Final Report

MULTIPROCESSOR
ARCHITECTURAL
STUDY

By: Alex L. Kosmala, Saul F. Stanten, Woodrow H. Vandever

November 1972

Prepéred for the George C. Marshall Space Flight Center,
Huntsville, Alabama 35812, under Contract NAS8~28605

by: Intermetrics, Incorporated
701 Concord Avenue
Cambridge,
Massachusetts 02138

Intermetrics Technical Report #01-73

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

TABLE OF CONTENTS

FOREWORD
ABSTRACT

Chapter 1: Introduction

1.1 Scope and Objectives
1.2 Overview of Intermetrics' Multiprocessor
References

Chapter 2: Multiprocessor Operating System Design

2.1 Introduction

2.2 Problems of Multiprocessing
2.2.1 Parallelism
2.2.2 Exclusive Sections
2.2.3 Shared Data
2.2.4 Conflict Over System Resources
2.2.5 Overhead

2.3 Exclusion and Synchronization
2.3.1 Exclusion Primitives
2.3.2 Synchronization

2.4 Scheduling

2:4.1 Space and Time Allocation
2.4.2 Deadlock Prevention

2.5 Memory Management

2.5.1 Operating Memory Multiplexing
2.6 Implementational Aspects

2.6.1 System Specification

2.6.2 Structure

2.6.3 Systems Programming Language

References

Page

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 ¢+ (617) 661-1840

Table of Contents (continued) Page

Chapter 3: Interrupt Structure 3-1
3.1 Assumptions 3~-1
3.2 Interrupt Categorization 3-1

3.2.1 Process Oriented 3-2
3.2.2 System Oriented 3-2
3.2.3 Processor Oriented 3-2
3.3 Multiprocessor Interrupt Problem Areas 3-3
3.3.1 Which Processor to Interrupt? 3-3
3.3.2 Response Time 3-4
3.3.3 1Innovations 3~-4
3.3.4 The Interrupt Seguence 3-6
3.3.5 Interrupt Functional Response 3~-6
Chapter 4: Memory Hierarchy 4-1
4.1 Basic Hierarchy Description 4-1
4,1.1 MO - Micro Level Control Memory 4-1
4,1.2 M1 - Local Memory 4-1
4,1.3 M2 - Operating Memory 4-1
4.1.4 M3 - Mass Memory 4-2
4,1.5 M4 - Archival Storage 4-2
4.2 Local Storage 4-2
4,.2.1 The Problem - Memory Contention vs.
Performance 4-2
4.2.2 Two Approaches to an Implementation 4-11
4.3 Operating Memory and Memory Management 4-15
4.3.1 Background 4-15
4,3.2 Segmentation 4-18
4.3.3 Paging 4-20
4.3.4 Implementing Virtual Memory . 4-=21
References 4-23

Chapter 5: Addressing 5-1

5.1 Addressing and Instruction Architecture 5-1

5.1.1 The Number of Operands in an
Instruction 5-1

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Table of Contents (continued) , Page

5.1.2 Single Accumulator and General

Registers 5-3
5.1.3 How to Address Operating Memory 5-5
5.2 The IBM 360 and Burroughs B6700 5-7

5.2.1 Two Dimensional Addressing (Static

and Dynamic) 5-7
5.2.2 Implicit Addressing 5-9
5.2.3 Descriptors 5-10
5.2.4 Type Differences : 5-11
5.2.5 Semantic Conciseness 5-12
5.3 Implementation Aspects of a Stack Machine 5-13
5.3.1 Definitions - : 5-13
5.3.2 PUSH 5-14
5.3.3 POP 5-14
5.4 Ef fective Address Generation (EA).
(Lexical Level Offset Addressing) 5-17
5.5 Stack Fetch 5-19
References 5-19
Chapter 6: 1I/0 Considerations 6-1
6.1 Space Station System Requirements 6-1
6.2 Data Bus I/0 ‘ 6-2
6.3 Mass Storage I/0 6-8
6.4 I/0 Controller Design 6-10
6.4.1 Central Control (CC) 6~-10
6.4.2 Interprocessor Communication '
Interfaces (IPCI) 6-10
6.4.3 Operating Memory Interface 6-12
6.4.4 Channels 6-13
6.4.5 Interrupt Handler 6-13
6.4.6 Timer 6-13
6.5 I/0 Configuration Organized for Recovery 6~-13
References ‘ 6—-16

Chapter 7: Fault Tolerance Philosophy for the SUMC

Multiprocessor 7-1
7.1 Requirements 7-1
7.2 Error Detection 7-1

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Table of Contents (continued) Page

7.2.1 Implementing Hardware Error Detection 7-3

7.3 Recovery 7-6
7.3.1 Processing Unit (P-M1) 7-7
7.3.2 Recovery from an Operating Memory
(M2) Failure 7-11
7.3.3 Fault Tolerant Aspects of the I/OC,
Channel 7-17
7.4 The Implications of Fail Safe 7-26
Chapter 8: Concept Verification 8-1
8.1 Background 8-1
8.2 Phase 1 - Initial Analysis and High-Level
Simulation 8-2
8.2.1 Objectives 8-2
8. 2.2 Tools for High-Level Simulation 8-3
8.3 Phase 2 - Low-Level, Detailed, Mixed
Simulation 8-6
8.3.1 The Simulation Process 8-6
8.3.2 Simulation Design Issues 8-11
References 8-16

Chapter 9: Critique of SUMC's Architectural
Characteristics 9-1

9.1 Design Goals

9.2 Micro Instruction Sequenc1ng

9.3 Choosing Functions to Optimize

9.4 Field Manipulation - Maskings - Shifting -
Bit Addressing and Shifting

5 Limited Scratch Pad Addressing

6 Micro and Main Memory Speed Ratio

7 Main Memory Synchronization

.8 Limited Modularity Concept
9

1

f

\O W WO
1
N

The "U" in SUMC - Ultra Reliability
0 Confusion Between Design Levels
erences

O WOWWIWOWOWWOWY
1

i
H MWW

wNoNO

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

FOREWORD

This document is the Final Report of a multiproces-
sor architectural design study, whose objective was to
cstablich a baseline design for a central multiprocessor
for a Space Station Data Management System exploiting
the NASA/M3FC developed SUMC hardware where possible.

The study was sponsored by the NASA Marshall Space Flight
Center, Huntsville, Alabama, under contract NAS8-28605,
entitled, Research Study on Memory Hierarchy. It was

per formed by Intermetrics, Inc, Cambridge, Massachusetts,
over the period June to October 1972, under the direc-
tion of Alex L. Kosmala. Technical monitors for MSFC
were Mr. Gerald L. Turner and Mr. James L. Lewis.

publication of this report does not constitute
approval by NASA of the findings or conclusions contained
therein.

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

ABSTRACT

This is an architectural design study of a multipro-
cessor computing system intended to meet functional and per-
formance specifications appropriate to a manned space station
application as defined by NASA's Marshall Space Flight Center.
Internctrics previous experience and accumulated knowledge of
the multiprocecssor field is used to generate a baseline philo-
sophy for the design of a future SUMC* multiprocessor.

The operating system design problem for multiproces-
sors is to approach the theoretical performance without sacri-
ficing fault tolerance, flexibility, and expandability. Para-
llel tasking is described as a necessary operating capability
in this regard, while exclusive operators are also necded to
avoid critical section conflicts. Synchronization, scheduling,
and deadlock prevention are other system design features which
are discussed, along with memory management. Treatment of the
topics of operating system specification and structuring, and
- the use of a higher order language complete the discussion of

multiprocessor operating systems.

Interrupts are defined and the crucial questions of
interrupt structure, such as processor selection and response
time, are discussed. Memory hierarchy and performance is dis-
cusscd extensively with particular attention to the desian ap-
proach which utilizes a cache memory associated with each pro-
cessor. The ability of an individual processor to approach its
theorctical maximum performance is then analyzed in terms of a
— hit ratio, which is the proportion of time that a memory re-
gquest can be supplied from cache only. Memory management is
envisioned as' a virtual memory system implemented either through
segmentation or paging.

Addressing is discussed in terms of various register
design adopted by current computers and those of advanced de-
sign. Using examples, two dimensional addressing, implicit
addressing, and the use of descriptors are described. Imple-
mentation of a stack-oriented machine is explained, along with
— the generation of an Effective Address scheme. The overall I/O

architecture set forth is upon a Data Bus I/O to service an

* gpace Ultra-reliable Modular Computer

-ii-

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

advanced data bus concept and a Mass Storage I/O. The I/0 Con-
troller decign is then discussed in terms of interfaces to the:
processors and to the memories with special emphasis given to
recovery from failure.

A complete chapter is devoted to error detection,
fault isolation, and recovery philosophy as applied to a mul-
tiprocessor system. The important topic of concept verifica-
tion is given careful scrutiny in terms of

a) analytical technigucs and high-level computer simula-
tion, and

b) detailed, low-level simulation.

Finally, the report concludes with a detailed critique of SUMC's
architectural characteristics in relationship to the overall
design objectives.

-iii-

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Chapter 1

INTRODUCTION

1.1 Scope and Objectives

The work described in this report is the rosult of a
study of multiprocessing system design principles, performed
in support of the MEFC in-house multiprocessor computer deve-
lopment. The initial objectives of the study were to achieve
a top-level architectural design capable of mecting the func-
tional and performance specifications established for the Phase
B Space Station Information Management System Central Processor,
— and in doing so to exploit as much as possible the current MST'C-
developed SUMC processor design. However, during the early
phases of the study it became apparcnt that in order to preserve
fhe value of an independently derived evaluation of multipro-
cessor design fecatures by Intermetrics, some deviation from
these objectives would be necessary. The basic philosophies of
muitiprocessor design and operation espoused by Intermetrics in
defining an architecture appropriate to the Space Station re-
quirements werc found to be incompatible with those already adop-
ted by MSFC in arriving at the current SUMC design. Consequently
~ it was mutually agreed that rather than using the existing SUMC
design as the basis for the study, Intermetrics should apply the re-
sults of their previous experience and accumulated knowledge cf
the multiprocessor field to establishing a SUMC architecture
from an entirely independent point of view. Much of that point
of view was gathered in the performance of a previous design
study [1) with very similar objectives to those expressed for
the SUMC multiprocessor. Although some of the philosophies
which are embodied in that design were directly applicable, it
was decided not to tailor the complete design to the SUMC app-
— lication by adopting some features and discarding others. In-
stead, it was decided to select certain multiprocessor design
arcas and hardware features and perform an in-depth analysis,
review and evaluation for each, in order to establish the phil-
osophies and the rationale developed by Intermetrics in their
approach to a multiprocessor design. The objective was to pro-
vide a baseline philosophy for the design of a future version
of the SUMC multiprocessor, radically different from the one
proposed in the present M3FC in-house development program.

—~ In Intermetrics opinion the design of a multiprocessor
for a Space Station application should be guided by the follow-
ing considerations:

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

a) The performance potentially achievable through the use
of multiple processors (often quoted as the main moti-
vation of multiprocessing but, as will be explained in
Chapter 2, very difficult to achieve) should not be
compromised by implementational incompatibilities, es-
pecially in the executive system, nor sacrificed to
achieve other MP objectives such as fault tolerance,
flexibility, and expandability.

b) Since the overall cost of providing computational capa-
bilities (especially in a difficult environment like a
Space Station) may be dominated by software costs rather
than hardware, the architecture and operating character-
istics of the computer must reflect the necds, desires
and techniques of the programmer rather than those of
the logic designer.

c) The outstanding advantage of a multiprocessor is its
potential tolerance to failures of its components.
This capability should be realized in the initial ar- -
chitectural design, and not provided as a final touch
after most design decisions have been made.

The detailed analysis of the areas of multiprocessor
design which were selected for this study reflect the above
basic attitude. They form most of the chapters in the remainder
of this report, and include the following topics: Operating
System design (Chapter 2); Interrupt Structure (Chapter 3);
Memory Hierarchy (Chapter 4); Addressing (Chapter 5); I/O Con-
siderations (Chapter 6); Fault Tolerance (Chapter 7). Additional -
chapters cover Concept Verification (Chapter 8), since it was of
some concern to MSFC how any given multiprocessor design could
be given a quantitative evaluation without incurring the initial —
investment of a hardware build phase, and a critique of the SUMC
processor internal architecture (Chapter 9).

Much of the description and terminology found in this
report assumes a familiarity with Intermetrics' previous multi-
processor design. To prevent unnecessary (and probably inade-
quate) repetition of the details of that design, the reader is -
referred to reference [l1]. However, to provide an introduction
to at least some of the terms used we present the following over-
view of the configuration of hardware and software elements of -
the design, as extracted from sections of reference [1].

1.2 Overview of Intermetrics' Multiprocessor

The basic configuration of the multiprocessor is shown
in Figure 1. The MP was specified to consist of a number of -

1-2

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

uoT3eanbTIUOD DOTEed 10SS900IdIGTNNH sOTIoWIDIUI T 2InbTd
AytrToed ged

: J..o R MJ ..M
Jap2ay _

sng e3ed

O

|

i
TO
O
e}

S T
-

shexoag Aiepuodsg &tmu

w|
O
T vl
ol
k «
-
[T

mv * MIJ_WIQVIIK

| gl g w.,a@,._.oﬂ |
P EW 0¥ LNO) | s¥oL|
, sngg| | | -wd3dp) ¢

e e [A——
sng |Eueu| EMTNE
. -vré a; Lagdl .
e _
| | 1041109 0/l
| W N
m |
H : 1 t

e m | d |
_ | L 1
;o : _m .
L ! v _. .
o I e Tl d | —
N an!‘zi'wﬁm b “ d40d]
P P | | ﬁ - .
Lo P 1 m illlllld
8 1 P U AN § 2 Wl
,m . j ” | ; w , H ”
i voob i ! w __
o I _
] B M o WI%! M ~usueTE burssso01d
A w. an M AR Eutaoando
M : :
U | “ m |

1-3

identical, interchangeable processing elements which would execute
the major processing workload, and a single, more specialized pro-
cessor to handle 1I/0 processing and a number of other unique func-
tions. These functions include interrupt handling, interprocessor
communication control, and the central timer. The executive was
specified to be non-dedicated (to any given processor), and its
functions are performed by any of the processors. The choice of
which processor is made on the basis of status (e.g., by having
completed its current assignment), or by reason of its greatest
interruptibility as determined by the priority of its current
process. The numbcr of computational processors was specified

as three, because the resulting configuration represents the
simplest which possesses completely all the characteristics (and
problems) of the n-processor case. The two processor system
which has received the greatest amount of development and opera-
tional cimerience of all configurations, represents a degenerate
form of multiprocessor: while certainly exhibiting true concur-
rency of processes, nevertheless the dual processor allows cer-
tain simplifications of executive functions to be made because

of the binary number of active elements in the system. The mem- -
ory terminology in the figure is used in parts of this report,
and is defined as follows:

a) Ml: Local memory, dedicated to, and only for use by
a processor. This is a general term and refers
to all aspects of buffer, scratchpad, control
and associative memory, required by a processing
element. The contents of any Ml storage cell are
available only to the processor of which M1l is
an intimate component. Only in case of recovery -
after a P and/or M1 failure are these contents
made available to another processor. In this MP
design M1l is not, strictly, a member of the mem- - _
ory hierarchy.

b) M2: Operating memory (main memory, or, in' popular
terms, "core"). M2 consists of several individual
memory modules, all of which are accessible to all
processors, including the I/0 controller. Each
access takes place via a data path dedicated to -
each processing element, through a port in each
M2 module. The basic MP configuration, therefore,
requires four ports per M2 module. Each module is
fourway interleaved, for purposes of speed, access,
conflict resolution, and fault recovery.

c) M3: Secondary storage (backup or Mass Memory). Being
a conventional drum or disk, it was decided to
interface this level of - the memory hierarchy with
the rest of the computer system in the more con- -
ventional manner, via an I/0 channel. The use of

1-4

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-184(

}

M3 to implement the concept of virtual tmemory then
places the heaviest requircment on the design of
the I/0 controller and the 1/0 executive routines.

As mentioned above, several unique functions were gath-
ered together into one, unique module, which is (for conveniencc)
termed the I/0 controller (IOC). All interfaces to the outside
world were handled via the IOC.

Communication between the processing elements of the MP
system (the P's and IOC) were handled by a separate interproces-
sor bus (IPCB).

(It should be emphasized that the basic configuration
of Ti~nre 1 does not indicate the levels of redundancy specified
for fault detection and/or recovery. For a discussion of these
aspects, refer to Chapter 7.)

The terminology used in this report refers to the way
in which information was organized and handled in the previous
Intermetrics work. The key terms and their assumed definition
are as follows:

a) Program: This is an independently compilable section
of code containing pure procedures and/or data.

b) Procedure: A section of code to which execution control
can be passed, with or without the passage of parameters.

1) Internal, not known outside of process (see below)

2) External, known to name manager and declared in
the Process Information Area (see below)

c) Segment: A contiguous block of woxrds defined by a

descriptor, which is the unit of memory management.

a) Process: The unit of work as recognized by the opera-
ting system. A process 1is represented by a stack.

e) Stack: Although strictly a LIFO list, the definition
of a stack is less rigorous when used to represent a
process.

f) - Level: A demarcation in the addressing hierarchy.

Derived from the concept of lexicographical level in
block structured language (such as ALGOL or HAL), but
extended to provide convenient addressing by the
operating system.

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Figure 2 illustrates the relationship and use of some
of these teims. FEach process is represented by an execution
stack. The initial hierarchical lecvel for process execution,
and therefore the lowest numerical level for any process stack,
is level 2. Subsequent procedure nesting varies the lexical
level of each process stack to 3, 4, 5, etc. The portion of a
process stack that is below level 2 contains a collection of
data termed the Process Information Area (PIA) containing names,
priorities, counters, for bookkeepina, etc., specific to each
process. hbove the PIA the stack behaves more strictly as a
LIFO list.

Each process has associated with it a vector of des-
criptors defining the segments containing the procedures to bhe
exccuted by the process. These descriptors are addressed as if
the vector were a stack: by stack number and offset from the
base of the stack. For convenience, this collection of segment
descriptors is termed Level 1, since it exists at a more global
ljevel than the individual processes, and each such vector will
be referred to as a stack (even though, strictly, it is not).

At the most fundamental level there is a single collec-
tion of basic system descriptors, variables, etc., which is
termed the Level 0 stack, again for convenience of addressing.
One descriptor at level 0 points to the stack vector, which con-
tains descriptors of all the stacks in the system including the
"pseudo-stacks" of levels 1 and 0.

Each processor contained a set of hardware registers
which indicated the actual M2 addresses of the start of each
of the system levels, i.e., the base address of the correspond-
ing stack. Figure 2 also shows the linkages that tie the Com-
pool mechanism into the system. -

The operating system design philosophy reflected an
emphasis on the achievement of reliable operation of both
hardware and software. It was assumed that only higher order
language (s) would be used in the programming of application
software. The exclusive use of HOLs allows secure system op-
eration to be realized without exhaustive runtime verification
of each request for OS functions. An intimate and well-defined
interface between 0S and the compiler(s) was assumed achievable,
so that an optimal division between static (pre-run) and dyna- —
mic (runtime) diagnosis could be made.

It was assumed that the language/compiler to be used
in programming the Space Station application software would
possess the facility of handling common data pools (Compools).
The MP design provided a Compool implementation.

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-184C _
H

z3sthayg
Iespiey
sSeooaIg /
"0 . w\\
0 =
- SRS
: H [:
[!
T
. o
N S
! N i
P : i

S

A

L L

D

wolsAg burieasdp I10ss200XdIFTNN SOTIFOWASJUT

iz 2aInbT4

X,
e it 31 4 b \.».\.\ A

e

! . —
afet STON
1
¢l =z .
! IR § (o Jrgal s¥eTobse
F
{ Cod ,
: e
.
oot
1 i H i
i w i ! § e -
A T SR &
1 . g
I A R vid
{ 1 4 1
! !
N
' \

: -~ - — ~
X & - [
A 3
. \
i *, RSN
.. /./, -~ m = WM
/Yi .
- = ~
- vV = <
~_ |
e
-2
: -
*
i .

(T Toa9T)

yoelg Toodwo) SweN,

. fnt
i .w /
e e N
[\
b v

syoeas xozdraoseqg juswubag ssedoad

R a1 R~ i g -

ot i ok Pk o
T
3 ¢
- -
¥ §
13 14
: - 3
by W
3 et

T H

”

T NELRTTITII AT

TSUTI3UI
!

/

e+ o= e
5 i
: ¥Id
} &
- - {
{ .
v 1
[
i P
i 4
] e —— 1
i b
S b
m s b
e
- b
(]

(

eraea)

e o P

. WS- 2t g
i
A\
™,

R

(0 T=2n9T)
eag xo0adTIosad
wo3sig

P

Y

103097 De3S

e
[N

W
- i
e e &
-+ & P
i %
i B
H
[< o m
| - h
o - Ve, i
w. . ———— »”
L
— ks }
e . %
RN
3 P
i H
<2 ¥
v | e e

J

Reference for Chapter 1

1. Miller, J.S5., et. al.,

Functional Design of a Multiprocessor Design",

termetrics/NASA Contract NAS9-11745, September,
1972.

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE ~CAMBWDGE.MASSACHUSETTSO2KB-

"Engineering Study for the
In-

(617) 661-1840

Chapter 2

MULTIPROCESSOR OPERATING SYSTEM DESIGN

2.1 Introduction

This chapter will discuss the special problems facing
the designer of an operating system for a multiprocessor com-

niter, Tha econe of the task which is summarizced herc did not
encompass all aspects of 0S design. Emphasis is placed on the
more important functions and on those aspects of 0S8 which are

unicue to, or at least more significant for, multiprocessors
as comparcd with simplex computers.

An operating system for a space station multiprocessor
will be capable of supporting a wide variety of functions. Al-
though some of these may be unique to the application, it is
very probable that the following standard functions will always
be required in some measure:

a) Initialization

This deals with the initial introduction of informa-
tion into the computing system and its preparation for
eventual execution. It includes bootstrapping from a
cold start, establishing the mininum state from which
the complete system structure can be created, the pro-
blems associated with loading and linking of programs
and data for cxecution, etc. This topic is not a tri-
vial one: a real-time MP/0OS is a complex structure and
the problem of establishing it as a working entity
from scratch should be considered at the time its ini-
tial design is undertaken. Initialization will not be
discussed further.

b) Process State Controller

The basic element of computational work will be termed
a Process. Processes can exist in various states: c&x-
ecution, readiness, stall or suspension. This function
of the OS controls the orderly progression of processes
between these states in response to various stimuli,
such as voluntary process state changes, I1/0 interrupts,
priority changes, interprocess communication, etc.

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

c) Interrupt Servicing

A real time, general purpose, central computer for a
space station will almost certainly be required to
handle system-originated external interrupts in addi-
tion to interruptions due to arithmetic traps and
other errcr conditions. This 0S function implements
the desired responses to randomly occurring events of
this nature.

d) Timing and Synchronization

This function provides the basic mechanism for control-
ling the time dependent execution, and the synchroniza-
tion of parallel, concurrent processes in a real-time,

multiprogramnmed environment. -

e) Resource Management

This is the basic function of an operating system. The
resources required by a computational process are vari-
ous. First, there are the basic hardware elements:

the processors, memory modules, and interconnecting data
paths which must be available to allow the process to
run. Then there are the less tangible items such as
common programs and data over which conflict of access —
by several concurrent processes is possible. Lastly,
there is external device availability: sensors, avio-
nics data buses, disks, tapes, etc. The resource mana-
gement function is usually divided into processor allo-
cation, memory allocation, compool and shared data
management, I/0 and file management. It is the function
of resource allocation to ensure that each scheduled
process is granted a sufficient share of the available
resources to execute in a timely fashion without adverse
effect on other processes.

f) Configuration Control

In a fault tolerant computer, the current status and
the configuration of all elements of the computer must
be continuously monitored and controlled by the opera-
ting system.

gl Operator and User Interfaces
The 0S must provide facilities to interface with the
operator and/or user. For a complex system this is not
a simple task, especially when a major mode of operation

is interactive usage, by the crew members in controlling
the progress of a mission.

2-2

—_—

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

INTERME TRICS INCORPORATED

h) Performance Monitoring

this is an often under-emphasized function of an opera-
ting systemn, but it is an especially important one in a
new or novel application such as a space station MP.

The more sophisticated a system is the greater is the
need to measure, evaluate and influence its performance.

Some of these functions will be reviewed again in the
light of the following discussion of problems facing the multi-
processing operating system designer.

2.2 Probilems of Multiprocessing

The multiprocessing environment does not pose any aiffi-
culties that the designer of an operating system for a multipro-
grammed, single processor system has not also had to face and
overcome. The MP adds new facets to familiar problems, however,
by reason of the concurrent, rather than sequential, execution
of the multiple proccecsses within the system. This requires that
gréater care be taken to prevent damaging interaction between
processes at a point of commonality, especially with regard to
shared data. Measures taken to protect processes against each
other usually affect performance unfavorably. The maintenance
of performance near the theoretical limit is, in any case, more
difficult for a multiprocessor than for an equivalent simplex
computer.

An attractive feature of the multiprocessor is the pro-
spect of increased performance achieved by means other than ad-
vances in processor technology, i.e., n similar processors doing
the work of one n times as fast. In practice several factors
prevent this promise from being fulfilled. 1If we define "through-
put" as the integral over time of the rate of "useful" computa-
tion C, then it can be shown that:

:/;Cdt 2 f/an(g)dt

0 n

where n is the number of processors. C is a discontinuous func-
tion of time, and as n increases, it becomes increasingly diffi-
cult for C to remain non-zero for long periods of time. Compu-
fation lost whenever C falls to zero may not be made up in time,
and the right hand (multiprocessor) integral continuously loses
ground to the left hand (simplex computer) integral. The reasons
for this are enumerated below.

. 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

2.2.1 Parallelism

In order for all n processors to be kept usefully at
work, their load must be capable of being organized into n or
more tasks which can be executed in parallel, continuously and
simultaneously. The degree to which this can be done depends
on the parallelism inherent in the woxk load. Certain types
of computation exhibit natural parallelism, e.g., signal pro-
cessing, where the same operation is applied to multiple sets
of input data (promotine the design of so-called Single Instruc-
tion Multiple Data (SIMD) computers, for example the Goodyear
Associative Processor [1]). But, in general, parallelism must
be sought out, identified and utilized. It exists potentially
on several levels:

a) On the "job" level. In a general purpose computer fac-
ility, the submitted jobs are normally completely inde-
pendent of one another, even if they share resources.

b) Within a job, at the task level.

c) Within a task, most of the statements are independent
of one another. -

d) Within a single statement some computations can be done
in parallel.

Parallelism of types c¢) and d) is not visible to the
operating system, because the basic unit of OS is the process
(or task). For the type of application being considered for the
SUMC multiprocessor, it is not likely that the work load will
totally resemble that of a ground based general purpose facility,
although it will exhibit more of its aspects than will a simple —
flight control computer. Parallelism of type a) will probably
not be present in sufficient proportion to provide the sole guar-
antee of full employment for two or more processors. It becomes
necessary to deal, additionally, with parallelism at the task
level. The trouble is that problem solving with a computer is,
in general, a serial process: programmers do not naturally think
in terms of concurrent parallel processes in arriving at their -
solutions, unless such a structure is inherent in the problem.
A real time control function may conists of several, more or less
independent, activities going on in parallel, e.g., system moni- -
toring, navigation, display processing, and vehicle control.
Even so, it is anticipated that there will not be sufficient
functions of this type to keep two or more processors fully oc-
cupied, all the time.

It is necessary, therefore, to uncover task parallelism
that may not be apparent, and even to create parallelism if none -

2-4 .

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE +» CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-184(

exists. This imposes a constraint on the programmer, which must
be considered deleterious because it is not natural, 8o it is
necessary to assisct the programmer with a programming language
and a compatible operating system that contain features, attrac-
tive to use, that encourage the creation of multiple, independent
processcs. The use of a block-structured language encourages
programs to be written as collections of small, closed subroutines.
ALGOL, PL/I and HAL are among the languages that possess this
property. In addition to structure, a language can provide a
convenient and natural way to interface with the executive by
recognizing tasks as syntactical entities. The multi-tasking
features of PL/I and HAL encourage the programmer to think as he
programs in terms of proccesses which are amenable to scheduling.

ihe nultiprocessor operating system must support the
requirenents of parvallel tasking by providing adequate communi-
cation and synchronization primitives, and by protecting shared
data against conflicting concurrent accesses. These reguirements
are discussed in more detail later.

2.2.2 Exclusive Sections

In a general purpose multiprocessor certain opcrations
are concerned with the manipulation of unique system data such
as, for example, information maintained by the Process State Con-
troller, which contains the current dynamic state of all proces-
ces. Execution of the Process State Controller is an exclusive
operation: only one process may perform it at a time. 1In a
simplex computer this is achieved trivially: it is only neces-
sary to inhibit interruption of the single processor by external
happenings to assure exclusive execution of the Process State
Controller. A multiprocessor reguires a more elaborate mechanism
to prevent the simultancous execution of such critical functions
by two or more processors. such mechanisms cause the conflicting
processes to become serialized in time, each being admitted to
the critical section through interlocking turn-stiles (a general-
ized mochanism is described later). The net effect is that when-
ever two or more processes wish to enter an exclusive section,
only one may do so and continue executing: the other(s) must
wait. If the exclusive section is designed to inhibit the alter-
nate assignment of the processor (e.g., if it is the Process
State Controller), then throughput temporarily falls until the
other processor is through with the exclusive section. This loss
of throughput cannot be made up again. Note that in a batch en-
vironment conflicts of this type are rare, but in a real time
system of short tasks, with frequent process state changes, the
probability of conflict may become significant. This precipita-
tes the following quandary: to encourage parallelism a multipro-
cessor program should consist of many concurrent tasks, but to

2-5

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

avoid critical section conflict it should be organized into as
large a serially-executable piece as possible!

