N73 - 20631

NASA- CR- 13/267 22 N. #3,25

FIXED POINT THEOREMS AND DISSIPATIVE PROCESSES

Ъy

Jack K. Hale and Orlando Lopes

Center for Dynamical Systems Division of Applied Mathematics Brown University Providence, Rhode Island 02912

⁺This research was supported in part by the Air Force Office of Scientific Research under grant AF-AFOSR 71-2078, Office of Army Research (Durham) under grant DA-ARO-D-31-124-71-G12S2, and National Aeronautics and Space Administration under grant NGL-40-002-015.

** Research supported by Air Force Office of Scientific Research under grant AF-AFOSR 71-2078.

by

Jack K. Hale and Orlando Lopes

1. Introduction

Suppose X is a Banach space, T: $X \rightarrow X$ is a continuous mapping. The map T is said to be dissipative if there is a bounded set B in X such that for any $x \in X$, there is an integer N = N(x) with the property that $T'x \in B$ for n > N(x). In his study of ordinary differential equations in n-dimensional Euclidean space (which were ω_{-} periodic in time), Levinson [12] in 1944 initiated the study of *Esipative* systems with Tx representing the solution of the differential equation at time ω which started at x at time zero. The basic problem is to give information about the limiting behavior of orbits of T and to discuss the existence of fixed points of T. Since 1944, a tremendous literature has accumulated on this subject and the reader may consult LaSalle [11], Pliss [14], Reissig, Sansone and Conti [15] and Yoshizawa [16] for references. Levinson [12] showed that some iterate of T has a fixed point and he characterized the maximal compact invariant set of T. Later (see Pliss [14]), it was shown that the maximal compact invariant set was globally asymptotically stable and that some power of T has a fixed point, the latter being proved by applying the fixed point theorem of Brouwer.

For the special case of the Banach space X arising in retarded functional differential equations, and T completely continuous, Jones [9] and Yoshizawa [16] showed that T has a fixed point by using Browder's theorem. For an arbitrary Banach space X and T completely continuous, the same result was obtained by Horn [8] and by Gerstein and Krasnoselskii [5] with applications to parabolic partial differential equations. Recently,

l.

Billotti and LaSalle [1] have obtained the same result with T completely continuous. They have in addition characterized the maximal compact invariant set and proved that it is globally asymptotically stable.

Gerstein [4] has considered the case when T is condensing on balls in X; in particular, if $\alpha(TB) < \alpha(B)$ for any ball $B \subset X$ and α is the measure of noncompactness introduced by Kuratowski (see Darbo [3]). Gerstein showed there is a maximal compact invariant set and a few other properties, but said nothing about fixed points of T. More recently, Hale, LaSalle and Slemrod [7] have considered a slightly stronger definition of dissipative and a class of operators T which includes α -contractions or k-set contractions; that is, there is a constant k, $0 \le k < 1$, such that $\alpha(TB) \le k\alpha(B)$ for any bounded $B \subset X$. They have characterized the maximal compact invariant set of T, shown that it is asymptotically stable, and proved that some iterate of T has a fixed point.

There are a number of deficiencies in the above theories, two of which are the following: First, in the applications to ω -periodic retarded functional differential equations, the hypothesis that T is completely continuous implies that the period ω in the equation is greater than or equal to the delay r in the differential system. In particular, this implies the above theory can not be employed to show the existence of an equilibrium point for an autonomous equation by taking a sequence of periods approaching zero. However, with the available knowledge on asymptotic fixed point theory (see for example, Jones [10]), the retarded equations can be handled directly for any $\omega > 0$. Secondly, in neutral

functional differential equations, the operator T is not even completely continuous when $\omega \ge r$ and the most that can be obtained is a special form of an α -contraction. However, the above theory for this case implies only that some iterate of T has a fixed point.

It is the purpose of this paper to consider the same type of operators as considered by Hale, LaSalle and Slemrod [7] and to impose an additional condition on T which will ensure that it has a fixed point. At first glance, this latter condition looks very strange, but it will be shown that the condition is always satisfied for T condensing and local dissipative. Applications are given to a class of neutral functional differential equations.

2. Dissipative systems.

The C-neighborhood of a set $K \subset X$ will be denoted by $B_{c}(K)$, the closure by Cl(K) and the convex closure by $\overline{co}(K)$. Let $\alpha(K)$ be the Kuratowski measure of noncompactness of a bounded set K in X (see [3]). Suppose T is a continuous map T: $X \to X$. The map T is said to be <u>weak condensing</u> if for any bounded $K \subset X$ for which $\alpha(K) > 0$ and T(K)is bounded it follows that $\alpha(T(K)) < \alpha(K)$. The map T is said to be a <u>weak α -contraction</u> if there is a constant $k, 0 \le k < 1$, such that for any bounded set $K \subset X$ for which T(K) is bounded, it follows that $\alpha(T(K)) \le k\alpha(K)$. If T takes bounded sets into bounded sets, then a weak α -contraction is an α -contraction. The map T^{nO} is said to be <u>weak completely continuous</u> if there is an integer n_0 such that for any bounded set $B \subset X$, there is a compact set $B^* \subset X$ with the property that, for any integer $N \ge n_0$ and any $x \in X$ with $T^n x \in B$ for $0 \le n \le N$, it follows that $T^n x \in B^*$ for $n_0 \le n \le N$. If T is weak completely continuous it is weak condensing.

If T is completely continuous then T is weak completely continuous. The map T is said to be <u>asymptotically smooth</u> if for any bounded set $B \subset X$, there is a compact set $B^* \subset X$ such that for any $\mathcal{E} > 0$, there is an integer $n_0(\mathcal{E},B)$ with the property that $T^n x \in B$ for $n \ge 0$ implies $T^n x \in B_{\mathcal{E}}(B^*)$ for $n \ge n_0(\mathcal{E},B)$.

For a given continuous map T: $X \to X$, we say a set <u>K \subset X</u> attracts <u>a set $H \subset X$ </u> if for any $\mathcal{E} > 0$, there is an integer $N(H,\mathcal{E})$ such that $T^{n}(H) \subset B_{\mathcal{E}}(K)$ for $n \ge N(H,\mathcal{E})$. We say <u>K attracts compact sets of X</u> if K attracts each compact set $H \subset X$. We say <u>K attracts neighborhoods</u> <u>of compact sets of X</u> if for any compact set $H \subset X$, there is a neighborhood H_{0} of H such that K attracts H_{0} .

A continuous map T: $X \to X$ is said to be <u>point dissipative</u> if there is a bounded set $B \subset X$ with the property that, for any $x \in X$, there is an integer N(x) such that $T^n x \in B$ for $n \ge N(x)$. If B satisfies the property that for any compact set $A \subset X$, there is an integer N(A) such that $T^n(A) \subset B$ for $n \ge N(A)$, then T is said to be <u>compact dissipative</u>. If B satisfies the property that for any $x \in X$, there is an open neighborhood O_x and an integer N(x) such that $T^n O_x \subset B$, $n \ge N(x)$, then T is said to be <u>local dissipative</u>. Obviously, local dissipative implies compact dissipative implies point dissipative.

We now give a few relations among the above concepts.

Lemma 1. a) (Hale, LaSalle, Slemrod [7]). If T is continuous, local dissipative and asymptotically smooths, then there is a compact set $K \subset X$ which attracts neighborhoods of compact sets of X.

b) (Billotti and LaSalle [1]) If T is continuous, point dissipative and T^{n_0} is weak completely continuous, then there is a compact set $K \subset X$ such that for any compact set $H \subset X$, there is an open neighborhood H_0 of H and an integer N(H) such that $\bigcup_{j \ge 0} T^{j}H_0$ is bounded and $T^{n_1}H_0 \subset K$ for $n \ge N(H)$. In particular, T is local dissipative and T asymptotically smooths.

Lemma 2. If T: $X \to X$ is continuous and there is a compact set $K \subset X$ that attracts neighborhoods of compact sets of X , then

a) there is a neighborhood $H_1 \subset H_0$, the above neighborhood of H, such that $\bigcup_{n \ge 0} T^n H_1$ is bounded; b) $\bigcup_{j \ge 0} T^j B$ is precompact if B is compact.

<u>Proof</u>: a) First of all observe that a continuous function is bounded in some neighborhood of a compact set. If $H \subset X$ is compact and $N = n_1(H, \mathcal{E})$ is the number occuring in the definition of the concept of attracts neighborhoods of compact sets, consider the sets $H, T(H), \ldots, T^{N-1}(H)$. Let $\Omega_0, \ldots, \Omega_{N-1}$ be corresponding neighborhoods where T is bounded. Define $\Omega_N = B_{\mathcal{E}}(K), \Gamma_N = \Omega_N$, $\Gamma_i = T^{-1}(\Omega_{i+1}) \cap \Omega_i$. The set $H_1 = \Gamma_0$ satisfies the required property.

b) The set $A = \bigcup_{j \ge 0} T^{j}B$ is bounded. Since $T^{j}(B)$ is compact for any j we have $\alpha(A) = \alpha(\bigcup_{j \ge n} T^{j}(B))$ for any n. But given $\varepsilon > 0$, if $n \ge n_1(B,\varepsilon)$, we have $\bigcup_{j \ge n} T^{j}B \subset B_{\varepsilon}(B)$ and thus $\alpha(A) \le 2\varepsilon$. Thus $\alpha(A) = 0$ and A is compact. This proves the Lemma.

