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ABSTRACT

Two representations of the language recognition problem for a theorem

prover in first-order logic are presented and contrasted. One of the re-

presentations is based on the familiar method of generating sentential

forms of the language, and the other is based on the Cocke parsing algorithm.

An augmented theorem prover is described which permits recognition of re-

cursive languages. The state-transformation method developed by Cordell

Green to construct problem solutions in resolution-based systems can be

used to obtain the parse tree. In particular, th'e end-order traversal of

the parse tree is derived in one of the representations. The paper defines

an inference system, termed the cycle inference system, which makes it

possible for the theorem prover to model the method on which the represen-

tation is based. The general applicability of the cycle inference system

to state-space problems is discussed. Given an unsatisfiable set S, where

each clause has at most one positive literal, it is shown that there exists

an input proof. The clauses for the two representations satisfy these con-

ditions, as do many state-space problems.



1. Introduction

In this paper we are concerned with the application of mechanical

theorem proving in first-order logic to the problem domain of language re-

cognition. The languages under consideration are those generated from

grammars of the Chomsky hierarchy consisting of unrestricted, context-

sensitive, context-free, and regular grammars.

Selecting this problem domain for study was based on the realization

that a great deal is known about recognizing languages in the Chomsky hier-

archy. Hence, the results that one obtains can be compared with an exist-

ing, body of knowledge. The Resolution Principle is a rather powerful tool,

and hence cumbersome and too general for many problem domains. Our hope

was to shed some light on this particular problem. That is, assuming that

mechanical theorem proving can be applied to the language recognition prob-

lem, can space and time bounds be obtained that compare favorably to those

of existing techniques?

We show how to represent the problem of language recognition in the

first-order predicate calculus and thereby permit the use of a mechanical

theorem prover based on the Robinson Resolution Principle. We further

show that several different representations of the language recognition may

be formulated and, depending on the particular representation, comparable

results may be obtained for context-free languages. A representation

modeled after the Cocke recognizer (Cocke and Schwartz, 1970; Robinson and

Marks, 1965) led to comparable results for context-free language recogni-

tion considering both time and space. The representations developed for

recursive languages are complete and sound. An augmented theorem prover

is described that permits determination of whether or not given strings

are in a recursive language. A resolution-based inference system, called



the cycle inference system, was designed to efficiently generate deductions

from the representations presented in this paper and from similar types of

representations. Given an unsatisfiable set S, where each clause has at

most one positive literal, it is shown that there exists an input proof.

The clauses for the two representations satisfy these conditions, as do

many state-space problems.

In Section 2 of this report we provide background for those unfamiliar

with problem representation and search, language recognition, and theorem

proving. Section 3 presents two representations of the language recogni-

tion problem, the derivation sequence representation and the derivation tree

representation. How the cycle inference system and an augmented theorem

prover can recognize languages using these representations is described in

Section 4. Section 5 shows how to extract a parse tree. Finally, Section

6 discusses the conclusions, and in particular, the general applicability

of the cycle inference system.



2. Background

This section provides the reader with some background material in the

areas of problem representation and search, language recognition, and

theorem proving.

2.1 Problem Representation and Search

Problem-solving may be considered to consist of two parts. First, the

problem must be formulated for the problem-solver. The result of this

"setting-up" process is called a representation of the problem. The second

part is the process of determining the solution to the problem from the re-

presentation, and is termed search. Beyond simply representing a problem,

one is interested in finding a good representation. ^Developing a good re-

presentation of a problem involves finding a way of looking at the problem

which simplifies the process of finding a solution. As noted by Amarel

(Amarel, 1968), the problem of representation is concerned with the

relationship between different ways of formulating a problem to a problem-

solving system, and the efficiency with which the system can be expected

to find a solution. Some representations lend themselves to fast search

techniques and hence can be thought of as good representations. However,

a good representation combined with inefficient search techniques will not

result in efficient solutions. On the other hand, one could have a very

efficient search which operates inefficiently because of the choice of a

poor representation. Thus, the process of finding a solution to a problem

could be inefficient because of a poor representation, a poor search tech-

nique, or both.

When the problem-solving system is a resolution-based theorem prover,

the problem of representation becomes one of formulating the problem in

the first-order predicate calculus. The formulation of the problem must



have the property that solutions to the problem, if there are any, logically

follow from it. The problem of finding efficient search techniques becomes

one of directing the theorem prover towards a refutation (see Section 2.3).

Some problems can be represented in what has been called a state-space

problem representation (Nilsson, 1971). In this approach, a problem is re-

presented by a set of operators which transform one state description into

another. The definition of a state-space representation of a problem con-

sists of:

(1) the specification of the form of a state description and the

initial state description.

(2) the specification of the set of operators and the transformations

which they make on the state descriptions.

(3) the specification of the properties of goal state descriptors.

The space which is defined by a state-space problem representation can be

thought of as a graph where the nodes represent states and the arcs repre-

sent operators. The representation defines the graph implicitly. Search

can then be viewed as making explicit part (or possibly all of the space if

it is finite) of an implicit graph.

There are many algorithms for searching the space of a state-space

problem representation (Nilsson, 1971). These include the breadth-first and

uniform-cost algorithms. The uniform-cost algorithm evaluates the merit

of a node on the basis of the cost it took to reach the node, and chooses

from among all the unexpanded nodes the one with minimal cost. Other search

algorithms rank the unexpanded nodes on the basis of a heuristic judgment

on how close each node is to a goal node (Michie, 1970). Hart, Nilsson,

and Raphael (Hart, et al, 1968) have developed an algorithm which uses a



merit ordering that has both a cost component and heuristic component.

2.2 Language Recognition

We denote, as is usual, a grammar to be a quadruplet (VN,VT,P,S) where

the symbols VN,VT,P and S are, respectively, the nonterminals, terminals,

productions, and start symbol. VN, VT, and P are finite sets, and VN fl VT

is the empty set, while V = VN U VT is termed the vocabulary of G.

The set of productions P consist of expressions of the form a •* 3

where a is a string in V and 6 is a string in V* . By V* we mean

the set of all strings composed of symbols of V, including the empty sen-

tence, and V = V* - {e} , where e is the empty sentence.

To describe the language generated by a grammar we first define the
* * +

relations ^> and p> between strings in V . If a -> 6 is a produc-

tion of P , and y and <5 are strings in V , then ia& ^> ygS . That

is, the production applied to the strings ya<5 results in a new string

yBS . Now if a- , , . . . ,a are strings in V , and a, ^> a--, a2 p> a.,,
*

'"'°m-l (P °m ' ^ien we 5ay t^ie ai derives a and write a, ^> a .

The sequence a,, . . . ,a is called a derivation sequence. If a, = S ,

the start symbol of G, then the a. are called sentential forms of G .

A language generated by G , denoted by L(G) , is defined to be
i * +{w|S p> w and w is in VT> . Thus a string is in L(G) if it is a

sentential form of G which consists solely of terminal symbols. Since it

will be clear as to what grammar is being referred to we shall drop the G

that appears below the double arrow.

The Chomsky hierarchy of grammars consists of four different types of

grammars distinguished by restrictions made on the nature of the produc-

tions used in the grammar. The grammar defined above, which makes no re-

strictions on the productions is termed unrestricted. If every production



a -> g of P has " the property that | 0 | ^ | a | , where | x | denotes the

number of symbols of the string x , the grammar is called context-sensitive.

If every production a -> 6 of P is such that a is a single nonterminal

and 3 is any non-empty string, then the grammar is termed context-free.

