
Final Report

MULTIPROCESSOR

ARCHITECTURAL

STUDY

By : Alex L. Kosmala, Saul F. Stanten, Woodrow H. Vandever

November 1972

Prepared for the George C. Marshall Space Flight Center,

Huntsville, Alabama 35812, under Contract NAS8-28605

by : Intermetrics, Incorporated
701 Concord Avenue

Cambridge,

Massachusetts 02138

Intermetrics Technical Report #01-73

IN'[ERMETRICS INCORPORATED. 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

TABLE OF CONTENTS

FOREWORD

ABSTRACT

Chapter I: Introduction

1.1 Scope and Objectives

1.2 Overview of Intermetrics'

References

Multiprocessor

Chapter 2: Multiprocessor Operating System

Introduction

Problems of Multiprocessing

2.1

2.2

Design

2.2.1

2.2.2

2.2.3

2.2.4

2.2.5

Parallelism

Exclusive Sections

Shared Data

Conflict Over System Resources

Overhead

2.3 Exclusion and Synchronization

2.3.1 Exclusion Primitives

2.3.2 Synchronization

2.4 Scheduling

2"4.1 Space and Time Allocation

2.4.2 Deadlock Prevention

2.5 Memory Management

2.5.1 Operating Memory Multiplexing

2.6 Implementational Aspects

2.6.1

2.6.2

2.6.3

System Specification

Structure

Systems Programming Language

References

i

ii

i-i

I-I

1-2

1-8

2-1

2-1

2-3

2-4

2-5

2-6

2-7

2-8

2-8

2-8

2-12

2-15

2-15

2-18

2-20

2-21

2-24

2-24

2-24

2-25

2-27

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

PageTable of Contents (continued)

Chapter 3:

3.1

3.2

Interrupt Structure

Assumptions

Interrupt Categorization

3.2.1

3.2.2

3.2.3

Process Oriented

System Oriented
Processor Oriented

3.3 Multiprocessor Interrupt Problem Areas

3.3.1

3.3.2

3.3.3

3.3.4

3.3.5

Which Processor to Interrupt?

Response Time

Innovations

The Interrupt Sequence

Interrupt Functional Response

Chapter 4 :

4.1

Memory Hierarchy

Basic Hierarchy Description

4.1.1

4.1.2

4.1.3

4.1.4

4.1.5

M0 - Micro Level Control Memory

M1 - Local Memory

M2 - Operating Memory

M3 - Mass Memory

M4 - Archival Storage

4.2

4.3

Local Storage

The Probiem- Memory Contention vs.

Performance

Two Approaches to an Implementation

Operating Memory and Memory Management

4.3.1

4.3.2

4.3.3

4.3.4

Background

Segmentation

Paging

Implementing Virtual Memory

Re fe re nces

Chapter 5:

5.1

Addressing

Addressing and Instruction Architecture

5.1.1 The Number of Operands in an

Instruction

3-1

3-1

3-1

3-2

3-2

3-2

3-3

3-3

3-4

3-4

3-6

3-6

4-1

4-1

4-1

4-1

4-1

4-2

4-2

4-2

4-2

4-11

4-15

4-15

4-18

4-20

4-21

4-23

5-1

5-1

5-1

INTERMETRICS INCORPORATED ' 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Table of Contents (continued)

Single Accumulator and General

Registers

How to Address Operating Memory

5.2 The IBM 360 and Burroughs B6700

5.2.1

5.2.2

5.2.3

5.2.4

5.2.5

Two Dimensional Addressing (Static

and Dynamic)

Implicit Addressing

Descriptors

Type Differences
Semantic Conciseness

5.3 Implementation Aspects of a Stack Machine

5.4

5.3.1 Definitions

5.3.2 PUSH

5,3.3 POP

Effective Address Generation (EA).

(Lexical Level Offset Addressing)

5.5 Stack Fetch

References

Chapter 6 :

6.1

6.2

6.3

6.4

I/O Considerations

Space Station System Requirements

Data Bus I/O

Mass Storage i/O

I/O Controller Design

Page

5-3

5-5

5-7

5-7

5-9

5-10

5-11

5-12

5-13

5-13

5-14

5-14

5-17

5-19

5-19

6-1

6-1

6-2

6-8

6-10

6-10Central Control (CC)

Interprocessor Communication

Interfaces (IPCI) 6-10

6.4.3 Operating Memory Interface 6-12

6.4.4 Channels 6-13

6.4.5 Interrupt Handler 6-13

6.4.6 Timer 6-13

6.5 I/O Configuration Organized for Recovery

References

6-13

6-16

Chapter 7: Fault Tolerance Philosophy for the SUMC

Multiprocessor 7-1

7.1 Requirements 7-1
7.2 Error Detection 7-1

INTERMETRICS INCORPORATED "701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

Table of Contents (continued)

7.2.1 Implementing Hardware Error Detection 7-3

7.3 Recovery 7-6

7.3.1 Processing Unit (P-M1) 7-7

7.3.2 Recovery from an Operating Memory

(M2) Failure 7-11

7.3.3 Fault Tolerant Aspects of the I/OC,
Channel 7-17

7.4 The Implications of Fail Safe 7-26

Chapter 8: Concept Verification 8-1

8.1

8.2

Background

Phase 1 - Initial Analys3s and High-Level

Simulation

Objectives

Tools for High-Level Simulation

8-2

8-3

8.3 Phase 2 - Low-Level, Detailed, Mixed

Simulation 8-6

8.3.1

8.3.2

The Simulation Process

Simulation Design Issues

8-6

8-11

References 8-16

Chapter 9 : Critique of SUMC's Architectural

Characteristics 9-1

9.] 9-1

9.2 9-2

9.3 9-4

9.4

Design Goals

Micro Instruction Sequencing

Choosing Functions to Optimize

Field Manipulation - Maskings - Shifting -

Bit Addressina and Shifting 9-7

9.5 Limited Scratch Pad Addressing 9-7

9.6 Micro and Main Memory Speed Ratio 9-9

9.7 Main Memory Synchronization 9-9

9.8 Limited Modularity Concept 9-10

9.9 The "U" in SUMC - Ultra Reliability 9-12

9.10 Confusion Between Design Levels 9-12
References 9-13

INTERME]RICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

FOREWORD

This document is the Final Report of a multiproces-

sot architectural design study, whose objective was to

establish a baseline design for a central multiprocessor

for a Space Station Data Management System exploiting

the NASA/_.ISFC developed SUMC hardware where possible.

The study was sponsored by the NASA Marshall Space Flight

Center, IIuntsville, Alabama, under contract NAS8-28605,

entitled, Research Study on Memory Hierarchy. It was

performed by Intermetrics, Inc, Cambridge, Massachusetts,

over the period June to October 1972, under the direc-

tion of Alex L. Kosmala. Technical monitors for MSFC

were Mr. Gerald L. Turner and Mr. James L. Lewis.

Publication of this report does not constitute

approval by NASA of the findings or conclusions contained
therein.

-i-

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

AB S TRAC T

This is an architectural design study of a multipro-

cessor computing system intended to meet functional and per-

formance specifications appropriate to a manned space station

application as defined by NASA's Marshall Space Flight Center.

Intermetrics previous experience and accumulated knowledge of

the multiprocessor field is used to generate a baseline philo-

sophy for the design of a future SUMC* multiprocessor.

The operating system design problem for multiproces-

sors is to approach the theoretical performance without sacri-

ficing fault tolerance, flexibility, and expandability. Para-

llel tasking is described as a necessary operating capability

in this regard, while exclusive operators are also needed to

avoid critical section conflicts. Synchronization, scheduling,

and deadlock prevention are other system design features which

are discussed, along with memory management. Treatment of the

topics of operating system specification and structuring, and

the use of a higher order language complete the discussion of

multiprocessor operating systems.

Interrupts are defined and the crucial questions of

interrupt structure, such as processor selection and response

time, are discussed. Memory hierarchy and performance is dis-

cussed extensively with particular attention to the desian ap-

proach which utilizes a cache memory associated with each pro-

cessor. The ability of an individual processor to approach its

theoretical maximum performance is then analyzed in terms of a

hit ratio, which is the proportion of time that a memory re-

quest can be supplied from cache only. Memory management is

envisioned as'a virtual memory system implemented either through

segmentation or paging.

Addressing is discussed in terms of various register

design adopted by current computers and those of advanced de-

sign. Using examples, two dimensional addressing, implicit

addressing, and the use of descriptors are described. Imple-

mentation of a stack-oriented machine is explained, along with

the generation of an Effective Address scheme. The overall I/O

architecture set forth is upon a Data Bus I/O to service an

* Space Ultra-reliable Modular Computer

-ii-

INTERMETRICS INCORPORATED "701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

advanced data bus concept and a Mass Storage I/O. The I/O Con-

troller d_ign is then discussed in terms of interfaces to the

processors and to the memories with special emphasis given to

recovery from failure.

A complete chapter is devoted to error detection,

fault isolation, and recovery philosophy as applied to a mul-

tiprocessor system. The important topic of concept verifica-

tion is given careful scrutiny in terms of

a) analytical techniques and high--level computer simula-

tion, and

b) detailed, low-level simulation.

Finally, the report concludes with a detailed critique of SUMC's

architectural characteristics in relationship to the overall

design objectives.

-iii-

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Chapter 1

INTRODUCTION

i.i Scope and Objectives

The work described in this report is the result of a

study of multJprocessinq system design principles, performed

in sup[:_ort of the MSFC in-house multiprocossor computer deve-

lopment. The initial objectives of the study were to achieve

a to]?-level architectural design capable of rTeeting the func-

tional and performance specifications established for the Phase

B Space Station Information Management System Central Processor,

and in doing so to exploit as much as possible the current MSFC-

developed SUMC processor design. However, during the early

phases of the study it became apparent that in order to preserve

the value of an independently derived evaluation of multipro-

cessor design features by Intermetrics, some deviation from

these objectives would be necessary. The basic philosophies of

muitiprocessor design and operation espoused by Intermetrics in

defining an architecture appropriate to the Space Station re-

quirements were found to be incompatible with those already adop-

ted by MSFC in arriving at the current SUMC design. Consequently

it was mutually agreed that rather than using the existing SUMC

design as the basis for the study, Intermetrics should apply the re-

sults of their previous experience and accumulated knowledge of

the multiprocessor field to establishing a SUMC architecture

from an entirely independent point of view. Much of that point

of view was gathered in the performance of a previous design

study [I] with very similar objectives to those expressed for

the SUMC multiprocessor. Although some of the philosophies

which are embodied in that design were directly applicable, it

was decided not to tailor the complete design to the SUMC app-

lication by adopting some features and discarding others. In-

stead, it was decided to select certain multiprocessor design

areas and hardware features and perform an in-depth analysis,

review and evaluation for each, in order to establish the phil-

osophies and the rationale developed by Intermetrics in their

approach to a multiprocessor design. The objective was to pro-

vide a baseline philosophy for the design of a future version

of the SUMC multiprocessor, radically different from the one

proposed in the present MSFC in-house development program.

In Intermetrics opinion the design of a multiprocessor

for a Space Station application should be guided by the follow-

ing considerations:

i-i

INTERMETRICS INCORPORATED '701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

a) The performance potentially achievable through the use

of multiple mrocessors (often quoted as the main moti-

vation of multiprocessing but, as will be explained in

Chapter 2, very difficult to achieve) should not be

compromised by implementational incompatibilities, es-

pecially in the executive system, nor sacrificed to

achieve other MP objectives such as fault tolerance,

flexibility, and expandability.

b) Since the overall cost of providing computational capa-

bilities (especially in a difficult environment like a

Space Station) may be dominated by software costs rather

than hardware, the architecture and operating character-

istics of the computer must reflect the needs, desires

and techniques of the programmer rather than those of

the logic designer.

c) The outstanding advantage of a multiprocessor is its

potential tolerance to failures of its components.

This capability should be realized in the initial ar-

chitectural design, and not provided as a final touch

after most design decisions have been made.

The detailed analysis of the areas of multiprocessor

design which were selected for this study reflect the above

basic attitude. They form most of the chapters in the remainder

of this report, and include the following topics: Operating

System design (Chapter 2); Interrupt Structure (Chapter 3);

Memory Hierarchy (Chapter 4); Addressing (Chapter 5); I/O Con-

siderations (Chapter 6); Fault Tolerance (Chapter 7). Additional

chapters cover Concept Verification (Chapter 8), since it was of

some concern to MSFC how any given multiprocessor design could

be given a quantitative evaluation without incurring the initial

investment of a hardware build phase, and a critique of the SUMC

processor internal architecture (Chapter 9).

Much of the description and terminology found in this

report assumes a familiarity with Intermetrics' previous multi-

processor design. To prevent unnecessary (and probably inade-

quate) repetition of the details of that design, the reader is

referred to reference [i]. However, to provide an introduction

to at least some of the terms used we present the following over-

view of the configuration of hardware and software elements of

the design, as extracted from sections of reference [i].

1.2 Overview of Intermetrics' Multimrocessor

The basic configuration of the multiprocessor is shown

in Figure i. The MP was specified to consist of a number of

1-2

INTERMETRICS INCORPORATED .701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

C'X.I

I
I

4

I i
i I

; I

- !
i i

c-_ !

t_

O @
0) F4

*r-{

ul

°! 4
0 __

L
I

...... t t
III °- 1.

O

J

J
J

c_

cD

l== b_

0
.p
b3

/// °
"0

0
U

/ _ .

0

o "_ "\ r- "1_-_

I Nil < o _ /.-_ /!.'_ _ !, -a
xt n--'_c,) 1 c= ,__-',_ _ i u

|
I'.----T -- _ n

O
.r4

c_

-_l

O
U

_)
-,-I

n_

O

@
c.)
O

i*

,--4

-,.--I

1--3

identical, interchangeable processing elements which _ould execute

the major processing workload, and a single, more specialized pro-

cessor to handle I/O processing and a number of other unique func-

tions. These functions include interrupt handling, interprocessor

communication control, and the central timer. The executive was

specified to be non-dedicated (to any given processor), and its

functions are performed by any of the processors. The choice of

which processor is made on the basis of status (e.g., by having

completed its current assignment), or by reason of its greatest

interruptibility as determined by the priority of its current

process. The number of computational processors was specified

as three, because the resulting configuration represents the

simplest which possesses completely all the characteristics (and

problems) of the n-processor case. The two processor system

which has received the greatest amount of development and opera-

tional e._o--__r-_enc_ of all configurations,_ represents a degenerate

form of multiprocessor: while certainly exhibiting true concur-

rency of processes, nevertheless the dual processor allows cer-

tain simplifications of executive functions to be made because

of the binary nuttier of active elements in the system. The mem-

ory terminology in the figure is used in parts of this report,

and is defined as follows:

a) Ml: Loca] memory, dedicated to, and only for use by

a processor. This is a general term and refers

to all aspects of buffer, scratchpad, control

and associative memory, required by a processing

element. The contents of any M1 storage cell are

available only to the processor of which M1 is

an intimate component. Only in case of recovery

after a P and/or M1 failure are these contents

made available to another processor. In this MP

design M1 is not, strictly, a member of the mem-

ory hierarchy.

b) M2: Operating memory (main memory, or, in" popular
I! I!terms, core). M2 consists of several individual

memory modules, all of which are accessible to all

processors, including the I/O controller. Each

access takes place via a data path dedicated to

each processing element, through a port in each

M2 module. The basic MP configuration, therefore,

requires four ports per M2 module. Each module is

fourway interleaved, for purposes of speed, access,

conflict resolution, and fault recovery.

C) M3: Secondary storage (backup or Mass Memory). Being

a conventional drum or disk, it was decided to

interface this level of the memory hierarchy with

the rest of the computer system in the more con-

ventional manner, via an I/O channel. The use of

1-4

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02|38 " (617) 661-184(

M3 to implement the concept of virtual fllemory then

places the heaviest requirement on the design of

the I/O controller and the I/O executive routines.

As mentioned above, several unique functions were gath-

ered together into one, unique module, which is (for convenience)

termed the I/O controller (IOC). All interfaces to the outside

world were handled via the IOC.

Communication between the processing elements of the MP

system (the P's and IOC) were handled by a separate interproces-

sor bus (IPC_).

(It should be emphasized that the basic configuration

o_ _r_] ar.>q not in,Tic.ate the levels of redundancv specified

for f_iult detecuzon' and/or recovery. For a discussion of these

aspects, refer to Chapter 7.)

The terminology used in this report refers to the way

in which information was organized and handled in the previous

Intermetrics work. The key terms and their assumed definition

are as follows:

a) Program: This is an independently compilable section

of code containing pure procedures and/or data.

b) Procedure: A section of code to which execution control

can be passed, with or without the passage of parameters.

i) Internal, not known outside of process (see below)

2) External, known to name manager and declared in

the Process Information Area (see below)

c) Segment: A contiguous block of words defined by a

descriptor, which is the unit of memory management.

d) Process: The unit of work as recognized by the opera-

ting system. A process is represented by a stack.

e) Stack: Although strictly a LIFO list, the definition

of a stack is less rigorous when used to represent a

process.

f) Level: A demarcation in the addressing hierarchy.

Derived from the concept of lexicographical level in

block structured language (such as ALGOL or HAL), but

extended to provide convenient addressing by the

operating system.

1-5

INTERMETRICS INCORPORATED.701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

Figure 2 illustrates the relationship and use of some

of these terms. Each process is represented by an execution

stack. The initial hierarchical level for process execution,

and therefore the lowest numerical level for any process stack,

is level 2. Subsequent procedure nesting varies the lexical

level of each process stack to 3, 4, 5, etc. The portion of a

process stack that is below level 2 contains a collection of

data termed the Process Information Area (PIA) containing names,

priorities, counters, for bookkeeping, etc., specific to each

process. Above the PIA the stack behaves more strictly as a
LIFO list.

Each process has associated with it a vector of des-

criptors defining the segments containing the procedures to be

executed by the process. These descriptors are addressed as if

the vector were a stack: by stack nu_)er and offset from the

base of the stack. For convenience, this collection of segment

descriptors is termed Level i, since it exists at a more global

level than the individual processes, and each such vector will

be referred to as a stack (even though, strictly, it is not).

At the most fundamental level there is a single collec-

tion of basic system descriptors, variables, etc., which is

termed the Level 0 stack, again for convenience of addressing.

One descriptor at level 0 points to the stack vector, which con-

tains descriptors of all the stacks in the system including the

"pseudo-stacks" of levels 1 and 0.

Each processor contained a set of hardware registers

which indicated the actual M2 addresses of the start of each

of the system levels, i.e., the base address of the correspond-

ing stack. Figure 2 also shows the linkages that tie the Com-

pool mechanism into the system.

The operating system design philosophy reflected an

emphasis on the achievement of reliable operation of both

hardware and software. It was assumed that only higher order

language(s) would be used in the progranm_ing of application

software. The exclusive use of IIOLs allows secure system op-

eration to be realized without exhaustive runtime verification

of each request for OS functions. An intimate and well-defined

interface between OS and the compiler(s) was assumed achievable,

so that an optimal division between static (pre-run) and dyna-

mic (runtime) diagnosis could be made.

It was assumed that the language/compiler to be used

in progra_ning the Space Station application software would

possess the facility of handling common data pools (Compools).

The MP design provided a Compool implementation.

1-6

INTERMETRICS INCORPORATED "701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-184('

0 q.) ,_4
_. ;............. :...... _' : i trj l.-i e.)

. I _"_ _' mic,_H o , {_ r_4-_

) ; ! i t { n r_ m

t ; , _ t ta

\L

_ II N il H

". c_ _ ,? c.7

t c? c-! cR i

t
\

\\

,, F_cO

0 ',

.13
,'d te
E) _-t
00

[q C_)

U.!
,' rz) 1,0 *

b _¢, ,
O b *

" _-I rd
p._ 4..)

\

%.

\

i\

_ U

, _

,k
\

: i

'% ;i

" _

\

X
D

49
rd_

lq
O

-P

,_1
k4 .---.
D,-_
1.0
(0,-4

_ O3

(1)
U)

ul

D
0
I-t

I _ [.f}

0

O

-/ \lt!i

", ¢):, , i 1 i _ 0 .---.
_> { _ i I I_ H .I-) 0

\ t ; 1 li _.

L , ! I % _ •

.'_ -:, _ _ 6}
i • 4_D I>

J

.p

U_

rd
kl
q)

0

0

b
0
_4
P_

-,-I
4_

t_
D

-,-I
k4

.P

k4

4_.

I-.ql

Qi

oq

o3
_4

b_
-,--I

1-7

0

Reference for Chapter 1

i • Miller, J.S., et. al., "Engineering Study for the

Functional Design of a Multiprocessor Design", In-

termetrics/NASA Contract NAS9-I1745, September,

1972.

1-8

INTERMETRICS INCORPORATED.701 CONCORD AVENUE . CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

Chapter 2

MULTIPROCESSOR OPERATING SYSTEM DESIGN

2. i Introd_ct.i on

This ch;.:<gter will discuss the special problems facing

the designer of an operating syotm_"-_,_ for a multiprocessor com-

p,_.t_<. 5_e _co_e of the task which is summarized hero did not

encompass all aspects of OS design. Emphasis is placed on the

more :[_t_portant functions and on those aspects of OS which are

unique to, or at].east more significant for, multiprocessors

as compared with simplex computers.

An operating system for a space station multiprocessor

will be capable of supporting a wide variety of functions. Al-

though some of these may be unique to the application, it is

very probable that the following standard functions will always

be required in some measure:

a) Initialization

This deals with the initial introduction of informa-

tion into the computing system and its preparation for

eventual execution. It includes bootstrapping from a

cold start, establishing the minimum state from which

the complete system structure can be created, the pro-

blems associated with loading and linking of progr_is

and data for execution, etc. This topic is not a tri-

vial one: a real-time MP/OS is a complex structure and

the problem of establishing it as a working entity

from.scratch should be considered at the time its ini-

tial design is undertaken. Initialization will not be
discussed further.

b) Process State Controller

The basic element of computational work will be termed

a Process. Processes can exist in various states: ex-

ecution, readiness, stall or suspension. This function

of the OS controls the orderly progression of processes

between these states in response to various stimuli,

such as voluntary process state changes, I/O interrupts,

priority changes, interprocess communication, etc.

2-1

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

c)

d)

e)

f)

g)

Interrupt Servicing

A real time, general purpose, central computer for a

space station will almost certainly be required to

handle system-originated external interrupts in addi-

tion to interruptions due to arithmetic traps and

other error conditions. This OS function implements

the desired responses to randomly occurring events of
this nature.

Timing and Synchronization

This function provides the basic mechanism for control-

ling the time dependent execution, and the synchroniza-

tion of parallel, concurrent processes in a real-time,

multiprogran_ed environment.

Resource Management

This is the basic function of an operating system. The

resources required by a computational process are vari-

ous. First, there are the basic hardware elements:

the processors, memory modules, and interconnecting data

paths which must be available to allow the process to

run. Then there are the less tangible items such as

common programs and data over which conflict of access

by several concurrent processes is possible. Lastly,

there is external device availability: sensors, avio-

nics data bu£es, disks, tapes, etc. The resource mana-

gement function is usually divided into processor allo-

cation, memory allocation, compool and shared data

management, I/O and file management. It is the function
of resource allocation to ensure that each scheduled

process is granted a sufficient share of the available

resources to execute in a timely fashion without adverse

effect on other processes.

Configuration Control

In a fault tolerant computer, the current status and

the configuration of all elements of the computer must

be continuously monitored and controlled by the opera-

ting system.

Operator and User Interfaces

The OS must provide facilities to interface with the

operator and/or user. For a complex system this is not

a simple task, especially when a major mode of operation

is interactive usage, by the crew members in controlling

the progress of a mission.

2-2

INTERME-IRICS INCORPORATED '701 CONCORD AVENUE "CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

h) Performance Monitoring

'±his is an often under-emphasized function of an opera-

ting system, but it is an especially important one in a

new or novel application such as a space station MP.

The more sophisticated a system is the greater is the

need to measure, evaluate and influence its performance.

Some of these functions will be reviewed again in the

light of the follo_,_ing discussion of problems facing the multi-

processing o}>erating system designer.

2.2 L)rq)blems of Multiprocessin([

The multiprocessing environment does not pose any diffi-

culties that the designer of an operating system for a multipro-

grammed, single processor system has not also had to face and

overcome. The MP adds new facets to familiar problems, however,

by reason of the concurrent, rather than sequential, execution

of the multiple processes within the system. This requires that

greater care be taken to prevent damaging interaction between

processes at a point of commonality, especially with regard to

shared data. Measures taken to protect processes against each

other usually affect performance unfavorably. The maintenance

of performance near the theoretical limit is, in any case, more

difficult for a multiprocessor than for an equivalent simplex

computer.

An attractive feature of the multiprocessor is the pro-

spect of increased performance achieved by means other than ad-

vances in processor technology, i.e., n similar processors doing

the work of one n times as fast. In practice several factors

prevent this promise from being fulfilled. If we define "through-

put" as the integral over time of the rate of "useful" computa-

tion C, then it can be shown that:

< <Cdt >- n (C) dt
n

where n is the number of processors. C is a discontinuous func-

tion of time, and as n increases, it becomes increasingly diffi-

cult for C to remain non-zero for long periods of time. Compu-

tation lost whenever C falls to zero may not be made up in time,

and the right hand (multiprocessor) integral continuously loses

ground to the left hand (simplex computer) integral. The reasons
for this are enumerated below.

2-3

INTERME[RICS INCORPORATED •701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

2.2.1 Parallelism

In order for all n processors to be kept usefully at

work, their load must be capable of being organized into n or

more tasks which can be executed in parallel, continuously and

simultaneously. The degree to which this can be done depends

on the parallelism inherent in the work load. Certain types

of computation exhibit natural parallelism, e.g., signal pro-

cessing, where the same operation is applied to multiple sets

of input data (promoting the design of so-called Single Instruc-

tion Multiple Data (SIMD) computers, for example the Goodyear

Associative Processor [i]). But, in general, parallelism must

be sought out, identified and utilized. It exists potentially

on several levels:

a) On the "job" level. In a general purpose computer fac-

ility, the submitted jobs are normally completely inde-

pendent of one another, even if they share resources.

b) Within a job, at the task level.

c) Within a task, most of the statements are independent

of one another.

d) Within a single statement some computations can be done

in parallel.

Parallelism of types c) and d) is not visible to the

operating systera, because the basic unit of OS is the process

(or task). For the type of application being considered for the

SUMC multiprocessor, it is not likely that the work load will

totally resemble that of a ground based general purpose facility,

although it will exhibit more of its aspects than will a simple

flight control computer. Parallelism of type a) will probably

not be present in sufficient proportion to provide the sole guar-

antee of full employment for two or more processors. It becomes

necessary to deal, additionally, with parallelism at the task

level. The trouble is that problem solving with a computer is,

in general, a serial process: programmers do not naturally think

in terms of concurrent parallel processes in arriving at their

solutions, unless such a structure is inherent in the problem.

A real time control function may conists of several, more or less

independent, activities going on in parallel, e.g., system moni-

toring, navigation, display processing, and vehicle control.

Even so, it is anticipated that there will not be sufficient

functions of this type to keep two or more processors fully oc-

cupied, all the time.

It is necessary, therefore, to uncover task parallelism

that may not be apparent, and even to create parallelism if none

2-4

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-184(

exists. This imposes a constraint on the programmer, which must

be considered deleterious because it is not natural. So it is

necessaz-y to assist the progra_mmer with a programming language

and a compatible operating system that contain features, attrac-

tive to use, that encourage the creation of multiple, independent

processes. The use of a block-structured language encourages

programs to be written as collections of small, closed subroutines.

ALGOL, PL/I and HAL are among the languages that possess this

property. In addition to structure, a language can provide a

convenient and natural way to interface with the executive by

recognizing tasks as syntactical entities. The multi-tasking

features of PL/I and HAL encourage the programmer to think as he

programs in terms of procosses which are amenable to scheduling.

5:he muitiprocessor operating system must support the

requirements of parallel tasking by providing adequate communi-

cation and synchronization primitives, and by protecting shared

data against conflicting concurrent accesses. These requirements

are discussed in more detail later.

2.2.2 Exclusive Sections

In a general purpose multiprocessor certain operations

are concerned with the manipulation of unique system data such

as, for example, information maintained by the Process State Con-

troller, which contains the current dynamic state of all proces-

ses. Execution of the Process State Controller is an exclusive

operation: only one process may perform it at a time. In a

simplex computer this is achieved trivially: it is only neces-

sary to inhibit interruption of the single processor by external

happenings to assure exclusive execution of the Process State

Controller. A multiprocessor requires a more elaborate mechanism

to prevent the simultaneous execution of such critical functions

by two or more processors. Such mechanisms cause the conflicting

processes to become serialized in time, each being admitted to

the critical section through interlocking turn-stiles (a general-

ized mechanism is described later). The net effect is that when-

ever two or more processes wish to enter an exclusive section,

only one may do so and continue executing: the other(s) must

wait. If the exclusive section is designed to inhibit the alter-

nate assignment of the processor (e.g., if it is the Process

State Controller), then throughput temporarily falls until the

other processor is through with the exclusive section. This loss

of throughput cannot be made up again. Note that in a batch en-

vironment conflicts of this type are rare, but in a real time

system of short tasks, with frequent process state changes, the

probability of conflict may become significant. This precipita-

tes the following quandary: to encourage parallelism a multipro-

cessor program should consist of many concurrent tasks, but to

2-5

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

avoid critical section conflict it should be organized into as

large a serially-executable piece as possible!