2.2.3 Shared Data

There is a problem with shared data, aside from the
need to protect it from simultancous modification. It is asso-
ciated with the creation of copies of sharcd data. In many com-
puter designs, performance improvenents have been achieved by
localizing lengthy sequences of operations within the fast logic
of the processor, rather than executing out of main memory. (The
cache memories of the IBM 370 series [2] and the task memory of -
the Novy's AADC [All Applications Digital Computer] 3] are ex-
amples of localized processing.) The problem arises because data
is maintained local to the processor. If the data is shared with
other processes, changes in the original or any of the copies
must be reflected in all. Some means must be found either

a) to allow one process access to another's local storage,
b) to update all copies of shared data at the same time or
c) to prevent old values from being used by other proces- -

ses until updating is performed.

It should be pointed out that this phenomenon is en-
countered whenever copies of shared data are created in any sys-
tem: in the Burroughs B6700 series the problem arises through
its use of descriptors. These are maintained in the stacks of -
individual processes. Whenever a descriptor needs to be changed
(it is a common occurrence in a virtual memory system for a
descriptored item to be transferred to back-up storage: the —_
address field of its descriptor most be modified to reflect this
change of whereabouts), all processors in the B6700 are stopped,
and all process stacks in main memory are searched for copies
of the particular descriptor. The B6700 was not designed as a
real time controller so the ensuing loss of processing time was
not considered objectionable by the designers. It is a different
matter for a space station computer, however. The Multiprocessor -
design developed by Intermetrics [4] employs a unique approach
to a similar problem. The copy of a descriptor may be maintained
in an associative memory local to a processor. This avoids acces-
sing the descriptor through three levels of indirection
each involving main memory references. Changes in the descriptor
are very quickly signalled by the provision of a specific machine
instruction which cancels the appropriate entry in the associa-
tive memory. The Intermetrics multiprocessor avoids local copies
of the data itself, and thereby foregoes the potential perfor-
mance advantages of local buffer or cache-type processing. -

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

—

2.2.4 Conflict Over System Resources

The most critical resource is main memory. As the num-
ber of processors increascs, the possibility of conflict between
them over the use of memory increases. As in the casce of shared
data, a resolution of conflict results in one or more processors
losing processing time, and the right hand integral of the ex-
pression for throucshput given carlier again loses to the left
hand. The device of interleaving the modules of a memory system
can be usod to minimize the delays incurred by conflict, but it
exacts a cost in added hardware complexity. [ts ecffect iz to
randomize nenory usage and thus to obtain stationary behavior.
Another approach is to partition memory amounqg the various pro-
cesses so that processors tend to o>ecut9 ouL of DhySlCd]ly

ST ~oa T s L B RIS R < - ~ —
Dipdiawee swolllioo Looe, il Thoe w Ty ousane vorv dotorminis

tic. This technique implies a sooh1st1catlon of the operating
system, a well-known job strcam, and a memory system of suffi-
cient modularity.

The network interconnecting processors, memories and
I/0 units is a more critical element in a multiprocessor than
in a simplex system. With more than one processor requesting
memory at a time, this bus itself becomes a source of conflict.
It would scem that a technigue that lowers the frequency of use
of the bus would lcssen the probability of such conflict. For
example, the use of a cache memory, by encouraging local execu-
tion, would appcar to make bus use less frequent. However,
analysis shows that the probability of bus conflict actually
increascs with incrcasing speed of the cache, thereby defeating
any performance advantage.

In summary, techniques devised to minimize conflict in
a multiprocessor are susceptible to the following drawbacks, any
or all of which combine to prevent the multiprocessor throughput
from egualling that of the equivalent simplex processor:

a) Increased hardware complexity and cost,

b) Increasing operating system sophistication, usually ac-
companiced by increased overhead in space and time.

c) Reduced throughput due to delays introduced to resolve
conflict.

The more processors in the system, the more marked is
this effect. Only in a particular application, for which the
characteristics of the work load can be anticipated, is it pos~
sible to deduce the number of processors required to achieve
a given performance cost effectively. In the absence of such
information about the environment of the multiprocessor, this

2=7

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

limit is very difficult to determine. As a result, almost all
practical designs of multiprocessors to date have been limited
to the degenerate case of two processors. Some designs have
even dedicated functions or resources to each processor in order
to avoid some of the above problems, resulting in configurations
of dual computers rather than dual processors.

2.2.5 Overhecad

The preceeding sections have cited several factors that
contribute to the complexity of functions that a multiprocessor
operating system is required to perform. Each factor contribu- -
tes to the overhead of computaticnal time and memory space con-
sumed by the operating system. Matters are further aggravated
because the meny activities going on simultaneously in a mul-
tiprocessing environment take on the characteristics of a que-
ueing problem: their deleterious effects are in general worse
than additive, i.e., the loss in real throughput is a non-linear
function of the number of contributing overhead mechanisms.

But to end this section on a positive note, it should
be realized that this depressing parade of multiprocessing dif- —
ficulties has a corollary: small efforts to limit the damaging
effects of each of the mechanisms discussed in this section can
yield dramatic improvements in throughput because of the expon-
ential nature of their interaction.

2.3 Exclusion and Synchronization

Any multiprogrammed system requires operating system
primitives for the communication and mutual protection of the —
concurrent processes. In a multiprocessor, these activities
can be actually time-concurrent and these primitives must be
implemented in a combination of hardware and software. The
problem of protection against unwanted interactions will be
reviewed first, followed by a discussion of synchronization.

2.3.1 Exclusion Primitives

In a simplex computer a basic exclusive operation may —
be implemented in software, but a multiprocessor needs hardware
assistance for such an operation, because of the true time-
concurrency of execution of two or more processes. The hardware
must be capable of reading the value of a variable, and then
rewriting the variable with a new value in one uninterruptible
operation. An example of such an instruction is the TS (Test
and Set) of the IBM 360 series, which writes all ones into a -
specified byte and sets a condition code with the original

2-8

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE < CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

r—

contents. The Burroughs B6700 RDLK (Read with Lock) instruction,
which stores the contents of the B register into the location
whose address is contained in the A register, but leaves the
previous contents of the location in the B register, is closer to
a generalized non-divisible read and write opcration.

The actions of a set of general operating system pro-
cedures designed to provide the exclusion primitive are as fol-
lows:

ENTER Check for occupancy of pro-
cedure. Set Logcihk. I
locked, enter wait guecue.

(critical section}

EXIT Check for occupancy of pro-
cedure. Remove self from
wait gueue. Inform execu-
tive to wake next in queue,
if any.

How these actions are implemented using a fictitious
non-divisible read and write instruction NDRW is illustrated
in Pigure 1. Let the execution of NDRW exchange the contents
of the operand, MUEX, with the contents of the accumulator.
MUEX may contain the following values:

0 No process executing critical section
(i.e., section is "free")

1 Critical section is being executed by

one process

2-9

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

;) | f | . i {
SATITWIXJ UOTSNTOXH Ten3iny T oInbrg

(uoT309s TESTITAD ©3)

(uoT3293

aNUTIUOD M
A, A
~
f—— - ==
] SnYeA - XAOW ~I| _
_ i | SRIEA > XIMN | 3
m MION ONTLA -+ XIONW anTeA - XIONW
| ! | #3AN !
N . MIaN
i | m FEAN _ |
1 A _
. | , “ ,
_ snank w | I ~
|} xzaw ury ssoz0zd | _ , _
axeu Lprel | i
. | M _ i 23235 ,
e i 0 - oRivh _ aTen 2o3ud | T + onea
N | !
i *lnllnl:lfltlluL
[}
o]
“ R T+OTTBA - OnTeA
f 1 - snTesn -» onles i,
; snent XEnK o< 0>
i 032Ut FTos aseld
i Xaoq
m ﬁ Jo onfea snoTadad 24RS)
‘ i
_ T- > XIoW I- > XION
|
m! FEan H AN
t
A »ﬁt
i 1 *
~11 TNWT)\J.ﬂr:mm v =
! {
o

<]
TeST3TID WOIF)

2<10

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

2,3,...n Critical section is being executed by one
process, and 1,2,...n-1 are waiting to
gain access. Requires a MUEX queue struc-
ture to be maintained by OS.

negative Proccdures ENTER or EXIT are being executed
by a process. (The OS primitive itself
must be protected against multiple use.)

The actions surrounded by dotted lines indicate the
exccution of the Process State controller function. Note that
the final updating of MUEX in cases where a process is to be
placed in the wait state, or readied to execute the critical sec-
tion, must be done within the Process State Controller to prevent
interruption of tne sequence.

‘his exclusion mechanism must be expanded 1f it is
required to accomodate the comprehensive Update Block capability,
for controlling the accessing of common data, provided in the
HAL language [5]. It is not always necessary to prevent all types
of access to shared variables: a shared variable can be read,
as long as it is not actually being changed. The ability to
differentiate between types of access reduces the time for which
a requesting process must be made to wait, with consequent im-
provement in throughput. The HAL Update Block is in efifect a
modified form of critical section. Bvery variable that is
addressed within an Update Block has associated with it a "lock-
type" attribute. The lock can assume the following states:

a) Free: Unlocked

b) Read: Accessed for reading only
c) Copy: Accessed for modification
d) Write: Being modified

A variable that is to be modified is first copied, and
all intermediate computations are performed on the copy. This
is the meaning of the "Copy" state. Final values are written
from the copy to the actual variable after the state of the
1ock has been raised to "Write". The testing and setting of
the states of locked variables requires the use of the NDRW in-
struction. A reguesting process is allowed into the Update
Block only if the type of access requested is compatible with
the current state of all locks within the block. For example,
a request to read the variables is allowed if the current state
of all locks is "Free", "Read", or "Copy", but is not allowed
if any arc in "Write".

|NTERMETWCS|NCORPORATED'701CONCCW{)AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

An operating system mechanism to implement Update Blocks
involves the maintenance of linked queues (see Figure 2). Every
locked variable has associated with it a queue of requesting
processes, each identified with its individual access type. All
gueue elements associated with a given process are also linked,
to facilitate the response to changes of state of the processes. -

The Intermetrics design of a multiprocessing operating
system [4], defined a pair of generalized primitives, ACQUIRE
and RELEASE, of the form: ACQUIRE (Mcde, Category, Name, Access)
where each of the terms has the following meaning:

a) Mode: The calling process is placed in the Wait -
state if access is not immediately pos-
sible, or an immediate return may be spe-
cified with an indication of why access ~
could not be allowed.

b) Category: Data, code or device. The ACQUIRE primi-
tive is applicable to the protection of
shared data, the implementaiton of exclu-
sive sections, or the use of a shared de-
vice such as a printer. -

c) Name : Identifies the item in the category, e.g.,
‘ the name(s) of the specified shared variables.

) Access: Shared, update or exclusive access request.
.These are analogous to HAL's Read, Copy,
and Write lock type states.

It is possible to define any type of required exclusive
operation in a given system with these two primitives. -

2.3.2 Synchronization

In order to provide for communication between parallel
processes of a multi-tasked environment it is convenient to in-
voke the concept of an "event". An event is a variable whose
state reflects the occurrence of an activity within the system,
e.g., the completion of a lengthy computation or the arrival in
memory of a previously requested item of I/0O. The process await- -
ing the activity is associated with the event. The "signalling"
of the event results in the process being made ready to continue.

For illustration, let Tasks A, B and C be three independent tasks, -
all scheduled during the execution of some master Program. Sup-

pose it is appropriate to schedule Task C only when certain com-
putations have been completed by Tasks A and B. Tasks A and B

may be executing on separate processors, and thus be unaware of

2-12 ‘ -

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

sanjzonilsg 3oolg o3epdn gz 2Inbrd

™

2-13

& X
6
© 3
&~ ©- X
. o,\ —» \ M
L se—" 3 "
]
| :SeTgERTIRA

g v : s9588001d

e

one another. In which case, they cannot easily cooperate in

the scheduling of Task C. However, if each were to signal

an event on completion, e.g., EVENT A and EVENT B respectively,
then the event mechanism can provide the synchronization that
causes Task C to be scheduled as soon as both EVENT A and EVENT_B
have been signalled. h

The language multi-tasking features that were advocated
earlier to help keep a multiprocessor busy are supported in PL/I,
ALGOL and HAL by event mechanisms of varying sophistication.

The Intermetrics multiprocessor design [4] specified a very com-
prehensive event structure which enabled complex logical expres-
sions to be evaluated as cvent signals. In this design events
arc controlled by primitives of the form

SET
(E, n, By, Ep, «-vs E)

RESET

which is interpreted as "set (reset) event E when n of the events

in the list Ej through E,, are signalled." If n = m, this ex-
pression is the boolean "and" of all listed events, and ifn=1
it is the "or". The primitives also have a simpler form

SET
. (E)
RESET

Response to the signalling of events is basically of two forms:

WAIT(n, Eq, Ep, ..., E)

and
ON(n, Eq, Eor vons Em)<code>

In the first, as the WAIT is executed the process is placed in
the Wait state until the event expression becomes true. The
second statement causes an interruption of the process as soon
as the expression becomes true, to execute the procedure spe-
cified in the "code".

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-184(

~—-

lNTERMETmCSINCORPORATED-701CONCORDAV

The implementation of an event structure involves mul-
tiply~-1linked qucues of avent elements which allow the associa-
tiong between the processes involved in declaring, signalling
and rcsponding to cvents Lo be established, executed, and re-
moved in a dynawic fashion. It is perhaps superfluous to point
out that such a mechanism in a multiprocessor environment re-
gquircs processors to be able to interrupt one another. This

ability is provide:s, for example, in the RBurroughs B6700 by
the "LEYU", and i1 he RCA 215 Dby the "INTERRUPT CPU" instruc-
tions.

2.4 Scheduling

The scheduling function of the operating sgystcm Cnsures
that processes are prepared for timely execution with due regard
to their relative importance. It involves some of the functions
of Procoss State Control and Resource Allocation defined earlier.

[w}

This scction will discuss briefly the following aspects of this
function:

a) Ensuring that computation time and space are properly
apportioned among the processes according to predeter-
mined nceds, while maintaining an optimal balance be-
tween the conflicting requirements of throughput, effi-
ciency, and response. Throughput is defined as the
amount of useful work accomplished by the total multi-
processor systeim, efficicncy is the degree of utiliza-
+ion of the basic components of the system (e.g., pro-
cessors, memory modules, 1/0 devices), and response is
the ability to react to a given stimulus.

b) Ensuring that competition between processes in their
demands for resources do not produce catastrophic con-
ditions, such as deadlock or thrashing.

c) Preventing the resulting computational overhead, espe-—
cially of time in a real-time control system, but also
of space, from becoming excessive (the definition of
"excessive" is not attempted here!l).

2.4.1 Space and Time Allocation

The computational activities in a space station multi-
processor are expected to fall into the following categories:

ENUE 'CANﬂﬁﬂDGE,MASSACHUSETTS(Q138'(617)6614840

Cétegory Characteristic Time Examples

Response Range Criticality

"Batch 10 secs~mins.. non-critical Lengthy computations. Off line
experiment data processing

Interactive 0.1 sec-10 sccs. non~critical Crew operational seguences.

Time sharing by scientific per-
sonnel.

Real Time 1 ms-100 ms non-critical Control of scientific experi-
ments. Operational equipment
status monitoring

Real Time 1 ms-100 ms critical Operational equipment servicing:

strapdown IMU. Closed loop con- -
trol: autopilots, etc.

Processing tasks in the batch category can, to an extent,
ignore the constraint of time. The allocation of memory space or
other system resources such as common data, input file, I/O de- e
vices, processors, can be considered with more freedom. The
presence of this category in the total work load can provide a
measure of global optimization in the use of system resources to —
maximize efficiency.

The time-critical real-time tasks can not make such
compromises. Resources must be ready when needed. The need
is often (but not always) randomly determined. Unless it is
composed of highly repetitive tasks, the real-time component
of the work load prevents high values of throughput and effi- -
ciency from being attained.

A work load consisting of components from each category —
must be so arranged and presented to the computer system that
all tasks can get sufficient cuts at the system's processing re-
sources. Obviously, no amount of intelligence built into an
operating system will supply enough computational resources to
a work load whose demands cexceed the capability of the machine.
An operating system can be designed to contain features and to
operate in a way that matches the characteristics of the work -
load. But it remains the responsibility of the user of the sys-
tem to assign a given work load to the machine in such a way
that it does not overload the system. -

Task scheduling can be approached from two extremes:
a) Synchronous, or time slot scheduling. Each task is

allotted a different, but fixed, interval of time for

2-16

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840 _

execultion, which is available at multiples of fixed
minor cycle intervals.

b) Demand Scheduling. Tasks are allocated processors
and other resources on demand, at execution time, ac-
cording to the needs and importance of the task and the
availability of the resources. Tasks are differentia-
ted in importance by a priority value which stays as
initially assigned, or changes as a function of time or
the tasks' status.

The advantages of the synchronous approach are:

a) Minimal overhead, since scheduling is pre-dctermined;
- b) The scheduler is simpler, being essentially table driven;
c) The fixed schedule of task execution eliminates problems

associated with code and data sharing, and does not re-
guire re-entrant code;

d) The load may be evenly distributed over the available
- time;

e) The deterministic behavior makes system verification
- easicr.

The difficulties associated with it are:

a) It is difficult to structure programs so that they may
be time-sliced;

b) Each time slice must be sufficient to accomodate the
worst case, so on the average will be under-utilized;

- c) It is difficult to accomodate response to random events
such as crew inputs. Response to system failures is
especially difficult, unless recovery from all classes
of failures is pre-scheduled.

a) The structure is inflexible to change.

- These disadvantages are all overcome by the demand scheduling
approach, which, however, suffers from an increased degree of
difficulty because of its greater complexity, and because it

- is more difficult to verify.

In a functional design of an executive for the Space
Shuttle central computer, Intermetrics has proposed a combined
synchronous and demand scheduled approach [6]. The repetitive,
time-critical functions which can be implemented in short,

2-17

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

complete sections of code are executed by a synchronous "fore-
ground" scheduler driven by timer interrupt, at 40 ms intervals.
The majority of the remaining tasks are scheduled on demand as
a "background" activity according to pre-assigned priority

values. Communication between foreground and background is by
an event mechanism, in essence similar to that described in sec-
tion 2.3.2.

2.4.2 Deadlock Prevention

05/360 has three resources to allocate to each job/step.
These are core storage, data sets and peripheral devices. The
allocation algorithm is summarized in Figure 3. Note that all
data sets for the entire job are allocated at job initialization
time and are bound for the duration of the job. 1In addition, -
all devices are allocated at step initialization time and are
bound for the duration of the step. This approach may be costly
since some of the resources allocated to a task may remain un-
used for long periods.

Alternatively, resources may be allocated dynamically,
i.e., while the process is running. Unfortunately, now dead- -
lock prevention becomes a more difficult problem. However,
some practical solutions have been suggested [7], although a
time overhead must be paid if they are implemented. -

The suggested methods involve keeping track of the state
of the system by means. of state graphs or matrices. When a re-
source is requested by an executing process, the availability
of the resource is checked. If it is presently unavailable, the
algorithm must determine if it is safe to put the requesting
task in the wait state. To determine this, it checks the state -
matrices of the system as they would be if the request were
enqueued for the resource. When a safe condition results, the
request is enqueued, and the task is placed in the wait state. -
On the other hand, if an unsafe condition results, the request
must be denied and the task so notified. The task can then de-
cide if it wishes to cease execution or it if can proceed with-
out the resource. (Some subtle problems to be aware of, in
implementing such an algorithm have been overlooked by several
authors and are discussed by Holt [8].)

While it is easy to see that dynamic allocation is
most economical in the amount of time system resources are un-
available, some time overhead must be paid each time a process N
requests a resource. The O0S must check the state matrices to
determine if safe states will result. This process can be
lengthy for a system with many resources and many ready tasks.
One must remember here that the overhead is really that time

2-18

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

DY LAROC fEA

ALLOTATE
DEVILES

FREE
REGHY

FIG. 3: 0S/360 Resource Allocation Algorithm

INTEFGAETRICS INCORPCRATED » 320 GREEN STREET « CAMBRIDGE

C MASSACHUSETTS 02139 - (617) 868-1240

used for dynamic allocation over and above that which would other-
wise be spent for allocation at job and step initialization times
as described above.

Unfortunately, no analytic studies or simulations of
these algorithms have been done to evaluate overhead costs. How-
ever, with careful thought given to the implementation of a
dynamic algorithm, its overhead can be held to a minimum. In
any case, the advantages of dynamic allocation would seem to
overshadow any time overhead that results.

2.5 Memory Management -

Management of the use of memory is potentially the
most critical activity of an operating system. It is very de-
pendent on:

a) the structure and characteristic behavior of the appli-
cation software. If the work load is well known and
dynamically predictable, especially with regard to its
memory requirements, allocation of space can be pre-
determined, by pre-planned overlays for example. -

b) The system architecture. If sufficient operating memory
is provided to accomodate all programs at all times, dy-
namic allocation problems are eliminated. If, however,
a virtual memory design is adopted for its potential
simplification of programming and its cost effectivity,
the operating system becomes intimately involved in -
creating and allocating memory space, and its detailed
design is further affected by the technique adopted for
addressing the virtual memory system. —

c) Memory technology. The architecture of a virtual memory
system and the functions of its operating system are
significantly different for secondary storage with moving
head disks, than for solid state block-oriented, random
access devices such as the experimental magnetic bubble
domain memory.

Although memory management can assume a critical role in
determining operating system size and efficiency, its problems —
cannot be addressed in detail in the absence of a memory hier-
archy definition. The following review of methods of operating
memory utilization is presented to underscore some of the factors
involved in providing increasing levels of operating memory uti-
lization by multiplexing.

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - {617) 661-184C

2.5.1 Operating Memory Multiplexing

The following examples describe practical applications
of a number of techniques for increasing the utilization of op-
erating memory.

2.5.1.1 Non-multiplexed Memoxy: 1In a non-multiplexcd system
the process of "assembly" of the program secrves both to esta-
blish the mapping between names found in "subroutincs" (which
are simply scparately maintained units of program code), and
the mopping between names and physical locations in memory.

At the conclusion of the assembly, the mapping information is
completely distributed, and is saved and accessible only as a
dlaguusiic wid, sor e computer ciumulalor, [OF example. HMost
flight control computers are of this design, usually because of
their modest total memory requirements, typically 8K to 32K
words.

2.5.1.2 Partitioned Memory: A simple form of memory multi-
plexing is used when the physical memory is large enough to sup-
port the reguirements of more than a single programn at a time.
The 0S/360 MFT and MVT systems implement fixed and variable par-
titions respcctively. The normal objective of concurrently-
loaded programs is to provide more efficient use of the proces-
sor by increasing the chances that some program can usec the

CPU when another is waiting for completion of I/O operations.

As in sequential execution, the mapping between names
and locations is applied in all places at the time of loading,
and the map is of no further use to the execution of the program.

To further increase processor efficiency, a high-speed
secondary storage device may be used for "core-swapping". This
involves writing the contents of a partition out to the device
pefore its execution has been completed in order to make rocm
to bring in some other program rcady to run. Because the name-
location mapping is not dynamically applied, the information
must be returned to its original location when its execution is
to be resumed.

2.5.1.3 Partitioned Memory with Relocation Registers: Under the
above mechanization, the application of the name-location map
takes place at one time, but over many spatial places. This has
the advantage of getting the mapping finished; however, it has
the disadvantage that the mapping is not readily reversed or
modified. Several systems (e.g., PDP-10, Univac 1108) use an
alternate scheme which re-applies the mapping each time. This

2-21

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

is achieved by providing one or more relocaltion registers, whose
function is transparent to the software, which supply offset
values to be combined with logical or virtual addresses generated
during the program's execution. A disadvantage of this approach
is that it requires additional hardware to perform the combining
as part of instruction execution. However, it has the valuable
characteristic that the mepping remains available for modifica-
tion, so that program and data sections may be relocated in the
operating memory and only the relocation values need to be
changed in the process. Thus, storage in use can be compacted
to collect available space into one contiguous piece when neces-
sary to find room to load an additional program.

As in the partitioned memory scheme, "core-swapping"
may bc used for additional multiplexing. However, the use of
the relocation registers makes it possible to return the infor- -
mation to any convenient location, rather than the precise place
from which it was written.

2.5.1.4 Paginog: An alternate to the use of relocation regis-
ters is to divide the program and data space, linearly arranged,
into a series of "pages" of a fixed size, ordinarily a power of
2 (e.g., XDS Sigma 7, CDC 3800). In address formation, a group
of bits from the logical address is used to select a page-
location word from an array called a page-table; this word con- -—
tains the memory-address of the page if it is currently there.
Otherwise, an indication of the absence of the page is provided,
along with the secondary-storage location at which the page may

be found. The physical storage space is thus divided into fixed-
size page frames, and the mapping between names and physical
location is dynamically applied, A strong advantage of this
approach is that logically contiguous space need not be physically
contiguous, nor need it even all be present. The relaxation of
the pages for occupancy of storage space by implementing some mea-
surement of page reference behavior (with hardware help). Pages .
appearing to be less needed may be overlaid with more lively ones.

Because all page frames are the same size, space mana-
gement is simple, and requires only modest overhead at execution
time. On the other hand, the page boundaries fall at arbitrary
locations in code or data, rather than at logical divisions. The .
average usefulness of words in a page is therefore reduced, since
a logical entity may occupy only a small part of a page, or cross
a page boundary.

INTERMETRICS INCORPORATED +» 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

2.5.1.5 Scgmented Addressing: The simplest scgmentation on a

logical (Iif not opcrational) basis is the scheme used in the
Burroughs B6700 and its pradecessors. Each program block is

compiled into a virtual address space of its own, called a seg-

ment; locations may then be accessed by specifying a scgment
number and an offscet from the beginning of the segment. In
execution, the name-location mapping is applied dynamically.

Each segment has a segment descriptor which contains the physi-
cal location of the beginning of the scgment. Ilowever, this
descrintor can also contain sn indication that the segment is not
in storage at the noment; in this case, the address in the des-
criptor is the secondary storage location at which the segment
may be found.

sr advontnge of this type of segmentation is the direct
relationship between the segment size and the logical unit of
program or data it contains. This characteristic increases the
average usefulness of words transferred in a segment load.

A disadvantage of this scheme is that segments are
small, scgment descriptors are therefore numerous, and must
consequently be located in operating memory rather than high-
speed processor registers. The access to these necessarily
slows down the address formation process; conseguently some
scheme of buffering in a small set of fast registers is usually
utilized to shorten the access delay (see section 2.2.3). A
second disadvantace is that storage allocation occurs in vari-
able sizcd units and is therefore more complex and consumes
more processor time than for fixed-sized pages.

2.5.1.6 Segmentation Plus Paging: This method of addressing
and multiplexing was developed by the Multics group at MIT Pro-
ject MAC. It is implemented most ambitiously on the GE (Honey-
well) 645 designed for Multics, and also on the IBM 360/67.

In Multics, segments tend to be large, and each is divided into
fixed-size pages. Even page tablds are paged, since they other-
wise would occupy too much operating memory. Paging is the
mechanism which accomplished multiplexing; segmentation is uti-
lized for other purposes which are not relevant to this report.
However, it should be mentioned that segmentation is implemented
in such a way that when two independent processes refer to the
same segment, both processes utilize the same page table. Shar-
ing is thereby implemented in a general and powerful way.

The Intermetrics multiprocessor design [4] featured a
segmented virtual memory system based in principle on the Bur-
roughs designs. The policies for space allocation, segment
placement, and replacement were, however, novel implementations
of the operating system. The overall objective of the design

2-23

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

was to reduce the usual overhead consumed by the memory manage-
ment function, by hardware assistance of address translation
with associative memories local to the processors, and by spe-
cially tailored OS routines to handle segment I/0.

A more detailed examination of the characteristic

differcnces between paging and segmentation, and the factors
influencing virtual memory design is presented in Chapter 4.

2.6 Implementational Aswvects

This review, far from complete, of multiprocessor op-
erating system design problems closes with some comments about
the implementational aspects. The major objectives of anyone
embarking on the design of an operating system should be: -

a) That the completed system work very closely to the way

it was intended; : -
b) That it not take forever to finish;
c) That the resulting design be non-subtle, that it may -

be easily understood, maintained, and if necessary
modified, other than by its creators.

2.6.1 System Specification

A big step towards accomplishing the first objective
is to establish clearly in the beginning what the operating
system is expected to do, and how. A considerable fraction of
the total programming effort should be devoted to identifying
the functional requirements, and then thinking out an overall,
coherent design that not only satisfies them, but possesses
enough flexibility to accomodate later modification and addi-
tion. The end item is a detailed design specification which
deals with the structure to be implemented and its operating
characteristics, and includes a description of how the com-
pleted system is to be verified.

2.6.2 Structure ‘ -

The second and third objectives are largely a matter
of the way in which the software of thé operating system is -
structured, and the techniques used to implement that struc-
ture.