Finally, if every production a -> $ of P is either of the form A '->• aB

or A -> a , where A and B are nonterminals and a is a terminal, then

the grammar is -called a regular grammar.

A language generated by an unrestricted, context-sensitive, context-

free, or regular grammar is termed an unrestricted, context-sensitive,

context-free, or regular language respectively.

We say that a grammar G is recursive if there is an algorithm which

will determine for any string w , whether w is generated by G .

Context-sensitive, context-free, and regular grammars are recursive, because

the length preserving property of the productions makes it possible to

successively generate all of the sentential forms in increasing lengths. A

straightforward algorithm to determine whether or not w is in L(G) is

to generate all of the sentential forms of length less than or equal to the

length of w . If w is among them then w is in L(G) ; otherwise w

is not in L(G) .

A derivation of a sentence in a context-free language can be represen-

ted by a tree, called a derivation tree. The root of a derivation tree of

a sentence is labeled with the start symbol of the graranar, the non-leaf

nodes are labeled with nonterminals in a way which represents the applica-

tions of the productions to the sentential forms, and the leaves are

labeled from left to right with the terminal symbols of the sentence.

Algorithms for recognizing context-free languages have been developed

by Cocke (Cocke and Schwartz, 1970; Robinson and Marks, 1965) and by



Younger (Younger, 1967). They require that the grammar be in Chomsky Normal

Form (Hopcroft and Ullman, 1969). A context-free grammar is in Chomsky

Normal Form if all of its productions are of the form A -> a or A -> BC ,

where A , B , and C are nonterminals and a is a terminal. Chomsky

(Chomsky, 1959) has shown that every context-free grammar can be placed in

Chomsky Normal Form. The recognizers of Cocke and Younger require a time

proportional to n , where n is the length of the input string.

. The basis of the algorithms of Cocke and Younger is the construction

of a triangular array whose entries are sets of nonterminals. All of the

nonterminals in a given set derive a substring of the input string which is

determined by the location of the set in the array. The only difference .

between the two algorithms is the parameters which are used to define the

mapping from the location of a set to the derived substring. Since the

logic of the Cocke algorithm is the method on which one of.the representa-

tions of the paper (the derivation tree representation) is based, the

algorithm is now discussed in some detail. A representation similar to the

derivation tree representation which is based on the Younger algorithm can

easily be constructed.

Let [d. .] be the triangular array, called the span triangle.. We1>J .
define elements of the set d. . to be the nonterminals which derive the1'J
substring which begins at the i position of the input string and ends

st *at the (j-1) position. That is, A e d. . iff A =^> a....a. , , where1»J 1 J "-1-
a,...a is "the input string. An entry d. . in the span triangle is1 n 1,3

equal to the empty set whenever there is no nonterminal which derives the

substring which begins at the i position of the input string and ends

at the (j-l)S position.

The algorithm is to compute the span triangle to determine whether or



not the start symbol is in dj_ n+1 • Jf S e di n+l
 then the inPut string

*
is accepted, since S ==> a,...a iff S e d, +, .

The elements of the first row of the triangle are determined directly

from the terminal productions of the grammar by the rule: A e d. . - ,

1 £ i £ n iff A -»• a. is a production in the grammar. To determine the

remaining elements of the span triangle, the following rule is used. The

nonterminal A e d- . iff there is a production A ->• BC and an integer1 > J
£ , such that i < H < j , B e d - , and C e d - . The rule is based

1,J6 H, ,3
*

on the fact that A =>' a. ...a. , iff there is a production A -> BC and
* *

an integer £, such that i < £ < j , B => a - . . . a , , and C => a ... a. , .
1 Jo~JL J6 J ~ J.

That is, A derives a substring iff there is a production A -> BC in the

grammar and the substring can be split into two parts in such a way that

B derives the first part of the substring and C derives the second part.
*

A simple-induction proof will show that S e d, , iff S => a,...a ,

that is, the algorithm does recognize a context-free language.

2.3 Theorem Proving Fundamentals

In dealing with theorem proving in this paper, we consider only the

case where we are proving theorems within the first-order predicate calcu-

lus without equality. We assume that the reader is familiar with the

first-order predicate calculus, and provide only that background in

theorem proving dealing with the Robinson Resolution Principle.

By a clause we mean a disjunction of literals. A literal is either

an atom or the negation of an atom. An atom is a predicate letter with

terms as arguments of the predicate. We shall use |~| as notation for

the null clause, the clause which is always false. Given a well-formed-

formula (wff) within the first-order predicate calculus, there exists an

algorithm that will transform the wff into clause form (Davis, 1963). The

8



transformation is model preserving. That is, if.the original wff is valid

under some interpretation, then the clause form is valid under that inter-

pretation. Clause form has been referred to as the Language of Davis and

Putnam (Davis and Putnam, 1960).

The result of applying a substitution a to an expression E is de-

noted by Ea . That is, a substitution is a replacement of a variable

within the expression by a term. If Ea = F for some a, then F. is said

to be an instance of E . We shall say that E has been instantiated when

we have made a substitution in E . In the event that F has no variables,

then F is a ground expression and a ground instance of E .

If expressions E and F have a common instance G , than E and F

are unifiable and there is a most general common instance E0 = Fa , where

a is the most general unifier of E and F . The most general unifier

of E and F is such that if y is any unifier of E and F , then .there

is a A such that y = aA . Robinson (Robinson, 1965) has developed an

algorithm for unifying two expressions.

A factor of a clause C is a clause Ca , where a is the most

general unifier of a subset of literals of C . Let C, and C- be two

clauses with the literal L, in C, and the negation of the literal L2

in C2 . If the set {L-,, L̂~} is unifiable with most general unifier

a , then we define the resolvent of C, , and C2 to be the clause CL =

{(C-̂  - L^) U (C2 - L2) }a . The clauses C, and C2 are called resolvends.

It can be shown (Kowalski and Hayes, 1969) that if the two resolvends are

valid, then the resolvent is valid; and that if a clause C is valid,

then so is a factor of C .

Given a set S of clauses that are unsatisfiable, then if we form

the set R(S) which contains the set S and the resolvents of all pairs



of clauses in S or factors of clauses in S , and if we define R(S) = S ,

and Î +1(S) = R(Rn(S)) , then for some finite n , the null clause will be

in R̂ S) . The process of forming the sets Rn(S) is termed the Resolu-

tion Principle. Robinson (Robinson, 1965) has shown that the Resolution

Principle is complete and sound. It is termed complete because when given

a set S of unsatisfiable clauses, by applying the Resolution Principle

the null clause will result. It is called sound because when given a set

S of clauses and given that resolution applied to this set of clauses re-

sults in the null clause, the set S of clauses is unsatisfiable.

1Q



3. The Representations

This section presents the derivation sequence representation for re-

cognizing a language within the Chomsky hierarchy, and the derivation tree

representation of the problem of recognizing a context-free language, and

illustrates each representation for a particular language. The former re-

quires an axiom schema to represent the problem, while the latter uses a

fixed number of axioms.

3.1 The Derivation Sequence Representation

Consider the problem of recognizing L(G) where G = (V»r,VT,P,S) .