The following result was proved in [7] if we use Lemmas 1 and 2. <u>Theorem 1.</u> If T: $X \to X$ is continuous and there is a compact set $K \subset X$ which attracts neighborhoods of compact sets of X, then $J = \bigcap_{j \ge 0} T^{j}(K)$ is independent of the sets K satisfying the above property, J is the maximal compact invariant of T and is globally asymptotically stable.

The hypotheses of Lemma 2 also imply there is a closed, bounded convex neighborhood U of K and an integer n such that $T^{n}(U) \subset U$. Thus, if T possesses the fixed point property, then some iterate of T has a fixed point (see [7]).

Regarding fixed points of T , it is known (see [9], [14], [5], [8], [1]) that T completely continuous and point dissipative implies T has a fixed point. Below, we give some weaker conditions which assert that T has a fixed point, but before beginning this discussion, there is one other interesting result regarding condensing maps which was stated without proof by Gerstein [4] for point dissipative systems.

<u>Theorem 2.</u> a) If $T:X \to X$ is continuous, weak condensing and compact dissipative, then there is a compact invariant set K which attracts compact sets of X and T is local dissipative.

b) If T is weak condensing and point dissipative then there is a compact invariant set K that attracts points of X.

<u>Proof</u>: a) It is an easy matter to prove the following fact: If H is a compact set such that $T:H \to H$, then the set $A = \cap T^{n}(H)$ is compact, non empty, T(A) = A and $T^{n}(H)$ tends to A in the Hausdorff metric.

Now, for any compact set L of X, let $L_1 = \bigcup_{j \ge 0} T^j(L)$. Since L_1 is bounded, $L_1 = L \cup T(L_1)$ and T is weak condensing, it follows that $\alpha(L_1) = 0$ and thus $H = Cl(L_1)$ is compact. Also $T(H) \subset H$. Let $A_L = \bigcap_{n \ge 0} T^n(H)$. But, by hypothesis, there is a closed bounded set $B \subset X$ such that $A_L \subset B$ for each compact set L. Since $T(\cup A_L) = \cup A_L$, where the union is taken over all compact sets $L \subset X$, it follows that the set $K = Cl(\cup A_L)$ is compact, $T(K) \subset K$, and K attracts compact sets of X.

Nussbaum [13] has shown that if a non-empty invariant set attracts compact sets then it attracts neighborhoods of points and so if T is is weak condensing and compact dissipative it is local dissipative. This proves a) and the proof of b) is the same.

7.

With a slight change in the argument above, we can

prove the following:

Lemma 3. If T is a weak α - contraction, then

T asymptotically smooths.

<u>Froof</u>: If B is a bounded set, then $B^* = Cl(\cup A_x)$, where A_x is constructed as above for the elements $x \in B$ such that $T^n x \in B$, for any $n \ge 0$.

<u>Corollary</u>. If T is a weak α -contraction and local dissipative, then there is a compact invariant set that attracts neighborhoods of compact sets.

<u>3. Fixed point theorems</u>. In this section, we prove some fixed point theorems which have applications to the dissipative systems of the previous section. We need the following obvious : Lemma 4. If A is a compact set of X and $F \subset X$ contains a sequence $\{x_n\}$ such that $d(x_n, A) \to 0$ as $n \to \infty$, then $A \cap \overline{F} \neq \Phi$.

<u>Theorem</u> 3. Suppose $K \subset B \subset S \subset X$ are convex subsets with K compact, S closed, bounded, and B open in S. If T: $S \rightarrow X$ is continuous, $T^{j} B \subset S$, $j \ge 0$, and K attracts points of B, then there is a convex, closed bounded subset A of S such that

 $A = \overline{co} \left[\bigcup_{j \ge 1} \mathbb{T}^{j}(B \cap A) \right], A \cap K \neq \emptyset$

<u>Proof</u>: Let \mathscr{F} be the set of convex, closed, bounded subsets L of S such that $T^{j}(B \cap L) \subset L$ for $j \geq 1$ and $L \cap K \neq \Phi$. The family \mathscr{F} is not empty because $S \in \mathscr{F}$. If $L \in \mathscr{F}$, let $L_{1} = \overline{\operatorname{co}} [\bigcup_{j \geq 1} T^{j}(B \cap L)]$. By Lemma 4, $L_{1} \cap K \neq \Phi$. Also, L_{1} is convex, closed, and contained in S. Since $L \in \mathscr{F}$, we have $L \supset L_{1}$ and $L_{j} \supset T^{j}(B \cap L) \supset T^{j}(B \cap L_{1})$ for all $j \geq 1$. Thus, $L_{1} \in \mathscr{F}$. It follows that a minimal element A of \mathscr{F} will satisfy the conditions of the theorem.

To prove such a minimal element exists, let $(L_{\alpha})_{\alpha \in I}$ be a totally ordered family of sets in \mathscr{F} . The set $L = \bigcap_{\alpha \in I}$ is closed, convex and contained in S . Also, $T^{j}(B \cap L) \subset T^{j}(B \cap L_{\alpha}) \subset L_{\alpha}$ for any $\alpha \in I$ and $j \geq l$. Thus, $T^{j}(B \cap L) \subset L$ for $j \geq l$. If J is any finite subset of I, we have $K \cap (\bigcap_{\alpha \in J} L_{\alpha}) \neq \Phi$ and, from compactness, it follows that $K \cap (\bigcap_{\alpha \in I} L_{\alpha}) \neq \Phi$. Thus, $L \in \mathscr{F}$ and Zorn's lemma yields the conclusion of the theorem.

The same proof as given in Theorem 3 also proves

the following:

<u>Theorem 4</u>. The set A of Theorem 3 is compact if and only if there is a compact set Q = Q(B) such that $Q \cap B \neq \phi$ and $T^{j}(Q \cap B) \subset Q$ for all $j \ge 0$.

Lemma 5. (Horn [8]). Let $S_0 \subset S_1 \subset S_2$ be convex subsets of a Banach space X with S_0, S_2 compact and S_1 open in S_2 . Let T: $S_2 \rightarrow X$ be a continuous mapping such that for some integer m > 0, $T^j(S_1) \subset S_2$, $0 \le j \le m-1$, $T^j(S_1) \subset S_0$, $m \le j \le 2m - 1$. Then T has a fixed point.

<u>Theorem 5</u>. Suppose $K \subset B \subset S \subset X$ are convex subsets with K compact, S closed bounded and B open in S . If $T: S \to X$ is continuous, $T^{j}B \subset S$, $j \ge 0$, K attracts compact sets of B and the set A of Theorem 3 is compact, then T has a fixed point.

<u>Proof</u>: Since K is compact and convex, the set B can be taken as $S \cap \mathscr{B}_{\mathcal{E}}(K)$ for some $\mathcal{E} > 0$. Let Q be as in Theorem 4, $S_0 = Cl(\mathscr{B}_{\mathcal{E}/2}(K)) \cap Q$, $S_1 = \mathscr{B}_{\mathcal{E}}(K) \cap Q$ and $S_2 = S \cap Q$. Then $S_0 \subset S_1 \subset S_2$, S_0 , S_2 compact and S_1 is open in S_2 . Also, $T^j(S_1) \subset S_2$, $0 \le j \le n_1(K,\mathcal{E})$ and $T^j(S_1) \subset S_0$ for $j \ge n_1(K,\mathcal{E})$ for some integer $n_1(K,\mathcal{E})$. An application of Lemma 4 completes the proof of the theorem.

It is clear that Theorem 5 is equivalent to the theorem of Horn.

Any additional conditions on the map T which will ensure that the set A in Theorem 3 is compact will yield a fixed point theorem using Theorem 5. One result in this direction is <u>Theorem 6</u>. If T is weak condensing, then the set A in Theorem 5 is compact.

<u>Proof</u>: If $\widetilde{A} = \bigcup_{j \ge 1} T^{j}(B \cap A)$, then $\widetilde{A} = T(B \cap A) \cup T(\widetilde{A})$ and $\alpha(A) = \alpha(\widetilde{A}) = \max(\alpha(T(B \cap A)), \alpha(T(\widetilde{A}))$. Since $\alpha(T(\widetilde{A})) < \alpha(\widetilde{A})$ if $\alpha(\widetilde{A}) > 0$, it follows that $\alpha(\widetilde{A}) = \alpha(T(B \cap A))$. Thus, if $\alpha(B \cap A) > 0$, then $\alpha(A) = \alpha(\widetilde{A}) < \alpha(B \cap A) \le \alpha(A)$ and this is a contradiction. Thus, $\alpha(B \cap A) = 0$. However, this implies $\alpha(A) = 0$ and A is compact, proving the theorem.