Comprehensive operating systems have acquired a bad

reputation for complexity, cost and ultimate unreliability,

2-24

-

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840.

largely perhaps as the result of the widespread usage' of the
IBM 360 series of computers. 0S/360 was very ambitiously con-
ceived at a time when rigorous technigues of software construc-
tion (and the pecnalities of ignoring them!) were not as well
researched and understood as today. Problems with the use of
0S8/360, and other decsigns, have prompted much study into the
theory and practice of operating systems to be undertaken, es-
pecially during the last five years or so. 7M gathering body

of knowlcdge on techniques of design and operation has become
available (sece, for example [9]).

Dijkstra has pioneered the disciplined approach to op-
erating system design [10]. He organized the functions of a mul-
tiproyramued opernting system into a number of sequential pro-

intataforate hoco wvecoanns yere then hicrarchically arranced to
form several independent levels of increasing abstraction of
machine operation. For example, the lowest hierarchical level

was that of the real machine itself. At the next to lowest level
were procedures for allocating processors to processes and field-
ing interrupts from the real time clock. The level above that
managced the operation of the virtual memory, without concern

for processor availability. The next level fielded the inputs
from the operator keyboards, and so on. The application pro-
grams formed the highest level. A programmer was thus able

to vicw the combination of hardware and software as a "virtual
machine", represcnting an abstraction of the real machine. Need-
less to say, the whole concept precluded the use of machine lan-
guage coding by any application programmer, since this would

have cut straight through the screening levels of "virtual ma-
chines". Each lcvel of the system possessed a large degree of
independence of the other levels, and could be separately con-
ceived, implemcnted and tested.

Other opecrating system designs with different opera-
tional requirements and system configurations would probably
depart from the functional separations made by Dijkstra, but the
basic philosophy may be adhered to.

2.6.3 Systems Programming Language

Just as a problem oriented higher level language assists
in the structuring and implementation of applications software,
the use of a language suited to the definition of OS functions
has gained much support from operating system implementers.

The advantages can be viewed from both a managerial and a tech-
nical aspect. The managerial benefits of HOL usage are too
well established to be repreated here. Various authors have
defined the features that would make a systems programming lan-
guage easy and efficient to use [11]. Almost all agree that

2-25

INTERMETRICS INGCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

the languagec should possess a block structure and enforce name
scope rules. It should contain control features such as pro- |
cedures and functions, the statements IF THEN ELSE, DO FOR, and
DO CASE. Some language designs restrict data types to those
generally agreed to be useful to systems programming, namely
bit, character, pointer and various forms of arrays. Others,
following the example of PASCAL [12] contain more powerful and
flexible data structurcs, which allow the systems programmer
freedom to adapt the language to his specific problem, The
ability to address specific machine features is necessary, al-
though the major portion of any operating system can be machine-
independent. The need to generate efficient code is clear, if
only to overcome the reluctance of non-believing systems pro-
grammers to code in a higher level language! Almost all advo-
cates insist on the absolute necessity of readability in the
language, and the provision of comprehensive diagnostics by the
compiler. TFrom these characteristics, it is evident that sys-
tems and application programming languages have quite similar
objectives, and differ mainly in the natural incompatibility of the
data types recognized. Several attempts have been made, therefore,
to adapt existing HOLs for system programming, as the following
examples illustrate.

A subset of PL/I was chosen to code the operating system
for the comprehensive Multics system at MIT [13], which is based
on Honeywell 6000 computers. The Burroughs Corporation has
developed several versions of ALGOL 60 with differing degrees
of machine dependence [14] for different B6700 systems program-
ming applciations, as a consequence of their long standing use
of ESPOL in the B5500. There is Extended ALGOL for the bulk of 4 -
systems programming, including the Extended ALGOL compiler it-
self; Data Communication ALGOL, which allows the control soft-
ware. for communications interfaces to be conveniently programmed; -
and ESPOL, the original systems language, which enables many of
the B6700 features such as stacks, registers, memory, the multi-
plexors, peripheral devices, etc., to be addressed directly.

Several languages have been developed to handle systems
programming for specific machine architectures. The University
of Toronto is developing SUE for system programming on the IBM
360 [15]. An extensible language LSD is being designed for sys-
tems development on the IBM 360 at Brown University [16], al-
though it is not yet operational. PL 360 [17] a language de- -
signed by Wirth at Stanford University for the IBM 360, has
features that make it attractive to systems programming.
Carnegie-Mellon has developed and used BLISS for its DEC PDP-
10 [18].

It is strongly recommended that the operating system
for the SUMC is designed and written in one of these systems -
programming languages, or at least in some tailored subset.

2-26

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

~—

Most of the compilers have been written in the language itself,
which lessens the difficulty of transferring the compiler from.
its original host machine to another.

References for Chapter 2

1. Fulmer, L.C., "A Modular Plated-Wire Associate Pro-
cessor", CuR-14727 Goodyear Aerospace Corp., Akron,
Ohio, March 1970.

2. Conti, C.J., "Concepts for Buffer Storage'", Computer
Cocup Moo, Jurch 1000
3. Entner, R.S., "The Advanced Avionic Digital Computer

System", Computer Design, September 1970.

4, Intermetrics, Inc., "Enginecering Study for the Func-
tional Design of a Multiprocessor System", Final Re-
port, NASA/Intermetrics Contract NAS9-11745, Septem-

ber 1972.

5. Intermetrics, Inc., "The Programming Language HAL -
A Specification", NASA/Intermectrics Contract NAS9~10542,
June 1971.

6. Intermetrics, Inc., "Advanced Software Techniques for

Data Management Systems: Vol. II", Final Report, NASA/
Intermetrics Contract NAS9-11778, February 1972.

7. Coffman, E., et. ai., "System Decadlocks", ACM Computing
Surveys, Vol. 3, No. 2, June 1971.

8. Holt, R., "Prevention of System Deadlocks", Comm. ACM,
January 1971. :

9. ACM/SIGOPS, "Operating Systems Review", Proc. 3rd
Symposium on Operating System Principles, Stanford
University, Palo Alto, California, October 1971.

10. Dijkstra, E.W., "The Structure of 'THE' Multiprogramming
System", Comm, ACM, Vol. 2, No. 5, May 1968.

11. ACM/SIGPLAN, Proceedings of Symposium on Languages for
Systems Implementation, Purdue Univ., Lafayette Ind.,
October 1971.

12. Wirth, N., "The Programming Language PASCAL“; Acta
Informatica 1, 35-63, (1971) by Springer Verlag, 1971.

2-27

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

13,

14.

15.

lo6.

17.

18.

Corbato, F.J., "PL/1 As A Tool for System Programming",
Datamation, Vol. 15, No. 5, May 1969,

Lyle, D.M., "A Hierarchy of High Order Languages for
Systems Programming", Proc. Symposium on Languages for
Systems Implementation, October 1971.

Clark, B.L., et. al., "System Language for Project SUE",
Proccedings of Symposium on Languages for Systems Imple-
mentation, October 1971.

Bergeron, R.D., et. al., "Language for System Develop-
ment", Proc. Symp. on Languages for Systems Implemen-
tation, Octobexr 1971.

Wirth, N., "PL360, A Programming Language for the 360
Computers", Journal ACM, Vol. 15, No. 1, January 1968.

Wulf, W.A., et. al., "Bliss Reference Manual", Carnegie-
Mellon University, Pittsburgh, Pennsylvania, January
1970.

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-184C__

Chapter 3

_ INTERRUPT STRUCTURDE

This chapter will discuss various aspects of the in-
terrupt ctructuroe when applied to a multiprocessor. The first
- section will present a list of assumptions uvon which the fol-
lowing sections are based. The second scction presents a brief
Cutegoa oo lion o Inteoyapts ~ypoctod within tho envirorment of
_ the space station multiprocessor. The third section discusses
various problems that are encountered when attempting to develop
an interrupt structure for the multiprocessor.

3.1 Assumptions

— a) The basic assumption is that the concept of interrupts
is indeed reguired. It is possible to conceive of
computer systems that are wecll specified, in which all

_ equipments are synchronized and serviced in a predeter-
mined cyclic fashion. However, the system contemplated
for the gpace station is not well specified. Tt will
have to rcspond to conditions not anticipated in the

program flow. Therefore, the need for interrupts is
postulated.

— b) A true multiprocessor is assumed. This includes a
"floating executive" and a configuration with three
or more processing units. With a floating executive,
_ any process can be executed on any processor. There
are no functions dedicated to any processor. This ex-
cepts the I/0C, which does serve a specialized function.
Three or more processors are assumed so that the gen-
eralized solution to multiprocessor interrupt handling
can be addressed.

3.2 Interrupt Categorization

An interrupt can be defined as any condition which
causes an involuntary interruption in the sequence of execu-
tion of a process. The interrupt is not explicitly anticipated
in a program's code. It can be considered to be an involuntary
procedure call to the interrupt servicing routines, with an ul-
timate return link to the original process.

3-1

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

Interrupts may be categorized into three distinct
classes:

3.2.1 Process Oriented

Process oriented interrupts are those associated with
the process in execution. There are a number of distinct types.
Arithmetic and control traps are caused whenever an unacceptable
condition presents further execution. £An interrupt from a
"watchdog timer" indicates that a process has been running for
an excessive time.

The above two process-oriented class of interrupts are
synchronous with the process and occur while the process is run-
ning. There cxists a class of process-oriented interrupts which
can occur when a process 1is in a waiting state. These inter-
rupts, sometimes called software interrupts, result from HOL
statements of the following form, as discussed in section 2.3.2:

ON (event) <code block>

This statement establishes a linkage which causes the
specified <code block> to be executed when the specified (event)
is signalled. If the process is running when the (event)
is signalled, then it is interrupted to execute the <code block>.
If the process is not running when the (event) is signalled,
then as soon as the process which issued the ON statement enters
the running state it will be interrupted to execute the <code
block>.

3.2.2 System Oriented

This category of interrupt does not have any particu-
lar affinity for the currently running process. Conditions
such as I/0 Complete, I/O Error, and Absent Segment Trap fall
into this category. Both I/O Management and Memory Management
are executive functions.

Many failures or error conditions, such as power fail-
ure, can be considered system oriented.

3.2.3 . Processor Oriented

Even with a floating executive and no dedicated func-
tions to particular processors, it does become necessary to
direct an interrupt to a specific processor, independent of
the process being executed. For example, in response to an
error signal one processor might direct another processor to
“terminate or restart. The entire area of system initialization

3-2

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-184"__

i

and reconfiguration requires direct communication with specific
processors. The processor-dirccted interrupt is a convenient
mochanism for mecting this requircment.

3.3 Multiprocessor Interrupt Problem Areas

A number of problems involved in the servicing of in-
terrupts exist. Some are aggravated in a multiprocessor en-
vironment and some are unique to the multiprocessor environ-
ment. TFour major arcas are discussed below.

3.3.1 Which Processor to Intcrrupt?

In a multiprocessor system, a question arises as to
which processor to select to handle a given interrupt. For
process oricnted interrupts which occur while the process is
running, the decision is trivial. The interrupt should be
steercd to the related processor. Similarly, so should proces-
sor related interrupts.

The remainder of the interrupts are system-oriented
or non-running-process-—oriented, and have no affinity for any
particular processor.

A number of options are possible in assigning a pro-
cessor to service the interrupt:

a) An arbitrary processor may be interrupted based upon
some random selection algorithm. The interrupted pro-
cessor may then execute a software routine which de-
termines whether the interrupt condition is of higher
priority than the process which was interrupted. If
it is not, then the interrupted process will be sche-
duled like any other process according to its priority.

b) All the processors may be interrupted. The interrupt
scrvice routine can be made a "critical section" of
code which can only be executed by one processor at
a time. The first processor to access this code ser-
vices the interrupt. The other processors revert to
their original processes.

c) A sequential selection employing a "round robin" style
algorithm may be used. In this way, the interrupts
are loaded equally upon all processors. This option
of course does not consider the process which is run-
ning on the processor at the instant of interruption.

INTERMETRIGS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

d) An assigned processor might service all intérrupts, or
specific interrupt conditions can be preassigned to
specific processors.

e) The processor executing the lowest priority process
will be selected to service the interrupt. If the
interrupt priority is lower than any running process,
then the required interrupt responsc will not be exe-
cuted until a process swap results in a lower priority
process. '

The approach recommended in this Report is to provide
a combination of ¢) and d) by placing within the I/O control
an element of hardware which automatically determines the most
interruptable procoessor (bascd upon the priority of the process
running), and rcceives and distributes all potential interrupts.

Running-process-oriented interrupts can by-pass the
interrupt logic within the 1/0C since the processor to be sel-
ected is known a-priori.

3.3.2 Responsec Time

There is a small class of interrupts which require al-

most immediate response. Thcse are system oriented and deal
with equipment failures or other emergency situations. One ex-
ample is a "power failure" interrupt. This must be responded

to within microscconds in order to move any volatile registers
into permanent storage and then systematically to shut down the
system.

The class of conditions associated with arithmetic
and control traps does not require instantaneous response but
the running process can not continue until after the trap is
serviced. Any trap condition falls into this category, even
system oriented traps such as the'Absent Segment Trap.

Quite often specifications are generated and systems
built which require I/0 Complete interrupts to be generated
within micro seconds of an I/0 completion. From a performance
point of view, most I/0 interrupts can possess a response time
of the order of milliseconds. For example, if M3 requires an
average of 10 milliseconds for each access, it is clearly un-
necessary for its completion to be signalled within microsec-
onds.

3.3.3 Innovations
: A number of innovations may be suggested in the I/0
interrupt area. These suggestions exploit the space station

type of I/0, namely mass storage M3, and a data bus.

3-4

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -« (617) 661-1840

a) "ouiet" I/0

When the multiprocessor system workload is hcavy,
the frequency of Absent Segment Traps can be expected
to be relatively high. Conventional processing of an
Abhsent Segment Trap requires entry to an interrupt
handler, initiation of an M3 operation, and placement
of the proccss into the wait state. Upon completion
of the M3 operation, an 1/0 Completion interrupt is
signalled. The handler for this interrupt is then
entered, the process walting for the segment is readied,
another T/0 operation to M3 1is initiated if one is
queued, and the processor allocation routine is called
to sce if it is appropriate to assign a processor to
the newly readied process.

An alternate implementation is suggested to avoid,
at least in most cases, the nccessity for entering the
I/0 Completion interrupt handlcr when the segment trans-
fer is concluded. This is achieved by providing a
capability in the I/O controller which causes it to
make a choice of whether or not to signal I/0 comple-
tion. Thus a dynamic decision is made as to whether
the interrupt should be suppressced or signalled, de-
pending upon the existence of a queue of operations
waiting for the device. If the interrupt is suppres-
sed, the condition is made known to the system by the
setting of a bit field 1in a location accessible to the
absent segment trap handler. After initiating the M3
operation to make an absent segment present, this hand-
ler checks the completion-states of M3 segment transfers
previously issued. The processes whose segments are
found to have completcd their transfers are readied;
thus the utilization of the I/0 Complction interrupt
handler is avoided. This diminishes the overhead for
absent segment handling,.especially under heavy load,
when computational overhead is most detrimental to the
system throughput.

b) Data Bus Control

I1f a command response data bus, with a minor cycle
of 20 milliscconds, is employed then it is clearly un-
necessary to interrupt the system after each peripheral
device is accessed. In principle, the synchronous na-
ture of the data bus does not require interrupts for
normal processing. However, onc may consider the need
for interrupts due to infrequent events:

1) An interrupt might be generated by the Data Bus
Control Unit if certain types of failures are
detected.

3-5

lNTERMEﬂNCSINCORPORATED°701(XDNCORE)AVENUE 'CAMBRH)GE,MASSACHUSETTS(R138-(617)6614840

2) For equipments which are interrogated at a'very
low frequency or even randomly an interrupt might
be considered at the end of the request. '

Both of these suggestions impose little if any load on
the system due to their very low frequency of operation.
A checkout problem may, however, arise in trying to
verify successful operation for infrequent interrupts

at any point of ecxecution in a program.

3.3.4 The Interrupt Sequence

When an intcrrupt is signalled to a processor, the de-
tails of its local environment, the processor's status, must be
saved so an eventual return is possible. In a stack oriented
machine an interrupt response can be executed parasitically on
top of the process' stack, with entrance and return functions
performed automatically.

Since procedures may be nested to multiple depth, so
can interrupts. The only limit is the number of display registers.
provided to mark the beginning of each lexical level in the stack.

3.3.5 Interrupt Functional Response

System or processor-oriented interrupts possess a sta-
tic (pre-determined) response. Once the response is established
it is not changed. However, for process-oriented interrupts
(traps) one may conceive of situations where each process may
desire a different response to particular interrupts. For ex-
ample, one process might want to respond to a square root of a
negative number trap by substituting a zero for the answer.
Another process might deal with complex numbers and cause a
re-entrance into the squarce root instruction with a change of
sign of the argument.

For all trap conditions the system must provide a de-
fault option. It is suggested that a process be allowed to
override this system option by providing its own response to
particular traps. Any process at any lexical level should be
allowed to specify, if necessary, its own response to process-
oriented traps.

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

Chapter 4

MEMORY HIERARCHY

Memory 1is possibly the most difficult of any computer

- element Lo specify, implement and use. It is in this arca that
technological limits and cost factors are first encountercd
i L Dt i Acaiem of an ~dvanced hich performance com-
- puter system. ‘Uhe inability of a single, currently ltnown, mem-

ory technology to ncet the conflicting requirements of high
access speed and high storage capacity has led to the hierar-
chical concept of levels of memory.

4.1 Basic lierarchy Description

Within the multiprocessor structure, one finds a num-
ber of levels of memory used for varying purposes.

4,.1.1 MO - Micro Level Control Memory

From one poiﬁt of view, micro memory is only a parti-
cular implementation of a control unit and therefore should not
be considered part of the memory hicrarchy. Alternatively, an-
other point of view suggests that micro memory should be
used for execution of the frequently used opcrating system pri-
mitives and subroutines. It is from this secondary point of
- view that MO is considered an element of the memory hierarchy.

4.1.2 M1l - Local Memory

M1 storage is dedicated to the processing unit. Its
function can range from a register set, as is found in the SUMC,
- to a complete cache memory as used in the IBM 360/85. The
major function of Ml is to increase the performance of the sys-
tem. 1Its speed is in the 100 nanosccond access time range and
~ its size can range from 16 words (for register storage) to 4K
words (for a cache implementation).

4.1.3 M2 - Operating Memory
In a multiprocessor environment, M2 is that part of

- memory which is shared by the processing units and I/0 controllers.

— | 4-1

= INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

M2 must of nccessity consist of a number of separate memory

modules so that simultaneous access of different modules may be

made by the processing units and I0/C. M2 cycle time is in the _
1 microsecond range and its size is of the order of 100K words.

4.1.4 M3 - Mass Memory

M3, historically a drum or disk, provides the function
of augmenting the M2 storage. It is used to hold all the pro-
grams and data segments not currently being used in the proces-
sing function. M3 is used to implement the concept of a larger
M2 virtual memory. It is characterized by an access time in the
millisecond range and a storage size consisting of millions of
words.

4.1.5 M4 - Archival Storage

Archival storage (possibly implemented with a magnetic -
tape unit) is included for completeness. It is used as the re-
pository of files and other information which does not undergo
rapid change or frequent use. Conventionally, M4 is considered
to be an I1/0 device and is controlled accordingly.

The remainder of this chapter will concentrate on the
relationships between the major elements of the memory hier-
archy which contribute to system performance, namely M1, M2,

and M3.
4.2 Local Storage
4.2.1 The Problem - Memory Contention vs. Performance -

One of the major reasons for using a multiprocessor is
to increase the overall performance or work delivered by the
system. If the extra performance were not required a unipro-
cessor would be employed. Ideally, a system with R processing
units should produce R times the work of a single processor sys- -
tem. One factor which tends to reduce the overall performance
of the multiprocessor is M2 memory contention. The effect is
to reduce the M2 cycle time (t,) by yielding an effectively
slower cycle time (toqff) -

One way to reduce memory contention is to provide a
limited amount of dedicated memory local to each processor
(Ml1). If M1l possesses a cycle time (tj) which is substantially
faster than t, then a performance increase can be obtained.

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

4.2.1.1 Performance Model: Postulate the multiprocessor model
shown in Figure 4.L, and make the following definitions and
assumptions:

number of M1l cycles per unit time for a single
processor

il

a) ny

b) tq

i

M1 cycle time

c) ny = number of 142 cycles per unit time executed by a
single processor

d) ty = M2 cycle time

e) toaff = cifective reduced M2 cycle time duc to memory
contention

f) W = work per unit time from a single processing unit.
This is defined as proportional to the total num-
ber of M1 and M2 cycles per unit time. Usually
processor work is defined in terms of the number
of instructions per second. For a conventional
360 type architecturc an instruction usually cor-
responds to two M2 cycles. In a sense the internal
processor cycles should also be considered useful
work. Indexing which does not reguire an M2 access,
because it micht use an internal register is a
very useful function. If a multiprocessor makes
very large use of its internal M1 storage these
cycles are just as important as M2 cycles in esti-
mating overall work.

W =ny + njp

g) R = number of processiné units
h) M = number of independent M2 modules
i) h = fraction of all memory requests that use Ml

(the hit ratio). This is for a single proces-
sing unit.

INTERMETWCSINCORPORATED-701CONCCWH)AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 * (617) 661-1840

M Modules

/-W\"\
M2 M2 ee. M2
M1 -
|
P Ml -
P l
R Processing Units . Internal
. Bus
M1
P l)
Notes:
1) A processing unit contains a P-M1 combination -
2) The internal bus allows all the R processing units
to communicate with all M memory modules
3) There is no internal bus contention

Figure 4.1: Multiprocessor Model

4-4

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840 .

3) Tt is assumed that a processing unit is always making
an M1l or an M2 rcference and that these refercnces are
mutually exclusive, that is they cannot occur simul-
taneously. Let njty + n?(tzjf Yy = 1 unit of time.

From the above definitions i€ %ollows that

W = 1 [T
toegeg Lh+ (L - h) I}
whare o= erfﬁ

The term in brackets can be considered to be an en-
hancement factor by which performance is increased.
Figure 4.2 plots this factor as a function of h.

We sce from this simplified model that the introduction
of M1 with a reasonably high hit ratio can potentially increase
the performance of a processing unit, especially if the tp/t;
ratio is high. Many overhead factors, involved in the utiliza-
tion end control of M1l will tend to lessen the improvement.

The effcct of memory contention upon t2eff will now be
calculated. Assume that requests to M2 are independent and
randomly distributed across the address space. In reality this
assumption can be seriously questioned since program and data
both possess locality. That is, there is a strong correlation
between successive M2 access events. This is extremely diffi-
cult to measurc since the programming load is not known. For
lack of a better model, the random distribution is assumed.

A processor will request access to M2 with a proba-
bility A = ny(t2eff)/ny(ty) + ny(tyegg) - It can be shown that

A = r(l - h)
r(l - h) +h

The probability of accessing any particular M2 modules is there-
fore A/M. Given that a processor is requesting access to a
particular M2 module, the probability that none of the other

R - 1 processors are requesting access to that module is:

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

k

Factor,

h + (1-h) =

10

"Enhancement"”

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
"Hit" Ratio, h

‘¥

Figure 4.2: "Enhancement" Factor k Versus "Hit" Ratio h

P(0) = (1 - a/M)R1L

The probability that 1 out of R-1 other processors is request-
_ ing access to the particular M2 module is:

R-1 5
p(l) = (i) (1 - a2t

In general, the probability that i processors out of the R-1
otilcr processors desiie access to the same module is:

R-1* s .
- P(i) = (i) (1 - a/mF @t

If there is no contention, the M2 access time is tp. If one

other processor is requesting, the access time could reach 2(t,).
- In general, with i other processors the access time could reac

(1 + 1) to.

The effective access time averaged over all contention

possibilities is therefore

- R-1 R-1 R-1
toere = £ (1 + 1) (tp)P(1) = ty I P(i) + tp T iP(1)

Since Pi is a binomial distribution [1]

R-1
r P(i) =1

- i=0

and

R-1 ,
t iP(i) = (R - 1) (A/M)

- i=0

* -1\ _ (R-1)!
- i T it(R-1-1)1

4-7

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

therefore

toeff = to [1 + (R—l)A] = to [1 + (R-1) r (1-h)
T M[r (I-h) + n]

Some insight may be gained by studying the overall total system
work (Wg) where:

W, = RW

Wm = Rr
T t2 [[r (1-h) + hl] + (R-1) r (l—h)]
M

The following figures (Figure 4.3 and Figure 4.4)
depict Wp for h = 0, h = .5. The following two facts should
be observed:

aj System performance is increased as more M2 modules are
added.
b) . Local storage can significantly increase performance.
4-8 i

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-184(

(4]

maximum nossible

'_[I‘
[///z////‘performance
M= 16
/M = §
7 — =4
e canll .
- yyg’ﬂ”’#
- M= 2
- M =1
r -2 3 4 5 6 7 8

Figure 4.3:

W

T

Versus R

oy

13

12

11

10

o

W

1.82R

1

T .9

8 (R

M

M

If

le6

i
R

maximum possible
performance

Figure 4.4: W, Versus R

4-10

4,2.2 Two Approaches to an Implementation

A major design question naturally arises. How does
one use local storage to obtain a hit ratio of .5 or .9 or
more? The answer is complex and involves studying the nature
of program cxecution in rclationship to the instruction set.
Two approaches will be mentioned.

4.2.2.1 The Cache Concept: As CPU spceds have increased with ad-
vances in Lochnology, computers have been able to handlce lar-

ger and morce complex proc gsing tasks, and the demand for
operating memory capacity has increased. Since capacity and

speed are conflicting factors in memory design, an hierarchical
memory organization was proposed many years ago [2] to enable
these two desirable gqualities to be independently developed.
Advances in semi-conductor technology have only reccently made

this concept feasible.

A backing store, M2, which de-emphasizes speed to
achieve an adequatc capacity, interfaces to a buffer store or
cache, M1, whose primary design objective is speecd.

BACKING STORE (M2)

J\ X Data width
///"\,//////,——“~'4 to 16 words

Transparent }

to BUFFER (M1)
Programmey
A] ASSOCIATIVE
MAPPING
)) MECHANISM

PROCESSOR

Figure 4.5: Buffer Store Organization

4-11

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

The concept depends for its success on the notion of
locality. Locality is an expcrimentally observed fact of pro-
gram behavior by which references tend to occur within a re-
gion of the program's address space, and this region migrates
relatively slowly. Locality is a natural outcome of the way
people think and write programs: concentrating on one task
at a time, using loops, using scqguential control, etc. [3].

The degree of locality is influenced by programming style,

data organization, strategy of algorithm, and the programuing
language. TLocality gives rise to the notion of the program
working set, which is the minimal set of blocks that a pro-
gram requires to have in the cache in order to run efficiently.
If less than the working set is in M1, the probability of oc- -
currence of a reference to a missing block, m, increases. This
situation is most likely to occur in a multiprogrammed environ-
ment when the number of programs n exceeds the capacity of the
cache to contain all their working sets, as illustrated below.

I n
g

Figure 4.6: Probability of Missing Block Versus
Number of Working Sets

It is an experimentally verified fact that a process
favors references to a small set of its total address space,
and that provided this set is contained within M1, the need
to access program areas not in M1 arises relatively infrequ-
ently. When access to M2 becomes necessary, more information

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-184C _

than is immediately required is transferred to ML, in the expecc-
- fation that references in the vicinity of the accessed word
are likecly. The relationship betwecen the size of M1, the amount
of information transferred, and the effect of different program
addressing behaviors was studied by Gibson [3]. He concluded
that an Ml capacity of 2K to 4K words and a transfer block
size borween 4 and 16 words provided best results. He also
found that the dynamics of buffer operation were more sensitive
to thce addressing patterns of the various programs than to any
other factor.

To maintain a given processor's speed, data transfer
from M?2 must occur at an adequate ratce. The M2's slower access
can be comrensated for by increasing the transfer path width.
This can e aclicved by:

a) An M2 tcchnology which yields a long physically stored
word, e.qg., the pseudo - 2 1/2D organized plated wire
- ~ memory [4] which allows several hundred bits to be
accessed at once.

b) Organizing M2 into a number of smaller modules and in-
terlecaving the addresses, so that contiguous addresses
1, 2, 3, are stored at corresponding locations in mod-
ules 1,2,3, rather than in conseuctive locations in
any one module. This has been the approach employed
by current designs such as the IBM 360/85, 91 and 195,
which use core technology for M2.

The high speed of M1l is now generally realized by bi-
polar semiconductor techniques rather than thin-film. Buffer
memories of up to 1/4 million bits with cycle times less than
200 ns have been built, although similar speeds at far lower
power dissipations are being achieved by current plated wire
designs [5].

The above discussion has been in terms of a processor
"read" operation. Writing into the buffer presents an additional
— problem in that the contents of the buffer do not represent the
primary source of the program being processed. A processor
"write" must be reflected in an update of the primary source,
which is stored in M2. This can be achieved in two ways:

a) Storing through: Every "write" request causes an
immediate update of M2 as well as the cache.

b) Block update: Write requests are allowed to accumulate

in Ml. Whenever a block is to be replaced by the block

— replaccment logic the modified block is written out to
M2.

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Which of the two techniques is chosen depends on program beha-

vior: "writes" tend to cluster in time and in program space,

so that for small blocks of 4 to 16 words a block update tech- -
nique may result in lower average Ml to M2 traffic density and
transfer delay.