The constants used in the representation are VV, U V^ . No functions are

used. There are two predicate schemas used in the representation. They

are PROD. ̂ Ca^. . . ,a.,blf.. . ,bk) and SENTFORN̂ Cx-ĵ ,. . . ,xk) , where j

and k are positive integers. The first predicate may be interpreted to

mean that a,. . .a. -> b, . . ,b, is a production in G , and the second may

be interpreted to mean that x,...x, is a sentential form in L(G) . The

axioms of the representation are:

DS1 = {PROD. ,(a . . ,a.,b . . ,bv) | j , k are positive integersj ,K i j i K

and a,... a. -*-b,...b, is in P}

DS2 = {SENTFORM-̂ S) | S is the start symbol of G}

DS3 = { (Vxr . . . ,xm,y1, . . . ,yk) [SENTFORMm(x1 , . . . ,x]n) A PROD.. >k(xi+1,

- SENTFORMm+k-j
 (xl>' ' ' >xi>yl" ' • '>V

. . . , x ) ] | m , j , i , k are integers such that 1 ̂  m ,

l £ j £ m , 0 £ i £ m - 1 , l ^ k } .

The set of axioms DS1 and the axiom DS2 represent the productions of

G and the start symbol of G respectively. The set of axioms DS3

11



represents to the problem-solver the fact that productions specify which

substrings of sentential forms can be transformed, and what substrings

they can be transformed into. The representation of the problem of recog-

nizing L(G-J , where the grammar G, (Hopcroft and Ullman, 1969) is shown

in Figure 3.1> is given in Figure 3.2.

The representation of the language recognition problem depends on the

type of the grammar G . Since the lengths of sentential forms for unres-

tricted grammars are unbounded, the set of axioms DS3 which would be required

to represent the language recognition problem for unrestricted languages is in-

finite. Indeed, the derivation sequence representation does not represent

the language recognition problem for unrestricted languages, because the

procedure of generating sentential forms to perform the recognition process

does not always halt for unrestricted languages.

For recursive languages the sentential forms that can be used to re-

cognize a sentence of length n cannot exceed n in length. This places

the bound m + j - k ^ n on the set of axioms DS3. Thus for any particu-

lar recursive language only finitely many axioms are required, and the

derivation sequence representation is indeed a representation. The left

hand side of productions in a context-free grammar have length one, thus

the integer j in DS1 and DS3 is one for the problem of recognizing a

context-free language. For right-recursive regular languages the repre-

sentation becomes (b, is a terminal symbol): .

DS11 =-{PRDD1 2(a1,b1,b2) | a1 + b^ is in P} U {PRODj 1(a1,b1) [

a, -> b, is in P>

' DS2' = (SENTFORMjCS) | S is the start symbol of G}

12



Gl = (V V P» S)

where

{S, B, C}

VT = {a, b, c}

P =<

S -+ aSBC

S -+ aBC

CB -v BC

aB •*• ab

bB + bb

bC + be

cC -+ CC

FIGURE 3,1 A context<-aenslttve grammar, G ,

13



DS1 =

PROD1 3(S,a ,B,C)

PROD2 2 (C ,B ,B ,C)

PROD2 2(a,B,a,b)

PROD2 2(b,C,b,c)

PROD (c,C,c,c)

DS2 = {SENTFORM (S)}

DS3 = { (^xn , . . . ,x ,y , . . . ,y ) [SENTFORM (x , . . . ,x )
x . i n _ L K . n i j . n i

-A PROD. )k(x i+1,...,x i+.,yi,...,yk) -> SENTFORM^^ (x^ . .'. .x .^

y1.,...,yk,xi+j+1,...,xm)] | ( j ,k) is (1,4), (1,3), or (2 ,2)}

FIGURE 3.2 The derivation sequence representation for the grammar G

14



DS3' =

SENTFORMm+1 (X]_,... ,Xm_ l ̂ ,y2) | 1 <_ m] } U

{CVxj,... .x̂ ) [SENTFORiyXj,... ,xm) A PROD1

SENTFORMm(x1,...,xm_1,y1) | 1 <_m]}.

Not only does the representation depend on the type of the grammar which

generates the language which is to be recognized, it also depends on the

particular grammar. Thus, the set DS3 for the example of Figure 3.2 does

not include any axioms which contain the predicate symbol PROD- , except
J >K

for PROD, 4, PROD1 .,, and PRDD9 7.1,4 1, J L,Z

3.2 The Derivation Tree Representation

Unlike the derivation sequence representation which is applicable to

all languages in the Chomsky hierarchy, the derivation tree representation

is only applicable to context-free languages whose grammars are in Chomsky

Normal Form. Let G = (VN,VT,P,S) be a context-free grammar which is in

Chomsky Normal Form. The derivation tree representation of the problem

of recognizing L(G) uses the constants VN U VT, and the following func-

tions and predicates.

add(u,v) the addition function

PROD, ,(a,b) a ̂  b is in P
-"-> -1-

PROD,' (a,b,c) a -> be is in Pi, z

INPUT(x,u) x is the u symbol in the input string

DERIVE(x,u,v) x derives the substring of the input string

which begins at the u position and ends

stat the (v-1) position.

15



The axioms of the representation are:

DTI = {PROD, i (a,b) I a -> b in in P} U {PROD, -(a,b,c) I a -> be isl,lv ' 1,2V !

in P}

DT2 = {(Vy,u) • [INPUT(y,u) A PROD.,̂  ^y) •* DERIVE(x,u,add(u,l))]>

DT3 = {(Vx,y,z,u,v,w) [DERIVE(y,u,w) A DERIVE(z,w,v) A PROD(x,y,z) +

DERIVE(x,u,v]}.

The axiom DT2 represents to the problem-solver the fact that if y is

the u input symbol and x -> y is a production, then x derives the

substring of the input string which begins at the u position and ends

at the u position. Thus if ai---a
n is the input string, then

A A
a => a, . The axiom DT3 represents the fact that if y => a ...a ,,u F • } u w-1'

A A
z => a . ..a , , and x -»• yz are true, then x => a ...a _-,. DT2 will be

used by the problem-solver to deduce the syntactic categories of the ter-

minal symbols of the input string, and DT3 will be used to deduce which

nonterminals derive which substrings of the input strings.

The representation of the problem of recognizing L(G2) , where the

grammar G2 is given in Figure 3.3, is shown in Figure 3.4 for the well-

known string, "they are flying planes."

16



G2 = (VN,VT,P,SENT)

{SENT, V,VP,NP, PRN, COP, AUX, ADJ, VPROG, N}

V = {they, are;, flying, planes}

P =

SENT PRN VP

•»• V NVP

VP -»• COP NP

SENT •*• PRN V

V •*• AUX VPROG

NP •*• ADJ N

PRN -> they

COP -»•• are

AUX -»• are

ADJ •*• flying

VPROG -*- flying

N •*• planes

FIGURE 3.3 A context-free grammar, G_.

17



DTI =

PROD 9(SENT,PRN,VP)
•*•»^

^ 2
(VP,V,N)

PROD (VP,COP,NP)

PROD (SENT,PRN,V)

PROD (V,AUX,VPROG)

PROD (NP,ADJ,N)

PROD (PRN,they)
J-»•*•

PROD (COP,are)

PROD. AUX.are)

PROD (ADJ,flying)

PROD (VPROG,flying)

PROD (N,planes)
-'->-'-

DT2 = (Vy,u)[INPUT(y,u) A PROD1 (x,y) -> DERIVE(x,u,add(u,l))]
-L >-L •

DT3 = (¥x,y,z,u,v,w)[DERIVE(y,u,w) A DERIVE(z ,w,v) A ?ROD(x,y,z) -»• DERIVE(x,u,v) ]

FIGURE 3.4 The derivation tree representation for the grammar G_.