<u>Corollary 1</u>. If the sets K,B,S in Theorem 5 exist, if K attracts the compact sets of B and T is weak condensing, then T has a fixed point.

Proof. This is immediate from Theorems 5 and 6.

<u>Corollary</u> 2. If $T: X \to X$ is continuous, pointwise dissipative and T is weak completely continuous, then T has a fixed point.

<u>Proof</u>: This is immediate from Lemma 1b) and . . Corollary 1.

<u>Corollary</u> 3. If T is a weak α - contraction and there are sets K,B,S as in Corollary 1, then T has a fixed point.

<u>Corollary</u> <u>4</u>. If T is weak condensing and compact dissipative, then T has a fixed point.

<u>Proof</u>: From Theorem 2a), T is a local dissipative system. Thus $\overline{\text{co}}$ K has an open convex neighborhood B with bounded orbit. The result now follows from Theorems 2, 5, 6.

For α -contractions, this result is contained in [13].

<u>Corollary 5</u>. If T^{0} is weak completely continuous, T is weak condensing and point dissipative, then T has a fixed point.

Proof: This follows from Lemma 1b) and Corollary 4.

<u>Lemma 6</u>. If S: X \rightarrow X is a bounded linear operator with spectrum contained in the open unit ball, then there is an equivalent norm, $|\cdot|_1$, in X such that $|S|_1 < 1$.

<u>Proof</u>. Define $|x|_1 = |x| + |Sx| + ... + |S^nx| + ...$ The assumption on the spectrum implies there is an $0 \le r < 1$ such that $|S^n| < r^n$ if n is sufficiently large. Thus, there is a constant K such that $|x| \le |x|_1 \le K|x|$. Also, for $x \ne 0$

$$\frac{|Sx|_{1}}{|x|_{1}} = 1 - \left[1 + \frac{|Sx|}{|x|} + \frac{|S^{2}x|}{|x|} + \dots\right]^{-1} \le 1 - \frac{1}{K}$$

The lemma is proved.

<u>Corollary 6</u>. If T is compact dissipative, T = S + U, where S is linear and continuous with spectrum contained in the open unit ball and $T(\Omega)$ bounded implies $Cl(U(\Omega))$ compact for any $\Omega \subset X$, then T has a fixed point. If, in addition, S^{n_0} is completely continuous and T is only point dissipative, then T has a fixed point.

Proof: The first statement is immediate from Corollary 4 and Lemma 6. The second follows from Corollary 5 and the observation that T^{n_0} is S^{n_0} plus a completely continuous operator. The next result generalizes an asymptotic fixed point theorem of Browder [2].

<u>Theorem 7</u>. Suppose S_0, S_1, S_2 are subsets of a Banach space, S_0, S_2 convex, closed, S_1 open, S_2 bounded, $S_0 \subset S_1 \subset S_2$. Assume T: $S_2 \rightarrow X$ is condensing in the following sense: if Ω , $T(\Omega)$ are contained in S_2 and $\alpha(\Omega) > 0$, then $\alpha(T(\Omega)) < \alpha(\Omega)$. Assume also that T satisfies: for any compact set $H \subset S_1$, $T^j(H) \subset S_2$, $j \ge 0$, and there is a number N(H) such that $T^j(H) \subset S_0$ for $j \ge N(H)$. Then T has a fixed point.

<u>Proof</u>: Following the proof of Theorem 2, there is a compact set K which attracts the compact sets of S_1 . Since $K \subset S_0$, it follows that $\overline{co} K \subset S_0$. Let B be a closed, convex neighborhood of $\overline{co} K$, $B \subset S_1$. Theorems 4 and 5 complete the proof.

4. Dissipative flows.

Let $\{T(t), t \ge 0\}$ be a flow in a Banach space X. A point $x \in X$ is said to be an equilibrium point if $T(t)x_0 = x_0$ for any $t \ge 0$. We also say that a compact set J attracts a compact set H if, for any $\varepsilon > 0$, there is a $t^*(H,\varepsilon)$ such that $T(t)H \subset B_{\varepsilon}(J)$ for $t \ge t^*(H,\varepsilon)$. A set $Q \subset X$ is said to be <u>boundedly compact</u> if $P \cap Q$ is compact for any closed bounded set $P \subset X$.

<u>Theorem</u> 8. If $\{T(t), t \ge 0\}$ satisfies:

 α_{l}) there is a compact set J that attracts the compact sets of J₀;

 $\begin{array}{l} \alpha_2 \end{pmatrix} \mbox{ there is a number } w > 0 \mbox{ and a family of } \\ \mbox{ boundedly compact (in particular compact) sets } Q(\tau), \ 0 < \tau < w \\ \mbox{ such that } Q(\tau) \cap J_0 \neq \Phi \mbox{ and } T(k\tau)Q(\tau) \cap Q(\tau) \ , \ 0 < \tau \leq w \ , \\ \mbox{ k positive integer; } \end{array}$

then there is an equilibrium point.

Proof: Take the sequence $w_n = w/n$. From Theorems 2, 4, 5, it follows that for each n, there is an x_n satisfying: $T(w_n)x_n = x_n$. Since $w_n > 0$, x_n is in J. Changing the notation if necessary, we may assume that x_n converges to x_0 . Let $k_n(t)$ be the integer defined by: $k_n(t)w_n \le t < (k_n(t) + 1)w_n$. Then, $T(k_n(t)w_n)x_n = x_n$ and so: $|T(t)x_0 - x_0| \le |T(t)x_0 - T(k_n(t)w_n)x_0| + |T(k_n(t)w_n)x_0 - T(k_n(t)w_n)x_n| + |x_n - x_0|$. Since $k_n(t)w_n$ tends to t as $n \rightarrow \infty$, the right hand side of the above expression goes to zero and this proves the theorem.

As an application of Theorems 4,5 and 8, we have: <u>Corollary 7</u>: If $\{T(t), t \ge 0\}$ is weak condensing for any t > 0 and satisfies α_1 , then there is an equilibrium point.

A flow {T(t), $t \ge 0$ } is compact (point) dissipative if there is a bounded set B such that for any compact set H (any point x) there is a t(H) (t(x)) such that T(t)H \subset B (T(t)x \in B) for $t \ge t(H)$ ($t \ge t(x)$).

Lemma 7.

a). If T(w) is weak condensing for some w > 0and is compact (point) dissipative with compact attractor K, $T(w)K \subset K$, then $\{T(t), t \ge 0\}$ is compact (point) dissipative with attractor $J = \bigcup_{0} \le t \le w^{T(t)K}$.

b). If there is a compact set K such that $T(w)K \subset K$ and K attracts neighborhoods of points, then the set J above attracts neighborhoods of points relative to the flow $\{T(t), t \ge 0\}$.

c). If $\{T(t) \ge 0\}$ is weak condensing for some $\omega > 0$ and compact dissipative, it is local dissipative.

<u>Proof</u>: For any $\varepsilon > 0$, there is a $\delta > 0$ such that $T(t)B_{\delta}(K) \subset B_{\varepsilon}(J), 0 \le t \le w$. Since $T(w)K \subset K$, parts a) and b) are proved. Part c) follows from Theorem 2, and parts a) and b).

<u>Corollary</u> 9. If for some w > 0, T(w) is weak completely continuous and point dissipative then {T(t), $t \ge 0$ } is local dissipative.

<u>Proof</u>: The set K in Lemma 1(b) may be chosen to satisfy the hypothesis of Lemma 7(b). From the previous theorem, we can state the following:

<u>Theorem 9</u>. If $\{T(t), t \ge 0\}$ is weak condensing for t > 0, then the following assertions hold:

a). If $\{T(t), t \ge 0\}$ is compact dissipative, then there is an equilibrium point;

b). If $\{T(t), t \ge 0\}$ is point dissipative and T(w) is weak completely continuous for some w > 0, then there is an equilibrium point.

Corollary 10. If $\{T(t) = S(t) + U(t), t \ge 0\}$ then the following assertions hold:

a). If $\{T(t), t \ge 0\}$ is compact dissipative, S(t) is linear with spectrum contained inside the unit ball for t > 0and U(t) is weak completely continuous, then there is an equilibrium point.

b). If S(w) is completely continuous for some w > 0 and $\{T(t), t \ge 0\}$ is point dissipative, there exists an equilibrium point.

