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ABSTRACT - OMS FINAL REPORT

This program included the fabrication, test, and delivery of an

optical modulator system which will operate with a mode-locked Nd:YAG

laser indicating at either 1.06 or 0.53 micrometers. The delivered

hardware operates at data rates up to 400 Mbps and includes a 0.53 Pm

electrooptic modulator, a 1.06 wm electrooptic modulator with power

supply and signal processing electronics with power supply. The

modulators contain solid state drivers which accept digital signals

with MECL logic levels, temperature controllers to maintain a stable

thermal environment for the modulator crystals, and automatic elec-

tronic compensation to maximize the extinction ratio. The modulators

use two lithium tantalate crystals cascaded in a double pass configuration.

That is, the laser beam enters the modulator, passes through both crystals

and then is reflected back through both crystals to the polarization

analyzer.

The signal processing electronics include encoding electronics which

are capable of digitizing analog signals between the limit of + 0.75

volts at a maximum rate of 80 megasamples per second with 5 bit resolution.

The digital samples are serialized and made available as a 400 Mbps

serial NRZ data source for the modulators. A pseudorandom (PN) generator

is also included in the signal processing electronics. This data source

generates PN sequences with lengths between 31 bits and 32,767 bits in

a serial NRZ format at rates up to 400 Mbps.

The worst case dynamic extinction ratio of the 0.53 pm modulator

was 15:1 with 72% transmission. The 1.06 pm modulator worst case extinc-

tion ratio was 13:1 with 50% transmission.
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OPTICAL MODULATOR SYSTEM

1. INTRODUCTION

The optical modulator system hardware which was fabricated, tested, and

delivered under this program included a 0.53 pm modulator (Figure 1-1), a

1.06 pm modulator with power supply (Figure 1-2), and signal processing electronics

with power supply (Figure 1-3). The electrooptic modulators function as high

speed optical gates on the output of a 400 MHz mode locked Nd:YAG laser radiating

at either 1.06 um or 0.53 Im. The modulator units were designed to operate with

digital signal sources with MECL logic levels. Each modulator unit contains the

necessary amplifiers, thermal control, compensation circuits, and optics to

provide stable, high quality optical gating. The signal processing electronics

include encoding electronics which are capable of digitizing analog signals between

the limits of + 0.75 volts at a maximum rate of 80 megasamples per second with

5 bit resolution. The digital samples are serialized and made available as a

400 Mbps serial NRZ data source for the modulators. A pseudorandom (PN) generator

is also included in the signal processing electronics. This data source generates

PN sequences with lengths between 31 bits and 32,767 bits in a serial NRZ format

at rates up to 400 Mbps.

This report contains a functional description, operating instructions, and

performance test results for the above mentioned hardware.
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2. PERFORMANCE SUMMARY

The modulators delivered in this program are intended for incorporation in a

mode-locked Nd:YAG laser communication system. The important interface parameters

for the modulators in such an application are given in Table 1. Likewise, the

interface specifications for the signal processing electronics which serve as a

data source for the modulators are given in Table 2.

Table 3 summarizes the measurement results for critical modulator parameters.

These results are typical of measurements made during various modulator tests at

different times. The results vary depending on the care taken in optically

aligning the modulators when they are set up for a test. More detailed test

results are given in Section 5 of this report.
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TABLE 1

400 Mbps LASER MODULATOR INTERFACE SPECIFICATIONS

Specification

Characteristic 0.53 pm Modulator 1.06 pm Modulator

Input Beam Wavelength 0.53 pm 1.06 pm

Average Powerl(with compensator 0.5 mW-10 mW 0.5 mW-10 mW

Pulse Repetition Frequency 400 Mpps max. 400 Mpps max.

Pulse Width (10% points) 1500 ps max. 500 ps max.

Beam Characteristics jGaussian TEM Gaussian TEM

Beam Diameter 2mm nom. 2mm nom.

Beam Divergence (l/e points) f0.3 mrad nom. 0.6 mrad nom.

Polarization 'Horizontal Horizontal

Driver Input Waveform ;Bilevel, NRZ Bilevel, NRZ

Logical one level i-0.8V + 0.1V -0.8V + O.1V

Logical zero level !-1.7V + 0.1V -1.7V + 0.1V

Input Impedance (nominal) i50 ohm 50 ohm

Reflection coefficient i< 0.2 < 0.2

(with lns risetime)

Rise, Fall times (10-90%) 1.3 ns <1.3 ns

Data Jitter, Symmetry with !< + 100 ps < + 100 ps

respect to data clock

Output Beam Beam Characteristics Gaussian TEMoo Gaussian TM

Beam Diameter 2mm nom. 2mm nom.

Divergence 10.3 mrad nom. 0.6 mrad nom.

Polarization Horizontal Horizontal

NOTE:

1. Will operate with power levels exceeding this range when

manual compensator.

used with the
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TABLE 2

SIGNAL PROCESSING ELECTRONICS INTERFACE SPECIFICATIONS

Characteristic Specification

PN Generator
Clock Input Waveform Sinusoidal

Frequency1 400 MHz +5 MHz
Amplitude 1V pp
Load Impedance 50 ohms nominal

Data Output Waveform Bilevel, Serial NRZ
Frequency Same as Clock Input

Frequency
Logical one level -0.8V +0.lV
Logical zero level -1.7V +0.1V
Rise, Fall time (10-90%) < 1.3 ns
Jitter Symmetry with respect

to Clock < +100 ps
Load Impedance 50 ohm nominal

Encoding Electronics
Clock Input Waveform Sinusoidal

Frequency 10-400 MHz
Amplitude 3V pp
Load Impedance 50 ohms nominal

Analog Input Amplitude < +0.75V pp
Bandwidth2 dc - 32 MHz
Load Impedance 50 ohms nominal

Data Output Waveform Bilevel
Frequency Same as Clock input
Logical one level -0.8V +0.1V
Logical zero level -1.7V +0.1V
Rise, Fall time (10-90%) < 1.3 ns
Jitter, Symmetry with respect

to Clock < 100 ps
Load Impedance 50 ohms nominal

NOTES:

1. Cables are also furnished to allow operation at 200 MHz and 300 MHz
with a 63 bit sequence. The generator can be made to operate at any
frequency below 400 MHz if the proper cable lengths are used.

2. The analog signal bandwidth should be at least 2.5 times less than
the sampling rate.

7



TABLE 3

400 Mbps LASER MODULATOR PERFORMANCE SUMMARY

Definitions:

1) Transmission =

2) Depth of Modula

P. P
in ave. - out ave.

x 100P.
in ave.

Maxium 1 level-Minimum 0 level 1
Ltion = Maximum 1 level(1 Static Ext. Ratio)x 100

M Pt aximum 1 leve
3) Static Extinction Ratio = U * \.. .)P

out ave. (all O's)

4) Dynamic Extinction Ratio Minimum 1 level in optical pulse train
Maximum 0 level in optical pulse train

Dynamic extinction ratio is measured using a 63 bit pseudorandom code as a

data source

NOTES:

1. Optical alignment of the modulators are critical when attempting to

measure the above performance parameters.

2. Measurement of dynamic extinction ratio is limited by the ability

to discern 0 levels down in the detector and oscilloscope noise

levels.
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Characteristic 0.53 pm Modulator 1.06 pm Modulator

Transmission 72% 50%

Depth of Modulation >98% >97%

Extinction Ratio

Static >50:1 >30:1

Dynamic >15:1 >13:1

Power Dissipation 22 watts 30 watts



3. HARDWARE DESCRIPTION

3.1 0.53 pm MODULATOR.

A photograph of the 0.53 pm modulator is shown on Figure 3-1 and a

functional diagram of the unit is given of Figure 3-2. The 0.53 pm modulator

consists of a 0.53 pm modulator subassembly, modulator driver, temperature

controller, automatic electronic compensator, manual compensator, and chassis.

The chassis contains the wideband 50 ohm loads, power connector, and all the power

and signal cables to the various modules. The dimensions of the 0.53 Pm modulator

are 10.35 cm x 12.5 cm x 14.0 cm. It weighs 1.7 kilograms and dissipates 22 watts

average.

The horizontally polarized, mode locked laser beam enters the modulator

through the transparent half of a window as shown in Figure 3-3. It then passes

through two cascaded crystals whose longitudinal axes are parallel to the light

beam. The beam is then reflected from a mirror at the exit from the second

crystal, such that it passes in the return direction again through both crystals.

If the crystals are energized during the petiod that a pulse passes through, the

pulse polarization is rotated by 900. If the crystals are not energized, the

polarization of a given pulse remains unchanged. After leaving the crystals, the

beam is reflected by a second mirror to a polarized beam splitter. Here, the beam

is split into two: 1) a modulated, horizontally polarized output beam, and

2) a modulated, vertically polarized beam which is detected by the compensator

diode and used as the correction signal for the automatic compensator.

3.1.1 Modulator Subassembly

The modulator subassembly consists of the optics head, oven subassembly,

and lens holders.

Figure 3-4 shows an exploded view of the oven subassembly. The oven

is used for mechanical support and as an isothermal enclosure which thermally

stabilizes the modulator interior with respect to the laboratory environment.

The matching network cables, heater leads, and thermistor leads enter the oven

through the base of the housing which acts as a ground plane for the high

frequency signals. The unshielded leads are bypassed with feedthrough

capacitors to this ground plane which prevents pickup of the several watts

of circulating RF power from entering the control loop of the temperature

controller. The oven core is held in place by the teflon end bells.

