Tw (3 -
The fundamental component of y(t) is

| | 1/2
AL sinwt - coswt L E 16 sin { wt —‘tan—l
w o . ' W Tr2

1.624 _-338°

w

=fa
N’

Beje

Therefore, the describing function D(Jjw) of the Clegg Integrator

is given by

D(,jw) = -B- eje = .:l'.'_ég. e_vj380 = 1.62<L)ejs2o ,
A . Juw _ -



while the transfer function of a lineaﬁ integrator, for

s ;vjw; 1s (%;)_. We note that the describing function of
the non-linear.integrator has the same magnitﬁde character-
istic as the linear integrator, apart from a séale factor of
1.62, but has a lag of 38° at all frequenéies, which is a
lead of 52° over the phase of the linear integrator. The
describing-function is independent of the input amplitude A,

a fact which makes closed4100p calculations as;simple as

open-loop calculations.

2.2 Stabiiity'in the Absence of Input

From the describing—funétion of the Clegg Integrator,

‘it appears that a closed;loop'system that 1s unstable with a

~linear integbatof might be stable when a Clegg Integrator

replaces the lilnear integrator.b For example, in the lihear
k

system shown in Fig. 2.3-a, the loop transmission L(s) = —5
S s

and the condition for free oscillations 1s 1 .+ L(Jw) = 0,

1/2; hence, the system is unstable

whose solutlon 1s w = k
for all k, the frequency of osclllations depending on k.
The result Qf analogue simulation for k = 1 is'shown in
Fig. 2.3-b. _

The system of Fig. 2.l-a is obtained by feplacing a
~linear integrator in the system of Fig. 2.3-? by the Clegg
Integrator. -Since the loopAdescribing funcﬁion
1.62ked 2"
~'(jw)2

satisfied by any real w and k. Thus, according to

Ld(jw) = , the equation 1 + Ld(jm) = 0 1s not

10
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"describing-function theory, in the absenceusf external input,

the non-linear system should be stable for all'k. This is

- borne out by the results of analogue simulation for k = 10

and k = 100,'shown in Figﬁres 2.4-b and 2.M;c, respectively.
As another example, consider the 1inear'system of

Fig. 2.5-a.  The loop-transmission L(s) = . S and the

o s(s+1)2
equation 1 + L(Jw) = 0 has the solution w = 1, k = 2. Thus,

the system 1s stable for 0 < k < 2 and breaks into unstable
osclllations of frequency 1 rad/sec at k = 2. The result
of analogue simulation for k = 2.1 is shown in Fig. 2.5-Db.

On repiacing the linear integrator in the system of
Fig.»2.5-a'by the Clegg Integrator, the noﬁ—linear system
of Fig. 2.6-a 1is obtaihéd.  The loop-describing function

1. 62k 52°
Jw(jw+l)2

Ld(Jw) = , and the equaﬁion 1+ Ld(Jm) =

_has_the SOlution w= 2.9 and k' = 17. The nonelinear system
is thus stable for 0 < k < 17 and breaks into unstable |
oscillations of frequency 2.9 rad/sec at k = 17. Figures
2.6-b and 2.6-c show the non-linear system responses at
k =5 and k = 16 respectiveiy, and there 1s evidence of
a stable 1iﬁit cycle, with an amplitude of about 0.15 volts
for the case k = 16, while Fig. 2.7 shows the unstable
‘oscillations af k = 18, |

The stable limit cycle occurring in Fig. 2.6-c, for
example, is not predicted by the single inputsaescribing—

function of the Clegg Integrator. It occurs in a situation



where the oscillations at the input to the Clegg Integrator
have a non-zero mean value and a dual-input describing-
function of’the Clegg Integrator must be inVestigated to
account for it. Thils point 1s considered again in Sections

2.3 and 2.4,

2.3 Equations for Calculation of Forced Response

The verification of stability in the absence of input,
however, gives no indicatlion of the forced-response of the
non-linear system, such as, for example, its response to a

step~-input. We now cdnsider the calculation of forced-

12

response of a system containing the Clegg Integrator, assumling

that all other elements of the system are linear and time-
1nVariant. 
We have the following relation between the input x(t)

to the Clegg Integrator and 1ts oﬁtput y(t):

t ‘ ,
y(t) =J x(p)dp I (2.1)
J

z

where tz is the instant of the last zero-crossing of the input

x prior to t. It is thus clear that the zero-crossings of the

input have a'decided effect on the output. Coﬁsider now the

interval [to,btf] and suppose that tl,...,'t are the instants

n

of zero-crossing of x(t) in this interval, with ty s’tl <tse.

t. <t 1

n < tee Then, over the sub-interval ¢t

<t <t

i+1°
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(1 = 0,1;.;.;n-1), we have

t .
y(t) =-{ x(p)dp PR PR A S
t.
1

t ti

=.X x(p)dp - x(p)dp
to ' to .
t . {? tk

= x(p)dp - )3 x(p)dp 3
to k=1 tk—l

and, y(t1+l)==0, the output being reset to zero as x(t)
crosses zero at TR Using the unit-step function u(t), we
may write a Single expression for y(t) for the entire interval

[t tf] as follows:

O’

et - n tk _

y(t) =J' x(p)dp - E: j x(p)dp| u(t-t,); t stst, (2.2)
to k=1 tk_l :

"We note that y(t)-is discontinuocus at the inStants ti of zero-

crossing of x(t), being reset to zero at ty from the value

t .
' i _ A . .
y{t;-) =Jf - x(p)dp =y, . (2.3)
| ti1 | |
Substituting from (2.3) into (2.2),
_ t ' n
y(t) =l’ ‘xgp)dp - E: Yy u(t—ti)
(o] . _ R .
=J [%(p) - E: yié(p-ti{} dp ;"to <t < t, (2.4)
ot - R : e

e 1=1
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| which can be'represented as the output of a llinear integrator
to which 1s applied the sum of x(t) and an impulse-train

a(t) = -} yié(t—ti). We thus arrive at the,equivalence shown
o 1

in Fig. 2.8, in which the Clegg Integfator is replaced by a
linear integratof and the resets are represéhted by the addi-
tion of a suitable impulse-train at its input.

With this linear representation of the Clegg Integrator,
we may calculate the response as the sum of the linear responses
to the actual input and to the "equivalent 1n§ut" consisting.
of a traln of impulses. '

Thus thé ciosed—loop non-linear system of Fig. 2.9 may
be represented by the linear syétem of Fig.'é.lo, and the
- forced-response calculated by adding the response due to the
input r(t) to that due'to the impulse-train. .Wé thus.obtain

the pair of eguations

.
c(t) =f r(p_)h(t-p)dp - Z yih(t-—ti) - (2.5)
o} ' i '
" ‘ _ o
y(t) = r(p)v(t-p)dp - E:yiv(t—ti) R - - (2.6)
o) " i
where . | A |
H(s) = £?(£) = Cls) _ C(s) for the linear
R(S) A(S) > .
V(s) =j;v(t) - Xs) _ X(s) system of Fig. 2.10;

and, y; 8 1im° y(t), with the t

t'*ti—

i's being the 1nstants at
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vwhich e(t) = 0, 1.e; r(ti) = c(ti), i=1,2,...; these are
the_instants at which the Clegg Integrator 1s reset. We

note that for t < ty, h(t-t,) = v(t-t,)