5. Functional differential equations.

As an application of the previous results, we consider a special class of neutral functional differential equations which are periodic in time. Let $r \ge 0$ be a given real number, E^n be an n-dimensional linear vector space with norm $|\cdot|$, $C([a,b],E^n)$ be the space of continuous functions from [a,b] to E^n with the uniform topology and let $C = C([-r,0],E^n)$. For $\varphi \in C$, $|\varphi| = \sup_{r\le \theta \le 0} |\varphi(\theta)|$. For any $x \in$ $C([-r,A),E^n)$, $A \ge 0$, let $x_t \in C$, $t \in [0,A]$, be defined by $x_t(\theta) =$ $x(t+\theta)$, $-r \le \theta \le 0$. Suppose D: $R \times C \to E^n$ is a continuous linear operator $D\varphi = \varphi(0) - g(t,\varphi)$.

(1)
$$g(t,\varphi) = \int_{-r}^{0} [d\mu(t,\theta)]\varphi(\theta) -r$$
$$|\int_{-s^{+}}^{0} [d\mu(t,\theta)]\varphi(\theta)| \leq r(s)|\varphi|$$

for $s \ge 0$, $\varphi \in C$ where μ is an $n \times n$ matrix function of bounded variation, Υ is continuous and nondecreasing on [0,r], $\Upsilon(0) = 0$. If f: $R \times C \rightarrow E^n$ is continuous, then a NFDE is a relation

(2)
$$\frac{d}{dt} D(t, x_t) = f(t, x_t).$$

A solution $x = x(\phi)$ through ϕ at time σ is a continuous function defined on $[\sigma - r, \sigma + A)$, A > 0, such that $x_{\sigma} = \phi$, $D(t, x_{t})$ is continuously differentiable on $(\sigma, \sigma + A)$ and (2) is satisfied on $(\sigma, \sigma + A)$. We assume

We assume a solution $x(\varphi)$ of (2) through any $\varphi \in C$ exists on $[\sigma - r, \infty)$, is unique and $x(\varphi)(t)$ depends continuously on $(\varphi, t) \in C \times [\sigma - r, \infty)$.

In the following, we let $T_D(t,\sigma)$: $C \to C$, $t \ge 0$, be the continuous linear operator defined by $T_D(t,\sigma)\phi = y_t(\phi)$, $t \ge \sigma$, where $y = y(\phi)$ is the solution of

(3)
$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{D}(\mathbf{t},\mathbf{y}_{t}) = 0, \ \mathbf{y}_{\sigma} = \varphi.$$

If D is ω -periodic in t, $C_D = \{\phi \in C: D(0,\phi) = 0\}$, then C_D is a Banach space with the topology of C, $T_D(w,0): C_D \to C_D$, and $T_D(nw,0) = T_D^n(w,0)$.

The operator D is said to be <u>uniformly stable</u> if there exist constants $K \ge 1$, $\alpha > 0$, such that

(4)
$$| \mathbb{T}_{D}(t,\sigma)\phi | \leq Ke^{-\alpha(t-\sigma)} |\phi|, \quad \phi \in C_{D}, \quad t \geq \sigma.$$

Notice the operator $D\phi = \phi(0)$ corresponding to retarded functional differential equations is always stable.

<u>Remark.</u> The conclusion of the main theorem below is valid under the weaker hypothesis that $D(\phi) = D_0(\phi) + \int A(\theta)\phi(\theta)d\theta$ where D_0 is stable. For -r simplicity in notation, we do not consider this more general case.

We need some results from Hale and Cruz [6]. It is shown in [6] that D uniformly stable implies there exists an $n \times n$ matrix function B(t)defined and of bounded variation on $[-r,\infty)$, continuous from the left, $B(t) = 0, -r \le t \le 0$, and a constant M_1 such that

19.

(5)
$$|T_{D}(t)\phi| \leq M_{1}|\phi|, t \geq 0, \phi \in C, \sup_{t \geq -r} B(t) \leq M_{1}, t \geq -r$$

and, for any continuous function h: $[0,\infty) \to E^n$, the solution of the problem

(6)
$$D(t,x_t) = D(0,\varphi) + \int_0^t h(s) ds, \quad x_0 = \varphi$$

is given by

(7)
$$x_{t} = T_{D}(t)\phi - \int_{O}^{t} B_{t-s}h(s) ds .$$

Furthermore, there exist n functions ϕ_1,\ldots,ϕ_n in C such that $D(0,\Phi) = I$, the identity, where $\Phi = (\phi_1, \dots, \phi_n)$.

Let $\psi: C \to C_D$ be the continuous linear operator defined by $\psi(\phi) = -\frac{1}{2} (\phi) + \frac{1}{2} (\phi)$ $\varphi - \Phi D(\varphi)$.

Lemma 8. If D is uniformly stable and f maps bounded
sets of RxC into bounded sets of
$$E^n$$
, then there is a family
of continuous transformations $T_1(t): C \to C$, $t \ge 0$ which are
weak completely continuous and

$$def T(t,0)\phi = T(t)\phi = x_t(\phi) = T_D(t)\psi(\phi) + T_1(t)\phi$$

If $D\phi$ = $\phi(0)$, then T(t) is weak completely continuous for $~t \geq r$.

<u>Proof</u>: Equation (2) with initial value $x_0 = \varphi$ is equivalent to

$$D(x_t) = D(\phi) + \int_0^t f(s, x_s) ds, \quad t \ge 0, \quad x_0 = \phi,$$

which from (7) is equivalent to

$$T(t)\varphi \stackrel{\text{def}}{=} x_{t} = T_{D}(t)\psi(\varphi) + T_{D}(t)\Phi D(\varphi) - \int_{0}^{t} B_{t-s}^{D}f(s,x_{s})ds \stackrel{\text{def}}{=} T_{D}(t)\psi(\varphi) + T_{1}(t).$$

It is now an easy matter to verify the assertions in the theorem. Since the condition that D is uniformly stable implies the linear operator $S(\omega) = T_D(\omega)\psi$ has spectrum contained inside the unit ball, Corollary 6, Lemma 1b) and Corollary 10 imply

Theorem 4. If there exists an $\omega > 0$ such that $f(t+\omega,\phi) = f(t,\phi)$ for all $\phi \in C$, f takes bounded sets of $R \times C \rightarrow E^n$ and system (2) is compact dissipative, then there is an ω -periodic solution of (2). If f satisfies the same hypotheses and is independent of t, then there is a constant function c in C such that f(c) = 0; that is, an equilibrium point of (2). If $D(\phi) = \phi(0)$, then the same conclusions are true for point dissipative.

References

- [1] <u>Billotti, J. E. and J. P. LaSalle</u>, Periodic dissipative processes. Bull. American Math. Soc., 6(1971), 1082-1089.
- [2] <u>Browder, F. E.</u>, On a generalization of the Schauder fixed point theorem. Duke Math. J., 26(1959), 291-303.
- [3] <u>Darbo, G.</u>, Punti uniti in trasformazione a codominio non compatto. Rend. Sem. Mat. Univ. Padova 24(1955), 84-92.
- [4] <u>Gerstein, V. M.</u>, On the theory of dissipative differential equations in a Banach space. Funk. Ana. i Priloz. 4(1970), 99-100.
- [5] <u>Gerstein, V. M. and M. A. Krasnoselskii</u>, Structure of the set of solutions of dissipative equations. Dokl. Akad. Nauk. SSSR 183 (1968), 267-269.
- [6] <u>Hale, J. K. and M. A. Cruz</u>, Asymptotic behavior of neutral functional differential equations. Arch. Rat. Mech. Ana. 5(1969), 331-353.
- [7] <u>Hale, J. K., LaSalle, J. P. and M. Slemrod</u>, Theory of a general class of dissipative processes: J. Math. Ana. Appl.
- [8] <u>Horn, W. A.</u>, Some fixed point theorems for compact mappings and flows on a Banach space. Trans. Amer. Math. Soc. 149 (1970), 391-404.
- [9] Jones, G. S., Stability and asymptotic fixed point theory. Proc. Nat. Acad. Sci. USA, 53 (1965), 1262-1264.
- [10] Jones, G. S., Fixed point theorems for asymptotically compact mappings. Univ. of Maryland Report BN-503(1967).
- [11] <u>LaSalle, J. P.</u>, A study of synchronous asymptotic stability. Annals Math. 65 (1957), 571-581.
- [12] <u>Levinson, N.</u>, Transformation theory of nonlinear differential equations of second order. Annals. Math. 45 (1944), 723-737.
- [13] <u>Nussbaum, R.</u>, Some asymptotic fixed point theorems. Trans. of <u>Amer. Math. Soc.</u> To appear.
- [14] <u>Pliss, V. A.</u>, Nonlocal Problems of the Theory of Oscillations. Academic Press, New York, 1966 (translation of 1964 Russian edition).
- [15] <u>Reissig, R., Sansone, G. and R. Conti</u>, Nichtlineare Differential Gleichungen Höherer Ordnung, Edizioni Cremonese, Roma, 1969.
- [16] <u>Yoshizawa, T.</u>, Stability Theory by Liapunov's Second Method. Math. Soc. of Japan, Tokyo, 1966.