9
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CRYSTALS

INPUT
BEAM

HALF TRANSMISSIVE
HALF REFLECTIVE OUTPUT BEAM

WINDOW ' /
COMPENSATION

POLARIZING BEAM DIODE SENSOR
SPLITTER

FIGURE 3-3 MODULATOR SUBASSEMBLY CUTAWAY

These end bells are shaped for maximum support of the oven core and also

provide a minimal heat leak from the oven core to the oven housing. The end

bells are made of teflon to minimize the reactive interaction with the

matching network components.

The oven core is made of boron nitride. Boron nitride was chosen for

its low dielectric loss tangent and high thermal conductivity. Only

beryllium oxide would be better in this respect, but it is extremely

difficult to machine and handle beryllium oxide because of its very toxic

nature. The oven core holds the mounted crystals and heaters. It acts as

the high temperature isothermal enclosure. The ends of the oven core are

shaped to hold the heaters. The nichDme wire heaters are wound in grooves in
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boron nitride cylinders which fit snugly around the oven core. The length of

the groove in the cylinders was chosen so that about 22 ohms of nichrome

wire are used. This impedance was chosen to match the temperature controller

output stage. The heaters were located away from the oven center so that

there is as little electrical interaction as possible between the heaters

and matching network.

The crystals are soldered to copper electrodes. One crystal is a flat

configuration where the electrode comes in from the side. It mounts between

two flat boron nitride pills. The other crystal is placed between two similar

electrodes, one above and one below the crystal. The boron nitride pills

used for mounting this crystal have a step of height equal to the crystal

and electrode thickness. The pills are bonded to the electrodes with an RTV

cement. The pills are then optically aligned in the oven core and bonded in

place in the same manner.

An exploded view of the optics head is shown in Figure 3-5. The

body of the optics head is shaped to hold the component parts. Its back side

is shaped to fit into the oven body to hold the teflon end bell in place.

The beam splitter mirror holder fits into the optics head body from the

back side; it slides between the body and a metal backup plate. Adjustment

is accomplished by turning the two screws which push rods against the

shoulders in the mirror holder. Back pressure is applied by the spring

loaded plunger pressing against the cylindrical part of the mirror holder.

The two screws which hold the plates together can be tightened for locking

the mirror holder in place. The mirror is held in the mirror holder between

two press fit 450 rings. The polarizing beam splitter prism sits in a

recess in the optics head body. Its center aligns with the center of the

beam splitter mirror. It is held in place by spring pressure from the metal

retainer. The compensator diode is held in place beneath the polarizing

beamsplitter by a plastic holder. The plastic holder is adjustable to

position the diode in the compensator output beam by sliding it into place

and clamping the holder by tightening the two screws which hold the diode

holder. The output cable from the diode exits through the large hole in

the left of the optics head body.

An exploded view of the front lens holder is shown on the right hand

side of Figure 3-5. The adjustment motion is produced by a sliding

14





plate, as in the optics head. The difference here is that only X and Y

degrees of freedom are required while restricting rotation. The horizontal

adjustment is accomplished by a screw on one side of the sliding plate with a

spring on the other side opposing it. The vertical adjustment works in a

similar manner. The lens is held in a cylinder which is a close slip fit

into the sliding plate with a spring loaded retainer. The lens can be

pushed in and out for focusing adjustments.

An exploded view of the rear mirror holder is shown in Figure 3-6.

The rear mirror holder is quite similar in design and function to the front

lens holder. Its stability of position is more critical, however, because

of the short focal length of the rear mirror. This requires spring loading

of the sliding plate in all three directions. The helical spring holds the

sliding plate against the rear mirror holder body. The rear mirror holder

body has the same kind of shoulder as the optics head for holding the teflon

end bell in place in the oven body. The mirror is mounted in the stainless

steel post which extends into the oven interior for proper location of the

rear mirror.

3.1.1.1 Crystal Material Selection

Each of the modulators delivered under this program use two high quality

lithium tantalate crystals. Prior to this program, we had conducted a trade

analysis of the available electrooptic crystals which might be useful for

400 Mbps modulation. At that time, based on the best data available, we

concluded that strontium barium niobate, SBN (Sr05Ba 0.5Nb06) was the best

crystal choice for this application. This decision was based upon its

availability in good quality specimens, low half wave voltage, acceptable

crystal capacitance, and immunity to optical damage at 0.53 Vm. We knew

that the dielectric loss tangent was a few percent and the piezoelectric

coupling was quite high. At the time, however, we considered SBN to be

the best available material for use in this program.

During the course of this program we also conducted an extensive

modulator materials evaluation study (under Air Force contract F33615-71-C-1909)

of the current and readily achievable optical quality of several candidate

modulator materials. The material that emerged from that study, and the

study conducted under this program, as the choice for high data rate space

data relay applications was lithium tantalate. This decision was partly

16





based upon -the fact that we were never able to completely suppress the

piezoelectric body resonance in the SBN modulators. Intersymbol interference

always occurred when modulation codes containing low frequency components

were used. The decision was also influenced by the increased availability

of lithium tantalate during the course of this program. In fact, we were

able to obtain usable samples of lithium tantalate from four separate sources,

although only one source produces exceptionally good material.

The decision to use lithium tantalate was made early enough in the

program that we were able to accomplish most of the program goals. The use

of lithium tantalate required increasing the oven temperature from a nominal

50°C to 150°C for prevention of optical damage, with a corresponding increase

in heater power. The increased switching voltage required more driver

power than we had originally budgeted.

3.1.1.2 Crystal Configuration

The lithium tantalate crystals are oriented so that the polarized laser

light travels through the crystals in a direction parallel to the "C" faces.

The light enters the crystals polarized at 450 with respect to the crystal

axes. In this configuration, the input beam is divided equally into the two

polarizations within the crystal, i.e., ordinary (0-wave) and extraordinary

(E-wave). The two crystals are oriented so that their axes are crossed as

shown in Figure 3-7. The light which travels as 0-wave light in the first

crystal will travel as E-wave light in the second crystal. Similarly, light

which travels as E-wave light in the first crystal will travel as 0-wave

light in the second crystal. One can see that, when the two crystals are

identical in length as they are when cut from a single piece of material,

the total optical length traversed by each polarization is identical, provided

that each crystal is at the same temperature. This provides above two orders

of magnitude of cancellation of thermal effects in a single crystal.

Therefore, the control range required by the automatic electronic compensator

and the accuracy of control required by the temperature controllers are

greatly reduced.

The phase retardation induced by placing a voltage across the "C" faces

is a field distance product. The crystals are therefore made as long and

thin as practical so that the field distance product required to achieve

half-wave switching is minimized. A factor of two is gained by operating

18



INPUT r AXIS
BEAM 

Ar OUT U AXIS

BEAM

FIGURE 3-7 CROSSED AXES CRYSTAL MOUNTING ARRANGEMENT

the modulator in the double pass configuration so that- the light passes

through the crystals twice. The optimum size of the crystals for minimizing

driver power in the 0.53 im unit is 0.3mm aperture with each crystal being

10mm long. The aperture was increased to 0.4mm to increase the extinction

ratio because we were not able to eliminate the surface strain in the

crystals. The crystal capacitance and rise time was not affected by this

change but the switching voltage was increased to about 22 volts.

3.1.2 Modulator Driver.

The Modulator Driver (Figure 3-2) amplifies the signal from the

digital data source to drive the modulator crystals. The driver input and

output signal characteristics are defined in Table 4.

The input section is made up of two emitter-coupled-pairs (ECP) which

operate in the switching mode to isolate the driver output from noise and

amplitude variation on the input signal. The first stage has an output which

is used to gate the automatic electronic compensator. The second stage provides

some power gain. The output of the second stage is buffered, and drives a

two stage wideband output amplifier which drives the 50 ohm matched modulator

load.
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TABLE 4

MODULATOR DRIVE INPUT CHARACTERISTICS

Load Impedance

Reflection Coefficient

Logical Zero Input Level

Logical One Input Level

Rise & Fall Time

50 ohm nominal

<0.2

-1.7 +0.1 Vdc

-0.8 +0.1 Vdc

<1.0 ns

MODULATOR DRIVER OUTPUT CHARACTERISTICS

Logical Zero Output Level

Logical One Output Level

0.53 pm

+30.0 +2.2 Vdc

+8.0 +2.2 Vdc

1.06 im

+40.0 +3.0 Vdc

+10.0 +3.0 Vdc

Rise & Fall Times

Load Impedance 50 ohms nominal 50 ohms nominal

The 0.53 Um driver is completely dc coupled. Under normal operating

conditions (50% duty cycle) it furnishes 4.8 watts to the matched load while

dissipating 6.2 watts internally.

3.1.3 Temperature Controller.

The Temperature Controller (Figure 3-2 ) provides slow-response,

long-term temperature control of the modulator crystals. Crystal temperature

is controlled at 1500 + 1iC by heaters that are supplied with electrical

power from the Temperature Controller.

A temperature sensing thermistor is inserted into one leg of a bridge,

and resistors are used in the other legs. The thermistor has a temperature

coefficient of approximately 1% per degree Centigrade, and has a nominal

impedance of 200 ohms at 150° Centigrade. The resistors are selected so

that the bridge output is nulled at the desired operating temperature. Any

20
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error in the bridge null is amplified by the high-gain temperature controlled

amplifier and is used as a bias voltage for the comparator. A triangular

waveform (the integrated square-wave-oscillator output) that has an average

value of zero is used as the second signal to the comparator. The comparator

switches on and off as the triangular waveform changes above and below the

bias voltage developed from the bridge. Thus, the bridge controls the

on-off ratio or duty cycle of the voltage applied to the heater. The output

buffer switches the required amount of power to the heater.

3.1.4 Automatic Electronic Compensator.

The function of the Automatic Electronic Compensator (Figure 3-2 ) is to

compensate for thermal effects not compensated by the crossed axis crystals

and to compensate for any dc bias level applied by the driver amplifier.