Equations (2.5) and (2.6) do not seem to admit of a
general analytical solution for c(t) and y(t) but a numerical
solution may always be constructed in the following manner:
for 0 < t < t; (i.e. t1ll the first reset), c(t) and y(t) are

given by just the integral terms in Equations (2.5) and (2.6):
T
c(t) e[‘ r(p)h(t-p)dp (2.7)
' o)
. t v , .
y(t) e[. r(p)v(t-p)dp (2.8)
o

Expression (2.7) for'o(t), in fact, determines whether, at

- all, there is an instant t1> 0 at which e(ﬁ ) = r(ty)-c(ty) =

| If that condition never occurs, then the input to the Clegg
Integrator never changes sign and it is never reset; in that
case, c(t) and y(t) are identical with the corresponding linear
responses (those obtained when a linear integrator is used in
place of the Clegg Integrator), and are given by Equations
(2.7) and (2.8) for all t > 0. If, however;rEquation (2.7)
does give a ty > 0 at which r(tl) - c(tl) =_0, then Equation
(2.8) determines the value of y, é'y(tl—),'an“d"the terms
-yln(t—tl) ano —ylv(t—tl) are added to the right-hand side of
Equations (2.7) and (2.8) respectively, enabling the non-linear

response to be calculated for t > tl

In general, Equation (2.5) determines Whether there is a

‘reset at tj;lpfollowing a reset at t.. _prno'reset_occnrs

jh
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then, for all t > t

after tj’ 3
re J

e(t) =J[ r(p)h(t-p)dp - E:yih(t-ti)
o} ] : i=1

_ t J
y(t) =f r(p)v(t-pldp - Zyiv(t-ti)
- o 1=1

" If another reset does occur at tj+l’ then Equation (2.6)
determines -y,,q 4 'y(tj+1_)’ the strength of the impulse to

be added at the input to the integrator at t

j+1 in order to:

_ J+1° _
Setting r(t) = u(t) in Equations (2.5) and (2.6), we get

calculate c(t) and y(t) for t > t

equations for_the'step-response of the system of Flg. 2.9. It
is obvious that if the step-response of the corresponding
linear system (obtalned upon replacing the-Clégg Integrator
by a linear integrator) has no overshoot, then the condition
¢(t) = r(t) = 1 never occurs for finite t; thus t, does not
exist and the non-linear step-response is 1deﬁtical'wifh the
corresponding 1inear step-response. |

What 1is the naturevof the non-linear sﬁep—response in the
case ﬁhen the corresponding linearbstep—reSponse has overshoot?
‘The instant of the first overshoot in the linear step-response
" is the instant tl of the first reset of the]Clegg Integrator

‘in the nonelinear case, and for 0 £ t < ¢ the linear and

1
non-linear responses are identical. Equations (2.5) and (2.6)
enable the further calculation of the non-linear response.

It is instructive to carry out the calculations for a second-

order system in which the corresponding lineér step-response



can have overshoot. An analytical éolutioﬁ_bf‘ﬁquations
(2.5) and (2.6) is possible in this speclal case.

Let us,cénsider the step-response of the non-linear
system shown 1n Fig.,2.ll. The corresponding linear system,

shown in Fig. 2.12, has the transfer-function H(s) = ¢(s) _

R(s)
—5—5——— , and will have overshoot in its step-response if
s +as+k : :
2 o » ' '
k> %— . The linear step-response is given by

c(t) = 1 - 1 eundt sin (wnv 1—6? t .+ cos—16> (2.9)
- / 1-62 |

where

w_ =7k

§ = & _ _&

2v k 2w
n

-the instant of first overshoot, which is the instant t, of

1
‘the first reSét of the Clegg Integrator in the non-linear case,

is given by
-1
£ = m-cos 8 (2.10)
wn'/'l-ts2

On calculating the expressions in Equations (2.5) and (2.6),
it is found that

i-1)w
by =t # d-)m » 1=1,2,3,...
wn/ 1--62
iﬁ—éos_ld ' .
= , 1=1,2,3,... : (2.11)

- 2



18

‘and

—wndt

e(t) =| 1 -5—— sin (wn/1—62 t + cos-16> »b 0t <t

1
1-82 '

| —w, 8 (t-t7) |
26e"“n 1 /D
< 1- sin [Fn 1-8 (t-tli} » By 2t 2 b,

1-62

clt - —— ) , t2t, - (2.12)

Equation (2.12) describes a step—resbonse with a periodic
undershoot, énd the result of analogue simulation shown in
Fig. 2.13 confirms this conclusion.

" We thus find that while the non-linear system of Fig. 2.11
is stable without an input, as one expects froh the describing~-
function of the loop, 1ts'response to a sﬁep;input contains
forced oscilllations and does not reach a steédy state. This
" result 1is nét'éxplained by the single—inputvsinusoidal
describing functlon of the Clegg Integrétofffdr the simple
reason thaﬁ it 1s inadequate for the situatiqn in which a step-
input is applied. The ‘actual input to the Ciegg Integfator is
e(t) =1 - c¢(t) and it is seén to oscillate:about a non-zero
mean Value.' The sinusoidal deséribing—functiqn_is not
applicable in this situation. | V

w§ havé shown earlier that the non—lineaf steb—response
is identical‘with the corresponding linear stép—response
‘whenever the“iatter has no overshoot. In theAéecond—order

-example above, we also find that if the 1inéar-step—response
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does have overshoot, fhe non-iinear responSe(conﬁains sustained
oscillations.._Simulation of several highef-order systems
suggests that; in general, the non-linear step-response con-
tains sustained oscillations whenever the corresponding linear
step-response has overshoot. An analytical proof of this fact
has not been found, but the instances in whioh it has been
verified areAthemselves sufficient to show that the Clegg

Integrator cannot be used without some modification.

2.4 A Modified Non-Linear Device

i£ has been found that when a 1inear'inoegrator is put‘in
paralleliwith ﬁhe Clogg»Integrator, the sustained oscillations
1n the.step-fesponsebare eliminated. The modified non-linear

device, shown in Fig. 2.14-a, has the deseribing-function

Jjs2°
( 1.62§w +b ) , which has less phase-lag than the

corresponding linear transfer-function (139-);
The'phasé lead obtalned 1n the non-linear:device over the’
correspondihg linear transfer-function 1is plotted as a function

of b in Fig. 2.1l4-b. -

Step-Response

Fig. 2.15 shows a closed-loop system with this non-linear
device and Fig. 2.16 shows its step—response;. The corresponding
linear System 1s shown 1in Fig. 2.17 and its‘Stop-respOnse in
Fig. 2.18. The non-lineaf responoe now.attéios»the same steady-
state as the linear response but‘with much 1ess-oscillation

than the linear response. By simulation of a third-order
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system, 1t was also veriflied that the limit’of stable operation

of the non-linear system corresponds to the.sinusoidal
1.62eJ52%p
Jw

both In the absence of input and the presenée of a step-input.

déscribing—function( ) of the non-linear device,

In explanation of this result, we note that due to the linear
1ntegrator.in'parallel with the Clegg Integrator, any sustained
oscillations at the input to the Clegg Integrator must have

zero mean, whether or not there 1is an input (unless the response
itself is unbounded). The sinusoidal describiﬁg—function is
applicable in this situation and the results agree with con-
clusibns based on it. In other words, within the stébility
limit set by the describing-functiﬁn, the step-response cannot

have sustained oscillations.