18



4. Language Recognition in the Representation

In Section 3 two representations of the language recognition problem

and examples of each were presented. In this section we show how the re-

presentations are used to perform recognition. To prove that a string is

in a language L(G) the string is represented as a theorem and the set of

first-order predicate calculus statements consisting of the axioms of the

representation of G and the negation of the theorem are shown to be un-

satisfiable. Section 4.3 explains the use of what we have termed the cycle

inference system, which reduces the number of clauses necessary to perform

recognition. Recognizing a string in a language includes being able to

decide that the string is not in the language as well as that it is in the

language. Deciding that a string is not in a recursive language can be

accomplished by an augmented theorem prover (described in Section 4.4).

4.1 Recognition in the Derivation Sequence Representation

The representation of the input string a,...a as a theorem is

SENTFORM (a,,...,a ). Figure 4.1 illustrates a proof in the representation

given in Figure 3.2 that SENTFORM,(a,b,c) is a theorem. The proof begins

by resolving on the negation of the theorem and a clause from DS3. The

resolvent is then resolved with the clause which represents the production

bC -*• be to give the clause which represents the sentential form abC .

This two-step deduction of ŜENTFORM3(a,b,C) from ŜENTFORM3(a,b,c) is

an example of a cycle. It represents the step abC => abc in the deriva-

tion sequence of abc . Each of the three cycles in Figure 4.1 transforms

one clause of the form ŜENTFORMĵ ap... ,ak) into another clause of the

same form, and represents one step in the derivation sequence. , The proof

shown corresponds to the bottom-up analysis of the derivation sequence

S => aBC =^> abC =^> abc
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%SENTFORM3(a,b,c)

\
^SENTFORM(x1,x2,x3) v %PROD2 2(x2>x3 iy^) v

,x v

PROD2 2(b,C,b,c)

'vSENTFORM (a,b,C)

v

,x ,a,b)

PROD2 2(a,B,a,b)

V
^SENTFORM3(a,B,C)

^SENTFORM (X;L) v 'bPROD (x^^.yg) v SENTFOBM3(y1,y2§y3)

'vSENTFORM (x ) v -^PROD _(x ,a ,B,C)
J- X -L ; J X

, (S ,a s B,C)

V
'x-SENTFORM (S)

SENTFORM1(S)

FIGUBE 4.1 A proof that abc e L(G ).
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The derivation sequence representation can also perform a top-down

analysis of a string. This is accomplished by giving sypport to the clause

SENTFOKM-̂ S) instead of the clause 'vSENTFORM3(a,b,c) , as was done in the

proof of Figure 4.1. In the proofs that correspond to a top-down analysis,

cycles are two-step deductions of a clause of the form SENTFORM̂ y,,... ,yO

to another clause of the same form. The negation of the theorem is not used

until the next to the last deduction.

The derivation sequence representation models the derivation sequence

of a string of symbols, and hence one could prove a theorem SENTFORMn(a,,

...,a ) where some a- are nonterminal symbols. A modification to the

representation which eliminates this possibility can easily be obtained by

the addition of axioms to indicate which symbols are terminals, and axioms

which differentiate between those sentential forms which contain terminals

from those which do not.

4.2 Recognition in the Derivation Tree Representation

To show that the string a,...a is in the language L(G) we prove

the theorem INPUTCa,,!) A. ..A INPUT(a ,n) -> DERIVE (S,l,n+l) , where S

is the start symbol of G. The interpretation of the theorem is that if

a- is the i input symbol for 1 £ i <_ n , then S derives the subset

of the input string beginning at the 1s position and ending at the

n position, that is, S derives the entire input string. To prove this

theorem, the negation of the above formula in clause form,

INPUT(a, ,1)

INPUT(an,n)

D̂ERIVE(S,l,n+l)
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is added to the set of clauses which is the derivation tree representation .

for the grammar G , and the resulting set of clauses is then shown to be

unsatisfiable.

A proof that the sentence 'they are flying planes' is in the language

generated by the grammar G2 is shown in Figure 4.2. There are two types

of cycles in the proof. Those similar to the one labeled (A) in the figure

have two resolutions and use the axioms DT2 along with the production axioms

of the form PROD, , (a,b) . These cycles determine the syntactic categories
-!•> J-

of the terminal symbols in the input string. The second type of cycle,

labeled (B) in the figure, has three resolutions and uses the axiom DT3

along with the production axioms of the form PROD, -(ajbjc) . These cycles

deduce that nonterminals derive certain substrings of the input string from

previously known facts, of this type and from the productions. The single

dotted lines in the figure indicate cycles similar to the first type, the

pairs of dotted lines indicate cycles of the second type. The clause

DERIVE(SENT,1,5) is deduced and resolves with its negation (which comes

from the negation of the theorem) to give a refutation.

4.3 The Cycle Inference System

The proofs that were used in the previous sections to illustrate how

the two representations can determine that a string is in a language were

the simplest possible proofs. If the inference system that was used allowed

resolutions between any two clauses many unnecessary clauses would be

generated.

Consider first the derivation sequence representation. The clauses in

the set DS3 (see Section 3.1) are used to model one step in a derivation

sequence. It is possible for two clauses in DS3 to resolve with each other

to produce a clause which models two steps in a derivation sequence. This
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action is undesirable because in most cases the two steps of the derivation

sequence which the above resolvent modeled will not be used in the proof

that a string is in a language. It can be eliminated by employing an'In-

ference system which uses set-of-support with the negation of the theorem

given support, since such an inference system does not allow axioms to re-

solve with each other. However, set-of-support does allow resolutions in

the derivation sequence representation which are undesirable. Consider an

example of a cycle which is taken from the proof given in Figure 4.1.

ŜENTFORM3(a,b,c)

'v.SFNTFORM (~x x x 1 v O.PROT) fv v v v ") vw»j.LjiN ± J. v.yjMvi«7 I -A.-1 j •"•o j •"• *r J " -^ jxv̂ jĵ  *^ ̂ .̂x̂  •A.'r • y -^ • y A j v
\ / 3 1 L 3 i.,L L J 1 L

fl^ 'v-SENTFORM fa x x 1 vV. j *T \ 9 O 9 T^J

PROD2 2(b,C,b,c)

V
SENTFORM3(a,b,C)

The clause labeled (1) has support since it is a descendant of a clause

with support, and the first literal of (1) will unify with many literals in

clauses which are in DS3. These resolvents would be unnecessary, but set-

of-support would allow them.

Similar things happen in the derivation tree representation. Consider

the cycle taken from Figure 4.2.

DERIVE(AUX,2,3)

(2) D̂ERIVE(y,u,w) v ̂ DERIVE(z,w,v) v ̂ PROD(x,y,z) v DERIVECx,u,v)

\
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V
(3) D̂ERIVE(z,5.v) v 'vPROD, 9(x,AUX,z) v DERIVE(x,2,v)

DERIVE(VPROG,3,4)

(4) P̂ROD, 7(x,AUX,VPROG) v DERIVE(x,2,4)

T
PROD-L 2(V,AUX,VPROG)

Y
DERIVE (V, 2,4)

Clause (2) is the axiom that comes from the singleton set called DT3 in the

definition of the representation, and it can resolve with itself. Again

set-of-support would rule this out, but it would not rule out clauses (3)

or (4) resolving with a clause from DT3.

The cycle inference is a rule which restricts the proof procedure to

resolutions which perform cycles. We first give a general definition of

the cycle inference and then define its application to the two representa-

tions.

