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ABSTRACT

The problem considered is the design of a feedback

system containing a linear, time-invariant, minimum-phase

plant, whose parameters are known only within given bounds,

such that the time-response of the system remains within

specified limits. A quasi-optimal design, for given design

constraints, is one which minimizes the effect of white

sensor-noise on the input to the plant. Horowitz and Sidi

have presented a method for the design of such a quasi-

optimal, linear time-invariant system.

This report investigates the use of the non-linear device

known as the Clegg Integrator in the design of such a system.

The describing-function of the Clegg Integrator has the same

magnitude characteristic, apart from a scale factor, as the

linear integrator, but has 52° less phase-lag, at all fre-

quencies, than the linear integrator; thus, when used in a

feedback system, it provides a larger stability margin than

the linear integrator. This property allows the non-linear

feedback system to be designed so that the sensor-noise is

attenuated more than in the linear design.

The non-linear time-response is calculated in terms of an

equivalent linear representation, and the reduced phase-lag in

the frequency-domain is seen to correspond, in general, to

smaller overshoot in the time-response. In order to obtain

satisfactory steady-state response, the non-linear device is

modified by putting a linear integrator in parallel with it.



It is shown that for given bounds on plant-ignorance and

time-response tolerances, the non-linear feedback system can

be designed such that the effect of white sensor-noise on the

plant-input is smaller than in a linear design. A method is

developed for implementing the non-linear design in terms of

an equivalent linear design by Horowitz and Sidi's method.



CHAPTER I

STATEMENT OF THE PROBLEM

1.1 Introduction

An important, fundamental problem in control is the design

of a system whose performance remains within specified limits

despite the uncertainty in the parameters of a vital system

portion denoted as the plant. In Fig. 1.1, let P(s) be the

transfer-function of a linear, time-invariant, minimum-phase

plant whose parameters assume values within a given range.

Note that we are not considering the case of a time-varying

plant whose parameters change during the time an input signal

is present; rather, we suppose the plant to be constant while

a signal is being applied, but allow it to change between

successive applications of the input; or else, we may take

the plant parameters to be fixed but known only within certain

tolerances.

Given such a plant P(s) with the range of values of its

parameters, and given a range of acceptable overall system

performance, such as, for example, bounds for its step-response

as in Pig. 1.2, the problem (for design with linear, time-

invariant elements) is to find fixed compensating functions

G(s) and P(s), such that the response of the closed-loop system

of Fig. 1.1 lies within the specified bounds for all values

of the plant-parameters within the given range.



1.2 Principle of Linear Design'-1-'

The general principle underlying a linear design for

this problem can be described as follows: the closed-loop

transfer-function in Pig. 1.1 is

= C(s)

R(s)

_ F(s) L(s)

N(s)=0

where

L(s) = P(s) G(s)

With s = jo), if |L(JOJ)| » 1, then T(joi) % F(j«) , and is thus

quite insensitive to changes in L(Joi) (caused by changes in

P(Jw)), so long as |L(jw)| remains much larger than 1. In a

linear design, a minimum-phase G(s) is so chosen that

|L(jw)| » 1 for all possible plant-conditions, over a

frequency-range 0 < w < w whose width u depends on the
—• — C C .

response specifications. Thus T(Jco) % F(jw) for 0 < to < w ,
\s

independent of the actual plant condition, and if co is
O

properly chosen, the closed-loop time-response essentially

depends on P(jw) and can be made quite insensitive to changes

in the plant.

We note from Pig. 1.1, however, that the transfer-

function between the noise-source n(t) in the feedback sensor

and the input z(t) to the plant is

B(.) i 2*21
•'N(s) R ( s ) = 0

_JL

P C s )

L ( s )

l+L(s)



If S (u) = spectral density of n(t)

S^fu) = spectral density of z(t), then,z z

'zz'v~' ~nnS170,(w) = S (w) |BUu)|2, and

Zrms
2TT

S(w)do)zz

Considering B(jco) for w » w , where |L(jw)j « 1,

B(ju)|2 % |̂ 1̂I|2 = |G(juj)|2, and if |G(ju)-| > 1, the sensor

noise-components at such frequencies are amplified at the input

to the plant and tend to produce saturation.

|G(Ju)| > 1 implies that |L(Ju)| > |P(ju)|, a condition

that occurs when the plant is unable to provide the required

loop-gain which must then be supplied by the compensation

G(jw). The condition |L(Ju>)| > |P(Jw)| can occur over a wide

frequency-range even when |L(JuO| < 1 over that range, as

illustrated in Fig. 1.3 with P(s) = - ands

L(s) = P(s)G(s) = 2048
s(s+8)(sfl6)2

|L(jw)| < 1 for all u > 8 rad/sec but |G(jo))| > 1 until u
r\

exceeds about 40 rad/sec. Fig. 1.4 shows [G.(ju)| as a

function of u on linear scales, and.it is seen that the

frequency-range 8 < u> < 40 (throughout which L(jw) < 1) is,

in fact, the significant range for the amplification of sensor-

noise at the plant-input.

It is, therefore, desirable to reduce |L(jto)| as rapidly

as possible beyond the frequency-range 0 < w < w , in which~ ^ c

sensitivity-specifications require it to be large. However,



in a minimum-phase transfer-function, rapid attenuation in

the magnitude characteristic is accompanied by a large phase-

lag, and a limit is set to the rate of attenuation of |L(jw)|

by the stability requirement that the phase-lag of L(jw) cannot

exceed l80° till |L(jw)| has become less than 1, for all

possible plant-parameter values. Thus, as a result of the

relation between the magnitude and phase functions of L(ju>),

the attenuation of |L(Jw)| has to be gradual until |L(jw)j has

become less than 1 at a phase-lag less than 180° , for all

plant-conditions.

We may define an optimal design L(s) for the above

problem as one which satisfies the specifications on closed-

loop respons.e while minimizing the effect of sensor noise on

the input to the plant. This definition takes into account

the power spectrum of the noise source. This problem has not

yet been solved. Another problem, which approximates the

above when the sensor-noise is white, is defined as follows:

Let q = (number of finite poles - number of finite zeros) of L(s)

Then, for large |s|, L(s) has the asymptotic form

L(s) V*- (1.1)
sq

For a given q, the optimal L(s) is defined as that which meets

the specifications on closed-loop response and has the smallest

possible value of k in Equation (1.1).

This problem of optimal linear design has been investi-

Fl 2"!gated by Horowitz and Sidi ' , who have established the

existence and properties of the optimal design for a class of

problems, and developed a procedure for its implementation.



1.3 Design with Non-Linear Elements

The fixed relation that exists between the magnitude and

phase of a transfer-function sets a limit to the maximum rate

of attenuation of )L(ju)| possible in a stable linear

system, over a frequency-range that is important in regard to

amplification of sensor-noise. Can this limitation, inherent

in a linear design, be overcome by the use of non-linear

devices in the compensation? Suppose there is a non-linear

device with a describing-function in which the magnitude

characteristic is associated with a smaller phase-lag than

that due to the same magnitude characteristic,in a linear,

time-invariant device. Such a device would appear to permit

a sharper reduction in the magnitude of the loop describing

function than that allowed in a linear design. We are then

led to the question, "Using such a non-linear device, can the

specifications on response, in the problem stated above, be

met with a compensation which produces a smaller noise output

than the optimal linear design for the same problem?"

This report presents the results of an Investigation of

this question, in which the non-linear device is the Clegg
r-3 41

Integrator. . It is shown that the non-linear device

leads to a design with a smaller effect of sensor noise than

in the optimal linear design, for problems of two-degree-of-

freedom design.



CHAPTER II

ANALYSIS OF NON-LINEAR RESPONSE

2.1 The Clegg Integrator

R 41This device1- ' is a non-linear integrator obtained

from a linear integrator merely by arranging its output to

be reset to zero whenever the input signal crosses zero and

changes sign. .Between consecutive zero-crossings of the

input, the device is Just a linear integrator. It can be

simulated on the analogue computer by using logic circuits

to detect zero-crossings of the input and to switch a linear

integrator between "reset" and "compute" modes. The simula-

tion we used is shown in Pig. 2.1.