2.2.3 Shared Data

There is a problem with shared data, aside from the

need to protect it from simultaneous modification. It is asso-

ciated with the creation of copies of shared data. In many com-

puter designs, performance improvements have been achieved by

localizing lengthy sequences of operations within the fast logic

of the processor, rather than executing out of main memory. (The

cache memories of the IBM 370 series [2] and the task memory of

the Navy's AADC [All Applications Digital Computer] [3] are ex-

amples of localized processing.) The problem arises because data

is maintained local to the processor. If the data is shared with

other processes, changes in the original or any of the copies

must be reflected in all. Some means must be found either

a) to allow one process access to another's local storage,

b) to update all copies of shared data at the same time or

c) to prevent old values from being used by other proces-

ses until updating is performed.

It should be pointed out that this phenomenon is en-

countered whenever copies of shared data are created in any sys-

tem: in the Burroughs B6700 series the problem arises through

its use of descriptors. These are maintained in the stacks of

individual processes. Whenever a descriptor needs to be changed

(it is a common occurrence in a virtual memory system for a

descriptored item to be transferred to back-up storage: the

address field of its descriptor most be modified to reflect this

change of whereabouts), all processors in the B6700 are stopped,

and all process stacks in main memory are searched for copies

of the particular descriptor. The B6700 was not designed as a

real time controller so the ensuing loss of processing time was

not considered objectionable by the designers. It is a different

matter for a space station computer, however. The Multiprocessor

design developed by Intermetrics [4] employs a unique approach

to a similar problem. The copy of a descriptor may be maintained

in an associative memory local to a processor. This avoids acces-

sing the descriptor through three levels of indirection

each involving main memory references. Changes in the descriptor

are very quickly signalled by the provision of a specific machine

instruction which cancels the appropriate entry in the associa-

tive memory. The Intermetrics multiprocessor avoids local copies

of the data itself, and thereby foregoes the potential perfor-

mance advantages of local buffer or cache-type processing.

2.--6

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

I

2.2.4 Conflict Over System Resources

The most critical resource is main ruemory. As the num-

ber of processors increases, the possibility of conflict between

them over the use of memory increases. As in the case of shared

data, a resolution of conflict results in one or more processors

losing pz-ocessing t.ime, and the right hand integral of the ex-

pression for throughput given earlier again loses to the left

hand. The device of interleaving the modules of a memory system

can be used to minimize the <]e]ays incurred by conflict, but it

exacts a cost in added hardware comple_:ity. Its effect is to

randomize memory usage and thus to obtain stationary behavior.

Another approac]] is to partition memory amoung the various pro-

cesses so that processors tend to execute out of physically

tic. This technique implies a sophistication of the operating

system, a well-kno,,,n_ job stream, and a memory system of suffi-

cient modularity.

The network interconnecting processors, memories and

I/O units is a more critical element in a mu!tiprocessor than

in a simplex system. With more than one processor requesting

memory at a time, this bus itself becomes a source of conflict.

It would seem that a technique that lowers the frequency of use

of the bus would lessen the probability of such conflict. For

example, the use of a cache memory, by encouraging local execu-

tion, would appear to make bus use less frequent. However,

analysis shows that the probability of bus conflict actual ly

increases with increas.ing speed of the cache, thereby defeating

any performance advantage.

In summary, techniques devised to minimize conflict in

a multiprocessor are susceptible to the following drawbacks, any

or all of which conJ3ine to prevent the multiprocessor throughput

from equalling that of the equivalent simplex processor:

a) Increased hardware complexity and cost,

b) Increasing operating system sophistication, usually ac-

companied by increased overhead in space and time.

c) Reduced throughput due to delays introduced to resolve

conflict.

The more processors in the system, the more marked is

this effect. Only in a particular application, for which the

characteristics of the work load can be anticipated, is it pos-

sible to deduce the number of processors required to achieve

a given performance cost effectively. In the absence of such

information about the environment of the multiprocessor, this

2-7

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

limit is very difficult to determine. As a result, almost all

practical designs of multiprocessors to date have been limited

to the degenerate case of two processors. Some designs have

even dedicated functions or resources to each processor in order

to avoid some of the above problems, resu]ting in configurations

of dual computers rather than dual processors.

2.2.5 Overhead

The preceeding sections have cited several factors that

contribute to the complexity of functions that a multiprocessor

operating system is required to perform. Each factor contribu-

tes to the overhead of computational time and memory space con-

sumed by the operating system. Matters are further aggravated

because the many activities going on simultaneously in a mul-

tiprocessing environment take on the characteristics of a que-

ueing problem: their deleterious effects are in general worse

than additive, i.e., the loss in real throughput is a non-linear

function of the number of contributing overhead mechanisms.

But to end this section on a positive note, it should

be realized that this depressing parade of multiprocessing dif-

ficulties has a corollary: small efforts to limit the damaging

effects of each of the mechanisms discussed in this section can

yield dramatic improvements in throughput because of the expon-
ential nature of their interaction.

2.3 Exclusion and Synchronization

Any multiprogrammed system requires operating system

primitives for the commmnication and mutual protection of the

concurrent processes. In a multiprocessor, these activities

can be actually time-concurrent and these primitives must be

implemented in a combination of hardware and software. The

problem of protection against unwanted interactions will be

reviewed first, followed by a discussion of synchronization.

2.3.1 Exclusion Primitives

In a simplex computer a basic exclusive operation may

be implemented in software, but a multiprocessor needs hardware

assistance for such an operation, because of the true time-

concurrency of execution of two or more processes. The hardware

must be capable of reading the value of a variable, and then

rewriting the variable with a new value in one uninterruptible

operation. An example of such an instruction is the TS (Test

and Set) of the IBM 360 series, which writes all ones into a

specified byte and sets a condition code with the original

2-8

INTERMETRICS INCORPORATED "701 CONCORD AVENUE " CAMBRIDGE, MASSACt-IUSETTS 02138 " (617) 661-1840

contents. The Burroughs]_6700 RDLK (Read with Lock) instruction,

which stores the contents of the B register into the location

whose address is contained in the A register, but leaves the

previous contents of the location in the B register, is closer to

a generalized non-divisible read and write operation.

The actions of a set of genera]_ operating system pro-

cedures designed to provide the exclusion primitive are as fol-

lows :

ENTER Check for occupancy of pro--
,_cdurc. Zet LocJt. If

locked, enter wait queue.

o

o

(critical section}

EXIT Check for occupancy of pro-

cedure. Remove self from

wait queue. Inform execu-

tive to wake next in queue

if any.

How these actions are implemented using a fictitious

non-divisible read and write instruction NDRW is illustrated

in Figure i. Let the execution of NDRW exchange the contents

of the operand, MUEX, with the contents of the accumulator.

MUEX may contain the following values:

0

- 1

No process executing critical section

(i.e., section is "free")

Critical section is being executed by

one process

2-9

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

O
.,.4

O
O

u)

,4

O

.,4

,,4

1.4
'44
v

14
OJ
.I-J

14

i
I

i

I

,4

rJ

4'

o.J

r4

.

I
I
1

X

,_ .,4
cI _)""

_4 0 C.l
.rj _4 _5

L

I
C)

,,4

4'

>;

I

__3

,-4
!

C_

['I

7i.....
A.

O|
V t

0

4"

O-
:J
rl

b

m_

(9

.4

9 4' --4',

4J 4
r-4 O
.,4 ;I

,-4

-{ .:J b.

I?/
@ @

i,,3

,-i
I

A

0

o

,-i

:>

L9

0

@
_4

OD]

m

ol
A_

I

I
I
I

I
I

I

I

4J

rJ 0

_j

4J

f4

OJ

Z

t

C
-r4
4m

0
U

0
-,4
4J

0

o_

.,4

0

0

v

_>

-,4

",-I

_4 __

_4

0

,'-'4

0

,--4

4_

2_i0

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

2,3, . . .n Critical section is being executed by one

process, and 1,2,...n-1 are waiting to

gain access. Requires a MUEX queue struc-

ture to be maintained by OS.

negative Procedures ENTER or EXIT are being executed

by a process. (The OS primitive itself

must be protected against multiple use.)

The actions surrounded by dotted lines indicate the
execution of the P:r.'ocess State Controller function. Note that

the fin,u] updating of MUEX in cases where a process is to be

placed in the wait state, or readied to execute the critical sec-

h{on_ m_st be done within the Process State Controller to prevent

interruption ot the sequencu.

This exclusion mech_,nism must be expanded if it is

required to accomodate the comprehensive Update Block capability,

for controlling the accessing of common data, provided in the

HAL language [5]. It is not always necessary to prevent all types

of access to shared variables: a shared variable can be read,

as long as it is not actually being changed. The ability to

differentiate between types of access reduces the time for which

a requesting procc_ss must be made to wait, with consequent im-

provement in throughput. The HAL Update Block is in effect a

modified form of critical section. Every variable that is

addressed within an Update Block has associated with it a "lock-

type" attribute. The lock can assume the following states:

a) Free: Unlocked

b) Read: Accessed for reading only

c) Copy: Accessed for modification

d) Write : Being modified

A variable that is to be modified is first copied, and

all intermediate computations are performed on the copy. This

is the meaning of the "Copy" state. Final values are written

from the copy to the actual variable after the state of the

lock has been raised to "Write" The testing and setting of

the states of locked variables requires the use of the NDRW in-

struction. A requesting process is allowed into the Update

Block only if the type of access requested is compatible with

the current state of all locks within the block. For example,

a request to read the variables is allowed if the current state

of all locks is "Free", "Read", or "Copy", but is not allowed

if any are in "Write".

2-11

INTERME]-RICS INCORPORATED "701 CONCORD AVENUE " CAMBRIDGE, MASSACtJUSETTS 02138 . (617) 661-1840

An operating system mechanism to implement Update Blocks

involves the maintenance of linked queues (see Figure 2). Every

locked variable has associated with it a queue of requesting

processes, each identified with its individual access type. All

queue elements associated with a given process are also linked,

to facilitate the response to changes of state of the processes.

The Intermetrics design of a multiprocessing operating

system [4], defined a pair of generalized primitives, ACQUIRE

and RELEASE, of the £orm: ACQUIRE (Mode, Category, Name, Access)

where each of the terms has the following meaning:

a) Mode: The calling process is placed in the Wait

state if access is not immediately pos-

sible, or an immediate return may be spe-

cified with an indication of why access

could not be allowed.

b) Category: Data, code or device. The ACQUIRE primi-

tive is applicable to the protection of

shared data, the implementaiton of exclu-

sive sections, or the use of a shared de-

vice such as a printer.

c) Name : Identifies the item in the category, e.g.,

the name(s) of the specified shared variables.

d) Access: Shared, update or exclusive access request.

.These are analogous to HAL's Read, Copy,

and Write lock type states.

It is possible to define any type of required exclusive

operation in a given system with these two primitives.

2.3.2 Synchronization

In order to provide for communication between parallel

processes of a multi-tasked environment it is convenient to in-

voke the concept of an "event" An event is a variable whose

state reflects the occurrence of an activity within the system,

e.g., the completion of a lengthy computation or the arrival in

memory of a previously requested item of I/O. The process await-

ing the activity is associated with the event. The "signalling"

of the event results in the process being made ready to continue.

FOr illustration, let Tasks A, B and C be three independent tasks, _

all scheduled during the execution of some master Program. Sup-

pose it is appropriate to schedule Task C only when certain com-

putations have been completed by Tasks A and B. Tasks A and B

may be executing on separate processors, and thus be unaware of

2-12

INTERMETRtCS INCORPORATED- 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

14

0

14

u_

0
0

_J
.IJ
fO

t'N

©
14

O_
.,-I

2-13

one another. In which case, they cannot easily cooperate in

the scheduling of Task C. However, if each were to signal

an event on completion, e.g., EVENT A and EVENT B respectively,

then the event mechanism can provide the synchronization that

causes Task C to be scheduled as soon as both EVENT_A and EVENT_B

have been signalled.

The language multi-tasking features that were advocated

earlier to help keep a multiprocessor busy are supported in PL/I,

ALGOL and HAL by event mechanisms of varying sophistication.

The Intermetrics multiprocessor design [4] specified a very com-

prehensive event structure which enabled complex logical expres-
sions to be evaluated as event signals. In this design events

are controlled by primitives of the form

SET n, E 1 E 2 , ...
(E, E)

RESET _ ' ' m

which is interpreted as "set (reset) event E when n of the events

in the list E 1 through Em, are signalled." If n = m, this ex-

pression is the boolean "and" of all listed events, and if n = 1

it is the "or". The primitives also have a simpler form

SET } (E)
RESET

Response to the signalling of events is basically of two forms:

WAIT(n, E l, E 2, • .. , E m)

and

ON(n, E 1 , E 2, ..., Em)<code>

In the first, as the WAIT is executed the process is placed in

the Wait state until the event expression becomes true. The

second statement causes an interruption of the process as soon

as the expression becomes true, to execute the procedure spe-

cified in the "code".

2-14

INTERMETRICS INCORPORATED "701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 66t-184([

The implementation of an event structure involves mul-

tiply-linked queues of event elements which allow the associa-

tions between the processes involved in declaring, signalling

and responding to events to be established, executed, and re-

moved in a dynamic fashion. It is perhaps superfluous to point

out that such a mechanism in a multiprocessor environment re-

quires processors to be able to interrupt one another. This

ability is provide_i, for example, in the Burroughs B6700 by

the "II]_YU", and J_]_e RCA 215 by the "INTERRU!?T CPU" instruc-

tions.

2.4 Schedul:i _:_

The scheduling function of the operahing system ensures

that processes are prepared for timely execution with due regard

to their relative importance. It involves some of the functions

of Process State Control and Resource Allocation defined earlier.

This section will discuss briefly the following aspects of this

function :

a)

b)

c)

Ensuring that computation time and space are properly

apportioned among the processes according to predeter-

mined needs, while maintaining an optimal balance be-

tween the conflicting requirements of throughput, effi-

ciency, and response. Throughput is defined as the

amount of useful work accomplished by the total multi-

processor system, efficiency is the degree of utiliza-

tion of the basic components of the system (e.g., pro-

cessors, memory modules, I/O devices), and response is

the ability to react to a given stimulus.

Ensuring that competition between processes in their

demands for resources do not produce catastrophic con-

ditions, such as deadlock or thrashing. ,

Preventing the resulting computational overhead, espe-

cially of time in a real-time control system, but also

of space, from becoming excessive (the definition of

"excessive" is not attempted here!).

2.4.1 Space and Time Allocation

The computational activities in a space station multi-

processor are expected to fall into the following categories:

2-15

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

Category Characteristic Time

Response Ranqe Criticality

Batch i0 secs-mins, non-critical

Interactive

Real Time

0.i sec-10 secs. non-critical

1 ms-100 ms non- cri tic al

Real Time 1 ms-100 ms critical

Examples

Lengthy computations. Off line

experiment data processing

Crew operational sequences.

Time sharing by scientific per-

sonnel.

Control of scientific experi-

ments. Operational equipment

status monitoring

Operational equipment servicing:

strapdown IMU. Closed loop con-

trol: autopilots, etc.

Processing tasks in the batch category can, to an extent,

ignore the constraint of time. The allocation of memory space or

other system resources such as common data, input file, I/O de-

vices, processors, can be considered with more freedom. The

presence of this category in the total work load can provide a

measure of global optimization in the use of system resources to

maximize efficiency.

The time-critical real-time tasks can not make such

compromises. Resources must be ready when needed. The need

is often (but not always) randomly determined. Unless it is

composed of highly repetitive tasks, the real-time component

of the work load prevents high values of throughput and effi-

ciency from being attained.

A work load consisting o[components from each category

must be so arranged and presented to the computer system that

all tasks can get sufficient cuts at the system's processing re-

sources. Obviously, no amount of intelligence built into an

operating system will supply enough computational resources to

a work load whose demands exceed the capability of the machine.

An operating system can be designed to contain features and to

operate in a way that matches the characteristics of the work

load. But it remains the responsibility of the user of the sys-

tem to assign a given work load to the machine in such a way

that it does not overload the system.

Task scheduling can be approached from two extremes:

a) Synchronous, or time slot scheduling. Each task is

allotted a different, but fixed, interval of time for

2-16

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

b)

a)

execution, which is available at multiples of fixed

minor cycle intervals.

Demand Scheduling. Tasks are allocated processors

and other resources on demand, at execution time, ac-

cording to the needs and importance of the task and the

availability of the resources. Tasks are differentia-

ted in importance by a priority value which stays as

initially assigned, or changes as a function of time or

the tasks' status.

The advantages of the synchronous approach are:

Minimal overhead, since scheduling is pre-determined;

b) The scheduler is simpler, being essentially table driven;

c) The fixed schedule of task execution eliminates problems

associated with code and data sharing, and does not re-

quire re-entrant code;

d) The load may be evenly distributed over the available

time ;

e) The deterministic behavior makes system verification
easier.

The difficulties associated with it are:

a) It is difficult to structure programs so that they may

be time-sliced;

b) Each time slice must be sufficient to accomodate the

worst case, so on the average will be under-utilized;

c) It Js difficult to accomodate response to random events

such as crew inputs. Response to system failures is

especially difficult, unless recovery from all classes

of failures is pre-scheduled.

d) The structure is inflexible to change.

These disadvantages are all overcome by the demand scheduling

approach, which, however, suffers from an increased degree of

difficulty because of its greater complexity, and because it

is more difficult to verify.

In a functional design of an executive for the Space

Shuttle central computer, Intermetrics has proposed a combined

synchronous and demand scheduled approach [6]. The repetitive,

time-critical functions which can be implemented in short,

2-17

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

complete sections of code are executed by a synchronous "fore-

ground" scheduler driven by timer interrupt, at 40 ms intervals.

The majority of the remaining tasks are scheduled on demand as

a "background" activity according to pre-assigned priority

values. Communication between foreground and background is by
an event mechanism, in essence similar to that described in sec-

tion 2.3.2.

2.4.2 Deadlock Prevention

OS/360 has three resources to allocate to each job/step.

These are core storage, data sets and peripheral devices. The

allocation algorithm is summarized in Figure 3. Note that all

data sets for the entire job are allocated at job initialization

time and are bound for the duration of the job. In addition,

all devices are allocated at step initialization time and are

bound for the duration of the step. This approach may be costly

since some of the resources allocated to a task may remain un-

used for long periods.

Alternatively, resources may be allocated dynamically,

i.e., while the process is running. Unfortunately, now dead-

lock prevention becomes a more difficult problem. However,

some practical solutions have been suggested [7], although a

time overhead must be paid if they are implemented.

The suggested methods involve keeping track of the state

of the system by means, of state graphs or matrices. When a re-

source is requested by an executing process, the availability

of the resource is checked. If it is presently unavailable, the

algorithm must determine if it is safe to put the requesting

task in the wait state. To determine this, it checks the state

matrices of the system as they would be if the request were

enqueued for the resource. When a safe condition results, the

request is enqueued, and the task is placed in the wait state.

On the other hand, if an unsafe condition results, the request

must be denied and the task so notified. The task can then de-

cide if it wishes to cease execution or it if can proceed with-

out the resource. (Some subtle problems to be aware of, in

implementing such an algorith_ have been overlooked by several

authors and are discussed by Holt [8],)

While it is easy to see that dynamic allocation is

most economical in the amount of time system resources are un-

available, some time overhead must be paid each time a process

requests a resource. The OS must check the state matrices to

determine if safe states will result. This process can be

lengthy for a system with many resources and many ready tasks.

One must remember here that the overhead is really that time

2-18

INTERMETRICS INCORPORATED .701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

I

FIG. 3" OS/360 Resource Allocation Algorithm

2-19

INI _:t-,,,_........::l};,CoK_" I;,!(.:(_i]I_L,I_A]I::L_,• " " • ,"igI].G}!FE1,J SlI{r!E] " • CA:vI[}[IIL){-;E, MAoo/.,C),USETTo'...... _ o 021:}9 • (617) 85_-1[b10

used for dynamic allocation over and above that which would other-

wise be spent for allocation at job and step initialization times
as described above.

Unfortunately, no analytic studies or simulations of

these algorithms have been done to evaluate overhead costs. How-

ever, with careful thought given to the implementation of a

dynamic algorithm, its overhead can be held to a minimum. In

_]y case, the advantages of dynamic allocation would seem to

overshadow any time overhead that results.

2.5 Memory Manaqement

Management of the use of memory is potentially the

most critical activity of an operating system. It is very de-

pendent on:

a) the structure and characteristic behavior of the appli-

cation software. If the work load is well known and

dynamically predictable, especially with regard to its

memory requirements, allocation of space can be pre-

determined, by pre-planned overlays for example.

b) The system architecture. If sufficient operating memory

is provided to accomodate all programs at all times, dy-

namic allocation problems are eliminated. If, however,

a virtual memory design is adopted for its potential

simplification of programming and its cost effectivity,

the operating'system becomes intimately involved in

creating and allocating memory space, and its detailed

design is further affectedby the technique adopted for

addressing the virtual memory system.

c) Memory technology. The architecture of a virtual memory

system and the functions of its operating system are

significantly different for secondary storage with moving

head disks, than for solid state block-oriented, random

access devices such as the experimental magnetic bubble

domain memory.

Although memory management can assume a critical role in

determining operating system size and efficiency, its problems

cannot be addressed in detail in the absence of a memory hier-

archy definition. The following review of methods of operating

memory utilization is presented to underscore some of the factors

involved in providing increasing levels of operating memory uti-

lization by multiplexing.

2-20

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-184£

2.5.1 Operating Memory Multiplexing

The following examples describe practical applications

of a number of techniques for incz-easing the utilization of op-

eratinq memory.

2.5.!.1 Non-multiplexed Memorv: In a non-multiplexed system

the process of "assembly" of the program serves both to esta-

blish the ma}_ping between names found in "subroutines" (which

are si,<iply se}_arately maintained units of program code), and

the mapping beLween names and physical locations in memory.

At tile conclusion of the assembly, the mapping information is

com})letely d;istributed, and is saved and accessible only as a

diab,_,..._Lic _id, Zoo ti-a _omputer simui_,_LuJ:, fc)r example. }_ost

flight control computers are of this design, usually because of

their modest total memory requirements, typically 8K to 32K

words.

2.5.1.2 Partitioned Memory: A simple form of memory multi-

plexing is used when the physical memory is large enough to sup-

port the requirements of more than a single program at a time.

The OS/360 MVT and MVT systems implement fixed and variable par-

titions respectively. The normal objective of concurrently-

loaded programs is to provide more efficient use of the proces-

sor by increasing the chances that some program can use the
CPU when another is waiting for completion of I/O operations.

As in sequential execution, the mapping between names

and locations is applied in all places at the time of loading,

and the map is of no further use to the execution of the program.

To further increase processor efficiency, a high-speed

secondary storage device may be used for "core-swapping". This

involves writing the contents of a partition out to the device

before its execution has been completed in order to make room

to bring in some other program ready to run. Because the name-

location mapping is not dynamically applied, the information

must be returned to its original location when its execution is

to be resumed.

2.5.1.3 Partitioned Memory with Relocation Registers: Under the

above mechanization, the application of the name-location map

takes place at one time, but over manyspatial places. This has

the advantage of getting the mapping finished; however, it has

the disadvantage that the mapping is not readily reversed or

modified. Several systems (e.g., PDP-10, Univac 1108) use an

alternate scheme which re-applies the mapping each time. This

2-21

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE " CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

is achieved by providing one or more reloca£ion registers, whose

function is transparent to the software, which supply offset

values to be combined with logical or virtual addresses generated

during the program's execution. A disadvantage of this approach

is that it requires additional hardware to perform the combining

as part of instruction execution. However, it has the valuable

characteristic that the mapping remains available for modifica-

tion, so that program and data sections may be relocated in the

operating memory and only the relocation values need to be

changed in the process. Thus, storage in use can be compacted

to collect avai]able sT0ace into one contiguous piece when neces-

sary to find room to load an additional program.

As in the partitioned memory scheme, "core-swapping"

may be used for additional multiplexing. IIowever, the use of

the relocation registers makes it possible to return the infor-

mation to any convenient location, rather than the precise place

from which it was written.

2.5.1.4 Pagino: An alternate to the use of relocation regis-

ters is to divide the program and data space, linearly arranged,

into a series of "pages" of a fixed size, ordinarily a power of

2 (e.g., XDS Sigma 7, CDC 3800). In address formation, a group

of bits from the logical address is used to select a page-

location word from an array called a page-table; this word con

tains the memory-address of the page if it is currently there.

Otherwise, an indication of the absence of the page is provided,

along with the secondary-storage location at which the page may

be found. The physical storage space is thus divided into fixed-

size page frames, and the mapping between names and physical

location is dynamically applied. A strong advantage of this

approach is that logically contiguous space need not be physically

contiguous, nor need it even all be present. The relaxation of

the pages for occupancy of storage space by implementing some mea-

surement of page reference behavior (with hardware help). Pages

appearing to be less needed may be overlaid with more lively ones.

Because all page frames are the same size, space mana-

gement is simple, and requires only modest overhead at execution

time. On the other hand, the page boundaries fall at arbitrary

locations in code or data, rather than at logical divisions. The -

average usefulness of words in a page is therefore reduced, since

a logical entity may occupy only a small part of a page, or cross

a page boundary.

2-22

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

2 5 1.5 qocmented Addressinq: The simplest segmentation on a

logical (if not operational) basis is the scheme used in the

Burroughs B6700 and its predecessors Each program block is

compiled into a virtual address space of its own, called a seg-

ment; locations may then be accessed by specifying a segment

number and an offset from the beginning of the segment. In

execution, the name-location mapping is applied dynamically.

Each segment has a segment descriptor which contains the physi-

cal location of the beginning of the segment. IIowever, this

descriptor can also contain an indication that the segment is not

in stora(._e at the moment; in this case, the address Jn the des-
__' .L ..czmp<oJ is the secondary storage location at which the segment

may be found.

F,n nd'<_ntggc o[th:is type of segmentation is the direct

relationship between the segment size and the logical unit of

program or data it contains. This cha_-acteristic increases the

average usefulness of words transferred in a segment load.

A disadwmtage of this scheme is that segments are

small, scqment descriptors are therefore numerous, and must

consequerftly be located in operating memory rather than high-

speed p)_-ocessor registers. The access to these necessarily

slows down the address formation process; consequently some

scheme of buffering in a small set of fast reg_isters is usually

utilized to shorten the access delay (see section 2.2.3). A

second disadvantage is that storage allocation occurs in vari-

able sized units and is therefore more complex and consumes

more pz-occssor time than for fixed-sized pages.

2.5.1.6 Segmentation Plus Paqin[: This method of addressing

and multiplexing was developed by the Multics group at MIT Pro -°

ject MAC. It is implemented most ambitiously on the GE (Honey-

well) 645 designed for Multics, and also on the IBM 360/67.

In Multics, segments tend to be large, and each is divided into

fixed-size pages. Even page tablds are paged, since they other-

wise would occupy too much operating memory. Paging is the

mechanism which accomplished multiplexing; segmentation is uti-

lized for other purposes which are not relevant to this report•

However, it should be mentioned that segmentation is implemented

in such a way that when two independent processes refer to the

same segment, both processes utilize the same page table. Shar-

ing is thereby implemented in a general and powerful way.

The Intermetrics multiprocessor design [4] featured a

segmented virtual memory system based in principle on the Bur-

roughs designs. The policies for space allocation, segment

placement, and replacement were, however, novel implementations

of the operating system. The overall objective of the design

2-23

INTERMETRICS INCORPORATED "701 CONCORD AVENUE " CAMBRIDGE, MASSACt4USETTS 02138 - (617) 661-1840

was to reduce the usual overhead consumed by the memory manage-

ment function, by hardware assistance of address translation

with associative memories local to the processors, and by spe-

cially tailored OS routines to handle segment I/O.

A more detailed examination of the characteristic

differences between paging and segmentation, and the factors

influencing virtual memory design is presented in Chapter 4.

2.6 Im21ementational Aspects

This review, far from complete, of multiprocessor op-

erating system design problems closes with some comments about

the implementational aspects. The major objectives of anyone

embarking on the design of an operating system should be:

a) That the completed system work very closely to the way
it was intended;

b) That it not take forever to finish;

c) That the resulting design be non-subtle, that it may

be easily understood, maintained, and if necessary

modified, other than by its creators.

2.6.1 System Specification

A big step towards accomplishing the first objective

is to establish clearly in the beginning what the operating

system is expected to do, and how. A considerable fraction of

the total programming effort should be devoted to identifying

the functional requirements, and then thinking out an overall,

coherent design that not only satisfies them, but possesses

enough flexibility to accomodate later modification and addi-

tion. The end item is a detailed design specification which

deals with the structure to be implemented and its operating

characteristics, and includes a description of how the com-

pleted system is to be verified.

2.6.2 Structure

The second and third objectives are largely a matter

of the way in which the software of the operating system is

structured, and the techniques used to implement that struc-
ture.

Comprehensive operating systems have acquired a bad

reputation for complexity, cost and ultimate unreliability,

2-24

INTERMETRICS INCORPORATED •701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840._

I

largely perhaps as the result of the widespread usage' of the

IBM 360 series of computers. OS/360 was very ambitiously con-

ceived at a time when rigorous tech_Jques of software construc-

tion (and the penolities of ignoring them!) were not as well

researched and understood as today. Problems with the use of

OS/360, and other designs, have prompted much study into the

theory and practice of operating systems to be undertaken, es-

pecially durinq the last five years or so. A gathering body

of knot, ledge on techniques of design and operation has become

availab]e (see, fokr example [9]) .

Dijkstz_a has pioneered the discip]ined approach to op-

eratin<_ system design [I0]. He organized the functions of a mul-

tipro-.srammed opezating system into a number of sequential pro-

:_%ss<::< Th<<_'o ,-'_c_:,sse:; were £hen hJoxarchica]lv arranged to

form sevoral independent levels of increasing abstraction of

machine operation. For example, the lowest hierarchical level
was that of the real machine itself. At the next to lowest level

were procedures for allocating processors to processes and field-

ing interrupts from the real time clock. The level above that

managed the operatien of the virtual memory, without concern

for processor availability. The next].evel fielded the inputs

from the operator keyboards, and so on. The application pro-

grams formed the highest level. A programmer was thus able
to view the combination of hardware and software as a "virtual

machine", representing an abstraction of the real machine. Need-

less to say, the whole concept precluded the use of machine lan-

guage coding by an),, application programmer, since this would

have cut straight through the screening levels of "virtual ma-
chines" Each level of the system possessed a large degree of

independence of the ether levels, and could be separately con-

ceived, implemented and tested.