DEFINITION:

An inference system is a cycle inference system iff there exists
n + 1 not necessarily distinct sets of clauses, A , B, , . . . ,B , and an
n-tuple N = (i,,...,! ) , where i. e {0,1} , such that one resolvent of
each resolution is a clause in A or a descendant of a. clause in A ,
while the other resolvent cycles among the sets B, , . . . ,B . If i. = 0
the jth resolution of the cycle must use a clause in B. ; if i. = 1 ,

J J
the jth resolution of the cycle may use a clause in B. or a descendant
of a clause in B. . The value n is called the length of the cycle.

The set A is similar to the set of clauses which are given support

in the set-of-support inference system. The set A is like the support
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set in that every resolvent has a parent either from A itself, or a des-

cendant of a clause in A . It is different from the support set because

the cycle inference system demands that exactly one parent be either from

A or a descendant of a clause in A , while the set-of-support inference

system specifies that at least one parent (allowing for the possibility of

both parents) be either from the support set or a descendant of a clause

from the support set.

The sets B,,...,B can almost be thought of as sets of side clauses.

The set from which the side clauses must be chosen cycles among the B. .

If the n-tuple is all zeroes, then all the side clauses are input clauses.

Since each resolvent has one parent which is an input clause, the proof

is an input proof, (Chang, 1970). If the jth element of N is 1 ,

then the jth side clause can be a descendant of a clause in B., which

makes the proof no longer an input proof. As will be seen, the former is

the case in the derivation sequence representation and the latter is the

case in the derivation tree representation.

To apply the cycle inference to the derivation sequence representation

take (see Section 3.1 for notation):

n = 2

A = {̂ SENTFORMn(a1,...,an)}

EI = DS2 U DS3

B2 = DS1

N = (0,0)

This application of the cycle inference results in a bottom-up analysis

similar to the proof shown in Figure 4.1. The inclusion of the set DS2,
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which is the singleton SENTFORM-̂ S) , in B-ĵ  allows for the unit resolu-

tion which produces the null clauses. Setting A equal to DS2 and including

ŜENTFORM (a, ,...,a ) in B, gives a top-down analysis.

Hie proofs in the derivation tree representation contain cycles of

length two which convert the terminal symbols of the input string into

syntactic categories , and cycles of length three which take two clauses

which represent the fact that a nonterminal derives a substring of the in-

put string and produces a third clause of the same type (see Figure 4.2).

Since there are cycles of varying lengths in these proofs , one could not

expect to define a cycle inference system that could be used uniformly in

the proofs. It is possible to make a small change in the representation

to allow for the uniform application of a cycle inference system. The

change makes the set DT2:

(Vy,u) [INPUT (y,u) A INPUT(a,0) A PROD, ,(x,y) -> DERI VE(x,u, add (u,l))] ,1,1

and makes the theorem:

INPUT(a,0) A INPUT (altl) A. . .A INPUr(an,n) -> DERIVE (S,l,n+l) ,

where .a is a constant not previously used in the representation. A cycle

inference can now be applied during the entire proof by setting (see Section

3.2 for notation) :

n = 3

A = {INPUT(y,u) | yeVT U {«}, 0 £ u * n}

B- = DT2 U DT3 U {^DERIVE (S, 1, n+ 1) }

N = (0,1,0)
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The first step of a cycle uses either the singleton in DT2 or DT3, the

second step uses a clause in A or a descendant of a clause in A (these

clauses will have the form DERIVE(x,u,v)), and the third step uses a pro-

duction clause. The fact that the second step uses a clause which is a

descendant of a base clause makes the proofs not an input proof. The

clause D̂ERIVE(S,l,n+l) is included in B, so that the single resolvent

which generates the empty clause can be made.

Since using the cycle inference system on either of the representa-

tions will result in a refutation whenever the input string is a sentence

in the language, we say that the cycle inference system is complete for

these representations. Conversely, since whenever the cycle inference sys-

tem produces a refutation from either of the representations, the input

string is a sentence in the language, we say that the cycle inference sys-

tem is sound for these representations.

The use of the cycle inference system results in the problem-solver

modeling a state-space representation of a problem. The basis for the de-

rivation sequence representation is the state-space representation which

specifies a sentential form as a state description with the.start symbol

the initial state description; the set of operators as the set of produc-

tions with the transformation on a state description a legal application .

of a production to a sentential form; and the goal state description as

the input string. The use of the cycle inference system guarantees that

the only deductions which the theorem prover makes will transform'senten-

tial form clauses into sentential form clauses. That is, the theorem prover

is restricted to deductions which model the application of an operator.

In the derivation tree representation a state description is a state-

ment that a nonterminal derives a substring of the input string and an
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operator is again a production. However, the transformation on the state

descriptors maps two states into a single state. Again, the use of the

cycle inference system results in the problem-solver modeling the search

of the state-space of the problem. The general applicability of the cycle

inference system will be discussed more completely in the conclusions.

4.4 The Augmented Theorem Prover

The examples given in the previous sections show how a theorem prover

which employs a cycle inference system can determine that a string is a

sentence in a language by proving that the statement which represents the

string is a theorem of the representation. In order to represent the prob-

lem of language recognition the problem-solver must be able to determine

that a string is not a sentence in the language as well as that it is a

sentence in the language. The problem-solver (i.e., the theorem prover)

can be given this capability for the two representations by augmenting it

so that it can terminate either by achieving a refutation or by reaching a

stage where no new clauses can be generated (Kowalski, 1970). In our

application, stages occur at the end of. cycles. We call a theorem prover

with the above capability an augmented theorem,prover. An augmented

theorem prover, using the cycle inference system, can determine that a

string is not a sentence using either representation because they both

have finite state-spaces. A theorem prover using the cycle inference sys-

tem can only generate finitely many clauses from the set of clauses consisting

of either of the representations union the negation of the theorem. If

one of these clauses is the empty clause, the string is a sentence, other-

wise the string is not a sentence. We now discuss a space bound and a

time bound for each representation.

Consider first the problem of deciding whether-or not a,...a is in
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a recursive language L(G) using the derivation sequence representation.

The number of clauses in the representation itself is finite because the

cardinality of each of the sets of clauses (see Section 3.1 for notation)

is:

|DS1| = p

|DS2|. = 1

|DS3| £ pn2

where p is the number of productions in G . The cycle inference system

results only in cycles which produce clauses which represent sentential

forms. Since L(G) is recursive, the maximum number of these clauses is

proportional to g where g is the number of symbols (terminal and non-

terminal) in G (Hopcroft and Ullman, 1969). Since the number of clauses

that can be generated using the cycle inference system is finite, an aug-

mented theorem prover can determine that a string is not in a language

using the derivation sequence representation. Like the space bound, the

time bound for this representation is also exponential.

In the derivation tree representation the cycle inference system re-'

stricts the theorem prover to generating a clause which is a statement

that a nonterminal derives a substring of the input string (i.e., a clause

of the form DERIVE(x,u,v) from two other clauses of this form). The

number of choices for x in this clause is h , where h is the number

of nonterminals in G , while there are at most n choices each for u

and v . This results in at most hn clauses of this form. Hence the

number of clauses that can be generated from this representation is also

finite, and an augmented theorem prover can be used to determine that a

string is not a sentence in a language.
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To obtain a time bound for recognition in this representation we com-

pute the number of cycles required to deduce the arbitrary but fixed clause

DERIVE (A, UQ,VO) . We assume that the "DERIVE clauses" for smaller sub-

strings have already been deduced. To derive the clause DERIVE (A, un,vn)

the cycle inference system will attempt to generate cycles of the following

form.