Describing Function of the Clegg Integrator

If a non-linear device produces a periodic output y(t)

to the sinusoidal input x(t) = A sinwt, its describing-

function is defined as the complex ratio

Be-59 ,
A

where B sin(wt+0) is the fundamental component in the Fourier

series expansion of y(t).

When the input to the Clegg Integrator is x(t) = A sinut,.

its output y(t) has the periodic waveform shown in Pig. 2.2,

and is given, over the first period, by the expression

8



y(t) =

A A
- - COSWt + -

w W

A A
- - COSWt - -

W W

0 < Wt < TT

IT. < Wt < 2TT

i.e. y(t) = . - - coswt + f(t) , where f(t) is a square wave

A 2irof amplitude — and period — .
W W

The Fourier series for f (t) is

f(t) = — sinwt + ̂
TTCO |_ 3

+ - sin5ut +
5

...
J

and, therefore, y(t) has the Fourier series

y(t) = — sinwt - - coswt + —
_TTO) 0) J TTO)

-
L3

- sin5wt
5

The fundamental component of y(t) is

A
w

— sinwt - coswt
7T

= A
w

i + Ii
^2 _

_ 1.62A -J3

1/2
/ • 1 ITsin ( wt - tan" —

o
L̂ ^ O *̂

w

Therefore, the describing function D(jw) of the Clegg Integrator

is given by



10

while the transfer function of a linear integrator, for

s = Jou, is I —I . We note that the describing function of
\ jw/

the non-linear integrator has the same magnitude character-

istic as the linear integrator, apart from a scale factor of

1.62, but has a lag of 38° at all frequencies, which is a

lead of 52° over the phase of the linear integrator. The

describing-function is independent of the input amplitude A,

a fact which makes closed-loop calculations as simple as

open-loop calculations.

2.2 Stability in the Absence of Input

Prom the describing-function of the Clegg Integrator,

it appears that a closed-loop system that is unstable with a

linear integrator might be stable when a Clegg Integrator

replaces the linear integrator. For example, in the linear
r

"2system shown in Pig. 2.3-a, the loop transmission L(s) = —5-
• . . •• • • s

and the condition for free oscillations is .1 .+ L(jui) = 0,

1/2whose solution is to = k . ; hence, the system is unstable

for all k, the frequency of oscillations depending on k.

The result of analogue simulation for k = 1 is shown in

Fig. 2.3-b.

The system of Fig. 2.4-a is obtained by replacing a

.linear integrator in the system of Pig. 2.3-a by the Clegg

Integrator. Since the loop-describing function

Ld(jco) =
 2k!j , the equation 1 + Ld(Joi) = 0 is not

satisfied by any real w and k. Thus, according to
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describing- function theory, in the absence of external input,

the non-linear system should be stable for all k. This is

borne out by the results of analogue simulation for k = 10

and k = 100, shown in Figures 2.4-b and 2.4-c, respectively.

As another example, consider the linear system of

Pig. 2.5-a. The loop-transmission L(s) = — — - - and the
s(s+l)2

equation 1 + 'L(ju) = 0 has the solution w = 1, k = 2. Thus,

the system Is stable for 0 < k < 2 and breaks into unstable

oscillations of frequency 1 rad/sec at k = 2. The result

of analogue simulation for k = 2.1 is shown in Fig. 2.5-b.

On replacing the linear integrator in the system of

Fig. 2.5-a by the Clegg Integrator, the non- linear system

of Fig. 2.6-a is obtained. The loop-describing function

L,(Ju>) = XtU"AK — — , and the equation 1 + L,(jco) = 0

has the solution to = 2.9 and k = 17. The non-linear system

is thus stable for 0 < k < 17 and breaks into unstable

oscillations of frequency 2.9 rad/sec at k = 17. Figures

2 . 6-b and 2.6-c show the non-linear system responses at

k = 5 and k = 16 respectively, and there is evidence of

a stable limit cycle, with an amplitude of about 0.15 volts

for the case k = 16, while Fig. 2.7 shows the unstable

oscillations at k = 18.

The stable limit cycle occurring in Fig. 2.6-c, for

example, is not predicted by the single input describing-

function of the Clegg Integrator. It occurs in a situation
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where the oscillations at the input to the Clegg Integrator

have a non-zero mean value and a dual-input describing-

function of the Clegg Integrator must be investigated to

account for it. This point is considered again in Sections

2.3 and 2.4. '

2.3 Equations for Calculation of Forced Response

The verification of stability in the absence of input,

however, gives no indication of the forced-response of the

non-linear system, such as, for example, its response to a

step-input. We now consider the calculation of forced-

response of a system containing the Clegg Integrator, assuming

that all other elements of the system are linear and time-

invariant.

We have the following relation between the input x(t)

to the Clegg Integrator and its output y(t):

(2.1)

where t is the instant of the last zero-crossing of the input
^ ~-̂••

x prior to t. It is thus clear that the zero-crossings of the

input have a decided effect on the output. Consider now the

interval [t , t~J and suppose that t,,..., t are the instants

of zero-crossing of x(t) in this interval, with t < t-, < t?. .

t < tf. Then, over the sub-interval t. < t < t. ,,



(i = 0,1,... ,n-l), we have

13

y(t) = | x(p)dp

t.

x(p)dp - x(p)dp

o

:(p)dp - V
'k

x(p)dp
k=l Jtk-1

and, y(t. + 1)'=0, the output being reset to zero as x(t)

crosses zero at t.+,. Using the unit-step function u(t), we

may write a single expression for y(t) for the entire interval

[t , t~] as follows:

*" t,.t n

y(t) = | x(p)dp -

k=l

x(p)dp u(t-t, ) ; t <t<
K O~ ~

(2.2)

We note that y(t) is discontinuous at the instants t^ of zero-

crossing of x(t), being reset to zero at t from the value

'i A
x(p)dp = y±

Substituting from (2 .3 ) into ( 2 . 2 ) ,
t n

(2.3)

y(t) = x(p)dp -

1=1

-t j- n

x(p) -

1=1
:0 < t < tf (2.M)



which can be represented as the output of a linear integrator

to which is applied the sum of x(t) and an impulse- train

a(t) = - £ y.t<5(t-t.). We thus arrive at the equivalence shown
i

in Pig. 2.8, in which the Clegg Integrator is replaced by a

linear integrator and the resets are represented by the addi-

tion of a suitable impulse-train at its input.

With this linear representation of the Clegg Integrator,

we may calculate the response as the sum of the linear responses

to the actual input and to the "equivalent input" consisting.

of a train of impulses.

Thus the closed-loop non-linear system of Fig. 2.9 may

be represented by the linear system of Fig. 2.10, and the . ,

forced-response calculated by adding the response due to the

input r(t) to that due to the impulse-train. We thus obtain

the pair of equations

c(t) =| r(p)h(t-p)dp -

o i

Py(t) =| r(.p)v(t-p)dp -

o i

where

= fh
i-

H(s) = Fh(t) = - C(s)

R(s)

V(B) -

R(s) A(s)

(2.5)

(2.6)

for the linear

system of Fig. 2.10;

and , y. = llm y(t), with the t.'s being the instants at
- '



15

which e(t) = 0, i.e.- rCt^) = c(t.), i = 1,2,...; these are

the instants at which the Clegg Integrator is .reset. We

note that for t < t.̂ , hCt-t.p = vCt-t.^) = 0.

Equations (2.5) and (2.6) do not seem to admit of a

general analytical solution for c(t) and y(t) but a numerical

solution may always be constructed in the following manner:

for 0 < t < t, (i.e. till the first reset), c(t) and y(t) are
"" X

given by just the integral terms in Equations (2.5) and (2.6):

r*c(t) = r(p)h(t-p)dp

Jo

T*y(t) = r(p)v(t-p)dp

J o

Expression (2.7) for c(t), in fact, determines whether, at

all, there is an instant t-^ 0 at which e(t-L> = r(t1)-c(t-L) = 0.