Compensation is provided by adjustment of the dc bias that is applied to the

crystals. A dither control system is used to automatically adjust the dc bias

to maintain the electrooptic modulator at maximum extinction ratio.

The light rejected by the polarizing beam splitter is the complement of

the light transmitted. The amplitude of the rejected zeros is maximum at the

time when the transmitted zeros are minimum. This rejected light is monitored

while a low amplitude dither signal is applied to the modulator bias. The

The amplitude and phase of the recovered dither signal is used as an error

signal to provide bias amplitude and polarity information for optimum operation.

An avalanche photodiode is used to monitor the rejected light. Diode bias

voltage adjustment and current limiting are provided in Module "A". The

detected light pulses pass through a gate which is synchronized with the

modulator driver binary signal. The gate drive signal is delayed so that it

coincides with the time of arrival of the detected signal at the gate. The

gate is turned on for the rejected pulses and off for the transmitted pulses.

The filter recovers the dither signal from the rejected pulses. The error

amplifier increases the signal to the required level and automatically

adjusts for a wide range of input signals via its AGC circuits. The

amplified error signal is then compared with the phase of the dither

oscillator. The phase detector output is a full-wave rectified waveform

proportional to the amplitude of the error signal. The polarity is positive

when the two signals are in-phase and negative when out-of-phase. The
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rectified wave form is then integrated, amplified, summed with the dither

signal, and applied to the crystals through the breadboard load.

3.1.5 Manual Compensator.

The Manual Compensator permits operation of the modulator exclusive of

the Automatic Compensator electronics. The Manual Compensator provides a

bias that is adjustable by setting a potentiometer. It switches off the

plus and minus 15 Vdc supply voltages to the error amplifier and the dither

oscillator/detector, and connects these voltage to an adjustable resistor

which permits manual control of the dc signal to the bias amplifier.

3.1.6 Power Supply.

Figure 3-8 is a block diagram of the power supply. Eleven voltages

are provided for the operation of the Modulator Driver, Automatic Electronic

Compensator, and Temperature Controller. Each supply is voltage regulated

and current limited, except the batteries. The function of the batteries is

to supply stable, ripple-free power to the silicon photodiode at a very low

current level. Table 5 lists the voltages provided.

3.2 1.06 pm MODULATOR

The 1.06 pm modulator is shown in the photograph on Figure 3-9. This

modulator is 12.5 cm x 11.55 cm x 14.9 cm, weighs 1.67 kilograms, and dissipates

30 watts average. It is very similar to the 0.53 pm modulator described in

Section 3.1 except for the added fins which facilitate dissipation of the

additional heat from this unit. This modulator does not contain an automatic

electronic compensator, but provisions have been made to incorporate one by

removing the two blank modules, inserting the compensator modules, and making

the wiring changes noted in Section 4.3.

3.2.1 1.06 pm Modulator Subassembly

The 1.06 pm modulator subassembly is identical to the 0.53 pm modulator

subassembly described in Section 3.1.1 except that the crystals are 0.3mm

cross section and are coated for 1.06 pm wavelength.

3.2.2 Modulator Driver

The 1.06 pm driver is identical functionally to the 0.53 pm driver

described in Section 3.1.2. It differs only in that different transistors
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FIGURE 3-8 POWER SUPPLY
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TABLE 5

MODULATOR POWER SUPPLY VOLTAGES

+5.0 Vdc - Regulated, for Automatic

-5.2 Vdc - Regulated, for Modulator

+15 Vdc - Regulated, for Automatic
Temperature Controller

-15 Vdc - Regulated, for Automatic
Temperature Controller

+6/19 Vdc - Regulated, for Modulator
for 0.53 pm driver)

+18/30 Vdc - Regulated, for Modulator
for 0.53 pm driver)

+40 Vdc - Regulated, for Modulator

+24 Vdc - Regulated, for Heater

+75

-75

+200

Vdc -

Vdc -

Vdc -

Compensator

Driver, Automatic Compensator

Electronic Compensator and

Electronic Compensator and

Driver (6V for 1.06 pm, 19V

Driver (21V for 1.06 pm, 30V

Driver (1.06 pm Driver only)

Zener regulated, Filtered, for Automatic

Zener regulated, Filtered, for Automatic

Battery for Silicon Photodiode

Compensator

Compensator

are used in the power stages and different bias voltages are used. It

operates with the same input signal characteristics (Table 1) as the 0.53 pm

drive. It delivers a 30 V pp signal (9 watts at 50% duty cycle) to the

matched load while dissipating 9.5 watts internally.

3.2.3 Temperature Controller

The Temperature Controller used in the 1.06 pm modulator is identical to

the 0.53 pm modulator temperature controller described in Section 3.1.3.

3.2.4 Automatic Electronic Compensator

The 1.06 pm modulator does not contain an Automatic Electronic Compensator.

The 0.53 pm compensator described in Section 3.1.4 was designed to operate in

the 1.06 pm modulator when the proper bias voltages are supplied. Space has

been allotted to insert the automatic compensator modules and the avalanche

photodiode has been inaluded in the optics head. Thus with the incorporation

of minor chassis wiring changes the compensator can be incorporated in the

1.06 pm modulator.
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3.2.5 Manual Compensator.

When the Automatic Electronic Compensator is not installed, the Manual

Compensator connects directly to the broadband load and provides an

adjustment range of plus and minus 75 volts. When the Automatic Electronic

Compensator is installed, the Manual Compensator function is identical to

that described in Section 3.1.5.

3.2.6 Power Supply.

The power supply is the same unit described in Section 3.1.6. The

40 volt supply is used for the 1.06 pm system only. The 6/18 and 18/30 volt

supplies which are set for the 0.53 pm modulator require readjustment for use

with the 1.06 im modulator. When the Automatic Electronic Compensator is

not used the +5.0V, +75V, and the 200 Vdc supplies are not used.

3.3 SIGNAL PROCESSING ELECTRONICS

The block diagram of the Signal Processing Electronics is shown on Figure 3-10.

The electronics supply digital data to the modulator in the form of pseudorandom

codes or digitally encoded analog data. The Signal Processing Electronics consists

of 8 modules in a 10.1 cm x 15.7 cm x 17.8 cm stack which dissipate approximately

50 watts. Figure 3-11 is a photograph of the electronics.

The pseudorandom code word generator outputs serial NRZ data (MECL levels)

at bit rates up to 400 Mbps to the modulator driver. It operates from an external

1V pp clock source which is locked to the laser pulse frequency and can be connected

to obtain several different code sequence lengths.

The encoding electronics digitizes analog signals within a + 0.75V pp range

into a serial NRZ digital train (MECL levels) which can be used as a data source

for the modulator driver. The encoding is accomplished with two identical 200 Mbps

processing chains whose outputs are interleaved to obtain the 400 Mbps serial

data. Each chain contains a buffered sample/hold capable of 40 HHz sampling rates,

a 5 bit simultaneous type analog/digital converter which quantizes the analog

sample to 32 discrete levels, and a shift register to convert the 5 bit parallel

samples into a serial bit stream. The timing and control module accepts a 1V pp

clock signal (400 MHz maximum) which is locked to the laser pulse frequency and

phase. The reference voltage generator supplies adjustable filtered bias voltages

for the A/D converter comparator references.

26



VR1 VR2

INPUT

. I l_* SERIAL DATA
TIMING &

CLOCK CONTROL i MULTIPLEXER _

-SAANMDPLE PARALLEL

_ HOLD -CONVERTER SERIAL
CONVERTER

VRi | VR2

REFERENCE CLOCK PSEUDORANDOM SERIAL DATA
VOLTAGE VI CODE WORD
GENERATOR VR2 GENERATOR

FIGURE 3-10 BLOCK DIAGRAM OF SIGNAL PROCESSING ELECTRONICS

3.3.1 Pseudorandom Generator

The pseudorandom (PN) generator was designed using passive delay lines in

lieu of active elements in the shift register as shown in the functional dia-

gram of Figure 3-12 . Any specific maximal length sequence can be obtained

by modulo 2 feedback from the Ni and N stages of the generator. The desired
i t

feedback condition is obtained by selection of delay line cable lengths.

Delay 1 sets up the proper delay for stage 2 through Ni and delay 2 gives the

proper delay for stage Ni+l through Nt.

This approach has the following advantages relative to the conventional

implementation of a PN generator with all active elements: 1) the maximum

generator operating frequency is limited only by the maximum flip/flop togglc-

frequency, 2) Various code sequences can be obtained by proper selection of

delay line cable length, 3) Power dissipation is minimized. The only dis-

advantage of this approach is that the clock frequency can only be varied
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FIGURE 3-12 FUNCTIONAL DIAGRAM - PN GENERATOR

approximately 5% about the nominal for any given set of delay lines. This is

not a restriction for normal operating conditions.

The delay lines to implement maximal length PN sequences of 31, 63, 127,

511, 1023, 2047, and 32,767 bits at 400 MHz and 63 bits at 200 MHz and 300 MHz

are furnished with the unit.

3.3.2 Dual Sample Hold

The functional diagram of the dual sample/hold is shown on Figure 3-13.

This unit samples analog data within the limits of + 0.75V pp and holds each

sample at a constant level for a sufficient time to allow the comparators in

the A/D converter to reach a binary decision. The two sample/holds are

strobed out of phase with each other at rates up to 40 MHz. This results in

an effective maximum analog input sampling rate of 80 MHz. The bandwidth of

the analog input signal should be restricted to approximately 2.5 times less

than the sampling rate. The two sample/holds were matched and designed to

minimize the contribution of aperture error, feedthrough, offsets, droop, and

nonlinearity to the overall encoding system accuracy.

