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ABSTRACT

The electromagnetic waves propagating through a drifting

semiconductor plasma are studied generally from a macroscopic point

of view in terms of double-stream interaction. The possible exist-

ing waves (for instance, helicon waves, longitudinal waves, ordinary

waves, and pseudolongitudinal waves) which depend upon the orienta-

tion of the dc external magnetic field are derived.

A powerful impedance concept is introduced to investigate

extensively the wave behavior of longitudinal (space-charge) waves or

pseudolongitudinal waves in a semiconductor plasma. The impedances

due to one- and two-carrier stream interactions have been calculated

theoretically following the proper procedure.

According to the frequency range of operation, two feasible

and practical experimental techniques are proposed. In the micro-

wave frequency range, the standing-wave-ratio measurement is used.

The observations of the Impedance change due to the pulsed electric

field and the relaxation phenomenon due to recombination of excess

electrons and holes in InSb material are reported. In the radio fre-

quency range, a sensitive RF bridge measurement is used. The observa-

tion of impedance change due to pulsed voltage is reported. By

comparison with the theory, the results of the measurement in this RF

range indicate the existence of space-charge waves in InSb plasma.
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I. INTRODUCTION

Research activity in the solid-state plasma effect has grown

significantly in recent years. One objective of such research is

the possibility of generating high-frequency growing instabilities

when the electron-hole plasma is drifted.

Pines and Schrieffer1 proposed the conditions for existence

of plasma wave instabilities in the plasma formed by the electrons

and holes in semiconductors. The work of Larrabee and Hicinbotham2

gave inspiration and courage to the researcher in this area by ob-

serving microwave emission from InSb at 77° K when the sample was

subjected simultaneously to applied electric and magnetic fields.

They reported threshold values of the magnetic and elec.tric field of

about 3 kG and 200 V/cm, respectively. Buchsbaum, Chynoweth and

Feldmann^ reported microwave emission from InSb under experimental

conditions similar to those of Larrabee and found the threshold

magnetic field to be 1.5 kG and the threshold electric field to be

only about 12 V/cm. Ancker-Johnson1* observed microwave emission

1 D. Pines and J. R. Schrieffer, "Collective Behavior in Solid-State
Plasma," Physical Review, Vol. 124, December 1961, pp. 1387-1400.

2 R. D. Larrebee and W. A. Hicinbotham, "Observation of Microwave
Emission from Indium Antimonide," Proceedings of the Symposium on
Plasma Effects in Solids, Paris, France, 1964; published by Dunod,
Paris, 1965, pp. 181-187.

3 S. J. Buchsbaum, A. G. Chynoweth, and W. L. Feldmann, "Microwave
Emission from InSb," Applied Physics Letters, Vol. 6, February
1965, pp. 67-69.

^ B. Ancker-Johnson, "Microwave Emission from Magnetic Field-Free
Electron-Hole Plasmas," Applied Physics Letters, Vol. 10,
May 1967, pp. 279-280.



from magnetic-field-free P-type InSb plasmas under special conductance

conditions. Suzuki5 reported instabilities under transverse magnetic

field also.

The first attempted theory was the well-known helicon-wave

instability studied by Bok and Nozieres.6 It is, however, difficult

to find any reasonable connection between the low frequencies at which

helicon instabilities occur and the observed high-frequency spectrum

of the noise emission. The investigations of Bok and Nozieres were

generalized by Vural and Steele who made a study of double—stream

interaction with TEM and TM waves in a cylindrical semiconductor with

the magnetic and electric field along the cylindrical axis. Their

results predicted a value of the threshold magnetic field in good

agreement with the experiment value (B ^1.5 kG) but did not give

any information on the electric field and its dependence on the

magnetic field. Also, the theory of Vural and Steele is essentially

valid in the high frequency limit (w > v) and their interpretation

is essentially in terms of two-stream instabilities of the type that

exist in a collisionless medium (i.e., the electron beam case). In

their description collisions act only as a perturbation which reduces

5 K. Suzuki, "The Generation of Microwave Radiation from InSb,"
Japanese Journal of Applied Physios, Vol. 4,' January 1965, pp. 42-52.

6 J. Bok and P. Nozieres, "Instabilities of Transverse Waves in a
Drifted Plasma," Journal of Phys. Chem. Solids, Vol. 24, 1963,
pp. 709-714.

7 B. Vural and M. C. Steele, "Possible Two-Stream Instabilities of
Drifted Electron-Hole Plasmas in Longitudinal Magnetic Fields,"
Physical Review, Vol. 139, July 1965, pp. A300-A304.
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the growth rates of the various instabilities, which is incorrect

since InSb is a collision-dominant case with v » co.