If that condition never occurs, then the input to the Clegg

Integrator never changes sign and it is never reset; in that

case, c(t) and y(t) are identical with the corresponding linear

responses (those obtained when a linear integrator is used in

place of the Clegg Integrator), and are given by Equations

(2.7) and (2.8) for all t > 0. If, however, Equation (2.7)

does give a t-^ > 0 at which r(t-,) - c(t,) - 0, then Equation

(2.8) determines the value of y, = y(t-,-), and the terms

-y1h(t-t1) and -y-Lv(t-t1) are added to the right-hand side of

Equations (2.7) and (2.8) respectively, enabling the non-linear

response to be calculated for t > t,.

In general, Equation (2.5) determines whether there is a

reset at t.,, following a reset at t.. If no reset.occurs
. J ' -L . . J ' . . • - . ; . • ' .
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after t., then, for all t > t..
3 J

f* '
c(t) = r(p)h(t-p)dp - ) y±h

Jo • 1=1

rt J
y(t) = I r(p)v(t-p)dp -

Jo 1=1

If another reset does occur at t., -, , then Equation (2.6)
J ~»-L

determines -YJ,-, = -y(t.,-,-), the strength of the impulse to

be added at the Input to the Integrator at t.+1 In order to

calculate c(t) and y(t) for t > t, + -,.

Setting r(t) = u(t) In Equations (2.5) and (2.6), we get

equations for the step-response of the system of Fig. 2.9. It

is obvious that If the step-response of the corresponding

linear system (obtained upon replacing the Clegg Integrator

by a linear integrator) has no overshoot, then the condition

c(t) = r(t) = 1 never occurs for finite t; thus t1 does not

exist and the non-linear step-response is identical with the

corresponding linear step-response.

What is the nature of the non-linear step-response in the

case when the corresponding linear step-response has overshoot?

The instant of the first overshoot in the linear step-response

is the instant t-, of the first reset of the Clegg Integrator

in the non-linear case, and for 0 < t < t,, the linear and

non-linear responses are identical. Equations (2.5) and (2.6)

enable the further calculation of the non-linear response.

It is instructive to carry out the calculations for a second-

order system in which the corresponding linear step-response
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can have overshoot. An analytical solution of Equations

(2.5) and (2.6) is possible in this special case.

Let us consider the step-response of the non-linear

system shown in Pig. 2.11. The corresponding linear system,

shown in Pig. 2.12, has the transfer-function H(s) = :?,> =

k—P , and will have overshoot in its step-response if
s +as+k

a2k > -— . The linear step-response is given by

/ j \
c ( t ) = I e~a)n(5t

 Sin L /1-62 t + cos~16 ( 2 . 9 )
/ o" V /

/1-62 X '

where

2/Tc" 2uon

the instant of first overshoot, which is the instant t-, of

the first reset of the Clegg Integrator in the non-linear case,

is given by

(2.10)

10 / 1-62n

On calculating the expressions in Equations (2.5) and (2.6),

it is found that

t± = tl + v -L"-L ; n , i = 1,2,3,. . .
w / 1-62

= ilT-COS"15 , i = 1,2,3,... (2.11)
CO / 1-62 :•n ; • • • . . •
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and

c(t) =
-un6t / \

1 - sin (un/l-<5
2 t -t- cos" 6 ] , 0 < t < t1

1 - sin

'1-6'

0)n (t-t1) , t-, < t < t.

t - (2.12)

Equation (2.12) describes a step-response with a periodic

undershoot, and the result of analogue simulation shown in

Pig. 2.13 confirms this conclusion.

We thus find that while the non-linear system of Fig. 2.11

is stable without an input, as one expects from the describing-

function of the loop, its response to a step-input contains

forced oscillations and does not reach a steady state. This

result is not explained by the single-input sinusoidal

describing function of the Clegg Integrator for the simple

reason that it is inadequate for the situation in which a step-

input is applied. The actual input to the Clegg Integrator is

e(t) = 1 - c(t) and it is seen to oscillate about a non-zero

mean value. The sinusoidal describing-function is not

applicable in this situation.

We have shown earlier that the non-linear step-response

is identical with the corresponding linear step-response

whenever the latter has no overshoot. In the second-order

example above, we also find that if the linear step-response
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does have overshoot, the non-linear response contains sustained

oscillations. Simulation of several higher-order systems

suggests that, in general, the non-linear step-response con-

tains sustained oscillations whenever the corresponding linear

step -response has overshoot. An analytical proof of this fact

has not been found, but the instances in which it has been

verified are themselves sufficient to show that the Clegg

Integrator cannot be used without some modification.

2.4 A Modified Non-Linear Device

It has been found that when a linear integrator is put in

parallel with the Clegg Integrator, the sustained oscillations

in the step-response are eliminated. The modified non-linear

device, shown in Pig. 2.l4-a, has the describing- function

j which has less phase-lag than the

corresponding linear transfer-function

The phase lead obtained in the non-linear device over the'

corresponding linear transfer-function is plotted as a function

of b in Fig. 2.1^-b. .

Step-Response

Pig. 2.15 shows a closed-loop system with this non-linear

device and Pig. 2.16 shows its step-response. The corresponding

linear system is shown in Fig. 2.17 and its step-response in

Fig. 2.18. The non-linear response now attains the same steady-

state as the linear response but with much less oscillation

than the linear response. By simulation of a third-order
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system, it was also verified that the limit of stable operation

of the non-linear system corresponds to the sinusoidal

describing-function I — 1 ) of the non-linear device,

both in the absence of input and the presence of a step-input.

In explanation of this result, we note that due to the linear

integrator in parallel with the Clegg Integrator, any sustained

oscillations at the input to the Clegg Integrator must have .

zero mean, whether or not there is an input (unless the response

itself is unbounded). The sinusoidal describing-function is

applicable in this situation and the results agree with con-

clusions based on it. In other words, within the stability

limit set by the describing-function, the step-response cannot

have sustained oscillations.

Ramp-Response

While the presence of a linear integrator in parallel

with the Clegg Integrator inside a closed-loop removes sus-

tained oscillations from the step-response of the closed-loop,

the nature of the ramp-response remains to be considered. Of

course, with the device (Clegg Integrator + —) at the error-
5

junction, if the corresponding linear ramp-response has no

overshoot, then the non-linear ramp-response is identical with

the linear ramp-response and is thus free of sustained oscil-

lations. However, if the corresponding linear loop-transmission

is of Type-0 or Type-1 and the corresponding linear ramp-

response has overshoot, it turns out that the non-linear

ramp-response contains sustained oscillations, as demonstrated

by Pig. 2.20, the ramp-response of the system of Pig. 2.19.
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This happens because, with a ramp input, oscillations at the

input to the Clegg Integrator do not have zero, mean-value if

the loop-transmission is of Type-0 or Type-1, but must have

a non-zero mean value to give rise to the ramp in the output.

The sinusoidal describings-function of the Clegg Integrator is

inapplicable in this situation. Following this train of

thought, we are led to conclude that if the loop-transmission

is of Type-2 (or higher) the ramp-response should be free of

sustained oscillations, and, in general, if a steady-state

condition requires that at large t, the input to the Clegg

Integrator has zero mean, then the sinusoidal describing-

function is applicable, and the non-linear system response

will be free of sustained oscillations within the stability

limit determined by describing-function theory. This conclu-

sion is borne out by Pig. 2.22, the ramp-response of Fig. 2.21.

We note that since the linear system corresponding to the

system of Fig. 2.21 is unstable, the corresponding linear

ramp-response.is, in fact, unstable, while the non-linear

response is stable.