Other operating system designs with different opera-

tional requirements and system configurations would probably

depart from the functional separations made by Dijkstra, but the

basic philosophy may be adhered t6.

2.6.3 Systems Programming Language

Just as a problem oriented higher level language assists

in the structuring and implementation of applications software,

the use of a language suited to the definition of OS functions

has gaiied much support from operating system implementers.

The advantages can be viewed from both a managerial and a tech-

nical aspect. The managerial benefits of HOL usage are too

well established to be repreated here. Various authors have

defined the features that would make a systems progra_ning lan-

guage easy and efficient to use [ii]. Almost all agree that

2-25

INTERMETRICS INCORPORATED '701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

the language should possess a block structure and enforce name

scope rules. It should contain control features such as pro-

cedures and functions, the statements IF THEN ELSE, DO FOR, and

DO CASE. Some language designs restrict data types to those

generally agreed to be useful to systems programming, namely

bit, character, pointer and various forms of arrays. Others,

following the example of PASCAL [12] contain more powerful and

flexible data structures, which allow the systems programmer

freedom to adapt the language to his specific problem. The

ability to address specific machine features is necessary, al-

though the major portion of any operating system can be machine-

independent. The need to generate efficient code is clear, if

only to overcome the reluctance of non-believing systems pro-

grammers to code in a higher level language! Almost all advo-

cates insist on the absolute necessity of readability in the

language, and the provision of comprehensive diagnostics by the

compiler. From these characteristics, it is evident that sys-

tems and application progra_ning languages have quite similar

objectives, and differ mainly in the natural incompatibility of the

data types recognized. Several attempts have been made, therefore,

to adapt existing HOLs for system programming, as the following

examples illustrate.

A subset of PL/I was chosen to code the operating system

for the comprehensive Multics system at MIT [13], which is based

on Honeywell 6000 computers. The Burroughs Corporation has

developed several versions of ALGOL 60 with differing degrees

of machine dependence [14] for different B6700 systems program-

ming applciations, as a consequence of their long standing use

of ESPOL in the B5500. There is Extended ALGOL for the bulk of

systems programming, including the Extended ALGOL compiler it-

self; Data Communication ALGOL, which allows the control soft-

ware for communications interfaces to be conveniently programmed;

and ESPOL, the original systems language, which enables many of

the B6700 features such as stacks, registers, memory, the multi-

plexors, peripheral devices, etc., to be addressed directly.

Several languages have been developed to handle systems

programming for specific machine architectures. The University

of Toronto is developing SUE for system programming on the IBM

360 [15]. An extensible language LSD is being designed for sys-

tems development on the IBM 360 at Brown University [16], al-

though it is not yet operational. PL 360 [17] a language de-

signed by Wirth at Stanford University for the IBM 360, has

features that make it attractive to systems programming.

Carnegie-Mellon has developed and used BLISS for its DEC PDP-

i0 [18].

It is strongly recommended that the operating system

for the SUMC is designed and written in one of these systems

programming languages, or at least in some tailored subset.

2-26

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

Most of tbe compilers have been written in the language itself,

which le_:sens the diff']culty of transferring the compiler from

its original host raachine to another.

References for Chapter 2

lo Fulmer, L.C., "A Modular Plated-Wire Associate Pro-

cessor", GF.I<-14727 Goodyear AeJ:ospace Corp., Akron,

OhJ-o, March 1970.

. Conti, C.J., "Concepts for Buffer Storage", Computer

,_ __. _ ,_,LJ _ _ , _ ,C , _ "_ _, , n

, Entner, R.S., "The Advanced Avionic Digital Computer

System", Computer Design, September 1970.

, Intermetrics, Inc., "Engineering Study for the Func-

tional Design of a Multiprocessor System", Final Re-

port, NASA/Intermetrics Contract NAS9-I1745, Septem-

ber 1972.

. Intermetrics, Inc., "The Progran_ning Language HAL -

A Specification", NASA/Intermetrics Contract NAS9-I0542,

June 1971.

. Intermetrics, Inc., "Advanced Software Techniques for

Data Management Systems: Vol. II", Final Report, NASA/

Intermetrics Contract NAS9-11778, February 1972.

. Coffman, E., et. al., "System Deadlocks", ACM Computing

Surveys, Vol. 3, No. 2, June 1971.

, Holt, R., "Prevention of System Deadlocks", Comm. ACM,

January 1971.

. ACM/SIGOPS, "Operating Systems Review", Proc. 3rd

Symposium on Operating System Principles, Stanford

University, Palo Alto, California, October 1971.

i0. Dijkstra, E.W., "The Structure of 'THE' Multiprogramming

System", Con_, ACM, Vol. 2, No. 5, May 1968.

ii. ACM/SIGPLAN, Proceedings of Symposium on Languages for

Systems Implementation, Purdue Univ., Lafayette Ind.,

October 1971.

12. Wirth, N., "The Programming Language PASCAL", Acta

Informatica i, 35-63, (1971) by Springer Verlag, 1971.

2-27

INTERMETRICS INCORPORATED "701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 601-1840

13.

14.

15.

16.

17.

18.

Corbato, F.J., "PL/I As A Tool for System Programming",

Datamation, Vol. 15, No. 5, May 1969.

, "A Hierarchy of High Order Languages forLyle D.M.,

Systems Programming", Proc. Symposium on Languages for

Systems Implementation, October 1971.

Clark, B.L., et. al., "System Language for Project SUE",

Proceedings of Symposium on Languages for Systems Imple-

mentation, October 1971.

Bergeron, R.D., et. al., "Language for System Develop-

ment", Proc. Symp. on Languages for Systems Implemen-

tation, October 1971.

Wirth, N., "PL360, A Programming Language for the 360

Computers", Journal ACM, Vol. 15, No. i, January 1968.

• . "Bliss Reference Manual", Carnegie-Wulf, W A , et. al.,

Mellon University, Pittsburgh, Pennsylvania, January

1970.

2-28

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

Chapter 3

INTERRUPT STRUCTURE

qh.xs ch:_,-)e_< will discuss various aspects of the in-

terrupt st ruct0<<_ when applied to a multiprocessor. The first

sectJoJi will present a list of assumptions upon which th<_ fol-

lowing sections are based. The second section]:)resents a brief
• ' a

_ - ,. " ".t.-' -.C i . '7q7. .c;_._.(_U_, - ' • i. ,.-; (. _ i_ ::'_.. C::.'Y_7:>[:_, ",_-r-,,-, _-_.i'_ thJ _t m-],© oI!vJ .t-orb<tent of

the space station multiprocessor. The third section discusses

various probl_,m.:, that are encountered when attempting to develop

an interrupt structure for the multiprocessor.

3.1 As sumot_____ions

a)

b)

The basic assumption is that the concept of interrupts

is indeed required. It is possible to conceive of

computer systems that are well specified, in which all

equipments are synchronized and serviced in a predeter-

mined cyclic fashion. IIowever, the system contemplated

for the space station is not well specified. It will

have to respond to conditions not anticipated in the

program flow. Therefore, the need for interrupts is

postulated.

A true multiprocessor is assumed. This includes a

"floating executive" and a configuration with three

or more processing units. With a floating executive,

any process can be executed on any processor. There

are no functions dedicated to any processor. This ex-

cepts the I/OC, which does serve a specialized function.

Three or more processors are assumed so that the gen-

eralized solution to multiprocessor interrupt handling
can be addressed.

3.2 Interrupt Cateqorization

An interrupt can be defined as any condition which

causes an involuntary interruption in the sequence of execu-

tion of a process. The interrupt is not explicitly anticipated

in a program's code. It can be considered to be an involuntary

procedure call to the interrupt servicing routines, with an ul-

timate return link to the original process.

3-1

INTERMETRICS INCORPORATED •701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

0

Interrupts may be categorized into three distinct

classes:

3.2.1 Process Oriented

Process oriented interrupts are those associated wit]]

the process in execution. There are a number of distinct types.

Arithmetic and control traps are caused whenever an unacceptable

condition presents further execution. An interrupt from a

"watchdog timer" indicates that a process has been running for

an excessive time.

The above two process-oriented class of interrupts are

synchronous with the process and occur while the process is run-

ning. There exists a class of process-oriented interrupts which

can occur when a process is in a waiting state. These inter-

rupts, sometimes called software interrupts, result from HOL

statements of the following form, as discussed in section 2.3.2:

ON (event) <code block>

This statement establishes a linkage which causes the

specified <code block> to be executed when the specified (event)

is signalled. If the process is running when the (event)

is signalled, then it is interrupted to execute the <code block>.

If the process is not running when the (event) is signalled,

then as soon as the process which issued the ON statement enters

the running state it will be interrupted to execute the <code

block>.

3.2.2 System Oriented

This category of interrupt does not have any particu-

lar affinity for the currently running process. Conditions

such as I/O Complete, I/O Error, and Absent Segmen[Trap fall

into this category. Both I/O Management and Memory Management

are executive functions.

Many failures or error conditions, such as power fail-

ure, can be considered system oriented.

3.2.3 Processor Oriented

Even with a floating executive and no dedicated func-

tions to particular processors, it does become necessary to

direct an interrupt to a specific processor, independent of

the process being executed. For example, in response to an

error signal one processor might direct another processor to

terminate or restart. The entire area of system initialization

3-2

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-184'

and reconfiguration requires direct communication with specific

processors. ']'he processor-directed interrupt is a convenient

mechanisra for meeting this requirement.

3.3 Multi[_rocessor Interrupt Prob]em Areas

A numl_er of problems involved in the servicing of in-

terrupts exist. Some are aggravated in a multiprocessor en-

vironment and some are unique to the multJprocessor environ-

mont. Four m._J.jor areas are discussed below.

3.3.1 Which Processor to Interrupt?

In a multiprocessor system, a question arises as to

which processor to select to handle a given interrupt. For

process oriented interrupts which occur while the process is

running, the decision is trivial. The interrupt should be

steered to the related processor. Similarly, so should proces-

sor related interrupts.

The remainder of the interrupts are system-oriented

or non-running-process-oriented, and have no affinity for any

particular processor.

A number of options are possible in assigning a pro-

cessor to service the interrupt:

a) An arbitrary processor may be interrupted based upon

some random selection algorithm. The interrupted pro-

cessor may then execute a software routine which de-

termines whether the interrupt condition is of higher

priority than the process which was interrupted. If

it is not, then the interrupted process will be sche-

duled like any other process according to its priority.

b) All .the processors may be interrupted. The interrupt

service routine can be made a "critical section" of

code which can only be executed by one processor at

a time. The first processor to access this code ser-

vices the interrupt. The other processors revert to

their original processes.

c) A sequential selection employing a "round robin" style

algorithm may be used. In this way, the interrupts

are loaded equally upon all processors. This option

of course does not consider the process which is run-

ning on the processor at the instant of interruption.

3-3

-- INTERMETRICS INCORPORAqED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

a) An assigned processor might service all int6rrupts, or

specific interrupt conditions can be preassigned to

specific processors.

e) The processor executing the lowest priority process

will be selected to service the interrupt. If the

interrupt priority is lower than any running process,

then the required interrupt response will not be exe-

cuted until a process swap results in a lower priority

process.

The approach reco1_m_ended in this Report is to provide

a combination of c) and d) by placing within the I/O control

an element of hardware which automatically determines the most

interruptable processor (based upon the priority of the process

running), and receives and distributes all potential interrupts.

Running-process-oriented interrupts can by-pass the

interrupt logic within the _/OC since the processor to be sel-

ected is known a-priori.

3.3.2 Response Time

There is a small class of interrupts which require al-

most immediate response. These are system oriented and deal

with equipment failures or other emergency situations. One ex-

ample is a "power failure" interrupt. This must be responded

to within raicroseconds in order to move any volatile registers

into permanent storage and then systematically to shut down the

system.

The class of conditions associated with arithmetic

and control traps does not require instantaneous response but

the running process can not continue until after the trap is

serviced. Any trap condition falls into this category, even

system oriented traps such as the'Absent Segment Trap.

Quite often specifications are generated and systems

built which require I/O Complete interrupts to be generated

within micro seconds of an I/O completion. From a performance

point of view, most I/O interrupts can possess a response time

of the order of milliseconds. For example, if M3 requires an

average of 10 milliseconds for each access, it is clearly un-

necessary for its completion to be signalled within microsec-

onds.

3.3.3 Innovations

A number of innovations may be suggested in the I/O

interrupt area. These suggestions exploit the space station

type of I/O, namely mass storage M3, and a data bus.

3-4

INTERMETRICS INCORPORATED - 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

a) "Quiet" I/O

b)

When the multiprocessor system work]Dad is heavy,

the frequency of Absent Segment Traps can be expected

to be relatively high° Conventional processing of an

Absent Segment Trap requires entry to an interrupt

handler, initiation of an M3 operation, and placement

of the process into the wait state. Upon completion

of the M3 o]:,era[tion, a_ i/0 Completion interrupt is

si9nalled. _i'he handier for this interrupt is then

entered, the process <._J ring for the seoment is readied,

another I/O operation to M3 is initiated if one is

queued, and the processor allocation routine is called

to see if J.t is appropriate to assign a processor to

the newly readied pzocess.

An alternate implementation is suggested to avoid,

at least in most cases, the necessity for entering the

I/O Completion interrupt handler when the segment trans-

fer is concluded. This is achieved by providing a

capability in the I/O controller which causes it to

make a choice of whether or not to signal I/O comple-

tion. Thus a dynamic decision is made as to whether

the interrupt should be suppYessed or signalled, de-

pending upon the existence of a queue of operations

waiting for the device. If the interrupt is suppres-

sed, the condition is made known to the system by the

setting of a bit field in a location accessible to the

absent segment trap handler. After initiating the M3

operation to make an absent segment present, this hand-

ler checks the completion-states of M3 segment transfers

previously issued. The processes whose segments are

found to have completed their transfers are readied;

thus the utilization of the I/O Completion interrupt

handler is avoided. This diminishes the overhead for

absent segment handlJng,.especially under heavy load,

when computational overhead is most detrimental to the

system throughput.

Data Bus Control

If a command response data bus, with a minor cycle

of 20 milliseconds, is employed then it is clearly un-

necessary to interrupt the system after each peripheral

device is accessed. In principle, the synchronous na-

ture of the data bus does not require interrupts for

normal processing. However, one may consider the need

for interrupts due to infrequent events:

l) An interrupt might be generated by the Data Bus

Control Unit if certain types of failures are

detected.

8-5

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

2) For equipments which are interrogated at a very

low freqQency or even randomly an interrupt might

be considered at the end of the request.

Both of these suggestions impose little if any load on

the system due to their very low frequency of operation.

A checkout problem may, however, arise in trying to

verify successful operation for infrequent interrupts

at any point of execution in a program.

3.3.4 The Interrupt Sequence

When an interrupt is signalled to a processor, the de-

tails of its local environment, the processor's status, must be

saved so an eventual return is possible. In a stack oriented

machine an interrupt response can be executed parasitically on

top of the process' stack, with entrance and return functions

performed automatically.

Since procedures may be nested to multiple depth, so

can interrupts. The only limit is the number of display registers.

provided to mark the beginning of each lexical level in the stack.

3.3.5 Interrupt Functional Response

System or processor-oriented interrupts possess a sta-

tic (pre-determined) response. Once the response is established

it is not changed. However, for process-oriented interrupts

(traps) one may conceive of situations where each process may

desire a different response to particular interrupts. For ex-

ample, one process might want to respond to a square root of a

negative number trap by substituting a zero for the answer.

Another process might deal with complex numbers and cause a

re-entrance into the square root instruction with a change of

sign of the argument.

For all trap conditions the system must provide a de-

fault option. It is suggested that a process be allowed to

override this system option by providing its own response to

particular traps. Any process at any lexical level should be

allowed to specify, if necessary, its own response to process-

oriented traps.

3-6

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE . CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

I

Chapter 4

MEMORY IIIERARCHY

Memory is possibly the most difficult of any computer

element to specify, imp] emc'n [< and use. It is in this area that

techno?ogical limits and cost factors are first encounhered

puter system.]i'i)e inabil_.ty of a single, currently known, mem-

ory technology to meet the conflicting requirements of high

access speed and high storage capacity has led to the hierar-

chical concept of levels of raemory.

4.1 Basic Hie__rarchy Description

Within the multiprocessor structure, one finds a num-

ber of levels of memory used for varying purposes.

4.1.1 M0 - Micro Level Control Memory

From one point of view, micro memory is only a parti-

cular implementation of a control unit and therefore should not

be considered part of the memory hierarchy. Alternatively, an-

other point of view suggests that micro memory should be

used for execution of the frequently used operating system pri-

mitives and subroutines. It is from this secondary point of

view that M0 is considered an element of the memory hierarchy.

4.1.2 M1 - Local Memory

M1 storage is dedicated to the processing unit. Its

function can range from a register set, as is found in the SUMC,

to a complete cache memory as used in the IBM 360/85. The

major function of M1 is to increase the performance of the sys-

tem. Its speed is in the i00 nanosecond access time range and

its size can range from 16 words (for register storage) to 4K

words (for a cache implementation).

4.1.3 M2 - Operating Memory

In a multiprocessor environment, M2 is that part of

memory which is shared by the processing units and I/O controllers.

4-1

INTERMETRICS INCORPORATED "701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETIS 02138 " (617) 661-1840

M2 must of necessity consist of a number of separate memory

modules so that sintulthneous access of different modules may be

made by tile processing units and IO/C. M2 cycle time is in the

1 microsecond range and its size is of the order of 100K words.

4.1.4 M3 - Mass Memory

M3, historically a drum or disk, provides the function

of augmenting the M2 storage. It is used to hold all the pro-

grams and data segments not currently being used in the proces-

sing function. M3 is used to implement the concept of a larger

M2 virtual memory. It is characterized by an access time in the

millisecond range and a storage size consisting of millions of

words.

4.1.5 M4 - Archival Storage

Archival storage (possibly implemented with a magnetic

tape unit) is included for completeness. It is used as the re-

pository of files and other information which does not undergo

rapid change or frequent use. Conventionally, M4 is considered

to be an I/O device and is controlled accordingly.

The remainder of this chapter will concentrate on the

relationships between the major elements of the memory hier-

archy which contribute to system performance, naraely MI, M2,

and M3.

4.2 Local Storage

4.2.i The Problem - Memory Contention vs. Performance

One of the major reasons for using a multiprocessor is

to increase the overall performance or work delivered by the

system. If the extra performance were not required a unipro-

cessor would be employed. Ideally, a system with R processing

units should produce R times the work of a single processor sys-

tem. One factor which tends to reduce the overall performance

of the multiprocessor is M2 memory contention. The effect is

to reduce the M2 cycle time (t 2) by yielding an effectively

slower cycle time (t2eff).

One way to reduce memory contention is to provide a

limited amount of dedicated memory local to each processor

(MI). If M1 possesses a cycle time (t I) which is substantially

faster than t 2 then a performance increase can be obtained.

4-2

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

4.2.1.i Performance Mode] : Postulate the multiprocessor model

shown in Figure 4.1, and make the following definitions and

assumptions :

a) n I = number of M1 cycles per unit time for a single

processor

b)

c)

t I : M1 cycle time

n 2 = number of M2 cycles per unit time executed by a

single processor

d)

e)

t 2 = M2 cycle time

t2eff e_&ec_i,,s i'educcd N2 cycle time due to memory
contention

f) W = work per unit time from a single processing unit.

This is defined as proportional to the total num-

ber of M1 and M2 cycles per unit time. Usually

processor work is defined in terms of the number

of instructions per second. For a conventional

360 type architecture an instruction usually cor-

responds to two M2 cycles. In a sense the internal

processor cycles should also be considered useful

work. Indexing which does not require an M2 access,

because it m i(_ht use an internal register is a

very useful function. If a multiprocessor makes

very large use of its internal M1 storage these

cycles are just as important as M2 cycles in esti-

mating overall work.

g) R

h) M

i) h

W = n I + n 2

J

= number of processing units

= number of independent M2 modules

= fraction of all memory requests that use M1

(the hit ratio). This is for a single proces-

sing unit.

h = nl

n I + n 2

4-3

_ INTERMETRICS INCORPORATED '70t CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

M Modules

M2 M2 ... M2

R Processing Units

M1

P __]
141

P ___I

M1

p !

Internal

Bus

Notes:

I)

2)

3)

A processing unit contains a P-M1 combination

The internal bus allows all the R processing units

to communicate with all M memory modules

There is no internal bus contention

Figure 4.1: Multiprocessor Model

4-4

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840 ._

j) It is assumed that a processing unit is always making
an M! or an M2 reference and that these ref_,_cnces are

mutually exclusive, that is they cannot occur simul-

taneously. Let_ n]t.l.+.n2 (t2 _"_) =] unit of time
From the above deflnltlons l_ _ollows that

t2eff h + (i - h)

where

The term in brackets can be considered to be an en-

hancement factor by whicl_ performance is increased.

Figure 4.2 plots this factor as a function of h.

We sc'e from this simplified model that the introduction

of M1 with a reasonably high hit ratio can potentially increase

the performance of a processing unit, especially if the t2/t 1

ratio is high. Many overhead factors, involved in the utiliza-

tion _)nd control of M1 will tend to lessen the improvement.

The effect of memory contention upon t2eff will now be

calculated. Assume that requests to M2 are independent and

randomly distributed across the address space. In reality this

assumption can be seriously questioned since program and data

both possess locality. That is, there is a strong correlation

between successive M2 access events. This is extremely diffi-

cult to measure since tl_e programming load is not known. For

lack of a better model, the random distribution is assumed.

A processor will request access to M2 with a proba-

bility A = n 2 (t2eff)/n l(t I) + n 2 (t2eff) . It can be shown that

A = r(l - h)

r(l - h) + h

The probability of accessing any particular M2 modules is there-

fore A/M. Given that a processor is requesting access to a

particular M2 module, the probability that none of the other

R - 1 processors are requesting access to that module is:

4-5

__ INTERMETRICS INCORPORATED . 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

k = r

h + (l-h) r

i0

9

8

7

6

5

<
4-.1

a_ 3

H

0

r = I0

r = 5

= 2

"--_ _ r 1

0.i 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

"Hit" Ratio, h

Figure 4.2: "Enhancement" Factor k Versus "Hit" Ratio h

4-6

P(O) = (i - A/M)R-I

The probability that i out of R-I other processors is request-
ing access to the particular M2 module is:

(i - A/M) R-2 (A/M) 1

In general, the probability that i processors out of the R-I

othez p_cessozs desize access to the same module is:

R I]*m(i) = _ (i - A/M) R-l'i (A/M) i

If there is no contention, the M2 access time is t 2. If one

other processor is requesting, the access time could reach 2(t2).
In general, with i other processors the access time could reacn

(i + i)t 2 .

The effective access time averaged over all contention

possibilities is therefore

t2eff =

R-I R-I R-I

_ (i + i) (t2)P(i) = t2 Z P(i) + t2 E iP(i)
i=0 i=0 i=0

Since Pi is a binomial distribution [i]

and

R-I

Z P(i) = 1
i=0

R-I

7_ iP(i) = (R- i)(A/M)
i=O

i! (R-l-i) !

4-7

INTERMETRICS INCORPORATED . 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

therefore

t2eff = t 2 [i + (R- i) A]M = t 2 [i + (R-I) r (l-h)]M[r (l-h) + h]

Some insight may be gained by studying the overall total system

work (W T) where:

W T = RW

WT = [Rr]t 2 [r (l-h) + h] + (R-l) r (l-h)
M

The following figures (Figure 4.3 and Figure 4.4)

depict W T for h = 0, h = .5. The following two facts should
be observed:

a) System performance is increased as more M2 modules are

added.

b) Local storage can significantly increase performance.

4-8

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-184(

No ?.ii

h =.- 0 WT : 1 [<" i"_R _]
t 2 : i lJso.c

i0

3

_

_maxim<_m !_ossib]e

_ perfo_rmance

// M : 16

M : 8

M = 4

M = i

1 2
3 4 5 6 7 8

m •

Figure 4.3:
W T Versus R

4-9

h = ,5

r = I0

t 2 : i _is

W T : 1.82R

1 + .98 (]{- 1

M

1

t 2

14

13

.].2

11

10

9

8

7

6

5

2

/

= 16

= 4

M

max] mum f'ossible

]?e r forman co

8

2

1

R

1 2 3 4 5 6 7 8 9

Figure 4.4: W T Versus R

4-10

4.2.2 Two Approaches to an Implementation

A major design question naturally arises. How does
one use local storage to obtain a hit ratio of .5 or .9 or
more? The answer is complex and involves studying the nature
of program execution in relationship to the instruction set.
'h_,o approaches will be mentioned.

4.2.2.1 ']?he Cache Concept: As CPU speeds have increased with ad-
vances in t echnolog/, computers have been able to handle lar-
ger and more complex processing tasks, and the demand for
operating 1.nemorycapacity has increased. Since capacity and
speed are conflicting factors in memory design, an hierarchical

memory organization was proposed many years ago [2] to enable

these two desirable qualities to be independently developed.

Advances in semi-conductor technology have only recently made

this concept feasible.

A backing store, M2, which de-emphasizes speed to

achieve an adequate capacity, interfaces to a buffer store or

cache, MI, whose primary design objective is speed.

BACKING STORE (M2)

Data width

4 to 16 words

Transparent
to

Programmer

BUFFER (MI)

PROCESSOR

ASSOCIATIVE I

MAPPING

MECHANISM

i

Figure 4.5: Buffer Store Organization

4-11

INTERMETRICS INCORPORATED "701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-I840

The concept d.epends for its success on the notion of

locality. Locality is an experimentally observed fact of pro-

gram behavior by which references tend to occur within a re-

gion of the program's address space, and this region migrates

relatively slowly. Locality is a natural outcome of the way

people think and write programs: concentrating on one task

at a time, using loops, using seauential control, etc. [3].

The degree of locality is influenced by programming style,

data organization, strategy of algorithm, and the programming

language. Locality gives rise to the notion of the program

working set, which is the minimal set of blocks that a pro-

gram requires to]lave in the cache in order to run efficiently.

If less than the working set is in MI, the probability of oc-

currence of a reference to a missing block, m, increases. This

situation is most likely to occur in a multiprogrammed environ-

ment when the nu_J]er of programs n exceeds the capacity of the

cache to contain all their working sets, as illustrated below.

m

I
n O

n

Figure 4.6: Probability of Missing Block Versus

Number of Working Sets

It is an experimentally verified fact that a process

favors references to a small set of its total address space,

and that provided this set is contained within MI, the need

to access program areas not in M1 arises relatively infrequ-

ently. When access to M2 becomes necessary, more information

4-12

INTERMETRICS INCORPORATED "701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-184C

than is immediately required is transferred to MI, in the expec-

tation that references in the vicinity of the accessed word

are likely. The relationship between the size of M], the amount

of info:cmation transferred, and the effect of different program

addressing behaviors was studied by Gibson [3]. He concluded

that an i'll capacity of 2K to 4K words and a transfer block

size between 4 and 16 words provided best results. He also

found t]lat the dynamics of buffer operation were more sensitive

to the addressing pahterns of the various programs than to any
other factor.

To maintain a given processor's speed, data transfer

from M2 must occur at an adequate rate. The M2's slower access

ccm_ en_c.tc<_ for by increasing the transfer path width.

'l'fllS C61]I be dCIIICvUU by t

a) An M2 technology which yields a long physica].ly stored

word, e.g., the pseudo - 2 I/2D organized plated wire

memory [4] which allows several hundred bits to be

accessed at once.

b) Organizing M2 into a number of smaller modules and in-

terleaving the addresses, so that contiguous addresses

i, 2, 3, are stored at corresponding locations in mod-

ules 1,2,3, rather than in conseuctive locations in

any one module. This has been the approach employed

by current designs such as tile IBM 360/85, 91 and 195,

which use core technology for M2.

The high speed of M1 is now generally realized by bi-

polar semiconductor techniques rather than thin-film. Buffer

memories of up to 1/4 million bits with cycle times less than

200 ns have been built, although similar speeds at far lower

power dissipations are being achieved by current plated wire

designs [5].

The above discussion has been in terms of a processor

"read" operation. Writing into the buffer presents an additional

problem in that the contents of the buffer do not represent the

primary source of the program being processed. A processor

"write" must be reflected in an update of the primary source,

which is stored in M2. This can be achieved in two ways:

a) Storing through: Every "write" request causes an

immediate update of M2 as well as the cache.

b) Block update: Write requests are allowed to accumulate

in MI. Whenever a block is to be replaced by the block

replacement logic the modified block is written out to
M2.

4-13

__ INTERMETRICS INCORPORATED "701 CONCORD AVENUE • CAI',ABRIDGE, MAS,_,ACHUSETTS 02138 . (617) 661-1840

Which of the two techniques is chosen depends on program beha-

vior: "writes" tend to cluster in time and in program space,

so that for small blocks of 4 to 16 words a bloc]< update tech-

nique may result in lower average M1 to M2 traffic density and

transfer delay.

There are a number of arguments which can be raised

against the use of a cache in a multiprocessor system.

a) Cost. To be effective a 4K word cache of high speed

(i00 ps) monolithic memory must be employed in each

processing unit.

b) To keep the cache filled with useful data a large band-

width of data from M2 must exist (128-256 bits) per

access. Many of the words accessed from M2 might not

be used. This unnecessary M2 traffic tends to increase

M2 contention and thus reduce performance.

c) In a multiprocessor system the use of a cache with

COMPOOL data presents a problem in keeping copies, pre-

sent in the various caches, updated. (See section 2.3.1)

d) IBM's successful use of the cache is based partially

upon the inefficiency of the 360 instruction set.