DERIVE(B,u0,w0)

,u,w) v ̂ DERIVE (z,w,v) v 'vPROD., 9(x,y,z) v DERIVE(x,u,v)*-
^DERIVE(Z,WQ,V) v 'v.PROD, 2(x,B,z) v DERIVE(X,UQ,V)

DERIVECC,WO,VO)

v~~
2Cx,B,C) v DERIVECX,UO,VQ)

PROD-. 7(A,B,C)-i>^

V
DERIVE (A,u0,vQ)

The number of possibilities for B and C depend on the grammar,

and there are at most n possibilities for w . Hence the number of

cycles required to deduce DERIVE (A, UQ,VO) is Mi . Since the number of

clauses of this form is n̂ , 'vn cycles are necessary to perform recog-

nition.

In either of the representations, all of the solutions to the problem

can be obtained by changing the structure of the theorem prover so that

it does not stop the first time that the null clause is generated. The
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structure would be such that the theorem prover would terminate only when

no new clauses can be generated. Each distinct derivation of the null

clause represents a distinct solution to the problem. It goes without say-

ing that solutions in the derivation sequence representation are derivation

sequences, and solutions in the derivation tree representation are deriva-

tion trees.

4.5 The Existence of Input Proofs in the Two Representations

Theorem proving programs which restrict themselves to input proofs are

particularly simple to implement, and the search for input proofs is very

efficient. Thus it is important to know what types of unsatisfiable sets

of clause have input proofs. In this section we show the existence of in-

put proofs for a class of unsatisfiable sets of clauses which includes the

two representations of the language recognition problem.

The clauses in the two representations can be divided into three

categories as follows:

Derivation Sequence Derivation Tree
Representation Representation

unit positive clauses DS1, DS2 DTI, INPUT clauses
. coming from '•"theorem

clauses with exactly DS3 DT2, DT3
one positive literal
and a nonzero number •
of negative literals

negative clauses t̂heorem DERIVE clause coming
from t̂heorem

The clauses in the sets DS3, DT2, and DT3 are derived from a wff.of the

form CQ1x1KQ2x2)...(Qnxn)[P1( ) A ?2( ) A...A PR( ) + Pn+1( .).] where

Q. , i = l,...,n is either V or 3 . All of the clauses in the two
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representations have at most one positive literal. Sets of clauses having

this property have been called implications sets CSlagle and Koniver, 1971).

The following theorem proves the existence of inputs proofs for this class

of unsatisfiable sets of clauses. The proof of the theorem uses the con-

cept of linear resolutions and the fact that linear resolution is complete,

(Loveland, 1970; Luckham, 1970). A proof (T = CQ,̂ ,. .. ,Cn, |~| ) is in

linear form with top clause T if each C is the resolvent of C, ,

and either an input clause or some C. where j < k - 1.

Theorem:

If S is a satisfiable set of clauses such that each clause in S

has at most one positive literal, T is a negative clause, and the set

•{S U T} is unsatisfiable, then there exists an input proof for {S U T} .

Proof:

Since linear resolution is complete, there exists a derivation of the

null clause in linear form with T as the top clause. Let (T,C,,...,C ,

|_J) be a linear derivation of the null clause. We show by induction

that all of the clauses in the linear derivation must have no positive

literals, and hence that all of the side clauses must be input clauses. The

top clause, T has no positive literals by hypothesis. The clause C, must

have no positive literals since it is resolvent with the negative clause

T and an input clause that has at most one positive literal. Assume that

the first k > 1 clauses in the linear derivation are negative. Since

the clauses (T,C-.,...,C, J are all negative, none of the clauses

(XCp... ,C, J can be used as side clauses to resolve with C,_, to

yield C, . Thus an input clause must be used. But, since the input

clause has at most one positive literal, the clause C is a negative
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clause. Hence, all of the clauses in (T,C,,...,C ) are negative, and

the proof is an input proof. This completes the proof.

We have seen that the proofs which the cycle inference system finds

in the derivation sequence representation are input proofs, while those

found in the derivation tree representation are not. Recall that the n-

tuple.used to define a cycle inference system for the derivation sequence

representation was (0,0), and that (0,1,0) was used in the definition for

the derivation tree representation. The cycle inference system finds in-

put proofs iff the n-tuple (i,,...,i ) is all zeroes, because then and

only then will each resolution of a cycle use a clause in set A or a de-

scendant of a clause in A , and a clause in B. for some j .

Input proofs in the derivation tree representation use D̂ERIVE(S,l,n+l)

as the top clause, and correspond to a sequential representation of the de-

rivation tree. Whereas the proofs found by the cycle inference system

model the bottom-up construction of the span triangle (i.e., the Cocke

algorithm), the input proofs model the top-down generation of the span

triangle. One of the input proofs which corresponds to the proof shown in

Figure 4.2 is shown in Figure 4.3.
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^DERIVE (SENT, 1,5)

^DERIVE (y,l,w) v M)ERIVE(z,w,5) v ^PRODj^ 2(SENT,y,z)

^DERIVE (PRN,l,w) v ^DERIVE (VP,w, 5)

'vLNPUT(y,l) v ^PROD (PRN.y) v ^DERIVE (VP, 2, 5)

vENPUT(they,l) v -\-DERIVE(VP,2,5)

M)ERIVE(VP,2,5)

MDERIVE(y,2,w) v ^DERIVE (z ,w, 5) v ^PROD ..(VP,y,z)
| J-.-L

^DERIVE.(V,2,w) v ̂ DERIVE(N,w,5)

^DERIVE ̂ ,2,4) v ^INPUT(u,4) v 'vPROD1 ^(lt,y)

^DERIVE (V, 2, 4) v INPUT (planes ,4)

^DERIVE(V,2,4)

^DERIVE (y, 2, w) v ^DERIVE ( z ,w , 4) v ^PROD 9(V,y,z)
I '

^DERIVE(AUX,2,w) v -^DERIVE (VPROG.w, 4)

PUT(y,2) v ̂ PROD 2(AUX,y) v ̂ DERIVE(VPROG,3,4)

fare^) v M)ERIVE(VPROG,3,4)

^DERIVE(VPROG,3,4)

<vINPUT(y,3) v ̂ PROD 2(VPROG,y)

CH

Figure 4.3 An input proof in linear form in the derivation tree
representation. The clauses which are not indented indicate
how input proofs in this representation model the top-
down generation of the span triangle.
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5. Extracting Derivation Sequences and Derivation Trees

Obtaining the answer to a theorem proving problem involves converting

the proof from a graph with the empty clause at the root to one with a

clause at the root which represents the answer. The process is performed

after the proof is completed, and is accomplished by converting each clause

arising from the negation of the theorem into a tautology (Luckham and

Nilsson, 1971). These added literals filter through the proof and become

the representation of the answer.

In the derivation sequence representation the literal SENTFORM (a,,

... ,a ) is added to the negation of the theorem and becomes the answer.

Converting the clauses in the negation of the theorem for the derivation

tree representation results in the answer:

vtNPUTCapl) v. ..v vLNPUT(an,n) v DERIVE (S,l,n+l) .

The interpretation of the above clause is that if the input string is

a.,...a then the start symbol derives the entire input string. Thus in

both of the representations the answer extraction process yields a yes/no

type answer.