2.5 Equations for Calculation of Forced-Response with
Modified Non-Linear Device

The calculation of time-response with the modified.non-

linear device follows directly from the linear representation

suggested earlier for the Clegg Integrator, and.is illustrated

with the system of Fig. 2.23. The equivalent linear repre-

sentation is given in Fig. 2.2*1. The transfer-functions needed

in the calculations are: ' .- •
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(1) H(s) -h(t)

(ii) v(a) -v(t)

-fJL

-fv
J--

R(s)
, with L(s)

R(s) s \l+L(s)

(111) H (s) = fV(t) & Ctsi = -- --
«L A(S) l+b\l+L(s)

HU1

J.

(iv) V (s)a -'fv
I_

ft)
1+ P(s)b

1+b s(1+b)

v(t)+b \

1+b /

The following equations, derived in the manner of Equations

(2.5) and (2.6), describe the time-response in this case:

c(t) = r(p.)h(t-p)dp - (2.13a)

r(p)h(t-p)dp — V y1h(t-t.)
-i , -i 1—• J. -L

o. 1+b 1

(2.13b)

y(t) = r(p)v(t-p)dp - (2.

r(p)v(t-p)dp ^- V y. fb+v(t-t,)l (2.l4b)
1+b T" L J

where, as before,

y. = lim y(t)
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Equations (2.13a) and (2.l4a) differ from Equations (2.5)

and (2.6) only in the appearance of h_(t) and v_(t), in place
cL oL

of h(t) and v(t), in the summation on the right-hand side.

When b = 0, of course, Equations (2.13) and (2.1*0 reduce to

Equations (2.5) and (2.6), since, in that case, v(t) = v (t)a
and h(t) = h (t).

cl

2.6 Second-Order Non-Linear Step- and Disturbance-Response

Applying Equations .(2.13) and (2.14) to the second-order

case shown in Pig. 2.15, we now derive an expression for the

maximum overshoot in the step-response, which occurs between

t, and tp, the first and second resets of the Clegg Integrator,

With ke = k'Ol+b) ,

H(S) " £ = — , and
R(s) s +as+ke

h(t) = Jj2_ e-
wn5t sin w / 1-6" t

where u> =

6 = -a-

(2.15)



Using Equations (2.13), (2.1*0 and (2.15), the step-response,

for t, < t < tp, is given by

6

c ( t ) = 1 - b-26e '1-6 <
(ir-cos 16)

(1+b) A-S2
e~un(St sin (wn/l-62t+cos~16

l

dcSetting — = 0, we find that the maximum of c(t) occurs at
dt

max
to Vl-6'n

, and

(ir-cos" 6)

b-26e'

7T6

1+b

Thus, M (6,b) = the maximum overshoot in the non-linear
step-response

7T6

1 + b

Since ML(6) = the overshoot in the corresponding linear
step-response

7T6 . :

= e

(2.17)

(2.18)

we note that for b > 0, M _ ( 6 , b ) < M , ( 6 ) . Expression (2.17)ii LI

can be negative in certain cases, showing that in those cases,

the non-linear step-response has undershoot instead of overshoot.
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In fact,
U«,b)
— < 0 for 0 < 6 < 1 (see Appendix) and,

therefore, for fixed b, the maximum undershoot occurs when

6=1 (critical damping), and is given by

Maximum undershoot = - Mn(l,b)

2e"1 _ 0.736
1+b 1+b

(2.19)

For later use in non-linear design, we collect the

following results on the second-order, non-linear step-response

of the one-degree-of-freedom structure of Fig. 2.15:
6 ,_

(i) Maximum overshoot b-26e'

TT6

(ii) Maximum undershoot (occurs when 6 = 1 ) ' ' ̂
1+b

(2.17)

(2.19)

The 6 here, of course, refers to the damping in the corresponding

linear transfer-function, and the maximum undershoot in the

non-linear response occurs when the corresponding linear response

is critically damped.

It may also be noted that expressions (2.17) and (2.19)

also apply to the disturbance-response of the one-degree-of-

freedom structure of Fig. 2.15, since, for this structure

disturbance-response = 1 - (step-response) .

Equations (2.17) and (2.18) compare the overshoots in

the disturbance-responses of the corresponding non-linear and

linear systems of Figures 2.15 and 2.17. We note that for a



26

given damping in the linear system, .the non-linear response

has less overshoot than the corresponding linear response; in

consequence, for a given overshoot in the disturbance-response,

the non-linear system can be designed with a smaller damping

(in the corresponding linear system) than is possible in a

linear design.

This is the principle that is applied later to show that

in a two^degree-of-freedom design to meet specifications on

step-response and disturbance-response, a non-linear design

is possible which has a smaller bandwidth of (the corresponding

linear) loop-transmission and transmits less feedback sensor-

noise to the plant than the optimal linear design of Horowitz

and Sidi.

In order to establish this result, we next consider the

noise-response of the Clegg Integrator.

2.7 Noise-Response of the Clegg Integrator and the Modified
Non-Linear Device

An input x(t) to the Clegg Integrator produces the output

y(t) given by

y(t) = x(p)dp (2.1)

where t is the instant of the last zero-crossing of x priorz

to t. Let T(.t) = t - t^ ..'••'z • .

= the Interval between t and the last zero-
• . crossing of x prior to t;

hence, t_ = t - T(t), and thus •
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y(t) =. x(p)dp

t-T(t)

When x(t)-is a stationary random process, the interval

T(t) is itself a stationary random process (or, for fixed t,

a random variable). In principle, the statistics of T may

be determined from those of x(t), but such calculations have

been possible only for a few processes , owing to the

mathematical difficulties that arise. Even if the statistics

of T are known, calculating the statistics of the output y(t)

is a formidable task, since this requires finding the expected

value of a stochastic integral, one of whose limits is a

random process whose statistics, in turn, depend on the inte-

grated process.

It is known , however, that for a zero-mean Gaussian

Markov process x(t), the mean and variance of T tend to zero

as the process x(t) becomes more and more uncprrelated. This

suggests an approximation that simplifies the problem and

enables us to calculate the power spectrum of the output. In the
ft

expression I x(p)dp, the random variable T in the lower
->t.-T

limit is replaced by its mean value T . We then have the

approximate relation

(2.20)

which is a stochastic integral with deterministic limits.
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(i) Let x and y be the expected values of the

stationary processes x(t) and y(t) respectively. Using E

to denote expected value, we have, from Equation (2.20),

ym•« E(y(t)}

r f c

=. E { x(p)dp }

t

E{x(p)}dp

= T1 Yim m

in particular, y = 0 if x = 0

(il) Let P denote Fourier Transform and let

R (T) = auto-correlation of x(t)
XX

R (T) = cross-correlation of y(t) and x(t)

R (T) = auto-correlation of y(t)
«y «y

S (w) = spectral density of x(t) = F{R_.V(T)}XX XX

S (w) = cross-spectral density of y(t) and x(t) = F{R (T)}

S (w) = spectral density of y(t) = F{R (T)}
«y v *y«/

We have

Ryx(t) = E{y(t+t)x(t)}

t + T

= E{ x(p)x(t)dp}
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t + T

E(x(p)x(t)}dp
t + T-Tm

r t + r

Rxx(p-t)dp
t + T-Tm

m
(2.21a)

Taking Fourier Transforms on both sides,

Tm

T.m

XX

Tm
= S

XX

• Sxx(w) (2.21b)

r /r y -i
Then, using the technique of statistical linearization ,

we define G(jco), the random-describing function of the Clegg

Integrator, as follows:

G(ja>)
Sxx(w)

(2.21c)

r fi 71
It then follows1 J'J that, for the Clegg Integrator,



S (co)

Sxx(w)
sin
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(2.21d)

For a linear integrator, the corresponding relation is

yy (2.22)

Using the relation

rms

/• °°

2ir
Syy (a ) )du)

1/2

Equations (2.21d) and (2.22) enable us to conclude that the

Clegg Integrator in cascade with a pure attenuation of 0.5

gives a smaller noise output than a linear integrator — ,
S

regardless of the actual value of T , so long as Equation

(2.20) constitutes a reasonable approximation to Equation (2.1).