Ramp-Response

While the presence of a linear integraﬁof:in paraliei
with the Clegg Integrator inside a closed—loo§ removes sus-—
taihed oscillétions from the step-response of the closed-loop,
ﬁhe nature of thé ramp-response remainé to.bé considered. of
course, with the deviceA(Clegg Integrator +:%)‘at the error-
»Junction, if the corresponding linear ramp-response has no
" overshoot, then the non-linear ramp-response is identical With
the linear ramp-response and is thus free of sustained oscil-
lations. However, if the corresponding 1inear;1oop-transmission
is of Type-O or Type-1 and the corresponding‘linear ramp-
response has overshoot, it turns oﬁt that the.nbn-linear
Vramp—respohsé contains sustained oscillations, és'démonstrated

by Fig, 2.20, the ramp-response QfAthe system'of Fig. 2.19}-'
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Tnis happens because, with a ramp input, osoillations at the
'input to the Clegg Integrator do not have Zero.mean—Value if
the loop-transmission is of Type-0 or Type—l;‘out must have

a non-zero mean valuelto give rise to the ramp in the output.
The sinuSOidal describingpfunction of the Clegg Integrator is
inapplicablelin this situation. Following tnis train of
thought, we are led to conclude that if the loop transmission
is of Type- 2 (or higher) the ramp-response should be free of
~sustained os01llations, and, in general, ifla'Steady—state
'condition requires that at large t, the input to the Clegg
Integrator has‘zero mean, then the‘sinusoldal describing-
function 1s applicable, and‘the non-linear system response
will be“freelof sustalined oscillatlons W1thin the stability
limit determined by deseribling-function theory. Thislconclu—‘
sion is borne out by Fig. 2.22, the ramp-response of Fig. 2.21.
We note that slnce the linear system corresponding to the
-system of Fig 2. 2l ls unstable the corresnonding linear
‘ramp response is, in fact, unstable, while the non- 1inear

response 1s stable.

2.5 Equations for Calculation of Forced- Response with
Modiflied Non-Linear Device

The calculation of time-response with the modified non-
linear device follows directly from the linear representation
suggested earlier for the Clegg Integrator and'is illustrated
with the system of Fig. 2.23. The equivalent linear repre-
sentation is_glven in fig.‘2.2u. The transfer-functions needed

in the_calculations are:
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Hne
Q
—
w0
~

L(s) , with‘L(s) - P(s)(1+b)

(1) H(s) =£h(t) -
- o ‘ R(s) 1+L(s) - S

i
v
Pany
w
S

(11) V(s>=£v(t> 1s) 1( L
) | ‘ R(s) s \1+L(s)

[ C 1 L(: H h
(111) Ha(s) =fha(t) (S) = < (S) > = (S) =f (t)
: A(s) 1+b \ 1+L(s) 14b 1+b

P(s)b |
s

e

1+

>
=<
Py
4]
S

1
A(s) s | 1+L(s) ~ 1+b - s(1+b)

S Vs =ha(t)

The following equations, derived in the manner of Equations

(2.5) and (2.6), describe the time-response in this case:

: t , . .
c(t) =J— r(p)h(t-p)dp - ‘G ) ¥4b a(t -ty ) (2.13a)
o i
r(p)h(t-p)dp - y h(t t ) (2.13b)
J LT,
y(t) J’ r(p)v(t-p)dp - 5: ¥V (t=ty) (2.1ka)
i _
(p)v(t-p)dp - L b¥ (t-t,) . (2.14p)
frp SRR RACULEN

where, as before,

yi = lim y(¢)

. t?tifj
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Equations (2.135) and (2.14a) differ from Equations (2.5)
aﬁd (2.6) only in the appearance of ha(t) and va(t), in place
of h(t) and v(t), in the summation on fhe‘right—hand side.
When b = 0, of course, Equations (2.13) and (2.14) reduce to

‘Equations (2.5) and (2.6), since, in that casé,'v(t) = va(t)

~ . and h(t) = ha(t).

2.6 Second-Order Non-Linear Step- and Disturbance-Response

" Applying Equations .(2.13) and (2.14) to the second-order
case shown in FPig. 2.15, we now derive én éxpression for the
~maximum overshoot in the step-response, which occurs between

t, and t

1 55 the first and second resets of the Clegg Integrator.
Dovrrny
With k, = k(1+b),
aQ k ,
H(s) é C(s) . —5——9——— , and
R(s) s“tastk
. wn. | -w,8t - é " f
h(t) = ——— e 'n sin w, 1-8° t) s
/ 1-62 -
where wn_= %ke
§ = 2
‘ 2/ké
. N - l
t. = T=cos § (2.15)

1 .
Yy 1-82

w
n
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Using Equations -(2.13), (2.14) and (2.15), the step-response,

for t. < t < t,, is given by

1 2’

8

N s (mT-cos™
b-28e Y16 |
(1+b) V1-62

c(t) = 1 - e~ ¥n% sip <wn 1-62t+cosf16> s

IA
ot
In
pus

Setting %% = 0, we find that the maximum of c(t) occurs at

o

t = — and
max  — 2
} wn 1'62
. - § S
/r*—§ (w—cos-lé)v. - .78
o(t ) = 1+ |p-28e 1-6% - . /1-62
max ' 1+b

e

the maximum overshoot in thé non-linear
- step-response ’

———g——(w—cos-lé)—i _' s

Thus, Mn(G,b)

/1-62

e
1+b ;J
the overshoot in the corresponding linear

step-response
O

/1-62

b-24e

1-62  (2.17)

He

Since ML(B)

. (2.18)

we note that for b > 0, Mn(é,b) < ML(G). Expression (2.17)

can be negative in certailn cases, showing that in those cases;

the non-linear step-response has undershoot instead of overshoot.
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oM (6,b)

In fact, <0 for 0 < 8 <1 (see Appendix) and,

therefore, for fixed b, the maximum undershoot occurs when

8§ = 1 (eritical damping), and is given by

Maximum undershoot = - Mn(l,b)

_2e7t _0.736 (2.19)
1+b 1+b ' ‘ '

For'later use in non-linear design, we collect the
following results on the sedond-order, non-linear step-response

of the one-degree-of-freedom structure of Fig. 2.15:

§ (ﬂ—cos_ld) — TS
v Y1-82 VAP '
(1) Maximum overshoot = b-28e e 1-6 (2.17)
’ ) ' : 1+0b '
(ii) Maximum undershoot (occurs when § = 1) = 0.736 (2.19)
' “ 1+b

The § here, of dourse, refers to the damping in the corresponding
linear transfer-function, and the maximum uhdefshoot in the
noﬁ-linear fesponsevoccurs when the corresponding ‘linear response
is critically damped; |

Tt may also be noted that expressions (2.17) and (2.19)
also apply to the disturbance-response of the one-degree-of-

freedom structure of Fig._2.15, since, for this structure
disturbance-response = 1 ~ (step-response) .

Equations (2.17) and (2.18) compare the overshoots in
the disturbance-responses of the corresponding non-linear and

linear systems of Figures 2.15 and 2.17. We note that for a
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'pgiven damping in the linear system, the'nonflinear response
has;lessfoverShoot than the corresponding linear response; in

oonséquence,_fOr a given overshoot in the diSfurbance-response,

_the'non;linear system can be”designed*with-a smaller damping

v(in the correSponding 1inear system) than is possible in a

linear design.'

This is the principle that is applied later to show that
in.a two—degree—of-freedom design to meet specifications on
step response and disturbance- response, a non- -~linear design
"is possible which has a smaller bandwidth of (the corresponding
linear) loop—transmission and transmits less feedback sensor-
-noise to the plant than the optimal linear design of Horowitz_

and Sidi | | '
' In order to establish this result, we nexﬁlconsider'the

noise-response of the Clegg Integrator.