However, the answer in both of the representations is really more

than yes or no. As the names imply, the answer in the derivation sequence

representation is a derivation sequence of the input string, and in the

derivation tree representation is a derivation tree of the input string.

These more complete answers are presently embedded in the proofs. The

concepts of states and state-transformation functions (Green, 1969) can

be used to build-up and extract these more complete answers to the problem.

In the next paragraphs we describe modifications to the representations

which incorporate the state-trans formation method.

36



In one formulation of the method, actions are represented as constants

and the state-transformation function maps actions and states into states.

The sequence of actions that represents the solution to the problem are

built-up by composing the state transformation-function.

In the derivation sequence representation an action involves the

application of a production to a sentential form, hence each production

must be assigned a unique constant. We will include an additional term in

each of the production axioms to store this constant. In the example of

the modified derivation sequence representation for the grammar G,, which

is shown in Figure 5.1, the constants are circled numbers. The sentential

form literal will now include a term to represent the state of the recogni-

tion process. The start state is represented as SENTFOKM, (S,nil) since

no actions in the derivation sequence have taken place when the sentential

form is the start symbol. The axioms in the set DS3 are modified to in-

clude a state-transformation mapping. An action.is really more than the

application of a production"1 to a sentential form, it is the application of

a production to a particular position in a sentential form. Sentential

forms can contain duplicate nonterminal symbols, so unless the state-trans-

formation recorded the position in the sentential form where the production

was applied as well as the production which was applied, it would not be

remembering the state of the recognition process.

The modified representation uses a 3-place state-transformation func-

tion called ' apply.' The first argument is the name of the production

applied, the second the initial position of its application, and the third

the state to which the action is applied. Figure 5.1 gives the modified

representation for the grammar G-ĵ  , and Figure 5.2 illustrates its use by

showing a cycle of a top-down proof in the representation. The modified

37



Dsr =

, a ,S ,B,C,

PROD. 9 (C,B,B,C,<3))

PROD9 ,(a,B,a,b,

PROD_ 9(b,B,b,b,(5))2,2.

PROD. 0(b,G,b,c,©)

PROD2 2 (c ,C,c ,c , i

DST1 = [SENTFORM1(S,nil)]

DS31 ,... ,x ,y ,... ,y, ,s,t)[SENTFORM (x . .. ,x ,
m

A PROD k(x1+1,...,x1+.j,y1,...,yk,s) (x1,. . . ,x±,

yi,...,yk,x 1,...,xm, apply (s,i+l,t))] | (j ,k) is (1,4), (1,3), or (2,2)}

Figure 5.1 -The derivation sequence representation for L(GI) modified
to include state-transformations.
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SENTFORM (a,B,C,apply«X>,l,nll))

\
^SENTFORM (x1,x2,x3,t) v

'S^ V SENTFOEM

>y,C, apply(s,l,

PROD9 9(a,B,a,b,0)

SENTFORM (a,b ,C,apply(0 ,1,apply«2) ,l,nil)))

Figure 5.2 A cycle in a proof in the derivation sequence representation
modified to include state-transformations.
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representation also works for bottom-up proofs. In'both cases the first

production used in a top-down analysis (generation) is innermost in the

'apply* function, and the first production used in a bottom-up analysis

(reduction) is outermost. The answer extraction process can be used to get

at the final state.

An action in the derivation tree representation is also the application

of a production, but unlike the derivation sequence representation the

action in the derivation tree representation works on a pair of states.

Hence the state-trans formation function must map a pair of states and an

action into a state. We call the function 'reduce.' Figure 5.3 gives the

modified derivation tree representation for the grammar G? . The 3-step
LJ

cycle which is explicitly shown in the proof of Figure 4.2 appears for the

modified representation in Figure 5.4. Figure 5.5 gives a deduction in

the representation (explicitly showing only INPUT and DERIVE clauses). The

order of the names of the productions in the final state is the end-order

traversal (Khuth, 1968) of the derivation tree. The representation is

capable of finding all of the derivation trees of a sentence.
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DTI' =

PROD 9(SENT,PRN,VP,(l))X ,£ VX

PROD 7(VP,V,N,
-*- »^

PROD , (VP,COP,NP,

PROD 7(SENT,PRN,V,<3))
-L 9 £. ^̂

PROD, 9(V,AUX,VPROG,(5)
•*•'

PRODn -,(NP,ADJ,N,

PROD (PRN,they,l
J- > •*•

PROD., n (COP,are,

PROD ÂUX.are,!j. ,1

PROD.. ^ADJ.flying, (10))
-1- >-*-

PROD, (VPROG, flying, (u
-L »-L

PROD, , (N,planes, U2))
-̂̂

DT21 = {(Vy,u,s)[INPUT(y,u) A PROD^^ .̂ x.y.s) 4- DERIVE (x,u, add (u,l) ,s) ]}

DT3f = {(Vx,y,z,u,v,w,s,t,r)[DERIVE(y,u,w,s) A DERIVE(a,w,v,t)

A PROD 9(x,y,z,r) -> DERIVE(x,u,v,reduce(s ,t ,r)) ] }

Figure 5.3 The derivation tree representation for G? modified to include
state-transformations.
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DERIVE(AUX,2,3,(jr))

DERIVE (,u,w.s) v ̂ DERIVE(z,w,v,t) v ̂ PROD ,(x,y,z,r) v DERIVE(x,u,v,reduce(s,t,r))

^DERIVE(z,3.v.t) v ̂ PROD (x,AUX,z,r) v DERIVE (x, 2,v, reduce ((|) ,t ,r))
\ • >

DERIVE (VPROG .3,4. (TT) )

(x,AUX,VPROG,r) v DERIVE(x,2,4,reduce( (9) , Ul) ,r) )

PROD 9(V,AUX, VPROG,

VDERIVE(v,2,4,reduce((9),ai),(5)))

Figure 5.4 A cycle in the derivation tree representation modified to
include state-^trans formations.
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6. Conclusions

We have developed two representations in the first-order predicate

calculus of the language recognition problem. Both of these representa-

tions are modeled after known algorithms for recognizing strings: the

algorithm of generating sentential forms whose lengths do not exceed the

length of the string, and the Cocke algorithm. Both algorithms can be

thought of as state-space representations of the language recognition prob-

lem.

In the former algorithm, the states are sentential forms, with the

start symbol the initial state, and the string the goal state. The set of

operators is the set of productions, and the transformation of a state to

a state is the legal application of a production to a sentential form. In

this representation, the operators are single-input/single-output operators.

In the formulation of the Cocke algorithm as a state-space problem the

states are either statements that a terminal symbol appears in a certain

position of the string, or statements that a nonterminal symbol derives a

substring. Instead of a single initial state, there is a set of initial

states, the ones which collectively represent the string. The final state

is the statement that the start symbol derives the entire string. A solu-

tion in this representation is not a path from one of the inital states to

the final state, but a set of paths from all of the initial states to the

final state. The productions are again the operators; however in this

representation there are two types of operators. Operators of the form

A ->• a map statements that a terminal appears in a certain position of the

string into statements that a nonterminal derives a substring. They are

single-input/single-output operators. However, operators of the form

A -> BC map pairs of statements that a nonterminal derives a substring
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into similar statements. They are multiple-input/single-output operators

[Sandewall (Sandewall, 1971) refers to operators with more than one input

and exactly one output as conporators]. Thus, in developing the deriva-

tion sequence and derivation tree representations, we have formulated two

state-space problem representations in first-order logic.