There are a number of arguments which can be raised
against the use of a cache in a multiprocessor system.

a) Cost. To be effective a 4K word cache of high speed
(100 ps) monolithic memory must be employed in each
processing unit.

b) To keep the cache filled with useful data a large band-
width of data from M2 must exist (128-256 bits) per
access. Many of the words accessed from M2 might not _
be used. This unnecessary M2 traffic tends to increase

M2 contention and thus reduce performance.

c) In a multiprocessor system the use of a cache with
COMPOOL data presents a problem in keeping copies, pre-
sent in the various caches, updated. (See section 2.3.1)
d) IBM's successful use of the cache is based partially

upon the inefficiency of the 360 instruction set.
That is, quite often small program loops are inserted
by a compiler to execute primitive functions which
could have been basic instructions in other systems.

4.2.2.2 Ml in a Stack-oriented, Descriptor-based System: The
problem faced in employing M1 is to use it for information which
has a high probability of being accessed many times (a high hit
ratio, h). Traditionally, base registers and index registers
have been allocated to the local storage of a processor for
reasons of speed and their high frequency of use. ‘lowever, re-
gister management problems tend to increase overhecad.

Intermetrics proposes to use M1 for specialized storage
and to have the management of M1 an automatic hardware function.

In a stack-oriented machine it was realized that the
top few entries of the stack provide the most referenced ele-
ments. . For this reason the first 8 stack locations are made
resident in M1l. M1 stack overflow pushes the bottom of the
Ml portion of the stack into M2.

The descriptor is the most referenced data type. For
this reason the 32 most recently referenced descriptors are re-
tained in M1. An associative mapping mechanism is employed for -
~control of this descriptor cache.

4-14

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

The dynamic nature of the stack creates a situation
where the starting location of each lexical level must be
quickly accessed. For this rcason a set of from 16-32 base
registers is proposed. FEach base register contains a pointer
to the start of each lexical level and is automatically acces-
sed when addressing within the stack is desired.

An instruction set which is organized around this
machine tends to he more complex than a 360 type instruction
set. For this icason more time is spent accessing M1 and ex-—
ecuting micro code. This tends to make the duty cycle of the
processor higher than a 360 type instruction set, which in turn
tends to reduce menory contention.

The procoessor's duty cycle and the parameter h are
directly related.

D = duty cycle = ny (tg)
ny(ty) + ny(toeff
h = n
nl+n2
D = h where r = t2eff
(1 — h) r + h t1
4.3 Operating Memory and Memory Management

The concept of a memory hierarchy, discussed in rela-
tion to M1 and M2, can be extended to the relationship between
M2 and M3. For large file oriented systems archival storage,
M4, is also considered.

4.3.1 Background

Since program and data can only enter the computation
process via M2 one must control the flow of information across
the hierarchy of memory. This control is the job of memory man-
agement.

Virtual memory is a technique for managingithe utili-
zation of memory in processing systems where program space

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

+

exceeds the actual cperating memory space. The concept has evol-
ved from the need to improve on early attempts to utilize limited
amounts of memory by overlaying. This required the user to par-
tition his program into pieces which fit into the available
space, and then plan the sequence of execution of the pieces and
control their reading into and out of operating memory. As pro-
gram requircments grew larger than a few thousand words, this

became a cumbersome task. To help the programmer, automatic
overlaying (folding) techniques, by the operating system with
compiler assistance, were developed. But eventually it became

clecar that a system should allow a distinction to be made be-
tween addrcss space, a set of identifiers used by a program to
reference information, and memory space, the set of physical
operating memory locations [6].

Since a program could be allocated any physical M2 loca-
tions, the addresses contained within the program string must be
relative and not contain any absolute M2 reference. A transla-
tion mechanism must map the relative addresses into absolute M2
address. Many machines employ a concatenation of the address
field of the instruction with the contents of some specified base
register. Other schemes employ a descriptor mechanism, which
is used to provide an indirect reference. In either case, the
relative address is first presented to a memory map mechanism
which determines if the desired element is in M2 or whether an
M3 fetch is required. Figurce 4.7 indicates the basic operations —
involved in memory management.

The memory mapping mechanism usually employs a limited
associative memory to contain the most recently referenced ad-
dresses. In the 360/67, the contents of the base register is
funnelled thru an associative memory. In the Intermetrics' i
multiprocessor concept the descriptor's address field is trans-
lated via an associative memory.

The first suggestion for-achieving virtual memory was -
published by Manchester University in England, in 1962 [7].
Virtual memory has subsequently been implemented in a number of
ways, most notably in systems designed to service a large user
body generating an unpredictable load and mix of processing
jobs (e.g., the HIS 6000 in the MIT Multics system, and the
IBM 360/67). The mapping mechanism requires address informa-
tion to be organized into blocks. Two basic schemes have been
defined for handling these blocks:

a) Segmentation organizes address space into a collection —
of segments which are mapped into variable sized memory
blocks

'b) paging organizes memory space into "pages" of fixed
size.
4-16

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-184(_

[
|
b} vgacn — N NS, S Coe
Processor ‘ map
|

Physical
M2 address

relative
i address

addressed guantity
is not in M2

1
OO P SR,
Fetch frowm M3 ;M3
1
|
displiaced
data moved
to M3
IN
form relative
address - A {rom
program string
/&\J
7 N
P R . No
< Is A in M27 7 -WMI - e
\/ Y_ 1
Yes nllocate storage space in
M2 to receive (p). If Fetch (A) from
necessary delecte some in- M3
formation from M2, write

modified data into M3.

A

Go to memory map
to fine physical
M2 location

Update memory may

‘F and store (A) in
M2
Fetch (A)
ouT

Figure 4.7: Memory Management
4-17

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

4.3.2 Segmentation

Since segmentation is concerned with the modularity and
structure of the program it is visible and controllable by the
programmer, although usually indirectly through the use of a

language. He determines the size of the segment, and attaches -
its name. Each segment may be considered as an independent
virutal memory. Internal to each segment, addressing is rela-

tive to the beginning of the segment, and thus becomes inde-
pendent of addresses in any other segment. This property re-
sults in what has been termed two-dimensional addressing: seg-
ment number followed by location number. McKeeman [8] points
out that this addressing structurc is employed in a number of
modern programning languages, such as ALGOL, PL/1 and FORTRAN.
It is also a propcerty of HAL. These languages use a pair of
numbers to represent an address: the first number corresponds -
to the nesting level (lexical level) of the occurrence of the
declaration of the name of the address, and the second indi-
cates the occurrence of the name within that level in the pro-
gram. The elements of a segmentation implementation mechanism
are shown below:

Segment Table

S
—]
segment address % h' = a + W
B e veas R~
22?1 b a
B A memory address
W
—_—

word address

Figure 4.8: Elements of Segmentation

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

Segments are loc .od by referencc to a table, each
entry of which is a segmcit descriptor defining the segnent's
pase address a and its size b. The position of the descriptor
in the table is S from the base of the table. A reference to
an address in name {address) space is of the form S,W. The
compcnent S locates the desired segment's descriptor in the
tablc. If it is not in the table (i.e., the segment itself
is not in operating memory) a missing-segment trap occurs.

The scoment is then brought into operating momory from mass
storace, and its descriptor is placed in the table. A test
whether W > b is made to check if a programmor's reference is
out of bounds of his own segments. Then the location a' in
physical memory to which the name space address 5,W refers is
formed by a' = (s + W). This address transiation mechanism

can be icaiizcda o special hardwere, with ¢ sct of scpecial asso-
ciatively addressed registers. Or the tables can be accomodated
in operating momory, with all translations performed by multiple
levels of indirect addressing. The latter approach involves

two or more memory accesscs per reference and results in a con-
siderable penalty.

The secgmented addressing scheme offers several attrac-
tions for a large and diverse software system such as the space
station central multiproccssor.

a) Program modularity, Program modules are organized into
distinct, separately named and controlled scegments.

b) Variable data structures. In a system such as the space
station, the data base will contain large and com-
plex data structures which will vary in size and content
during use. By creating segments of such structures
they may be assigned just the memory they require.
Their manipulation is well controlled.

c) Protection. A high degree of access control can be
provided by the segmented approach through indirect
addressing coupled with access privileges which con-
strain read and write operations within a given seg-
ment.

d) Program sharing. By enabling one physically stored
module to be known in different address spaces under
different segment names, it may be directly shared be-
tween two or more users. This obviates the usual prac-
tice of creating copies of multiply used routines, and
consequently economizes on memory space.

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

4.3.3 Paging

Operating memory address space is divided into a number
of equal sized pages. Each page is identified by the memory lo-
cation of its first word. Words within the page are referenced
by vord number w from the first word. A page is referenced by
its position p in the page table. A virtual memory address, a,
is equivalent to the pair p,w (in a similar fashion to segment
addresscs). The total number of active pages may not exceed the
page capacity of operating memory. Those pages not being execcu-
ted are transferred to the next level of storage, thus realizing
the concept of virtual memory. Since all pages are cgual in
size, rcplacement involves only the problem of finding the neces-
sary cqual-sized "holes" in operating memory. "External" frag-
mentation of memory need not occur.

Page availability is maintained in the page table. The
pth entry in the table is the memory location of the page con-
taining address a, where p = integer [a/Z], and Z = page size.
If the pth entry is missing, the page does not reside in memory,

and must be fetched. This condition is referred to as a missing
page trap. If the page is present, the referenced word is the wth B
element of the page, where w = remainder (a/Z) . *_

Paging is attractive to the system designer as a tech-
nique for physical memory allocation, because of the regularity
of the equal-sized pages. It is attractive to the programmer
because he is relieved of the concern of allocating physical sto-
rage, and, indeed, need never exercise any direct control over —
the mechanism.

A major design decision is the choice of page size. A
large page, say over 1000 words, may result in a high proportion
of unused page space, if natural program modules are smaller than
the page size. This is referred to as "internal" fragmentation.
With a small page, less than 10 words, an overhead problem arises
due to the large number of pages that must be controlled. The
best page size is determined by:

a) Program locality
b) The speed ratio between memory hierarchy levels

Paging cannot achieve some of the advantages of segmen-
tation that were identified previously, because page boundaries
bear no natural relationship to program content. Segmentation,
on the other hand, lacks the advantages of a fixed size. It re-
quires the availability of contiguous regions of space, of suffi-
cient size to contain the segment. The problem of searching for
and/or creating variously sized "holes" in memory is a much more
difficult task than matching pages to page spaces.

4-20

INTERMETRICS INCORPORATED -+ 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

.

Tt is natural to contemplate a combination of the two
mechanisms in order to rcalize both their advantages. The laxrge
Multics system at MIT has been the only example of a hcavily de-
veloped segmented and paged memory management scheme.

4,3.4 Implementing Virtual Memory

When implementing a virtuval memory system a number of
properties arc desired to minimize overhead.

a) An efficient memory map search. This is usually achi-
eved by employing a limited associative memory to hold
the most recently used page or segquent descriptors.

b) An efficient M2 space allocation algorithm.

c) An efficient determination of the M3 address in the
case of a missing page or segment trap. The utiliza-
tion of a descriptor containing an M2 or M3 address
depending upon the statc of the presence bit, is con-
venicnt.

d) One musl attempt to minimize fragmentation of memory
into small unusable portions. A memory compaction al-
gorithm might be required.

e) One must minimize the possibility of overloading the
system to the extent that thrashing occurs. Thrashing
is a state which is reached when memory management be-
gins spending all its time moving pages or segments in
and out of M2 and overlaying pages or segments in use.
No time is left for processing applications programs.
Thrashing can be minimized by providing sufficient M2
and by keceping the unit of memory management small.

v Figure 4.9 indicates Intermetrics' approach to memory

- management via a descriptor-based, stack-oriented structure.
Absolute M2 addresses are only contained in "Mom" descriptors.
Only 1 "Mom" segment descriptor for a program or data segment
may exist. Many "Copy" descriptors may be created with a
pointer to the "Mom". This pointer is a two-dimensional address
specifying a stack number and offset (SNO). The SNO is the re-
lative address which must be translated into a physical M2 ad-
dress. The 32 most recently referenced (SNO) addresscs are con-
tained in the associative memory. The contents are updated
automatically whenever a reference is made. If the SNO refer-
ence is found within the associative memory, the "Mom" descrip-
tor which contains the absolute M2 address is retrieved from
local storage (M1l) and the operating memory address is obtained.

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

Copy Descriptor

[——

i Pointer to Mom
!

Stack Number (SN)
and
Offset (0O)

Mom Descriptor in High
- SNO 1is in Speed Local Storage M1

y

I

Associative Memoxy
Associative

i
i
} M2 Address
Memory
ainN
. A Update
Not in N7 . . Y
. . \\A55001atlve
Assoclative
\Memory —
Memory
Y M2
Indirect Fetch _
thru Lexical
Level O
4
desired
Stack Vector in information
M2 Set
resence
S Bit
Stack Pointer -
Stack
Number . N
Presence
Bit is Set -

Presence bit —

L not set (mis-| M3
sing segment
trap)

Mom Desériptor

ffset

Stack
Figure 4.9: Addressing Via Stack Number and Offset

4-22 ' —

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840—

Tf the ascociative memory does not contain the refer-
enced SNO, then a three level indirect addressing sequence
thru M2 is exccuted. The first level fetches the stack pointer
from within the stack vector using the stack nuwmber as the re-
lative address from the basc of the stack vector. The second
level of indirection is usced to fetch the "Mem" descriptor
using the offset part of the address as the positioning rela-
tive to the basc of Lhe stack.

Tf the referenced segment is not in M2 it must be
fetched from M3. 'This is indicated by a "prasence" bit con-
tained in the "Mom" descriptor. If the segment is present

e e A g
within M2 it is reforenced directly. In either case the as-
sociative nemory is udpated so the "Mom" descriptor can be
referenced more dircectly the next timo.

References for Chapter 4

1. CRC Standard Mathematical Tables, 19th Edition, p-570.

2. Wilkes, M.V., "Slave Memories and Dynamic Storage Al-
location", IEEE Trans. EC-14, April 1965, pp. 270-271.

3. Gibson, D.H., "Considerations in Block-Oriented Sys-
tems Dasign", Proc. SJCC 1967, pp. 75-80.

4. Green, J.P., "Mass Memory Parametric Data", Task Re-
port MD-101, Intermetrics/NAR, June 1971.

5. —==—=- , "Mini-wire Sale Completed", Computer Design,
September 1971, p. 12.

6. Denning, P.J., "Virtual Memory", Computing Surveys,
September 1970, pp. 153-189.

7. Kilburn, T., et al, "One Lecvel Storage System", IRE
Trans. EC-11, April 1962, pp. 223-235.

8. McKeeman, W. M., "Language Directed Computer Design",
Proc. FJCC 1967, pp. 413-417.

INTERIMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MAGSACHUSETTS 02138 + (617) 661-1840

e

Chapter 5

ADDRESSING

The gquestion of addressing is the most dominant feature
in the diversity of instruction architectures. It can be viewed
from many different angles: correspondence to software, case of
usage for prograwn:irs, bit minimization, physical implesentation
and excoubion, hiccarchics of memory, and/or opcrating cystem
memory rccource allocation. We shall discuss scveral of these
aspects and show various options or methods that may be employed.

5.1 Addressing and Instruction Architecture

When an instruction architecture is contemplated sev-
eral different independent decisions with regard to addressing
within an instruciion must be reached. The number of operands
which an instruction can contain may vary from three, two, or
one explicit operand(s) to implied operands, where the implied
opcrands are to be obtained from a stack. The question as to
how many hardwarc rcgisters, of what type, and how they are to
be addrosscd ariscs (single accumulator or "general" register,
hardwarc "top of stack" for a depth of two, ...). Finally,
exactly how is memory to be addressed: all memory addressable,
two-dimensional addressina,. self-relative, etc.

5.1.1 The Number of Operands in an Instruction

Most operations which occur in algebraic languages are

dyadic operators. That is, the operation manipulates two inputs,
transforming them into a new output value. It is seen that dya-
dic operators (+, -, *, X, ...) have three operands: two input

operands and one output operand. There are, of course, monadic
operations such as negate or absolute which have two opcrands:
one input operand and one output operand.

Instruction architectures vary as to the number of ex-
plicit memory-addressed operands which appear within the instruc-
tion, yet, of course, the necessary three operands for dyadic
operators must be present. (Two operands for monadic operators.)

Three memory operand instructions are found in several
machines including the Honeywell 800/1800 series. However,

5-1

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

when the actual usage of dyadic operators is examined it is seen
that seldom are three different memory addresses needed. Consi-
der for exanple:

A = B;

A=A+ 1;

A = - B/C
In these, admittedly biased, examples the use of the three mem-
ory address operands is wasteful. In the first example, there
is but one input and onc output. In the second, one of the in-

puts is also the output address, and in the third a monadic op-
erator appears.

The waste, or non-use, of a memory address is only bad
in so far as it takes room. If the instructions are of the
three-operand form and not all three operand memory addresses
are used, the instruction still must save space for the presence
of these memory addresses which are many bits in length. It is,
therefore, usually found advantageous to have at least one of
the three operand addresses implied.

Two memory operands are occasionally met with in the
instruction architecture. In this case one of the two operands
besides being an input is usually also the output operand. The
IBM 1401 is such an example. This form of two operands can be
very useful where most of the operators are monadic such as is
commonly found in data processing where much of the computer
time is spent in moving data and editing them.

The most common architecture found is based upon single
memory address operand instructions. This is common in both the
second and current third generation computers such as the IBM
7090, IBM 360 series, Univac 1108, and the DEC PDP-10. With the
single memory address operand an accumulator (or another "regis-
ter") becomes an implied operand for the instruction. Commonly
then the implied opcrand serves both as one input operand and the
output operand of a dyadic operator. When monadic operators are
used one operand can be the memory address and the other the im-
plied accumulator. When the third generation of computers de-
veloped, the "implied" accumulator was often made into a set of
general registers of which one could be selected to be the ac-
cumulator. This has led to the characterization of the 360 as
having a 1.5 operand instruction set.

The single memory address form of instruction is very
useful when sequential accumulation of results occurs, such as
in:

A =B+ C+ D+ E;

5--2

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-184(

lNTERMETWCSINCORPORATED-701CONCORDANENUE . CAMBRIDGE, MASSACHUSETTS 02138 -

However, if a trec structure form of computation is needed (as
commonly occurs) such ags:

A= (3 +C)* (D+ E);

the accumulator would have to be saved after calculation of
B+C before D+E can be done. Onc of the hopes of the general
registers development in one third generation computcr with
multiple accumulators was to be better able to do efficient
calculations of this form (i.e., save on storage to mewory for
temporarics) .

One of Lhe principal advantages of having fcwcer mem-
ory operands wiil each nstruction is in the space savings to
be fownd by not having ucoless ficlds in all instructions.

That is, it would be desirable to use instruction space for
memory address operands only when they are neceded. The ulti-
mate in Lthis form of space savings is to be found in the zero
memory address operand instruction. In this case all of the
necessary operands for an operator are implied. These are the
stack machines whoere the "top of the stack" provides the nec-
essary number of operands for an operator and the resultant out-
put value is in turn placr:d upon the stack. The Burroughs
B5500 and B6700 are examples of such machines. The memory ad-
dress operands, of coursc, must be able to be fetched from mem-
ory and stored into memory. These are, in cffect, merely two
forms of operands.

This stack form of instruction is one of the most ef-
ficient ways in which to specify an algorithm since only the
minimum amount of information needed for execution nced be
present.

The stack itself can be considered in several ways.
From a HOL point of view the implicd operands of the stack cor-
respond to many of the parse algorithms which have been developed
for compilation and hence are able to producc extremcly effi-
cient code. From a multiple register point of view the stack pro-
vides a method for the dynamic assignment of the general regis-
ters rather than the static assignment at compilation time with
its inherent inefficiencies.

5.1.2 Ssingle Accumulator and General Registers

While many second generation computers had a single
accumulator, third generation machines have tended to have a
set of general registers. This has come about for several dif-
ferent reasons. Each reason stems from the basic desire for
more efficient and quicker execution. As was seen above, a
single accumulator does not make for efficient execution of

5-3

(617) 661-1840

tree structured statements. Therefore, if several accumulators
woere available, storing into memory for a temporary could be
avoided; this would save both time and space since memory would
not have to be refecrenced. Also technology, by the third gen-
eration, had improved to the degrec of allowing more complex
hardware in the processor. Thus, multiple accumulators could
be implementcd.

Another aspect is invoked with the addressing of mem-
ory. Second generation machines often had separate index re-
gisters from the accumulator; these then needed a separate set
of instructions for their manipulations and similarly they were
then restricted in the operations which could be performed on
them (e.g., no multiplications with an index register). The
third gencration often has truly gencral registers which can be
either accumulators or index registers (or base registers) thus
optimizing on the resources of the specedy registers for use as
needed.

The desire to use more accumulators was based on the
desire to improve the speed of computation by having fewer mem-
ory refercnces and by doing manipulations and operations with the
general reaister set. Unfortunately, this very desire forces
the instroduction of bookkeeping instructions to set up the re-
gisters so that thcy can be manipulated. It is often difficult
to tell from instruction occurrence statistics for an IBM 360
whether the large number of loads (L, LH, IC) used are to keep
the registcr policy happy or are rather a by-product of improve-
ment. —

When both base registers and index registers are avail-
able their usage is often confused. Base registers are primarily
used to address physical locations. They provide the capability
of addressing particular regions of core. Their value interpre-
tation is that of a physical mcmory address. Index registers
are used to locate an element within an ordered data structure. -
They refer to data elements which are to be manipulated and do
not inherently indicate physical addressing. If a character
array is being indexed, then the elements are in byte units, if —
word integers are being referred to, the index actually refers
to four byte quantities (in the 360). Because this distinction
is not maintained the automatic quality of element indexing can-
not in general be performed. (In the 360 the SLL instruction
proliferates in order to align the "index" properly.)

One other major problem can develop with the use of a -
set of general registers. This is the question of how to opti-
mally use them. A choice has to be made as to which registers
are to be used for accumulator(s), base register(s) or index _
registers. The static assignment of the use of the registers

5-4

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840 —

unfortunately docs not often correspond to the optimum dynamic
usage. This is the casc since the flow of control through

an cxccuting program is simply not known. Alternate paths

of exccution cxislt since this is what the execution of an algo-
rithm is about. The use and savings of registers for one branch
of an IF¥...THEN...ELSE statement is, in general, entirecly dif-
ferent from that of the other branch. Similarly when a sub-
routine is entercd, the usc of registers within the subro ine
is not correlated with use in the calling procedure (whe: he
CALI, iy be issucd at distinct locations each with diffc: '
registor usage).

- While it could be truly argued that in any casc mul-
tiple registers arce better than one, the actual policy imple-
eLialiu UL Licis wsage Cail cause lugge inotiiciancion.

Above, it was scen that in the zero memory address op-
orand form of instructions a push down stack mechanigm is used
for opcrands. This, by its very nature, tends to optimize the
usage of the hardware registers available for accumulations and
index registers. When a subroutine is entered, the dynamic en-
vironment stack continues to push and pop as nceded for the sub-
- routine and hence 1t acts as an automatic dynamic optimization.

When optimizing is tried in code gencration by trying
— to identify common sub-cxpressions (c.g., I + 1 in Ay, = BI+1)'
the stack can become inefficient. (The code needed %oth in time
and space to save and restore I + 1 is (can be) more than the
actual rccalculation of I+1l.)

5.1.3 How to Address Operating Memory

vVarious methods of addressing physical memory are found
in instruction architectures. All of memory may be addressed,

- a bank of memory may be addressed, addresses may be relative to
the execcuting instruction or, while only a small portion of mem-
ory may be directly addressed, the rest could be addressed "in-
directly".

Machincs such as the IBM 7094 addressed all of memory.
This form of addressing implies that the memory address operand
- must have the number of bits needed to represent all of memory.
Not only is this wasteful, since usually only a small portion
of memory is needed in the execution of a program, but it also
— limits the size of memory which can then be used with the in-
structions.

In order to both reduce the size of the memory address
operand field and to remove the restriction on memory size

__ INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) £61-1840

(or at least increcase the limit beyond foresceable needs), two
dimensiornal addressing is introduced. This addressing can be’
in fixecd banks where a certain block of memory is in use (in
the Apollo Guidance Computer there were four "banks" address-
able at any given time: fixed erasable, fixed fixed, banked
erasable and banked fixed) and hencc memory address operands
then refer to addresses within the current block, or a more
dynamic form of banking can occur as in the 360 where a base
registcr points to a starting locaticn and a displacement field
then rafers to an offset from the base.

Thus with the use of 16 bits, 4 bits to indicate base
register and 12 bits of displacement, the IBM 360 is able to
address up to 24 bits (16 megabytes) of memory. The penalty, of
course, is the overhead which must be paid in the setting, us-
ing, and maintaining of a base register and the restriction to
a maximum displacement of 4K bytes in a program segment without
the setting of another base register (or the resetting of the
current base register).

Another form of two dimensional addressing appcars in
those computers which have been designed for the execution of Al-
gol (e.g., B6700). Since the instructions to be executed are
reflective of Algol, the data referred to must reflect the name
scope restrictions of Algol. The B6700 makes effective use of
the name scope restrictions in Algol to have its "base" regis-
ters (i.e., Burroughs Display recgisters) set automatically to
the dynamic environment of the addressable data. The B6700 "base"
register points to each succeeding lexical level which is ad-
dressable within name scope rules. The displacement then refers
to a particular entity within the lexical level.

Besides having base registers, as in the 360, which are
able to address any region or core, many architectures allow "in-
direct" addressing. By referring to an address word which is
within the area which you can address, you are allowed to "indi-
rect" your reference thru this address word to what it points to.
Thus, while only a small portion or memory may be "directly" ad-
dressable, all of memory becomes addressable.

It is apparent that when the 360 was designed, the in-
crease to 16 general registers from one accumulator and a few
index registers seemed so magnificent that the need for indirect

references was deemed not necessary. (The 4w AP-1 which is a
flight computer by IBM modified from the 360 instruction set has
restored indirection.) It turns out that the use of a few in-

direct references could save immense overhead on register usage
and allocation.

When data is being addressed, the actual number of en-
tities (variable "names", e.g., A,B ... in a program) involved,

5-6

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-184(_

in general, is small. This comes from the simple limitation of
the human proygrammer. " The amount of storage, however, may be
large (e.g., arrays of data, single or multiple dimcnsion) .
When an clement in an array is referred to, an index is used.
This phenomona has the very nice property of making the base-
displacement form of addressing attractive. Whilce entrics can
be directly addresscd, arrays can be indexed inte. The number
of different data arcas arce also generally limited, again due to
programming language restrictions and conventions and hence the
numher of different data regions is in general small and there-
for. the pnumbor of baze registers for data addressing is in
general not teo large.

Instructions have other characieristics. Often a rou-
Line will ifar exceed the 4K bytce displacoment allcowable with
IBM 360 addressing from one basc reglster. Addressing of a code
segment within a code segment is concerned with control flow and
usually has a very local nature. This brings onc final form of
addressing: self-relative addressing. Often branches occur to
gimply skip one instruction, or a few as in an Ir'...THEN...ELSE.
By using sclf-relative addressing for control flow within an in-
struction strcam a very high degree of size compaction can oc-
cur; it beoconcs automatically relocatable without changing any
code and the restrictions (e.g., 4K bytes per base register) of
the code scgment length can be removed.

5.2 Thg*;BM 360 and Burrouaghs B6700

In order to gain an appreciation of the difference in
addressing structures, a comparison between the IBM 360 and the
B6700 is given.

5.2.1 Two Dimensional Addressing (Static and Dynamic)

In order to process large computational jobs a large
amount of addressable space is needed, but with a second gen-
cration machine such as the 7090 all of this space (and hence
the limit of the memory size) must be addressable. In this
case then, it was necessary to use 15 bits in every operand ad-
dress. The IBM 360 and B6700 both have two dimensional addres-
sing. The IBM 360 uscs a 12 bit displacement which is to be
added to one of 15 base registers. This allows for a full 24
bit addressing (of bytes) scheme. Here 24 bits of address space
has been compressed into 16 bits of information. The B6700
scheme uses only 14 bits with its operands, where the "base"
(DISPLAY) register is defined, with only the number of bits
needed to indicate the current lexical level (22) (i.e., 22=1
implies 13 bit displacement, 29=2 implies 12 bit displacement)

(@3]
I
~J

INTERMETRICS INCORPORATED -« 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

and the B6700 displacements rcfer to "words". Since program scg-
ments in the B6700 arce described via a "descriptor", the actual
size of memory which could be addressed is only limited by the
numbers of bits so usced in the descriptor. In point of fact,
Burroughs uses 20 bit word addrcsses in their descriptors.

It is easy to see then that if the memory of a compu-
tinag system is large compared to the modular size of "programs"
(or perhaps even procodures and routines), program string sav-
ings are to be found by using a two dimensional address.

There is a great diffcerence, however, betwecen the IBM
360's and B5700's two dimensional addressing schemes. The IBM
360 base rcgisters arc assigned "statically" at compile time, and
it is up to the compiicr to try and optimize base register usage.
This optimization is minimal i1{ only one base register is needed -
within a seqgment. This becomes difficult in large segments since
the dynamic characteristics of the segment modularization must
be considered.

This static two dimensional addressing of the IBM 360
has several aspects.

a) By ucsing 4 bits evervwhere for base registers the dis-
placcment range 1s reduced, since seldom are that many
registers desirable. —_

b) If a program is "one big" segment, then several base
registers are needed and segment boundaries must be
carefully watched.

c) If the base registers are set upon entering and upon
returning to cach module then:

1) There must be code to do this in the program
strings. } —
2) Name scope problems arise when variables in a

previous level arc to be addressed since their
base registers are in general no longer in exis-
tence.