2.7 Noise-Response of the Clegg Integrator ‘and the Modified
. Non-Linear Device

An 1nput x(t) to the Clegg Integrator produces the output

Sy (e) given by

t : 5 _
y(t) =J’ x(p)dp 1 o , (2.1)

T2

where tz 1s the instant of the last zero—crossing'of X prior

ne>

to t. Let T(t) 2 t - t,

the interval between t and*the last zero-
crossing of x prior to t;

hence, t t - T(t), and thus
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y(t) i{— . x(p)dp
: Jt=T(%) g

When x(t) is a stationary random process, ‘the interval
T(t) is itself a statlonary random process (or, for fixed t,
a random variable). 1In prin01ple, the statistics of T may
be determined from those of x(t), but suchicalcUlations have
‘ beenvpossioleconly for.a few procesSes[SJ, owing to the
_mathematical{difficulties that arise. Even'if the statistics
of_T are knoWn; calculating the statistics ofpthe'outputvy(t)
'Alis.a_formidaple,task, since this requires fiuding'the expected
value of'a'stochastic integral, one_of whose}lihits is a
random~brocesstwhose statistics, in turn, depeﬁd on the inte-
grated processﬁ | | |

Tt isjknowh[sj,'however,lthat for a zeroeﬁean Gaussian
Markdvpprocess_x(t),_the mean ahd variance of T‘tend to zero
as'the proCess x(t) becomes more and mOre uucorrelated This
suggests an approximation that simplifies the problem and
enables us to calculate the power spectrum of the’ output In the

. ) t;
expression Jﬁ x(p)dp, the random variable T. in the lower
- < £-T

limit is replaced by its mean value Th' We then'have the

approximate relation

y(t) =[ ~ x(p)dp T (2.20)

which 1s a stochastic integral with deterministic limits.
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(1) Let x_and y_ be the expected values of the
stationary processes x(t)'and y(t) respéctively. Using E

to denote ekpected value, we have, from Equation (2.20),

E{y(t)}
. ¢
E{I‘ x(p)dp }
t-T
m .

, .
J, E{x(p)}dp
t-T

g
]

m

mem H

in particular, Yo = 0_ if xm‘Q 0.

(ii) -Let F denote Fourier-Transform and let

Rxx(t) é_auto-correlation_of'x(t)

>

cross-correlation of y(t) and x(t)

Ryx(r)

e

R._ (1)

vy auto-correlation of y(t)

Sxx(w) = spectral density of x(t) = F{R (1)}

Syx(w)'= cross-spectral density of y(t) and x(t) = F{Ryx(r)}

Syy(w) = spectral density of y(t) = F{Ryy(T)}

-We have
R,_(1) = Ely(t+T)x(£)}

yX
.- t+T_ .
=E{Jf N x(p)x(t)dp} |

't+Tme



rt+'l’
= E{x(p)x(t)}dp
.Jt+r-Tm
r t+T1
= Rxx(p—t)dp
- Jg+-T :
m

. Tm
i[- Ry (T-T +v)dv (2.21a)
. o ! N

Taking Fourler Transforms on both sides,

. o .
Syx(w)=[’ F{Rxx(1—¢m+v)}dv
Jo _

-J T - ; : o _ !
=8, (w [};ﬁi_filf} | o (2.21b)

Then, using the technidue of statistical 1inearization[6’7],
»we,define G(jw), the random-describing funcﬁién of the Clegg

Integrator, as follows:

S...(w) A ~JwT S |
G(jw) 4 _.y_}_(__ui_. = -M L (2.21¢)
, Sxx(w) jw o

It then follows[6’7] that, for the Clegg Integrator,
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S (w) | wT o
Sxx(w) w 2

For a linear integrator, the corresponding relation is

S,y (@) : o |
yy ~ - L - (2.22)
Sxx(w)' w?

Using the relation

o 1/2
= 1
Vrms -[mj Syy(‘”)d“’:] | ’

Equations (2.21d) and (2.22) enable us to cénclude that the

Clegg Integrator in cascade with a pure atteﬁuation df_0.5

gives a shaller.noise output than a'lineaf integrator % .

regardless of the actual value of Tm’ 80 iong as Equation

(2.20) constitutes a reasonable appfoxihation-to Equation (2.1).
Turning to the modified non-linear deviée-of Fig. 2.14,

the input x(t) and the output y(t) are related by

. . | o |
?[- x(p)dp +-J— x(p)dp - (2.23)
—o : t-T |

where, as before, (t-T) is the instant of the last zero-

"

y(t)

crossing of x before t. Approximating T by Tm, as before,

t . t -
y(t) = bj x(p)dp +j x(p)dp _ . (2.24)

_Tm

o0

t
yl(t) + yz(t), where yl(t) = bJﬂ x(ﬁ)dp =

Writing y(t)

'] ==CO

output of the linear integrator'% ,
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-t
'y2(t) = x(p)dp = output of the Clegg Integrator,

t-Tm

we obtain,

Syx () - Sylx(w).+ Syzx(w)
= Sxx(w)l b, G(jw)}, where
L Jw . B
-jwT
G(Jw) = 1=2 z
Jw

' S, (w)
Thus, G,(jw) = JE
S yx(®)

describing-function of the modified non-linear device.

-JwT ] '
=[:b+1"e T (2.25a)

Jw B
S, (w)
and YL = |G1(jm)‘2
S..(w) '
XX ,
2 2 YT
. b 4+ 4(1+b)sin >
Z 5 (2.25b)
For the corresponding linear transfer—funcfidn <b;l) , We have
Syy(w) - (b+1)° - b2+ (1+b)+b ' (2.26)
2 2 )
Sxx(w) W W

Once again, comparison of Equations (2.25b) and (2.26) shows
that the non-linear device in cascade with an éttenuation of

0.5 will give a smaller noise output than the corresponding
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linear elément iﬁill
s

, regardless of the actual value of Tm’
so long as Equation (2.24) is a reasonable approximation to
Equation (2.23). |

Fig. 2.25 is a record of the square of the nolse output
(instantaneous noise power) of the linear and Clegg integrators
produced by an input of zero-mean noise, and the results are
in'agreement with the above conclusions.

'Let‘us‘now consider the effect of zero-mean sensor-noise
n(t) on the output c(t) (in the absence of command input), in
the linear and non-linear systems shown in Figures 2.26 and

2.27 respectively.

We have,
S..(w)
Nl(w) = .__9_0___
. Snn(w)
: linear system
(b+ 2
Jw
1 4 (B+D)P1(Jw)
Ju
(b+1)2 2 :
v ——5— [P (Jw)] (2.27)
w? '
, Pi(Jw)
at high frequencies where — << 1.
: jw

cC

(w) |
i

Snn(w)é‘
j non-linear system

Ng(w) év
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' -jwT 2
[ (b+1l)-e m P2(jw)

Jw

Ls (+1-e”I9Tmyp, (5u)

Juw
wT
(o244 (b+1)s1n° (—™) ) o
N 1P, (jw)| (2.28)
2 2
w .
: P2(jw) ,
at high frequencies where _—36_— << 1. Thus,
wT
N, () [o2+4(b+1)sin® (1) | P,(3w) |2
N : : ' (2.29)
N, (w) (b+1)2 | P, (Jw)
~at high frequencies Where
NE: (Jw) P,(Jjw)
‘_1__ 1 ‘_a__l
Juw Juw
We thus find that
N,(w) - Py (Jjw)
<1 if |P2(jw)| <| ——— | at high frequencies,
Nl(w) ,

i.e. if |L2(jw)|db < {Ll(jw)ldb - 6, at high frequencies

where
(b+1)P4(s)
Ll(S) = = the loop-transmission of the linear
s . system of Fig. 2.26
- (b+1)P,(s) . _
L2(s) = : = the linear loop-transmission corresponding
s to the non-linear system of Fig. 2.27.