ATTENTION REPRO:

BEFORE PRINTING, CONTACT INPUT FOR PAGINATION

PROCESSOR Jage Camper

DO NOT PHOTOGRAPH THIS PAGE

FIXED POINT THEOREMS AND DISSIPATIVE PROCESSES

^{*}This research was supported in part by the Air Force Office of Scientific Research under grant AF-AFOSR 71-2078, Office of Army Research (Burham) under grant DA-ARO-D-31-124-71-G1282, and National Aeronautics and Space Administration under grant NGL-40-002-015.

"Research supported by Air Force Office of Scientific Research under grant AF-AFOSR 71-2078.

22

Ъy

Jack K. Hale and Orlando Lopes

1. Introduction

Suppose X is a Banach space, T: $X \rightarrow X$ is a continuous mapping. The map T is said to be dissipative if there is a bounded set B in X such that for any $x \in X$, there is an integer N = N(x) with the property that $T^{n}x \in B$ for n > N(x). In his study of ordinary differential equations in n-dimensional Euclidean space (which were ω periodic in time), Levinson [12] in 1944 initiated the study of dissipative systems with Tx representing the solution of the differential equation at time ω which started at x at time zero. The basic problem is to give information about the limiting behavior of orbits of T and to discuss the existence of fixed points of T. Since 1944, a tremendous literature has accumulated on this subject and the reader may consult LaSalle [11], Pliss [14], Reissig, Sansone and Conti [15] and Yoshizawa [16] for references. Levinson [12] showed that some iterate of T has a fixed point and he characterized the maximal compact invariant set of T. Later (see Pliss [14]), it was shown that the maximal compact invariant set was globally asymptotically stable and that some power of T has a fixed point, the latter being proved by applying the fixed point theorem of Brouwer.

For the special case of the Banach space X arising in retarded functional differential equations, and T completely continuous, Jones [9] and Yoshizawa [16] showed that T has a fixed point by using Browder's theorem. For an arbitrary Banach space X and T completely continuous, the same result was obtained by Horn [8] and by Gerstein and Krasnoselskii [5] with applications to parabolic partial differential equations. Recently,

Billotti and LaSalle [1] have obtained the same result with T completely continuous. They have in addition characterized the maximal compact invariant set and proved that it is globally asymptotically stable.

Gerstein [4] has considered the case when T is condensing on balls in X; in particular, if $\alpha(TB) < \alpha(B)$ for any ball $B \subset X$ and α is the measure of noncompactness introduced by Kuratowski (see Darbo [3]). Gerstein showed there is a maximal compact invariant set and a few other properties, but said nothing about fixed points of T. More recently, Hale, LaSalle and Slemrod [7] have considered a slightly stronger definition of dissipative and a class of operators T which includes α -contractions or k-set contractions; that is, there is a constant k, $0 \le k < 1$, such that $\alpha(TB) \le k\alpha(B)$ for any bounded $B \subset X$. They have characterized the maximal compact invariant set of T, shown that it is asymptotically stable, and proved that some iterate of T has a fixed point.

There are a number of deficiencies in the above theories, two of which are the following: First, in the applications to ω -periodic retarded functional differential equations, the hypothesis that T is completely continuous implies that the period ω in the equation is greater than or equal to the delay r in the differential system. In particular, this implies the above theory can not be employed to show the existence of an equilibrium point for an autonomous equation by taking a sequence of periods approaching zero. However, with the available knowledge on asymptotic fixed point theory (see for example, Jones [10]), the retarded equations can be handled directly for any $\omega > 0$. Secondly, in neutral

functional differential equations, the operator T is not even completely continuous when $\omega \ge r$ and the most that can be obtained is a special form of an α -contraction. However, the above theory for this case implies only that some iterate of T has a fixed point.

It is the purpose of this paper to consider the same type of operators as considered by Hale, LaSalle and Slemrod [7] and to impose an additional condition on T which will ensure that it has a fixed point. At first glance, this latter condition looks very strange, but it will be shown that the condition is always satisfied for T condensing and local dissipative. Applications are given to a class of neutral functional differential equations.

2. Dissipative systems.

The E-neighborhood of a set $K \subset X$ will be denoted by $B_g(K)$, the closure by Cl(K) and the convex closure by $\overline{co}(K)$. Let $\alpha(K)$ be the Kuratowski measure of noncompactness of a bounded set K in X (see [3]). Suppose T is a continuous map T: $X \to X$. The map T is said to be weak condensing if for any bounded $K \subset X$ for which $\alpha(K) > 0$ and T(K)is bounded it follows that $\alpha(T(K)) < \alpha(K)$. The map T is said to be a weak α -contraction if there is a constant $k, 0 \le k < l$, such that for any bounded set $K \subset X$ for which T(K) is bounded, it follows that $\alpha(T(K)) \le k\alpha(K)$. If T takes bounded sets into bounded sets, then a weak α -contraction is an α -contraction. The map T^{nO} is said to be <u>weak completely continuous</u> if there is an integer n_0 such that for any bounded set $B \subset X$, there is a compact set $B^* \subset X$ with the property that, for any integer $N \ge n_0$ and any $x \in X$ with $T^n x \in B$ for $0 \le n \le N$, it follows that $T^n x \in B^*$ for $n_0 \le n \le N$. If T is weak completely continuous it is weak condensing.

If T is completely continuous then T is weak completely continuous. The map T is said to be <u>asymptotically smooth</u> if for any bounded set $B \subset X$, there is a compact set $B^* \subset X$ such that for any $\mathcal{E} > 0$, there is an integer $n_0(\mathcal{E},B)$ with the property that $T^n x \in B$ for $n \ge 0$ implies $T^n x \in B_{\mathcal{E}}(B^*)$ for $n \ge n_0(\mathcal{E},B)$.

For a given continuous map T: $X \to X$, we say a set $K \subset X$ attracts <u>a set $H \subset X$ </u> if for any $\mathcal{E} > 0$, there is an integer $N(H,\mathcal{E})$ such that $T^{n}(H) \subset B_{\mathcal{E}}(K)$ for $n \geq N(H,\mathcal{E})$. We say <u>K attracts compact sets of X</u> if K attracts each compact set $H \subset X$. We say <u>K attracts neighborhoods</u> <u>of compact sets of X</u> if for any compact set $H \subset X$, there is a neighborhood H_{0} of H such that K attracts H_{0} .

A continuous map T: $X \to X$ is said to be <u>point dissipative</u> if there is a bounded set $B \subset X$ with the property that, for any $x \in X$, there is an integer N(x) such that $T^n x \in B$ for $n \ge N(x)$. If B satisfies the property that for any compact set $A \subset X$, there is an integer N(A) such that $T^n(A) \subset B$ for $n \ge N(A)$, then T is said to be <u>compact dissipative</u>. If B satisfies the property that for any $x \in X$, there is an open neighborhood O_x and an integer N(x) such that $T^n O_x \subset B$, $n \ge N(x)$, then T is said to be <u>local dissipative</u>. Obviously, local dissipative implies compact dissipative implies point dissipative.

We now give a few relations among the above concepts.

Lemma 1. a) (Hale, LaSalle, Slemrod [7]). If T is continuous, local dissipative and asymptotically smooths, then there is a compact set $K \subset X$ which attracts neighborhoods of compact sets of X.

b) (Billotti and LaSalle [1]) If T is continuous, point dissipative and T^{n_0} is weak completely continuous, then there is a compact set $K \subset X$ such that for any compact set $H \subset X$, there is an open neighborhood H_0 of H and an integer N(H) such that $\bigcup_{j \ge 0} T^{j}H_0$ is bounded and $T^{n_1}H_0 \subset K$ for $n \ge N(H)$. In particular, T is local dissipative and T asymptotically smooths.

Lemma 2. If T: $X \to X$ is continuous and there is a compact set $K \subset X$ that attracts neighborhoods of compact sets of X , then

a) there is a neighborhood $H_1 \subset H_0$, the above neighborhood of H, such that $\bigcup_{n \ge 0} T^n H_1$ is bounded; b) $\bigcup_{i > 0} T^j B$ is precompact if B is compact.

<u>Proof</u>: a) First of all observe that a continuous function is bounded in some neighborhood of a compact set. If $H \subset X$ is compact and $N = n_1(H, \mathcal{E})$ is the number occuring in the definition of the concept of attracts neighborhoods of compact sets, consider the sets $H, T(H), \ldots, T^{N-1}(H)$. Let $\Omega_0, \ldots, \Omega_{N-1}$ be corresponding neighborhoods where T is bounded. Define $\Omega_N = B_{\mathcal{E}}(K), \Gamma_N = \Omega_N$, $\Gamma_i = T^{-1}(\Omega_{i+1}) \cap \Omega_i$. The set $H_1 = \Gamma_0$ satisfies the required property.

b) The set $A = \bigcup_{j \ge 0} T^{j}B$ is bounded. Since $T^{j}(B)$ is compact for any j we have $\alpha(A) = \alpha(\bigcup_{j \ge n} T^{j}(B))$ for any n. But given $\varepsilon > 0$, if $n \ge n_1(B,\varepsilon)$, we have $\bigcup_{j \ge n} T^{j}B \subset B_{\varepsilon}(B)$ and thus $\alpha(A) \le 2\varepsilon$. Thus $\alpha(A) = 0$ and A is compact. This proves the Lemma.