Turning to the modified non-linear device of Fig. 2.14,

the input x(t) and the output y(t) are related by

y(t) = b x(p)dp
r t

t-T

x(p)dp (2.23)

where, as before, (t-T) is the instant of the last zero-

crossing of x before t. Approximating T by T , as before,

y(t) = b x(p)dp x(p)dp (2.24)

t-Tm

Writing y(t) = y-L(t) + y2(t), where y1(t) = b x(.p)dp =

= output of the linear integrator — ,
S
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x(p)dp = output of the Clegg Integrator,

we obtain,

S (u) — + G(jo))
XX

, where

l-e-jwTm

Thus, G/ju)) i
S (w)

= describing-function of the modified non-linear device

b + l-e
(2.25a)

Svv(u>) p
and _yy— = |G1(»r

(2.25b)

For the corresponding linear transfer-function - • • ' , we have

Syy(tu) = b+(l+b)+b
2

(•2.26)
w

Once again, comparison of Equations (2.25b) and (2.26) shows

that the non-linear device in cascade with an attenuation of

0.5 will give a smaller noise output than the corresponding



32

linear element , regardless of the actual value of T ,

so long as Equation (2.24) is a reasonable approximation to

Equation (2.23).

Fig. 2.25 is a record of the square of the noise output

(instantaneous noise power) of the linear and Clegg integrators

produced by an input of zero-mean noise, and the results are

in agreement with the above conclusions.

Let us now consider the effect of zero-mean sensor-noise

n(t) on the output c(t) (in the absence of command input), in

the linear and non-linear systems shown in Figures 2.26 and

2.27 respectively.

We have,

linear system

(b+1) r ( J
jw !

! + (b + D P - L U u )

2

0)2 |P1 (JU

encies where

2

P 1 ( Ju )
.

(2.27)

« 1

• J » ' • I

^ S • (u) !nn 'j non-linear system
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~m
P2(JoO

|p

at high frequencies where « 1. Thus,

N(u) (-=-)]

at high frequencies where

P1(Jw) P0(jco)
« 1

(2.28)

(2.29)

We thus find that

< 1 if |PP(Ju>)| < at high frequencies,

i.e. if |L2(Ju>)|db < |-L1(Jw)ldb - 6, at high frequencies

where

= the loop-transmission of the linear
system of Fig. 2.26

L(s) = = the linear loop-transmission corresponding
to the non-linear system of Fig. 2.27.

We shall show later that for given design specifications

on the sensitivities of step- and disturbance-responses, the



use of the above non-linear device enables us to make a non-

linear design in which the magnitude of Lp(jw) is at least

6 db smaller, at high frequencies, than the magnitude of the

loop-transmission L,(JOJ) in the optimal linear design for the

same problem. This will show that, for given specifications,

the non-linear design achieves a smaller transmission of high

frequency noise than is possible in the linear design.



CHAPTER III

PROCEDURE FOR NON-LINEAR DESIGN

3.1 The Design Problem

We now examine the application of the non-linear device

of Pig. 2.14 in the design of a closed-loop system. We wish

to develop a procedure for such design and to compare the

results with the optimal linear design obtained by Horowitz

and Sidi's^ method.

The design problem is stated as follows:

(a) The transfer-function P(s) of a linear, time-

invariant minimum-phase plant is described by a set of para-

meters a-,, ..., a (gain, poles and zeros). Each a. (i = l,...p)

is known to lie within a given range a. < a. < B. (i = l,...p),

but its precise value is not known. Thus P(s) is a particular,

unknown member of a certain known family of functions.

(b) Compensation must be designed in the two-degree-of-

freedom structure of Pig. 3.1, such that, for all possible

conditions of the plant P(s), the step-response of the system

lies within certain specified bounds, such as, for example, the

envelope shown in Pig. 3.2.

(c) In addition, it is required that the response to a

disturbance D at the output (.Pig. 3.1) should satisfy certain

damping requirements.

(d) The magnitude of the loop-transmission in the linear

design, and that of the corresponding linear loop-transmission

in the non-linear design, should have an asymptotic slope of

35
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(-20q)db/decade, as u> tends, to infinity, where q is a given

positive integer. In the linear design, q is the excess of

poles over zeros in the loop-transmission.

Also, the loop-transmission of the linear design and

the loop-transmission corresponding to the non-linear design

are both of Type-1.

(e) The object is to arrive at a design which meets the

specifications on step- and disturbance-responses, and, at

the same time, minimizes the effect of feedback-sensor-noise,

when there is no command input. A linear design which is

quasi-optimal in this sense is furnished by the method of

Horowitz and Sidi'-1^.

It will be shown that, using the Clegg Integrator in

parallel with a linear integrator, a non-linear design is

possible which transmits less feedback noise to the output

than the optimal linear design.

3.2 Design Procedure

The calculations that have been carried out for time-

response with the non-linear device, and the results obtained,

have been described in terms of the transfer-functions defined

for the corresponding linear system. In keeping with this

description of non-linear results in corresponding linear

terms, we shall present the method of non-linear design as

an adaptation of the method of linear design proposed by

Horowitz and Sidi . In fact, the method of non-linear

design, for a given set of specifications, consists in obtaining
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the corresponding linear transfer-functions as a linear design

(by Horowitz and Sidi's method) for a less restrictive set of

specifications. The method of linear design is treated at

length by Horowitz and Sidi in Reference [1], and, therefore,

in order to describe the method of non-linear design, it will

be enough to give an outline of their method and to indicate

how it is adapted for non-linear design.

3.2.1 Outline of Procedure, for Linear Design

The time-domain bounds, within which the step-response

should remain for all possible plant conditions, are translated

into corresponding bounds within which the function

|T(ju))| = |F(ja))L(Ja)) I should remain for all plant conditions.
1 i T / " \ '

There is no rigorous method of obtaining such corresponding

bounds, but Horowitz and Sidi propose a practical method of

trial and error which produces bounds that lead to a successful

design.

The upper and lower bounds on |T(jw)| ,, , in turn, lead to

a bound A(w)db on the maximum variation that can occur, at

fixed GJ, in I - ̂  ̂  ' - 1 , over all the possible plant conditions,
db

since | T ( J o ) ) | d b ' = |P(J")|d b + |" — | d fe and the pre-filter
l+L(jw)

F(s) is fixed and independent of the plant.

Therefore, at each w, the loop transfer- function L(jco),

considered at some chosen plant condition, should be such that

the variation in I -^ ̂  — I,, , due to changing plant
l+L(Ju>) db

conditions, should not exceed A(co)db. The use of the Nichols
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Chart is the obvious method of examining the variation in

| 3^' — | ,, due to variation in L(jw). Using templates of
l+L(Ju>) db .

the variation of P(jw) over the plant conditions, and the

bounds A(u) on the corresponding variation in | — ̂ — - - 1 ,,

we obtain, for each u>, a locus on the Nichols Chart as the

lower bound for L(j'w). At high frequencies, however, the

variation A(co) that is permissible in | ̂ J^' — | is greater

than the actual variation that occurs in L(jco), and, as a

result , the step-response bounds impose no conditions on

L(jw) at these frequencies, and there are no loci on the

Nichols Chart.

However, we must also take into account the specification

that sets a limit to the overshoot in the disturbance response,

determined by the transfer-function - - . Using the
(. 2
(JJ T / \

second-order model — •= — - - < - for — • , Horowitz
s

and Sidi translate this into a lower bound. on the damping 6

in the second-order model, and, in turn, into a closed boundary

on | ̂  3^) — | ̂  for all frequencies and plant conditions, based
l+L(Ju)

on the second-order relation

t

0) %. -

2

2
1

. 26/1-62

The disturbance-response specification thus limits the maximum

value that | —^—-—| may assume, over all frequencies and plant
l+L(Ju)

conditions; on the Nichols Chart this defines a contour V (in
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the notation of Horowitz and Sidi) whose effect is to limit

the phase-lag that L(jw) can have until some frequency w at
X

which |L(ju> )| is sufficiently small. The smaller the
A.

permitted damping in the disturbance-response, the larger

the phase-lag in L(jw) that is allowed by the contour V.