‘We shall show later that for given design specifications

on the sensitivities of step- and disturbanéé-responses, the
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use of the above non-linear device enables us to make a non-
linear design in which the magnitude of Lz(jQ) is at least

6 db smaller,_at high frequencies, than the magnitude of the
loop-transmission Ll(Jw)'in the optimal linear design for the
same problem. This will show that, for glven specifications,
the non-linear design achleves a smaller transmission of high

frequency noise than 1is possible in the linear design.



CHAPTER III

"PROCEDURE FOR NON-LINEAR DESIGN

3.1 The Design Problem

We now examine the'application of the non-linear device
of Fig. 2.14 in the design of a closed-loop system. We wish
to develop a procedure for such design and to compare the
results with the opt1ma1 linear design obtained by Horowitz
and Sidi's (1] method.

The design problem is stated as follows:

(a) The transfer-function P(s) of a linear, time-
invariant minimum—phase plant is described by.a set of para-
meters a;, ..., a (gain, poles and zeros). Each ay (1 =1,...p)

i- a; =
but its precise value is not known. Thus P(s) is a partlcular

- 1s known to lie within e given range o, < < B (i = 1,.. p)

unknown member of a certaln known family of functions.

(b) Compensation must be designed in the two—degree-of—
freedon struoture of fig.'B.l, suoh that, forpall'possible
conditions of the plant.P(s), the step-response of the system
lies within oeftain specified bounds, such as, for example, the
envelope shown in Fig. 3.2. | | |

(¢) 1In addltlon, it is required that the response to a
dlsturbance D at the output (Fig. 3. l) should satisfy certain
damplng requirements.

(d), The magnitude of the 1oop—transmis31on in the linear
design, end thet of the correspondlng_linear loop—transm1551on

in the non-linear design, should have an asymptotic slope of

35
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(—2Qq)db/decade, as tends:ﬁo infinity, where g is a given
positive integer. In the linear design, q.isvthe excess of
poles over zeros in the loop-transmission.

‘Also, the loop-transmission of the linear design and
the loop—tfanSmission corresponding to the.non-lihear design
are both of Type-1l. _

(e) The object'is to.érrive at a design which meets the
specifications on step- and disturbance—responées, and, at
the séme ﬁime, minimizes the effect'of feedback—sensor—noise,
when there is no command input. A linear design-which~is
quasi-opﬁimal in this sense 1s furnished by‘fhe method df
Horowitz and Sidilli. -

It will be shown that; using the Clegg Integrator in
parallel with a 1iﬁear integrator, a non-linear design is
possible which transmits less feedﬁack noise to thé output

than the optimal linear design.

3.2 Desiganrocedure

The calculafions that haﬁe been carried out fér time-
response with the non;linear deviée, and the fesuifs obtained,
have been described.in térmé of;the transfer—fﬁnctions defined
for the correépoﬁding linear system. 1In keeping with this
description»of non-linear resulté in correépbndihg linear
terms, we shall present the method of non-linear design as
an adaptation Qf the mefhod of linéarAdesign pfoposed by.

(11

Horowitz and Sidi In fact, the method of non-linear

design, for a given set of specifications, consists in obtaining
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the correspoﬁding iinear transfer—functiqns as a linear design
(by Horowitz and Sidi's method) fér a less restrictive set of
épecifications. The method of l1linear design'is treated at
length by Horowitz and Sidi in Reference [1], and, therefore,
in order to describe the method of non-linear design, it will
be enough to give an putline of their method and to indicate
how it is adapted for non-linear design.'

[1]

3.2.1 OQutline of Procedure for Linear Design

The time-domain bounds, within which the step-response
should remain for all possible plant conditions, are translated

into corresponding bounds within which the. function

_ (F(Jw)L(jw)
(g | 1+L(Jw)

1 shduld remain for all plant conditions.

There is no rigorous method of obtaining such corresponding
bounds, but Horowitz and Sidi propose a practical method of
trial and errbr which produces bounds that lead to a successful
design. |

" The upper ahdvlower bounds on LT(jw)|db,'in turn, lead to

a bound‘A(m)db-on_the maximum variation that can occur, at

fixed w, in léﬁiﬂl——wdb
1+L(jw)

since IT(jw)ldb'=‘lF(Jw)ldb

over all the possible plant conditiohé,

O LGjw

+ l (Jw) l
1+L(jw)

F(s) 1is fixed and independent of the plant.

dS and the pre-filter

Therefore, at each w, the loop transfer-function L(jw),

considered at some chosen plant condition, should be such that
IL(jw)

14L(Jw)
conditions, should not exceed A(w)db. The use of the Nichols

the variation in Idb , due to changing plant
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Chart is the obvious method of examining the variation in

|£&lﬂl__| due to variation in L(jw). Using templates of

db
1+L(Jw) ‘ A .
the variation of P(jw) over the plant conditions, and the

bounds A(w) on the corresponding variation in |—£i£l——|
1+L(jw)

we obtain, for each w, a locus on the Nichols Chart as the

db °?

lower bound for L(jw) At high frequencies, however, the

variatlon A(w) that is permissible in |E£lﬁl__| is greater
I+L(jw) '

than the actual variation that occurs in L(jw), and, as a
result, the step?response bounds impose no éonditions on
L(jw) at these frequencies, and there are ﬁo;loci on the
Nichols Chart.

However, we must also téke into account the specification

that sets a limit to the overshoot in the dlsturbance response,

determined by the transfer-function 1 Using the
2 1+L(s)
o . wn L(S) )
second-order model for —>="— , Horowitz
s +2<Swns+wn2 1+L(s)

and Sidi translate this into a lower bound on the damping &

in the second order model .and, in turn, into a closed boundary
IL(Jw) 'l
1+L(Jw)

on the second-order relation

“on ', for all frequenciés and plant conditions, based

Max — :-ng = L .
W e - + j26wwn _ 26/&-62

The disturbance-response spedifigation thus limits the maximum
|L(jw)

C1+L(jw)
conditions; on the Nichols Chart this defines a. contour V (in

value. that | may assume, over all fréquencies and plant -
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the notation of Horowitz and Sidi) whose effect is to limit

the phase-lag that L(jw) can have until some frequency w, at

which [L(jw )| 1s sufficiently small. The smaller the

permitted damping in the disturbance-response, the larger

the phase-lag in L(jw) that is allowed by the contour V,

Fig. 4.1 in Chapter IV»shows the contours Vl and V2 corresponding,

respectively, to §; = 0.5 and §, = 0.3, for a 4o db. variation

in the gain of the plant. ’
Thus, the specifications on step—respbnse and disturbancé—

response, taken together, furnish a set of loci on the Nichols

Chart as bounds on L(jw) at all w. A linear design that meets

the specifications and is éptimal, in the sense of minimizing

k, where ky & 1inm sqL(s), is one in which L(jw) lies on its

g0
corresponding locus at each w. The existence of such an
optimal L(s) and the manner of its realization are shown in

(1]

Horowitz and Sidi's paper

3.2.2 Development of Procedure for Non-Linear Design

Step-Response Specifications

The step-response c(t) of the two-degree-of-freedom
structure of Fig. 3.3, with the non-linear device (Ciegg
Integrator + g) situated at the error junction of the feedback-
loop is descfibed by Equations (2.13) and (2.14) when we set
R(s) = Eéil . It is clear that the non-linear response is
identical with the corresponding linear response till tl’
the instant of first reset of the Clegg Integrator (in

particular, if the Clegg Integrator is never reset, the linear

and non-linear responses coincide for all t). This portion
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of the non;linear response 1is thus'determined by the

F(s)L(s)
, 1+L(s)
therefore, its sensitivity to plant variations is, in fact,

corresponding linear transfer-function T(s) = and

determined by the sensitivity of the linear transfer-function
| %%%%ET (since F(s) is fixed and independent of the plant).