The following result was proved in [7] if we use Lemmas 1 and 2. <u>Theorem 1.</u> If T: $X \to X$ is continuous and there is a compact set $K \subset X$ which attracts neighborhoods of compact sets of X, then $J = \bigcap_{j \ge 0} T^{j}(K)$ is independent of the sets K satisfying the above property, J is the maximal compact invariant of T and is globally asymptotically stable.

The hypotheses of Lemma 2 also imply there is a closed, bounded convex neighborhood U of K and an integer n such that $T^{n}(U) \subset U$. Thus, if T possesses the fixed point property, then some iterate of T has a fixed point (see [7]).

Regarding fixed points of T , it is known (see [9], [14], [5], [8], [1]) that T completely continuous and point dissipative implies T has a fixed point. Below, we give some weaker conditions which assert that T has a fixed point, but before beginning this discussion, there is one other interesting result regarding condensing maps which was stated without proof by Gerstein [4] for point dissipative systems.

<u>Theorem 2.</u> a) If $T:X \to X$ is continuous, weak condensing and compact dissipative, then there is a compact invariant set K which attracts compact sets of X and T is local dissipative.

b) If T is weak condensing and point dissipative then there is a compact invariant set K that attracts points of X.

<u>Proof</u>: a) It is an easy matter to prove the following fact: If H is a compact set such that $T:H \to H$, then the set $A = \cap T^{n}(H)$ is compact, non empty, T(A) = A and $T^{n}(H)$ tends to A in the Hausdorff metric.

Now, for any compact set L of X , let $L_1 = \bigcup_{j \ge 0} T^j(L)$. Since L_1 is bounded, $L_1 = L \cup T(L_1)$ and T is weak condensing, it follows that $\alpha(L_1) = 0$ and thus $H = Cl(L_1)$ is compact. Also $T(H) \subset H$. Let $A_L = \bigcap_{n \ge 0} T^n(H)$. But, by hypothesis, there is a closed bounded set $B \subset X$ such that $A_L \subset B$ for each compact set L . Since $T(\cup A_L) = \cup A_L$, where the union is taken over all compact sets $L \subset X$, it follows that the set $K = Cl(\cup A_L)$ is compact, $T(K) \subset K$, and K attracts compact sets of X.

Nussbaum [13] has shown that if a non-empty invariant set attracts compact sets then it attracts neighborhoods of points and so if T is is weak condensing and compact dissipative it is local dissipative. This proves a) and the proof of b) is the same.

With a slight change in the argument above, we can prove the following:

Lemma 3. If T is a weak α - contraction, then

T asymptotically smooths.

<u>Proof</u>: If B is a bounded set, then $B^* = Cl(\cup A_x)$, where A_x is constructed as above for the elements $x \in B$ such that $T^n x \in B$, for any $n \ge 0$.

<u>Corollary</u>. If T is a weak α -contraction and local dissipative, then there is a compact invariant set that attracts neighborhoods of compact sets.

<u>3. Fixed point theorems</u>. In this section, we prove some fixed point theorems which have applications to the dissipative systems of the previous section. We need the following obvious : Lemma 4. If A is a compact set of X and $F \subset X$ contains a sequence $\{x_n\}$ such that $d(x_n, A) \to 0$ as $n \to \infty$, then $A \cap \overline{F} \neq \Phi$.

<u>Theorem</u> 3. Suppose $K \subset B \subset S \subset X$ are convex subsets with K compact, S closed, bounded, and B open in S. If T: $S \to X$ is continuous, $T^{j}B \subset S$, $j \ge 0$, and K attracts points of B, then there is a convex, closed bounded subset A of S such that

 $A = \overline{co} [\cup_{j \ge 1} T^{j}(B \cap A)], A \cap K \neq \Phi$

<u>Proof</u>: Let \mathscr{F} be the set of convex, closed, bounded subsets L of S such that $T^{j}(B \cap L) \subset L$ for $j \geq 1$ and $L \cap K \neq \Phi$. The family \mathscr{F} is not empty because $S \in \mathscr{F}$. If $L \in \mathscr{F}$, let $L_{1} = \overline{\operatorname{co}} [\cup_{j \geq 1} T^{j}(B \cap L)]$. By Lemma 4, $L_{1} \cap K \neq \Phi$. Also, L_{1} is convex, closed, and contained in S. Since $L \in \mathscr{F}$, we have $L \supset L_{1}$ and $L_{1} \supset T^{j}(B \cap L) \supset T^{j}(B \cap L_{1})$ for all $j \geq 1$. Thus, $L_{1} \in \mathscr{F}$. It follows that a minimal element A of \mathscr{F} will satisfy the conditions of the theorem.

To prove such a minimal element exists, let $(L_{\alpha})_{\alpha \in I}$ be a totally ordered family of sets in \mathscr{F} . The set $L = \bigcap_{\alpha \in I}$ is closed, convex and contained in S . Also, $T^{j}(B \cap L) \subset T^{j}(B \cap L_{\alpha}) \subset L_{\alpha}$ for any $\alpha \in I$ and $j \geq 1$. Thus, $T^{j}(B \cap L) \subset L$ for $j \geq 1$. If J is any finite subset of I, we have $K \cap (\bigcap_{\alpha \in J} L_{\alpha}) \neq \Phi$ and, from compactness, it follows that $K \cap (\bigcap_{\alpha \in I} L_{\alpha}) \neq \Phi$. Thus, $L \in \mathscr{F}$ and Zorn's lemma yields the conclusion of the theorem.

The same proof as given in Theorem 3 also proves

the following:

<u>Theorem 4</u>. The set A of Theorem 3 is compact if and only if there is a compact set Q = Q(B) such that $Q \cap B \neq \phi$ and $T^{j}(Q \cap B) \subset Q$ for all $j \ge 0$.

Lemma 5. (Horn [8]). Let $S_0 \subset S_1 \subset S_2$ be convex subsets of a Banach space X with S_0, S_2 compact and S_1 open in S_2 . Let T: $S_2 \to X$ be a continuous mapping such that for some integer m > 0, $T^j(S_1) \subset S_2$, $0 \le j \le m-1$, $T^j(S_1) \subset S_0$, $m \le j \le 2m - 1$. Then T has a fixed point.

<u>Theorem 5</u>. Suppose $K \subset B \subset S \subset X$ are convex subsets with K compact, S closed bounded and B open in S . If T: $S \to X$ is continuous, $T^{j}B \subset S$, $j \ge 0$, K attracts compact sets of B and the set A of Theorem 3 is compact, then T has a fixed point.

<u>Proof</u>: Since K is compact and convex, the set B can be taken as $S \cap \mathscr{D}_{\mathcal{E}}(K)$ for some $\mathcal{E} > 0$. Let Q be as in Theorem 4, $S_0 = Cl(\mathscr{D}_{\mathcal{E}/2}(K)) \cap Q$, $S_1 = \mathscr{D}_{\mathcal{E}}(K) \cap Q$ and $S_2 = S \cap Q$. Then $S_0 \subset S_1 \subset S_2$, S_0 , S_2 compact and S_1 is open in S_2 . Also, $T^j(S_1) \subset S_2$, $0 \le j \le n_1(K,\mathcal{E})$ and $T^j(S_1) \subset S_0$ for $j \ge n_1(K,\mathcal{E})$ for some integer $n_1(K,\mathcal{E})$. An application of Lemma 4 completes the proof of the theorem.

It is clear that Theorem 5 is equivalent to the theorem of Horn.

Any additional conditions on the map T which will ensure that the set A in Theorem 3 is compact will yield a fixed point theorem using Theorem 5. One result in this direction is <u>Theorem 6</u>. If T is weak condensing, then the set A in Theorem 5 is compact.

<u>Proof</u>: If $\widetilde{A} = \bigcup_{j \ge 1} T^{j}(B \cap A)$, then $\widetilde{A} = T(B \cap A) \cup T(\widetilde{A})$ and $\alpha(A) = \alpha(\widetilde{A}) = \max(\alpha(T(B \cap A)), \alpha(T(\widetilde{A}))$. Since $\alpha(T(\widetilde{A})) < \alpha(\widetilde{A})$ if $\alpha(\widetilde{A}) > 0$, it follows that $\alpha(\widetilde{A}) = \alpha(T(B \cap A))$. Thus, if $\alpha(B \cap A) > 0$, then $\alpha(A) = \alpha(\widetilde{A}) < \alpha(B \cap A) \le \alpha(A)$ and this is a contradiction. Thus, $\alpha(B \cap A) = 0$. However, this implies $\alpha(A) = 0$ and A is compact, proving the theorem.