Fig. 4.1 in Chapter IV shows the contours V, and Vp corresponding

respectively, to &^ = 0.5 and 62 = 0.3, for a 40 db . variation

in the gain of the plant.

Thus, the specifications on step-response and disturbance-

response, taken together, furnish a set of loci on the Nichols

Chart as bounds on L(JOJ) at all w. A linear design that meets

the specifications and is optimal, in the sense of minimizing

k where k, = lim s^L(s), is one in which L(Jw) lies on its

corresponding locus at each u. The existence of such an

optimal L(s) and the manner of its realization are shown in

Horowitz and Sidi's paper .

3.2.2 Development of Procedure for Non-Linear Design

Step-Response Specifications

The step-response c(t) of the two-degree-of-freedom

structure of Fig. 3.3, with the non-linear device (Clegg

Integrator + — ) situated at the error junction of the feedback-
s

loop is described by Equations (2.13) and (2.14) when we set

R(s) = • . It is clear that the non-linear response is
S

identical with the corresponding linear response till t., ,

the instant of first reset of the. Clegg Integrator (in

particular, if the Clegg Integrator is never reset, the linear

and non-linear responses coincide for all t). This portion



of the non-linear response Is thus determined by the
F( s ) L( s )corresponding linear transfer-function T(s) = y — - and
H-L(s)

therefore, its sensitivity to plant variations is , in fact,

determined by the sensitivity of the linear transfer-function
L( s )i+L/s) (since F(s) is fixed and independent of the plant).

We thus conclude that the variation of this portion, at least,

of the non-linear step-response can be kept within the speci-

fied bounds by designing the corresponding linear loop-

transmission L(s) as in a purely linear design.

As regards the response after the first reset, it is

helpful to recall that a reset of the output y(.t) of the Clegg

Integrator at ti from y.^ = yCt.^-), may be represented in the

corresponding linear system by an impulse-input -y^SCt-t.).

With the modified non-linear device (Clegg Integrator + — )
S

situated at the error-junction, the response, after t, and

until a possible second reset tp, is found from Eqns . (2.13)

and (2.14) :

y-i
c(t) = cT(t) -- — h(t-t-,) , whereL 1+b L

r(t) = the output of the prefilter

rfc
cT(t) = 1 h(p)r(t-p)dp , the linear response,

Jo

h(t) = impulse-response of
l+L(s)

h rh
^ = e(t)dt = [r(t)-c(t)]dt .

o Jo



Since a reset occurs at t,, e(t) crosses zero at t,

and changes sign.; Consider the case when e(t) is positive

for 0 < t < t, and becomes negative after t-,, i.e.

c(t) < r(t) for 0 < t < t^ and

c(t) > r(t) for t.. < t < t2 .

Then y > 0.

A[sn'q + .... 1
Let L(s) =

[sn + ____ ]

where q is the excess of poles over zeros in L(s), and A > 0

for minimum-phase L(s) .

Then, from the initial value theorem of Laplace Transforms,

we find

h(1)(0) = llm s
(l+1) l̂ L- =0, i = 0,...,(q-2),

and h(q~1)'(0) = A > 0.

Hence, h(t) > 0 over an open interval (0,A) and thus,

?]
c(t) = cL(t) -- — h(t-t1) < cL(t)

1+b

over an open interval (t-,, t-,+A) ; i.e. the reset at t-, tends

to reduce the overshoot after t, . This is illustrated in Fig.

3.4 . If a second reset occurs at t?, similar arguments show

that it tends to reduce the undershoot that occurs after t^-

If there is no reset after t.,, then c(t) > r(t) for t > t-^,
y-,

c(t) - cT(t) = -- — h(t-t-,), t > t, . Therefore,
L 1 + b 1 - 1 _



[c(t)-cL(t)]dt =-

t 1+b t.
1 "1

1
h(t)dt

1+b

llm L(s)

1+b s+0 l+L(s)

1+b

if L(s) is of Type-1 or higher, showing that, on the average,

the response c(t) has less overshoot than c,.(t) for t > t-,.

Thus, the effect of a reset is, in general, to reduce

overshoot and undershoot in the non-linear response as

compared to the corresponding linear response. In conse-

quence, one expects the non-linear step-response, in

general, to have smaller oscillations than the corresponding

linear step-response, and, therefore, to remain within the

same bounds as the corresponding linear step-response.

An exception might occur for the plant condition in which

the linear step-response corresponding to the non-linear

design has near-critical damping. If the linear response

has just enough overshoot to cause a reset in the non-

linear response, the latter can have considerable undershoot,

which might violate the lower bound of the step-response



specifications. Equation (2.19) gives an.approximate*

(second-order model) upper bound to such undershoot and

enables b to be chosen so as to limit the undershoot to the

desired value.

A general conclusion from these considerations is that

the non-linear response tends to be less oscillatory than

the linear response for quite general inputs, exceptions

occurring when a reset occasioned by an overshoot causes

exessive undershoot or vice versa. Examples of linear and

non-linear response to general inputs are shown in Figures

4.11-a, b and c, for the linear and non-linear systems designed

in Chapter IV. '

* Equation (2.19) applies to the step-response without a

pre-filter, or, equivalently, to the disturbance-response;

however, if the step-response of the pre-filter is much faster

than that of the feedback-loop for near-critical damping, the

expression is a good approximation even for step-response with

the pre-filter.

For instance, in the design example of Chapter IV,
kL2
-,• . T— has near-critical damping for k = 1, and has then a
-LTKLip

40bandwidth of about 4 rad/sec, while the pre-filter F?(s) =
d s+40

has a bandwidth of 40 rad/sec. Figures 4.5-b and 4.6-b show

that both the disturbance-response and step-response for k = 1

have the same undershoot.



We thus conclude that sensitivity specifications on

step-response can be met in the non-linear design by

designing the corresponding linear loop-transmission for the

same low-frequency boundaries on the Nichols Chart as in a

linear design, with special consideration for the largest

undershoot that can occur.

Disturbance-Response Specifications

The benefits of the Clegg Integrator over the linear

integrator are secured, in the main, 'in the design to meet

the disturbance response specifications. In linear design,

the specification on the overshoot in disturbance response is

translated into a minimum damping 5, in a second-order model

for the feedback-loop, and, in turn, into a boundary V, on

the Nichols Chart, which limits, over a range of frequencies,

the phase-lag allowable in the loop-transmission L-,(.jto) of

the linear design.

It is seen from Equations (2.17) and (2.18) that, for

the same overshoot in the disturbance-response, the non-linear

feedback-loop can have a smaller damping (in the corresponding

linear transfer-function) than in the linear design. If 6?

is the damping corresponding to the non-linear design, equating

the overshoots in the disturbance-responses of the linear and

non-linear designs, we have

TT6 1

(1-6?)I/2
(TT-COS ~

b - 26e2
_____

TT<S 2

e (1-6 2x172

(3 -D



which gives b as a function of 6, and 6p.

Equation (2.19) shows that the choice of b also deter-

mines the maximum undershoot that can occur in the disturbance

and step-responses. If this expression is used to set a lower

bound to b, then Equation (3.1) may be used to find the 6p

that corresponds to a given 6,, and we note that 6p < 6-,.

For a given 6,, the smaller the value of b, the smaller the

value of 62. The non-linear design is then obtained by

designing the corresponding linear loop-transmission Lp(jw),

using the boundary V2 that corresponds to the 6p calculated

from Equation (3.1). Since 6p < 6,, Vp allows a faster

reduction of JLp(jw)| than is permissible in JL,(jw)|.

Noise-Transmission

It has been shown in Section 2.7 that if |L2(jo))| < ijL-j^Cj

at high frequencies (i.e. at frequencies where

• ̂^ — % L(jw)), the non-linear design transmits less feed-

back sensor-noise than the linear design s if the significant

part of the noise-spectrum occurs at these high frequencies.