The diode bridges are driven from buffer amplifiers with low output

impedance. Low impedance drive to the bridges is necessary to obtain maximum

slewing capability for the circuit. The slewing is limited by a RC time

constant composed of the output impednace of the buffer, the "on" resistance

of the bridge, and the capacitance of the holding capacitor. The bridge is

composed of four hot carrier diodes that are matched and mounted in hybrid

form in a single package. This arrangement reduced parasitics and minimized
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feedthrough. The size of the holding capacitor was determined by a tradeoff

between slewing capability and holding droop. The unity gain inverting

amplifier was used to cancel capacitive feedthrough of the analog input while

the bridge is in its off condition. FET input unity gain buffers were used at

the output of the bridges to maintain high impedance conditions at the holding

capacitor. Wideband amplifiers having gains of 3 follow the FET input

buffers. Amplification of the signal at this point minimizes the error con-

tribution of the A/D converter comparator offset and hysteresis.

3.3.3 Analog/Digital Converter

Figure 3-14 is a functional diagram of the A/D converter which was

implemented using the parallel conversion technique. Thirty-one differential

comparators were used in parallel. A divider chain composed of equal value

resistors was used to set references at each comparator input. The analog

sample is simultaneously compared to the 31 equally spaced reference levels.

At this stage, the analog input is linearly related to the output states of

the 31 comparators. A linear to binary converter was used to get the digital

information into 5 bit binary format. Each differential comparator has a

strobe input which is used to latch the data. This insures stable outputs

during parallel to serial conversion.

The A/D converters were implemented using Mecl III type comparators and

logic elements.

3.3.4 Parallel/Serial Converter

Figure 3-15 is a functional diagram of the parallel to serial con-

verter. The 5 bit parallel words from the A/D converter are presented to the

converter at inputs B1 through B5. These inputs are seen by the binary logic

elements during the parallel strobe clock pulse at which time the binary

logic element is either set or reset depending on whether a binary "1" or

"O" is present at the respective B input. After this parallel strobing action

the data is shifted to the right of the shift register at a rate that is equal

to the frequency of the serial clock. Figure 3-16 shows the parallel

strobe clock and the serial clock in the proper phase alignment. The serial

clock has a pulse missing every five clock periods, this is to allow time for

a new 5 bit parallel word to be strobed into the shift register. The input

from Bl is present at the serial data output immediately after the parallel
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strobe. Thus the serial bit stream is not interrupted by the absence of the

serial clock pulse.

The parallel/serial converter was implemented using Mecl III type inte-

grated circuits and discrete clock and output drivers.

3.3.5 Timing and Control/Multiplexer

The timing and control board contains circuits for clock countdown, clock

conditioning, and clock driving necessary for proper operation of the entire

signal processing electronics package. In addition it contains a digital
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multiplexer which accepts two 200 Mbps serial data trains and combines them

into a 400 Mbps serial NRZ data train with MECL logic swings. Figure 3-17

is a functional diagram of the timing and control/multiplexer module.

Figure 3-18 shows the clock waveforms produced at each of the outputs on

Figure 3-17 . The system clock, f , is brought into the timing and control

board and first divided by two and then by five. The f /10 output is then

divided into two separate channels and phasing between the two channels is

positioned to 1800. Each channel is then fed through a shaping circuit which

outputs 3.3 ns pulses at a frequency of f /10. The logical compliment is

also made available in each case. The f /2 output is put into a conditioning

circuit where it is separated into two channels which are 1800 out

of phase with each other. Each of these channels are then conditioned with

f /10 signals such that every fifth pulse is eliminated. The missing pulse

for each channel occurs 1800 out of phase as shown in Figure 3-18 . The

timing and control electronics were designed such that the phase relationship

between outputs remain 1800 for any value of f .
o

The multiplexer is composed of two "and" gates, one "or" gate, and a

reclocking circuit. Each serial data stream to be multiplexed is "anded" with

either the f /2 clock or its compliment. By performing the logical "or"

function on the output of these "and" gates we obtain a multiplexed bit pat-

tern. This bit pattern is then reclocked with f 

3.3.6 Reference Voltage Generator

Figure 3-19 is a functional diagram of the A/D reference voltage genera-

tors. These generators supply the reference voltages required by the A/D
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converters to set the limits on the conversion intervals. Each reference

generator consists of a voltage follower and resistor divider network. The

regulated +V and -V voltages are supplied by the signal processing power

supply. The resistor network values were selected such that the maximum

reference voltage obtainable from any one unit is + 2.5 volts. This is the

maximum voltage allowed at any A/D comparator input. Each reference generator

is independent and can supply any voltage in the range of + 2.5 volts.

3.3.7 Signal Processing Electronics Power Supply

Figure 3-20 is a block diagram of the signal processing electronics

power supply. Five voltages are provided for the operation of the signal

processing electronics. Each supply is voltage regulated and current limited.

Table 6 lists the voltages provided.

Table 6 - Signal Processing Electronics Power Supply Voltages

-2.0 Vdc - Regulated,

+5.2 Vdc - "

-5.2 Vdc - "

+12.0 Vdc - "

-12.0 Vdc - "

36



+V

i> .. _ VOLTAGE TO+VREF VOLTAGE TO+VREF

FOLLOWER A/D NO.1 FOLLOWER A/DNO.2

V +V

V -V

FIGURE 3-19 A/D REFERENCE VOLTAGE GENERATORS FUNCTIONAL DIAGRAM

37

+V

-V

-V



FIGURE 3-20 POWER SUPPLY

38



4. OPERATING INSTRUCTIONS

4.1 MODULATOR OPTICAL ALIGNMENT

The alignment of the modular is a straightforward procedure which must be done

properly to realize the maximum transmission and extinction ratio capabilities of

the modulator. If one step of the alignment is not done properly it is likely that

the whole alignment procedure will have to be repeated. It is not usually possible

to correct an alignment deficiency by guess work due to the large number of inter-

acting adjustments. The steps of the alignment procedure follow in order. Figure

4-1 shows the adjustment locations on the modulator mount, optics head, and rear

mirror holder. This figure should be referred to when reading the alignment

instructions.

(1) Examine the laser output. The laser mode configuration must be TEMoo

This can be verified by visually examining the laser beam on a screen.

For this examination the beam should be expanded to a few inches in

diameter. Any visible intensity changes, or beam diameter changes, will

seriously degrade modulator performance. A detector should be used to

look at the pulse shape and width of the mode locked signal. Any phase

state switching or other changes will hamper the proper timing adjust-

ment of the modulator driver and compensator gate. As a final check

for the 0.53 pm unit only, be sure that no 1.06 pm laser output is

entering the modulator.

Another problem which can be encountered with modulator alignment

is any 1.06 vm output being reflected directly back into the laser will

upset the mode locking stability. If the laser goes unstable during

modulator alignment or use, blocking the beam to the modulator will

tell whether this is a problem or not.

(2) Adjust the laser polarization. The laser output must be horizontally

polarized for proper operation of the modulator. A half-wave plate can

be used to rotate the polarization if necessary.

Insert a polarizer in the laser beam and adjust it so that minimum

transmission occurs. Remove the polarizer and set it aside for later

use in the alignment procedure. Extinction ratio achieved with this

polarizer should be very good as it is limited only by the degree of

polarization of the laser light.
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(3) Place the modulator in the beam. Remove the front lens and pull out the

back mirror. If the optics head has been removed, or a complete realign-

ment is desired, the initial position of the beamsplitting mirror should

allow passage of the entire beam. This adjustment uses the two recessed

screws on the right side of the optics head shown in Figure 4-1(B). The side

lens holder must be removed to reach these screws. Align the modulator

so that the back reflections from the crystal faces are quite close to

the incoming beam. The four adjustments shown in Figure 4-1(A) are used

for this alignment procedure. Light transmitted through the modulator

should be seen. Be sure that the modulator is at operating temperature

('150°C). Place a lens in the transmitted beam so that the back crystal

edges are sharply focused on a screen. A 30 to 60mm focal length lens

is suggested for this purpose. If all four crystal edges are not equally

sharp the crystals are slightly tilted in the beam. Tilt and walk the

modulator until maximum light is transmitted through the crystals. Again

use the adjustments shown in Figure 4-1(A) for this procedure.

Place the polarizer which was previously calibrated and set aside,

in the output beam. Adjustment of the manual compensator will move the

fringe pattern in the crystal image. The black area of the fringe pattern

should be as dark as possible. If the modulator is off more than a few

degrees in rotation about the incoming optical beam from its proper posi-

tion the extinction ratio of the various parts of the pattern will be

degraded. If it is off by 450, the light will be pure 0-wave and pure

E-wave and no fringes will appear in the pattern. Turn the modulator in

the mount for the best definition of the crystal fringe pattern.

(4) Adjust for best single pass operation. Place the front lens in the front

holder if the front holder is attached to the modulator head. Otherwise,

use an XYZ lens holder in front of the optics head for positioning the

lens. A single lens will suffice for confocally focusing the laser beam

into the modulator, if its focal length is chosen properly. The best

convergence angle of the light entering the modulator is about 17 mrad

for the 0.53 pm unit and 22 mrad for the 1.06 pm unit. Do not use more

convergence than this. It is permissible to decrease the divergence by

as much as 10% without affecting modulator performance. An increase in

divergence will broaden the incoming and outgoing beams at the polarizing
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beamsplitter and consequently require larger separation of the two beams.

The beam convergence should be checked for each new setup because any

change in laser beam width, or divergence, produces a proportional change

in the convergence angle for a particular lens.