Another attempt was that made by Suzuki8 to explain his

experimental results on noise emission from InSb under crossed-field

conditions (transverse magnetic field, B J_ E ).' He interpreted the

noise emission as generated by a wave instability due to the presence

of a density gradient (Hall voltage) which is established across the

sample by the Lorentz force. Under this assumption he was able to

obtain very good agreement with his experimental data. In Suzuki's

theory, diffusion (i.e., carrier temperature) plays a major role in

the sense that the theoretical frequency at the threshold of instability

is directly proportional to the temperature; i.e., it would be zero if

temperature effects were neglected. Without diffusion, his theory

could not therefore account for high-frequency noise.

Another attempt was made by Robinson and Swartz.9"11 They ob-

served that coherent microwave emission was generated by InSb at 77° K

with an injected electron current transverse to a magnetic field.

8 T. Suzuki, "Microwave Emission and Low Frequency Instabilities in
InSb," Japanese Journal of Applied Physics, Vol. 4, Sept. 1965, p. 700.

9 B. B. Robinson and G. A. Swartz, "Two-Stream Instability in Semi-
conductor Plasmas," Journal of Applied Physics, Vol. 38, May
1967, pp. 2461-2465.

10 G. A. Swartz and B. B. Robinson, "Coherent Microwave Instabilities
in a Thin-Layer Solid-State Plasma," Journal of Applied Physics,
Vol. 40, October 1969, pp. 4598-4611.

11 G. A. Swartz, "Coherent Emission from Indium Antimonide with Closely
Spaced Coplanar Contacts," Journal of Applied Physics, Vol. 40,
August 1969, pp. 5343-5349.
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Grooves cut into the Suhl surface of the rod-shaped InSb imposed the

coherence and determined the frequency range of coherent operation.

Wavelength measurements of a surface wave using a double stripline

system showed that the effective groove width was equal to about a

half-wavelength. They proposed a collision-induced instability based

on double-stream interaction in a semiconductor plasma. Their theory

predicted most of the qualitative and some of the quantitative

features of the observed emission.

Another attempt was made by Gandhi and Grow12 in our laboratory.

They explained the microwave emissions from plasmas in InSb at 77° K

with and without magnetic fields were due to the instabilities of

pseudolongitudinal waves of drifting semiconductor plasma. Their

theory well explained qualitatively the instabilities observed in n-

and p-type InSb with and without transverse magnetic field and the

dependence of the instability frequency on the magnetic field. Mean-

while, in our laboratory, the wave propagations in a cylindrical

semiconductor based on double-stream interactions were generally

discussed by Christensen, Durney, and Grow.13 And furthermore,

12 0. P. Gandhi and R. W. Grow, "Microwave Emission from InSb With
and Without Magnetic Fields," IEEE Transactions on ED, Vol.
ED-18, October 1971, pp. 853-865.

13 D. A. Christensen, C. H. Durney, and R. W. Grow, "An Exact Small-
Signal Analysis of the Interaction of Two Electron Streams in
a Finite Longitudinal Magnetic Field," IEEE Transactions on ED,
Vol. ED-16, July 1969, pp. 615-624.

- 4 -



Goodrich and Durney11+ studied the effects of velocity spread on wave

propagations and instabilities. Goodrich also observed some micro-

wave emission from InSb samples operated in the high-field region.

Consequently, the report of the observation of microwave radia-

tion set off the proposal of a double-stream interaction mechanism

which seems highly possible. However, in only a limited number of

cases has there been an attempt to compare both qualitatively and

quantitatively the results of the theory with the experiment. The

problem has been that in many cases the experimental conditions have

not been sufficiently well defined to allow such comparison. Such

parameters as the densities of electrons and holes and their spatial

variation of the electric field in InSb have not been known to the

The acoustoelectric interaction mechanism15 17 might appear to be
responsible for part of the observed emission for InSb.

This is emphasized by Thompson and Kino (see Ref. 15). They found
substantial enhancement of electric-field inhomogeneity near the
contact in the presence of transverse or longitudinal magnetic
field.

lk L. C. Goodrich and C. H. Durney, "A Small Signal Field Analysis
of Double Stream Interactions in Finite Semiconductors," Ph.D.
dissertation,.University of Utah, 1969.

15 A. H. Thompson and G. S. Kino, "Noise Emission from InSb," IBM
Journal of Research and Development, Vol. 13, September 1969,
pp. 616-620.

16 T. Arizumi, T. Aoki, and K. Hayakawa, "Microwave Emission from
Acoustoelectrically Oscillating n-InSb," Journal of the Physical
Society of Japan, Vol. 23, December 1967, pp. 1251-1256.

17 C. W. Turner, "The Role of Acoustic Wave Amplification in the
Emission of Microwave Noise from InSb," IBM Journal of Research
and Development, Vol. 13, September 1969, pp. 611-615.
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experimentalists sufficiently well, in many cases, to allow good

tests of the theories. And furthermore, the experimental configura-

tion has not achieved a high-efficiency coupling of the emission to

the detecting system; the actual strength of the interaction is still

unknown. Furthermore, most theories mentioned above mainly derived

the dominant propagation constants only and they cannot be measured

directly. Thus there is no good way of correlating theory to ex-

periment.