That is, quite often small program loops are inserted

by a compiler to execute primitive functions which

could have been basic instructions in other systems.

4.2.2.2 M1 in a Stack-oriented, Descriptor-based System: The

problem faced in employing Ml is to use it for information which

has a high probability of being accessed many times (a high hit

ratio, h). Traditionally, base registers and index registers

have been allocated to the local storage of a processor for

reasons of speed and their high frequency of use. :However, re-

gister management problems tend to increase overhead.

Intermetrics proposes to use M1 for specialized storage

and to have the management of M1 an automatic hardware function.

In a stack-oriented machine it was realized that the

top few entries of the stack provide the most referenced ele-
ments. For this reason the first 8 stack locations are made

resident in MI. M1 stack overflow pushes the bottom of the

M1 portion of the stack into M2.

The descriptor is the most referenced data type. For

this reason the 32 most recently referenced descriptors are re-

tained in MI. An associative mapping mechanism is employed for

control of this descriptor cache.

4-14

INIERMETRICS INCORPORATED •701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

The dynamic nature of the stack creates a situation

where the starting loeation of each lexical level must be

quickly c_ccessed. For this reason a set of from 16-32 base

registers is proposed. Each base register contains a pointer

to the start of each lexical level and is automatically acces-

sed when addressing within the stack is desired.

An instruction set which is organized around this

machine tends to be more complex than a 360 type instruction

set. For this reason more time is spent accessing M1 and ex-

ecuting _aicro code. This tends to make the duty cycle of the

processor high<-r than a 360 type instruction set, which in turn

tends to reduce memory contention.

The procc;-sor's duty cycle and the parameter h are

directly rc.] ated.

D = duty cycle = nl(t l)

nl(t I) + n 2(t2eff

h = nl

n I + n 2

D = h where r = t2eff

(i - h) r + h tl

4.3 Operating Memory and Memory Management

The concept of a memory hierarchy, discussed in rela-

tion to M1 and M2, can be extended to the relationship between

M2 and M3. For large file oriented systems archival storage,

M4, is also considered.

4.3.1 Background

Since program and data can only enter the computation

process via M2 one must control the flow of information across

the hierarchy of memory. This control is the job of memory man-

agement.

Virtual memory is a technique for managing the utili-

zation of memory in processing systems where program space

4-15

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

exceeds the actual operating memory space. The concept has evol-

ved from the need to improve on early attempts to utilize limited

amounts of memory by overlaying. This required the user to par-

tition his program into pieces which fit into the available

space, and then plan the sequence of execution of the pieces and

control their reading into and out of operating memory. As pro-

gram requirements grew larger than a few thousand words, this

became a cumbersome task. To help the programmer, automatic

overlaying (folding) techniques, by the operating system with

compiler assistance, were developed. But eventually it became

clear that a system should allow a distinction to be made]be-

tween address space, a set of identifiers used by a program to

reference information, and memory space, the set of physical

operating memory locations [6] .

Since a program could be allocated any physical M2 loca-

tions, the addresses contained within the program string must be

relative and not contain any absolute M2 reference. A transla-

tion mechanism must map the relative addresses into absolute M2

address. Many machines employ a concatenation of the address

field of the instruction with the contents of some specified base

register. Other schemes employ a descriptor mechanism, which

is used to provide an indirect reference. In either case, the

relative address is first presented to a memory map mechanism

which determines if the desired element is in M2 or whether an

M3 fetch is required. Figure 4.7 indicates the basic operations

involved in memory management.

The memory mapping mechanism usually employs a limited

associative memory to contain the most recently referenced ad-

dresses. In the 360/67, the contents of the base register is

funnelled thru an associative memory. In the Intermetrics'

multiprocessor concept the descriptor's address field is trans £

lated via an associative memory.

The first suggestion for. achieving virtual memory was

published by Manchester University in England, in 1962 [7].

Virtual memory has subsequently been implemented in a number of

ways, most notably in systems designed to service a large user

body generating an unpredictable load and mix of processing

jobs (e.g., the HIS 6000 in the MIT Multics system, and the

IBM 360/67). The mapping mechanism requires address informa-

tion to be organized into blocks. Two basic schemes have been

defined for handling these blocks:

a) Segmentation organizes address space into a collection

of segments which are mapped into variable sized memory

blocks

b) paging organizes meraory space into "pages" of fixed

size.

4-16

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-184(_

t

]_]_O (" Lzf;GO£

......................... *" I k
._ -. _, _ , map M2 address ,
z _:j.{tt.] x,e I

a(]dUQSS I

I add_:essed quantity la->M2

J_s not in M2]

.._ M3
Fetch from }13 r

,f
disp]accd

data moved

to M3

IN

}
form relative !

address - A from[

pro< ram strin 9]

J

//_<\\

".Is A

Yes

No

i

IM o to memory map

to fine physical

2 location

Allocate storage space in

M2 to receive (A). If

necessary delete some in-

formation from M2, write

modified data into M3.

i Fetch (A) frown
M3

Update memory ma

]and store (i) in|

'11'42 t

Fetch (A)

OUT

Figure 4.7: Memory Management

4-17

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

d

Segmentation4.3.2

Since segmentation is concerned with the modularity and

structure of the program it is visible and controllable by the

programmer, although usually indirectly through the use of a

]_anguage. He determines the size of the segment, and attaches

its name. Each segment may be considered as an independent

virutal memory. Internal to each segment, addressing is rela-

tive to the beginning of the segment, and thus becomes inde-

pendent of addresses in any other segment. This property re-

sults in what has been termed two-dimensional addressing: seg-

ment number fo!lo<_ed by location number. McKeeman [8] points

out that this addressing structure is employed in a number of

modern progranu:_ing languages, such as ALGOL, PL/I and FORTRAN.

It is also a property of IIAL. These languages use a pair of

numbers to represent an address: the first number corresponds

to the nesting level (lexical level) of the occurrence of the

declara_-ion of the name of the address, and the second indi-

cates the occurrence of the name within that level in the pro-

gram. The elements of a segmentation implementation mechanism

are shown below:

Se 9qaent Table

s

w

segment address

word address

S

memory address

Figure 4.8: Elements of Segmentation

4-18

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

Segments are loc <_d by reference to a table', each

entry of which is a segm{: ;t descriptor defining the segment's

base address a and its size b. The position of the descriptor
in tl_e table is S front the base of the table. A reference to

an address in name (address) space is of the form S,W. The

component S locates the desired segment's descriptor in the

table. If it is not in the table (i.e., the segment itself

is not in operating memory) a missing-segment trap occurs.

The segment is then brought into operating memory from mass

storage, and its descriptor is placed in the table. A test

wheth<_r W > b is made to check if a programmor's reference is

out of bounds o[! his own segments. Then the location a' in

physical memoz-y to which the name space address S,W refers is

formed by a' = (_ + W) . q'his address transidtion mechanism

can b<_ :i_iiz<_d :iJ1 special hardwaze, with a set of sFecial asso-

ciatively addrossed registers. Or the tables can be accomodated

in operating memory, with all translations performed by multiple

levels of indirect addressing. The latter approach involves

two or more memory accesses per reference and results in a con-

siderable penalty.

The segmented addressing scheme offers several attrac-

tions for a large and diverse software system such as the space

station central muitiprocessor.

a) Program modularity, Program modules are organized into

distinct, separately named and controlled segments.

b)

c)

Variable data structures. In a system such as the space

station, the data base will contain large and com-

plex data structures which will vary in size and content

during use. By creating segments of such structures

they may be assigned just the memory they require.

Their manipulation is well controlled.

Protection. A high degrge of access control can be

provided by the segmented approach through indirect

addressing coupled with access privileges which con-

strain read and write operations within a given seg-

ment.

d) Program sharing. By enabling one physically stored

module to be known in different address spaces under

different segment names, it may be directly shared be-

tween two or more users. This obviates the usual prac-

tice of creating copies of multiply used routines, and

consequently economizes on memory space.

4-19

INTERMETRICS NCORPORATED.701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

4.3.3 Paging

Operating memory address space is divided into a number

of equal sized pages. Each page is identified by the memory lo-

cation of its first word. Words within the page are referenced

by word number w from the first word. A page is referenced by

its position p in the page table. A virtual memory address, a,

is equivalent to the pair p,w (in a similar fashion to segment

addresses). The total number of active pages may not exceed the

page capacity of operating memory. Those pages not being execu-

ted are transferred to the next level of storage, thus realizing

the concept of virtual memory. Since all pages are equal in

size, replacement involves only the problem of finding the neces-

sary equal-sized "holes" in operating memory. "External" frag-

mentation of memory need not occur.

Page availability is maintained in the page table. The

pt__h entry in the table is the memory location of the page con-

taining address a, where p = integer [a/Z], and Z = page size.

If the pth entry is missing, the page does not reside in memory,

and must be fetched. This condition is referred to as a missing

page trap. If the page is present, the referenced word is the wth

element of the page, where w = remainder (a/Z).

Paging is attractive to the system designer as a tech-

nique for physical memory allocation, because of the regularity

of the equal-sized pages. It is attractive to the programmer

because he is relieved of the concern of allocating physical sto-

rage, and, indeed, need never exercise any direct control over
the mechanism.

A major design decision is the choice of page size. A

large page, say over i000 words, may result in a high proportion

of unused page space, if natural program modules are smaller than

the page size. This is referred to as "internal" fragmentation.

With a small page, less than i0 words, an overhead problem arises

due to the large number of pages that must be controlled. The

best page size is determined by:

a) Program locality

b) The speed ratio between memory hierarchy levels

Paging cannot achieve some of the advantages of segmen-

tation that were identified previously, because page boundaries

bear no natural relationship to program content. Segmentation,

on the other hand, lacks the advantages of a fixed size. It re-

quires the availability of contiguous regions of space, of suffi-

cient size to contain the segment. The problem of searching for

and/or creating variously sized "holes" in memory is a much more

difficult task than matching pages to page spaces.

4-20

INTERMETRICS INCORPORATED-701 CONCORD AVENUE " CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

It is natural to contemplate a combination of the two

mecha_Jsms in order to realize both their advantages. The larqe

Multics system at MIT has been the only example of a heavily de-

veloped segmented and paged memory management scheme.

4.3.4 Implementing Virtual Memory

When implementing a virtual memory system a number of

properties are desired to minimize overheat].

a) An efficient memory map search. This is usually achi-

eved by employing a lin'dt©d associative memory to hold

the most recently used p_r,_:_ or seqment descriptors

b) An efficient M2 space allocation algorithm.

c) An efficient determination of the M3 address in the

case of a missing page or segment trap. The utiliza-

tion of a descriptor containing an M2 or M3 address

depenc]ing upon the state of the presence bit, is con-
venient.

d) One must attempt to minimize fragmentation of memory

into small unusable portions. A memory compaction al-

gorithm might be required.

e) One must minimize the possibility of overloading the

system to the extent that thrashing occurs. Thrashing

is a state which is reached when memory management be-

gins spending all its time moving pages or segments in

and out of M2 and overlaying pages or segments in use.

No time is left for processing applications programs.

Thrashing can be minimized by providing sufficient M2

and by keeping the unit of memory management small.

Figure 4.9 indicates Intermetrics' approach to memory

management via a descriptor-based, stack-oriented structure.

Absolute M2 addresses are only contained in "Morn" descriptors.

Only 1 "Mom" Segment descriptor for a program or data segment

may exist. Many "Copy" descriptors may be created with a

pointer to the "Mom". This pointer is a two-dimensional address

specifying a stack number and offset (SNO). The SNO is the re-

lative address which must be translated into a physical M2 ad-

dress. The 32 most recently referenced (SNO) addresses are con-

tained in the associative memory. The contents are updated

automatically whenever a reference is made. If the SNO refer-

ence is found within the associative memory, the "Mom" descrip-

tor which contains the absolute M2 address is retrieved from

local storage (MI) and the operating memory address is obtained.

4-21

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138 • (617) 661-1840

Copy Descriptor

Pointer to Morn

Stack Number (SN)

and

Offset (O)

Stack I

Number]

Associative .

Memory

i_ SNO is in

i-4 s'o c-_{7ati"v e Memory --_ [

Not in

Associative

Memory

I-f-_-_rect Fetch]

thru Lexical |

Level 0 |

Stack Vector in

M2

Stack Pointer

\
Update

\Associative

_Memory
\

Mom Descriptor in High

Speed Local Storage M1

]
I M2 Address
I

ef redali o n

S tack

Figure 4.9: Addressing Via Stack Number and Offset

4-22

INTERMETRtCS INCORPORATED " 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840--

If the associative memory does not contain the refer-

enced SNO, then a three level indirect addressing seguence

thru M2 is executed. The first level fetches the stack pointer

from wiLhin the stack vector using the stack number as the re-

lative address from the base of the stack vector. The second

level of indirection is used to fetch the "Morn" descriptor

using the offset part of the address as the positioning rela-

tive to the base of the stack.

If the referenced segment is not in M2 it must be

fetched from M3. '?his is indicated by a "presence" bit con-

rained in the "Morn" descriptor. If the segment is present

within !,]2 it is ref,.:_-enced directly. In either case the as-

sociatJ'Te m<,mory is udpated so the "Morn" descriptor can be

re:Eerencr, d more directly the next tJ1_:_.

Reference, s_ for Chs:uter 4

1. CRC Standard Mathematical Tables, 19th Edition, p.570.

2. Wilkes, M.V., "Slave Memories and Dynamic Storage Al-

location", IEEE Trans. EC-14, April 1965, pp. 270-271.

3. Gibson, D.}]. , "Considerations in Block-Oriented Sys-

tems Design", Proc. SJCC 1967, pp. 75-80.

4. Green, J.P., "Mass Memory Parametric Data", Task Re-

port MD-]01, Intermetrics/NAR, June 1971.

5. , "Mini-wire Sale Completed", Computer Design,

September 1971, p. 12.

6. Denning, P.J., "Virtual Memory", Computing Surveys,

Septenfl]er 1970, pp. 153-189.

7. Kilburn, T., et al, "One Level Storage System", IRE

Trans. EC-II, April 1962, pp. 223-235.

8. McKeeman, W.' _4., "Language Directed Computer Design",

Proc. FJCC 1967, pp. 413-417.

4-23

_ INTERM,ETRICS INCORPORATED "701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

I

Chapter 5

ADDRESSING

The gucstJ_on of add_sessJng is the most dominant feature

in the divc_rsity o!! instruction architectures. It can be viewed

from m,_ny different angles: correspondence to software, ease of

usage fol _ prog_-a_mr::cs, bit m.inimizatio_, physical implementation

and excu_,tio_, l_i<:cazci.i_:s of memory, and/or operating system

memory resource allocation. We shall discuss several of these

aspects and show various options or methods that may be employed.

5.1 Addressing and Instruction Architecture

When an instruction architecture is contemplated sev-

eral different independent decisions with regard to addressing

within an instruction must be reached. The number of operands

which an instruction can contain may vary from three, two, or

one explicit operand(s) to implied operands, where the implied

operands are to be obtained from a stack. The question as to

how many hardware registers, of what type, and how they are to

be addr<_ss(;d arises (single accumulator or "general" register,

hardware "top of stack" for a depth of two, ...). Finally,

exactly how is memory to be addressed: all memory addressable,

two-dimensional addressina,, self-relative, etc.

5.1.1 The Number of Operands in an Instruction

Most operations which occur in algebraic languages are

dyadic operators. That is, the operation manipulates two inputs,

transforming them into a new output value. It is seen that dya-

dic operators (+, -, +, x, ...) have three operands: two input

operands and one output operand. There are, of course, monadic

operations such as negate or absolute which have two operands:

one input operand and one output operand.

Instruction architectures vary as to the number of ex-

plicit memory-addressed operands which appear within the instruc-

tion, yet, of course, the necessary three operands for dyadic

operators must be present. (Two operands for monadic operators.)

Three memory operand instructions are found in several

machines including the Honeywell 800/1800 series. However,

5-1

INTERMETRICS INCORPORATED- 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

when the actual usage of dyadic operators is examined it is seen

that seldom are three different memory addresses needed. Consi-

der for example:

A = B;

A : A + i;

A = - B/C

In these, admittedly biased, examples the use of the three mem-

ory at]dress operands is wasteful. In the first example, there

is but one input and one output. In the second, one of the in-

puts is also the output address, and in the third a monadic op-

erator appears.

The waste, or non-use, of a memory address is only bad

in so far as it takes room. If the instructions are of the

three-operand form and not all three operand memory addresses

are used, the instruction still must save space for the presence

of these memory addresses which are many bits in length. It is,

therefore, usually found advantageous to have at least one of

the three operand addresses implied.

Two memory operands are occasionally met with in the

instruction architecture. In this case one of the two operands

besides being an input is usually also the output operand. The

IBM 1401 is such an example. This form of two operands can be

very useful where most of the operators are monadic such as is

commonly found in data processing where much of the computer

time is spent in moving data and editing them.

The most common architecture found is based upon single

memory address operand instructions. This is common in both the

second and current third generation computers such as the IBM

7090, IBM 360 series, Univac 1108, and the DEC PDP-10. With the

single memory address operand an accumulator (or another "regis-

ter") becomes an implied operand for the instruction. Commonly

then the implied operand serves both as one input operand and the

output operand of a dyadic operator. When monadic operators are

used one operand can be the memory address and the other the im-

plied accumulator. When the third generation of computers de-

veloped, the "implied" accumulator was often made into a set of

general registers of which one could be selected to be the ac-
cumulator. This has led to the characterization of the 360 as

having a 1.5 operand instruction set.

The single memory address form of instruction is very

useful when sequential accumulation of results occurs, such as

in:

A= B + C + D + E;

5"'2

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-184(

However, if a tree structure form of computation is needed (as

common].y occurs) such hs:

A = (_ + C) * (b + E);

the accumulator would have to be saved after calculation of

B+C before D+E can be done. One of the hopes of the general

registers deve[IoL>ment in one third generation computer with

multi!/Le accumulators was to be better able to do efficient

calculations of this foxm (i.e., save on storage to memory for

tem_oraries) .

One of the principal advantages of having fewer mem-

ory oDerallds wi Lb each instruction is in the space savings to

be fou_Jd by not having u<:e]_ess fields in a]l instructions.

That is, it wou_]d be desirable to use instruct/on space for

memory address{ o_erands only when they are needed. The ulti-

mate in this fo_rm of space savings is to be found in the zero

memory address opcrand instruction. In t]_is case all of the

necessary operands for an operator are implied. These are the

stack machines _..d_cre the "top of the stack" provides the nec-

essary number of operands for an operator and the resultant out-

put value is in turn placed upon the stack. The Burroughs

B5500 and B6700 are examples of such machines. The memory ad-

dress operands, of course, must be able to be fetched from mem-

ory and stored into memory. These are, in effect, merely two

forms of operands.

This stack form of instruction is one of the most ef-

ficient ways in which to specify an algorithm since only the

minimum amount of information needed for execution need be

present.

The stack itself can be considered in several ways.

From a HOL point of view the implied operands of the stack cor-

respond to many of the parse algorithms which have been developed

for compilation and hence are able to produce extremely effi-

cient code. _rom a multiple register point of view the stack pro-

vides a method for the dynamic assignment of the general regis-

ters rather than the static assignment at compilation time with

its inherent inefficiencies.

5.1.2 Single Accumulator and General Registers

While many second generation computers had a single

accumulator, third generation machines have tended to have a

set of general registers. This has come about for several dif-

ferent reasons. Each reason stems from the basic desire for

more efficient and quicker execution. As was seen above, a

single accumulator does not make for efficient execution of

5-3

-- INIERMETRICS INCORPORATED •701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

tree structured statements. Therefore, if several accumulators

were available, storing into memory for a temporary could be

avoided; this would save both time and space since memory would

not have to be referenced. Also technology, by the third gen-

eration, had improved to the degree of allowing more complex

hardware in the processor. Thus, multiple accumulators could

be implemented.

Another aspect is invoked with the addressing of mem-

ory. Second generation machines often had separate index re-

gisters from the accumulator; these then needed a separate set

of instructions for their manipulations and similarly they were

then restricted in the operations which could be performed on

them (e.g., no mu]tiplications with an index register). The

third generation often has truly general registers which can be

either accumulators or index registers (or base registers) thus

optimizing on the resources of the speedy registers for use as

needed.

The desire to use more accumulators was based on the

desire to improve the speed of computation by having fewer mem-

ory references and by doing manipulations and operations with the

general register set. Unfortunately, this very desire forces

the instroduction of bookkeeping instructions to set up the re-

gisters so that they can be manipulated. It is often difficult
to tell from instruction occurrence statistics for an IBM 360

whether the large number of loads (L, L}I, IC) used are to keep

the register policy happy or are rather a by-product of improve-

ment.

When both base registers and index registers are avail-

able their usage is often confused. Base registers are primarily

used to address physical locations. They provide the capability

of addressing particular regions of core. Their value interpre-

tation is that of a physical memory address. Index registers

are used to locate an element within an ordered data structure.

They refer to data elements which are to be manipulated and do

not inherently indicate physical addressing. If a character

array is being indexed, then the elements are in byte units, if

word integers are being referred to, the index actually refers

to four byte quantities (in the 360). Because this distinction

is not maintained the automatic quality of element indexing can-

not in general be performed. (In the 360 the SLL instruction

proliferates in order to align the "index" properly.)

One other major problem can develop with the use of a

set of general registers. This is the question of how to opti-

mally use them. A choice has to be made as to which registers

are to be used for accumulator(s), base register(s) or index

registers. The static assignment of the use of the registers

5-4

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840-

I

unfortunately does not often correspond to the optimum dynamic

usage. '?]_J.s is tl_e case since the flow of control through

an execut:Lng program is simply not known. Alternate paths

of execution exist since this is what the execution of an algo-

rithm is about. The use and savings of registers for one branch

of an IF...TIIE_...ELSE statement is, in general, entirely dif-

ferent from that of the other branch. Similarly when a s1_b-

rout_]he is ent<_rcd, the use of registers within the subro ine

is not co.t:re],:_tcd with use in the calling procedure (whe:, he

CALL m:'/ be Jssu<:d at distinct locations each with diffe:

xegisL_:_:- usage).

While it could be truly argued that in any case '._ul-

t.iple rc_j]_stc_s a]-o better than one, -the acLual policy ::.mple-

Above, it was seen that in the zero memory address op-

erand fo£m of irJstructions a push do_,n stack mechanism is used

for operands. Tl_is, by its very nature, tends to optimize the

usage of the hardware registers available for accumulations and

index registers. When a subroutine is entered, the dynamic en-

vironment stack continues to push and pop as needed for the sub.-.

routine and hence it acts as an automatic dynamic optimization.

When optimizing is tried in code generation by trying

to identify common sub-expressions (e.g., I + 1 in A_+I : BI+I) ,
+c sz- ' c "the stack can become ine_1.,±ent. (The code needed _oEh in tlme

and space to save and restore I + 1 is (can be) more than the

actual recalculation of I+l.)

5.1.3 How to Address Operating Memory

Various methods of addressing physical memory are found

in instruction architectures. All of memory may be addressed,

a bank of memory may be addressed, addresses may be relative to

the executing instruction or, while only a small portion of mem-

ory may be disectly addressed, the rest could be addressed "in-

directly".

Machines such as the IBM 7094 addressed all of memory.

This form of addressing implies that the memory address operand

must have the number of bits needed to represent all of memory.

Not only is this _asteful, since usually only a small portion

of memory is needed in the execution of a program, but it also

limits the size of memory which can then be used with the in-

structions.

In order to bothreduce the size of the memory address

operand field and to remove the restriction on memory size

5-5

-- INTERMETRICS INCORPORATED "701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

(or at least increase 'the limit beyond foreseeable needs), two

dimensional addressing is introduced. This addressing can be

in fixed banks where a certain block of memory is in use (in

the Apollo Guidance Computer there were four "banks" address-

able at any given time: fixed erasable, fixed fixed, banked

erasable and banked fixed) and hence memory address operands

then refer to addresses within the current bloc]<, or a more

dynamic form of banking can occur as in the 360 where a base

register points to a starting location and a displacement field
then refers to an offset from the base.

Thus with the use of 16 bits, 4 bits to indicate base

register and 12 bits of displacement, the IBM 360 is able to

address up to 24 bits (16 megabytes) of memory. The penalty, of

course, is the overhead which must be paid in the setting, us-

ing, and maintaining of a base register and the restriction to

a maximum displacement of 4K bytes in a program segment without

the setting of another base register (or the resetting of the

current base register).

Another form of two dimensional addressing appears in

those computers which have been designed for the execution of Al-

gol (e.g., B6700). Since the instructions to be executed are

reflective of Algol, the data referred to must reflect the name

scope restrictions of Algol. The B6700 makes effective use of

the name scope restrictions in Algol to have its "base" regis-

ters (i.e., Burroughs Display registers) set automatically to

the dynamic environment of the addressable data. The B6700 "base"

register points to each succeeding lexical level which is ad-

dressable within name scope rules. The displacement then refers

to a particular entity within the lexical level.

Besides having base registers, as in the 360, which are

able to address any region or core, many architectures allow "in-

direct" addressing. By referring to an address word which is

within the area which you can address, you are allowed to "indi-

rect" your reference thru this address word to what it points to.

Thus, while only a small portion or memory may be "directly" ad-

dressable, all of memory becomes addressable.

It is apparent that when the 360 was designed, the in-

crease to 16 general registers from one accumulator and a few

index registers seemed so magnificent that the need for indirect

references was deemed not necessary. (The 4_r AP-I which is a

flight computer by IBM modified from the 360 instruction set has

restored indirection.) It turns out that the use of a few in-

direct references could save immense overhead on register usage
and allocation.

When data is being addressed, the actual number of en-

tities (variable "names", e.g., A,B ... in a program) involved,

5-6

INTERMETRICS INCORPORATED-701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-184(

in general, is small. This comes from the simple limitation of

the human programmer. The amount of storage, how_ver, may be

larc]e (e.g., arrays of data, sin91e or multiple dimension).

When an e]{:ment in an array is referred to, an index is used.

This phenomena has the very nice property of making the base-

displacemc_nt form o:? addressing attractive. While entries can

be directly _ddressed, arrays can be indexed into. The number

of different data areas are also generally limited, again due to

prog_r:u:mdn<_]_anguage restrictions and conventions and hence the

nu<_ber of (]i ,_J_-<en"u data regions is in general small and there-

fo:_.: the nurd-_c,r of base' registers fez- data addre_:s:[ng is in

general not too large.

In._tructions have other characteristics. Often a rou-

t;[_i<_will i_: _xceed the 4K byte displac::';-<cnt a]]c_..,_able with

IBM 360 addressing from one base register. Addressing of a code

segment within a code segment is concerned with control flow and

usually has a very local nature. This brings one final form of

add<essin!f: self-relative addressing. Often branches occur to

si3,._p]y skip one instruction, or a few as in an IF...THEN...EI.SE.

By using self-relative addressing for control flow within an in-

struction stream a very high degree of size compaction can oc-

cur; it becomes automatically relocatab]e without changing any

code and the restrictions (e.g., 4K bytes per base register) of

the code segment length can be removed.

5.2 The IBM 360 and Burr ouqh_s_BB6700

In order to gain an appreciation of the difference in

addressing structures, a comparison between the IBM 360 and the

B6700 is given.

5.2.1 Two Dimensional Addressing (Static and Dynamic)

In order to process large computational jobs a large

amount of addressable space is needed, but with a second gen-

eration machine such as the 7090 all of this space (and hence

the limit of the memory size) must be addressable. In this

case then, it was necessary to use 15 bits in every operand ad-
dress. The IBM 360 and B6700 both have two dimensional addres-

sing. The IBM 360 uses a 12 bit displacement which is to be

added to one of 15 base registers. This allows for a full 24

bit addressing (of bytes) scheme. Here 24 bits of address space

has been compressed into 16 bits of information. The B6700

scheme uses only 14 bits with its operands, where the "base"

(DISPLAY) register is defined, with only the number of bits

needed to indicate the current lexical level (££) (i.e., £_=i

implies 13 bit displacement, ££=2 implies 12 bit displacement)

5-7

__ INTERMETRICS INCORPORATED • 701 CONCORE) AVENUE - CAMBt{IDGE, MASSACHUSETTS 02138 • (617) 661-1840

and the B6700 displacements refer to "words" Since program seg-

ments in the B6700 are described via a "descriptor", the actual

size of memory which could be addressed is only limited by the

nunJoers of bits so usc, d in the descriptor. In point of fact,

Burroughs uses 20 bit word addresses in their descriptors.

It is easy to see then that if the memory of a compu-

tina system is large compare0 Io the modular size of "programs"

(or perhaps even procedures and :<outines), program string sav-

ings are to be found])y usin C, a two dimc_nsional address.

Tll',:re is a g)-eat difference, however, between the I]3_

360's and I_6700's t\,,o dimensio_la] addressing schemes. The IBM

360 base registers aJ:e assigI_ed "statically" at compile tirne, and

it is up to the com!::J icr to t_:], and optimize base register usage.

This optimization is minimal if only one base register is needed

within a segment. This becomes difficult in large segments since

the dynamic characteristics of the segment modularization must
be considered.

This static two dimensional addressing of the IBM 360

has several aspects.

a) By using 4 bits everywhere for base registers the dis-

placement range is]cr]uced, since seldom are that many

registers desirable.

b) If a program is "one big" segment; then several base

registers are needed[and segment boundaries must be

carefully watched.

c) If the base registers are set upon entering and upon

returning to each module then:

i) There must be code to do this in the program

strings.

2) Name scope problems arise when variables in a

previous level are to be addressed since their

base registers are in general no longer in exis-

tence.