Adjust the front lens so that light passes through the crystals and

onto the screen (used before for the alignment in the unfocused laser

beam). The back lens is still in place for this adjustment. Adjust for

a focused spot in this screen. The optical bias should be set for maxi-

mum transmission at the crystal center. Now remove the lens which focuses

the spot on the screen but leave the front lens in place. Adjust the

lens position for maximum extinction ratio by observing the expanded spot

on the screen. In some cases a minor adjustment in the modulator posi-

tion may be necessary at this time.

After these adjustments are completed the back mirror should be

inserted and adjusted so that the beam falls back on itself and is of the

same characteristics as the incoming beam. CAUTION: INSERT REAR MIRROR

SLOWLY AND CAREFULLY AS IT CAN CONTRACT REAR SURFACE OF CRYSTAL AND

CAUSE DAMAGE. A SCRIBE MARK DENOTES NOMINAL DEPTH. The two screws at

the side and bottom of the rear of the modulator shown in Figure 4-1(C)

are used for the alignment of the beam. Beam divergence is controlled by

sliding the mirror holder back and forth in its sleeve. Mark the depth

of the mirror holder and pull it out if the beamsplitter mirror is to be

adjusted at this time.

(5) Adjustment of the beam splitting mirror. The beam splitting mirror may

be adjusted with the modulator aligned for best single pass operation as

in the preceding section. In this case the two adjustment screws on the

right side of the optics head are backed off so that the aperturing of

the beam by the coated portion of the mirror is noticeable. The angle

of output cannot be adjusted yet as no output beam is available.

An alternate and probably preferable method of making this same

adjustment is to remove the front lens and replace the back lens. Do

not move the modulator with respect to the incoming collimated laser

beam. The focused back face is now observed as the beam splitter mirror

is walked into place with the two adjustment screws. The aperture of

the face by the coated portion of the mirror creates a shaded area with

42



a slightly uncertain boundary between. The mirror is adjusted so that

the shaded area covers somewhat less than half the crystal aperture.

If this method of adjustment is used the front lens should be replaced

and the pattern of the preceding paragraph observed.

(6) Adjust for best double pass operation. This alignment procedure can

begin only when it is known that the front lens is at its proper distance

from the crystals and in place for best single pass operation, the beam-

splitting mirror is in the proper position, and the back mirror has been

adjusted for proper depth and approximate lateral position.

Use horizontal angular and translational adjustment of the modulator

to tilt the modulator to the left about 1° so that a return beam comes

back from the back mirror. Do not use the side lens here, as the beam

should be viewed expanded as in the single pass alignment. The position

of the beamsplitter mirror has been adjusted previously. The angle may

now be adjusted by turning one screw in and the other out an equal amount

until the exit beam comes out through the polarizing beamsplitter prism.

This adjustment is not too critical as the output lens can translate

enough to accomodate two or three millimeters of translation. The com-

pensator diode is affected by this adjustment, however, and if the

automatic electronic compensator is to be used the signal must fall on

the diode. The diode may be translated a few beam diameters by loosening

the two screws in the bottom of the optics head and moving the diode by

hand. The location of these screws is shown in Figure 4-1(B). This

adjustment can only be made if the front lens holder is removed and the

lens held in an external mount. No adjustment of the beam splitter

mirror or diode position should be necessary unless the optics head has

been disassembled or removed from the modulator for some reason.

After the beamsplitter mirror is in final position the modulator is

ready for final alignment adjustments. The degree of static transmission

and extinction ratio attainable in this adjustment determines the dynamic

operational limits, so care spent here will more than repay itself.

The position of the back reflections from the crystal faces should

be observed. Even though each reflection is only a percent or less, the

sum total of the eight surfaces is a significant factor in comparison to

the amplitude of the zero level. Because of this the modulator should
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be walked around an axis such that the transmission is not degraded but

the back reflections are about a spot diameter removed from the signal

beam. An aperture placed anywhere in the exit beam will then eliminate

these spurious reflections. Be careful in making transmission measure-

ment that none of this spurious signal gets into the detector. The

safety factor of the 0.53 pm unit does not have a sufficiently large

aperture to fully accomodate this adjustment. There is, however, some

tilt of the crystal faces which decreases the tilt required for good

alignment.

Each of the adjustments of the modulator position, back mirror

position, and front lens distance from the crystals should be varied by

very small amounts to optimize the extinction ratio. Once the modulator

has been aligned, only the modulator position adjustments need be changed

to compensate for minor changes in laser beam position such as occur when

the laser is stabilized by mirror adjustments for best mode locking.

The signal should be observed using a high speed detector. Modula-

tion should be present at this time. A repetition of the minor adjust-

ments described in the preceding paragraph can be repeated to optimize

the quality of the modulated pulse train. A variable delay line is

necessary for aligning the modulator drive signal with the laser pulse

train.

The alignment of a double pass modulator is rather tedious when

tried for the first time. It is straightforward, however, and only two

or three times through the alignment procedure are required for suffi-

cient proficiency to achieve satisfactory alignment. Several hours may

be required for alignment of the modulator when every adjustment is

grossly out of place. The delivered modulators have been prealigned and

about two hours should be sufficient to complete the alignment from start

to finish including the performance tests such as transmission, static

extinction ratio, and dynamic extinction ratio.

4.2 0.53 im MODULATOR OPERATING INSTRUCTIONS.

After the modulator is set up and optically aligned, the steps listed below

should be followed to put the modulator in a fully operational condition:

(1) DISCONNECT DATA SOURCE FROM MODULATOR DRIVER INPUT BEFORE APPLYING POWER

TO MODULATOR.
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(2) Adjust the power supply voltages as shown in Table 7 before connecting

the power supply cable to the modulator.

TABLE 7

POWER SUPPLY ADJUSTMENTS -
0.53 pm MODULATOR

REGULATOR POWER CONNECTOR VOLTAGE

PIN (HI) TO PIN (LOW)

+5.0 1 2 +5.0 Vdc

-5.2 3 2 -5.2 Vdc

+15 5 6 +15.0 Vdc

-15 7 6 -15.0 Vdc

+6/19 9 10 +19.0 Vdc

+18/30 11 10 +30.0 Vdc

5/24 (Operate) 12 10 +20.0 Vdc

5/24 (Medium Heat) 12 10 +14.0 Vdc

5/24 (Low Heat) 12 10 +9.0 Vdc

NOTE: Adjusting pots are located and marked on the power supply

printed circuit cards and are accessible when the power

supply cover is removed.

(3) Turn power supply off and allow at least two minutes for the unloaded

voltages to bleed off before connecting to modulator.

(4) Connect power cable to modulator and position heater switch to "MEDIUM

HEAT" and turn power switch to the "ON WITHOUT BATTERY" position.

(5) Allow 30 minutes for the modulator subassembly to warm up and then

position the heater switch to "OPERATE" and allow another 10 minutes

for the temperature to stabilize.

(6) Monitor the modulator driver TP (using a 50 ohm input impedance scope)

to determine that the driver is in the logic "O" state (approximately

+150 mV dc).
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(7) Connect the output of the data source to be used to a 50 ohm input

scope. Verify that the data is present with the correct logic swings

and does not exceed 70% duty cycle steady state in the logic "1" state.

(8) Connect the data source to the modulator driver (do not turn data

source power off while making this connection) input and note that the

code is present (inverted) at the driver output test point.

(9) To operate the Manual Compensator position the compensator switch to

"MAN" and adjust the manual adjust screw to desired point.

(10) To operate the automatic electronic compensator turn the power supply

power switch to "ON WITH BATTERY" and turn the compensator switch to

"AUTO."

(11) To shut-down remove modulation-signal cable from modulator input. Turn

power supply to "ON WITHOUT BATTERY" and heater switch to "LOW HEAT" for

45 minutes. Then turn power supply to "OFF."

NOTES:

(1) Connection of either of the signal processing data sources to the

modulator when these sources are without power results in the modulator

driver output stage being biased on 100% duty cycle. The excessive power

dissipation in this state can damage, or shorten the useful life of the

output transistor. For the same reason data codes with greater than 70%

logic "1" duty cycle should not be used.

(2) The low heat and medium heat modes have been incorporated as a precaution

to prevent unnecessary thermal shocks to the modulator crystals.

(3) The wiring diagram for the 0.53 pm modulator chassis is given in

Figure 4-2.

4.3 1.06 pm MODULATOR OPERATING INSTRUCTIONS.

The steps required to operate the 1.06 pm modulator with the manual compensa-

tor are identical to steps 1-9 in Section 4.2 with the exception that the power

supply voltages should be adjusted per Table 8. The notes following the turn on

procedure for the 0.53 Pm modulator also apply to the 1.06 pm modulator. The

wiring diagram for the 1.06 vm modulator chassis when connected for manual compen-

sator operation only is given in Figure 4-3.

In order to operate the 1.06 vm modulator with the Automatic Electronic

Compensator (AECX the AEC modules "A" and "B" must be installed in the space pro-
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TABLE 8 POWER SUPPLY ADJUSTMENTS -
1.06 pm MODULATOR

REGULATOR POWER CONNECTOR VOLTAGE

PIN (HI) TO PIN (LOW)

+5.0 1 2 +5.0 Vdc

-5.2 3 2 -5.2 Vdc

+15.0 5 6 +15.0 Vdc

-15.0 7 6 -15.0 Vdc

+6/19 9 10 +6.0 Vdc

+18/30 11 10 +21.0 Vdc

+40 23 24 +40.0 Vdc

5/24 (Operate) 12 10 +20.0 Vdc

5/24 (Medium Heat) 12 10 +14.0 Vdc

5/24 (Low Heat) 12 10 +9.0 Vdc

vided for them on the modulator package. The wiring change listed in Table 9 must

be made to change the modulator wiring from the configuration shown in Figure 4-3

to that shown in Figure 4-4 . The wires, or coax, used should be equivalent to

their counterparts in the 0.53 pm modulator. The length of the semirigid cable

from the modulator driver (J3) to AEC module A (J1) is critical to insure that the

gate drive signal is present when the detected pulses (rejected "O's") are present

at the gate input. This cable length can be optimized as follows:

(1) Select length to be identical to corresponding cable in 0.53 Pm modulator

(95.3 cm).