The B6700 optimizes upon the two dimensional address
idea by.

a) using only the numbcecr of bits necessary for the current _
lexical level to indicate the number of bits for the
"base register". This leaves the rest of the bits for
displacement. (There is also the fortuitous circum-
stance experienced by all, that the more "inner" a sub-
routine the "smallexr" it is, i.e., it needs less dis-
placement to fully address it.)

5-8

INTERMETRICS INCORPORATED + 701 CONCORD AVENULE -+ CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840- -

b) The basce registers point at the beginning of each dy-
namic module, hence allowing the displacement to reach
1ts most extreme logical dynamic range.

c) Since the usage of the "base" (display) register is
unique and well defined, (versus gencral, e.g., base
register, an accumulator or an index rcgister) the
initialization and resetting of them can be accomplished
automatically. Furthermore, no explicit code in the
program string is required and current dynamic name
scope 1s maintained.

5.2.2 Tmplicit Addressing
- Compare the expression:

A =B + C;

on the B6700 versus the IBM 360:

- B6700 IBM 360
VALC C L RO, A

h VALC B A RO, B

_ ADD ST, RO, C
NAMC A

— , STOD

- In each case they cxecute similarly: (fetch C), (add B to this
value) and (store value into A). In effect it is the only se-
guential form possible (i.e., ADD before STORE) for this expres-
sion.

However, when temporary locations become necessary a
difference appears in the code, although the total effect, must

— of course, remain the same. Consider A = (B + C) * (D + E);
_ B6700 IBM 360
VALC C L RO, C
- VALC B A RO, B
(continued)
5-9

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE -« CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

B6700 IBM 360

ADD ST RO, TEMP
VALC E L RO, E
VALC D A RO, D
ADD M RO, TEMP
MULT ST RO, A
NAMC A

STOD

Assuming that thcre are only a few (in our case exactly one) ac-
cunulators being used, during the expression evaluation it becomes
necessary to create a temporary.

The creation of a temporary indicates an increase in the
program size for two reasons.

a) In general, the use of temporaries is a static decision
and hence cannot behave better than the dynamic usage
of the stack. Therefore, one needs more "temporary sto-
rage" locations than stack storage.

b) But more importantly, in the IBM 360 type of machine,
every instruction has an operand, therefore, the tem-
porary requires an address which in turn takes space.

The B6700 uses implicit addressing; the needed number -

of operands coming from the appropriate number of loca-

tions on top of the stack.

When temporaries are needed, most often an implicit ad-
dress scheme allows for the savings of "temporary" operand addres-
ses.

5.2.3 Descriptors

Descriptors can be considered either as sub-operators
or as the ideal data structure which is being manipulated. When
considered in the first manner, it is seen that the descriptor
saves on the program string length. "Fewer" operators need be —
specified since the "sub" part of the operator is found in the
descriptor of the data structure. For example, the IBM 360 has
for "add": -

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-184(

AH, A(R), AL, AE(R), AD(R), AU(R), AW(R), AP

while the B6700 has simply "ADD". This of course regquires fewer
opcodes, and in turn fewer numbers of bit states for the neces-
sary operators.

When the descriptor is regarded as the "data structure”,
it shows at least two virtues. One is the fact that by being
"semantically concise" (further discussed below) 1t places into
one location the complicated description of the data structure,
which thereby nced not be repecated in multiple references in
the program. The other is the observation that the number of
entiiics which are manipulated by a program are few. The reason
that a large addressing space 1s normally nccessary is that if
Lhe wmacnine does not have descriptors, then cach "memory cell" of
the data structure must be directly addressable. The example of
an array of 100 scalars on the IBM 360 is in fact 100 memory lo-
cations. On the B6700 it is one entity: a descriptor which in-
dicates the dimensions of 100 and where it is to be found in
physical core. This very important phenomenon reduces the ad-
dressing requiremcnts of a program string, since the full physi-
cal memory address necd only appear in the descriptor. The des-
criptor becomes one of the "fow" entities which must be addressed
and hence only a small address field is needed in the program
string proper.

5.2.4 Type Differences

Descriptors allow any information which can be "bottle
necked" to be placed in the descriptor once, instead of having
the information repeated throughout the program string.

Besides having character data (for I/0) and an inter-
nal arithmetic form, most machines have in fact several internal
forms. The difference between the "character” and "internal
arithmetic" comes largely from the savings yielded by compactly
storing and manipulating them in the internal form. The various
internal forms come from considerations of preciseness.

Types can be optimized by:

a) making one a proper subset of another (e.g., integer is
a subset of single precision floating point on the B6700).
Thus, the difference between the opecrators disappears
(except for an explicit operator to recover the proper
subset; such as INTEGERIZE) .

b) the need for multiple forms of the same operator dis-
appears (e.g., IC, LH, L, LD, LE)

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

c) and the need for explicit type conversion operations is
reduced. The program string could be further minimized
by providing an explicit operator for each type conver- -
sion when needed (e.g., scalar to character, while in-
tegers to scalar would be implicit by the integer de-
finition as a subset of scalar). —

5.2.5 Semantic Conciseness

Probably the most powerful way to save in program string
length is by having semantically compact operators. By having
the operator correspond to the operations indicated in the pro-
blem language being executed, the minimum amount of translation
is needed and hence the minimum amount of expansion in the pro-
gram string.

The Burroughs B6700 is an "Algol" machine. Its opera-
tors are those that ALGOL indicates.

The IBM 360 is semantically concise only to "BAL" which
is merely stating a tautology. The IBM 360 is not semantically
concise to any real "problem oriented language".

Besides becing semantically concise with respect to the
operations needed for a problem the opcrators can be "semanti-
cally concise" in the way in which they are constructed. Branch-
ing occurs within a program under execution and not logically
with respect to all of physical memory. The IBM 360, as most
machines, allows the branch address to be any address of physi-
cal memory. The B6700 uses reclative addressing (that is, re-
lative to the program under execution) either in the same or dif-
ferent segment. This of course reduces the address space neces- -
sary, since it corresponds to the dynamic space involved at ex-
ecution time. The RC4000, although built upon similar concepts
as the IBM 360, has relative addressing, and this in turn creates
an efficient and small{er) addressing need. :

In the IBM 360 each memory reference instruction gen-
erally carries 4 bits of indexing information. The B6700 in- -
dexes only when neceded, and since a stack is used (hence impli-
cit addressing) only an 8 bit operator is needed (which can
also load the resultant indicated entity). Assuming that not -
every memory reference needs to be indexed (the indices them-
selves must be fetched from memory) the use of indices when
needed, (and semantically concise operations make the need less)
will, in most every case, minimize the program string length.

The use of short literals also compresses the program
string since the constants used are usually small integral

5-12 —

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840 _

values. Recognition of this fact allows for their represcenta-
tions in the amount of space nceded and not the amount for the
worst (largest) case possible.

5.3 Trmplementation Aspects of a Stack Machine

5.3.1 Definitions

The stack provides the mechanism throuch which impli-

cit addressing cen be accomplished in a scmantically concise
and efficient manncer. The control scguencing and addressing
wiillh the stack will be discussed in ©his scction. A spocific
Luplencntacion Ls poosentec. Dotails eon wary Treom mhchine to

machine. However, the fundamental idecas will remain the same.

Tn a sensc the stack is a hardware element just as the
arithmetic unit is an element. It can execulte three primitive
commands:

a) PUSH
The PUSH command will take the contents of the stack
buffer register and place it on top of the stack. Sim-
ultaneously it will shift all other elements of the
stack down one level. For cxample, the old top of the
stack becomes the sccond entry in the stack.

b) POP

The POP command fctches the top of the stack and places
it in the stack buffer register. Simultaneously, it
cshifts the contents of all other elements of the stack
up one level. For example, the old second entry of the
stack becomes the new top of the stack.

c) stack Fetch

PUSH and POP store or retricve information from the
top of the stack. In many instances, information 1is
desired from other stack locations. The Stack Fetch
sequence accomplishes this function by fetching from
the stack location (indicated by the lexical level
and displacement) and placing the information in the
stack buffer register. Stack Fetch does not change
the state of the stack in any way.

One could implement the stack as a word parallel-shift

register. This would fix the length and make it a specialized
element of the computer. In order to achieve generality and

5-13

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

flexibility in the design, we choose to implement the’ stack by
employing a standard linear memory array with some specialized
pointers. These elements are manipulated by micro code to
create the three control seqguences.

In general, the length of the stack can vary during
execution from ten's of words to thousands of words. For this
reason thc bulk of the stack must, due to practicality, be con-
tained in M2. lowever, the more dynamic part of the stack (we
choose 8 locations) can be placed in M1 for faster access. TFor -
the purpose of the following description the stack word size and
M2 word size are assumed to be the same.

5.3.2 PUSH

The PUSH sequence, whose flow chart appears in figure
5.1, involves both the M1l and M2 portion of the stack. Figure
5.2 depicts these two portions and provides definitions of the
various pointers used to control the stack. —

The M1 portion of the stack can be pictured as a
wrap-around shift register. The oldest data is pointed to by
M1sL (M1 stack Limit). The first empty location is pointed to
by M1TOS5 (M1 Top of Stack). Whenever M1TOS = M1SL, namely the
Ml portion of the stack overflows, the contents of (M1SL) is
moved into M2 location indicated by M2TOS (M2 Top of Stack).
If M2TOS ever cquals M2SL (M2 Stack Limit) then the M2 part of
the stack has overflowed and a trap is gencrated. The stack
overflow trap routine could then, depending upon conditions, -
allocate more storage for stack use and change M2SL.

The data to be entered into the top of stack is con-
tained in M1BR (M1l Buffer Register). Upon entrance to the
routine MITOS is compared with M1SL to see if the M1 portion of
the stack has overflowed. 1If it has not an Ml write is set up.
The M1 address is MITOS and the data is contained in M1BR. -
Finally, M1TOS is incremented, modulo 8, before the exit.

If the Ml stack overflows a determination is made as
to whether the M2 part of the stack will overflow. If so, a
trap is entered. If not, an M2 write is set up, using the M2
address indicated by (M2TOS) and the data pointed to by (M1SL).
M1SL and M2TOS are incremented, followed by the Ml write set up.
5.3.3 POP -
The POP sequence is shown in Figure 5.3. If the M1 part

of the stack is empty, an M1 stack underflow condition exists —
-and a read from M2 must be initiated with an M2 address of

5-14

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

o

[SRS

Fnter

o

Data In HILR

ves Ta M1 cenpty?

Mo

Ta MIPOS - MISL =

Ml stack overflow

1s M270S8 ~ MZSL =

M2 stack overflow

‘Set M2 stack overflow
bit in status word

R

Entexr Stack Overflow
Trap

Set up M2 write

(M2T08) -+ M¥ address
(M1SL) > 12 data

l

(M1sL + 1)

{(M27T05 + 1) » M2T05

- MISL

N

Legend

MIRR = M1
M1T0S = M1
M1SI, = Ml
M2TGS = M2
M28L, = M2

Buffecr Register
Top of Stack
Stack Limit
Top of Stack
Stack Limit

Figure 5.1:

PUSH

1
Y

Set up M1 write

(M1TOS) - M1l address
(M1BR) » M1 data

(L1085 + 1)8

Resot kL empty bit in Skl
v M08

Exit

Full

-y
M1l Part of Stack//"”’ 1

py

7
Faull ¢ Tull
5
. /S
‘k:\:*~,§, 4 .
_ﬂ“}m’
Enpty
. M1 Stack Overflow
-—
\ T M2SL
,? M2 Part of Stack
M2BOS >)

Figure 5.2: The Stack

5-16

INTERMETRICS INCOFRPORATED « 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

M1TOS

(M2TOS) - 1. The M2 words are placed into MIBR. On the other
hand, if the Ml stack -is not empty, the contents of (M1TOS) - 1

is rcad end placed into MLBR.

Tf the stack bcecomes empty the condition is set into
SR1 for input into the noxt POP scquence. Lvery PUSH sequence
will reset this compty condition.

5.4 Effcctive Addross Gencration (EA) . (Lexical Level
Aadres=ing)

Within the instruction architccture of a stack orientcd
machine there cvists a class of instructions Jhich refer to infor-
mation within tha stack. Whenever one of those instructions is
encountered an cffective address (ERA) must be calculated. The
sequeonce Lo boe presented depicts a specific design [1]. 1In gen-
eral, the details of EA calculation might be different. However,
some form of addressing with the stack must be provided.

The format of the class of instruction referencing ex-
plicitly the stack is:

of bits 1 2 5 8

contents [1] op code [A2 | [Al]

The address couple A2]||Al forms a 13 bit field. A12, A11r A10Q.
«e+, Ap which is interpreted as follows:

a) The lexical level indicator, %%, is the key to the in-
terprectation of a2||al. The first step is to find the
positive integer m, where: ‘

ol < gp < 2m
b) Form Field 1 where

Field 1 = Ayy, «.., A

13-m
c) Fetch from M1 the base register specified by Field 1.
Denote this base register by BRm.
d) BRm is in Stack Number, Offset representation.)
5-17

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

dod :g*g @anpoTd

3TXd

Y
A

T4S o3ut
UOTITPUOD

Azxdus
¥oeas TW

193

L

I «~ W
uﬂmzv

pIom oIgnop K peay
SS2IpP? ZiW ‘S0IZK <« T - (S0Xgi) g

pow 3 ey

YETIHW « ®aep W pesy
dYIH ‘SOLTI < T - (SOITH)

MO ¥oe3s ON

MOTJIIDpPUN DOB1S

chydus yoeas TW ST

Isquq

5-18

e) Next Field 2 is formed

Fiel(:i 2 = Z&lz_m, All ’ . . A

=In

0

f) Finally the effective address (BA) is formed where
EA = (BRm) 4+ Field 2

This addition only occurs to the offsct portion of
(BRm) .

5.5 Stack Iretch

When information is required from any location except
the top of stack, a stack fetch sequence must be executed (sce
Figurce 5.4). '

The main test to be performed is to determine whether
the information to be fetched is in the Ml or M2 part of the
stack. This is accomplished by the calculation of the displace-
ment DISP. Information is then read from either M1 or M2 and
placed in the MI1BR.

Reference for Chapter 5

1) Intermetrics, Inc., "Final Report -- Engineering Study
for the Functional Design of a Multiprocessor System",
Prepared Under Contract NAS9-11745, Septemoer 1972.

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

yo3oJd ¥oeis :p°g 2anbrg

I93sTboI I93Ing W T
I23sTbox sssappe TW = ¥VIW
SS3IPPR SATIONIISD = VI

ITXY pusbal

= PR

A
g ur paom o0®eTd }

A
|
|
: 3TeM X{oeas
T peay ‘ . 9IqNOP ZW pray JO uoT3I0d TH
BYIHW « &SId - TISTH SS9IPpPr W <« YId UT ST UOT3RWIOFUI
s A
SOX
- <€ ¢0 T dSIa sI
¥oe3s Io uoT3zxod TW UT ST UOT3RWIOIUI ON

f

dSId « ¥d - SOLCH.

A

QA

; vE 399

Io3ug

5-20

Chapter 6

I/0 CONSIDERATIONS

ion System Reguirements

e

cr

6.1 Space Sta

- The I/0 interface of the computer wvhich serves the cen-

tyal computational and control element of the manncd spacce sta-
Lion in ioiely to be charactonizoed by the following observations:
a) There will be a large number and variety of intcerfaces

with diverse avionics equipments. The recent Phase B
Space Station analysis has advocated the use of a time-
shared, hich speed (10 MH2Z) avionics data bus to sim-
plify the problem of meeting this requirement. The I/0
implication of such a data bus will be discussed in this
- report.

b) The computational speced and storage capacity requirements
of the Space Station are such as to make the multiplex-
ing of opcrating mcmory an attractive economical propo-
sition. (The cost of storing one bit in a core or
plated wire memory is over one thousand times the cost
of storing it on a disk.) Until the more exotic, non-
moving media, secondary storage technologies (such as
magnetic bubbles) bccome fully operational, the more

- conventional magnetic drum and disk will probably pro-

vide the mass storage capability on the carly space sta-

tions. The relatively long access time of these devices
has made it necessary to treat the problem of getting
information in and out of them as an off-line task in
parallel with the main computational functions. This
chapter will discuss the use of a drum or disk as the
tertiary lcvel of a memory hierarchy and as the pri-
mary storage for files.

- c) Although the Space Station central multiprocessor will
possess the powers of a typical large ground based com-
puter facility, it is not anticipated that its work load
will encompass as wide a variety of jobs, languages, Or
users. Perhaps of even more importance, the work load
will be much more predictable. This is certainly true
of the operational requircments, and even the eventual
experimerntal support function will probably be farily
carefully tailored to the available facility. The

6-1

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

implication of this for the I/0 function is that there is
less need for a highly generalized interface to a wide
variety of the conventional pceripheral equipments, and
much less need for the sophisticated data management faci-
lity usually found in the I/0 hardware and software for
controlling these peripherals and providing for the or-
derly management of a large numbexr of files. It will be
assumed that the only need for standard peripheral I/O
channels in the planned SUMC MP will be to satisfy the
neceds of a laboratory environment (e.g., card reader,
line printer, operators' console), and that the eventual
operational I/0 will bc performed almost entirely through
the avionics data bus.

d) The emphasis on the gencration, processing and record-
ing of larce amounts of data from experiments places
the high density, high speed tape store into a special
category of space station I/0 device. Even if an impro-
ved bulk storage technology is eventually employed in
this function, the need for transferring and retrieving
large blocks of data from archival storage at rates on
the order of several million bits per second will still
have to be met. This data originates at the experiment
sensors, and enters the system for processing and reduc-
tion via the main data bus, which, as will be seen, can
typically supply 2.5 million information bits per sec-
ond. It is felt that a more specialized interface than
just another port on the bus is required for this I/O
function.

The major impacts of these observations on the I/0O hard-
ware and software will now be discussed.

6.2 Data Bus I/0

In order to make more than sweeping generalizations, some
assumption of data bus characteristics must be made. Studies to
date [l] have shown that an initial Earth Orbital Space Station
can be serviced by a data bus whose elements are shown in Figure
6.1, and which has the following typical characteristics.

Multiplexing TDM

Frequency : 10 MHz

Number of devices (stations) 256

Command structure . Command/response

These are the important control characteristics from the point
of view of I/0 communication.

Command/response implies central computer control. Bus
I/0 takes place only on the behest of the computer; no device

6-2

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE -CAMBWDGE,MASSACHUSETTSO2KB- (617) 661-1840

[Rttt EEJ :
w !
% \
2

" om e s

m;, [
RSO
4 P !
g Sl ;

]
E
L

22V0 /o~ \H orsed uH * w m.HSmJ.H 5

2Ir433508S
UOTSSIN

sy Ry
-k
AL

SoUTINOY
51843308 O/I

¥

/

st ey
L

may voluntecer information. It is our opinion, however, that
although a strict C/R control policy may be shown to be quite
adequate at this stage of Space Station development, it will be
advantageous to provide a bus interrupt capability. This is

not so much in order to provide the devices with control auth-
ority, but rather it is in order to allow the bus control unit
(BCU) the ability to off-load the computer I/0 routines of chores
such as error monitoring, detection of unusual conditions, response
to unsolicited communication from Station subsystems, etc.

Local processing at the device level has been proposed to
off-load from the bus any high speed repetitive functions (such as
strapdown inertial system algorithm evaluation). It is cxpected
that bus communication betwcen computer and device will be com-
posed of short blocks of data from one to several bytes in length,
typically 1 to 128. Data transfers of larger blocks (e.g., CRT
display frames, experimental data rcecording) are usually not time
critical, and may be achicved by repecated bus I/0. If 8 bytes
suffice for device address and address echo check, and assuming
a typical 80:20 mix of short (4 byte) and long (128 byte) bus
communications, the time to service 256 devices 1is derived below:

Bytes Bits

P A . A .
Control Data Total /Device X(# of Total
Conmand Licho devices)
Short 4 4 4 12 96 206 2.10%
Long 4 4 128 136 1088 50 5. 104
All messages 7.104

A complete service cycle of all devices on a maximally
configured bus thus generates 70K bits. For a 10 MHz transmis-
sion frequency this cycle can be repecated every 7 milliseconds.
In practice, delays due to finite transmission speeds will in-
crease the cycle time, but a 10 ms to 20 ms bus service cycle
seems to be entirely achievable. A 20 ms cycle, with the pre-
ponderance of long communications assumed, will generate about
300K bytes/sec of actual data, i.e., a data rate comparable to
that of the higher speed storage devices such as drums, disks,
and tapes. However, a data bus differs significantly in the
manner in which this data is addressed and controlled.

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

The type of bus described is essentially a table-driven
dcevice: in practice, communication betwcen the computer and the
avionics devices will occur as follows:

a) A pumber of device interfaces will need to be accessed
for real time data at the highest service cycle frcquency,
i.e., every 10 ms to 20 ms.

b) Others will reouire accessing periodically, but at lower
fregquencics than the meximun.

c) Some will require occasional sampling of random intecrvals.
d) Some devices may be attached but may not be components
OL @ Cuiupuicy accivity. Hevestnizleso, theiyr status and

health must bhe continuously known.
e) The remaining interfaces may not even be attached.

The mix of devices in each category is a function of mission phase
and/or station operations. It is a delicate design problem to
ensure that all the highest frequency rcquests are complete with-
out ecxcceding the basic bus service cycle, and without losing

some of the less freguent requests. Since these constraints are
known only to the systom implementer, specific bus configuration
should not be wired-in to the hardwarce (or system software) of

the computer or I/0 controller.

The device accesses can be organized into a set of I/0
tables. Fach table contains the list of accesses to be accom-
plished at a given frcqguency. Figure 6.2 illustrates an example
of such a table, made up of entries for bus I/ O to be accom-
plished for K = 1 (every service cycle), K = 2 (every other cycle),
K = 4 (every fourth cycle), and so on up to K = 64. K need not
be in powers of two, but it is felt that this makes table mech-
anization much easier, and is not,a serious burden to the avionics
system implementer.

Fach entry in the table is a request for bus I/0. Such
a request may consist of one or more words with fields which
contain the following information:

fIOC Command [BCU Command I Bus Command] Device Operand] Memory Address l

Figure 6.3: Typical Bus I/O Request

6-5

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

s3sonbsy 0/1I sng 3O 3ISTI

tZ*9 2aInb1a

¥9

(43

9T 8

so1ajug

6-6

a) I/0 controller field specifying I/0 channel type (i.e.,
bus) channel number, channel command.

b) Bus controller field specifying special instruction
to BCU (e.g., table update, check device status, etc.)

c) Bus command field specifying device address and bus
operation (e.g., read, write, set mode, get status,
etc.)

d) Device operand field spcifying opcration to be performed

by specific avionics subsystem (interpretation known
only to device)

e) DesLination field - address and length of memory areca
in which result of bus 1/0 is to be placed, or from
which output is to bhe taken.

As each I/0 request is executed the appropriate data
is transferred between memory devicc. The question now arises:
how is the table of I/O reguests to be interpreted and where does
it reside? Several alternatives present themselves:

a) It resides entirely in main (operating) memory and each
entry is treated as a separate I/O request to the soft-
ware executive I/O routines. If there is a large num-

ber of high frequency entries this will create an I/0
bound condition, and much process swapping in a multi-
programiced environment.

b) The table of I/0 requests resides in the 1I/0 controller
and is executed there indepcndent of main processing.
Only the result of each request is transferrxcd to mem-
ory. This relieves the interface between the I/0 con-
troller and the operating memory of traffic generated
by control statements.

c) The table of I/0 requests and the resulting data re-
side in buffer storage local to the I/0 controller.
Data transfer is in block updates between minor cycles.

The progression from a) to c¢) implies an increasingly
elaborate I/O controller. It also incurs the problem of buf-
fering the bus I/0 data. If a user program no longer has the
ability to place each individual request, than it has no know-
ledge of when an update to (or from) the requested bus device
is made. This is especially critical for blocked data, where
it is essential to ensure homogeneously updated elements of the
block. A mechanism for preventing multiple access to data blocks
must be provided such as a TEST and SET operator, or multiple

6-7

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

buffers with switchable pointers: the first incurs delayé (cri-
tical to an I/0 process), and the second consumes memory Space.

The localization of bus I/O in the IOC allows high
frequency bus-computer communication to be conducted without
the several milliscconds delay normally associated with 1/0
devices such as drums or disks, and obviates the need for pro-
cess swapping to maintain throughput. The low frequency or
random bus communication can be handled in a conventional fash-
ion as a single I/0 event. Such requests can be treated as -
temporary insertions into the bus I/0 request tables, which are
removed when serviced by the bus. Completion of the reqguest
can be signalled by an I/0 complete interrupt. Division of bus
I1/0 requests into repetitive and random categories depends on
the trade-off botween I0C complexity, I/O buffer size, bus ser-
vice frequency, and throughput.

6.3 Mass Storage I/O

The most critical function of secondary storage is
as part of the multiplexed operating memory hierarchy. Whether
the technique employed organizes mEmory into fixed size blocks
(pages) or variable sized blocks (segments), it is essential to
be able to locate and transfer to and from secondary storage
fairly large amounts of stored information (from tens to thou-
snads of words), in a minimal time.

The traditional disk or drum memory systems possess
characteristically long latency and/or access times (on the
order of tens of milliseconds), and data transfer to those
devices is performed in parallel with other CPU activity by an
independent processor. It is anticipated that early Space Sta-
tions will still employ rotating magnetic storage devices and
that I/0 will continue to be concerned with their optimal usage.
It is important to realize that a subsequent change to solid
state mass storage (with little or no access delay) can radi- -
cally modify the concept of memory multiplexing, to the point
where it may not be done via the I/O controller. In the present
discussion, we will assume the conventional core to disk inter-
face requirement.

The major concerns with optimal usage of the disk are:

a) Since access times are long (typically 10 to 100 milli-
seconds), but transfer rates are high (typically 5 to
10 MB/s), it is desirable when a request for a missing -
memory block is honored, that as much "useful" asso-
ciated information is transferred along with the spe-
cified block, since the cost of so doing is relatively

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-184(

low. This involves maximizing the "locality" of the
exccuting program which creates the I/0 request, or
otherwise anticipating its accessing behavior.

L) Since requests for data take so long to honor, it is
probable that, by the time a requested block is lo-
cated and transferred, the rcequesting process is pro-
bably no longer running. It becomes desirable to allow
the momory managenent to determine, at its convenience,
when to alert waiting processes of their complete I/0
requesls. This may be done by causing a tablec of com-
pleted /0 requests rather than to signal the system
via an "1/0 complete" interrupt, as is usually done.
This may be done by causing a table of comploted I/0
regueses Lo e coceralated by the T/0 controller, and

~ only when no further requosts are pending, cause the

1/0 controller to interrupt the system to notify it that

all requcests have been evpedited. A "guiet" I/0 com-

plete scheme such as this is expected to greatly mini-
mize the “"thrashing" of memory transfers that occurs
when opcrating mcemory becones overcommitted.

- c) The assignment of disk space can become as critical as
that of operating memory. For a high degree of memory
multiplexing, disk space can become badly “fragmented"

— , with use, necessitating a compacting or rearranging of

the assignment of files. 1In a real-time system it may

require prohibitively long scarch cycles to update all

refercnces to files that are re-assigned. Disk addres-

ses can be organized in a central directory which maps

logical into physical address space. This can be ac-

complished in main.memory, at considerable cost of space,

~ : or on the disk, at the cost of more complex hardware in
the disk controller.

- d) Other traditional I/O problems (such as the trade-
off between I/0 request frequency and I1/0 buffer space
in main memory, and the related question of logical
file blocks and how to assign them to a device that
is organized into physical rccords) still remain in
a Space Station cnvironment. But, as stated in the
beginning, these guestions are of less significance

- in an environment whose work load and user requirements
are less variable and more known. A less generalized
approach to file directory management may be possible

- than is found in general purpose ground-based facili-
ties such as the larger IBM 360 installations.

|NTERMETWCSINCORPORATED-701CONCCHK)AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

6.4 I/0 Controller Design

This section will describe the functional elements of

a :oposed I/0 controller design. Detailed implemcntation ques-
ti - are beyond the scope of the present contract. Figure 6.4
i cates the basic functional elements.

6.4.1 Central Control (CC)

The central control unit provides the decoding of the
I/0 operations, for thc initiation and synchronization of com-
mands, and for data transfers between the units. The CC contains
an arithmetic unit and the logic required to pecrform conditional
decisions. The sequences issued by CC are stored in a micro
control memory and arc initiated via commands from the various
interfaces.

6.4.2 Interprocessor Communication Interface (IPCI)

Some mechanism is clearly required for communicating
between processors and the 1I/0 controller. This is necessary
for interprocessor interrupts, I/0 commands, and recovery form
processor faults.

The IPCI provides the interface to the interprocessor
communications bus. One may reasonably question whether a sep-
arate interprocessor communication interface is required. Can
not all the communications go through M2?

If all the interproccssor communications occur by
writing into M2 and reading from it, then the answer to the
above question is no! The overhecad due to constantly polling
M2 would waste processor time and create excessive M2 conten-
tion.

If processor communication uses the internal bus, as
a communications media, by-passing M2, then the answer is pro-
bably yes. The use of the internal bus as the communications
media is just an implementation decision. The fact remains that
distinct communication between processors and between processor
and I/0 must occur, outside of M2. The logical decisions per-=
formed by IPCI must exist whether a physically separate inter-
processor communications bus (IPCB) is employed or not.