The B6700 optimizes upon the two dimensional address

idea by.

a) using only the number of bits necessary for the current
lexical level to indicate the number of bits for the

"base register". This leaves the rest of the bits for

displacement. (There is also the fortuitous circum-

stance experienced by all, that the more "inner" a sub-

routine the "smaller" it is, i.e., it needs less dis-

placement to fully address it.)

5-8

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE " CAMBRIDGE, MASSACtJUSETTS 02138. (617) 661-1840 -

t

b)

c)

The base registers point at the beginning of each dy-

n_mic module, hence allowing the displacement to reach

zts most e>:treme logical dynamic range.

Since the usage of the "base" (display) register is

unique and well defined, (versus general., e.g., base

register, an accumulator or an index register) the

initialization and resetting of them can be accomplished

automatically. Furthermore, no explicit code in the

l)rogram string is required and current dynamic name

scope is maintained.

5.2.2 Implicit Addressing

Compare the expression:

A : B + C;

on the B6700 versus the IBM 360:

B6700 IBM 360

VALC C L R0, A

VALC B A R0, B

ADD ST, R0, C

NAMC A

STOD

In each case they execute similarly: (fetch C) , (add B to this

value) and (store value into A) . In effect it is the only se-

quential form possible (i.e., ADD before STORE) for this expres-

sion.

However, when temporary locations become necessary a

difference appears in the code, although the total effect, must

of course, remain the same. Consider A = (B + C) * (D + E):

B6700 IBM 360

VALC C L R0, C

VALC B A R0, B

(continued)

5-9

_ INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

B6700 IBM 360

ADD ST R0, TEMP

VALC E L R0, E

VALC D A R0, D

ADD M R0, TEMP

MULT ST R0 , A

NAMC A

STOD

Assuming that there are only a few (in our case exactly one) ac-

cumulators being used, during the expression evaluation it becomes

necessary to create a temporary.

The creation of a temporary indicates an increase in the

program size for two reasons.

a) In general, the use of temporaries is a static decision

and hence cannot behave better than the dynamic usage

of the stack. Therefore, one needs more "temporary sto-

rage" locations than stack storage.

b) But more importantly, in the IBM 360 type of machine,

every instruction has an operand, therefore, the tem-

porary requires an address which in turn takes space.

The B6700 uses implicit addressing; the needed number

of operands coming from the appropriate number of loca-

tions on top of the stack.
I

When temporaries are needed, most often an implicit ad-

dress scheme allows for the savings of "temporary" operand addres-

ses.

5.2.3 Descriptors

Descriptors can be considered either as sub-operators

or as the ideal data structure which is being manipulated. When

considered in the first manner, it is seen that the descriptor

saves on the program string length. "Fewer" operators need be

specified since the "sub" part of the operator is found in the

descriptor of the data structure. For example, the IBM 360 has

for "add":

5-10

INTERMETRICS INCORPORATED' 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-184(

AH, A(R), AL, AE(R), AD(R), AU(R), AW(R), AP

while the B6700 has simply "ADD". This of course requires fewer

opcodes, and in turn fewer numbers of bit states for the neces-

sary operators.

When the descriptor is regarded as the "data structure",

it shows at].east two virtues. One is the fact that by being

"sem_:nLic_!lly concise" (further discussed below) it places into

one]o..:ation the compiicatcd description of the data structure,

which Lhcreby need not be repeated in multiple references in

the program. Tl_e other is the observation that the number of

entities which ace manipulated by a program are few. The reason

that a large addressing space is normally necessary is that if

the mac_linc do_s not haw; descriptors, then each "memory cell" of

the data structul?e must be directly addressable. The example of

an array of i00 scalars on the IBM 360 is in fact i00 memory lo-

cations. On the B6700 it is one entity: a descriptor which in-

dicates the dJmensJons of i00 and where it is to be found in

physi.cal core. This very important phenomenon reduces the ad-

dressing requirements of a program string, since the full physi-

cal memory address need only appear in the descriptor. The des-

criptor becomes one of the "few" entities which must be addressed

and hence only a small address field is needed in the program

string proper.

5.2.4 Type Differences

Descriptors allow any information which can be "bottle

necked" to be placed in the descriptor once, instead of having

the information repeated throughout the program string.

Besides having character data (for I/O) and an inter-

nal arithmetic form, most machines have in fact several internal

forms. The difference between the "character" and "internal

arithmetic" comes largely from the savings yielded by compactly

storing and m_nipu!ating them in the internal form. The various

internal forms come from considerations of preciseness.

Types can be optimized by:

a) making one a proper subset of another (e.g., integer is

a subset of single precision floating point on the B6700).

Thus, the difference between the operators disappears

(except for an explicit operator to recover the proper

subset; such as INTEGERIZE).

b) the need for multiple forms of the same operator dis-

appears (e.g., IC, LH, L, LD, LE)

5-iI

INTERMETRICS INCORPORATED "701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

c)

d

and the need for explicit type conversion operations is

reduced. The program string could be further minimized

by providing an explicit operator for each type conver-

sion when needed (e.g., scalar to character, while in-

tegers to scalar would be implicit by the integer de-

finition as a subset of scalar).

5.2.5 Semantic Conciseness

Probably the most powerful way to save in program string

length is by having semantically compact operators. By having

the operator correspond to the operations indicated in the pro-

blem language being executed, the minimum amount of translation

is needed and hence the minimum amount of expansion in the pro-

gram string.

The Burroughs B6700 is an "Algol" machine.

tors are those that ALGOL indicates.

Its opera-

The IBM 360 is semantically concise only to "BAL" which

is merely stating a tautology. The IBM 360 is not semantically

concise to any real "problem oriented language".

Besides being semantically concise with respect to the

operations needed for a problem the operators can be "semanti-

cally concise" in the way in which they are constructed. Branch-

ing occurs within a program under execution and not logically

with respect to all of physical memory. The IBM 360, as most

machines, allows the branch address to be any address of physi-

cal memory. The B6700 uses relative addressing (that is, re-

lative to the program under execution) either in the same or dif-

ferent segment. This of course reduces the address space neces-

sary, since it corresponds to the dynamic space involved at ex-

ecution time. The RC4000, although built upon similar concepts

as the IBM 360, has relative addrgssing, and this in turn creates

an efficient and small(er) addressing need.

In the IBM 360 each memory reference instruction gen-

erally carries 4 bits of indexing information. The B6700 in-

dexes only when needed, and since a stack is used (hence impli-

cit addressing) only an 8 bit operator is needed (which can

also load the resultant indicated entity). Assuming that not

every memory reference needs to be indexed (the indices them-

selves must be fetched from memory) the use of indices when

needed, (and semantically concise operations make the need less)

will, in most every case, minimize the program string length.

The use of short literals a_so compresses the program

string since the constants used are usually small integral

5-12

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138" (617) 661-1840_

values. Recognition of this fact allows for their representa-

tions in the amount of[space needed and not the amount for the

worst (largest) case possible.

5.3 Implementation Aspects of a Stack Machine

5.3.1 Definitions

'/'he stack provides the mechanism through which impli-

cit addressing cen be accomplished in a scman£ically concise

and e£:fJciont manne__-. The control sequencing and addressing

wJ I.I_the shack will he discussed in Lhis sectior_° A sp©cific

iml.Jl_m<:i_C i.o_ is v_,kscnted. Details can _.>ar)/ f:om m;_cT_jne to

mnchine. However, the fundamental ideas will l'emain the same.

In a sense the stack is a hardware element just as the

arithmetic unit is an element. It can execute three primitive
conunands:

a) I_USH

The PUSII command will take the contents of the stack

buffer register and place it on top of the stack. Sim-

ultaneously it will shift all other elements of the

stack down one level. For example, the old top of the

stack becomes the second entry in the stack.

b) PoP

The POP command fetches the top of the stack and places

it in the stack buffer register. Simultaneously, it

shifts the contents of all other elements of the stack

up one level. For example, the old second entry of the

stack becomes the new top of the stack.

c) Stack Fetch

PUSH and POP store or retrieve information from the

top of the stack. In many instances, information is

desired from other stack locations. The Stack Fetch

sequence accomplishes this function by fetching from

the stack location (indicated by the lexical level

and displacement) and placing the information in the

stack buffer register. Stack Fetch does not change

the state of the stack in any way.

One could implement the stack as a word parallel-shift

register. This would fix the length and make it a specialized

element of the computer. In order to achieve generality and

5-13

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 681-1840

flexibility in the design, we choose to implement the' stack by

employing a standard linear memory array with some specialized

pointers. These elements are manipulated by micro code to

create the three control sequences.

In general, the length of the stack can vary during

execution from ten's of words to thousands of words. For this

reason the bulk of the stack must, due to practicality, be con-

tained in M2.]_owever, the more dynamic part of the stack (we

choose 8 locations) can be placed in M1 for faster access. For

the purpose of the follo_,._ing description the stack word size and
M2 word size are assumed to be the same.

5.3.2 PUSH

The PUSII sequence, whose flow chart appears in figure

5.1, involves both the M1 and M2 portion of the stack. Figure

5.2 depicts these two portions and provides definitions of the

various pointers used to control the stack.

The M1 portion of the stack can be pictured as a

wrap-around shift register. The oldest data is pointed to by

MISL (MI Stack Limit). The first empty location is pointed to

by MITOS (MI Top of Stack). Whenever MITOS = MISL, namely the

M1 portion of the stack overflows, the contents of (MISL) is

moved into M2 location indicated by M2TOS (M2 Top of Stack).

If M2TOS ever equals M2SL (M2 Stack Limit) then the M2 part of

the stack has overflowed and a trap is generated. The stack

overflow trap routine could then, depending upon conditions,

allocate more storage for stack use and change M2SL.

The data to be entered into the top of stack is con-

tained in MIBR (MI Buffer Register). Upon entrance to the

routine MITOS is compared with MISL to see if the M1 portion of

the stack has overflowed. If it has not an M1 write is set up.
The M1 address is MITOS and the data is contained in MIBR.

Finally, MITOS is incremented, modulo 8, before the exit.

If the M1 stack overflows a determination is made as

to whether the M2 part of the stack will overflow. If so, a

trap is entered. If not, an M2 write is set up, using the M2

address indicated by (M2TOS) and the data pointed to by (MISL).

MISL and M2TOS are incremented, followed by the M1 write set up.

5.3.3 POP

The POP sequence is shown in Figure 5.3. If the M1 part

of the stack is empty, an M1 stack underflow condition exists

and a read from M2 must be initiated with an M2 address of

5-14

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE " CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

I_n t(: r

1
Data in HlliR

M1 er pry?

M1 :;tack overflow

Legend

N]P,R = ?'12 _uffer I_eqister

N]TOS = 141 Top of ,(;tack

M]SI, = MI St;Ic.k Limit

N2TOS = M2 Top of Stack

N2SL = |42 Stack Limit

bit Jn status word

Enter Stack Overflow

Tram

l

,Clc, t up M2 write

(142TOS) * ,'4;' address

(NI,qL) > /ik d_ta

I
(bI],%1, 4 I) _ :.I],%L]
(M2TOf_ 4 i) -* /.:2TOJ;

d

Set up M1 write

(MITOS] _ M1 address

(M]BR)-, M] data

}<es<.t Ii:l em[,ty bit in .%i',i [(;-_]'/O.g + 1)_ ., 5II']OS

J
Exi t

Figure 5.1: PUSH

5-15

MISL

Full

M 1 Par t of St_a_c_ I-'-_-_._

/2%

Ful I ._ 5 Full

'<- 4

Empty

MITOS

M1 Stack Over f low

M2TOS i

J

M2BOS

O

O

O
w

M2SL

M2 Part of Stack

Figure 5.2: The Stack

5-16

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 66t-1840

(M2TOS) 1 [he M2 words are]placed into hi.J)],. On the other

hand, if the M1 stack-is not empty, the contents of (_41']7OS) - 1

is read and placed into M].BR.

If the stack becomes empty the condition is set into
• 1 J_ _ (SRI for znpuu. J n c) the next POP _,_equence . Every.. PUSII sequence

will reset this empty condition.

5.4 Effeci_iv<, Addrc:ss Generation (EA).

Offs<..[Addres<<Jnc])

(Lexical Level

Within the insLruction architcckure of a stack oriented

mach/L_IC _ there u>:ii,sts a class of instructions _hJ.ch refer to infor-

matJ_.'.n ,,<,ith:[n 1::h.:_stack. _.qhenever oile of [-.hr:.seinstructions is

encountered an efiective address (EA) must be calculated. The

segu.>nce to be presented depicts a specific design [].] . In gen-

eral, the det:_il.s of EA calculation might be different. However,

some form of addressing with the stack must be provided.

The format of the class of instruction referencing ex-

plicitly the stack is:

of bits 1 2 5 8

cont t ode I 1 I A1]

The address couple A2 I JA]. forms a 13 bit field.

• .., A 0 which is interpreted as follows:

AI2, All, A10,

a) The lexical level indicator, ZZ, is the key to the in-

terpretation of A2 I IAI. The first step is to find the

positive integer m, where:

2m-I < ££ < 2 m

b) Form Field 1 where

Field 1 = AI2 , ..., Al3_m

c)

d)

Fetch from M1 the base register specified by Field i.

Denote this base register by BRm.

BRm is in Stack Number, Offset representation.

5-17

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138' (617) 661-1840

I,.-i

<

b.

c) r_
, B_-I

r_

r-_

O

O _ H rd

,2_ i ---- cG

4_

O
Z

b_

\
\ _ / _
\,0/
'/7 !

4J

1.4
'L1
"d
fd

C'q

I]-_ 0

>i
@

.el
,.-4_

0
I'd l::c

0

#3 .,--i
L:', _J ,"de._

o
r_ 0_-I

(;) .lJ .lJr.D
P_-_t

_ __._ o_) _4_
0 _

dj 0 .r_

o_
o]

t

-r_
N
_q

C

b

5-18

e) Next Field 2 is formed

Field 2 = A12_m , All_m , .. A 0

f) Finally the effective address (EA) is formed where

EA = (BR_n) + Field 2

This addition only occurs to the offset portion of

(B Era) .

5.5 Stack Fetch

When information is required from any location except

the top of stack, a stack fetch sequence must be executed (see

Figure 5.4).

The main test to be performed is to determine whether

the information to be fetched is in the M1 or M2 part of the

stack. This is accomplished by the calculation of the displace-

ment DISP. Information is then read from either M1 or M2 and

placed in the MIBR.

Reference for Chapter 5

i) Intermetrics, Inc., "Final Report -- Engineering Study

for the Functional Design of a Multiprocessor System",

Prepared Under Contract NAS9-I1745, Septemmer 1972.

5-19

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

.p

_q

<
_q

(_

_4

cs}
H

+

_q

I

U3
O
E_

_.II.BM.,,I_U

U

O

O
-H

0

r-I

0

4J
rd

0

H

0

O

r4

H i
A i

r-i i

rH _)

- i
_4 _I

_d 0

c_cN

cd .,--I
_Ord

L

-,-I

•_I '-I-I
0

O_
-,-I 0
-I-.I .,--I
rd.p

_I 0_4
0 P_O

I-i-i rd
I_ _N ._J

;t__t
0
_J

,-t

o
.p
O

_4
o
rd
.p
u_

.I-I(9

. I._
b_-_

_.I© b-,
_I _ (_

-_d

© II II

II I_

,o

u'3

14

Oa

5-20
I

ChapLet 6

I/O CO}_S]DERATIONS

°]

'2i_c I/O interface of the computer which serves the cen-

tzal co_<:n_t:ationa] and con[:_:ol elem_it of the m4_Pn._cd space sta-

tio_ is ilkcly t<_ bc charact<-._iized by the fo!]o<;ing observations:

a) There will be a large number and variety of interfaces

with diverse avionics equipments. The recent Phase B

Space Station analysis has advocated the use of a time-

shared, high speed (i0 MHz) avionics data bus to sim-

plify the pi-oblem of meeting this requirement. '2he I/O

implication of such a data bus will be discussed in this

report.

b) The computational speed and storage capacity requirements

of the Space Station are such as to make the multiplex-

inq of operating memory an attractive economical propo-

sition. (The cost of storing one bit in a core or

plated w:ire memory is over on<: thousand times the cost

of storing it on a disk.) Until the more exotic, non-

moving media, secondary storage technologies (such as

magnetic bubbles) become fully operational, the more

conventional magnetic drum and disk will probably pro-

vide the mass storage capability on the early space sta-

tions. The relatively long access time of these devices

has made it necessary to treat the problem of getting

information in and out of them as an off-line task in

parallel with the main computational functions. This

chapter wJ ii discuss the use of a drum or disk as the

tertiary level of a memory hierarchy and as the pri-

mary storage for files.

c) Although the Space Station central multiprocessor will

possess the powers of a typical large ground based com-

puter facility, it is not anticipated that its work load

will encompass as wide a variety of jobs, languages, or

users. Perhaps of even more importance, the work load

will be much more predictable. This is certainly true

of the operational requirements, and even the eventual

experimerntal support function will probably be farily

carefully tailored to the available facility. The

6-1

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

implication of this for the I/O function is that there is

less need for a highly generalized interface to a wide

variety of the conventional peripheral equipments, and

much less need for the sophisticated data management faci-

lity usually found in the I/O hardware and software for

controlling these peripherals and providing for the or-

derly management of a large nu_er of files, it will be

assumed that the only need for standard peripheral I/O

channels in the planned SUMC MP will be to satisfy the

ne_ds of a laboratory environment (e.g., card reader,

line printer, operators' console), and that the eventual

operational I/O will be performed almost entirely through
the avionics data bus.

d) The emphasis on the generation, processing and record-

ing of large amounts of data from experiments places

the high density, high speed tape store into a special

category of space station I/O device. Even if an impro-

ved bulk storage technology is eventually employed in

this function, the need for transferring and retrieving

large blocks of data from archival storage at rates on

the order of several million bits per second will still

have to be met. This data originates at the experiment

sensors, and enters the system for processing and reduc-

tion via the main data bus, which, as will be seen, can

typically supply 2.5 million information bits per sec-

ond. It is felt that a more specialized interface than

just another port on the bus is required for this I/O
function.

The major impacts of these observations on the I/O hard-

ware and software will now be discussed.

6.2 Data Bus I/O

In order to make more than sweeping generalizations, some

assumption of data bus characteristics must be made. Studies to

date [i] have shown that an initial Earth Orbital Space Station

can be serviced by a data bus whose elements are shown in Figure

6.1, and which has the following typical characteristics.

Multiplexing

Frequency

Number of devices (stations)

Command structure

TDM

i0 MHz

256

Command/response

These are the important control characteristics from the point

of view of I/O communication.

Command/response implies central computer control. Bus

I/O takes place only on the behest of the computer; no device

6-2

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

°

I

! ! _ir 'n f:-" \

'..... -'-I '.-J"_" ! "...... l'r _ /

..... -_ ::i _,...t _ I --_ I

I i:i ,::_ .<i ! \U

r.Pi t! {

f:.:i +.J <'.,-j

7.i

r-!
©

.

o o

o
u

.... •_ _ \

2_)

U

4_
_rj

:

_;

H

U

C_

_0

0_

may volunteer information. It is our opinion, however, that

although a strict C/R control policy may be shown to be quite

adequate at this stage of Space Station development, it will be

advantageous to provide a bus interrupt capability. This is

not so much in order to provide the devices with control auth-

ority, but rather it is in order to allow the bus control unit

(BCU) the ability to off-load the computer I/O routines of chores

such as error monitorinm, detection of unusual conditions, response

to unsolicited communication from Station subsystems, etc.

Local processing at the device level has been proposed to

off-load from the bus any high speed repetitive functions (such as

strapdo\¢n inertial system algorithm evaluation). It is e>.'pected

that bus communication between computer and device will be com-

posed of short blocks of data from one to several bytes in length,

typically 1 to 128. Data transfers of larger blocks (e.g., CRT

display frames, experimental data recording) are usually not time

critical, and may be achieved by repeated bus I/O. If 8 bytes

suffice for device address and address echo check, and assuming

a typical 80:20 mix of short (4 byte) and long (128 byte) bus

communications, the time to service 256 devices is derived below:

Short

All messages

Bytes Bits

Control

Con_nand Echo

4 4

4 4

Data Total/De vice x(# of

devices)

Tota i

4 12 96 206 2.104

128 136 1088 50 5.104

7.104

A complete service cycle of all devices on a maximally

configured bus thus generates 70K bits. For a I0 MHz transmis-

sion frequency this cycle can be repeated every 7 milliseconds.

In practice, delays due to finite transmission speeds will in-

crease the cycle time, but a i0 ms to 20 ms bus service cycle

seems to be entirely achievable. A 20 ms cycle, with the pre-

ponderance of long communications assumed, will generate about

300K bytes/sec of actual data, i.e., a data rate comparable to

that of the higher speed storage devices such as drums, disks,

and tapes. However, a data bus differs significantly in the
manner in which this data is addressed and controlled.

6-4

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

The type of bus described is essentially a t'able-driven

device: in p:_ractice, communJ cation between the computer and the

avionics devices will occur as follows:

a) A number of device interfaces will need to be accessed

for real time data at the highest service cycle frequency,

i.e., every i0 ms to 20 ms.

b) Others will require accessing periodically, but at lower

frequu, ncics Lhan the maximum.

c) Some will require occasional sampling of random intervals.

d) Some devices may be attached but may not be components

o_ _ _oml/u_ez _aivity. L_cv_:,.]_Icss, thci_ status and

health must be continuously known.

e) The remaining interfaces may not even be attached.

The mix of devices in each category is a function of mission phase

and/or station operations. It is a delicate design problem to

ensure that all the highest frequency requests are complete with-

out exceeding the basic bus service cycle, and without losing

some of the less frequent requests. Since these constraints are

known only to the system implementer, specific bus configuration

should not be wired-in to the hardware (or system software) of

the computer or I/O controller.

The device accesses can be organized into a set of I/O

tables. Each table contains the list of accesses to be accom-

plished at a given frequency. Figure 6.2 illustrates an example

of such a table, made up of entries for bus I/ O to be accom-

plished for K : 1 (every service cycle), K = 2 (every other cycle),

K = 4 (every fourth cycle), and so on up to K = 64. K need not

be in powers of two, but it is felt that this makes table mech-

anization much easier, and is not. a serious burden to the avionics

system implementer.

Each entry in the table is a request for bus I/O. Such

a request may consist of one or more words with fields which

contain the following information:

[IOC Command I I%CU Con_nand i Bus Conm_and]., Device Operand I Memor_ Address I

Figure 6.3: Typical Bus I/O Request

6-5

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

t_

1-I

4_

_m m

nnkimi m m

I

I
!

--J
t

r-_

mm _

o

6-6

t_

t_
_J

t_

©

0

t.fJ

oo

t_
-r-I

a)

b)

I/O controller field specifying I/O channel 'type (i.e.,

bus) channel number, channel command.

c)

Bus controller field specifying special instruction

to BCU (e.g. , table update, check device status, etc.)

d)

Bus command field specifying device address and bus

operation (e.g., read, write, set mode, get status,

etc.)

c)

Device operand field spcJfying operation to be performed

by specific avionics subsystem (interpretation known

only to device)

Dcsti:_,:_tion qie]d- address and length of memory area

in which result of bus I/O is to be placed, or from

which output is to be taken.

As each I/O request is executed the appropriate data

is transferred between memory device. The question now arises:

how is the table of I/O requests to be interpreted and where does

it reside? Several alternatives present themselves:

a)

b)

It resides entirely in main (operating) memory and each

entry is treated as a separate I/O request to the soft-

ware executive I/O routines. If there is a large num-

ber of high frequency entries this will create an I/O

bound condition, and much process swapping in a multi-

programmed environment.

The table of I/O requests resides in the I/O controller

and is executed there independent of main processing.

Only the result of each request is transferred to mem-

ory. This relieves the interface between the I/O con-

troller and the operating memory of traffic generated

by control statements.

c) The table of I/O requests and the resulting data re-

side in buffer storage local to the I/O controller.

Data transfer is in block updates between minor cycles.

The progression from a) to c) implies an increasingly

elaborate I/O controller. It also incurs the problem of buf-

fering the bus I/O data. If a user program no longer has the

ability to place each individual request, than it has no know-

ledge of when an update to (or from) the requested bus device

is made. This is especially critical for blocked data, where

it is essential to ensure homogeneously updated elements of the

block. A mechanism for preventing multiple access to data blocks

must be provided such as a TEST and SET operator, or multiple

6-7

INTERMETRICS INCORPORATED •701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

buffers with switchable pointers: the first incurs delays (cri-

tical to an I/O process), and the second consumes memory space.

The localization of bus I/O in the IOC allows high

frequency bus-computer communication to be conducted without

the several milliseconds delay normally associated with I/O

devices such as drums or disks, and obviates the need for pro-

cess swapping to maintain throughput. The low frequency or
random bus communication can be handled in a conventional fash-

ion as a single I/O event. Such requests can be treated as

temporary insertions into the bus I/O request tables, which are

removed when serviced by the bus. Completion of the request

can be signalled by an I/O complete interrupt. Division of bus

I/O requests into repetitive and random categories depends on

the trade-off between IOC complexity, I/O buffer size, bus ser-

vice frequency, and throughput.

6.3 Mass Storage I/O

The most critical function of secondary storage is

as part of the multiplexed operating memory hierarchy. Whether

the technique employed organizes memory into fixed size blocks

(pages) or variable sized blocks (segments), it is essential to

be able to locate and transfer to and from secondary storage

fairly large amounts of stored information (from tens to thou-

snads of words), in a minimal time.

The traditional disk or drum memory systems possess

characteristically long latencv and/or access times (on the

order of tens of milliseconds), and data transfer to those

devices is performed in parallel wxth other CPU acnlvity by an

independent processor. It is anticipated that early Space Sta=

tions will still employ rotating magnetic storage devices and

that I/O will continue to be concerned with their optimal usage.

It is important to realize that a subsequent change to solid

state mass storage (with little or no access delay) can radi-

cally modify the concept of memory multiplexing, to the point

where it may not be done via the I/O controller. In the present

discussion, we will assume the conventional core to disk inter-

face requirement.

The major concerns with optimal usage of the disk are:

a) Since access times are long (typically i0 to I00 milli-

seconds), but transfer rates are high (typically 5 to

I0 MB/s), it is desirable when a request for a missing

memory block is honored, that as much "useful" asso-

ciated information is transferred along with the spe-

cified block, since the cost of so doing is relatively

6-8

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-184(,

b)

c)

d)

low. This involves maximJz.ing the "locality" of the

executincj program which creates the I/O request, or

otherwise anticipating its accessing behavior.

Since requests for data take so long fie honor, it is

probable that, by the time a requested bloc]< is lo-

cated a_Id transferred, the request3ng process is pro-

bably no longer running. It becomes desirable to allow

the m tu,_ory management to determine, at its convenience,

when to alert _.¢ait:ing processes of their com}_]ete I/O

request._;. This may be done by causing a table of com-

pleted I/O requests rathe1; than to signal the system

via an "I/O complete" interrupt, as is usually done.

This may be don.:_ hy caus:incJ a table of completed I/O

zequ_:,_ L_, L_ _cc_Ji',_latcd blf the I/O con tro]]r,r, and

only wilen no further requests are pending, cause the

I/O cont_roller to interrupt the systc, m to notify it that

all requests have been expedited. A "quiet" I/O com-

plete scheme such as this is expected to greatly mini-

mize the "thras]_ing" of memory transfers that occurs

when operating memory becomes overcommitted.

The assignment of disk space can become as critical as

that of operating memory. For a high degree of memory

multiplexing, disk space can become badly "fragmented"

with use, necessitating a compacting or rearranging of

the assignment of files. In a real-time system it may

require prohibitively long search cycles to update all

references to files that are re-assigned. Disk addres-

ses can be organized in a central directory which maps

logical into physical address space. This can be ac-

complished in main.memory, at considerable cost of space,

or on the disk, at the cost of more complex hardware in
the disk controller.

Other traditional I/O problems (such as the trade-

off between I/O request frequency and I/O buffer space

in main memory, and the related question of logical

file blocks and how to assign them to a device that

is organized into physical records) still remain in

a Space Station environmerlt. But, as stated in the

beginning, these questions are of less significance

in an environment whose work load and user requirements

are less variable and more known. A less generalized

approach to file directory management may be possible

than is found in general purpose ground-based facili-

ties such as the larger IBM 360 installations.

6-9

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

6.4 I/O Controller Design

This section will describe the functional elements of

a _ :oposed I/O controller design. Detailed implementation ques-

t1 :. are beyond the scope of the present contract. Figure 6.4
i_ i_ates the basic functional elements.

6.4.1 Central Control (CC)

The central control unit provides the decoding of the

I/O opeKations, for the initiation and synchronization of com-

mands, and for data transfers between the units. The CC contains

an arithmetic unit and the logic required to perform conditional

decisions. The sequences issued by CC are stored in a micro

control memory and are initiated via commands from the various
interfaces.

6.4.2 Interprocessor Communication Interface (IPCI)

Some mechanism is clearly required for communicating

between processors and the I/O controller. This is necessary

for interprocessor interrupts, I/O commands, and recovery form
processor faults.

The IPCI provides the interface to the interprocessor

communications bus. One may reasonably question whether a sep-

arate interprocessor con_unication interface is required. Can

not all the communications go through M2?

If all the interprocessor communications occur by

writing into M2 and reading from it, then the answer to the

above question is no! The overhead due to constantly polling
M2 would waste processor time and create excessive M2 conten-
tion.

If processor communication uses the internal bus, as

a communications media, by-passing M2, then the answer is pro-
bably yes. The use of the internal bus as the communications

media is just an implementation decision. The fact remains that

distinct communication between processors and between processor

and I/O must occur, outside of M2. The logical decisions per-

formed by IPCI must exist whether a physically separate inter-

processor communications bus (IPCB) is employed or not.

A wide variety of signals are communicated over an

IPCB. Some are between processors. Others involve I/O trans-

actions. Some examples are given below:

6-10

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

r

o i

I
I

I
h

fJ
.H
[.<

--0
_0P3

_0I%1 _.