(2) Before connecting cable, remove top from AEC module "A" and connect a

50Q scope monitor to the gate output test point (OSSM connector on

circuit board). The gate is biased on when the drive is not connected,

therefore, the detected pulse train will appear at the gate output.

(3) Line up a pulse on a scope graticule as a timing reference and connect

the drive cable. A small differentiated portion of the drive signal
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TABLE 9

1.06 Um MODULATOR REWIRING

FOR

AUTOMATIC ELECTRONIC COMPENSATOR

Remove wires from the:

Power Connector - J3-Pin 14

Power Connector - J3-Pin 16

Broadband Load - Bias

to Manual

to Manual

to Manual

Compensator

Compensator

Compensator

Add wires from the:

Power Connector - J3-Pin 14

Power Connector - J3-Pin 16

Temperature Controller - J5

Temperature Controller - J4

AEC Module "B" - J10

Broadband Load - Bias

Modulator Driver - J3

will appear at the test point.

to AEC Module "B"

to AEC Module "B"

to Manual Compensator

to Manual Compensator

to Manual Compensator

to AEC Module "B"

to AEC Module "A"

The spikes representing the transitions

on the drive code should be centered on the detected pulses. If not

adjust the drive cable length accordingly and repeat.

4.4 SIGNAL PROCESSING ELECTRONICS OPERATING INSTRUCTIONS.

A photograph of the signal processing electronics and its associated power

supply is given on' Figure 1-3. All of the dc voltage necessary to operate the

signal processing electronics are supplied by this power supply. The turn on

procedure for applying power to the system is to connect the power supply cable

to the electronics package, plug the power supply into a 110 volt ac outlet and

turn the power switch "ON."

As mentioned in Section 3.3, the signal processing electronics consist

of two independent digital data sources, the PN generator and the analog to digital

encoding electronics. The operating instructions for each of these data sources

are discussed in the following sections.
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4.4.1 PN Generator

Figure 4-5 is a functional diagram of the PN generator. The PN gener-

ator is designed to operate at 400 Mbps for 5, 6, 7, 9, 10, 11 and 15 stage

codes. It will also operate as a 6 stage generator at 200 Mbps and 300 Mbps.

Table 10 gives the proper cable lengths to be connected to the delay terminals

for various modes of operation. When the mode of operation is decided upon,

one need only refer to Table 10, obtain the correct cable lengths (each cable

furnished with the generator has a tag indicating its length) and install them

in the proper delay positions which are marked on the generator. Power need

not be removed when changing cables. The generator is now ready for operation.

The system clock (customer furnished) should be a 1V pp sinewave with a fre-

quency equal to that of the bit rate to which the generator is set. The

system clock should be capable of driving 50 ohms to ground. This clock sig-

nal should be verified on a scope with a 50 ohm load prior to connecting it

to the generator. If the clock signal differs from the nominal by +0.2 volts

improper operation may result. If it exceeds 2V pp circuit damage could

occur. The PN and P' outputs both give the same PN sequence but the P' output
N N N

is delayed by some number of bits depending on the operating mode. These out-

puts have typical MECL levels and are capable of driving 50 ohm loads connected

directly to ground. Either one of these outputs can be used to drive the modu-

lator driver directly, while the other is used as a scope monitor point. The

scope sync output is a filtered version of the PN sequence. The lowest fre-

quency present in a PN sequence must be used for proper scope sync. By pass-

ing the PN sequence through a low-pass filter the low frequencies are

accentuated and the scope sync circuitry has a much easier task in finding the

lowest frequency. The scope sync output is also capable of driving 50 ohms to

ground. The sync output has a 1 volt dc offset and thus may require a dc

block for some scope sync inputs.

CAUTION - DO NOT REMOVE POWER FROM THE PN GENERATOR WHILE IT IS CONNECTED TO

THE MODULATOR DRIVER, AS THIS BIASES THE DRIVER ON STEADY STATE. THE EXCES-

SIVE POWER DISSIPATION IN THIS STEADY STATE ON CONDITION CAN DAMAGE OR DEGRADE

THE DRIVER OUTPUT STAGE.

4.4.2 Analog/Digital Encoding Electronics

Figure 4-6 is a block diagram of the analog-to-digital encoding elec-

tronics. There are only four connectors used to interface this subsystem to
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PN OUTPUTPN OUTPUT G

SCOPE
SYNC

FIGURE 4-5 FUNCTIONAL DIAGRAM OF PN GENERATOR

PN GENERATOR
TABLE 10
CABLE DELAY LENGTHS

53

ENUMBER CODE DELAY 1 DELAY 2DATA RATE OF
STAGS LENGTH (IN.) (IN.)STAGES

400 MBPS 5 31 4 21
400 MBPS 6 63 42 4
400 MBPS 7 127 60 2
400 MBPS 9 511 44 55
400 MBPS 10 1,023 79 42
400 MBPS 11 2,047 121 21
400 MBPS 15 32,767 219 4
300 MBPS 6 63 71 8
200 MBPS 6 63 128 21

( DELAYD)
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the rest of the overall system. These connectors are fo, Ai' Bm, and Bm .

The system clock is brought into the unit at f . This clock should be a 3V pp
o

sinewave capable of driving 50 ohms to ground. The analog data to be digitized

is brought into the unit at Ai . The maximum amplitude limitations on this

input are +0.75V. The bandwidth limitations on this input are dc to f /12.5.

B and B are the serial digital outputs and are logical compliments of each
m m
other. These outputs have typical MECL levels and are capable of driving 50

ohms to ground. Either can be connected to the modulator driver while the

other is used as a monitor point. Before attempting operation of the encoder

all of the intersystem connections shown in Figure 4-6 should be made with

the proper cables that are supplied with the system. Most of these cable

lengths are critical and care should be taken for their proper installation.

CAUTION - THE ENCODING ELECTRONICS SHOULD NEVER BE CONNECTED TO THE MODULATOR

DRIVER IF IT IS PROCESSING A STEADY STATE ANALOG SIGNAL WHICH RESULTS IN A

LOGIC ONE DUTY CYCLE GREATER THAN 70%. THIS IS NOT CONSIDERED A NORMAL SYSTEM

OPERATION CONDITION. IT CAUSES EXCESSIVE POWER DISSIPATION IN THE MODULATOR

DRIVER WHICH CAN DAMAGE OR SHORTEN THE LIFE OF THE POWER STAGE. SIMILARLY

POWER SHOULD NEVER BE REMOVED FROM THE ENCODING ELECTRONICS WHILE CONNECTED TO

THE MODULATOR DRIVER. THE RESISTANCE TO GROUND OF THE SIGNAL SOURCE WILL BIAS

THE DTVER INTO AN ALL 1'S CONDITION.

55
NOTE: (PAGE 56 IS BLANK)



PR CEDmNG PAGE BLA NOT F

5. PERFORMANCE TESTS

All of the hardware delivered on this program has been subjected to a variety

of tests at the module level, unit assembly level and integrated subsystem level.

The results of typical tests are documented in this section.

5.1 0.53 Um MODULATOR TESTS

5.1.1 Modulator Unit Tests

The assembled modulator unit was tested to verify proper functional

operation with optical input power levels of 0.5 - 10 mW. The unit was

tested with the signal processing electronics data sources. Pseudorandom

code sequences from 63 bits to 32,767 bits were used to verify that no

abnormal code sensitivity existed. The encoding electronics were used to

generate codes with a 30-70% duty cycle to verify proper modulator operation

under this condition. Automatic electronic compensation over several fringes

was demonstrated using an external Babinet compensator.

The 0.53 Bm modulator was optically evaluated for transmission and for

extinction ratio. Since it was very difficult to decrease the instability

of the laser to less than a few percent, a differential technique was used

for the transmission measurement. Figure 5-1 shows a schematic of the

setup used for this measurement. A reference beam was split off the signal

and fed into a power meter which had the same linearity characteristics as

the power meter used after the modulator. The two signals were adjusted

(without the modulator) to give the same amplitude trace on a dual channel

oscilloscope. The differential of the signals was then displayed on an

expanded scale. When both signals increased or decreased simultaneously

due to the laser power fluctuations the trace remained stationary. The

modulator was then inserted in the beam and the attentuator adjusted to

regain equal amplitudes again. The amount of added attenuation was equal

to the modulator transmission loss. Better than one percent accuracy was

achievable with this technique with a laser that fluctuated + 10% or more.

This measurement technique showed that the 0.53 pm modulator had better than

90% transmission for a single pass of the light through the modulator. The

double pass transmission was 72% with all the optics in place and the modu-

lator adjusted for optimum alignment.

Preceding page blank
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BEAM SPLITTER

IPOWER METER NO. 1 MODULATOR - _ __/- - LASER
INPUT

I
OSCILLOSCOPE I

CALIBRATED VARIABLE
CHANNEL 1 - CHANNEL 2 OPTICAL ATTENUATOR KLOA 5

POWER METER NO.TRANSMISSION MEASUREMENTS2

FIGURE 5-1 'SETUP FOR MODULATOR TRANSMISSION MEASUREMENTS

The static extinction ratio was measured using a single power meter

rather than a differential technique because the calibration accuracy of the

two power meters was not adequate over the widely different power levels, the

single pass static extinction ratio was better than100:1 and the double pass

static extinction ratio was better than 50:1.