A wide variety of signals are communicated over an
IPCB. Some are between processors. Others involve I/O trans-
actions. Some examples are given below:

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

TOUTL

— a——— —— —— O———tm — ———

ID9TTOI3UC) Q/I IO sjuswald :y°9 =2InbTd
s e lle] - —— SR -
o N |
_ 10I13U0D
[2o®vFI93UT
_ Kzousy _
i |
_ 19 _
_ T2UURYD _
| |
_ |
O O O | “unIo) _
L ! 3TUn ; z# —_—] 205S59201d
sng ejeq TOIZIUOD ~ TOI3UOD I=23ul _
m sng _ TsuuRuy) TBI3USD _
i
L |t |
| |
w————— |
m NSTd |
! adeg, T#
| |
/Junxg
@ © oo |
m | h zaTpuUeRH |
/!lw _ _ 1dnizo3us _

11

a) If local memory M1l is employed, then a potential pro-
blem exists in updating common information (for ex-
ample, descriptors(contained within different Ml's.
The control of the updating requirces interprocessor
communications.

b) The loading (initialization) and dumping (for a pro-
cess swap) of M1 can be triggered within a processor
or commanded from another processor (in case of an
error condition). —

c) When a processor fails or detects an M2 failure this
information must be signalled to another processor.

d) All the commands issued by I/0 exccutive routines must
be sent to the I/0 controller over some communicating
link.

e) All "done" or "error" interrupts generated by or pas-

sed on by the IOC must be steered to a processor over -
a communications link.

6.4.3 Operating Memory Interface

This interface element controls access to memory by
the various channels. It is, in effect, the DMA channel for
the I/0 controller. The priority as to which I/0 interface has
access when contention exists is fixed. The following is sug-
gested: —

Priority 1 (highest) Channel 1: The devices which
operate in the burst mode must be serviced at a rate consistent -
with their data rate. M3 can possess a data rate of up to 10
MBPS, which is three to six times less than the M2 data rate.
However, channel 1 devices cannot sustain a large delay between
a request for an M2 transfer and the final servicing of the re-
quest since the addressed record is usually not fully buffered
and M2 and the auxilliary device must be synchronized during a
data transfer.

Pricrity 2 Channel 2: The devices which are driven
by tables in the local memory of channel 2 present to M2 a
data rate thrce to six times less than that of channel 1. Yet,
if too much delay is introduced in each M2 transfer, the minor
and major cycle times might be exceeded.

Priority 3 Central Control: When the CC receives a
command over the IPCB it often has to .fetch an I/0 control word
from M2. While this fetch can be delayed a reasonable amount
of time, queueing of too many IPC commands before execution
must be avoided.

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

priority 4 Channcl 3: The devices attached to channel
3 arc all slow spocd and involve only a few bytes per transaction.
A delay of ten to even once hundred M2 cycles will not appreciably
affect the performance of these devices.

Priority 5 (lowcst): Since the interrupt priority
and timer clements of the I/0 unit do not use M2 to a signifi-
cant extent, thesc elements are placed in the lowest priority
catogory.

6.4.4 Channcls

These control the interface to the device categories
defincd previousty, Ndiely:

a) the hicgh speed disk (or drum) and tapc
b) the avionics data bus
c) slow speed unit record cequipment.

fach channel will contain buffer capacity appropriate to the
device, and a set of instructions tailored to the control re-
guirements of the device.

6.4.5 Interrupt Handlex

Although not a unique location for the interrupt con-
trol mechanism, the I/0 controller often contains this function.
There is some advantage in handling external interrupts and pro-
cessor traps with the same mechanism.

6.4.6 Timer

The real time aspects of the MP system require access
to a precise time standard. Also the capability of generating
an interrupt at a predetermined time, probably by means of a count-
down mechanism, is required. Each counter must be addressable
from a processor for initialization or readout. These counters
are placcd inside the I/0OC for convenience, thus saving the
cost of providing a unique piece of equipment.

6.5 I/0 Configuration Organized for Recovery

The I/0 configuration presented in Section 6.4 indi-
cates that a single I/OC is capable of servicing the multipro-
cessor. If this design approach is taken, how can this single
I/0 meet the requirements dealing with recovery from a failure?

6-13

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE -CAMBRWNSE,MASSACHUSETTS(Q138°(617)66%1840

If two or more I/0 units are required for system oper-
ation then the recovery aspects of the I/0 can be made very sim-
ilar to thosc of a processing unit. Each of the I/0 units
would be configured like a processing unit with an M2 interface,
a special interface to the Processors via dual redundant commun-
ication links, an M3 interface, and a data bus to the outside
world. Single instruction Restart could be employed as the major
recovery mechanism.

Since only a single T/0 unit is proposed to meet the
performance reauirements, a triple-redundant I/0 unit with voting
logic is a candidate design apprcach. Many transients are com-
pletely masked in this configuration. If a permanent failure
occurs then the voting elements can be reconfigured to compara-
tors and the bad I/0 unit taken off line for repair.

Figure 6.5 shows a possible redundant I/0C employing
the components described in Figure 6.4. The major features of
this configuration are described below.

a) The triple redundant I/O hard corec contains the cen-
tral control, timers and the interrupt control. A
failure in this critical area will allow the system
to keep running without propagating the error.

b). In order to interface the TMR section with other dual -
redundant interfaces, voters and switches are provided.
The S elemcnts, which are controlled by their asso-
ciated I/0 clements, are used to select which of the
dual redundant interfaces to accept data from. The V
elements vote upon the triple redundant I/0O outputs
and produce dual redundant outputs. The voters will
automatically reconfigure to comparators and switch -
out a faulty I/O where reqguired.

c) The IPCB, M2, M3, and data bus are all postulated to
be dual redundant. For this reason their interfaces
are shown to be dual and they interface to the I/0
via the S's and V's. The multiplexer channel which
contains peripherals necessary to operate a laboratory
model is only shown as a simplex subsystem, with a
corresponding single interface.

d) It is assumed that all the peripheral devices attached
to the data buses and the M3 controller possess char-
acteristics which will aid in the recovery process. —
These characteristics include:

1) hardware to aid in fault isolation between dual
redundant threads

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 ¢ (617) 661-184C

d@—ﬂj
To '

Iren
]

poa ey ey

TROT Y

L o R

et st e A T gy

Irci

LE e e e

To internosl Bus
| |
Mol Mo T

T

Channel J4if";

Channel 1

.
7

}
{ L

v

Channel 2 Channel 2
: R e e
0 _4’
DBCU DBCU

—0
— O

Dual Redundant Data Bus

Figure 6.5:

Legend:

| 1
| [TMR HHard Core
! & {
1o 1
| (
| r - !
| ! —— — |
l B S .I:/O l
t .
s .
l i (.A.._l_,;_“‘ 'l
1 e) l
: a S——1/0 »
SRS, 2 ! —*" |
! ' TA ! Simplex
| =
. |
l S~—1/0 ™1 Channel 3
|
|
l
|
[

M21
D3CU
IPCB
IPCI
1/0

v
s

M2 Interface

Data Bus Control Unit

InterProcessor Communication Rus

InterProcessor Communication Interface

I/0 contains central control, interrup
control, timers

Voter

Switch

Redundant I/0 Configuration

6-15

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 » (617) 661-1840

2) sufficient buffering, so that aborted commands
cannot hang up a subsystem

3) the ability to be reset and to indicate upon
request the status of the I/0 device

e) Certain problems caused by locking of processes to I/0
devices must be resolved by the operating system. This
regquires the capability of sclectively deleting the I/0
command crecated by a process which is cancelled (either
purposely or as the result of a failure) from the appro-
priate device queue. Also, the capability of relieving
any M2 space allocated as the 1/0 buffer area must be
provided.

One of the main motivations for a triple redun- --
dant I/O central core is to reduce this problem as far
as I/0 failures are concerned. A failure within the
central TMR I/0O cannot propagate past the voters. How-
ever, a voter or channel failure can cause a temporary
suspension of I/0 or a re-issuing of an I/0 command
and the associated problem of releasing any I/0 locks.

References for Chapter 6

1) North American Rockwell, Space Division, "Modular
Space Station Phase B Extension - Information Mana-
gement Advanced Development Report", Contract NAS9-
9953, MSC-02471, July 1972.

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840__

Chapter 7

FAULT TOLERANCE PHILOSOPHY FOR THE SUMC MULTIPROCESSOR

Tha purposce of this chapter is to present the study
results in terms of cerror detoction, fault isolation and re-
covery philosophy as applied to a multiprocessor systemn.

7.1 Regquirements
The reguiremonts postulated for the system, as a
result of the study, are delincated below.

a) ‘The only interaction that the applications programmer
should posscss with the fault tolerant aspects of the
system is to specify whether and under what conditions
a program or sequence of events is to be critical. A
critical program is defined to be one which must be re-
coverable in the event of a fault. A non-critical pro-
gram is onc which nced not recover.

By classifying a program as non-critical certain
design considerations must be kept in mind. The ab-
rupt termination of a non-critical procram in the mid-
dle of any instruction should not create a situation
which will prevent the execution of other critical
tasks. Any Compool data which is used by a non-critical
program can not be left locked. The failure of a non-
critical procram can not,K lock out a piece of peripheral
equipment from use by a critical program.

b) Tt scems recasonable that for certain applications a
recovery time of 10 to 100 ms could be reguired, es-
pecially for certain rcal time control applications
with iteration rates of 10 to 50 times per second.
Other critical functions might take longer. The accep-
tance of recovery times of 1 minute or more essentially
means that the program, which is to be recovered does
not fall in the real time category.

7.2 Error Detection

The most fundamental conclusion that has been reached
in the error detection area is detection of hardware failures

7-1

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

must be completelv a hardwarc function. (We are confining our
discussion to faults within the internal structure of the mul-
tiprocessoxr. Peripheral I/0 devices can, depending upon their
characteristics, employ central processor software to provide
diagnostic capability.) The above conclusion is based upon
the following reasoning:

a) An important aspect of any system which is to recover
from a fault is to detect an error within a period of
time which guarantecs that the error hasn't propagated
to a point where recovery becomes impossible. Assum-
ing a given error is detected by a software self test
routine, it is generally impossible to determinc what
information in memory has been incorrectly meodificd.
Without the ability to isolate the damage, repair can-
not be ecffected and recovery becomes unattainable.

Hardwarce error detection mechanisms such as parity,
comparators and specialized logic provide a continuous
monitoring upon the system. Software test routines
can only be executed periodically in time.

Error detection logic, properly designed, will
more nearly approach the goal of instantaneous error
detection which prevents the propagation of failures.

b) If software self-test were to be employed one must con- -
sider the gquestion of how long it will take to execute.
Hardware exrror detcction need impose little if any
overhead upon the system performance. Software can
spend a considerable amount of time for two reasons:

1) To be comprehensive an extremely large number of
tests must be run.

2) They must be executed at a high frequency.

The unfortunate thing about software self-test in the
past has been that, in most cases, hardware was not
designed with self-test in mind. It was very diffi-
cult for the software to control precisely the hard-
ware state. Micro level diagnostics tend to allevi-
ate this problem to a degree. Because of an inabi-
lity to test easily all features of a system, self-
test software demonstrates the phenomenon that a
large percentage of equipment functions can be tested
with a relatively small amount of code, while the -
final few percent of the equipment tests require a
very large amount of code.

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

c) The periodic nature of software error detection makes
transient error dectection difficult. Two categories
of transients may be isolated:

1) Type 1 transients cause a temporary incorrect
electrical signal but do not change the state
of any storage element.

2) Type 2 transicnts occur at such a point in the
scquencing of a processor that incorrect storage
occurs. The hardware satisfies all tests that
can be invented, yet bod information may exist
which will eventually causc incorrect systcm per-
formance.

If a type 1 transient is not detected it hardly mat-
ters to the functioning of the system. However, an
undetected type 2 transient could possibly be catas-
trophic. An error detection philoscphy which provides
a continuous monitoring at critical points is necces-
sary in order to prevent type 2 transients from going
undetected and propagating.

Micro diagnostics, although more comprchensive
and easicr to write than software, must still ke exe-
cuted on a periodic basis. Their ability to dectect
transient failures must be seriously questioned.

d) The final point against software diagnostics as the
sole error detection mechanism is that failures can
occur which disable the execution of the software.
Therefore, the signalling of fault condition can not
occur.

7.2.1 Implementing Hardware Error Detection

Error detection is intimately involved with the specific
failures modes of devices and equipment. If the various failure
modes and the propagation dynamics of the failures are studied,
then, in specific instances, the addition of a moderate amount
of logic can detect the anticipated failures. On the other
hand, one would like to employ techniques which are not very
dependent upon the specifics of the equipment in order to pro-
vide a degree of flexibility and generality. The appropriate
decision between specialized and generalized error detecting
logic is a matter of engineering judgement.

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 -+ (617) 661-1840

7.2.1.1 Processing Unit: The processing units of the multipro-
cessor are the major sourcces of error propagation. If incorrect
write operations are executed, due to a failed component, then
the normal sequencing of the processing units, using this in-
correct data, can cause propagation of the error to other por-
tions of memory. Propagation of errors can extend beyond the
multiprocessor systen, if incorrect I/0 commands are issued

and exccuted. Because of the potential devastation caused by

a proccssing unit failure, a maximum design effort must be un-
dertaken to detect P failures before they propagate to other
parts of the system. Within the limits of practicality, an
effort must be made to detect almost all failures within P, be-
fore incorrect write operations or invalid I/O operations are -
exccuted.

Based upon these objectives, the study conclusions sug-
gest that processing unit error detection be accomplished by em-
ploying two synchronized but independently operating processors
with a fail-safe comparator placed across the memory interface.
Some of the reasons for this conclusion are presented below:

a) Periodic software self-test cannot catch all failures
before they propagate to multiple errors.

b) Error detecting codes internal to the processing unit
cannot detect a large category of failures. For ex-
ample, the failure of a control signal can cause al-
most every bit in a word to be incorrect. The use of
arithmetic codes, such as a Modulo 3 check, produces
inconsistent results under operations such as AND, OR,

Not.

c) It will require at least twice the logic, and incur
more than twice the cost, to detect all possible single
component failures in P. Therefore, the cost of a

dual P unit is reasonable.

d) The redundant processors can be packaged separately
with independent power distribution. This will more
closely mecet the failure independence assumption.

e) Redundancy with a comparator at only one interface will
reduce the number of interconnections between the re-
dundant processors.

f) Errors arc detected before bad outputs may propagate
from the P. The comparator placed at the output of P

might allow an error to propagate within P, but no
bad information leaves P.

7-4

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

g) If one were to design a processor considering error de-
tection as one of the main spccifications, then cach
module could be designed to detect its own errors. Ap-
propriatce design efforts must be spent in maintaining
statistical independence between failurcs and preven-
ting errors in the error detcction logic itself from
going undetected. This innovation to the logic design
effort would prove to be an interesting research topic.
As far as cmploying the present SUMC design as the
processince element of the multiprocessor, the use of
two SUMC elcments with a comparvator sccms to be the
most recasonable approach.

7.2.1.2 Meweory: The irregular structure of the processor leads
one to consider the use of dual processors as a cost effective
error detcction mechanism. Memory structures tend to be very
periodic in nature, possess little if any combinatorial logic
outside of the addressing area, and therefore, arc more amen-
able to the use of error detection codes. Simple word parity

is a degencrate case of an error detection code.

Memory can be a significant contributor to the hard-
ware cost of a multiprocessor system. For this reason, tech-
niques other than brute force duplication of memory modulecs
should be considered for error detection purposes. Depending
upon the details of the construction of memories, differcent
techniques can be employed. The following suggestions are made
and scem to serve the purposc for most state of the art mem-
ory architectures.

a) Word parity can detect single memory cell failures,
sense amplifier failures, and other failures which
manifest themselves as single bit errors.

b) The incorporation of parity upon the address of the
word proves satisfactory in detecting the failure of
a single bit in the memory addrcss register.

c) Employment of special current threshold circuitry
can detect the simultaneous selection of more than
one memory word at a time.

a) The use of a time-out indication can detect the fail-
ure of a memory module to seguence.

e) The use of a write-and-verify mode of operation, where
every word written into memory is immediately read
again, can verify correct storage. This is particu-
larly applicable to NDRO type memory structure. For
a DRO memory system one must face the problem that the

7-5

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

read operation which is used for verification must be
followed by a write-for-restoration of the data. A
failure can occur during the second write operation
which would ¢go undctected until the stored word is
used again. However, the write-and-verify operation
is still useful in detecting failure modes associated
with transient addressing, control or bit storage
failures.

£) Integrated circuit memories possess enough redundant
addressing logic so that a partitioning of the memory
into independent bit planes allows word parity to de-
tect a large number of addressing errors. Present
state of the art intecrated circuit memories contain
address decoding on each memory chip. Chips can be
configured to contain one, two or four bits of 1024
words on each chip. Since each chip contains its own
address decoding, a failure of a chip can only mani-
fest itself as an error on the output of the chip it-
self. That is, it is localized to a few bits of the -
word. If each chip contained only one bit of each
word, then a single word parity bit would detect all
address decoding failures. -

g) The usce of separate read and write logic in the con-
trol area of the mecmory module will prevent a read
command from turning into a write command, due to a
single component failure.

7.3 Recovery

When a module of the multiprocessor fails, the presence
of a spare (physically identical module) which can execute the
same function does not necessarily mean that recovery can be
accomplished. A failure not only eliminates certain physical
resources (hardware) from potential allocation to executing pro-
cesses, it also destroys information (program, data and status),
which is required for execution. The major problem associated
with recovery is not the necessity of providing spare hardware
with an appropriate reconfiguration switching mechanism. It
is, instead, the problem of re-establishing all the information
required by the process to recover. 1In order to achieve —
recovery, the system must be returned to some past state which
is known to be correct.

What exactly determines the state of a system? If
real time is ignored, for the moment, then the system's state
can be defined to be represented by the contents of all the
storage elements, including M1, M2 and the Processor's control flip

7-6 —

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-184C

flops. The more dynamic changes to a systeom's state are coantained
within M1 and P. M2 possessces lcss dynamic changes with time.

M3 is even nore static. As one proceeds from the more dynamic

to nore static elemtns of a system's state, time becomes less
important to the recovery process. therefore, software, which

is more time consuming than hardware, can be employed.

The discussion on recovery will address three major

areas:

a) The processing unit, P and M1

b) Opcrating memory, M2

<) Inpul cutput controller (I/0C) and its channels

Suggested approaches to recovery from both transients
and permanent failures in thesc three hardware arcas are pre-
sented.

7.3.1 Processing Unit (P-M1)

7.3.1.1 Restartable Tnstructions: One of the main suggestions
gencrated by this study, relative to a recovery from a proces-
sing unit failure, is to desion all instructions to be restart-
ablh. This means that the point of recovery is the instruction
duiing which the failure was detected. It is assumed that all
failures are detected essentially instantaneously so that pro-
pagation of the failure does not cause incorrect information to

be written into M2 or bad I/O commands to be executed.

Although a restartable instruction is not a difficult
technical feat, it does require a design effort. The following
ground rulecs must be applied during the design implementation
of each instruction:

a) Each instruction must be partitioned into two phases.
During phase 1 the instruction is fetched, data is
read, computations are made and all memory write op-
erations arc placed into a temporary buffer area for
execution during phase 2.

b) During phase 2 the buffered information is copied
into its final destination in M1 and M2. The contents
of the buffer area are not destroyed unti all the copy
cycles are completed and verified. Each phase is de-
signed to be separately restartable. Figure 7.1 sch-
ematically represents the execution of a generic re-
startable instruction.

7-7

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

UOT3ONIFSUI STGR3IIRISSY 2TIdUH ¥

7z oseyd Jo Lutuulbeqg
3 3Ie3S9I AnTIeI B I0J

1T L 2anbtd

1 oseyd Jo mcﬂccﬂmm&\\lll//ll

qe 3Ie3SSI SaANTTIRF © I0Jd

eolxy Iojying -dws UT 21038

uoT3eOTPUT T

oseyd 39S

uosisi CWH <« T 23eINOTRD

UOT3ONIASUT MSU ZH < TH uoT3edIPUl 7 peay

03 ob 10 3dnaxs3jul Adop oseyd 39§)
< 1 aseuyd

¢ @seud

c) Tf a failure indication occurs during phase 1, then
the o0ld copy of the program counter indicates which
instruction was being executed. All of the infor-
mation needed to exccute the instruction has not
changed, so phasc 1 can be re~initiated. If a fail-
ure occurs during phase 2, then, even though some in-
formation might have been copicd, the information tem-
porarily buffered in ML is still vealid, and a complete
re-initiztion of nhase 2 is indicated.

d) . Interrupt testing can either occur at the end of phase
2 or at the beginning of phasc 1. It is assumcd that
all interrupt conditions are caught in latches, so that
the interrupt test is just a matter of recadiny these
lalches and detenalning whether to fetch the next in-
struction in the inctruction stream or to enter the in-
terrupt control micro-routine. The interrupt control
micro-routine must be designed to be restartable and
it must incorporate the concepts of a double phase
operation with a buffer area, i.e., the interrupt con-
trol micro-routine can be considered to be a restart-
able instruction.

what does a restartable instruction design allow the
system to do?

a) For transients which interrupt the normal execcution
sequence, but do not destroy data, the retry of an
instruction will provide a simple nethod of recovery.

b) For transients, where information 1s modified, the
information must be restored before the instruction
is retricd. The restoration of the lost P or M1l in-
formation can be accomplished by either error correc-
tion codes or by duplexed storage.

It is proposed that ecach instruction be designed
so that after an instruction is executed, the state of
the processing unit is always contained within MLl.
Each processing unit would contain two Ml's so that in
the event of failure of one, the information contained
in the second could be uscd. The size of M1 should
nto be more than 100 words and so its duplication pre-
sents little hardware impact.

c) Recovery at the instruction level allows the entire
operation to be independent of the application pro-
grammer. Hardware and operating system primitives
can determine when and how to restart. All considera-
tions are based upon detailed information below the

7-9

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

d)

7.3.1.2

instruction level. The application programmer could
not care less about these details.

Because single instruction restart (SIR) allows
a very quick recovery mechanism, one is not even con-
cerned about the impact of the delay between error
detection and recovery. This should be well within
the iteration periocd of the highest frequency periodic
application function.

Error detection within the instruction cycle as well
as SIR tends to eliminate questions of error propaga-
tion and the interactions between a failure and the
informational content of the rest of the system's
storage.

Critigue of Alternatives: Why the emphasis upon a re-

startable 1nstruction? What are the alternatives?

a)

b)

In a batch processing system where multiprogramming
is not used, the failure of a processing unit catches
only one program in a running state. All the submit-
ted programs are completely independent and recovery
is simply a matter of reloading the program and data.
Many functions on the space station can be handled

by this "fresh start" approach. It is simple and
imposes minimum overhead.

However, the real time aspect of some of the
space station processing requirements makes the "fresh
start" approach unfeasible.

A "checkpoint restart" approach to recovery has been
applied to systems where problems requiring hours of
computer time are being run. At fixed intervals the
complete contents of core as well as the processor
registers are dumpced onto a back up area on disk or
tape. A snapshot is taken of the system's state.

A superficial look indicates that with a 1 usec
cycle time and a 100K word memory, a memory dump can
be accomplished in 100 milliseconds. This is not an
unreasonable time. However, let us investigate the
implications of "checkpoint restart" a little more
deeply.

1) If a snapshot requires 100 ms then one must con-
sider its effect upon system throughput. If one
desires to limit the overhead imposed by this

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

function to less than 5%, then a snapshot can not
be taken more than once every 2 scconds. If real
time recuirements allow a recovery time of 2 sec-
onds, then "checkpoint restart" might be a viable
candidate. ‘

2) If the contents of operating memory and the proces-
sing uvnits are rolled back 2 seconds in time, can
one guarantee that the state of the mass memory
is always consistent? Must the contonts of mass
memory also be dumped when operating memory is
dunpcd? In gencral, the answer is yes. 1In a
virtual memory system where momory hicrarchy must
not contain inconsistent information. Dumping M3
periodically onto some archival storage device
such as tape (M4) seems to eliminate check point
restart as a valid candidate for recovery in a real
time environment.

3) Even though M2 can be dumped in 100 ms; a disk,
drum or tape probhably couldn't absorb the data at
a ratce higher than 10 MBPS. This will increasec
the snapshot time for 32 bit words to 320 milli-
seconds and the snapshot period to once every 6.4
seconds.

7.3.2 Recovery From an Operating Memory (M2) Failure

Hardware failures and electrical transients in memory
systems cause information to be destroyed. Recovery from a mem-
ory failure would be very easy if the error patterns caused by
failures and transients could be known with certainty. Many
error patterns could then be corrected by employing error cor-
recting codes. Unforlunately, it is impossible to analyze all
possible failure modes under all possible environments to de-
termine all possible error patterhs. TFailures exist which can
not be corrected by error correcting codes. Error correcting
codes are not useful when the timing mechanism fails in such a
way as to prevent memory access. A failure in the addressing
mechanism can not be corrected by the encoding of data.

Error correcting codes can be successful when the pre-
dominant error modes are single bit failure or small burst fail-
ures. In gencral, however, duplication of the information con-
tained within the memory cells is required for successful re-
covery from an M2 failure.

7.3.2.1 Problem Areas: When attempting to design a system which
_is recoverable from M2 failures, a number of distinct problem
areas must be resolved:

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

a) Memory Management

Normal (non-failure-tolerant) memory management —
deals with the allocation, deletion, and control of
memory space for program and data entities. When fail-
ure recovery is made a requirement, additional questions
arise; how to deal with redundant storage of critical
information? How shall the hardware and software in-
teract to:

1) cnable the continuous storage of redundant infor-
nmation?
2) allew the accessing of valid information in the

presence of a fault?
b) Hardware Fault Isolation

When a memory error is discovered, how can it be
isolated to a repairable piece of equipment? -

c) Information Fault Isolation

If the failure is isolated to a specific memory
module, one must be able to determine what informa-

tion was destroyed so that recovery action can be con-
trolled.

a) Storage of Redundant Information

Since the redundant storage of information be-
comes a necessity for critical programs and data, a
question arises as to how and where the redundant in- —
formation should be stored; in M2 or M3 or a combina-
tion of both?

7.3.2.2 Factors Behind the M2 Recovery Approach: A number of
considerations pointed to the suggested M2 configuration. The
following items consist of assumptions, observations and the -
philosophy which leads to the approach presented in the next

section.

a) Consistent with the processing unit's failure recovery
philosophy, the applications programmer should not be
concerned with the details of the recovery procedure.
This is handled by the hardware and operating system.
There is however, one aspect that must involve the
application programmer. He is the only one who can
initiate the specification as to which program and/or -
data segments are critical. By definition, critical

7-12

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

segments are all those segments used by programs which
must recover and continue exccution aftcr a failure.

Non-critical programs nceed not recover. They must,
however, be terminatod in such a way so as not to inter-
fere with critical programs. This is called I'ail Safe.
Some observations and reguirements necessary to cnable
a program to Fail Safc are prcsented in Section 7.4

Once the applicaltions programmer indicates the
programs which are critical the compiler can statically
assign critical or non-critical status to segments it
creoates. Similarly, the operating system must also as-—
sign criticality status to segments it dynamically
crwantos: Tor exvample, a staclh.

b) The recommended approach to memory management is to
employ a segmented virtual memory system.

The virtual memory approach allows an exploita-
tion of the difference between read-only (program and
fixed data segments), and read-write (variable data
segments) information. If an M2 module which contains
program segments fails, it is desirable to exploit the
virtual memory mechanism, already implemented within
the system, to aid in the recovery process.

Most program segments can be considered to reside
in M3. They are brought into MZ, on demand, for exe-
cution. If the program segments contained within the
failed M2 module were, as the result of the failure,
made "not present", then the M3 to M2 transfer mech-
anisms will allocate space and transfer anew the re-
quired segments automatically. The "not present" seg-
ment indicaticn is contained within the program seg-
ment descriptor. Descriptors are considered to be
data and are in turn stored redundantly in M2.

c) For a large computational system on-board a space
station, it is reasonable to assume that repair or
replacement of a failed M2 module will be performed
relatively quickly. The hardware error detection mech-
anisms should be able to isolate to a repairable unit,
and to indicate the action to be initiated by the soft-
ware.

However, there must be sufficient M2 space avail-
able so the system can run without "thrashing". This

entails modifying the work load so as to reduce the
memory required to accomodate the working sets of the

7-13

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

remaining processes. Possibly, the number of processes
of particular types might be limited to reduce the work
load.

7.3.2.3 Proposed Conficuration for M2 Failure Recovery: The
proposed configwrotion deofines an M2 module as four M2 units
which are interlecaved on their low order address bits (see Fig-
ure 7.2).

Information segments may either be stored in a simplex
or duplex mode. The mode is spcecified within the descriptor.
Most program code would be stored simplexed and interleaved
across the four memory units. Most critical data segmeonts would
be stored duplesaed. In the duplexed storagce mode address i and
i + 1 contain identical information. That is, two adjacent mem-
ory units contain identical copies of the redundant words.

A minimum of two memory ports connect to the redundant
P interfaces. Communication with any M2 unit can occur through -
either port. This is under control of the command issued from
the processing units.

M3 is used to backup most program segments. M2 is used
as the backup for data and certain critical program segments.
Program and Data Segments can be stored anywhere in M2. When
space is assigned to a critical data segment, a double size "hole"
must be found in M2. This does not impose any extra effort upon
the memory management function.

Redundant writes into independent units of M2 are ac-
complished automatically via the dual redundant processing unit
bus links. Recovery of M3-backed-up information requires making
the segment "not present". The memory management routine which
handles segment faults will automatically reload the M3 segments
when required, on demand.