¢...)

--0

., FT.......1-I_4
/ _ 0"_

t

i

I
I
I

I
i

I

I

I
I

.I

6-11

e_

OTOSUO3

I
i

pxeD

]

I

I
I
!

I
I
I

I
I
I
I
I

u
rd ,,-4

o IHU

I
z__ _j

V

r-4
O
_4
4J

O
O

O

H

q-4
O

4-J

(9

(_
r-4

P4

m,

l.o

_4

U_

R4

a)

b)

c)

d)

e)

If local memory M1 is employed, then a poten'tial pro-

blem exists in updating con_non information (for ex-

ample, descripto_:s (contained within different Ml's.

The control of the updating requires interprocessor
communi c at ion s.

The loading (initialization) and dumping (for a pro-

cess swap) of M1 can be triggered within a processor

or commanded from another processor (in case of an

error condition).

When a processor fails or detects an M2 failure this

information must be signalled to another processor.

All the commands issued by I/O executive routines must

be sent to the I/O controller over some conmtunicating
link.

All "done" or "error" interrupts generated by or pas-

sed on by the IOC must be steered to a processor over
a communications link.

6.4.3 Operating Memory Interface

This interface element controls access to memory by

the various channels. It is, in effect, the DMA channel for

the I/O controller. The priority as to which I/O interface has

access when contention exists is fixed. The following is sug-

gested:

Priority 1 (highest) Channel i: The devices which

operate in the burst mode must be serviced at a rate consistent

with their data rate. M3 can possess a data rate of up to i0
MBPS, which is three to six times less than the M2 data rate.

However, channel 1 devices cannot sustain a large delay between

a request for an M2 transfer and the final servicing of the re-

quest since the addressed record is usually not fully buffered

and M2 and the auxilliary device must be synchronized during a
data transfer.

Priority 2 Channel 2: The devices which are driven

by tables in the local memory of channel 2 present to M2 a

data rate three to six times less than that of channel i. Yet,

if too much delay is introduced in each M2 transfer, the minor

and major cycle times might be exceeded.

Priority 3 Central Control: When the CC receives a

command over the IPCB it often has to fetch an I/O control word

from M2. While this fetch can be delayed a reasonable amount

of time, queueing of too many IPC commands before execution
must be avoided.

6-12

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Priority 4 Channel 3: The devices attached to channel

3 are all slow s!)ov'd and involve only a few b_'tes per transaction.

A delay of ten to even one hundred M2 cycles will not appreciably

affect Lhe performance of these devices.

Priority 5 (lowest) : Since the interrupt priority

and timer elements of the I/O unit do not use M2 to a signifi-

<'.ant extent, these elements are placed in the lowest priority

category.

6.4.4 Channel s

These control the interface to the device categories

define([prevlous±y, ndm_iy.

a) the high speed dis]< (or drum) and tape

b) the avionics data bus

c] slow sNeed unit record equipment.

Each channel will contain buffer capacity appropriate to the

device, and a set of instructions tailored to the control re-

quirements of the device.

6.4.5 Interrupt Handler

Although not a unique location for the interrupt con-

trol mechanism, the I/O controller often contains this function.

There is some advantage in handling external interrupts and pro-

cessor traps with the same mechanism.

6.4.6 Timer

The real time aspects of the MP system require access

to a precise time standard. Also the capability of generating

an interrupt at a predetermined time, probably by means of a count-

down mechanism, is required. Each counter must be addressable

from a processor for initialization or readout. These counters

are placed inside the I/OC for convenience, thus saving the

cost of providing a unique piece of equipment.

6.5 I/O Configuration Orqanized for Recovery

The I/O configuration presented in Section 6.4 indi-

cates that a single I/OC is capable of servicing the multipro-

cessor. If this design approach is taken, how can this single

I/O meet the requirements dealing with recovery from a failure?

6-13

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

If two or more I/O units are required for system oper-

ation then the recovery aspects of the I/O can be made very sim-

ilar to those of a processing unit. Each of the I/O units

would be configured like a processing unit with an M2 interface,

a special interface to the Processors via dual redundant commun-

ication links, an M3 interface, and a data bus to the outside

world. Single instruction Restart could be employed as the major

recovery mechanism.

Since only a single I/O unit is proposed to meet the

performance rc<_uirements, a triple-redundant I/O unit with voting

logic is a candidate design approach. Many transients are com-

pletely masked in this configuration. If a permanent failure

occurs then tl__e voting elements can be reconfigured to compara-

tors and the bad I/O unit taken off line for repair.

Figure 6.5 shows a possible redundant I/OC employing

the components described in Figure 6.4. The major features of

this configuration are described below.

a) The triple redundant I/O hard core contains the cen-

tral control, timers and the interrupt control. A

failure in this critical area will allow the system

to keep running without propagating the error.

b) In order to interface the TMR section with other dual

redundant interfaces, voters and switches are provided.

The S elements, which are controlled by their asso-

ciated I/O elements, are used to select which of the

dual redundant interfaces to accept data from. The V

elements vote upon the triple redundant I/O outputs

and produce dual redundant outputs. The voters will

automatically reconfigure to comparators and switch

out a faulty I/O where required.

c) The IPCB, M2, M3, and data bus are all postulated to

be dual redundant. For this reason their interfaces

are shown to be dual and they interface to the I/O

via the S's and V's. The multiplexer channel which

contains peripherals necessary to operate a laboratory

model is only shown as a simplex subsystem, with a

corresponding single interface.

d) It is assumed that all the peripheral devices attached

to the data buses and the M3 controller possess char-

acteristics which will aid in the recovery process.

These characteristics include:

i) hardware to aid in fault isolation between dual

redundant threads

6-14

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-184£

/ .[]"c7--_ .I,

To

J

_I

Figure

'i_(]]_llt(-'] J]<f]. l]]],S

I t

I

t
I] r-_

S--_.;]_---,/oI

I £_.,_
I

I

!

I
i

I

!
I

I
I

i
1

I

I
I

I

I
I

-]_24

L

0-_ "" -0--- O

•
Dual. Redundant Data Bus

TMR Ilard Core

Simplex

R[....IChannel 3

!

I •
I

M21

DBCU

IPCB

IPCI

I/O

V

S

M2 Interface

Data l_us Control Unit

InterProcl,ssor CoI?_unicdtion Bus

InterProcessor Co_._nicatlon Interface

I/O contains central control, interrup

control, timers

Voter

Switch

6.5: Redundant I/O Configuration

6-15

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE , CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

e)

2) sufficient buffering, so that aborted commands

cannot hang up a subsystem

3) the ability to be reset and to indicate upon

request the status of the I/O device

Certain problems caused by locking of processes to I/O

devices must be resolved by the operating system. This

requires the capability of selectively deleting the I/O

conuuand c_:eated by a process which is cancelled (either

purposely or as the result of a failure) from the appro-

priate device queue. Also, the capability of relieving

any M2 space allocated as the I/O buffer area must be

provided.

One of the main motivations for a triple redun-

dant I/O central core is to reduce this problem as far

as I/O failures are concerned. A failure within the

central TMR I/O cannot propagate past the voters. How-

ever, a voter or channel failure can cause a temporary

suspension of I/O or a re-issuing of an I/O command

and the associated problem of releasing any I/O locks.

References for Chapter 6

l) North American Rockwell, Space Division, "Modular

Space Station Phase B Extension - Information Mana-

gement Advanced Development Report", Contract NAS9-

9953, MSC-02471, July 1972.

6-16

INTERMETRICS INCORPORATED "701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840.__

I

Chapter 7

FAULT TOLERANCE PHILOSOPHY FOR THE SUMC MULTIPROCESSOR

The purpose of this chapter is to present the study

rcst_its Jn kerms of error detoction, fault isolation and re-

covery philosophy as applied to a multiprocessor system.

7.1 _e.c]ui remeu [-

The requirements postulated for the system, as a

result of the study, are delineated below.

a) The only interaction that the applications progra_m_er

should pos:_ess with the fault tolerant aspects of the

system is to specify whether and under what conditions

a program o_7 sequence of events is to be critical. A

critical program is defined to be one which must be re-

coverable in the event of a fault. A non-critical pro-

gram is one which need not recover.

By classifying a program as non-critical certain

design considerations must be kept in mind. The ab-

rupt termination of a non-critical program in the mid-

die of any instruction should not create a situation

which will prevent the execution of other critical

tasks. Any Compool data which is used by a non-critical

program can not be left locked. The failure of a non-

critical program can not. lock out a piece of peripheral

equipment from use by a critical program.

b) It seems reasonable that for certain applications a

recovery time of i0 to i00 ms could be required, es-

pecially for certain real time control applications

with iteration rates of i0 to 50 times per second.

Other critical functions might take longer. The accep-

tance of recovery times of 1 minute or more essentially

means that the program, which is to be recovered does

not fall in the real time category.

7.2 Error Detection

The most fundamental conclusion that has been reached

in the error detection area is detection of hardware failures

7-1

INTERMETRICS INCORPORATED. 701 CONCORDAV[ENUE • CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

must be completely a hardware function. (We are confining our

discussion to faults within the internal structure of the mul-

tiprocessor. Peripheral I/O devices can, depending upon their

characteristics, em!?loy central processor software to provide

diagnostic capability.) The above conclusion is based upon

the following reasoning:

a) An important aspect of any system which is to recover

from a fault is to detect an error within a period of

time which guarantees that the error hasn't propagated

to a point where recovery becomes impossible. Assum-

ing a given error is detected by a software self test

routine, it is generally impossible to determine what

information in memo17y has been incorrectly modified.

}{ithout the ability to isolate the damage, repair can-

not be effected and recovery becomes unattainable.

Hardware error detection mechanisms such as parity,

comparators and specialized logic provide a continuous

monitoring upon the system. Software test routines

can only be executed periodically in time.

Error detection logic, properly designed, will

more nearly approach the goal of instantaneous error

detection which prevents the propagation of failures.

b) If software self-test were to be employed one must con-

sider the question of how long it will take to execute.

Hardware error detection need impose little if any

overhead upon the system performance. Software can

spend a considerable amount of time for two reasons:

i) To be comprehensive an extremely large number of
tests must be run.

2) They must be executed at a high frequency.

The unfortunate thing about software self-test in the

pasthas been that, in most cases, hardware was not

designed with self-test in mind. It was very diffi-

cult for the software to control precisely the hard-

ware state. Micro level diagnostics tend to allevi-

ate this problem to a degree. Because of an inabi-

lity to test easily all features of a system, self-

test software demonstrates the phenomenon that a

large percentage of equipment functions can be tested

with a relatively small amount of code, while the

final few percent of the equipment tests require a

very large amount of code.

7-2

INTERMETRICS INCORPORATED.701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138- (617) 661-1840

c)

d)

The periodic nature of software error detection makes

transient error detection difficult. 'I\,_ocategories

of transients may be isolated:

l) Type 1 transients cause a temporary incorrect

electrical signal but do not change the state

of any storage element.

2) Type 2 transients occur at such a point in the

sequencing of a processor that incorrect storage

occuz_s. The hardware satisfies al.] tests that

can be invented, yet b<:d information may e):ist

which will eventually cause incorrect system per-

fo]: !_lEtl]C_.

If a type i transient is not detected it hardly mat-

ters to the functioning of the system. IIowever, an

undetected type 2 transient could possibly be catas-

trophic. An error detection philosophy which provides

a continuous monitoring at critical points is neces-

sary in order to prevent type 2 transients from going

undetected and propagating.

Micro diagnostics, although more commrehensive

and easier to write than software, must still he exe-

cuted on a periodic basis. Their ability to detect

transient failures faust be seriously questioned.

The final point against software diagnostics as the
sole error detection mechanism is that failures can

occur which disable the execution of the software.

Therefore, the signalling of fault condition can not

occur.

7.2.1 Implementing Hardware Error Detection

Error detection is intimately involved with the specific

failures modes of devices and equipment. If the various failure

modes and the propagation dynamics of the failures are studied,

then, in specific instances, the addition of a moderate amount

of logic can detect the anticipated failures. On the other

hand, one would like to employ techniques which are not very

dependent upon the specifics of the equipment in order to pro-

vide a degree of flexibility and generality. The appropriate

decision between specialized and generalized error detecting

logic is a matter of engineering judgement.

7-3

INTERMETRICS INCORPORATED • 70_ CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

7.2.1.1 Processing Unit: The processing units of the multipro-

cessor ar_ the major sources of error propagation. If incorrect

write operations are executed, due to a failed component, then

the normal sequencing of the processing units, using this in-

correct data, can cause propagation of the error to other por-

tions of memory. Propagation of errors can extend beyond the

multiprocessor system, if incorrect I/O commands are issued

and executed. Because of the potential devastation caused by

a processing unit failure, a maximum design effort must be un-

dertaken to detect P failures before they propagate to other

parts of the system. Within the limits of practicality, an

effort must be made to detect almost all failures within P, be-

fore incorrect write operations or invalid I/O operations are
executed.

Based upon these objectives, the study conclusions sug-

gest that processing unit error detection be accomplished by em-

ploying two synchronized but independently operatin_ processors

with a fail-safe comT_arator placed across the memor_ interface.

Some of the reasons for this conclusion are presented below:

a) Periodic software self-test cannot catch all failures

before they propagate to multiple errors.

b) Error detecting codes internal to the processing unit

cannot detect a large category of failures. For ex-

ample, the failure of a control signal can cause al-

most every bit in a word to be incorrect. The use of

arithmetic codes, such as a Modulo 3 check, produces

inconsistent results under operations such as AND, OR,
Not.

c) It will require at least twice the logic, and incur

more than twice the cost, to detect all possible single

component failures in P. Therefore, the cost of a

dual P unit is reasonable.

d) The redundant processors can be packaged separately

with independent power distribution. This will more

closely meet the failure independence assumption.

e) Redundancy with a comparator at only one interface will
reduce the number of interconnections between the re-

dundant processors.

f) Errors are detected before bad outputs may propagate

from the P. The comparator placed at the output of P

might allow an error to propagate within P, but no
bad information leaves P.

7-4

INTERMETRICS INCORPORATED •701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

g) If one were to design a processor considering error de-

tection as one of the main specifications, then each

module could be designed to detect its own errors. Ap-

propriate design efforts must be spent in maintaining

statistical independence between failures and preven-

ting errors in the error detection logic itself from

going undetected. This innovation to the logic design

effort would prove to be an interesting research topic.

As far as employing the present SUMC design as the

proccssin C element of the multiprocessor, the use of

two SUMC e]e_.ents with a comparator seems to be the

most reasonable approach.

7.2.]..2 M.:£..I_)S-X: The irregular structure of the processor leads

one to considler the use of dual processors as a cost effective

error detection mechanism. Memory structures tend to be very

periodic in nature, possess little if any combinatorial logic

outside of the addressing area, and therefore, are more amen-

able to the use of error detection codes. Simple word parity

is a degenerate case of an error detemtion code.

Memory can be a significant contributor to the hard-

ware cost of a multiprocessor system. For this reason, tech-

niques other than brute force duplication of memory modules

should be considered for error detection purposes. Depending

upon the details of the construction of memories, different

techniques can be employed. The following suggestions are made

arid seem to serve the. purpose for most state of the art mem-

ory architectures.

a) Word parity can detect single memory cell failures,

sense amplifier failures, and other failures which

manifest themselves as single bit errors.

b) The incorporation of parity upon the address of the

word proves satisfactory in detecting the failure of

a single bit in the memory address register.

c) Employment of special current threshold circuitry

can detect the simultaneous selection of more than

one memory word at a time.

d) The use of a time-out indication can detect the fail-

ure of a memory module to sequence.

e) The use of a write-and-verify mode of operation, where

every word written into memory is immediately read

again, can verify correct storage. This is particu-

larly applicable to NDRO type memory structure. For

a DRO memory system one must face the problem that the

7-5

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138" (617) 661-1840

f)

g)

d

read operation which is used for verification must be

followed by a write-for-restoration of the data. A

failure can occur during the second write operation

which would go undotected until the stored word is

used again. However, the write-and-verify operation

is still useful in detecting failure modes associated

with transient addressing, control or bit storage
failures.

Integrated circuit memories possess enough redundant

addressing logic so that a partitioning of the memory

into independent bJt planes allows word parity to de-

tect a large nunJoer of addressing errors. Present

state of the art integrated circuit memories contain

address decoding on each memory chip. Chips can be

configured to contain one, t<,'o or four bits of 1024

words on each chip. Since each chip contains its own

address decoding, a failure of a chip can only mani-

fest itself as an error on the output of the chip it-

self. That is, it is localized to a few bits of the

word. If each chip contained only one bit of each

word, then a single word parity bit would detect all

address decoding failures.

The use of separate read and write logic in the con-

trol area of the memory module will prevent a read

command from turning into a write command, due to a

single component failure.

7.3 Recovery

When a module of the multiprocessor fails, the presence

of a spare (physically identical module) which can execute the

same function does not necessarily mean that recovery can be

accomplished. A failure not only.eliminates certain physical

resources (hardware) from potential allocation to executing pro-

cesses, it also destroys information (program, data and status),

which is required for execution. The major problem associated

with recovery is not the necessity of providing spare hardware

with an appropriate reconfiguration switching mechanism. It

is, instead, the problem of re-establishing all the information

required by the process to recover. In order to achieve

recovery, the system must be returned to some past state which

is known to be correct.

What exactly determines the state of a system? If

real time is ignored, for the moment, then the system's state

can be defined to be represented by the contents of all the

storage elements, including MI, M2 and the Processor's control flip

7-6

INTERMETRICS INCORPORATED "701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-184C

flops. The more dynamic changes to a system's state are contained

within Ml and P. M2 possesses less dynu.mic changes with time.

M3 is even mo_:e static. As one p)-oceeds from the more dynamic

to more static elemtns of a system's state, time becomes less

important to the recovery process, therefore, software, which

is more time consuming than hardware, can be employed.

The discussion on recovery will address three major

are _is:

a) The processing unit, P and MI

b) Operating memory, M2

c] Inp:_L output control) :r (!/OC) and its channels

Suggested approaches to recovery from both transients

and permanent failures in these three hardware areas are pre-

sented.

7.3.1 Processing Unit (P-M1)

7.3.1.I Restart_.ble Instructions: One of the main suggestions

generated by tl_is study, relative to a recovery from a proces-

sing unit failure, is to design all instructions to be restart-

ab]<;. This raeans that the polnt of recovery is the instruction

du-_[-Sng which the fail_re was detected. It is assumed that all

failures are detected essential]y instantaneously so that pro-

pagation of the failure does not cause incorrect information to

be written into M2 or bad I/O comsL_ands to be executed.

Although a restartable instruction is not a difficult

technical feat, it does require a design effort. The following

ground rules must be applied during the design implementation

of each instruction:

a) Each instruction must be partitioned into two phases.

During phase 1 the instruction is fetched, data is

read, computations are made and all memory write op-

erations are placed into a temporary buffer area for

execution during phase 2.

b) During phase 2 the buffered information is copied

into its final destination in M1 and M2. The contents

of the buffer area are not destroyed unti all the copy

cycles are completed and verified. Each phase is de-

signed to be separately restartable. Figure 7.1 sch-

ematically represents the execution of a generic re-

startable instruction.

7-7

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

c6

H

_3

O

_O
-H

O D
_3

P_-IJ

D
b_

H l_tH

¢xlCq

O ,--t ,-'q

O
-,.-t

D
,-_-H

a_H

q-t
t_

_ ,--I O

O

D

_3

aA

o,i

M

4_t
_3 0

•H "H

t._ .-O

.._

r_

u_
0

.F-I

O

7-8

O
.el
4_
D

_4
4_

H

(9

4_

D
-,-t
l-t

(1)

t_

(9
_4

t_
.,--I

c) If a failure indication occurs during phase l, then

the old copy of the program counter indicates which

instruc[:ion was being execu/ed. All of the infor-

mation needed to execute the instruction has not

change(], so phase 1 can be re-initiated. If a fail-

ure occurs during phase 2, then, even though some in-

formation might have been copied, the information tem-

porarily buffered in M1 is still valid, and a complete

re-init__ation of phrase 2 is indicated.

d) Interrupt testing can either occur at the end of phase

2 or _t t}_e beginning of ph_!se i. it is assumed that

all interrupt condi£ions az_._ caught in latches, so that

the in te:_-rupt test is just: a mattez" of readin 9 these

latches und detczm]_ning %:het!_cL- to fetch the next in-

struction in the instruct:ion stream or to enter the in-

terrupt control micro-routine. The interrupt control

micro-routine must be designed to be restartable and

it must incorporate the concepts of a double phrase

operation with a buffer area, i.e., the interrupt con-

trol micro-routine can be considered to be a restart-

able instruction.

What does a restartable instruction design allow the

system to do?

a) For transients which interrupt the normal execution

sequence, but do not destroy data, the retry of an

instruction will provide a simple method of recovery.

b) For transients, where information is modified, the

information must be restored before the instruction

is retried. The restoration of the lost P or M1 in-

formation can be accomplished by either error correc-

tion codes or by duplexed storage.

It is proposed that each instruction be designed

so that after an instruction is executed, the state of

the processing unit is always contained within MI.

Each processing unit would contain two Ml's so that in

the event of failure of one, the information contained

in the second could be used. The size of M1 should

nto be more than i00 words and so its duplication pre-

sents little hardware impact.

c) Recovery at the instruction level allows the entire

operation to be independent of the application pro-

grammer. Hardware and operating system primitives

can determine when and how to restart. All considera-

tions are based upon detailed information below the

7-9

INTERMEFRICS INCORPORATED- 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • ((]17) 661-1840

d)

instruction level. The application programmer could
not care less about these details.

Because single instruction restart (SIR) allows

a very quick recovery mechanism, one is not even con-

cerned about the impact of the delay between error

detection and recovery. This should be well within

the iteration period of the highest frequency periodic

application function.

Error detection within the instruction cycle as well

as SIR tends to eliminate questions of error propaga-
tion and the interactions between a failure and the

informational content of the rest of the system's

storage.

7.3.1.2 Critique of Alternatives: Why the emphasis upon a re-
startable--i_£-ru-dhion? _:fat are the alternatives?

a) In a batch processing system where multiprogrammling

is not used, the failure of a processing unit catches

only one program in a running state. All the submit-

ted programs are completely independent and recovery

is simply a matter of reloading the program and data.

Many functions on the space station can be handled

by this "fresh start" approach. It is simple and

imposes minimum overhead.

However, the real time aspect of some of the

space station processing requirements makes the "fresh

start" approach unfeasible.

b) A "checkpoint restart" approach to recovery has been

applied to systems where problems requiring hours of

computer time are being run. At fixed intervals the

complete contents of core as well as the processor

registers are dumped onto a back up area on disk or

tape. A snapshot is taken of the system's state.

A superficial look indicates that with a 1 _sec

cycle time and a 100K word memory, a memory dump can

be accomplished in i00 milliseconds. This is not an

unreasonable time. However, let us investigate the

implications of "checkpoint restart" a little more

deeply.

i) If a snapshot requires i00 ms then one must con-

sider its effect upon system throughput. If one

desires to limit the overhead imposed by this

7-10

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 - (617) 661-1840

2)

3)

function to less than 5%, then a snapsliot can not

be taken more than once evez-y 2 seconds. If real

time requirements allow a recovery time of 2 sec-

onds, then "checkpoint restart" might be a viable

candidate.

If the contents of operating memory and the proces-

sing units are rolled back 2 seconds in time, can

one guarantee that the state of the mass memory

._s always consistent? Must the contents of mass

memory also be dumped when operating memory is

dumped? In genera], tile answer is yes. In a

virtual memory system where memory hierarchy must

not contain inconsistent infoz_mation. Dumping M3

perJodJically onto some archival stoi-age device

such as tape (M4) seems to eliminate check point

restart as a valid candidate for recovery in a real

time environment.

Even though M2 can be dumped in i00 ms; a disk,

drum o]- tape probably couldn't absorb the data at

a rate higher than i0 MBPS. This will increase

the snapshot time for 32 bit words to 320 milli-

seconds and the snapshot period to once every 6.4

seconds.

7.3.2 Recovery From an Operating Memory (M2) Failure

IIardware failures and electrical transients in memory

systems cause information to be destroyed. Recovery from a mem-

ory failure would be very easy if the error patterns caused by

failures and transients could be known with certainty. Many

error patterns could then be corrected by employing error cor-

recting codes. Unfortunately, it is impossible to analyze all

possible failure modes under all possible environments to de-

termine all possible error patterhs. Failures exist which can

not be corrected by error correcting codes. Error correcting

codes are not useful when the timing mechanism fails in such a

way as to prevent memory access. A failure in the addressing

mechanism can not be corrected by the encoding of data.

Error correcting codes can be successful when the pre-

dominant error modes are single bit failure or small burst fail-

ures. In general, however, duplication of the information con-

tained within the memory cells is required for successful re-

covery from an M2 failure.

7.3.2.1 Problem Areas: When attempting to design a system which

is recoverable from M2 failures, a number of distinct problem

areas must be resolved:

7-11

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

a)

b)

c)

d)

Memory Management

Normal (non-failure-tolerant) memory management

deals with the allocation, deletion, and control of

memory space for program and data entities. When fail-

ure recovery is made a requirement, additional questions

arise; how to deal with redundant storage of critical

information? How shall the hardware and software in-

teract to :

l) enah]_e the continuous storage of redundant infor-
matJ on ?

2) allow the accessing of valid information in the

presence of a fault?

Hardware Fault Isolation

When a memory error is discovered, how can it be

isolated to a repairable piece of equipment?

Information Fault Isolation

If the failure is isolated to a specific memory

module, one must be able to determine what informa-

tion was destroyed so that recovery action can be con-

trolled.

Storage of Redundant Information

Since the redundant storage of information be-

comes a necessity for critical programs and data, a

question arises as to how and where the redundant in-

formation should be stored; in M2 or M3 or a combina-

tion of both?

7.3.2.2 Factors Behind the M2 Rqcovery Approach: A number of

considerations pointed to the suggested M2 configuration. The

following items consist of assumptions, observations and the

philosophy which leads to the approach presented in the next
section.

a) Consistent with the processing unit's failure recovery

philosophy, the applications programmer should not be

concerned with the details of the recovery procedure.

This is handled by the hardware and operating system.

There is however, one aspect that must involve the

application programmer. He is the only one who can

initiate the specification as to which program and/or

data segments are critical. By definition, critical

7-12

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

b)

c)

segments are all those segments used by programs which

must recover and continue execution after a failure.

Non-critical programs need not recover. They must,

however, be terminated in such a way so as not to inter-

fere with critical programs. This is called Fail Safe.

Some observations and requirements necessary to enable

a program to Fail Safe are presented in Section 7.4

Once tile applications programmer indicates the

programs <._hich are c_:itical the compiler can statically

assign critical or non-critical status to segments it

creates. Similarly, the operating system must also as-

sign criticality status to segments it dynamically

c_r'_ntcs: Y'O_" e]:amplo, _ stack,

The recommended approach to memory management is to

employ a segmented virtual memory system.

The virtual memory approach allows an exploita-

tion of the difference between read-only (program and

fixed data segments), and read--write (variable data

segments) information. If an M2 module which contains

program segments fails, it is desirable to exploit the

virtual memory mechanism, already implemented within

the system, to aid in the recovery process.

Most program segments can be considered to reside

in M3. They. are brought into M2, on demand, for exe-

cution. If the program segments contained within the

failed M2 module were, as the result of the failure,

made "not present", then the M3 to M2 transfer mech-

anisms will allocate space and transfer anew the re-

quired segments automatically. The "not present" seg-

ment indication is contained within the program seg-

ment descriptor. Descriptors are considered to be

data and are in turn stored redundantly in M2.

For a large computational system on-board a space

station, it is reasonable to assume that repair or

replacement of a failed M2 module will be performed

relatively quickly. The hardware error detection mech-

anisms should be able to isolate to a repairable unit,

and to indicate the action to be initiated by the soft-

ware.

However, there must be sufficient M2 space avail-

able so the system can run without "thrashing". This

entails modifying the work load so as to reduce the

memory required to accomodate the working sets of the

7-13

INTERMETHICS INCORPORATED'701 CONCORD AVENUE • CAMBRIDGE MASSACHUSETTS 02138" (617) 661-1840

remaining processes. Possibly, the number of processes

of particulaz-types might be limited to reduce the work

load.

7.3.2.3 Promosed Confiquration forM2 Failure Recoverv:_________The

proposed configuration defines an M2 module as four M2 units

which are interleaved on their low order address bits (see Fig-

ure 7.2).

Information segments may either be stored in a simplex

or duplex mode. The mode is specified within the descriptor.

Most program code would be stored simplexed and interleaved

across the four memory units. Most critical data sediments would

be stored duplexed. In the duplexed storage mode address i and

i + 1 contain idontical information. That is, two adjacent mem-

ory units contain identical copies of the redundant words.

A minimum of two memory ports connect to the redundant

P interfaces. Communication with any M2 unit can occur through

either port. This is under control of the command issued from

the processing units.

M3 is used to backup most program segments. M2 is used

as the backup for data and certain critical program segments.

Program and Data Segments can be stored anywhere in M2. When

space is assigned to a critical data segment, a double size "hole"

must be found in M2. This does not impose any extra effort upon

the memory management function.

Redundant writes into independent units of M2 are ac-

complished automatically via the dual redundant processing unit

bus links. Recovery of M3-backed-up information requires making

the segment "not present" The memory management routine which

handles segment faults will automatically reload the M3 segments

when required, on demand.