The dynamic extinction ratio measurements are made with the modulator

operating with a pseudorandom code input. A high speed detector with suffi-

cient bandwidth to follow the laser pulses is required for accurate measurements

of the dynamic operating characteristics of the modulator. The oscilloscope

traces of Figures 5-2 and 5-3 were taken using a TIXL55 detector diode.

Figure 5-2 shows the optical response to selected areas of a pulse train

made up of sixty-three bit words. Figure 5-3 shows the worst case bits

in the code (smallest "1" and largest "0"). The ratio of these two is the

worst case dynamic extinction ratio. There is sufficient noise present in

the trace that there is a considerable uncertainty as to the exact height of

the two bits. Detector diode nonlinearity and laser amplitude fluctuations

also contribute to the uncertainty in this measurement. The best estimate

of the worst case dynamic extinction ratio from these photographs is about

15:1. Informal tests run at other times have demonstrated a better dynamic

extinction ratio than this.

Modulator operation with longer pseudorandom sequences is demonstrated

by the waveforms in Figure 5-4 . This figure shows the driver output test

point and the corresponding modulator optical output for positions of a 1023

bit pseudorandom code. The pictures denote operation with repetitive ones,

repetitive zeros, and alternate ones and zeros. The longer PN codes did not

cause any apparent increase in intersymbol interference.
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5.1.2 Driver Tests 

Bench tests were conducted on the modulator driver using a dummy 50 ohm 

load to insure that it supplied the correct switching voltage, level flatness, 

rise and fall times, and timing symmetry, Figure 5-5 shows the waveforms 

of a 500 Mbps, 31 bit PN generator which was used as a data source for the 

driver tests. Figure 5-6 shows the corresponding driver output using a 

xlOO, 5K ohm scope probe. The PN generator clock waveform is superimposed 

to show timing symmetry. Using the peak of the clock waveform as a timing 

VERTICAL: 0.5 V/CM 
HORIZONTAL: 5 NS/CM 

FIGURE 5-5 TYPICAL MODULATOR DRIVER INPUT USED 
DURING TIMING BENCH TEST 

mark it can be seen that all bits have reached their quiescent condition 

within the allotted time and that all transistions are less than Ins. The 

nominal voltage swing is 22V pp which corresponds to the 0.4mm crystal 

switching voltage. The amplitude fluctuations on the top and bottom of the 

waveform are less than + 6% ignoring the initial overshoots which are beyond 

the response of the matching network. 

5.1.3 Automatic Electronic Compensator (AEC) Tests 

The series of pictures in Figure 5-7 demonstrate AEC operation. The 

pictures on the left show the crystal bias signal from the AEC, the error 

signal, and the phase detector reference dither signal for several conditions. 

The photos on the right denote the optical output for each condition. The 

AEC can provide +75V bias correction (compared to 22V switching voltage) 

before the extinction ratio starts to degrade as shown on Figure 5-7. 
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Beyond this range the error signal increases and the optical zero's start increasing

in amplitude. The bias error at the plus/minus ends of range points was 2V

versus 1V at midrange for an optical input of 0.6mW, 50% duty cycle code, and

1% dither on the optical signal.

5.1.4 Temperature Controller Tests

Tests were also conducted on the temperature controller at the module

level to demonstrate proper operation. The controller, which uses pulse width

modulation to control the average heater current, was checked for correct

frequency, waveform, sensitivity, and adjustment range. The test results are

listed in Table 11.

TEMPERATURE

Frequency

Rise Time

Fall Time

On Level

Sensitivity

Adjustment Range

TABLE 11

CONTROLLER TEST RESULTS

5.8 kHz

< 1.0 us

< 0.5 Ps

0.9V

9.1% duty cycle change/ohm input change

1.2 watts/ohm input change with 20V heater supply

5.7 watts/0C for 3%/°C thermistor which has a

value of 160 ohms at 1500C.

126-222 ohms for 1350C-1600 C.

5.1.5 Modulator Power Supply Tests

The regulated supplies were each checked for adjustment range, current

limit, short circuit current, ac ripple, and the change in voltage from no

load to 90% full load. The adjustment range tests were made with no load.

The ac ripple was taken with 90% of the current limit load. All tests were

taken using the lab bench ac power (120 to 125 Vac 60 Hz). Table 12 contains

the recorded data.
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TABLE 12

MODULATOR POWER SUPPLY TEST DATA

Adjustment Range Current Short Circuit

Low High Limit Current
Volts Volts mA mA

3.2 7.8 220 225

<-0.1 -8.5 580 600

0.8 19.8 220 225

<-0.1 -19.8 220 225

5.0 24.0 395 405

15.0 33.0 490 500

26.0 44.0 650 50

5.0

5.0

5.0

78.9

-79.9

37.0

15.0

15.0

3.8

3.75

810

24.0

24.6

125

The 40 volt regulator

Short circuit current

current

changes

limit can be adjusted between 1 and 1.2 amps.

as the limit is adjusted.

5.2 1.06 pm MODULATOR TESTS.

5.2.1 Modulator Unit Tests

This modulator unit was also subjected to a variety of functional tests

to demonstrate its performance. All tests were performed using the manual

compensator since the automatic compensator was installed in the 0.53 pm modu-

lator. Dynamic tests included operation with pseudorandom code sequences from

31 to 32,767 bits long. The modulator performance was not degraded for the

longer sequence lengths.

The optical tests for 1.06 Pm modulator were performed in the same manner

as those of the 0.53 pm unit. The static transmission and extinction ratio

were not quite as high as for the 0.53 pm unit because the crystals are 0.3mm

aperture. It was not possible to increase the crystal aperture to improve the

transmission because a proportional increase in switching voltage would

be required. The single pass transmission was about 80% and the single pass
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Volts

+5.0

-5.2

+15.0

-15.2

+6/19

+18/30

+40

+75

-75

5/24 OP

5/24 MED

5/24 LOW
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AC Ripple
mV

<1

1

<1

<1

<1

1

10

120

120

10

90% load

V
Volts

0.04

0.07

0.06

0.02

0.07

0.05

0.15

1.66

1.52

0.11



static extinction ratio was about 90:1. The double pass transmission exceeded

50% and the double pass static extinction ratio was about 30:1. Figure 5-8

shows the optical response for several interesting sections of a 1023 bit code.

The dynamic extinction ratio of all codes used was about 13:1 for the worst

bits. Our detectors are not quite as fast at 1.06 Pm as at 0.53 pm so the

optical response was not quite as clean as for the 0.53 pm modulator. Figure

5-8 also shows the output of the driver test point aligned with the optical

signal.

5.2.2 Driver Tests

This driver was also tested to verify the output level, rise and fall

times, and timing symmetry. Figure 5-9 shows the driver output waveform

(monitored with a X100 probe) into a 50 ohm load. Using the clock peaks as a

timing reference it can be seen that all bits have completed their transitions

within the required time. The rise/fall times are less than 1 ns and the nom-

inal voltage swing is 32V pp. The top of the waveform has +6% variations

while the bottom has +9% variations ignoring the initial overshoot. Figure

5-10 shows two photos which denote the driver output as viewed at the out-

put test point and with a X100 probe. The waveforms are shown for the purpose

of comparison only. It should be noted that neither represents the actual

output waveform with perfect fidelity because of parasitics.

5.2.3 Other 1.06 pm Modulator Tests

The temperature control tests for this unit were the same as described in

Section 5.1.4. The test results for the AEC and modulator power supply also

apply for 1.06 pm operation since the same equipment is used for 0.53 pm or

1.06 pm operation.

5.3 SIGNAL PROCESSING ELECTRONICS TESTS.

5.3.1 PN Generator

The PN generator was tested for proper operation in every configuration

shown in Table 10 of Section 4.4.1. In each case the clock amplitude, power

supply voltage, and clock frequency were varied to the point where the output

PN code waveform degraded in amplitude or timing symmetry. For all sequence

lengths the clock amplitude could be varied from 800 mV pp - 1200 mV pp, the
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power supply voltage could be varied from -4.9V to -5.4V and the clock fre-

quency could be adjusted +5 MHz from the center frequency before degradation

occurred.

5.3.2 Dual Sample/Hold

As shown on the functional diagram of Figure 3-13, this module contains

two identical sample/hold circuits which are strobed out of phase with respect

to each other. The tests and results mentioned below apply to both sample/hold

circuits in the dual module.

Each sample/hold circuit is capable of slewing the range of the input

analog signal during the S/H strobe period. The S/H strobe period is approxi-

mately 10 ns. The unity gain input buffers actually have gains of 0.95. Thus,

for analog signals with a range of +0.75 volts the sampling bridge need handle

only +0.7125 volts. Figure 5-11 shows two photographs that illustrate the

slewing capability of the sampling bridge for positive and negative going

input changes. The held voltage sample after slewing, 1.425 volts, is identi-

cal to the input voltage at the time of bridge turn off within the 3% accuracy

of the oscilloscope presentation. The sampling bridge post amplifier is capa-

ble of slewing 4.14 volts in the sampling strobe interval. Figure 5-12 is

a photograph showing the sampling bridge output superimposed on the post

amplifier output. The vertical scale of the oscilloscope was in an uncali-

brated position for the postamplifier input in order to obtain this relative

comparison.

The other significant performance parameters which were measured for each

sample/hold over the entire operating range were aperture error, holding droop,

overall gain, and linearity. The results of the tests were:

Aperture error < 100 ps

Holding Droop < 1%

Overall GAin 2.69

Linearity error < + 1.3%
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FIGURE 5-12 RELATIVE COMPARISON OF BRIDGE OUTPUT 

AND POSTAMPLIFIER OUTPUT 

5.3.3 Analog/Digital Converters 

Figure 5-13 shows the results of the ripple through test performed on 

the A/D converter. This test illustrated the maximum conversion speed of the 

A/D converter. For this test, a sinewave was used as an input signal to the 

converter. The frequency of the sinewave input was increased to the point 

where the LSB was just making full transitions. The time between transitions 

is a good indication of the maximum conversion speed. From Figure 5-13, 

the maximum conversion speed is seen to be approximately 7 nanoseconds. 