Whenever an M2 error is detected, the error indications
are communicated to both halves of the processing unit so they
can continue to perform identical operations. The ability to
restart an instruction can be exploited in attaining system re-
covery after an M2 failure. As soon as an M2 error is detected,
the processing unit traps to a special micro-routine which boot-
straps into the sequence indicated in Figure 7.3. After recov-
ery, the instruction which was terminated by the trap can be
re—executed (if the M2 error was detected during ¢7 of the in-
struction) or the instruction may be completed (if the M2 error
was detected during ¢, of the instruction). It is interesting
to note that M2 read operations occur only during ¢; while M2
write operations occur only during ¢5. -

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-184C__

el

[a]

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE -CAMBWDGE,MASSACHUSETﬂ50m38-(8W)6614840

AP e ST W T BT R

s

Interleaved Memory Units

{ . —
i "
¢ K
i e :
: (S B ~ .
£) — [¢] k
J— PR SO o 4 —
e o
|
— [I 5]
L)
[]
: 153
NS H
N S !
I I :
'
[
!-! ~ - ————— S e]
i
..... |
{
(3] ~ .
{ ©) — 8]
S
3 Ep)
-
4 Flow
4 agi ol on
r-: @
- i 51
s 18] -
[¢R e S IS
S o] <
]
— =
J
o
v
o
(4]
-t
M
9]
D v
. . 128 EST S o 6]
t — - D
. 1) 4]
je s P
RS 9
= 1= 19}
{ w
- § 9]
4
o g "
A B
, I8
i
43
o e , : P
3 'b ¢ b
[’ O
n
o~
— (3] .
~l [8) |
+H
44 o
-l 0
f u
oo
| o)
[aXEN o]
{4 T
=4

[—‘04 Ay

r‘___.
?
P
P
P

Processing

Unit

Figure 7.2

UOTIEDTPUL I0IIT gW :g°L =2anbta .

SSAITPY LW 3IIISUY
puUE 3135334 30N O3
x03dTa0s20 2hveyD) “¢W
03 3uawbas N0 BITAN

e sassessoad 3T
583 TEDTIITID ¥ &

u

€1 IO T XPU3IT2 UC Cn¥dE]
*A3T3LD ° 3Ie3SOT ¥ YR TH PO3IRIDOSSE ST jusd
* Yt 54 b :

oInpow Azowew B 3O susweseldox 0 ITedax BU3 [
S53E3TSS900U YOTUM @InTIRF 2IVMDITY JUIBUTLIIE - SIOIII ¢ 9d&ky,

LAzcuow

30 3suosucd oyl o9bueyd Op YITYM SIUDTSURIL -~ SIOIID T od &y,

Xzowsu

. SS9IPPY £X
30 S3US3UCD Y3 S5UPUD 30U Op YD TYm SIUITSURIL - SIOIID 1 edXL

3X9SUT PUR JUB5IIJ
JoN judwbas eRN

£57357383S | £UTS5320I4 SRUTOD _ sTnpo: DATTE; 1
SINTTBI 2IVITUID pue paIndsg danTrRd s3ju~zbas puTs
ToXTINITE | Loty 3% UoT3oTNISISUT _ . o1 i CUWM..“W
. ! N W uDIED
§7T ZATedsI 3380 TpUl | ﬂ ystuid 12 IVTSSY r .

’ EEN
11 I0F UOTRRITRUI . 100 mwmumomﬂm
oxnTTed ¢ oiiy e mumwmnmo zoaxe Y 9dAL aa..?umuo.,um _
r‘(lll| e em —— —;SBITMITCL 3O AXOISTH PUE P OSTY be
aTnpon g XeINOTIIOL ¥ OJIT
SDITSTLEIS PANTIR 83eITudS)

E+
)
o

ureby uot3zexodn oG

T
l

When an M2 errvor indication is first recorded, the M2
operation will be tried again. Tf the error does not recur
then a type 1 error is indicated. Howaver, if the crror indi-
cation persists a search is mode to determine which segments
are stored in the suspect unit. To accomplish this search in
the presence of a failed unit, the header word containing a
pointer to the segment descriptor as well as a link to the next
seqment is redundantly stored. TFigure 7.4 shows the storage
allocation fTor both sinmplex and redundantly stored segments.

All non-critical segments within the suspect module

arce put into a "dead" state.

Critical seamsents can be either redundantly stored or
not. A redundantly stored critical segment is written out to
M3 so normal memory management can be used to allocate new space
for it when reguired. Since it is assumed that failures do not
simultaneously affect both copies of rcdundantly stored infor-
mation, the good copy can be accessed after a failure.

Non redundantly stored critical segments are made not
present. Fixed data and programs fall into this category.

For all M2 failures, statistics are maintained indica-
ting a failure history. If an M2 module develops a bad history
of failure, then it will be removed fron an active status. The
definition of how many failures within a given time period indi-
cates a bad history, can be considered a design parameter depend-
ing upon whether transient or permanent hardware failures con-
stitute the predominant failure mode.

7.3.3 Fault Tolerant Aspects of the I/0C, Channel

This section will address problems associated with re-
covery from a transient or permanent failure in the I/0C or com—
munication channel between the I/0C and the device.

Many constraints must be placed upon the I/0C, channel
and the attached devices and controller. Figure 7.5 presents
schematically the elements which will enter into the discussion.
Only one I/0C, channel and device is shown. Clearly more exist
in a real system. Our discussion will focus on only one 1/0C,
channel and device at a time.

7.3.3.1 Incorrect I/0O Commands: The basic recommended approach
is to eliminate the possibility of executing incorrect I/0 com-
mands. As a general principle all I/O devices require some de-
gree of feed back to the MP, if any fault tolerant design goals

7-17

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE ~CAMBWDGE,MASSACHUSETTSO2KB- (617) 661-1840

M2 Memory Module

MU MU2 MU3 MU4 i
| mi,—~tr P’ B, WiSq WS,
segment
‘ 1 simplex—
L« W381 W4Sl WSSl W6Sl
| 4 / B
mi <" P HWS — W1So (WySy) ‘
|] , I segment
. P , redundan
| WZSZ (WZSZ) W3Sl (WBSZ) l
\\\F__ I SR R SO
| 3 T
Wy, | (wysy50 | TXaw, HY] -
l_______ — L !segment
] 3 simple:
| W1S, W, W3S, W4 S 5 | -
LECEY I i e e A e A _
L N
Legend:
MUy = xth memory unit
HW4 = Header word of ith segment
WjSi = jth word of the ith segment
wa’ = redundant copy of HW; —
E
(sti) = redundant copy of sti
p = pointer to start of next segment contained in HWi 7
p” = redundant pointer contained in HW{’

Figure 7.4: Storage Allocation in Interleaved M2

7-18

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-184C

Figure 7.5: I/0 Elements

Multiprocessor

P —-L 5] |
I/0C Channel D
. -E7 BG < L ,
P 4/
] 3 D)

P Processing Unit
M2 Operating memory
1/0C Input output controller

Channel Communication Channel between I/0C and Device

D Device and associated controller (if reguired), e.g.,
Printers, CRTs, IMU's, other computers, etc.

El Device error

E2 Channel error detected by .device

E3 - Channel error detected by I/0OC

E4 I/0C error

E5 M2 error detected by I/0C

L6 Interprocessor communications error detected by I/0C
E7 Processing Unit error

7-19

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

are to be achieved. No external device can be allowea to run in
an open loop mode without communications back to the I/O0C.

One of the most devastating aspects of I/0 failure is
the possible executicn of illecgal unwanted I/0 commands. A major
design effort, which will impose constraints on the elements of
figure 7.5, must be undertaken to eliminate or minimize the pos-
sibility of incorrect I/0. ILet us look at a typical I/O scquence,
with safeguards to minimize this possibility.

a) The processing unit issues an I/O0 command to the I/0C.

b) The T/0C rcads the indicated M2 location to obtain the
I/0 descriptor.

c) The I/0C sets up the channel and issues the command to
the device.

d) The device cechoes the command back to the I/0OC for ver-
ification.

e) If correct, the I/OC issues an execute sequence to the
device. The device then executes the command which may
require reading or writing into M2.

f) After execution, a finished indication is sent from the
device to the I/OC and this status is set into the I/0
descriptor in M2, or an interrupt is generated.

Let us investigate the effect of a failure during any of
the sequential steps listed above. Error indications can occur
from many sources including P, M2, I/OC, channel and device.

A failure indication, E5, E6, or E7 during steps a and
b allows time so the I/0 can prevent the issuance of the command.
If an error, El, E2, or E3 is detected during step ‘c, then the
I/0 must also terminate the command, since an execute has not
been issued to the device. An E failure indication during step
c should result in an emergency sequence to cancel the I/0 re-
quest already issued to the device.

The echo check, step d, provides a positive verification
(feedback) that the device has successfully received the command.

An I/0OC or channel failure indication during the execu-
tion of a command must result in a sequence of operations which
is very device dependent. This will be discussed in section
7.3.3.7.

INTERMETRICS INCORPORATED » 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-184(

7.3.3.2 Super Critical Commands: Although the I/0 portion of
the space siction is inadequately defined, it seems reasonable
to postulate the nccessity for a small number of super critical
commands with the following properties.

T a) It is most disastrous if the command is execcuted when
it shouldn't bc.

b) It is better to abort the command or action if anything
seems to be going wrong rather than execute it incor-
rectly.

Examples of such commands might be "Stage the Rocket",
"purce the nivlock", ete. What should be done if failure occurs
durirs the ciccution of a super critical cdommand? The answer 1S
- to wale the command f2il safe, by issuing it or a facsimile thru

multiple channels to the device. Only when all the arming con-

ditions for the command are properly set is the device allowed
— to execute. Tf any discrepancy is noted at the device, command
exccution must be held up for resolution by the MP.

7.3.3.3 Interrupts: In many instances, the system is faced with
the problem of "phanton" interrupts or missing interrupts. Fault
conditions within the interrupt logic can cause undesired inter-
- rupts (phantom interrupts) oxr can possibly prevent the generation
of interrupts which should occur. The action to be taken by the
system in these cases is very dependent upon the interrupt condi-
tion one is considering.

Let us consider two cases:
a) The Expected Interrupt

Often interrupts are expected when an I/0 device
- command finishes. The exact time of occurence of the
completion of the I/0 command is nct known, but the
worst case time may be estimated.

A time out error indication is a simple mechanism
which will inform the system that the I/O device has
not finished executing the command or at least the "done"
interrupt has not been received within a given time
period. If the I/OC and channel have a sufficient amount
of internal error detection, the failure can probably
— be attributed to the device itself.

The action to take might involve a limited number

of retries of the operation or a call for system re-
configuration which eliminates the device from use.

- 7-21

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE MASSACHUSETTS 02138 - (617) 661-1840

If a "phantom" interrupt occurs, which indicates
a device end condition for a device which wasn't being
used, then clearly this interrupt should be ignored by
the system. This feature can be incorporated into the
interrupt handling routines.

b) Unexpected Interrupts

These are a class of interrupt conditions which
are provided for but which are unexpected. For example,
the failure of a P or M2 unit might cause a different P
to get interrupted. If this failure interrupt is sign-
alled when the condition really decesn't exist, it is
probably still wise to service the interrupt rather than
ignore it. It is better to configure into a degraded
mode of operation, for a short while, when it isn't nec-
essary, rather than not to reconfigure when it is nec-
essary.

Other interrupts which are unexpected are not as-
sociated with failures. Many are traps, such as absent
segment trap conditions. The scrvicing of an absent
segment trap condition when one doesn't exist can lead -
to inconsistent situations and ultimately system failure.

One design feature, which can be applied to certain
I/0 interrupts, involves a handshaking or interrupt ver-
ification concept. This feature would have the system
verify that the interrupt which was signalled really
does exist. The device which signalled the interrupt
must retain the interrupt condition information until
after the verification cycle. The verification can
either be performed directly by the I/0 unit or by a
processor through an I/0 command.

7.3.3.4 ©Non-State-Dependent Sequences: If an I/OC or channel
sustains a transient, which causes the termination of an I/O

sequence, then it would be desirable to rely upon a recovery

policy which would cause the reissuance of the I/0 command. In -
order for this recovery policy to be satisfactory, the response

of the I/O device to the command must be only a function of the
command and not of the state of the device itself. This feature —
can be designed into the device if one is careful about the ini-

tial design specification and the type of commands one allows.

For example: Assume a tape unit is at the end of re-
cord 6 of file 1. A command which says "Read the next record"
is very dependent upon the state of the tape unit; namely the
position of the tape. A better command structure would be "read -
‘record 7 of file 1". The result of this command will always be
the same independent of the position of the tape.

7-22

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-184(

It should be clear the "Read the next record" would not
prove to be a satisfactory command to reissue in case of a
failure in the middlce of reading record 7. Record 8 could be
accessed instead of 7.

7.3.3.5 Complete Massage Buffer: TIf errors can be detected as
soon as they occur and if recovery from transient errors 1s re-
cquired, both the 1/CC and the device must have enough buflfer
storage so that a rotransmission of the entire moessage (data and
command) can be made. The 1/0C buffer may, indeed, be M2 and
the buficr storage clement of the archival memory might be the
tape itocelf.

It is undesirable to have to recrecate the entire message
because of a channel transient error. Retransmission appears to
be a reasonable approach.

7.3.3.6 Real Timo Aspects: When the MP is used as an element

of a rcal time control loop, outputs can be required periodically.
If a failure occurs during a real time I/0 command, the device
could possibly have to wait for a number of iteration cycles for
the recovery cycle to be complete.

In this instance, the device must be provided with a
copahility to extrapolate from old updates until the system has
recoveraed., This might reguire nothing more than assuming the
last update is still valid. Possibly, more complex methods are
required.

7.3.3.7 PFailure During the Execution of an I/0 Command: If a
transient occurs, the actions to pursue in order to recover be-
come extremely device dependent.

Consider the following examples:

a) Many of the external devices attached to the space sta-
tion data bus are transducers, to monitor temperature,
pressure, gas mixture, etc. If an I/OC or channel fail-
ure occurs, the appropriate action for recovery would
be to ignore the results of the command in progress,
clear the buffer or reset the device if necessary, and
reissue the command.

Any non-destructive read operation can be reissued
for recovery purposes. Destructive read operations should
be eliminated from the system specification or temporary
redundant storage or redundant devices must be employed.

7-23

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

b) Consider the case of updating the refresh memory of a
CRT output device. Assume a failure occurs during the
update operation and the possibility of incorrect in-
formation on the CRT exists. Recovery action can con-
sist of nothing more than reissuing the update command.
If recovery takes 100 ms the human operator might only -
noticc a small flicker on the screen and no damage 1is
donc to the overall system.

c) Consider the casc of a printer. Assume a failure occurs
in the middle of a print cycle. It should be clear that
the reissuance of the PRINT command is inappropriate for
recovery since the old printed output, possibly incor-
rect, would exist immediately on top of the new valid
printed output. Page boundaries would be incorrect.
Before reissuance of the print command, the page must
be spaced. If a plotter instead of a printer were being
used, the computcer operator would have to be informed
to insert a new sheet of paper in the plotter.

d) Inter-Computer Communication. Quite possibly, the space
station will contain pre-processors in addition to a
large central multiprocessor. Pre-processors are em- -

ployed so as to buffer the high bit rate of the device.

(See Figure 7.6.) They perform high frequency inter-

active calculations and provide a data rate reduction -
for the system.

Unlike simple input output devices which can re-
cover with reissuance of commands, a pre-processor re-
action to a command can be very dependent upon its own
state. :

All the concepts of command verification and mes-
sage buffering, must be built into the pre-processor.
The programs in the pre-processor must also be designed
to run asynchronously from the multiprocessor.

7.3.3.8 I/0 Locks: When a software process requires access to

an I/0 device, the device may required to be locked to the pro-

cess. That is, no other process can access the selected device

until the previous I/0 request is finished. Problems of dead- —
lock exist when the initiating process fails.

If the software process recovers quickly enough, then -
the lock doeS not remain on the I/0 device for an excessive time.
However, if recovery takes a long time or if the process is spe-
cified to be non-critical (that is it need not recover), then
some mechanism must be designed into the system to release the
1/0 lock. This is one of the elements to consider in allowing
a process to fail safe.

7-24

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-184(

commands and
initialization

data NG

INTERMETRICS INCORPORATED -

Centra

Multiprocessor

1

low
bit

rate

interrupts and

‘(N\“//////—result data

Pre-proce

sgor 4"'7V//’“~high frequcncy

periodic pro-
cessing

high bit rate

Device

Figure 7.6: Pre-Processors

701 CONCORD AVENUE -

CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Even though the process need not ¢ “inue operation, in
case of a failure, a special I/0 routinc m: he executed to
scarch, find and releasc all locks crcated | the process which
terminated.

7.4 The Implications of Fail Safe

Although it is the physical hardware that fails, it is
conceptually useful to consider the process being executed at the
time of failure to have failed. Only one process can fail when
a processor fails. In the case of an M2 modulc many processes
can be affected.

It is assumed that in the space station environment all
processes are either rcecguired to recover or fail safe. None are
allowed to be abruptly terminated without consideration of the
interaction between the termination and the rest of the system.

A number of problem areas arise when one considers the
implications of Fail Safe. Some of these are discussed below:

a) In order to maintain system throughput in a multipro-
cessor, the intrinsic parallelism within a function
must be exploited. Parallel processes are spawned and
executed simultanceously on different processors.

If a process is to fail "safe", all the fork points
which were created must be examined and all the spawned
processes terminated. This feature must exist within
the executive function of the system which controls the
termination of processes.

b) If a process is to fail "safe", all the I/0O commands
issued by the process must either be cancelled, term-
inated or completed. ©None may be left indefinitely
on queue. The various commands issued to each device
must.- be studied to ascertain the effect of a premature
termination of the issuing process. If a tape was 1in
the middle of reading a record, the read cycle can be
completed. Upon receipt of the "Done" indication, the
read data can be discarded. If a command is still on
an I/0 queue, it can be cancelled. 1If a device is being
written into, it is not clear that the write operation
can continue when the initiating process is terminated.
All these types of questions must be considered for
each I/0 device when one desires a process to fail safe.

c) When a memory unit fails and a segment of a non-critical
process is made dead, questions must be raised as to the

7-26

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-184(

disposition of the other valid segments within M2 and
M3 associated with the failed process. The following
sugqgestion is made:

One of the conditions which will cause a process
to be killed, will be when it attempts to access data
contained within a dcad segment. When this occurs,
control will be transferred to an coxecutive routine
which will control the operation of systematically
terminating the process. This includes:

1) Placing the process in the dead state
2) Placing all spawned processes in the dead state
3) Releasing the stack number (in the case of a stack

machine) and the space used by the process and de-
pendent processes.

Contained within the process stack are descriptors
of all the local data segments currently being used by
the process. The space used by these segments must
eventually be reclaimed for other uses.

d) During the normal execution of the memory management
function, any segment not referred to within a period
of time will be replaced by more active segments. This
includes any dcad data segments that may exist. Even-
tually, all the dead segments in M2 will be overwritten
by just letting the system run normally. However, it
is possible for dead data segments to occupy space on
M3 which could possibly be used for other segments or
for file storage. :

At some point a "Garbage Collection" routine will
have to be executed in order to reclaim this lost space.
Most probably, the normal reclaimation of fragmented M3,
due to M3-M4 control, will provide the required service.

e) In general, the exccutive design must consider the actions
to take when a process enters the dead state. If an
interrupt is dirccted to a process which is in the dead
state, it should be ignored and any other process which
is dependent upon the dead process must be informed so
that appropriate action can take place.

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Chapter 8

CONCEPT VERIIFICATION

8.1 Backaround

The nmultiprocessor (MP) system proposcd for ifuture man-=
ned space stations will employ many now concopts which will hope-~
fully cohance thoe performonce and reliability of the syoten.
This chepter will discuss the validation of various concepts
proposcd for the space station MP. The concepts to which refer-
ence is made arc not applications software or SUMC hardware but
rather those aspects of the system which interact with applica-
tions softwarc and SUMC hordware to control the operation of
space station subsystems and experiments. Onec wishes to verify
that the ideas which will be implemented do indeed yield the
required performance with an efficient utilization of resources.

How docs one go about validating a new concept, or at
least establishing confidence that a given approach will prove
satisfactory? The ultimalte answer is to build the system, run
it, and evaluatc its performance. This of course is an expen-
sive process, especially if many new ideas have to be frozen
into a design before it is evaluated. In order to provide a
more orderly, cost effective approach a two level simulation is
proposed, both levels being carried out before the system is
committed to operational use.

This chapter will discuss both a high-level and a more
detailed low-level concept verification process.

a) The first verification phase involves both analytical
technigues as well as a high-level computer simulation
employing idealized work loads and environments. The
results of this effort will verify that a given design
concept can achieve specified qualitative goals.

b) The second phase involves a more detailed, low-level
simulation requiring both simulated and actual hardware
and software modules. The objective of this phase is
to verify quantitative goals, by means of measurements
and design modification.

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

As part of both verification steps, measurements are
made and deslgn parameters are modified so as to optlmlzc sSys-—
tem p@lformancg The specific activities involved in the de-
sign verification and performance optimization of the space
station multiprocessor concept will be presented in the remain-
der of this section.

8.2 Phase 1 -- Initial Analysis and High-Level Simulation

8.2.1 Objectives

The initial analysis and hich-level simulation attempt
to achieve the following objectives:

8.2.1.1 Design Teatures: The major design features must be
established. 1In a MP system this will include:

a) A definition of memory management philosophy

b) The appropriate utilization of local memory

c) Interrupt and I/0 analysis

4) The structure of the MP internal bus

For example, the application of simple analytical techniques

will demonstratc the inappropriateness, from a performance stand-
point, of a single 32 MBPS internal bus which is time-shared he-
tween P's and M2 elements.

8.2.1.2 Parameters: The parameters which should be made vari-
able in the low-level simulation nust be identified and segre-
gated, so that pecrformance can be optimized, For example, the
simple analysis of local memory and its effect upon performance
indicates that the major parameters are the M2/M1l speed ratio,
r, and the hit ratio, h.

The isolation of these parameters is significant in that
performance improvement or degradation is very sensitive to h.
Clearly .those hardware and software elements which control h
should be made as variable and flexible as possible.

If a virtual memory is employed a simple, high-level
simulation or analysis will show that the following parameters
should be made variable:

‘a) The page size (if paging is employed).

8-2

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-184(

1

b) The replacement algorithm.

c) If an associative memory 1is proposced, its size should
be variable. Performance is very sensitive to the
search time of the page locaticn algorithm.

a) Poscibly, the utilization of a variety of different
access times to M3 devices should be considerced.

e) The size of M2 could be a paramcter. The "thrashing"
threshold has to be established if softwarc expanda-
bility is to be achieved.

The main objcctive of this effort is to isolate as
many poramctors of decign as pos<ible throvgh a careful scru-
tiny of all major design features.

8.2.1.3 Assuwptions; Another objective of this first phase
effort is to cstablish clearly all the assumptions, implicit
or explicit, that formed the basis of major design decisions.
For example, why was a multiprocessor chosen? Threce answers
are possible:

a) A cost effective performance increase.

b) Reliability improvement through the use of identical
elements and an ability to recover.

c) Expandability.

All three of these assumptions or desires drives one
to the conclusion that the executive system, which interfaces
the hardware and applications software must be generalized
enough for expandability, yet it must be implemented in such
a way as not to produce an excessive overhcad. Reliability
implies a comprehensive error detection scheme. Recovery im-
plies a specific communication interface between the hardware
and executive.

8.2.2 Tools for High-Level Simulation

8.2.2.1 Simulation in General: How does one approach the pro-
blem of developing a high level simulation? What tools are
available? Reference 1 discusses techniques available for both
macro (high level) simulation and micro (detailed low level sim-
ulation). Macro level simulation is concerned with abstractions

8-3

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE -CAMBRHMSE,MASSACHUSETTS(B138-(617)66%1840

of computer systems which are designed to expose and analyze
critical design pavameters. Generally speaking, these simula-
tion techniques deliberately suppress design detail, and con-
centrate on broadly defined measures of system effectiveness.

Computer simulation at this level has its basis in
queueing theory, the probabalistic analysis of the interaction
between users and facilitics. The role of simulation is to
excrcise uscr and facility interactions whose complexity ex-
cecds the bounds of known or feasible analytic solutions, by
Monte Carlo methods.

Digital computer facilities have long exhibited the
symptoms dear to the gueueing analyst: namely, bottlenecks.
The reader will probably have personal familiarity with situa-
tions where a data processing facility has become hopelessly
inefficient due to one, or a combination of, bottleneck elements.

The objective of high~level simulation is to obtain
an advance estimate of the performance of a computing facility -
at the design stage. To be successful, the simulation must
anticipate the way the system would work if it were built. The
successful simulation designer must accomplish all of the fol-
lowing steps:

a) He must satisfy himself that simulation is an appropri-
ate analytical method, and that the elements of the
system and the job stream are sufficiently defined.

b) He must verify that the results of the simulation are -
correct, and that they are appropriate to his purpose.

c) He must explain and substantiate his results and pro- -
selytize his conclusions in order to affect future
events in a constructive way.

These generalizations are noted here because there
seems to be an uneasiness among professional personnel about
high-level simulation of computers. This is probably because
the technique of simulation has been often misused, particularly -
by neglecting the fundamentals listed above.

8.2.2.2. GPSS: A generalized macro simulation language GPSS was
developed by Gordon [2] of IBM. GPSS deals in transactions,
events, facilities, storages, and queues. A transaction is
generated for each element in the job stream. Events mark the
movement of the transaction through the system of facilities,
storages and queues. A facility is a system element that can
accomodate only one transaction at a time. A storage is a -

8-4

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-184(

system clement that can accomodate many transactions up to a
specificd limit, at a time. A queue is a waiting line. Gordon
gives exanples of these concepts as they might occur in differ-
ent systams:

Type of Syniom Transaction Facility Storage
Communications Message Switch Trunk Lines
Transportation Car Toll Booth Road

Data Procesosiug Record Key Punch Mamory

There have been at least two efforts to develop spe-
cialized simulation language for computer systems. These lan-
guages arc CSS II [3] and IMSIM [4].

8.2.2.3 (Css II: This simulator was developed by IBM to support

its own system analysis needs, and to aid in analysis of custo-
mer facility requirements.

IBM now provides CSS II as proprietary software on a
rental basis. C€S$ II is similar in concept to GPSS but differs
in one important aspect: it is not general but applies speci-
fically to computcr systems. Thus its language speaks in terms
of tape units, disk files, communication lines, and terminals,
and provides instructions for the modeling of programming systems.

CSS programming consists of a specification of system
elements, a specification that generates job streams, and spe-
cification of-the logical operations to be performed on the job
elements. Its gencrality is enhanced by permitting a more or
less complete construction of both the system hardware confi-
guration and the software operating system, to a level depen-—
dent on the user's needs and interests.

8.2.2.4 IMSIM: 1IMSIM was developed by Systems Development Cor-
poration for the NASA Manncd Spacecraft Center. It presents a
less general approach to computer simulation, in comparison to
CSS, because user constructions are confined to the preparation
of input tables which define the configuration of computer system
elements and the job stream. The algorithms that define the

8-5

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

software opcrating system cannot be modified, except for a few

switch setting choices. The operating system programmed into

TM5IM includes the capability of simulating priority-dependent
multiprogrammed and multiprocessor computing systems. IMSIM

is supported only at the Manned Spacecraft Center, NASA. It

is written in Modlit, a language similar in many respects to

GPSS. -

8.3 Phase 2 -- Low-Level, Detailed, Mixed Simulation

The attracliveness of high-level simulation lies in
its ability to discover major conceptual flaws before the de-
sign is committed to hardware and beforc the operating system
software is frozen. Hopefully, this effort also builds confi-
dence in the system concepts at a low cost. The major short-
coming of high-level simulation is that design flaws may have
been obscured due to simplifications in the models employed.

The low-level simulation employing various degrees
of real hardware, software and a simulated environment will
provide a more definitive verification of system performance,
albeit at a significantly higher cost. The CVT program pre-
sently being carried out at MSFC is an example of a simulation
with a real computer and data bus. The space station environ-
ment and typical work loads will, however, have to be simulated
by artificial means. -

8.3.1 The Simulation Process

The simulator is a device (both hardware and software)
which provides the developer of the system with overall exter- .
nal control of the system being tested. The simulator provides
hardware and software required for spccifying, monitoring, and
testing the system under well controlled conditions. Reference
1 describes the simulation process which can be organized into -
four factors as shown in Figure 8.1. These are:

a) the user (USER), —
b) the simulator itself (SIMULATOR)
c) the computer system being simulated (SYSTEM), and B
d) the simulation output (OUTPUT).

Let it be made clear that the SYSTEM being simulated
may be implemented as either a complete software effort on a
host computer or it may contain certain elements of real hardware

8-6

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

Built-in

SIMULATOR Built-in _ SYSTEM

ouTPUT

Figure 8.1: Simulator Logical Partitions

INTERMETRIGS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138

- (617) 661-1840

and software. There are advantages and disadvantages to both
approaches. These shall be made clear in the discussions to
follow.

The geometry of the logical partitions in the simula-
tor is shown in Tigure 8.2, and the physical control is shown -
in Figure 8.3 following. The control path labeled A in the
two figures provides the user with the capability of specifying
the load module to be simulated, start-location and initial
SIMULATOR clock getting, the maximum allowable SIMULATOR clock
settirg (to assure run termination), the configuration of the
SYSTENM (levels of redundancy, numbers of spares, initial fault
states, ctc.) information relative to autonatic reconfiguration,
illegal instruction deteclion, execution of instructions in
read/write memory, etc.