The use of the boundary V2 in the non-linear design in place

of the boundary V, in the linear design usually enables us to
L2(jco)

make the ratio lim | - 1 considerably smaller than — .

3.2.3 Steps in Non-Linear Design

The procedure for non-linear design may be summarized

as follows :



H6.

1. The specifications on step-response are translated into

bounds 6n the variation, at different frequencies, of the

same minimum-phase transfer-function T(s) that would be

used in Horowitz and Sidi's linear design.

2. Using these bounds and templates of plant-variation at

the different frequencies, boundaries are derived on the

Nichols Chart for the loop-transmission as in the linear

design.

3. The damping 6, , which would be used to derive the high-

frequency boundary V, in the linear design is calculated

from the disturbance-response specification. Values for

b and 6p are then obtained from Equations (2.19) and

(3-D, the choice of b influenced by the largest under-

shoot that can occur in the step and disturbance responses

The high-frequency boundary Vp corresponding to 6p is

then obtained.

4. The linear loop-transmission L?(s) corresponding to the

non-linear design is obtained as a linear design for the

boundaries derived in Step-2 and the high-frequency

boundary V~ . ,

5. The series-compensation consists of the non-linear device

(Clegg Integrator + — ) at the error junction, followed bys
L ( s )the linear transfer- function 2voy _ , where

s
P(s) is the plant transfer function corresponding to the

plant-condition used in deriving the boundaries in

Step-2.



6. The linear pre-f liter F2(s) for the non-linear design

Is obtained from the equation

Fp(w)L(u)
T(JOJ) =

+ L2(jw) V

where T(s) is the transfer-function derived in Step-1



CHAPTER IV

A DESIGN EXAMPLE

4.1 The Problem

The method of non-linear design is illustrated, and

linear and non-linear designs are compared .in the following

example.

Specifications:

k
(i) The plant has the transfer-function P(s) = ,

where 1 < k < 100.

(ii) A pre-fliter and series compensation are to be

designed in order to keep the step-response of the two degree-

of-freedom system of Fig. 3.1 within certain bounds, for all

values of k, 1 < k < 100. We assume here that such time-

domain bounds lead to the following bounds on the variation

of the magnitude of the minimum-phase transfer-function

T(s) = —̂ -̂ - that would be used in a linear design.

A(u>) = Max |T(jw)| - Min |T(ju>)|db db

= Max - Min

db db

48.:



TABLE 4.1

Bounds On Variation in |T(jco)|

49

w rad/sec

1 . • ' ' .

2

4 ' . '•

6 :

.10

2 0 - . . . : '
4o .;. ,:

M a x | T ( J u i ) | a b .

0

0.5

1.0

2.0

2 .0

0 .0

0 .0

Min|T( j<o) | a b

-0.25

' -0.5 . .

-4.0 .

-9.0

-18.0

-30.0

-40.0

A ( w ) d b

0.25

1

5

11

20

. 30

40

(iii) The response to a constant output-disturbance

should go to. zero in the steady-state, with a maximum over-

shoot of about 20$ of the constant disturbance.

(iv) The loop-transmission L-,(s) in the linear design,

and the loop-transmission Lp(s) corresponding..to the non-

linear design, should both be of Type-1 and should have an

excess of four poles over zeros.

4.2 Linear Design

Since the plant variation is a variation .of pure gain

by a factor of 100, the corresponding template.on'the Nichols

•Chart is a straight line of length 40 db, parallel to the

magnitude-axis, for all frequencies. The bounds A(w) of

Table 4.1 and the template of plant-variation together determine
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the boundaries shown in Fig. 4.1 for L-,(jto) at the different

frequencies. k = 1 was used as the reference plant-condition

in obtaining these boundaries.

Corresponding to the 20% overshoot allowed in the

disturbance-response, 6-, % 0.5 and this leads to the high-

frequency boundary V, shown in Fig. 4.1. Using these

boundaries, the following loop-transmission L-,(s) is obtained

for the linear design.

2.3xl07(s+ll)(s+35)
L,(s).= - 5 - 5 — (4.1)
1 s(s+4)(s+30)(s+l80)(s";+2l6s+360^)

Fig. 4.1 shows that L,(J(JO) lies quite close to its

boundaries, and therefore, it is close to the optimal design

in the sense of Horowitz and Sidi.

kL-,(joj)
With - : - known, for 1 < k < 100, the following

pre-filter F-,(s) for the linear design is obtained with the

help of Table 4 . 1 on pg. 49.

F,(s) = -- (4.2)
1 s+70

This completes the linear design, and the Bode plot of

L-,(s) is given in Fig. 4.2.

4.3 Non-Linear Design

The loop-transmission Lp(jw) that corresponds to the

non-linear design uses the same low-frequency boundaries as

were obtained for L-,(jio) (with the same reference
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plant-condition). When <Sp = 0.3 is tried> Equation (3.1)

gives b = 2.7 (the calculation is shown in the Appendix),

which, from Equation (2.19), would limit the maximum under-

shoot to about 20%. The high-frequency boundary Vp

corresponding to 6- ~ 0-3 is shown in Fig. 4.1.

Lp(s) is now obtained as a linear design with Vp

replacing V-, as the high-frequency boundary, and is given by

4.6xl06(s+l8)(s+45) /h
L (s) =
2 s(s+4)(s+50)(s+8o)(s2+208s+2602)

kL2( jto)
With : known, for 1 < k < 100, the pre-fliter

l+kL2(ju>)
F2(s) for the non-linear design is chosen so as to make

F2(.ju>)kL2(ju))
vary, as k varies from 1 to 100, between the

l+kL2(juj)
limits given in Table 4.1 on pg. 49, over the range of fre-

quencies listed in the Table. We choose

Fp(s) = -- (4.4)
s+40

2 7The non-linear device (Clegg Integrator + —r—) is
S

situated at the error-junction of the feedback loop, followed

by G(s), the linear part of the compensation and the plant

P(s). G(s) is determined by the equation

= P(s)G(s) = p(s)G(s)

This completes the non-linear design and the Bode plot of

L2(s) is given in Fig. 4.2. The Bode plots of. T^ = F^s)
1+kL (s)
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kLp(s)
and Tp(s) = F?(s) , for k = 1 and k = 100, appear

^ l+kL2(s)

in Figs. 4.3 and 4.4, respectively.

4.4 Results

Figures 4.5 and 4.6 show the step- and disturbance-responses

of the linear and non-linear designs, for several values of k,

as well as the responses obtained when Lp(s) is used as a

linear design.

We note that the Lp-non-linear responses fall within the

bounds of variation of the L-,-linear responses and meet the

same specifications as the linear responses; the Lp-linear

responses, however, violate those bounds.

The transmission of feedback sensor-noise to the output

in the linear and non-linear designs is compared in Fig. 4.7,

which Is a record of the square of the actual noise output

produced by zero-mean sensor noise (with a bandwidth of about
100L2(s)

fifteen times that of —• ) , and is thus a record oft
l+100-L2(s)

instantaneous noise-power at the output. The noise at the

output is seen to be much smaller in the non-linear design

than in the linear design, and as a result, saturation of

forward elements due to sensor-noise is much less of a problem

in the non-linear design than in the optimal linear design.

Figures 4.8, 4.9 and 4.10 show linear and non-linear

responses to sinusoidal and ramp inputs and to a combination

of command- and disturbance-inputs. Figures 4.11-a,b,c compare

linear and non-linear responses to some other input waveforms.

Though a Type-0 plant and pure gain-variation were

considered in this example, the derivation of the procedure
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for non-linear design has been quite general, with just one

assumption made — that the device (Clegg Integrator + —) iss

situated at the error-junction; however, this imposes no

restrictions on the design, and we see that it is also

applicable to other-kinds of plants and parameter-variations.