Whenever an M2 error is detected, the error indications

are communicated to both halves of the processing unit so they

can continue to perform identical operations. The ability to

restart an instruction can be exploited in attaining system re-

covery after an M2 failure. As soon as an M2 error is detected,

the processing unit traps to a special micro-routine which boot-

straps into the sequence indicated in Figure 7.3. After recov-

ery, the instruction which was terminated by the trap can be

re-executed (if the M2 error was detected during ¢i of the in-
struction) or the instruction may be completed (if the M2 error

was detected during %2 of the instruction). It is interesting

to note that M2 read operations occur only during _i while M2

write operations occur only during _2"

7-14

INTERMETRtCS INCORPORATED- 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSEfTS 02138 . (617) 661-184(:

................ ii

;i

0

0

0

O

N

i,,,--T1

F---_hi,....................

i.

J
I

E
f

D
0 -,4
h

i

11

,-i

I

['4

e_

4)

"M
CI

£1 ', "_

"1 l

¢x3

'd
0

1,4

H

!

w4.

-_ ,

7-15

d
4J

0

L)

C3
_4

'L$

,-4 D
4_

0

,Ui

<

.rl

C,

I

_q

0

1.4

<

4J

•[m

d
.u

In

0

0

a

B,

-,-4

- INTERMETRICS INCORPORATED "701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

[-
I

I
I
I
I

I
I

_1 0
c'J

o

o

o__°._i
O: H _ U

0 ._

o t_

0 i

0
-r-4

4J

C_

O

-,-I

_O

I-'4

o

F_

0

_4

tm

.H
Fa

7-16
I

When an M2 error indication is first recorded, the M2

o[)eration wJil be tried again. If the error does not recur

then a type' 1 error is indicate<]. Ilo\.:evcr, if t]l(- error indi-

ca I-ion per:;ists a se_1]rch is mode to determine which segments

are stored in the sus[_ect unit. To accomplish this search in

lihe presence of a failed unit, the header word containing a

pointer to the segm',ni: descri_?tor as well as a link to the next

segment is redundant!v stored. Figure 7.4 shows the storage

allocation for both sSmplex and redundantly stored segments.

All non-crit.ical segments within the suspect module

are put into a "dead" state.

Critical scg._;v,:nts can be either redundant]_y stored or

not. A redul_dantly stored critical segm,q, nt is written out to

M3 so normal memory management can be used to allocate new space

for it whc_1 required. Since it is assum';:d that failures do not

simultaneously affect both copies of redundantly stored infor-

mation, the good copy can be accessed after a failure.

Non redundantly stored critical segments are made not

present. Fixed data and programs fall into this category.

For all M2 failures, statistics are maintained indica-

ting a failure history. If an M2 module develops a bad history

of failure, then it will be removed fron an active status. The

definition of how many failures within a given time period indi-

cates a bad history, can be considered a design parameter depend-

ing upon whether transient oz permanent hardware failures con-

stitute the predominal%t failure mode.

7.3.3 Fault Tolerant Aspects of the I/OC, Channel

This section will address problems associated with re-

covery from a transient or permanent failure in the I/OC or com-

munication channel between the I/OC and the device.

Many constraints must be placed upon the I/OC, channel

and the attached devices and controller. Figure 7.5 presents

schematically the elements which will enter into the discussion.

Only one I/OC, channel and device is shown. Clearly more exist

in a real system. Our discussion will focus on only one I/OC,

channel and device at a time.

7.3.3.1 Incorrect I/O Commands: The basic recommended approach

is to eliminate the possibility of executing incorrect I/O com-

mands. As a general principle all I/O devices require some de-

gree of feed back to the MP, if any fault tolerant design goals

7-17

INTERMETRICS INCORPORATED "701 CONCORD AVENUE - cAMBRIDGE, MASSACltUSETTS 02138 " (617) 661-1840

MU I

M2 Memory Module

MU 2 MU 3 MU 4

F

I
l
h__

I
l

l
l
[

I
l

L

/

I{WI_ P P

W3SI__/

W4S 2

WIS 3

W5S 3

HW 1

W4S 1

(W2S 2

(w4s2_

W2S 3

1 /
\ p

l
-/

W IS i

W5S I

WIS2

W3S I

_IIW 3

W3S 3

WIS 1

W6S 1

/

(WIS 2)

(W3S 2)"

WW4S 3

egment --

simplex-

_Is egment

redundan_

egme_te: -

Legend :

MU k

HW i

WjS i

/.

(WjS i)

P

p/

= k th memory unit

= Header word of i th segment

= jth word of the i th segment

= redundant copy of HW i

= redundant copy of WjS i

= pointer to start of next segment contained in HW,
1

= redundant pointer contained in HW/

Figure 7.4: Storage Allocation in Interleaved M2

7-18

INTERMETRICS INCORPORATED •701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-184C

Figure 7.5: I/O Elements

P

[M2|

I.......ILL...........

ijoc
_j<-_7 E+_L "

Multiprocessor

P

M2

I/OC

Channel

D

E1

E2

E3

E4

E5

E6

E7

Processing Unit

Operating memory

Input output controller

Communication Channel between I/OC and Device

Device and associated controller (if required), e.g.,

Printers, CRTs, IMU's, other computers, etc.

Device error

Channel error detected by.device

Channel error detected by I/OC

I/OC error

M2 error detected by I/OC

Interprocessor communications error detected by I/OC

Processing Unit error

7-19

INTERMETRICS INCORPORATED "701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

are to be achieved. No external device can be allowed to run in

an open loop mode without com:qunications back to the I/OC.

One of the most devastating aspects of I/O failure is

the possible execution of illegal unwanted I/O commands. A major

design effort, which will impose constraints on the elements of

figure 7.5, must be undertaken to eliminate or minimize the pos-

sibility of incorrect I/O. Let us look at a typical I/O sequence,

with safeguards to minimize this possibility.

a) The processing unit issues an I/O command to the I/OC.

b) The I/OC reads the indicated M2 location to obtain the

I/O descriptor.

c) The I/OC sets up the channel and issues the command to

the device.

d) The device echoes the command back to the I/OC for ver-

ification.

e) If correct, the I/OC issues an execute sequence to the

device. The device then executes the command which may

require reading or writing into M2.

f) After execution, a finished indication is sent from the

device to the I/OC and this status is set into the I/O

descriptor in M2, or an interrupt is generated.

Let us investigate the effect of a failure during any of

the sequential steps listed above. Error indications can occur

from many sources including P, M2, I/OC, channel and device.

A failure indication, E5, E6, or E7 during steps a and

b allows time so the I/O can prevent the issuance of the con_and.

If an error, El, E2, or E3 is detected during step'c, then the

I/O must also terminate the command, since an execute has not

been issued to the device. An E failure indication during step

c should result in an emergency sequence to cancel the I/O re-

quest already issued to the device.

The echo check, step d, provides a positive verification

(feedback) that the device has successfully received the command.

An I/OC or channel failure indication during the execu-

tion of a command must result in a sequence of operations which

is very device dependent. This will be discussed in section

7.3.3.7.

7-20

INTERMETRICS INCORPORATED" 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-184(

7.3.3.2 Super: Critical ComaTlands: Although the I/O portion of

the space st0tion is inadequately defined, it seems reasonable

to postulate the neci[:y for a small number of super critical

commands with the following properties.

a) It is most disastrous if the command is executed when

it shouldn't be.

b) It is better to abort the command or action if anything

seems to be going wrong rather than execute it incor-

rectly.

Exam]?]es of such commands might be "Stage the Rocket",

"Pul-cc' the Airlock", etc. What should be done if failure occurs

durir.:-_ the c::ecution of a super critical dommand? The answer is

to make the coY.m_and fail safe, by issuing it or a facsimile thru

multiple channels to the device. Only when all the arming con-

ditions for the command are p:r.operly set is the device allowed

to execute. If any discrepancy is noted at the device, command

execution must be held up for resolution by the MP.

7.3.3.3 I_nte!]z__u.pt- s: In raany instances, the system is faced with

the problem of "phantom" interrupts or missing interrupts. Fault

conditions within the interrupt logic can cause undesired inter-

rupts (phantom interru]gts) or can possibly prevent the generation

of interrupts \.%_ich should occur. The action to be taken by the

system in these cases is very dependent upon the interrupt condi-

tion one is considering.

Let us consider two cases:

a) The Expected Interrupt

Often interrupts are expected when an I/O device

command finishes. The exact time of occurence of the

completion of the I/O command is not known, but the

worst case time may be estimated.

A time out error indication is a simple mechanism

which will inform the system that the I/O device has

not finished executing the co_nand or at least the "done"

interrupt has not been received within a given time

period. If the I/OC and channel have a sufficient amount

of internal error detection, the failure can probably

be attributed to the device itself.

The action to take might involve a limited number

of retries of the operation or a call for system re-

configuration which eliminates the device from use.

7-21

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

If a "phantom" interrupt occurs, which indicates

a device end condition for a device which wasn't being

used, then clearly this interrupt should be ignored by

the system. This feature can be incorporated into the

interrupt handling routines.

b) Unexpected Interrupts

These are a class of interrupt conditions which

are provided for but which are unexpected. For example,

the failure of a P or M2 unit might cause a different P

to get interrupted. If this failure interrupt is sign-

alled when the condition really doesn't exist, it is

probably still wise to service the interrupt rather than

ignore it. It is better to configure into a degraded

mode of operation, for a short while, when it isn't nec-

essary, rather than not to reconfigure when it is nec-

essary.

Other interrupts which are unexpected are not as-

sociated with failures. Many are traps, such as absent

segment trap conditions. The servicing of an absent

segment trap condition when one doesn't exist can lead

to inconsistent situations and ultimately system failure.

One design feature, which can be applied to certain

I/O interrupts, involves a handshaking or interrupt ver-

ification concept. This feature would have the system

verify that the interrupt which was signalled really

does exist. The device which signalled the interrupt

must retain the interrupt condition information until

after the verification cycle. The verification can

either be performed directly by the I/O unit or by a

processor through an I/O command.

7.3.3.4 Non-State-Dependent Sequences: If an I/OC or channel

sustains a transient, which causes the termination of an I/O

sequence, then it would be desirable to rely upon a recovery

policy which would cause the reissuance of the I/O command. In

order for this recovery policy to be satisfactory, the response

of the I/O device to the command must be only a function of the
command and not of the state of the device itself. This feature

can be designed into the device if one is careful about the ini-

tial design specification and the type of commands one allows.

For example: Assume a tape unit is at the end of re-

cord 6 of file i. A command which says "Read the next record"

is very dependent upon the state of the tape unit; namely the

position of the tape. A better command structure would be "read

record 7 of file i". The result of this command will always be

the same independent of the position of the tape.

7-22

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 ' (617) 661-184(

It should be clear the "Read the next record" would not

prove ho be a satisfactory command to reissue in case of a

failure in the middle of reading record 7. Record 8 could be

accessed instead of 7.

"7.3.3.5 Con__t!_le_te- _fim:__sln_eBuFfer: If errors can be detected as

soon as they occuY and if recovery from transient errors is re-

quired, Loth the I/OC and the device must have enough buffer

storage so that a :re,transmission of the entire message (data and

command) can be m.<_do. The Z/OC buffer may, indeed, be M2 and

the buff< _- stora[(io element of the archival memory might be the

tape itself.

It is unc!esirable to have to recreate the entire message

because of a channel transient error. Retransmission appears to

be a reasonable a[_)_)roach_:

7.3.3.6 Real Time Aspects: When the MP is used as an element

of a real time con[:rol loop, outputs can be required periodically.

If a failure occurs during a real time I/O command, the device

could possibly have to wait for a nun_]er of iteration cycles for

the recovery cyc].e to be complete.

In this instance, the device must be provided wit]] a

capabi]:i_ty to extrapolnte f_om old updates until the system has

recovered. This miclht require nothing more than assuming the

last update is still valid. Possib].y, more complex methods are

required.

7.3.3.7 _ ' -_}azlurc. During the Execution of an I/O Command: If a

transient occurs, the actions to pursue in order to recover be-

come extremely device dependent.

Consider the following examples:

a) Many of the external devices attached to the space sta-

tion data bus are transducers, to monitor temperature,

pressure, gas mixture, etc. If an I/OC or channel fail-

ure occurs, the appropriate action for recovery would

be to ignore the results of the command in progress,

clear the buffer or reset the device if necessary, and

reissue the command.

Any non-destructive read operation can be reissued

for recovery purposes. Destructive read operations should

be eliminated from the system specification or temporary

redundant storage or redundant devices must be employed.

7-23

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138" (617) 661-1840

b)

c)

d)

Consider the case of updating the refresh memory of a

CRT output device. Assume a failure occurs during the

update operation and the possibility of incorrect in-
form:vtion on the CRT exists. Recovery action can con-

sist of nothing more than reissuing the update command.

If recovery takes i00 ms the human operator might only

notice a small flicker on the screen and no damage is

done to the overall system.

Consider the case of a printer. Assume a failure occurs

in the middle of a print cycle. It should be clear that

the reissuance of the PRINT command is inappropriate for

recovery since the old printed output, possibly incor-

rect, would exist inuaediately on top of the new valid

printed output. Page boundaries would be incorrect.

Before reissuance of the print command, the page must

be spaced. If a plotter instead of a printer were being

used, the computer operator would have to be informed

to insert a new sheet of paper in the plotter.

Inter-Computer Communication. Quite possibly, the space

station will contain pre-processors in addition to a

large central multiprocessor. Pre-processors are em-

ployed so as to buffer the high bit rate of the device.

(See Figure 7.6.) They perform high frequency inter-

active calculations and provide a data rate reduction

for the system.

Unlike simple input output devices which can re-

cover with reissuance of commands, a pre-processor re-

action to a conm_and can be very dependent upon its own

state.

All the concepts of command verification and mes-

sage buffering, must be built into the pre-processor.

The programs in the pre-processor must also be designed

to run asynchronously from the multiprocessor.

7.3.3.8 I/O Locks: When a software process requires access to

an I/O device, the device may required to be locked to the pro-

cess. That is, no other process can access the selected device

until the previous I/O request is finished. Problems of dead-

lock exist when the initiating process fails.

If the software process recovers quickly enough, then

the lock doe_ not remain on the I/O device for an excessive time.

However, if recovery takes a long time or if the process is spe-

cified to be non-critical (that is it need not recover), then

some mechanism must be designed into the system to release the

I/O lock. This is one of the elements to consider in allowing

a process to fail safe.

7-24

INTERMETRICS INCORPORATED "701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-184(

comn_al]d s a_]d.

initialization

data

Cen tra 1

Multiproccssor

bit

rate

Pre-processor

interrupts and

result data

high bit rate

high frequency

periodic pro-

cessing

Device I

Figure 7.6: Pre-Processors

7-25

INTERMETRICS INCORPORATED .701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

Even though the process need not (

case of a failure, a s'pecial I/O routine m

search, find and release all locks created

terminated.

::inue operation, in

he executed to

the process which

7.4 The Implications of Fail Safe

Although Jt is the physical hardware that fails, it is

conceptually useful to consider the process being executed at the

time of faJ]u:ce to have failed]. Only one process can fail when

a processor fails. In the case of an M2 module many processes
can be affected.

It is assumed that in the space station environment all

processes are either required to recover or fail safe. None are

allowed to be abruptly terminated without consideration of the

interaction between the termination and the rest of the system.

A number of problem areas arise when one considers the

implications of Fail Safe. Some of these are discussed below:

a) In order to maintain system throughput in a multipro-

cessor, the intrinsic parallelism within a function

must be exploited. Parallel processes are spawned and

executed simultaneously on different processors.

If a process is to fail "safe", all the fork points

which were created laust be examined and all the sp_ned

processes terminated. This feature must exist within

the executive function of the system which controls the

termination of processes.

b) If a process is to fail "safe", all the I/O commands

issued by the process must either be cancelled, term-

inated or corapleted. None may be left indefinitely

on queue. The various commands issued to each device

must. be studJed to ascertain the effect of a preraature

termination of the issuing process. If a tape was in

the middle of reading a record, the read cycle can be

completed. Upon receipt of the "Done" indication, the
read data can be discarded. If a command is still on

an I/O queue, it can be cancelled. If a device is being _

written into, it is not clear that the write operation

can continue when the initiating process is terminated.

All these types of questions must be considered for

each I/O device when one desires a process to fail safe.

c) When a memory unit fails and a segment of a non-critical

process is made dead, questions must be raised as to the

7-26

INTERMETRtCS INCORPORATED •701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-184C

d)

e)

disposition of the other valid segments within M2 and

M3 associated with the failed process. The following

suqgestion is made:

One of the conditions which will cause a process

to be]<i]]ed, will be when it attempts to access data

contained within a dead segment. _:{hen this occurs,
control will be transferred to an executive routine

3.<hich wil] control the operat:ion of systematically

terminating the pro{:ess. This includes:

i) Placing the process in the dead state

2) Placing all spawned processes in the dead state

3) Releasing the stack number (in the case of a stack

machine) and the space used by the process and de-

pendent processes.

Contained within the process stack are descriptors

of all the local data segments currently being used by

the process. The space used by these segments must

eventually be reclaimed for other uses.

Durin_ the normal execution of the memory management

function, any segment not referred to within a period

of time will be replaced by more active segments. This

includes any dead data segments that may exist. Even-

tually, all the dead segments in M2 will be overwritten

by just letting the system run normally. However, it

is possible for dead data segments to occupy space on

M3 which could possibly be used for other segments or

for file storage.

At some point a "Garbage Collection" routine will

have to be executed in order to reclaim this lost space.

Most probably, the normai reclaimation of fragmented M3,

due to M3-M4 control, will provide the required service.

In general, the executive design must consider the actions

to take when a process enters the dead state. If an

interrupt is directed to a process which is in the dead

state, it should be ignored and any other process which

is dependent upon the dead process must be informed so

that appropriate action can take place.

7-27

INTERMETRICS INCORPORATED "701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

!

Chapter 8

CONCEPT VERII_ICATION

8. i Backqro_Inc]

The mul_ip)_-ocessor (MP) system proposed for future man-

ned s].ace stations will employ many new concepts w]lich will hope-

iully <._ha_ce tht ucrfo_-m:n_ce and reliability of the s;]stem.

This c]_)ter will discuss the validation of various concepts

proposed for the space station MR. The concepts to which refer-

ence is made are not applications software or SUMC hardware but

rather those aspects of the system which interact with applica-

tions software, and SUMC hardware to control the operation of

space station subsystems and experiments. One wishes to verify

that the ideas which will be implemented do indeed yield the

required performance with an efficient utilization of resources.

How does one go about validating a new concept, or at

least establishJJ1g confidence that a given approach will prove

satisfactory? The u!timaLe answer is to build the system, run

it, and evaluate its performance. This of course is an expen-

sive pJrocess, especially if many new ideas have to be frozen

into a design before it is evaluated. In order to provide a

more orderly, cost effective approach a two level simulation is

proposed, both levels being carried out before the system is

committed to operational use.

This chapter will discuss both a high-level and a more

detailed low-level concept verification process.

a) The first verification phase involves both analytical

techniques as well as a high-level computer simulation

employing idealized work loads and environments. The

results of this effort will verify that a given design

concept can achieve specified qualitative goals.

b) The second phase involves a more detailed, low-level

simulation requiring both simulated and actual hardware

and software modules. The objective of this phase is

to verify quantitative goals, by means of measurements

and design modification.

8-1

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

As part of both verification steps, measurements are

made and design parameters are modified so as to optimize sys-

tem performance. The specific ;Jctivities involved in the de-

sign verification and pe:rformance optimization of the space

station multiprocessor concept will be presented in the remain-

der of this section.

8.2 Phase ! -- Initial A__na_lysjs and___}_I!__!_-Leve]_Simulation

8.2.1 Objectives

The initial analy_"_._l_ and hi(_h-level simulation attempt

to achieve the following objectives:

8 2 1 1 Desicm Features: The major design features must be

established. In a MP system this will include:

a) A definition of memory management philosophy

b) The appropriate utilization of local memory

c) Interrupt and I/O analysis

d) The structure of the MP internal bus

For example, the application of simple analytical techniques

will demonstrate the inappropriateness, from a performance stand-

point, of a single 32 MBPS internal bus which is time-shared be-

tween P's and M2 elements.

8.2.1.2 Parameters: The parameters which should be made vari-

able in the low-level simulation _ust be identified and segre-

gated, so that performance can be optimized. For example, the

simple analysis of local memory and its effect upon performance

indicates that the major parameters are the M2/MI speed ratio,

r, and the hit ratio, h.

The isolation of these parameters is significant in that

performance improvement or degradation is very sensitive to h.

Clearly those hardware and software elements which control h

should be made as variable and flexible as possible•

If a virtual memory is employed a simple, high-level

simulation or analysis will show that the following parameters
should be made variable:

a) The page size (if paging is employed).

8-2

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-184(

b) The replacement algorithm.

c) If an associative memory is proposed, its size should

be variable. Performance is very sensitive to the

search time of the page location algorithm.

d) Possibly, the utilization of a variety of different
access times to M3 devices should be considered.

e) The size of M2 could be ;i parameter. The "thrashing"

threshold has to be established if software expanda-

bil:Lty is to be achieved.

The r,&-_in objective of this effort is to isolate as

many i:,aramot_L_-n of de_:ign as pc)s<J])le thro_'3h a careful scru-

tiny of all major design features.

8.2.1.3 Assum_)t_ons; Another objective of this first phase

effort is to establish clearly all the assumptions, implicit

or explicit, that formed the basis of major design decisions.

For example, why was a multiprocessor chosen? Three answers

are possible :

a) A cost effective performance increase.

b)

e)

Reliability improvement through the use of identical

elements and an ability to recover.

Expandability.

All three of these assumptions or desires drives one

to the conclusion that the executive system, which interfaces

the hardware and applications software must be generalized

enough for expandability, yet it must be implemented in such

a way as not to produce an excessive overhead. Reliability

implies a comprehensive error detection scheme. Recovery im-

plies a specific conununication interface between the hardware

and executive.

8.2.2 Tools for High-Level Simulation

8.2.2.1 Simulation in General: How does one approach the pro-

blem of developing a high level simulation? What tools are

available? Reference 1 discusses techniques available for both

macro (high level) simulation and micro (detailed low level sim-

ulation). Macro level simulation is concerned with abstractions

8-3

INTERMETRICS INCORPORATED. 701. CONCORD AVENUE " CAMBRIDGE, MASSACI4USETTS 02138 • (617) 661-1840

of computer systems which are designed to expose and analyze

critical design parameters. Generally speaking, these simula-

tion techniques deliberately suppress design detail, and con-

centrate on broadly defined measures of system effectiveness.

Computer simulation at this level has its basis in

queueing theory, the probaba]istic analysis of the interaction

between users and facilities. The role of simulation is to

exe_:cJse user and facility interactions whose complexity ex-

ceeds the bounds of known or feasible analytic solutions, by

Monte Carlo methods.

Digital computer facilities have long exhibited the

symptoms dear to the queueing analyst: namely, bottlenecks.

The reader will probably have personal familiarity with situa-

tio_is where a data processing facility]]as become hopelessly

inefficient due to one, or a combination of, bottleneck elements.

The objective of high-level_ simulation is to obtain

an advance estimate of the performance of a computing facility

at the design stage. To be successful, the simulation must

anticipate the way the system would work if it were built. The

successful simulation designer must accomplish all of the fol-

lowing steps:

a) He must satisfy himself that simulation is an appropri-

ate analytical method, and that the elements of the

system and the job stream are sufficiently defined.

b) He must verify that the results of the simulation are

correct, and that they are appropriate to his purpose.

c) He must explain and substantiate his results and pro-

selytize his conclusions in order to affect future

events in a constructive way.

These generalizations are noted here because there

seems to be an uneasiness among professional personnel about

high-level simulation of computers. This is probably because

the technique of simulation has been often misused, particularly

by neglecting the fundamentals listed above.

8.2.2.2. GPSS: A generalized macro simulation language GPSS was

developed by Gordon [2] of IBM. GPSS deals in transactions,

events, facilities, storages, and queues. A transaction is

generated for each element in the job stream. Events mark the

movement of the transaction through the system of facilities,

storages and queues. A facility is _ system element that can

accomodate only one transaction at a time. A storage is a

8-4

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-184(

system element that can accomodate l_:any transactions up to a

specified]irnit, at a "time. A queue is a waiting line. Gordon

gives e::a_,_l)les of these concepts as [hey might occur in differ-

ent systems:

Col311]lrli c ;-_9 i<-q]s

Transportat] on

Data _..,_,_,_:.: _j

T_ans ac tion Faci li ty St or age

Message Switch Trunk Lines

Car Toil Booth Ro_d

i_:_c_Ld l<cy Punch 11:_unory

There have 10een at least two efforts to develop spe-

cialized simulation language for compdter systems. These lan-

guages arc CSS II [3] and iMSIM [4].

8.2.2.3 CSS II: This simulator was developed by IBM to support

its own sys-tem analysis needs, and to aid in analysis of custo-

mer facility requirements.

IBM now provides CSS II as proprietary software on a

rental basis. CSS II is similar in concept to GPSS but differs

in one important aspect: it is not general but applies speci-

fically to computer systems. Thus its language speaks in terms

of tape units, disk files, communication lines, and terminals,

and provides instructions for the modeling of programming systems.

CSS programming consists of a specification of system

elements, a specification that generates job streams, and spe-

cification of. the logical operations to be performed on the job

elements. Its generality is enhanced by permitting a more or

less complete construction of both the system hardware confi-

guration and the software operating system, to a level depen-
dent on the user's needs and interests.

8.2.2.4 IMSIM: IMSIM was developed by Systems Development Cor-

poration for the NASA Manned Spacecraft Center. It presents a

less general approach to computer simulation, in comparison to

CSS, because user constructions are confined to the preparation

of input tables which define the configuration of computer system

elements and the job stream. The algorithms that define the

8-5

INTERtvlEIRICS INCOF{PORATED- 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

software operating system cannot be modified, except 'for a few

switch setting choices. The operating system programmed into

IMSIM includes the capability, of sin tulating priority-dependent

multiproqrammed and m',_Itiprocessor computing systems. I_SIM

is supported only at the Manned Spacecraft Center, NASA. It

is written in Modlit, a language similar in many respects to
GPSS.

8.3 Phase 2 -- Low-Level, Detailed, Mixed Simulation

The attractiveness of hic;h-!evel simulation lies in

its ability to discover major conceptual flaws before the de-

sign is committed to hardware and before the operating system

software is frozen. Hopefully, this effort also builds confi-

dence in the system concepts at a low cost. The major short-

coming of high-level simulation is that design flaws may have

been obscured due to simplifications in the models employed.

The low-level simulation employing various degrees

of real hardware, software and a simulated environment will

provide a more definitive verification of system performance,

albeit at a significantly higher cost. The CVT program pre-

sently being carried out at MSFC is an example of a simulation

with a real computer and data bus. The space station environ-

ment and typical work loads will, however, have to be simulated

by artificial means.

8.3.1 The Simulation Process

The simulator is a device (both hardware and software)

which provides the developer of the system with overall exter-

nal control of the system being tested. The simulator provides

hardware and software required for specifying, monitoring, and
testing the system under well controlled conditions Reference

1 describes the simulation process which can be organized into

four factors as shown in Figure 8.1. These are:

a) the user (USER) ,

b) the simulator itself (SIMULATOR)

c) the computer system being simulated (SYSTEM), and

d) the simulation output (OUTPUT).

Let it be made clear that the SYSTEM being simulated

may be .implemented as either a complete software effort on a

host computer or it may contain certain elements of real hardware

8-6

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE . CAMBRIDGE, MASSACNUSETTS 02138 . (617) 661-1840

I

D

B
C

OU TPU T

Figure
8.1:

simulator Logical partitions

8-7

INTERME1RICS INCOR?ORATED" 701 coNCORD f,,VE_',ILIE"CAW'Ir'3RIDGE'MASSACHLJSETTS 02198, " (617") 661

and software.

approachos.
follow.

There are advantages and disadvantages to both

These shall be made clear in the discussions to

The geometry of the logical partitions in the simula-

tor is shown in Figure 8.2, and the physical control is shown

in Figure 8.3 fo]!owing. The control[path labeled A in the

two figures provides the user with the capability of specifying
the load module to be simulated, start-location and initial

SIHULA<P'.)R clock setting, the maximum allowable SIMULATOR clock

settir, g (to assu_re run termination), the configuration of the

SYSTEH (ieve].s of redundancy, numbers of spares, initial fault

states, etc.) information relative to automatic reconfJguration,
illegal instruction detecLJon, execution of instructions in

read/write memory, etc.

The primary control, which the USER specifies, follows

path B. By this path, and the return path C, the USER will be

capable of ordering entry to routines which he provides, upon

the occurrence of events or situations he specifies. The

trigger-directives can include time conditions, location refer-

ence (instruction or operand access), and state changes (I/O,

interrupt, hardware error detection signals, etc.). Once his

routines have been entered as a consequence of a trigger direc-

tive, the USER is capable of accessing all locations, registers,

states, and conditions in the SYSTEM, and modifying them as he

sees fit. Through an interface].anguage, the USER may implement

actions based upon conditions of almost arbitrary complexity, by

simply programming the testing of these conditions in his rou-
tines.

Control paths D and D' provide information for OUTPUT,

such as trace, flow-trace (output produced by branches only),

interrupt-occurrences, faults, or output directly from the USER.

Information is not required on path "a" since the USER

only interacts with the SYSTEM once the run starts and needs no

interaction with the SIMULATOR. Figure 8.3 shows that the SYS-

TEM is actually implemented within the SIMULATOR, and that the

control paths to it actually interact via the SIMULATOR.

Path E of Figure 8.3 represents the closed-loop dynamic
flow capability which the USER can exercise within his interface-

language routines. These routines may, in turn, call routines

prepared in other languages to perform further processing. Us-

ing external routines via this path allows the convenient addi-

tion of a data-recording capability to the system to allow post-

run processing and the addition of almost any conceivable envi-
ronmental model.

8-8

IN]ERMETRICS INCORPORATED. 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138. (617) 661-1840

U SER

Us e:_-l_.rovided Jn formation
.!

which controls sJ.mulation }

run !i

S IMU!,ATOP,

{{

F---- l il

t sYsTE_ J I'I

, 1 I!
I System being _:

simulated 1 [_

1]
1

I0i;_LT.....................!
I Listing outlJut from

i simulation run " !