The types of literals and axioms which are used to represent the

states and operators in the two representations are summarized in Figure

6.1. Notice that the distinction is made between the axioms which repre-

sent the operators and those which represent the conditions necessary to

apply an operator to a state. The sets of axioms DS3, DT2, and DT3 specify

to the theorem prover the form of the input state(s), the form of an

applicable operator, and the form of the output state. That is, they are

really algorithms written in first-order logic for applying the operators

to the states.

The use of the cycle inference system on these representations re-

stricts the theorem prover to those resolutions which are necessary to

apply an operator to a state. We believe that the cycle inference'system

is applicable to any state-space problem provided a representation in

first-order logic of the states (initial, goal, and intermediate), the

operators, and the conditions necessary to apply an operator to a state

can be found. The cycle inference system makes it possible to use a

theorem prover as the problem-solver for these state-space problems, since

it results in the theorem prover modeling a special purpose state-space

problem-solver. Each cycle represents the application of an operator, so

that the number of steps used by the theorem prover and a special purpose

problem-solver in searching for a solution are comparable (this assumes

the use of the same strategy). Thus, the cycle inference system can be

45



1 1 C
4) ex CO

io
m

s
 
w

h
ic

h
 
r

re
s
e

n
t 

th
e

 
a

li
c
a
ti
o
ri

 o
f

p
e

ra
to

r 
to

' 
a
.

S
ta

te

x a o, o

0)

o
4J
CO

CD

<§•

CO
rH JJ

CO CO
O 4J
O CO

M

<u
CO

CO

i-H
CO
•rl

>rj

M

-

01
a>
fl

CO

<u

•H
CO

0) 10

1°
•H 4-1
X HI

•a! <o

•o

I

« ;-v

£* (^
^ •"0, .

f '-rt x

CO
.v-'
s
O

E-i

W

^

^G
CO

•

'1
rH

C3

^fj
g

g
H

W
CO

*"s
X
A

rH
^X_

^s
g
H

W

?

<x
3 to

S co
O >*

U CO

o S',£1 CO

'c
CO

(3 "

s •
o
fe rH

g v

CO

co
rH

sg
H.

w
CO

xs
M

rH
X

s .

g
CO

p co
3 -H
O CO
•o >,
1 rH
CU CO
o g

Co
iH
U

c to v
0 4J . . •
iH D C
U U CU
nj C ul
> flj 0)

•H 3 l-i
>-< cr ex,
Q) <u dj
Q to Cd

0)

** s
B

•H CN

CO S
Q
o co

'x CJ EH
«J co O

'"CM

rH rH

rH r-j

^5 x

rH CN .
* *»

rH rH
Q Q

S. §
PH PL,

i-H

«
""1
CO

M

I—)

'S
0

^s ^>

'I 1
CO CO
r | r .

D 5

fe ^I-H M

Is
/-v 3

1 1
^ fr}

M Q

' . - . _ •

C
o
iH
4->

rt fO

0 U
•H C

^0 0)
"> . <1>
iH 0) U
>-> CU ft.
0) k-. 01
O H OH

s ao
13 -H
C -U
CO co

4J
CO C
rH CU

CO CO
I-l CU
<U r<
4J CX.
•H QJ
rH (̂

<4-l O
0 S

4J
CO
01 (U
(XJ3
>-, <J
U

a) -H
rgT,

CU

"S 3
E r a
CO co

1 ̂3 cj
co -H

<:•§

(1)
M

00

46



characterized as a resolution-based method for applying an operator axiom

to a state clause.

The cycle inference system is general enough to be applicable both to

representations with multiple-input operators and to those with a set of

initial states. If the operators are single-input/single-output, then the

use of the cycle inference system will produce input proofs as with the

derivation sequence representation. If the operators are multiple-input/

single-output and there is a single initial state, the proofs will be

linear (Loveland, 1970; Luckham, 1970). The derivation tree representation

provides an example of the use of the cycle inference system on a represen-

tation with both multiple-input operators and a set of initial states.

The proofs in this representation which are shown are not linear because

there is more than one initial state.

There are certain considerations that can be made in implementing the

cycle inference system. A cycle can be thought of as a macro-resolution.

It is a sequence of resolutions necessary to apply an operator axiom to a

state clause. The only resolvent in this sequence of resolutions which can

be used in further deductions is the last one, the state clause. The inter-

mediate resolvents can never be used again, and hence do not have to be

stored. It is possible that the first parts of cycles necessary to apply

two distinct operators to a state (or possibly a set of states) are the

same. For example in the derivation tree representation, the two operators

A -»• BC and B •> BC will both be applicable to the same pairs of states.

The first two resolutions in the cycles for applying these two operators

will be the same. An efficient implementation of the cycle inference sys-

tem will not perform these first two resolutions twice.

• The cycle inference system is not a theorem proving search strategy
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because its use does not indicate which pair of clauses to use next in a

resolution, but rather indicates which pairs of clauses can be used as re-

solvends. A search strategy can be used in conjunction with the cycle in-

ference system in the same manner that it is used with any problem-solver.

The search strategy specifies which state clause (sets of state clauses for

the case of multiple-input operators (Kowalski, 1970)) are to be input to

the next cycle. To generate the state clauses of the derivation tree re-

presentation in the same order as the Cocke algorithm, a breadth-first

search of the space is made. Many types of search strategies, depth-first,

breadth-first, or a combination of the two which uses some heuristic can

be used with the derivation sequence representation. This representation

is not good as the derivation tree representation in the sense that the

number of states which must be expanded to find a solution in the former

representation -is greater than in the latter independent of the search

strategy employed.

We have shown that the two representations fall into a larger class

of unsatisfiable sets of clauses for which input proofs are known to

exist, namely those sets where each clause has at most one positive literal.

Thus, although input resolution in general is not complete, it is complete

for sets of clauses of the above form. Many representations do satisfy

this property, including those of state-space problems which use a single

positive literal to represent a state.

The method which was used in Section 5 to build up, by functional

composition, a representation of the path from the initial state(s) to the

current state can be used in any representation of this type. The method

is to include in the state clause a term for the composed functions and to

build into the operator axioms the steps which compose the functions. Its
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use provides a concise representation of the particular solution which was

found.

The method which we have illustrated of specifying a state-space problem

in first-order logic and using a theorem prover employing the cycle infer-

ence system as a problem-solver can be used to experiment with state-space

problems. The cycle inference system is a problem-solver for a class of

state-space problems — namely, those problems where the information required

to specify the states and the operators can be expressed in first-order

logic. The structures of the states and the operators for the two represen-

tations presented in this paper were not extremely complicated, and there-

fore, it was not very difficult to represent them in first-order logic.

Some state-space problems may have states and operators whose structures

are so complex that even though it is possible to formulate them in first-

order logic, it is unadvisable to do so. We do not claim that whenever it

is possible to use the cycle inference system to "interpret" a state-space

problem that this method should be employed. However, the cycle inference

system does provide all of the structure of a resolution-based theorem

prover (constants, variables and quantifiers, functions, predicates, logi-

cal operators). Of course the necessity of using axiom schemas in the de-

rivation sequence representation reminds us that first-order logic does not

allow quantification over predicates, and (more generally) that first-

order logic is less than the ultimate language to use for problem repre-

sentations. Nevertheless, first-order logic is well-defined and is rather

general, and it appears as though it can be used to describe a variety of

state-space problems. Finally it is worth pointing out that a cycle in-

ference system based problem-solver is problem independent, and that to

modify an existing representation all that is necessary is to change the
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axioms and respecify the nature of the cycles.
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