<u>Corollary 1</u>. If the sets K,B,S in Theorem 5 exist, if K attracts the compact sets of B and T is weak condensing, then T has a fixed point.

Proof. This is immediate from Theorems 5 and 6.

<u>Corollary</u> 2. If $T: X \to X$ is continuous, pointwise dissipative and T is weak completely continuous, then T has a fixed point.

<u>Proof</u>: This is immediate from Lemma 1b) and Corollary 1.

<u>Corollary</u> 3. If T is a weak α - contraction and there are sets K,B,S as in Corollary 1, then T has a fixed point.

<u>Corollary 4</u>. If T is weak condensing and compact dissipative, then T has a fixed point.

<u>Proof</u>: From Theorem 2a), T is a local dissipative system. Thus $\overline{\text{co}}$ K has an open convex neighborhood B with bounded orbit. The result now follows from Theorems 2, 5, 6.

For α -contractions, this result is contained in [13].

<u>Corollary 5</u>. If T^{0} is weak completely continuous, T is weak condensing and point dissipative, then T has a fixed point.

Proof: This follows from Lemma 1b) and Corollary 4.

<u>Lemma</u> <u>6</u>. If S: $X \to X$ is a bounded linear operator with spectrum contained in the open unit ball, then there is an equivalent norm, $|\cdot|_1$, in X such that $|S|_1 < 1$.

<u>Proof.</u> Define $|x|_1 = |x| + |Sx| + ... + |S^nx| + ...$ The assumption on the spectrum implies there is an $0 \le r < 1$ such that $|S^n| < r^n$ if n is sufficiently large. Thus, there is a constant K such that $|x| \le |x|_1 \le K|x|$. Also, for $x \ne 0$

$$\frac{|Sx|_{1}}{|x|_{1}} = 1 - \left[1 + \frac{|Sx|}{|x|} + \frac{|S^{2}x|}{|x|} + \cdots\right]^{-1} \le 1 - \frac{1}{K}.$$

The lemma is proved.

<u>Corollary 6</u>. If T is compact dissipative, T = S + U, where S is linear and continuous with spectrum contained in the open unit ball and $T(\Omega)$ bounded implies $Cl(U(\Omega))$ compact for any $\Omega \subset X$, then T has a fixed point. If, in addition, S^{n_0} is completely continuous and T is only point dissipative, then T has a fixed point.

Proof: The first statement is immediate from Corollary 4 and Lemma 6. The second follows from Corollary 5 and the observation that T^{n_0} is S^{n_0} plus a completely continuous operator. The next result generalizes an asymptotic fixed point theorem of Browder [2].

<u>Theorem 7</u>. Suppose S_0, S_1, S_2 are subsets of a Banach space, S_0, S_2 convex, closed, S_1 open, S_2 bounded, $S_0 \subset S_1 \subset S_2$. Assume T: $S_2 \to X$ is condensing in the following sense: if Ω , $T(\Omega)$ are contained in S_2 and $\alpha(\Omega) > 0$, then $\alpha(T(\Omega)) < \alpha(\Omega)$. Assume also that T satisfies: for any compact set $H \subset S_1$, $T^j(H) \subset S_2$, $j \ge 0$, and there is a number N(H) such that $T^j(H) \subset S_0$ for $j \ge N(H)$. Then T has a fixed point.

<u>Proof</u>: Following the proof of Theorem 2, there is a compact set K which attracts the compact sets of S_1 . Since $K \subset S_0$, it follows that $\overline{co} K \subset S_0$. Let B be a closed, convex neighborhood of $\overline{co} K$, $B \subset S_1$. Theorems 4 and 5 complete the proof.

4. Dissipative flows.

Let $\{T(t), t \ge 0\}$ be a flow in a Banach space X. A point $x \in X$ is said to be an equilibrium point if $T(t)x_0 = x_0$ for any $t \ge 0$. We also say that a compact set J attracts a compact set H if, for any $\varepsilon > 0$, there is a $t^*(H,\varepsilon)$ such that $T(t)H \subset B_{\varepsilon}(J)$ for $t \ge t^*(H,\varepsilon)$. A set $Q \subset X$ is said to be <u>boundedly compact</u> if $P \cap Q$ is compact for any closed bounded set $P \subset X$.

<u>Theorem</u> 8. If $\{T(t), t \ge 0\}$ satisfies:

 α_{l}) there is a compact set J that attracts the compact sets of J_o;

 α_2) there is a number w > 0 and a family of boundedly compact (in particular compact) sets $Q(\tau)$, $0 < \tau < w$ such that $Q(\tau) \cap J_0 \neq \phi$ and $T(k\tau)Q(\tau) \cap Q(\tau)$, $0 < \tau \le w$, k positive integer;

then there is an equilibrium point.

Proof: Take the sequence $w_n = w/n$. From Theorems 2, 4, 5, it follows that for each n, there is an x_n satisfying: $T(w_n)x_n = x_n$. Since $w_n > 0$, x_n is in J. Changing the notation if necessary, we may assume that x_n converges to x_0 . Let $k_n(t)$ be the integer defined by: $k_n(t)w_n \le t < (k_n(t) + 1)w_n$. Then, $T(k_n(t)w_n)x_n = x_n$ and so: $|T(t)x_0 - x_0| \le |T(t)x_0 - T(k_n(t)w_n)x_0| + |T(k_n(t)w_n)x_0 - T(k_n(t)w_n)x_n| + |x_n - x_0|$. Since $k_n(t)w_n$ tends to t as $n \to \infty$, the right hand side of the above expression goes to zero and this proves the theorem.

As an application of Theorems 4,5 and 8, we have: <u>Corollary 7</u>: If $\{T(t), t \ge 0\}$ is weak condensing for any t > 0 and satisfies α_1 , then there is an equilibrium point. <u>Corollary</u> 8. If $\{T(t), t \ge 0\}$ is a weak α - contraction and satisfies α_1 , then there is an equilibrium point.

A flow $\{T(t), t \ge 0\}$ is said to be local dissipative if there is a bounded set B such that for any point $x \in X$ there is a neighborhood 0_x of x and a t(x) such that $T(t)0_x \subset B$ for $t \ge t(x)$.

A flow {T(t), $t \ge 0$ } is compact (point) dissipative if there is a bounded set B such that for any compact set H (any point x) there is a t(H) (t(x)) such that T(t)H \subset B (T(t)x \in B) for $t \ge t(H)$ ($t \ge t(x)$).

Lemma 7.

a). If T(w) is weak condensing for some w > 0and is compact (point) dissipative with compact attractor K, $T(w)K \subset K$, then $\{T(t), t \ge 0\}$ is compact (point) dissipative with attractor $J = \bigcup_{0} < t < w$ T(t)K.

b). If there is a compact set K such that $T(w)K \subset K$ and K attracts neighborhoods of points, then the set J above attracts neighborhoods of points relative to the flow $\{T(t), t \ge 0\}$.

c). If $\{T(t) \ge 0\}$ is weak condensing for some $\omega > 0$ and compact dissipative, it is local dissipative.

<u>Proof</u>: For any $\mathcal{E} > 0$, there is a $\delta > 0$ such that $T(t)B_{\delta}(K) \subset B_{\mathcal{E}}(J), 0 \le t \le w$. Since $T(w)K \subset K$, parts a) and b) are proved. Part c) follows from Theorem 2, and parts a) and b).

<u>Corollary 9</u>. If for some w > 0, T(w) is weak completely continuous and point dissipative then $\{T(t), t \ge 0\}$ is local dissipative.

<u>Proof</u>: The set K in Lemma 1(b) may be chosen to satisfy the hypothesis of Lemma 7(b). From the previous theorem, we can state the following:

<u>Theorem 9</u>. If $\{T(t), t \ge 0\}$ is weak condensing for t > 0, then the following assertions hold:

a). If $\{T(t), t \ge 0\}$ is compact dissipative, then there is an equilibrium point;

b). If $\{T(t), t \ge 0\}$ is point dissipative and T(w) is weak completely continuous for some w > 0, then there is an equilibrium point.

Corollary 10. If $\{T(t) = S(t) + U(t), t \ge 0\}$ then the following assertions hold:

a). If $\{\P(t), t \ge 0\}$ is compact dissipative, S(t) is linear with spectrum contained inside the unit ball for t > 0 and U(t) is weak completely continuous, then there is an equilibrium point.

b). If S(w) is completely continuous for some w > 0 and $\{T(t), t \ge 0\}$ is point dissipative, there exists an equilibrium point.