The results of the dc linearity test on both A/D converters are shown in 

Table 13 and 14. 

Both A/D converters were connected to the dual sample hold module and the 

combined units were tested for linearity and relative tracking ability. 

Table 15 gives the results of this test in tabular form and Figure 5-14 

shows the results in graphical form. 

A test to show dynamic performance of the sample/hold and A/D converter 

was performed by placing a ramp waveform into the sample/hold and observing 

the A/D output bits. The slewing rate of the ramp was adjusted such that, 

for each sample converted, the amplitude of the ramp increased by one quantiz­

ing level. The results of this test are shown in Figure 5-15 . 
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TABLE 13

DC LINEARITY TEST RESULTS A/D #1

BINARY SWITCHING
OUTPUT POINT

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

-2.468
-2.301
-2.144
-1.967
-1.810
-1.648
-1.476
-1.318
-1.134
-.973
-.806
-.645
-.482
-.320
-.163
+.003
+.150
+.321
+.482
+.647
+.812
+.971
+1.140
+1.304
+1.481
+1.632
+1.798
+1.970
+2.133
+2.297
+2.478

BIT SIZE
(mV)

167
157
177
157
162
172
158
184
161
167
161
163
162
157
166
147
171
161
165
165
i59
169
164
177
151
166
172
163
164
181

SWITCHING
POINT

-2.499
-2.339
-2.179
-2.002
-1.847
-1.687
-1.515
-1.356
-1.173
-1.011
-.844
-.681
-.519
-.355
-.200
-.035
.114
.286
.446
.609
.776
.936

1.107
1.271
1.448
1.602
1.765
1.938
2.099
2.264
2.444

BIT SIZE HYSTERESIS
(mV) (mV)

160
160
177
155
160
172
159
183
162
167
163
162
164
155
165
149
172
160
163
167
160
171
164
177
154
163
173
161
165
180

31
38
35
35
37
39
39
38
39
38
38
31
37
35
37
38
36
35
36
38
36
35
33
33
33
30
33
32
34
33
34
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TABLE 14

DC LINEARITY TEST RESULTS A/D #2

SWITCHING
POINT

-2.334
-2.170
-2.009
-1.859
-1.698
-1.547
-1.395
-1.239
-1.064
-.899
-.749
-.583
-.437
-.284
-.128
+.030
+.167
+.319
+.465
+.617
+.753
+.922
+1.078
+1.236
+1.426
+1.587
+1.741
+1.901
+2.061
+2.224
+2.377

BIT SIZE
(mV)

164
161
150
161
151
152
156
175
165
150
166
146
153
156
158
137
152
146
152
136
169
156
158
190
161
154
160
160
163
153

SWITCHING
POINT

-2.358
-2.200
-2.044
-1.885
-1.730
-1.578
-1.412
-1.257
-1.097
-.932
-.788
-.623
-.469
-.312
-.153
+.001
+.133
+.289
+.438
+.588
+.729
+.895
+1.045
+1.199
+1.401
+1.560
+1.716
+1.873
+2.028
+2.187
+2.344

BIT SIZE
(mV)

158
156
159
155
152
166
155
160
165
144
165
154
157
159
154
132
156
149
150
141
166
150
154
202
159
156
157
155
159
157

HYSTERESIS
(mV)

24
30
35
26
32
31
17
18
33
33
39
40
32
28
25
29
34
30
27
29
24
27
33
37
25
27
25
28
33
37
33
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BINARY
OUTPUT

00000
00001
00010
00011
00100
00101
00110
00111
0100O
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001 
11010
11011
11100
11101
11110
11111



TABLE 15

S/H - A/D TRACKING AND LINEARITY TESTS RESULTS

SWITCHING
POINT A/D #1
(mV)

-711
-668
-617
-567
-520
-472
-422
-377
-325
-276
-228
-182
-132
-85
-39
10
53

103
150
197
242
292
340
389
436
484
533
581
632
680
728

BIT SIZE
A/D #1
(mV)

43
51
50
47
48
50
45
52
49
48
46
50
47
46
49
43
50
47
47
45
50
48
49
47
48
49
48
51
48
48

SWITCHING POINT
A/D #2
(mV)

-708
-661

-565
-514
-469
-420
-373
-322
-273
-226
-179
-130
-82
-34
13
60
108
154
201
247
297
343
390
437
485
536
584
633
682
733
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BINARY
OUTPUT

00000
00001
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

BIT SIZE
A/D #2
(my)

47
46
50
51
45
49
47
51
49
47
47
49
48
48
47
47
48
46
47
46
50
46
47
47
48
51
48
49
49
51





5.3.4 Parallel/Serial Converters 

Operation of the parallel/serial converters was tested by applying 5 bit 

parallel words from a PN generator operating at 40 Mbps to the parallel inputs 

of the converter and noting the output bit pattern. Figure 5-16 is a portion 

of the P/S output used to show "one-zero" symmetry. 



5.3.5 Timing and Control/Multiplexer 

The timing and control circuit was operated over the frequency range of 

100 MHz to 400 MHz. No abnormal operation was noted during these tests. 

The multiplexer was first tested by using the outputs of a PN generator 

operating at 200 Mbps as the multiplexer inputs. Proper operation of the 

multiplexer was confirmed by correlating the output code patterns with the 

input PN codes. Figure 5-17 illustrates the good "one-zero" symmetry 

observed at the multiplexer output. 

The multiplexer was also tested using the two parallel/serial converters 

as sources for its input. 

FIGURE 5-17 MULTIPLEXER OUTPUT ILLUSTRATING 
GOOD "ONE ZERO" SYMMETRY 

5.3.6 Signal Processing Electronics Integration 

The entire signal processing electronics was packaged and inter-connected 

for integrated operation. Thermal tests were performed on the entire package 

with the system operating in a static mode. Figure 5-18 shows the case and 

inner module temperatures at various locations on the package. The results 

of the temperature test agreed closely with design predictions. 

The entire system was checked for operation by applying dc levels to 

the analog input that corresponded with the 32 quantization levels. By 

correlating the dc input with the digital output, proper operation of the 

electronics for all digital word combinations was confirmed. 
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5.3.7 Signal Processing Power Supply Tests

Each regulator in this power supply was checked for adjustment range,

current limit, short circuit current, ripple and regulation from no load to

90% full load. The test results are given in Table 16.

TABLE 16

SIGNAL PROCESSING POWER SUPPLY TESTS

Regulator Adjustment Range Current Short Circuit 90% Load 90% Load
Low High Limit Current AC Ripple AV

Volts Volts Volts Amps Amps mV Volts

-2.0 < -0.1 -8.0 2.3 1.7 1 .10

+5.2 3.5 8.6 1.47 0.75 5 .05

-5.2 < -0.1 13.1 8.8 3.6 5 .10

+12.0 3.1 20.9 0.82 0.83 1 .10

-12.0 < -0.1 -21.4 0.82 0.83 1 .10

5.4 ERROR RATE TESTS.

Several error tests were conducted on the 400 1Mbps, 0.53 pm modulator and

receiver as a function of the optical signal level and test code sequence length.

Typical results are given on Figure 5-19. No special significance should be

attached to the fact that the longer sequence lengths produced lower error rates

since the tests were conducted on different days and all the system parameters and

operating points may not have been the same. Also it should be noted that data

points below 10- 7 bit error rate were extremely difficult to obtain because the

test laser amplitude instabilities prohibited counting errors for long periods of

time, such as 10 seconds.
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6. CONCLUSIONS AND RECOMMENDATIONS

The hardware constructed and tested during this program included a 0.53 pm

modulator, 1.06 pm modulator, signal processing electronics, and power supplies

for the modulators and electronics. The program demonstrated that it is quite

feasible to design and fabricate a space qualifiable 0.53 pm or 1.06 um modulator

and associated electronics. The total power required by a space qualified modulator

unit would be approximately 30 watts for 1.06 Vm operation and 20 watts for 0.53 pm

operation.

While the transmission and extinction ratio of the units delivered on this

program were quite good, they were limited by the double pass configuration and

required precise optical alignment. Work underway in our laboratories, which is

a part of our continuing IRAD effort in modulator development, indicates that it is

feasible to construct a single pass modulator which would operate with approximately

the same power required for the present double pass units. Since the static

extinction ratio of a single pass unit would be in the neighborhood of 100:1 a

worst case dynamic extinction ratio of 30:1 could be readily achieved. Moreover,

optical transmission would be increased to 90% and 80% respectively for a 0.53 pm

unit and a 1.06 pm unit. The single pass modulator would be constructed with etched

crystals which would greatly reduce the surface work strain. Hybrid circuit

techniques would be used for the modulator driver and matching network to obtain

improved performance and reproducibility.

The signal processing electronics for this program was constructed primarily

using existing monolithic logic elements. This dictated an approach using two 200

Mbps encoding chains whose outputs were interleaved by a 400 Mbps digital multi-

plexer. It should be noted that the use of hybrid circuit logic elements would

enable implementation of a single 400 Mbps encoding chain with a very significant

decrease in power, size, and weight relative to the electronics delivered on this

program.

We recommend an improved 400 Mbps modulator design program which would utilize

latest available construction techniques and be based on single pass operation with

inherently better transmission and extinction ratio. The modulator resulting from

this program would be more representative of the final design of a space qualified

unit.
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