. We thus conclude that the variation of thiS‘poftion,zat least,
of the non-linear step-response can be kept within the speci-
fied bounds by designing the corresponding linear ioop—
transmission L(s) as in a purely lineér design.

As regards the response after the first reset, it is
helpful to recall that é resét of the éutput y(t) of the Clegg
vIntegrator at ti from vy a y(ti-), may be fepresented in the
corresponding linear system by én impulse—inpuﬁ —yid(t—ti);.'.

With the modified non-linear device (Clegg Integrator + %)

situated at the error-junction, the response, after t1 and
until a possible second reset t,, is found from Eqns. (2.13)
‘and (2.14):

. :yl '

c(t) = e (£) - T h(t—tl) , where

"

r(t) the oﬁtput of the prefilter

t : . .
cL(t)=Jh n(p)r(t-p)dp , the linear response,:
o

L(s)
1+L(s)

h(t) = impulse-response of

by "ty
y1=J’ e(t)dt =j [r(t)=c(t)]dat .
o : _

-+ 0
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Since a reset occurs at tl, e(t) crosses zero at tl
and changes sign. Consider the case when e(t) is positive

for 0 < t < t1 and becomes negative after tl, i.e.

e(t) < r(t) for 0 < t < t, and
c(t) > r(t) for by < t <ty

Then Yq > 0.

Als™ 9 + ....1

[s®™ + ....]

Let L(s) =

where g is the excess of poles over zeros in L(s), and A > 0
for minimum-phase L(s).
Then, from the initial value theorem of Laplace Transforms,

we find

a0y = 14m s(1FD) L(s)
s> 1+L(s)

and h(q_l)(0> = A > 0.

Hence, h(t) > 0 over an open interval (0,A) and thus,

¥1 ,
c(t) = cp(t) - === h(t-t;) < cp(t)

1+b

over an openvinterval (t tl+A); i.e. the reset at t; tends

1’

to reduce the overshoot after tl' This i1s illustrated in Fig.

3.4 . If a second reset occurs at t2, similar arguments show
that 1t tends to reduce the undershoot that occurs after t2.

If there is no reset after t,, then c(t) > r(t) for t > tys
o y .

c(t) = ¢, (£) = - ==~ h(t-t,), t > t.. Therefore,
L 1+b 1 1 ~



42

[o ] [oo]
y _
[e(t)-c (t)Idt =1 h(t-t,)dt
b J
ty 1
y [» ¢
= -1 h(t)dt
1+b
(6]
y
= - lim Lis)

1+b s+0 1+L(s)

if L(s) 1is of Type-1l or higher, showing that, on the average,
the response c(t) has less overshoot than cL(t) for t > t,.

| Thus, the effect of a reset is, in general, to reducé
overshoot and undershoot in the non-lineér response as
compared to the corresponding linear response. In conse-
quence, one expects the non-linear step-response, in
general, to have smaller osciilations than the corresponding
linear step-response, and, therefore, to remain within the
same bounds as the cbrresponding linear step-response.
An éxception might occur for the plant condition in which
the linear step-response corresponding to the non-linear
‘design has 5ear—critical damping. If the linear responseA
has just enough overshoot tQ cause é reset 1n the non-

linear response, the latter can have considerable undershoot,

which might violate the lower bound of the step-response
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“specifications. Equation (2.19) gives an approximate¥
(second—ofder model) upper bbund to such undershoot and
enables b to be chosen so ds to limit the undershoot to the
“desired value. |

A géneral conclﬁsion from these consideraﬁions is'that
the non-1linear response tends to be less_dscillatory than
the lineér respphse for quite general inputs,_exceptions
occurring ﬁhén a reset occasioned by an overshoot causes .
exessive undershoot or vice versa. Examples of linear and
non-linear response to general inputs are shown in Figures
h,11-a, b and ¢, for the linear and non-lineéf{systems designed

~in Chapter IV,

¥ Equation (2.19) applies to the step-response without a
pre-filter, or, equivalently, to the-distufbanCe-response;
however, if the step-response of the pre-filter is much faster
than that of the feedback-loop for near-critical damping, the
éxpression is a good approximation even for step-response with
the pre-filter. o

For instance, in the design example of Chapter IV,

kL
2 ! .
TIEEE has near-critical damping for k = 1, and has then a
bandwidth of about 4 rad/sec, while the pre-filter F2(s) = 50
‘ ' s+40

has a bandwidth of 40 rad/sec. Figures U4.5-b and U4.6-b show
that-both thé_disturbance-response and step-response for k = 1

have the same undershoot.
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We thus conclude that sensitivity specifications on
step—respoﬁse can be met 1n the non-linear design by
designing the corresponding linear loop-transmission for the
same low-frequency boundaries on the Nichols Chart as in a
linear design, with special consideration for the largest

undershoot that can occur.

Disturbance-Response Specifications

The benefits of the Clegg Integrator over the linear
integrator'are secured, in the maln, 'in the design to meet
the disturbance response specifications. 1In 1inéar design,
the specification on the overshoot in disturbance response is
translated into a minimum damping 61 in a sécond—order model

for the feedback-loop, and, in turn, into a boundary V., on

1

the Nichols Chart, which limits, over a range of frequencies,
the phase-lag allowable in the loop-transmission Ll(jw) of
the linear design. _

It is seen from Equations (2.17) and (2,18) that, for
the same ovefshoot in the disturbance-:esﬁoﬁse, the'non—iinear
feedback-loop can have a smaller damping (in the corresponding
linear transfer-function) than in the linear design. If 62
is the damping correspbnding to the non-linear design, equating
the overshoots in the.disturbance-responses of thé linear and

non-1linear designs, we have

TT(Sl ) 62 -1 TT(Sz

T T o1/2 ——> 175 (1-cos 78,) | - ———75
(1-89) _ (1-85) _ (1-65)
e . 1 = b - 262e 2 : e - o2

1+b _
| (3.1)
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1 and 62.

Equation (2.19) shows that the choice of b also deter-

which gives b as a function of §

mines the maximum undershoot that can occur in the disturbance-
and step-responses. If this expression is ﬁsed to set a lower
bound to b, then Equation (3.1) may be used to find the 8,

that corresponds to a giveﬁ 61, and we note that 62 < 61.

For a given 61, the smaller the value of b, the smalier the
‘value of Gé.' The non-linear design is then obtained by
deéigning the corresponding linear 1oop—tranémission Lz(jw),
using the bdundary V2 that corresponds to thevé2 calculated
from Equation (3.1). Since §, < §,, V, allows a faster

reduction of |L2(jw)| than is permissible in ]Ll(jw)].