4.5 Conclusion

It has been shown that the non-linear device consisting

of the Clegg Integrator in parallel with the linear integrator

is a useful element to include in the compensation for a

linear, minimum-phase plant with uncertain parameters, to

achieve specified bounds on its response. For given plant-

ignorance and bounds on response, it has been shown that,

using this non-linear device, compensation can be designed in

a two-degree-of-freedom structure in which there is less

transmission of feedback sensor-noise to the plant and its

output than is possible to achieve in a linear design. A

method has been obtained which enables the non-linear design

to be carried out in terms of an equivalent linear design by

the method of Horowitz and Sidi.
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) PCs)

L(s)

Fig. 1.1: A Two-Degree of Freedom Feedback System
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c(t)

Fig. 1.2: Example of Bounds on Step-Response
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y ( t )

U)t

x ( t )

y ( t )

= Asinwt

- (1-COSOJt)-. 0 < CJt < IT
/l\ •* ^0)

A
- - ( 1 + C O S W t ) , IT < 0)t < 2fT-

Fig. 2.2: Sinusoidal Response of the Clegg Integrator
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r(t)=0
O- 1.

s
c(t)

—•

Fig. 2.3-a: A Closed-Loop Linear System

2 volts

Fig. 2.3-b: Output of System of Fig. 2.3-a, for k = 1
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Inte-
grator
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Fig. 2.M-a: A Closed-Loop Non-Linear System
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10
sec

Fig. 2.4-b: Output of System of Fig. 2.4-a.for k = 10
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Fip. 2.^-c: Output of System of Fig. 2.*i-a for k = 100
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Fig. 2.5-a: A Closed-Loop Linear System

Fig. 2.-5-b: Output of System-of Fig. 2.5-a for k = 2.1
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Fig. 2.6-a: A Closed-Loop Non-Linear System

i
1 volt

t
Fig. 2.6-b: Output of System of Fig. 2.6-a for k = 5

1 volt

T
Fig. 2.6-c: Output of System of Fig. 2.6-b for k = 16

1 volt

Fig...2.7: Output of System of. Fig. 2.6-a for k = 18
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a(t) = - I y(t,-)6(t-t.)
1 x

x(t. ) = 0 , 1 = 1,2,...

Fig. 2.8: Linear Equivalent of the Clegg Integrator
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r(t) -f ~ e(t) Clegg
Inte-
grator

y(t)

Fig. 2.9: A Closed-Loop Non-Linear System
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r(t) , e(t)
„ ±-K3

y(t)
P(s)

a(t) = - I y(t,-)6(t-t, )
k

k

c(t)

Fig. 2.10: Linear Equivalent of System of Fig. 2.9
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Clegg
Inte-
grator

c(t)

Fig. 2.11: A Closed-Loop Non-Linear System
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Fig. 2.12: The Linear System Corresponding to System of Fig. 2.11
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i
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AAAAA/V

sec

F i g. 2.13: Step -Response of System of Fig. 2.. 11, for k = 2
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Fig. 2.1^-a: Modified Non-Linear Device

Fig. 2.1M-D-: . 6 ( b ) £ 71 '62 +b in degrees
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Fip;. 2.15: A Closed-Loop Non-Linear System

c(t)

71

sec

.Pig. 2.16; Step-Response of System of Fig. 2.15
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5
s

c(t)

Fig. 2.17: Linear System Corresponding to System of Fig. 2.15

c(t)

sec

Fig. 2.18: Step-Respons-e of System of Fig. 2.1?
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r(t). -f c(t)

Fi&. 2.19: A Type-1 Non-Linear System

sec

Fig. 2.20: Ramp-Response of System of Fig. 2.19
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Fig. 2.21: A -Type-2 Non-Linear System

c ( t ) i

Fig. 2 .22 : Ramp-Response of System of Fig. 2.21
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Fig, 2.23: A Closed-Loop Non-Linear Svstem
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•2r

L(s) =

b
s

y(t)

a(t) = - I •(t1-)6(t-t±)

C(s) =
R(s)

C(s) =
A(s)

^ L(s)

a

PCs) c(t)
-*

iCsl, V(8) = —i
R(s) s

1+b A(s)
= V (s)=

Fig. 2.24; Linear Equivalent of Fig. 2.23



Bandwidth of noise % 10 rad/sec

Peak-to-Peak value % 160 volts
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All three
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r(t)=0
F1(s)

c(t)

-o n(t)

Fig. 2.26: Effect of Sensor-Noise Linear System
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Fig. 2.27: Effect of Sensor-Noise Non-Linear System
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rCt)
PCs)

-4-
G C s ) P C s ) H

D

c(t)
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-f n(t)

Fig. 3.1: Two-Degree-of-Freedom Structure for Linear Design
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c(t)

Fig. 3.2: Example of Bounds on Step-Response
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PCs)

4
b
s

Clegg

Inte-
grator

G(s) P(:

D
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o- n(t)

Fig. 3.3: Two-Degree-of-Freedom Structure for Non-Linear Design
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,—r(t)

cL(t)

h(t)

Area = y0<0
r(t)

c(t) = cL(t)-y1h(t-t1)-y2h(t-t2)

Fig. 3.4: Comparison of Linear and Non-Linear Responses
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Lnusoidal Input, f = 20 c/s

rdinate Scale: 2 volts/line

Ime Scale: 1 cm = 0.1 sec. T-

esponse Scales (Same for all three
— ; r e s p o n s e s )

rdinate: 0.5 volt/line

'ime : 1 cm = 0 .1 sec.

- Non-Linear

-.Linear

Fig. 1.8: Sinusoidal Response of T =



Ramp - Input = 40 t

T.

All three figures

have the same

scales

1
5 volts ~

0.05 se

- Non-Linear

- .Linear

Pig. 4.9: Ramp-Response of T = r100LL1+100L
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(list ,ip])l:Leji
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- Non-Linear

- Linear

Pig. 4.10: Response of T = F to Output

Disturbance- in- Presence of Command-Step
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Input

Scales (same for all four figures)

Ordinate: 2 volts/line

Time: 1 cm = 0.1 sec.
\t
A

- Non-Linear

- Linear

Fig. 4.11-a: Linear and Non-Linear Responses
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Input, f = 10 c/s

T-

Scales for all *t. figs,

Ordinate: 2 volts/line

Time: 1 cm = 0.1 sec

- Linear

Fig. 4.11-b: Linear__and Non-Linear Responses •
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Input , f = 20 c/s

Ordinate: 2 volts/line

Time: 1 cm = 0.1 sec.

Response Scales (for all three
responses)

Ordinate: 0.5 volt/line

Time : 1- cm = 0 .1 sec .

•

Non-Linear

I—I—h

. Tp - Linear

Fig. ^.11-c: Linear and Non-Linear Responses
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; APPENDIX

3M
A.I Calculation of —— (6,b)

o o •

From Equation (2.17) on page 24, setting <j> = cos" 6,

M (6 ,b) = M (-cos4> ,b)

b -ircotcb 2cosd> -<J>cotd>= e - — e
1+b 1+b

9Mn b - . 2A -Trcot^ 2e"»co^ f , , , A= (ircosec 4>e Y) - \-sin<J)+4>cos(j)cos(
3<j) 1+b . 1+b

-cos4>cot<j)}

(1+b) sin'

> 0 , o < 4 > < - ( i .e . 0 < 6 < . 1 )

Now,

-34.

36 3cj> 36
; 3Mn 3(cos~16)

34> 36

1 3M.
—- < 0 , 0 < 6 < 1 .

/1-62 3<f>

A.2 Calculation of b in Non-Linear Design of Chapter IV

We use Equation (3.1) on page 44 with <}>-, = cos" 6,,
. A -l.
(Pp = COS Op .
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r i

1+b

1+b

_ e-iTcot<j>2

_ 26

Prom the linear design, 6-j^ = 0 . 5 and therefore, <j>1 = 60° and
- 7 T C O t < f > n ,- ,

e ^ - 0.164. with 62 = 0.3 in the non-linear design,

<J> = 72.5° = 1.265 radians, and e-
Trcot*2 = 0 . 3 7 ^ 4 .

0.164 =
1+b

- 0 .4033

b = + 0.164
0.374 - 0.164

o?567
0.21

= 2.7