5. Functional differential equations.

As an application of the previous results, we consider a special class of neutral functional differential equations which are periodic in time. Let $r \ge 0$ be a given real number, E^n be an n-dimensional linear vector space with norm $|\cdot|$, $C([a,b],E^n)$ be the space of continuous functions from [a,b] to E^n with the uniform topology and let $C = C([-r,0],E^n)$. For $\varphi \in C$, $|\varphi| = \sup_{-r \le \Theta \le O} |\varphi(\theta)|$. For any $x \in C([-r,A),E^n)$, $A \ge 0$, let $x_t \in C$, $t \in [0,A]$, be defined by $x_t(\theta) = x(t+\theta)$, $-r \le \theta \le 0$. Suppose D: $R \times C \to E^n$ is a continuous linear operator $D\varphi = \varphi(0) - g(t,\varphi)$.

(1)

$$g(t,\phi) = \int_{-r}^{0} [d\mu(t,\theta)]\phi(\theta) -r$$

$$|\int_{-s^{+}}^{0} [d\mu(t,\theta)]\phi(\theta)| \leq r(s)|\phi|$$

for $s \ge 0$, $\varphi \in C$ where μ is an $n \times n$ matrix function of bounded variation, Υ is continuous and nondecreasing on [0,r], $\Upsilon(0) = 0$. If f: $R \times C \rightarrow E^n$ is continuous, then a NFDE is a relation

(2)
$$\frac{d}{dt} D(t, x_t) = f(t, x_t).$$

A solution $x = x(\phi)$ through ϕ at time σ is a continuous function defined on $[\sigma - r, \sigma + A)$, A > 0, such that $x_{\sigma} = \phi$, $D(t, x_{t})$ is continuously differentiable on $(\sigma, \sigma + A)$ and (2) is satisfied on $(\sigma, \sigma + A)$. We assume

We assume a solution $x(\phi)$ of (2) through any $\phi \in C$ exists on $[\sigma - r, \infty)$, is unique and $x(\phi)(t)$ depends continuously on $(\phi, t) \in C \times [\sigma - r, \infty)$.

In the following, we let $T_D(t,\sigma)$: $C \to C$, $t \ge 0$, be the continuous linear operator defined by $T_D(t,\sigma)\phi = y_t(\phi)$, $t \ge \sigma$, where $y = y(\phi)$ is the solution of

(3)
$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{D}(\mathbf{t},\mathbf{y}_{t}) = 0, \ \mathbf{y}_{\sigma} = \varphi.$$

If D is ω -periodic in t, $C_D = \{\phi \in C: D(0,\phi) = 0\}$, then C_D is a Banach space with the topology of C, $T_D(w,0): C_D \to C_D$, and $T_D(nw,0) = T_D^n(w,0)$.

The operator D is said to be <u>uniformly stable</u> if there exist constants $K \ge 1$, $\alpha > 0$, such that

(4)
$$|T_{D}(t,\sigma)\phi| \leq Ke^{-\alpha(t-\sigma)}|\phi|, \quad \phi \in C_{D}, \quad t \geq \sigma.$$

Notice the operator $D\phi = \phi(0)$ corresponding to retarded functional differential equations is always stable.

Remark. The conclusion of the main theorem below is valid under the weaker hypothesis that $D(\phi) = D_0(\phi) + \int A(\theta)\phi(\theta)d\theta$ where D_0 is stable. For -r simplicity in notation, we do not consider this more general case.

We need some results from Hale and Cruz [6]. It is shown in [6] that D uniformly stable implies there exists an $n \times n$ matrix function B(t)defined and of bounded variation on $[-r,\infty)$, continuous from the left, $B(t) = 0, -r \le t \le 0$, and a constant M_1 such that

(5)
$$|T_{D}(t)\phi| \leq M_{1}|\phi|, t \geq 0, \phi \in C, \sup_{\substack{t \geq -r}} B(t) \leq M_{1},$$

and, for any continuous function h: $[0,\infty) \to \mathbb{E}^n$, the solution of the problem

(6)
$$D(t, x_t) = D(0, \varphi) + \int_0^t h(s) ds, \quad x_0 = \varphi$$

is given by

(7)
$$x_{t} = T_{D}(t)\phi - \int_{O}^{t} B_{t-s}h(s) ds .$$

Furthermore, there exist n functions $\varphi_1, \dots, \varphi_n$ in C such that $D(0, \Phi) = I$, the identity, where $\Phi = (\varphi_1, \dots, \varphi_n)$.

Let $\psi: C \to C_D$ be the continuous linear operator defined by $\psi(\phi) = \phi - \Phi D(\phi)$.

Lemma 8. If D is uniformly stable and f maps bounded sets of RxC into bounded sets of Eⁿ, then there is a family of continuous transformations $T_1(t): C \to C$, $t \ge 0$ which are weak completely continuous and

$$T(t,0)\phi = T(t)\phi = x_t(\phi) = T_D(t)\psi(\phi) + T_1(t)\phi$$

If $D\phi=\phi(0)$, then $\cdot \, {\mathbb T}(t)$ is weak completely continuous for $\, t \geq r$.

<u>Proof</u>: Equation (2) with initial value $x_0 = \phi$ is equivalent to

$$D(x_t) = D(\phi) + \int_0^t f(s,x_s) ds, \quad t \ge 0, x_0 = \phi,$$

which from (7) is equivalent to

$$\mathbf{T}(t)\boldsymbol{\varphi} = \mathbf{x}_{t} = \mathbf{T}_{D}(t)\boldsymbol{\psi}(\boldsymbol{\varphi}) + \mathbf{T}_{D}(t)\boldsymbol{\Phi}D(\boldsymbol{\varphi}) - \int_{0}^{t} \mathbf{B}_{t-s}^{D}\mathbf{f}(s,\mathbf{x}_{s})ds = \mathbf{T}_{D}(t)\boldsymbol{\psi}(\boldsymbol{\varphi}) + \mathbf{T}_{1}(t).$$

It is now an easy matter to verify the assertions in the theorem.

Since the condition that D is uniformly stable implies the linear operator $S(\omega) = T_D(\omega)\psi$ has spectrum contained inside the unit ball, Corollary 6, Lemma 1b) and Corollary 10 imply

<u>Theorem</u> 4. If there exists an $\omega > 0$ such that $f(t+\omega,\phi) = f(t,\phi)$ for all $\phi \in C$, f takes bounded sets of $R \times C \to E^n$ and system (2) is compact dissipative, then there is an ω -periodic solution of (2). If f satisfies the same hypotheses and is independent of t, then there is a constant function c in C such that f(c) = 0; that is, an equilibrium point of (2). If $D(\phi) = \phi(0)$, then the same conclusions are true for point dissipative.

References

- [1] <u>Billotti, J. E. and J. P. LaSalle</u>, Periodic dissipative processes. Bull. American Math. Soc., 6(1971), 1082-1089.
- [2] <u>Browder, F. E.</u>, On a generalization of the Schauder fixed point theorem. Duke Math. J., 26(1959), 291-303.
- [3] <u>Darbo, G</u>., Punti uniti in trasformazione a codominio non compatto. Rend. Sem. Mat. Univ. Padova 24(1955), 84-92.
- [4] <u>Gerstein, V. M.</u>, On the theory of dissipative differential equations in a Banach space. Funk. Ana. i Priloz. 4(1970), 99-100.
- [5] <u>Gerstein, V. M. and M. A. Krasnoselskii</u>, Structure of the set of solutions of dissipative equations. Dokl. Akad. Nauk. SSSR 183 (1968), 267-269.
- [6] <u>Hale, J. K. and M. A. Cruz</u>, Asymptotic behavior of neutral functional differential equations. Arch. Rat. Mech. Ana. 5(1969), 331-353.
- [7] <u>Hale, J. K., LaSalle, J. P. and M. Slemrod</u>, Theory of a general class of dissipative processes. J. Math. Ana. Appl.
- [8] <u>Horn, W. A.</u>, Some fixed point theorems for compact mappings and flows on a Banach space. Trans. Amer. Math. Soc. 149 (1970), 391-404.
- [9] Jones, G. S., Stability and asymptotic fixed point theory. Proc. Nat. Acad. Sci. USA, 53 (1965), 1262-1264.
- [10] Jones, G. S., Fixed point theorems for asymptotically compact mappings. Univ. of Maryland Report BN-503(1967).
- [11] <u>LaSalle, J. P.</u>, A study of synchronous asymptotic stability. Annals Math. 65 (1957), 571-581.
- [12] <u>Levinson, N.</u>, Transformation theory of nonlinear differential equations of second order. Annals. Math. 45 (1944), 723-737.
- [13] <u>Nussbaum, R.</u>, Some asymptotic fixed point theorems. Trans. of <u>Amer. Math. Soc.</u> To appear.
- [14] <u>Pliss, V. A.</u>, Nonlocal Problems of the Theory of Oscillations. Academic Press, New York, 1966 (translation of 1964 Russian edition).
- [15] <u>Reissig, R., Sansone, G. and R. Conti</u>, Nichtlineare Differential Gleichungen Höherer Ordnung, Edizioni Cremonese, Roma, 1969.
- [16] <u>Yoshizawa, T.</u>, Stability Theory by Liapunov's Second Method. Math. Soc. of Japan, Tokyo, 1966.