Noise-Transmission

It has been shown in Section 2.7 that if |L2(Jw)|< %ILl(Jw)l

at high frequencies (i.e. at frequencies where
L(Jw)

1+L(jw) |
back sensor-noise than the linear design, if the significant

X L(jw)), the non-linear design transmits less feed-

part of the ﬁoise—spectrum occurs at these high frequencies.
The use of the boundary V2 in the non-linear design in place
of the boundary Vl in the linear desigh usually enables us to
L,(Jw)
2

make the ratio 1im |-=———| considerably smaller than L,
w>o Ll(jw)

3.2.3 Steps in Non-Linear Design

The procedure for non-linear design may be summarized

as follows:
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The specifications on’step—respoﬁse are translated into

bounds on the variation, at different frequencies, of the

same minimum-phase transfer-function T(s) that would be
used 1n Horbwitz and Sidi's linear design:

Using these bounds and templates of plant-variation at
the different frequencles, boundaries are derived on the
Nichols Chart for the loop~transmission -as in the linear
design.‘ _

The damping 61, which would be used tovderive the high-
frequency boundary Vl in the linear design.is calculated
from the disturbance-response specificétion. Values for
b and §, are then obtained from Equations (2.19) and

(3.1), the choice of b influenced by the largest under-

shoot that can occur in the step and disturbance responses.

The highffrequency boundary V2‘correspdnding to 62 is
then obtained; | | |

The liqéar loop—ﬁransmission L2(s) corrésponding to the
non-1linear design is obtained as a linear‘design for thé
boundariés dérived'in Step-2'and the highefrequéncy
boundary V2. |

The series-~compensation consists of the non-linear device

(Clegg Ihtegrator'+ 2) at the error junction, followed by

P(s)[1 + 2 ]
S

the linear transfer-function -, where

P(s) is the plant transfer function-corresponding to the
plant-condition used in deriving the boundaries in

Step-2.
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The linear pre—filﬁer Fz(s) for the non-linear design
is obtained from the equation ‘ |

Fz(jw)Lg(Jw)

T(ju) =
: 1 + L2(Jm) >

where T(s) 1is the transfer-function derived 1ln Step-1.

bt



. CHAPTER IV

A DESIGN EXAMPLE

4,1 The Problem

The method of non-linear design 1s illustrated, and

linear and non-linear designs ‘are compared in the following

example.
Specifications: : _
(1) The plant has the transfer-function P(s) = —EZ ’
: v s _ ot

where 1 < k < 100.

(ii)  A pre-filter and Series compensatién are to be
'designed'in ofder to keep the step-fesponée of the two degfee—
of-freedom éyétém of Fig. 3.1 within certain:bounds,_for all
values of k, 1 < k < 100. We éssume here that.such time-~
domain bouhds lead to the following bounds on the varilation

of the magnitude of the minimum-phase transfer-function

T(s) = Eﬁéléiil that would be used in a linear design.
‘ 1+L(s) ' :
A w) f Max 1T(jw)ldb - Min lT(jw)Idb

| L(jw) L(jw)
Max| —— - Min
I+L(Jw db

. |



TABLE .1

Bounds On Variation in IT(jw)I

w rad/sec - Max [T (Juw) |4 - MinIT(jw)ldg . A(w)db
R ] -oes | ou2s
> o5 o5 :“:_‘;W 1
w10 om0 5

6| 2.0 B N T B
10 f 2.0 | 80 20
20 S 0.0 ~30.0 | 30
1o _f .. .0.0 . -ko.0 - | vuo'

(iii) The response to a constant output disturbance
should go . to zero in the steady state, with a’ maximum over-—
shoot of about 20% of the constant disturbance |

| (iv) - The loop~transmission L (s) in the linear design,
: and the 1oop transmission L2(s) corresponding to the non-
linear design should both be of Type -1 and should have an

- excess of four poles over zeros.

4.2 Linear Design

Since the plant variation is a variation of pure gailn

by a factor of 100, the corresponding template ‘on "the Nichols

Chart is a‘straight line of length ho db,‘parallel to the

magnitude—axis; for all frequencies. The bounds A(w) of

. Table 4.1 and'the template of plant—variation:together‘determine

bo

et = e St mmimnn & ke e
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the boundariés shown in Fig. 4.1 for Ll(jw) at the different
frequencies. k = 1 was used as the refereﬁce plant-condition
in obtaining these boundaries.

Correspoﬁding to the 20% overshoot allowed 1n the
disturbance-response, 61 ¥ 0.5 and this leads to the high-
frequency bbundary V1 shown in Fig. U4.1. Using these
boundaries, the following loop-transmission Ll(s) is obtained

for the linear design.

2.3x107(s+11)(s+35)

L,(s) = (4.1)

s(s+1) (s+30) (5+180) (52+2165+360°)
Fig. 4.1 shows that Ll(jw) lies quite close to its

boundaries, and therefore, it 1is close to the optimal design

in the sense of Horowitz and Sidi.

kLl(jw)
With —————— known, for 1 < k < 100, the following
l+kL1(Jw)

pre-filter Fl(s) for the linear design is obtained with the
help of Table 4.1 on pg. U49.

F(s) = % (4.2)
s+70 :

This completes the linear design, and the Bode plot of

Ll(s) is given in Fig. 4.2.

4.3 Non-Linear Design

The loop-transmission L2(jw) that corresponds to the
non-linear design uses the same low-frequency boundaries as

were obtained for Ll(jw) (with the same reference
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plant-condition). When 62 = 0.3 is tried, Eqﬁation (3.1)
gives b = 2.7 (the calculation is shown in the Appendix),
which, from Equation (2.19), would limit the maximum under-
shoot to about 20%. The high-frequency boundary Vs
corresponding td 6, = 0.3 is shown in Fig. b1,

Lz(s) is now obtained as a linear design with Vs

replacing V1 as the high-frequency boundary, and is given by

L.6x10%(s+18) (s+15)

‘ (4.3)
Ly(s) =
s(s+4) (s+50) (s+80) (s2+208s+2602) .
kL2(jw) A
With ————— known, for 1 < k < 100, the pre-filter
1+kL, (Jw)

Fg(é) for the non—linear.design is chosen so as to make
Fg(jw)kLz(jw)'

vary, as k varies from 1 to 100, between the
1+kLo(jw)

limits given in Table 4.1 on pg. 49, over the range of fre-

quencies listed in the Table. We choose

ho
s+40

Fz(s) = (400
oo 2.7y .
The non-linear device (Clegg Integrator + "5—) is
situated at the error-junction of the feedback loop, followed
by G(s), the linear part of the compensation and the plant

P(s). G(s) is_determined by the equation
L,(s) = P(s)G(s) Litb] _ P(s)G(s) 3.7
i S S .

This completes the non-linear design and the Bode plot of
. C ' ~ kL, (s)
, : ) 1 .
L,(s) is given in Fig. U4.2. The Bode plots of T, = F.(s) ————
2 . ) 1 1
- ‘ 1+kLl(s)
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kLz(s)

A and TZ(S) = F2(s) , for k = 1 and K 100, appear

N , 1+kL,(s)
in Pigs. 4.3 and 4.4, respectively.

| 4.4 Results

| Figures 4.5 and 4.6 show fhe step- and disturbance-responses
of the‘linear and‘non—lineaf designs,'for several values of k,

as wéli as the responses obtained when L2(s) is used as a
1ineaf,design. ,

We -note that the L2—non—linear responses fall Within the
bounds‘OffVariatiQn of the.Ll—lineér responsesband meet the
same sﬁeéifications as the linear responses; the L2—linear
responses, however, violate those bounds.

| The transmission of feedback sensor-noise to the output
in the linearland non-linear designs}is compared in PFig. 4.7,
which 1s a record of the square of the actual noise Qutput

produced by zero-mean sensorhnoiseA(with a bandwidth of about
100L, (s)

fifteen times that of ), and is thus a record of

1+100Ly(s) , |
instantaneous noise-power at the output. The noilse at the

output is seen to be much smaller in the non-linear design
‘than in the linear design, and as a result, saturation of
'fqrward elements due to sensor-noise 1is much less of a problem
ih the non-linear design than in the optimal linear design.