The primary control, which the USER specifies, follows
path B. By this path, and the return path C, the USER will be
capable of ordering entry to routines which he provides, upon
the occurrence of events or situations he spccifies. The
trigger-directives can include time conditions, location refer-
ence (instruction or operand access), and state changes (I/0,
interrupt, hardware error detection signals, etc.). Once his -
routines have been entered as a consequence of a trigger direc-
tive, the USER is capable of accessing all locations, registers,
states, and conditions in the SYSTEM, and modifying them as he _—
sees fit. Through an interface language, the USER may implement
actions based upon conditions of almost arbitrary complexity, by
simply programming the testing of these conditions in his rou-
tines.

Control paths D and D' provide information for OUTPUT,
such' as trace, flow-trace (output produced by branches only) , -
interrupt-occurrences, faults, or output directly from the USER.

Information is not required on path "a" since the USER -
only interacts with the SYSTEM once the run starts and needs no
interaction with the SIMULATOR. Figure 8.3 shows that the SYS-
TEM is actually implemented within the SIMULATOR, and that the
control paths to it actually interact via the SIMULATOR.

Path E of Figure 8.3 represents the closed-loop dynamic

flow capability which the USER can exercise within his interface- -~
language routines. These routines may, in turn, call routines
prepared in other languages to perform further processing. Us-
ing external routines via this path allows the convenient addi-
tion of a data-recording capability to the system to allow post-
run processing and the addition of almost any conceivable envi-
ronmental model.

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

I L 4
:
USER i
User-provided information 7
which controls simulation |
run i
LRatP@ oo (L L o S AL s Rt 41 R 73.'&?‘-‘9}“3‘%?"“."71?. L

b
¥

NS S
SIMULATOR !
s
B
i
Ei
§
| SYSTEM | :
I bt
System being y
simulated | i
| ot
:
Lo
1

3
XY

OouTPUT

! Listing cutput from .
! simulation run %
EREas aaiinsiim, 57 Kl “““’M\'&E‘W‘i‘;

Figure 8.2: Basic Simulator: Input, Simulator, Output
8-9

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

User-provided
Routines

USER

7
|
|

Bl i it e S AN I M & 1o o A RIS RPN L 52500000 i)

o ST T T A»Avv AT LI
AlBIC D
\
i i i
| i
Lo SIMULATOR
S
r‘ © i
| ® SYSTEM '
I o -
| . |
l e :
| (]
—_—— e e
' -
|
: Y -
OouUTPUT F

Figure 8.3: Simulator Physical Control Flow

8~-10

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138‘- (617) 661-1840

1

8.3.2 Simulator Design Issues

8.3.2.1 User Tnterfaco: Tor any simulation effort to be success-
ful, the user or experimenter must be provided with a capability

of exercising complete control over the simulation from beginning
to end. This control includes the ability to:

a) Specify all initial conditions including default con-
ditions, beforc the simulation is run. This includes
the a¢hility to specify the contents of memory locations,
control hit and processor registers.

b) Specify the work load to be run in the system, includ-
ing havaware clenents to be used.

c) Specify the environment to be gsimulated, including ex-
tra-ordinary events such as failures.

d) Specify the outputs to be generated and reported.

e) Specify modes of operation, the ability to roll back,
and snapshot timos.

8.3.2.2 Work Load: The simulation of the processing unit or
employment of rcal hardware is only the first step in the sim-
ulation of a computer system. In order to provide meaningful
information o complex system interaction a "work load" for the
system must be specified. For the SUMC MP this will include a
reasonably complete sct of actual or simulated applications
softwarc modulcs as well as the real exccutive systemn.

If one attempts to evade the issuc of generating a
realistic work load, many important design factors may be over-—
looked. For example, if a simulated work load is generated by
a collection of subroutines, each one occupying a given amount
of memory space, and a spccified execution time (as simulated
by a countdown loop), the information concerning instruction
frequency is lost. Also, since memory requirements for each
subroutine are assigned arbitrary values, many factors con-
cerning memory management become distorted.

It is suggested that an effort be made to generate
the real application software to be used as the work load.
Space qualified software is not regquired for a system simula-
tion. Therefore, the use of real applications software, to
the extent permitted by the simulator's limitations, may be
less difficult than trying to gencrate a realistic model of

the work load.

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Because of the interaction between hmrdware and the

executive, it seems only reasonable that the - wcutive system

model must contain as many as possible of th ratures of the .
real executive. A large number of the paran r5 or algorithms

which will be modified because of the simulea .l experience are

implemented in the exccutive software.

8.3.2.3 The Environment: In simulating aerospace computer
systems, the work load must often interact with the spacecraft -
and its cnvironment. TFor examnle, navigation programs must re-

ceive accelerometer inputs before they can correctly update
vehicle position and velocity. A high degree of similarity must
be maintained betwecen the real and modeled environments so that
the simulated computer can be subjected to computational loads
and dynamic situations closely approximating the conditions of
the actual mission.

The simulation environment developed for the Apollo
Guidance, Navigation and Control System included modeling space-
craft dynamics, engines, optics, astronaut interactions, atmos-
pheric and gravity effects, motions of celestial bodies, etc.

For the SUMC MP, the environment cannot be simulated
within the SUMC itself. This would distort memory management,
I/0, processor allocation and real time factors. The simulated
environment must be provided by external equipment. For example,
the H316 computer can provide such a vehicle by simulating the
data bus and all its peripherals. If a real data bus is employed
with a limited amount of real avionics equipment then the H316
could be interfaced to the data bus to simulate those equipments
which are impossible to exercize satisfactorily in the labora-
tory (e.g., IMU's, fault detectors within BITE) .

8.3.2.4 Measurement of the System Under Test: The accumulation

of statistics and the output presentation of this data are the)
ultimate result of any simulation result. If a real computer

is used instead of a simulated model then a major problem can

arise due to the lack of computer memory capacity for trace and -
dump routines and data. If the memory is used for trace and

dump data then it cannot be used to process the workload. The

results of the simulation run will therefore be distorted.

A secondary problem also arises in that real time aero-
space computers usually do not possess a full complement of high
speed record recording equipment, such as card readers, high
speed printers, or tape units. The attachment of these equip-
ments could also distort the results since they put an abnormal
load on the I/O.

[e o]
I

12

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-184C

A complete software simulated system will not suffer
the problems meontioned above since time and memory space are
also simulated entities. When rcal hardware is used within the
simulator, it is difficult to compensate for inadequate memory
or the loss of recal time.

Three features which were incorporated into the Apollo
computer simulator are presented below as examples of the inter-
action of the simulator and the simulated system. These inter-
acticns imply that if a rceal SUMC MP is to Dbe employed as an
element of the simulatod system, a design cffort must be undor-
teaken to provide the correct "hooks" into the hardware so that

€
uscful results may be obtained.

) Tl el

A useful feature Lo be used in microsimulation is
rollback [5]. Long missions such as Apollo require
simulation time on the order of hours. Should the host
computer (on which the simulation 1is being executed)
malfunction, the simulation will abnormally terminate.
Upon restart one does not want to go back and duplicate
the execution of this simulation from the beginning of
flight. By establishing rollback points in the simula-
tion this problem is avoided. At rollback times com-
plete core and register dumps are taken, and this infor-
mation is put on a secondary storage device. Then upon
system failure the simulation can be restarted at the
last rollback point by loading memory with this stored
information. The overhead associated with rollback is
well justified with long simulations, such as Apollo.
However, to prevent this overhecad from becoming too
high the system designer must decide upon a judicious -
criterion for establishing rollback points. That is,
he must trade off the cost of frequently storing roll-
back information with the savings in not having to re-
simulate a large part of 'the flight.

b) Stress Testing

Stress testing can be provided in a simulator to
help determine if combinations of application programs
will exceed their combined time budgets under the exe-
cuted conditions of operation. This request reduces
the speed of the object computer. If a group of appli-
cation programs is run in a simulation with a computer
whose speed is, say, 75% of the real computer capabi-
lity, successful operation may be interpreted to mean
that no more than three-fourths of the computer capa-
city has been absorbed. This special request can thus

o]
|

13

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

be used to "diminish" the capability of the computer

until a point is reached where timing requirements

are not satisfied. This level then is a guide to the -
amount of computer capability still available for

other software.

Stress testing can also be used to verify the
"thrashing" threshold of memory management. If the
amount of available memory is reduced but the workload
and environment are hcld constant then a measure can -
be obtained as to how much excess memory is available
for multi-programming.

c) The Coroner Reguest

A "coroner" special request can be implemented in
a simulator for post-mortem diagnosis. The request
causes storage of information from each simulated in-
struction in a circular bhuffer of size n. If the run
abnormally terminates, a list of the last n instructions -
simulated is produced. This list is a valuable aid in
determining the reason for the abnormal termination.
However, the overhead associated with this request re- -
guires that it only be used when its cost is outweighed
by the enhancement of debugging efficiency.

a) Knobs and Dials

A system simulation is undertaken not only to
verify specific design concepts, but also to make per- -
formance measurements under various parametric condi-
tions. 1In order to achicve this objective the system
(hardware and software) must be provided with enough
flexibility (knobs and dials) so that the various de-
sign parameters may be adjusted.

Although the details of the SUMC MP have not been
published by MSFC a number of suggestions can be made
concerning those entities which should remain as vari-
able parameters during the simulation. Implicit in -
the following listing are obviously a number of assump-
tions which, if incorrect, could make the variable un-
necessary. For example, if a management directive ex-
ists that only two processing units are to be employed
with no concern for future expansion then a number of
problem areas associated with multiprocessor design
degenerate into trivial solutions.

The following list describes some of the design

parameters which should be kept variable during the -
low level simulation process.

8-14

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

—

1) Opcrating Mcemory (M2)

Assume a paged virtual memory concept is

employed. The following items should be adaptable
in order to optimize pcrformance.

i)

Page size

ii) Page replacement algorithm

iii) Page presence alcorithm. If an associative

menory is employed to determine the presence
of a page in M2, then the number of words in
the associative memory should be made a para-
meter.

iv) Total size of M2 storage as well as the number

of M2 modules.

V) Possibly the speed ratio between M2 and M3.
2) Processing Unit and Local Storage (M1)
i) Instruction architecture. A measure of in-

struction frequency will indicate which in-
structions are not needed. Similarly the
measurement of subroutine usage of various
control fecatures will indicate which instruc-
tions nced to be incorporated into the de-
sign.

ii) Depending upon the use of Ml its size should

be variable.

iii) The algorithm used to assign processes to

processors should remain a variable as should
most of the executive functions dealing with
resource allocation.

3) Communication

i)

The P-M2 internal bus width and rate should
be changcable especially if a bottleneck is
anticipated, based upon phase 1 simulation.

ii) The communications link from processor to

INTERMETRICS INCORPORATED

processor as well as from processor to I/0
should be made flexible so that the traffic
capacity can be increased if a bottleneck
is discovered.

- 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

References for Chapter 8

1) Intermetrics, Inc., Final Report, Contract NAS9-12119,
"Advanced Data Management System Analysis Techniques
Study", July 1972.

2) Gordon, Geoffrey, System Simulation, (Prentice-Hall,
Englewood Cliffs, WNew Jersey, 1969).

3) IBM, C5S5 II General Information, Technical Publications -
Department, 1133 Westchester Avenue, White Plains, New
York.

4) System Development Corporation, "Information Management

System Design Tor Future Missions, Users Manual",
(Report TM~(L)-4719/001/01, Contract NAS9-11211, NASA
Manned Spacecraft Center, Houston, Texas). -

5) Chandy, K.M., and Ramamoorthy, C.V., "Rollback and Re-
covery Strategies for Computer Programs", (IEEE Trans. _
on Comp., C-21(6), June 1972), pp. 546-555.

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840

Chapter 9

CRITIQUE OF SUMC's ARCHITECTURAL CIIARACTERISTICS

9.1 Desian Goals

A ceritical evaluation of the SUMC desian is provided

in ordsr that [uture efforts may have the benefit of the present
mpAe ool hg . whis eriticue will not be prinorily directed at

the ivplowentation aspects of the circuit and/or logic dosign,
but raothaer at the hicher loevel architcctural fecatures of the
hardware. An ovaluation of any design must off neccssity rest
with a doterminalion of how well the design approaches a set
of goals. Thercefore, a set of design goals is now prescnted
which is Intermoirics' interpretation of MSFC's desires in the
development of the SUMC project. '

a) The MSFC desire to use a basic SUMC hardware design on
a wide varicety of missions, which will require a wide
range of computation powver, leads to the requirement
for a hardware design which is expandable. "Expandabi-
lity" should be considered with respect to such features
as word Jlength and sizes of the various memory and pro-
cessing structures, including the micro memory, scratch
pad, ALU, multiplexers and main memory.

b) The variety of application requirements leads to a de-
' sire to create an architccture which is flexible and

adaptable to changing conditions. For example, the
instruction sct should be able to be modified or
changed. Similarly, componcnts should be able to be
utilized within the same architectural structurc re-
gardless of their execution speed. As various tech-
nologics improve, this then allows the smaller and
faster logic and/or memory eclements to be incorporated
into the design with a minimal impact.

c) A specific requirement of the SUMC expandability and
adaptability design is the ability to utilize the de-
sign as either a stand-alone uniprocessor or as a
larger multiprocessor system.

d) The "U" in SUMC stands for "ultra" reliability. This

must not only include the ability to operate for a long
period of time without failure, but also (from a

9-1

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

practical point of view with respect to current tech-
nology), must indicate the ability to detect failures.
The detection of failures is required if a multipro-
cessor is to constrein error propagation and possess
the ability to reconfigure.

e) Since the SUMC family of computers is meant primarily
for aerospace applications, the conservation of weight
and power becomes of primary importance.

Keeping in mind these difforent critieria, the follow-
ing sections will excmine va:rious aspects of the SUMC design.
Not all of the aspcects are independent of each other, but they
are presented in such a manner so as to highlight different
points of view.

9.2 Micro Instruction Sequencing

In a microprogrammed machine where flexibility is one
of the objectives, it is extremely important that the micro
scquence control itself be flexible. The sequencing control
presently available in SUMC is described in Figure 9.1. The
only control actions possible are

a) stepping thru the micro code (0., 1., 2., 3.)
b) branching to a location described by

1) an ALU output (4.)

2) associated with an opcode (5.)
3) given in the micro code (13.)
c) alternate choice in either

1) branching or holding (6., 7.) or,

2) branching or stepping (8., 9., 10., 11., 12., 14.,
15.)

Although these forms of sequencing do allow the genera-
tion of.a static set of linked micro code, they do not allow for
easy modularization of micro code.

While this feature becomes particularly important when
the instruction architecture contains powerful semantically
concise operations, it is also extremely important with stand-
ard current forms of instructions. The execution of an

9-2

INTERMETRICS INCORPORATED + 701 CONCORD AVENUE -CAMBWDGE,MASSACHUSETTSOZKM-(61”(%14840__

CONDITIONS SEQ. ACTION
None +1

Noneo +1

Nonc +1

None +1

None PRM (22 31)-SEQ
None IAROM £E(Q

IC-0 Hold

IC-0 MROM {(C7-C16)
IC>4 Hold

IC<4 MROM (C7 - ClG6)
cNr =1 MROM (C7 -~ C16)
CuT = 0 +1

INT -+ DOT =1 MROM (C7-C16)
INT * DOW = 0 41

INT Reqg. =1 MROM (C7-C106)
INT Reg. =0 +1
INT+HDOMDIN = 1 MROM (C7-C16)
INT-DOT-DIN = O +1

CNT ==

ACCS
ACCS

ACCS

None
IC>0
— IC=0
IC=4
1C<4

_ ITERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

field
= 1 +1

=0 MROOM (C7-Cl6)

= PRM sign or ER sign as specified by the ACCS, CNT field

MROM (C7-C16)
+1

MROM (C7-C16)
+1

MROM (C7-Cl6)

Figure 9.1:

I.C. ACPION

Hold
IR (26-31)~IC
MROM (C1l1l-C1G6)->IC
PRM (26-31)->IC

Hold

Hold
IC - 1»icC

Hold

_.1]

Hold

Hold

Holda

Hold

Hold

Hold

lold

Hold

Hold

Hold
Hold

Hold
-1
Hold

Hold

Control Conditions and Actions

Binary

Code
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010

1011

EALU overflow or ALU overflow or DEX3 as specificd by ACCS, CNT

1100

1101
1110

1111

instruction can be viecwed as occuring in three phases: instruc-
ticn fetch, operator decode, and execution of the operation.

The SUMC allows for common manipulation of all instruc-
tions in both the instruction fetch and operator decode phases

of cxecution. It is interesting to note that after the instruc-— B
tion has been fetched, the memory operand is fetched, if the
operator is of the appropriate "class" of instructions. This

differentiation is performed by the hardware and is completely
dependent, therefore, upon both the instruction architecture and
its physical bit mapping. There is no general way to have scv-
eral classcs of instructions, cach with its own idiosyncrasies,
without this special hardware help. This is because the decision
on whether or not to read memory must be performed in the "com-
mon" section of code.

If there were to be the ability to call and link in the
micro code, then the question as to whether to rcad an operand
from memory could be decided after the operator had been decoded
and the execution of the operation had been entered.

(The one current possibility for modularization within
the SUMC micro code would be: -

a) Place the return micro address in the PRM
b) Branch to the micro sub-routine -
c) Upon entering the subroutines, save the return address

in the SpPM -

d) To return, gate the return address from SPM to the PRM
and into the SEQ.)

This would effectively take four micro words.)
Besides the desire for micro code modularization for
complex instruction sets, the next section will point out the

necd to be able to do much more micro condition testing for
sequence control. -

9.3 Choosing Functions to Optimize -

It has been observed that the SUMC hardware has been
optimized for the implementation of the multiply, divide and
square-root operations. However, what is the actual expected
percentage of occurence of these operations? 1In particular,
what is the frequency of distribution of all the implemented
machine instructions?

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

on

C.C. Toster et. al. [1] has made a study of OP codc usages
the CDC 3600 and has found that in scientific Fortran Programs,

the compiticd code contained only 10% arithmetic instructions. The

rel

ioining instructions woere involved with load, store, subroutine

linking and various other control operations. For the more com-
mercial type of application, the total percentage of all arith-
metic instructions fell to less than 5% [2]. The most common
arithectic operation was clearly addition. Even for the pro-
graw wvith thoe nmost arithmetic functions, multiply and divide

5

were Joss than 2%.

C.C. Church [3] states:

"In instruction occurcnce we found arithicetic 8.3 percent

and Juips 12 poreent. What @it we deing with the reut of

the cormands? Obvicusly, we nced the "Data Move™ func-
tion, but do flow charts call for anything ncar 40 per-
cont? And what of the transfers: My flow charts do not
call for anything ncar 23 percent of the problem to be
involved in transferring.”

While these types of statistics can be interpreted as indica-
ting a mismatch between the problecm to be solved (i.c., the
program) and the operations provided (i.c., the machine in-
structions), they can also provide insight into the design and
implementation of instruction sets. If the instruction set
provided is of the current machine level form (e.g., IBM 360)
then, for cexample, the multiply and divide instructions are
not driving design features. If these instructions are truly
less than 2% in occurrcnce, then their optimization and reduc-
tion of their cxecution time by half will only save 1% of the
overall execution time. On. the other hand, an optimization of
branches by half their cxecution time would make a dramatic
savings in actual execution time.

While it is understood that certain data reduction or

filtering problems do require an above normal amount of multi-
plication, this is not a common occurencc and the multiply and
divide instructions should not form the basis of the machine
architecture.

an
be

If one takes the SUMC JZ (Jump Zcxo) instruction for
example, (Figure 9.2) it can be seen that not only can it
made faster, but the number of micro instructions can be

reduced if nccessary conditions to be tested are generated by
the hardware. The testing of conditions is indeed the method

of

determining control flow through an algorithm, and there-

forc, will always either have to be in some fashion artificially
produced or cxplicitly tested. The cost of providing these ex-
tra dynamic conditions is small when compared to the gains in
execution time and savings in micro-memory.

INTERMETRIC

9-5

S INCORPORATED + 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

If (A)=0, GO TO %

If (A)#0, GO TO NI
(2) *’

[”“W“*““”““‘_“

{ () » (PRR)

(A) -1~ (PRR)

(B=0) -

X'FER to FTCH (MAR) -1+ (PC)

Figure 9.2: Micro Program Flowchart
(Jump Zero)

9-6

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

Tt can be noted that further savings can be had in the
revised J% flow chart (Figure 9.3) by cither placing the
(MAR) 1> (PC) functlon as a special entrance to the FETCH routine,
since it occurs in soveral SUMC instructions, O for this samc
recanon have this action as part of a sequence control state.

9.4 Fing‘ngjpglation - Maskings ~ Shifting - Bit Addres-
sing obhifring

The word length of a computer is often chosen because
of arithmotic precision and, cotemporancously, the instruction
format size. Once chosen, this word longth then bocomes an
artificial quantum ol addrescobility. This is the case with
the SUMC. The dmplemcatation ol an instruction set often re-
quirns the cfiiclent monipulation of variable length fields,
masking, bit manipulation and testing. While the SUMC can ac~
complish all these functions at a Macro level by using shift
and logical instructions, it is suggested that 1if flexibility
is to be obtained the high frequency of use of these functions
in various instruction architcctures reguires that they should
be more directly under Hicro level control.

The SUMC doos recognize this fact, in a limited way,
by providing in the hardware the extraction of mantissa, char-
acteristic and sign of floating point arithmetic words stored
in scratch pad. Howover, this ic rigid. The hardware desiqgn
chonld not initially presume LO know the desired arithmetic
precision of the application. l'or examplc, the gueues and con-~
trol bits recuired for the exccutive functions of the SUMC are
not given spccial hardware since they arc not known in advance.

What is desired is a generalized bit manipulation,
macking, field inscrtion and extracting mcchanism which can
be micro controlled. In the actual implementation of a parti-
cular instruction set for a particular mission, it 1s recog-
nized that this gencerally could be specialized in order to op-
timize the actual usage. An example of the need for testing
of certain bits efficiently would be if it were decided to im-
plement indirect addressing and hence the "indircct" bit of
the operand would have to be efficiently known during the ef-
fective memory address calculation. Besides changes in the
meaning of instruction fields, it could also be possible to
realize other data types or other physical forms of current
data types.

9.5 Limited Scratch Pad Addressing
The philosophy of a generalized register set contained

"in a scratch pad structure is very good as far as providing an

9-7

INTERMETRICS INCORPORATED -+ 701 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

If (A)=0, GO TO Z

If (A)#0, TO GO NI

(A) > (PRR)

(MAR) -1~ (PC)

Figure 9.3: Micro Program Flowchart
(Jump Zero) Revised

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 + (617) 661-1840

adavtable design. It would be desired on the hardware level to
allow any rogister to serve any function. Thc specification,
therefore, as to the assionment of registers would be contained
wilthin the micro coda. The location within the scratch pad of
the macro level program counter, base register, etc., should be
specified by the micro prooram and not dictated by an arbitrary
hard wircd location. One con easily conceive of instruction
scls with avtomatic base registers or none at all, or with a
return addrass ntack. The present SUMC design docs not allow
this gencralization.

Thoe internal interconncction of the scratch pd(ad-
dross recister (5PAR) to the instr ruction Nogister {(IR) and the
micoro menory huffer regis tcr indicates that addressing of the
Hla ol IES RO R B ST AU 8 __J._) SRR T I SR @/ Th A Lion. e i ’ it i=

1 i

spocified in advance within instruction code ox micro memnory
code. The ability to dynamically deduce or calculate a scratch
pad address is not possible bccause the SPAR can not be loaded
from one of the SUMC's internal registers, such as the PRR,

MOR or MAR. The dynenic determination of scratch pad address
would be reguired if one wished to implement a stack within the
scratch pad. ‘ '

9.0 Micro and Main Memorv Speed Ratio

The current T4L versicn of SUMC operatecs with a micro
memory cycle time of 320 nanoscconds, while main memory pos-
sesses a 660 nanosecond cyclc time. It is suggested that the
speed ratio between micro and main memory should be closcr to
5 or 10 to 1 instecad of 2 to 1. This bccomes especially de-
sirable when an instruction set is more complex and scmanti-
cally powerful than the IBM 360 instruction set. In more power-
ful instruction scts, one finds both:

a) an instruction operation specified in fewer bits, and
hence memory does not have to be read as often, and

b) the operations to be performed are themselves more
complex and therefore take morc computational steps.

9.7 Main Memory Synchronization

While reviewing the micro code flow charts, it was
observed that the processor or micro memory cycle time was
synchronized to the main memory cycle time by executing micro
level NOPS. The main memory cycle time therefore was an in-
tegral part of the micro code. This can be disastrous for two
entirely different rcasons.

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

a) If a slower ar faster main memory were employed many
changes would be reguired in the actual micro code.

b) In a multiprocessor one can not determine the exact
time between a memory request and the response, since
the addressed memory module might be busy with another
processor and the request might take a number of memory
cycles to be satisfied.

Multiprocegsors, therefore, can not guarantee their exact re-
sponse time with respect to ncmory.

What is required is a completely asynchronous opcrating
memory intecrface where the erecution of micro code and memory
timing arc not intertwined.

In a multiprocessor environment it is necessary that
a process be able to read the contents of a memory location
and change its value by writing into it all in ono period of ~
time at the exclusion of all other processors. This form of
read/write mechanism must be provided by any potential multi-
processor.

9.8 Limited Modularity Concept

The "M" in SUMC, which stands for modularity, seems

to extend only to the packaging of arithmetic and register func-
tions into 4 bit entities. The concept of modularity can be -
extended to the higher level of internal architecture by pro-
viding an internal structure which is organized around 1, 2
or 3 buses. Thesc buses allow all the internal structures to
communicate betwecen one another. Ag needed, new structures
may be added, such as a floating point unit or an associative
memory unit. Most present day mini computers (see Figure 9.4)
are designed around an internal bus structure.

This concept can be extended as in the MLP 900 (IC
9000) which also provides what are called program cards. These -
are hardware modules addressed by micro memory to provide spe-
cific hardware functions.

Mini computers such as the HP 2000 series, PDP-11,
MODCOMPI, GRI909, etc., are all built around an internal bus
structure. Often it is this internal bus structure which en-
ables the system to expand and contract to meet varying re- -
quirements.

The "M" in SUMC is severely limited with respect to -
this described form of modularity.

~——

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE -CAMBMDGE,MASSACHUSETTSOQKB-(61U(B14840
[

1oandwo) TUTW DTIBUDH :p*g 2INDTI

snd 1Nd41no

(S3SNA) SNd LNdkl

et i e e i

L

-z

9-11

Ny 0¥.1NO)

9.9 The "U" in SUMC - Ultra Reliability

Reliability, clearly requires "good" components. The
SUMC program does attemnpt to achicve componcent level reliabi-
lity by experimenting with advenced state of the art component
and packauging and fabrication techniques. Reliability is one
of the major design goals of the SUMC architecture. This being
the case, it is surprising that the architcecture of the SUMC
does not consider hardware detection of the major fault condi-

tions of intecurated circuit implementation. The packaging and -
definition of the modules should consider the effect of failure
and should atlicnpt to mohe detectable failures more statisti-

cally independent. IPor example, integrated circuit modules
should tend to be more bit oriented than function oriented.

It is nccessary in rcliable systems to have "immedi-
ate" fault detection within the hardware in order to prevent -
propagation of errors. The interaction of transient faults and
the micro execution of instructions must be carefully considered,
and made part of the basic structure.

9.10 Confusion Between Design Levels

A basic philosophical comment seems appropriate. A
truly modular design should possess maximum independence be-
tween design levels. That is, the architecture (block diagram) —
level, instruction definition level, and the implementation
(logic design, circuit technology) level should be approached
as independently as possible. A change of definition at one
level should not cause major impact on the other levels.

When flexibility is desired the implementation archi-
tecture should be generalized enough to allow the implementation
of a wide variety of instruction sets. This is particularly
true when one considers a large future time framework. While
most current instruction architectures are similar to the 360, —
they will become more and more problem oriented such as the
Burroughs B6700. The instruction set should reflect the major
application to which the system is to be used. For example,
when a Higher Order Language is employed, the instruction set
should be so specified as to aid in the generation of, and
hence the efficient exccution of, compiled code.

Similarly, the introduction of new technology at the
implementation level of design affects speed, weight, power and
cost, but should have no major impact upon the instruction set -
or (processor, memory, I/0) architecture.

Clearly one can not be too pedantic in the utilization

of the principle stated above and must appreciate the practica-
lities of all design levels.

INTERMETRICS INCORPORATED « 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840 _

The SUMC design has greatly intertwined the
architoctural,

memory, 1/0)
plementational lovels of

sOr,
and in

Reforonces for Chapter 9

al.
on

et

c.C., VR
IRDE Trans.

Fastoer,
tion",

1)

2) Binghom and Kaulffman,

4

Produced by Algol and

rouaghs B5500", Burroughs Corpora

February, 1969.

Church,
for a Change", SJCC,

- INTERMETWCSINCORPORATED-701CONCORDAVENL

> (proces-
instruction sct definition,

the design.

Utiliza-
582~-584.

of 0P Codc
1371, pp-

"Measurc
Conmp., May,

14

"analysis of Static Object Code
cobol Compilers for the Bur-
tion, Paoli, Penna.

14

C.C., "Computer Instruction Repertoire-Time

1970.

JE -CAMBRHXBE,MASSACHUSETT802138-(617)6614840