Figure 8.2: Basic Simulator: Input, Simulator, Output

8-9

_ INTERMETRICS INCORPORATED -701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

E

.._..........._.:.__._i,_........
A

C D

!
i

!

I

I

J_:

A B

S IMULATOR

User-provided
Routines

[-- O

SYSTEM Ii
Ii

I ° I
I • I

I
I ®

Figure 8.3: Simulator Physical Control Flow

8-i0

INIERMETRICS INCORPORATED •701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

t

8.3.2 Simulator Design Issues

8.3.2.1 User Interface: For any simulation effort to be success-

ful, the user o): experimenter must be provided with a capability

of exercising complete control over the simulation from beginning

to end. This control includes the ability to:

a) Specify all initial conditions including default con-

ditions, before the simulation is run. This includes

the a])ility to specify the contents of memory locations,

control])it and processor registe_:s.

b) SpecJ fy the work load to be run in the system, includ-

ihg]_,zdware clcmei:ts to be used.

c) Specify the en\,ironment to be sirnu]ated, including ex-

tra-ordinary events such as failures.

d) Specify the outputs to be generated and reported.

e) Specify modes of operation, the ability to roll back,

and snapshot times.

8.3.2.2 Work Load: The simulation of the processing unit or

employment of real hard,rare is only the first step in the sim-

ulation of a cc)mputer system. In order to p_:ovide meaningful

inform_tion o_l complex system interaction a "work load" for the

system faust be specified. For the SUMC MP this will include a

reasonably complete set of actual or simulated applications

software modules as well as the real executive system.

If one attempts to evade the issue of generating a

realistic work load, many important design factors may be over-

looked. For example, if a simulated work load is generated by

a collection of subroutines, each one occupying a given amount

of memory space, and a specified execution time (as simulated

by a countdown loop), the information concerning instruction

frequency is lost. Also, since memory requirements for each

subroutine are assigned arbitrary values, many factors con-

cerning memory management become distorted.

It is suggested that an effort be made to generate

the real application software to be used as the work load.

Space qualified software is not required for a system simula-

tion. Therefore, the use of real applications software, to

the extent permitted by the simulator's limitations, may be

less difficult than trying to generate a realistic model of

the work load.

8-ii

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE ' CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

Because of the interaction between]} ,rdware and the

executive, it seems only reasonable that th(- ,_cutive system

model must contain as many as possible of tb :atures of the

real executive. A].arge number of the paraz_ _:s or algorithms

which will be modified because of the simul_ n experience are

implemented in the executive software.

8.3.2.3 The Environment: In simulating aerospace computer

systems, the work load must often interact with the spacecraft

and its environment. For examr_le, navigation programs must re-

ceive acceierometer inputs before they can correctly update

vehicle position an<] velocity. A high degree of similarity must
be maintained between the real and modeled environments so that

the simulat(_d computer can be subjected to computational loads

and dynamic situations closely approximating the conditions of
the actual mission.

The simulation environment developed for the Apollo

Guidance, Navigation and Control System included modeling space-

craft dynamics, engines, optics, astronaut interactions, atmos-

pheric and gravity effects, motions of celestial bodies, etc.

For the SUMC MP, the environment cannot be simulated

within the SUMC itself. This would distort memory management,

I/O, processor allocation and real time factors. The simulated

environment must be provided by external equipment. For example,

the H316 computer can provide such a vehicle by simulating the

data bus and all its peripherals. If a real data bus is employed

with a limited amount of real avionics equipment then the H316

could be interfaced to the data bus to simulate those equipments

which are impossible to exercize satisfactorily in the labora-

tory (e.g., IMU's, fault detectors within BITE) .

8.3.2.4 Measurement of the Svstem Under Test: The accumulation

of statistics and the output presentation of this data are the

ultimate result of any simulation result. If a real computer

is used instead of a simulated model then a major problem can

arise due to the lack of computer memory capacity for trace and

dump routines and data. If the memory is used for trace and

dump data then it cannot be used to process the workload. The
results of the simulation run will therefore be distorted.

A secondary problem also arises in that real time aero-

space computers usually do not possess a full complement of high

speed record recording equipment, such as card readers, high

speed printers, or tape units. The attachment of these equip-

ments could also distort the results since they put an abnormal

load on the I/O.

8-12

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-184C

A complete software simulated system will not suffer

the problems mentioned above since time anti memory space are

also simulated entities. When real hardware is used within the

simulator, it is difficult to compensate for inadequate memory
or tile loss of real time.

Three features which were incorporated into the Apollo

computer simulator are presented below as examples of the inter-

action of the s:imu]ator and the simulated system. These inter-

acticns imply [d0at if a real SU_!C I,_P is to be employed as an

e]emcnt of t}_o simulated system, a design effort must be under-

taken to pro',;:i(]c-the co:,:Tect "hooks" into the hardware so that

use_:ul results m,%y be obhained.

A useful feature to be used in microsimulation is

rollback [5]. Long missions such as Apollo require
simulation time on the order of hours. Should the host

computer (on which the simulation is being executed)

malfunction, the simulation will abnormally terminate.

Upon restart one does not want to go back and duplicate

the execution of this simulation from the beginning of

flight. By establishing rollback points in the simula-

tion this problem is avoided. At rollback times com-

plete core and register dumps are taken, and this infor-

mation is put on a secondary storage device. Then upon

system failure the simulation can be restarted at the

last rollback point by loading memory with this stored

information. The overhead associated with rollback is

well justified with long simulations, such as Apollo.

However, to prevent this overhead from becoming too

high the system designer must decide upon a judicious

criterion for establishing rollback points. That is,

he must trade off the cost of frequently storing roll-

back information with the savings in not having to re-

simulate a large part of 'the flight.

b) Stress Testing

Stress testing can be provided in a simulator to

help determine if eo_3inations of application programs

will exceed their combined t±me budgets under the exe-

cuted conditions of operation. This request reduces

the speed of the object computer. If a group of appli-

cation programs is run in a simulation with a computer

whose speed is, say, 75% of the real computer capabi-

lity, successful operation may be interpreted to mean

that no more than three-fourths of the computer capa-

city has been absorbed. This special request can thus

8-13

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE - CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

c)

d)

be used to "diminish" the capability of the computer

until a point J s reached where timing requirements

are not satisfied. This level then is a guide to the

amount of computer capability still available for

other software.

Stress testing can also be used to verify the

"thrashing" threshold of memory management. If the

amount of available memory is reduced but the workload

and e_vironment are hel(I constant then a measure can

be obtai1_ed as to how much excess memory is available

for multi-programming.

The Coroner Request

A "coroner" special request can be implemented in

a simulator for post-mortem diagnosis. The request

causes storage of information from each simulated in-

struction in a circular buffer of size n. If the run

abnormally terminates, a list of the last n instructions

simulated is produced. This list is a valuable aid in

determining the reason for the abnormal termination.

However, the overhead associated with this request re-

quires that it only be used when its cost is outweighed

by the enhancement of debugging efficiency.

Knobs and Dials

A system simulation is undertaken not only to

verify specific design concepts, but also to make per-

formance measurements under various parametric condi-

tions. In order to achieve this objective the system

(hardware and software) must be provided with enough

flexibility (knobs and dials) so that the various de-

sign parameters may be adjusted.

Although the details of the SUMC MP have not been

published by MSFC a number of suggestions can be made

concerning those entities which should remain as vari-

able parameters during the simulation. Implicit in

the following listing are obviously a number of assump-

tions which, if incorrect, could make the variable un-

necessary. For example, if a management directive ex-

ists that only two processing units are to be employed

with no concern for future expansion then a number of

problem areas associated with multiprocessor design

degenerate into trivial solutions.

The following list describes some of the design

parameters which should be kept variable during the

low level simulation process.

8-14

INTERMETRICSINCORPORATED.701 CONCORD AVENUE " CAMBRIDGE MASSACHUSETTS 02138. (617) 661-1840

i) Operating Memory (M2)

2)

3)

Assume a paged virtual memory conce]?t is

employed. The following items should be adaptable

in order to optimize performance.

i) Page size

ii) Page replacement algorithm

iii) Page presence algorithm. If an associative

memory is employed [o determine the presence

of a page in }{2, then the number of woz-ds in

the associative memory should be made a para-

me te r.

iv) Total size of M2 storage as well as the number

of M2 modules.

v) Possibly the speed ratio between M2 and M3.

Processing Unit and Local Storage (MI)

i) Instruction architecture. A measure of in-

struction frequency will indicate which in-

structions are not needed. Similar]y the

measurement of subroutine usage of various

control features will indicate which instruc-

tions need to be incorporated into the de-

sign.

ii) Depending upon the use of Ml its size should

be variable.

iii) The algorithm used to assign processes to

processors should remain a variable as should

most of the executive functions dealing with

resource allocation.

Communication

i) The P-M2 internal bus width and rate should

be changeable especially if a bottleneck is

anticipated, based upon phase 1 simulation.

ii) The communications link from processor to

processor as well as from processor to I/O

should be made flexible so that the traffic

capacity can be increased if a bottleneck

is discovered.

8-15

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

References for Chaunter 8

i) Intermetrics, Inc., Final Report, Contract NAS9-12119,

"Advanced Data Management System Analysis Techniques

Study", July 1972.

2) Gordon, Geoffrey, S][stem Simulation, (Prentice-Hall,

Englewood Cliffs, New _Jersey, 1969).

3) IBM, CSZ II General Information, Technical Publications

Departi_{_£-_-i:J] Westchester Avenue, White Plains, New

York.

4) System Development Corporation, "Information Management

Syste1_ Design For Future Missions, Users Manual",

(Report TM- (L)-4719/001/01, Contract NAS9-11211, NASA

Manned Spacecraft Center, Houston, Texas).

5) Chandy, K.M., and Ramamoorthy, C.V., "Rollback and Re-

covery Strategies for Computer Programs" (IEEE Trans.

on Comp., C-21(6), June 1972), pp. 546-555.

8-16

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE . CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

t

Chapter 9

C]IITIQUE 0]? SUMC's AI,CI]ITECTUAAL CIIARAC_:_RISTICS

9.1

A crit:ica]_ evalual-ion of the SUMC desiqn is provided

in ord<:,.: that fu[:c_:e eli-errs may have the be1:efit of the present

l-,r-I....,-_.,_-.]tso '_'_:ir_cr_ki<,'ue wi_!]_ l_ot be T)rJmarily dir.,_cted at

the i};_i,]:":L_entati<)i_ asuects of the c:ircuit and/or logic dosmgn,

but ratl_c,r at th<,. higher].cvel archJ tectural features of the

hard<.Jar<_. An ev;_luation of any design must of necessity rest

with a C,-_t:ermin,:_iion of how well the design el]preaches a set

of goals. Therefore, a set of design goals is now presented

which is Intermetrics' interpretation of MSFC's desires in the

development of the SUMC project. "

a) The _-IS]_:'Cdesire to use a basic SUMC hardware design on

a wide variety of missions, which will require a wide

range of comoutation power, leads to the requirement

for a hardware design which is expan(iable. "Expandabi-

]ity" should be considered with respect to such features

as word length and sizes of the various memory and pro-

cessing structures, including the mJ cro memory, scratch

pad, ALU, multiplexers and main memory.

b) The variety of application requirements leads to a de-

sire to create an architecture which is flexib]_e and

adaptab].e to changing conditions. For example, the

instruction set should be able to be modified or

change(]. Similarly, components should be able to be

utilized within tl_e same architectural structure re-

gardless of their execution speed. As various tech-

nologies improve, this then allows the smaller and

faster logic and/or memory elements to be incorporated

into the design with a minimal impact.

c) A specific requirement of the SUMC expandability and

adaptabi].ity design is the ability to utilize the de-

sign as either a stand-alone uniprocessor or as a

larger multiprocessor system.

d) The "U" in SUMC stands for "ultra" reliability. This

must not only include the ability to operate for a long

period of time without failure, but also (from a

9-1

IN[ERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

practical point of view with respect to current tech-

nology), must indicate the ability to detect failures.

The detection of failures is required if a multipro-

cessor is to constrain error propagation and possess

the ability to reconfigure.

e) Since the SUMC family of computers is meant primarily

for aerosioace applications, the conservation of weight

and power becomes of primary importance.

Keeping in mind these different critieria, the follow-

ing sections will e'<amine various aspects of the SUMC design.

Not all of the aspects are independent of each other, but they

are presented in such a manne_- so as to highlight different

points of view.

9.2 Micro Instruction Sequencin_

presently available in SUMC is described in Figure 9.1.

only control actions possible are

In a microprogrammed machine where flexibility is one

of the objectives, it is extremely important that the micro

sequence control itself be flexible. The sequencing control
The

b)

a) stepping thru the micro code (0., i., 2., 3.)

branching to a location described by

I) an ALU output (4.)

2) associated with an opcode (5.)

3) given in the micro code (13.)

c) alternate choice in either

i) branching or holding (6. , 7.) or,

2) branching or stepping (8. , 9., i0. , Ii., 12., 14.,

15.)

Although these forms of sequencing do allow the genera-

tion of a static set of linked micro code, they do not allow for

easy modu]arization of micro code.

While this feature becomes particularly important when

the instruction architecture contains powerful semantically

concise operations, it is also extremely important with stand-

ard current forms of instructions. The execution of an

9--2 ¸

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

CONDITIONS SE o. ACrPION

None +I

Non(: +i

None 4.1

Non e -Ii

None PRM (22 31)-_SEQ

None IAROM SEQ

IC> 0 IIo]d

IC--0 MROM (C7-.C]6)

IC>4 llold

IC<4 MRE)M (C7 -- C]_G)

C_{']_ =] MF,OM (C7 - C16)

G,_T : 0 +]

ZNT + DOT :] Mr,_oH (C7--C]6)

INT " DOb' : 0 +]

INT }{oq. =] MROM (C7-C16)

INT l<oq. = 0 +i

INT+bO'f4DiN = 1 MROM (C7-C16)

INT.DOT-DIN = 0 +i

I.C. ACTION

tto]d

IR (26-31) >IC

MROM (CII-C]6)->IC

PI_]_ (20--31->IC

Hold

Hold

IC- I->iC

Ho] d

--l]

tlo] d

Hold

Ho]d

Hold

Hold

Hold

Hold

Hold

Binary

Code

0000

0001

0010

0011

0100

0101

0110

0111

1000

]001

I010

i011

CNT =: EALU overflow or ALU overflow or DEX3 as s]?ec]fied by ACCS, CNT

field

ACCS = 1 +l Hold

ACCS = 0 MROOM (C7-C16) Hold

ii00

ACCS = PRM sign or ER sign as specified by the ACCS, CNT fie].d

None MROM (CV-Cl6) Hold ii01

IC>0 +i -i iii0

IC:0 MROM (C7-C16) Hold

IC24 +i -4 iiii

IC<4 MROM (C7-C16) Hold

Figure 9.1: Control Conditions and Actions

9-3

1TERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSE:TTS 02138 . (617) 661-1840

instruction can be viewed as occuring in three phases': instruc-

tion fetch, operator decode, and execution of the operation.

The SUMC allo?is for common manipulation of all instruc-

tions in both the instruction fetch and operator decode phases

of execution. It is interesting to note that after the instruc-

tion has been fetched, the memory operand is fetched, if the

operator is of the appropriate "class" of instructions. This

differentiation is performed by the hardware and is completely
dependent, therefore, upon both the instruction architecture and

its physical bit mappin<T. There is no general way to have sev-

erol classes of instructions, each with its own idiosyncrasies,

without this special hardware help. This is because the decision

on whether or not to read memory must be performed in the "com-
mon" section of code.

If there were to be the ability to call and link in the

micro code, then the question as to whether to read an operand

from memory could be decided after the operator had been decoded

and the execution of the operation had been entered.

(The one current possibility for modularization within
the SUMC micro code would be:

a) Place the return micro address in the P_._

b) Branch to the micro sub-routine

c) Upon entering the subroutines, save the return address
in the SPM

d) To return, gate the return address from SPM to the PRM

and into the SEQ.

This would effectively take four micro words.)

Besides the desire for micro code modularization for

complex instruction sets, the next section will point out the

need to be able to do much more micro condition testing for
sequence control.

9.3 Choosing Functions to Optimize

It has been observed that the SUMC hardware has been

optimized for the implementation of the multiply, divide and

square-root operations. However, what is the actual expected

percentage of occurence of these operations? In particular,

what is the frequency of distribution of all the implemented
machine instructions?

9-4

INTERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

1

C.C. Foster eto el. [i] has made a study of OP code usages

on th© CDC 3600 and ha_ _ I _:cotnu thaL in scientif:Lc Forts"an Proqrams,

the compi±od code colltained only]0% arihhmotic instructions. The

rem,_ning inst_-t_ctions wc_.re invo] v©d with]oad, storo, subroutine

linking a]--"icivarious ot]]er control c)merations_. . For the more com-

me.rcial type of application, the total pe]:centage of all arith-

metic instructions fell[to less than 5% [2]. The most common

arJth_.t_,tic operation was clearly a@dition. Even for the pro-

9r_al, .,,ith the most arith-,L_etic f___nctions, multiply and divide

were.]c_ss than 2%.

C.C. Church [3] states:

"In _n:_tructi.on r>ccurence _,e found arfth_,'_ctic 8.3 percent

the_ (:omm_,,nds? (%viously, we need the "likuta Move" func-

tion, buh do flow charts call for anythJ]_g near 40 per-

cent? And what of the tra_]._-',fers:My flow charts do not

call for anything u<:ar 23])ez_cent of the prob].em to be

involved in tra._:;]-erring."

While these types of statistics can be inte]:preted as indica-

ting a mismatch betwee._ the problem to be solved (i.e., the

program) and the operations p_:ovided (i.e., the machine in-

structions) , they can also provide insight into the design and

implementation of instruction sets. If the instruction set

prov:[(led is of the current machine level form (e.g., IBM 360)

then, for exc:m[_].e, the mu].tip]y and divide Jnstrucit]ons are

not driving design feat.ures. If these instructions are truly

less than 2%]n occurrence, then their optimization and reduc-

tion of their execution time by half will only save 1% of the

overall execution time. On-the other hand, an optimization of

branches by half their execution time would make a dramatic

savings in actual execution time.

While it is understood that certain data reduction or

filtering problems do require an above normal amount of multi-

plication, this is not a common occurence and the multiply and
divide instructions should not form the basis of the machine

architecture.

If one takes the SUMC JZ (Jump Zero) instruction for

an example, (Figure 9.2) it can be seen that not only can it

be made faster, but the number of micro instructions can be

reduced if necessary conditions to be tested are generated by

the hardware. The testing of conditions is indeed the method

of determining control flow through an algorithm, and there-

fpre, will always either have to be in some fashion artificially

produced or eY.plicitly tested. The cost of providing these ex-

tra dynamic conditions is small when compared to the gains in

execution time and savings in micro-memory.

9-5

INI-ERMETRICS INCORPORA] ED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

If (A) =0, GO TO Z

If (A)_0, GO TO NI

(A=0)

No

I 1X'FER to F CH

J

%
I_ (MAR) - i÷ (PC) 1

i

6
Figure 9.2: Micro Program Flowchart

(Jump Zero)

4

9-6

INTERMETRICS INCORPORATED "701 CONCORD AVENUE " CAMBRIDGE, MASSACHUSETTS 02138 " (617) 661-1840

It can be noted that further savings can be had in the

revised []IZ i[I(]]_ c I-][_]"_t (Y'igure 9.3) by either placing the

(P4AI',)--I->(PC) function as a special entrance to the FETCH routine,

since it occuzs in so.v<:ral SU_.IC instructions, or for this same

re_son have this action as part of a sequence control state.

9.4 Fie].d Mani]_ulation - Maskings - Shifting .- Bit Addres-

s.]._<._ _q_{i ::_h_i.fl;j nq

']'he word lonqibh of a comj>uter is often chosen because

of arithmetic p;l;ccisJon and, cotemporaneous].y, the instruction

format size. Once chosen, this word length then becomes an

a_:tificial <_u;_nt<_m of ;._dressabi.!i..ty. ?L'h_s is th<; case wit}l

the SU]iC. q.'i_eJla}-_].<n,_<_]i;atio_lof an i_,_st]ruc[;ion s_:t often rc-

guJ};es the' (;fficicnt mu_nipu]ation of variable lenqLh fields,

masking, bit m._nipu]atJon and testing. While i;he SUMC can ac-

com];liish al]. these funekJons at a Macro].evel by using shift

and logical instructions, it is suggested that if flexibility

is to be obtained the high frequency of use of these functions

in various instruction architectures requires that they should

be more directly under Micro level control.

']%0 SUMC does recognize this fact, in a limited way,

by providing in the hardware the extraction of mant<ssa, c]lar-

acteristic and sign of floating point arithmetic words stored

in scratch [}ad. However, this is rigid. The hardware desiqn

shon]d _ot Jnitia]ly };i-esume -to know the @esired arithmetic

precision of the app].ication. For example, tlle queues and con-

trol])its re<!uired for the executive functions of the SUMC are

not given spec.ial hardware since they are not known in advance.

What is desired is a generalized bit manipulation,

masking, field insertion and extracting mechanism which can

be micro con [:rolled . In the actual implementation of a parti-

cular instruction set for a particular mission, it is recog-

nized that this generally could be specialized in order to op-

timize the actual usage. An example of the need for testing

of certain bits efficiently would be if it were decided to im-

plement indirect addressing and hence the "indirect" bit of

the operand _would have to be efficiently known during the ef-

fective memory address calculation. Besides changes in the

meaning of instruction fields, it could also be possible to

realize, other data types or other physical forms of current

data types.

9.5 Limited Scratch Pad Addressin_

The philosophy of a generalized register set contained

in a scratch pad structure is very good as far as providing an

9-7

IN1ERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

If (A):0, GO TO Z

If (A)_0, TO GO NI

< Jz

(A) + (PRR)

(_,{AR)-i÷ (PC)

No (AFO)

Figure 9.3: Micro Program Flowchart

(Jump Zero) Revised

9-8

INTERMETRICS INCORPORATED " 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

I

adaptable design. It would be desired on the hardware level to

al]_(._.wany register to serve any funct:ion. The specification,

thc,:reFore, as to the assign-,Lent of registers would be contained

within the micro cod<'.. The location within the scratch pad of

the mac'ro]eve]. program counter, base register, etc., should be

specified bv t:h© micro pro0.<om and not dictated by an arbit]=ary

hard wired location. One can easily conceive of i_nstruct.ion

sc'Ls with a_L<:op.atic base registers or none at all, or with a

retttrn a({r-':r'_sss£ac]:. The present SUNC design does not allow

this genera:_J xation.

'.!"1)(_internal ._nterconnectJ.on of -the scratch pad ad-
• • ,_(- - pdross rec,<]':;Lc_r (SPA}t) [_o the instruct.;[<;n Rogzs_.::; (.[,) .;_nd-the

m:ic:ro me_L_ory buffer register J__(][oates that addressing of the
.................. _ Jt J.q

L,_± aC_:ii p J.... (_ (_.U,;il :!.. t.(L±y ;_ < t.__i.t.." 0_-_-)_,_.[.ii Or'__:-', _,r

_N - _,-, within instruction code or m<c.ro memoryspecified i_. _, _van
code. Ti_e a},ilJty to dynamically ded'dce or calculate a scratch

pad address is not possible because the SPAR can not be loaded
from one of the SUHC's internal registers, such as the PRR,

NOR or }._N_. The dynami_c determination of scratch pad address

wout.d be zcguired if one wished to implement a stack within the

scratch pad.

9.6 Micro and Hain Memo:___i,i._[_,})eed Ratio

The current T2L version of SUHC operates with a micro

memory cyc].o time of 330 nanoseconds, while main m©mory pos-

sesses a 660 J_anosecond cycle time. It is suggested that the

speed ratio between m] cro and main memory should be closer to
5 or i0 to I i.nstoad of 2 to i. This becomes especially de-

sirab]e when an instruction set is more complex and semanti-

cally powerful than the IBM 360 instruction set. In more power-

ful instruction sets, one finds both:

a) an instruction operation .specified in fewer bits, and

hence memory does not have to be read as often, and

b) the operations to be performed are themselves more

complex and therefore take more computational steps.

9.7 Main Memory Synchronization

While reviewing the micro code flow charts, it was

observed that the processor or micro memory cycle time was

synchronized to the main memory cycle time by executing micro

level NOPS. The main memory cycle time therefore was an in-

tegral part of the micro code. This can be disastrous for two

entirely different reasons.

9-9

INTERMETRICS INCORPOhATED' 701 CONCORD AVENUE • CAMBRIDGE, MASSACttUSETTS 02138 • (617) 661-1840

a) If a slower or faster main memory were employed many

changes would be required in the actual micro code.

b) In a multiprocessor one can not determine the exact

time bet_.:cen a memory request and the response, since

the addressed memory module might be busy with another

processor and the request might take a number of memory

cycles to be satisfied.

Mu]tiprocossors, therefore, can not guarantee their exact re-

sponse time with respect to memory.

What is required is a completely asynchronous operating

memory interface where the execution of micro code and memory

timing are not intertwined.

In a mu]tiprocessor environment it is necessary that

a process be able to read the contents of a memory location

and change its value by wrJting into it all in one period of

time at the exclusion of all other processors. This form of

read/write mechanism must be provided by any potential multi-

processor.

9.8 Limited Modularity Concept

The "M" in SUMC, which stands for modularity, seems

to extend only to the packaging of arithmetic and register func-

tions into 4 bit entities. The concept of modularity can be

extended to the higher level of internal architecture by pro-

viding an internal structure which is organized around i, 2

or 3 buses. These buses allow all the internal structures to

communicate between one another. As needed, new structures

may be added, such as a floating point unit or an associative

memory unit. Most present day mini computers (see Figure 9.4)

are designed around an internal bus structure.

This' concept can be extended as in the MLP 900 (IC

9000) which also provides what are called program cards. These

are hardware modules addressed by micro memory to provide spe-
cific hardware functions.

Mini computers such as the HP 2000 series, PDP-II,

MODCOMPI, GRIg09, etc., are all built around an internal bus

structure. Often it is this internal bus structure which en-

ables the system to expand and contract to meet varying re-

quirements.

The "M" in SUMC is severely limited with respect to

this described form of modularity.

9-i0

INTERMETRICS INCORPORATED. 701 CONCORD AVENUE • CAMBRIDGE, MASSACtJUSETTS 02138 . (617) 661-1840

I

(/j ._J

__J

LtJ
0")
-._.._

--%

Ch_

£/9

C).°
F--

L--D

43

CU

0
L)

.,H

.rH

(D
U_

al

o_

©

Dl
.,H

-- 9-11

9.9 The "U" in SUMC- Ultra Reliability

!-',e].Jability, clearly requires "good" components. The
SUMCprogram does attempt to achieve component level reliabi-
lity by experimentin,_ with advancod state of the art component
an<]]_acka_ing _nd fabnication techniques. Reliability is one
of the major design goals of the SUMC architecture. This being
the case, it is surf)rising that the architecture of the SUMC
does not co_isJder hardua_:e detection of the major fault condi-

tic)ns of intec/::-ated circuit i_L)]cr_,entationo The packaging and
definition of the modules should consider the effect of failure

and should al_i_e_',])t*o m<_',:e dc,tc'ckable failures more statisti-

cally indepen_-lant. For example, integrated circuit modules
should tend to be more])it oriented than function oriented.

It is necessary in reliable systems to have "immedi-

ate" fault dotection within the hardware in order to prevent

propagation of errors. The inte_raction of transient faults and

the micro execution of instructions must be carefully considered,

and made part of the basic structure.

9.10 Confusion Between Desian Leve]s

A basic philosophical comment seems appropriate. A

truly modular design should possess maximum independence be-

tween design levels. That is, the architecture (block diagram)

level, instruction definition level, and the implementation

(logic design, circuit technology) level should be approached

as independently as possible. A change of definition at one

level should not cause major impact on the other levels.

When flexibility is desired the implementation archi-

tecture should be generalized enough to allow the implementation

of a wide variety of instruction sets. This is particularly

true when one considers a large future time framework. While

most current instruction architectures are similar to the 360,

they will become more and more problem oriented such as the

Burroughs D6700. The instruction set should reflect the major

application to which the system is to be used. For example,

when a Higher Order Language is employed, the instruction set

should be so specified as to aid in the generation of, and

hence the efficient execution of, compiled code.

Similarly, the introduction of new technology at the

implementation level of design affects speed, weight, power and

cost, but should have no major impact upon the instruction set

or (processor, memory, I/O) architecture.

Clearly one can not be too pedantic in the utilization

of the principle stated above and must appreciate the practica-

lities of all design levels.

9-12

INIERMETRICS INCORPORATED • 701 CONCORD AVENUE • CAMBRIDGE, MASSACHUSETTS 02138 . (617) 661-1840

I

Th© SUMC design has gz-eatly intertwined the (proces-

sor, memory, !/O) architectural, instruction set definition,

and i]_Ip.lemcnta!.:ional levels of the design.

I_<.jc)T<_._]ces for C]]ag_e_r 9

i) Fo<;t,._n, C.C. , c<t. al. , "I:_easure of OP Code Utiliza-

tion", IEEE Trans. on Comp., May, 1971, [)p. 582--584.

2) Bing]_am and I<auffman, "Analysis of Static Object Code

Produced by Algol and Cobol Compilers fo_" the Bur-

roughs B5500", i_urroughs Corporation, Paoli , Penna. ,

February, 1969.

3) Church, C.C., "Computer Instruction Repertoire-Time

for a Change", SJCC, 1970.

9-13

INTERMETRICS INCORPORA]FD • 701 CONCORD AVENt]E • CAMBRIDGE, MASSACHUSETTS 02138 • (617) 661-1840