.- Figures 4.8, 4.9 and 4,10 show linear and non-linear
responses to sinusoidal and ramp inputs and to a combination

of command- and disturbance-lnputs. Figures U.1ll-a,b,c compare
linear and non-linear responses‘to-some other input waveforms.

| Thougﬁ a Type-0 plant and pﬁré‘ gain-variation'wereA

considered in this example, the derivation of the procedure
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for non—lihear design has been qﬁite general, With just one
assumption made — that the device (Clegg Integrator + %) is
situated at the error—Junction; however; this imposes no
restrictions on'the design, and we see that it is also

applicable to other kinds of plants and parameter-variations.

4,5 Conclusion

It has been'shown that the non-linear device consisﬁing
of the Cleggilhtegrator in parallel with the linear infegrator
is a useful élement to include in the compensation for a
linear, minimﬁm—phase plant with uncertain parameters, to
'achieve specified bounds on 1ts response. For given plant-
ignorance and bounds on response, it has been shown that,
using this non-linear device, cOmpenéatioﬁvcan be designed in
a two-degree-of-freedom structure in which there is less
"transmission of. . feedback sensor-noise to the_plant and its
output ‘than is possible to achieve in a linear design.  A
~method has.been obtained which enables the non-linear design
to be carried out in terms of an.equivalentllinear design by

the method of Horowitz and Sidi.
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(t) _ |
e 2l B(s) i;-g_)---«- a(s) |—2(8 | p(s) o)
ﬁ:)
- —Ge———e n(t)
+ |
L(s) = P(s)a(s)  T(s) = IL8IL(s) B(s) = - A [_L_(.S._)_._:‘
. 1+L(s)

1+L(s) P(s)

Fig. 1.1: A Two-Degree of Freedom Feedback System
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x(t)
A \
x(6) | TacEE | y(o)
| grator |
P
wt
-A o
2A
w
‘x(t) = Asinwt
y(t) = % (1-coswt), 0 < wt <

. (l+coswt), ™ < wt < 27
w

Fig. 2.2: Sinusoidal Response of the Clegg Integrator
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A Closed-Loop Linear System
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i
»84”
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\

2.3-b: Output of System of Fig. 2.3-a, for k
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sec
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()20 4 Clege | ko c(t)
S

0—-——-“;L————— Inte-

_grator

Fig. 2.4-a: A Closed-Loop Non-Linear System
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Fig. 2.4-b:  Output of System of Fig. 2.l-a. for k = 10

v A EITT e

2 voltsftrt Lt L L L f?;ﬁ
SRS RN EE R EEEES
, , | 1

- 110 »
T gect—

Fig, 2.4-c:  Qutput of System of Fig. 2.4-a for k = 100
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~r(t)=0 + 1 , : Kk ce(t)

L - S - "(s+1)2.

Fig. 2.5-a: A Closed-Loop Linear System

R O o s ] S e T e e _'* g

Ejgd—-f-;_Lsg j;;'
=71 | .F

{
1 volt f{i

110 |
—»Sec [ —

Fig. 2.5-b: . Output -of System-of Fig. 2.5-a for k:='2.1
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A Closed—Loop'Non-Linear System
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~ Fig. 2.6-b: Output of System of Fig. 2.6-a for k
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Fig. 2.7: Output of System of Fig. 2.6~-a for k
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Clegg
+
a(t) = - g y(ty=)8(t-t,)
x(ti) - 0, 1=1,2,...

Fig. 2.8: Linear Equivalent of the Clegg Integrator
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rlt) e(t) *'%r\ i |y () 1 pes) C(tl
- ~+
alt) = - § y(t,-)8(t-t,)
k .
H(s) = S(s) . C(s) V() = L&) - X(s)
R(s) A(s) R(s A(s)

Fig. 2.10: Linear Equivalent of System of Fig. 2.9




r(t) Clegg K c(t)

ﬁ——*—+€?—~—~——lnte— ; .
‘ - grator s+l

Fig. 2.11: A Closed-Loop Non-Linear System
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r(t) <+ c(t)

1 k
%_ | S s+1 b

Fig. 2‘.12: The Linear System Corresponding to System of Fig. 2.11
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Fig. 2.13: Step—ResponSe of System of Fig. 2,lllrfor k
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Fig. 2.15: A Closed-Loop Non-Linear System
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Fig. 2.16: Step-Response of System of Fig. 2.15
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Fig. 2.18: Step-Response of System of Fig. 2.17
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Fig. 2.19: A Type-l Non-Linear System
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Fig. 2.20: Ramp-Response of System of Fig. 2.19
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Flg. 2.21: A‘Type42 Non-Linear System

'

B | :
sec’

Fig. 2.22: Ramp-Response of System of Fig. 2.21
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r(t) + o o | 4 o | c(t)
+ 1 y(t)
T S
+
(t) = - ) y(t,-)8(t-t,)
attr =, g 1 1
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S ~ R(s) 1+L(s) R(s) - s[1+L(s) ]
CG) Ly (g) = B8, L) Ly (g)o Ly(s)ed)
A(s) % 14 acsy @ 1+b s

Fig. 2.24: Linear Equivalent of Fig. 2.23
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Fig. 2.26: Effect of Sensor-Noise —— Linear System
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Fig, 2.27: Effect of Sensor-Noise — Non-Linear System
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Fig. 3.1: Two-Degree-of-Freedom Structure for Linear Design
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Fig. 3.2:  Example of Bounds on Step-Response
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Fig. 3.3: Two—DQgree—of—Freedom Structure for Non-Linear Design
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Fig. 3.4 Comparison of Linear and Non-Linear.Responses
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APPENDIX

| M,
A.1 Calculation of Y (G?b)
From Equation (2.17) on page 24, setting ¢ = cos—ld,
Mn(é,b) = Mn(cos¢,b)
_ b e-ncot¢ _ 2cos¢ o—dcotd
1+b 1+b
M - _ -dcotd - :
—n . b (ncosec2¢e “c°t¢) - gge————— {—sin¢+¢cos¢cosec2¢
a¢ 1+b . 1+b
. —-cosdcotd}
1 -mcotd, ., -dcotd
= : 5 [Trbe +2e (sincb—d)cosq))]
(1+4b)sin®¢
>0 4, 0<¢ < % (1.e. 0 < § < 1)
Now ,

aM M, 3¢

— mm—

1) a¢p. 3o

An 1
=‘3Mn o(cos ~8)
3¢ 38
1 M,
= - : <0 , 0<6 <1
2
V1-6 3¢ -

A.2 Calculation of b in Non-Linear Design of Chapter IV

We use Equation (3.1) on page Ul with ¢4 & cos7?t
b Lol |
¢2 = cos 62

15

102



103

i
1

: e—ncot¢1

= 1

R

!
b 262ecot¢2(ﬂ-¢2)i}e—ﬂcot¢2
1+b |

il

1 [pe-Tcotéy _ 2626-¢2cot¢é]
14b -

]

[0}

From the linear design, 8, 0.5 and therefore, ¢, = 60° and
e 2 9. 164,  with 5

0.3 in the non-linear design,
¢, = 72.5° = 1.265 radians, and e~ "¢°t%®2 _ ¢ 37y,
26679200802 _ 0.403. Thus,

0.164 = —2 [0.374b - 0.403]
1+b

b= Q:403 +0.264 _ 0,567 _ , .,
0.374 - 0.164 0.21