Consequently, experimental investigation of space-charge wave

phenomenon in InSb plasma is badly needed. In this report the ground

work for a new impedance concept18 is presented to investigate the

double-stream interaction mechanism in semiconductor plasmas which

will overcome the experimental difficulties and provide a great deal

of information. This new concept is not only realistic but also

feasible. The impedance is defined as Z = V/J A, where the voltage
rd

is given by V = E dz, J is the total current density, and A is
'o z

the sample cross-sectional area. The electric field E is the sum

of the longitudinal z-component electric fields of all possible waves

existing in the semiconductor plasma. Hence once all the possible

waves are found, then the impedance can be calculated theoretically.

Vice-versa once the impedance can be measured, then the waves can be

18 P. W. Chen, C. H. Durney, and R. W. Grow, "Theoretical and Experi-
mental Investigation of Solid-State Mechanisms for Generating
Coherent Radiation in the Ultraviolet and X-ray Regions," Final
Report under Grant NCR 45-003-027, Microwave Device and Physical

Electronics Laboratory, University of Utah, Salt Lake City, Utah,
July 1969.
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properly correlated. This method provides a new way to detect and

measure the space-charge wave behavior in a semiconductor plasma.

Therefore, in Chapter II, a general theoretical analysis of

electromagnetic waves propagating through drifting semiconductor

plasmas based on a one-dimensional model is first described from a

macroscopic poir.t of view. The permittivity tensor of drifting

semiconductor charges with collision and diffusion effects is de-

rived. Then two special cases with longitudinal and transverse

external magnetic field are analyzed.

In Chapter III the impedance concept is introduced to study

the electromagnetic waves in a semiconductor plasma, especially the

space-charge wave and the pseudolongitudinal wave. The procedures

of calculation and the boundary conditions are described. The im-

pedance based on one-carrier and two-carrier stream interactions are

calculated. How the propagation constant affects the impedance is

analyzed. The comparison with a dielectric diode case is given to

provide better understanding of impedance concepts.

InSb has been mentioned as a prominent semiconductor material

for studying the double-stream interaction mechanism. Hence InSb

will be chosen as a sample for our impedance study. Therefore, in

Chapter IV the author describes the general physical properties

(e.g., n- or p~type, densities, mobilities, injection, breakdown,

pinch, etc.) of InSb from a macroscopic point of view so that InSb

can be understood better under any experimental condition.

In Chapter V the experimental techniques are introduced. In

— 7 —



the microwave frequency range, the standing-wave-ratio measurement,

using a slotted X-band waveguide, is used. The observations of the

impedance change due to the pulsed drifting field and the relaxation

phenomenon due to the excess electron-hole recombination are reported.

In the radio-frequency range, the sensitive bridge measurement is

adopted. The observations and the results are reported. The impedance

is plotted in a complex plane with pulsed voltage as parameter. Al-

though strict quantitative correlation between theory and measurements

has not yet been obtained, the results do indicate the existence of

space-charge waves in InSb plasma.

Finally, in Chapter VI, some important results are summarized,

some conclusions from this investigation are drawn, and some sugges-

tions for further work are outlined.

- 8 -



II. ELECTROMAGNETIC WAVE PROPAGATION THROUGH
DRIFTING SEMICONDUCTOR PLASMAS

A general theoretical analysis of electromagnetic waves

propagating through drifting semiconductor plasmas based on a one-

dimensional model is described from a macroscopic point of view.

The permittivity tensor of drifting semiconductor charges with

collision and diffusion effects is first derived. Next the general

dispersion relation of propagation is derived. Then two special

cases with longitudinal and transverse external magnetic fields are

analyzed.

2.1 Effective Permittivity Tensor

As far as the behavior of large numbers of carriers (electrons

and holes) interacting with their self-created or externally imposed

electromagnetic field or both are concerned, most experimental ob-

servations are determined by the average ensemble. Therefore, the

appropriate theoretical description must be a statistical one, and

it should be, in general, a" quantum-statistical description. How-

ever, in the long wavelength limit, the quantum mechanical description

goes over to the classical description. In this report the research

interest is restricted to the long-wavelength excitation and the

classical hydrodynamic model is adopted. Use of the hydrodynamic

model means that the streaming carriers (electrons or holes) with a

charged fluid are characterized by a few parameters such as mean

density u) ., mean velocity v ., mean collision frequency v ., and

- 9 -



thermal velocity V_..

The general orientations of the carrier drifting velocities

-> ->• ' ->•
V .'s, propagation vector k, and the external dc magnetic field B

are assumed. These vectors can be written as:

. ^» *. -/\

V . = V . x + V . y + V . z01 oix oiy J oiz

k = k x + k y + k z
x y z

B = B x + B y + B z
o ox oy oz

x, y, and z are the unit vectors of general coordinates.

Assuming that waves propagate as e , the effect of

streaming carriers (electrons or holes) on the effective permittivity

tensor of semiconductor plasma can be obtained by solving simulta-

neously:

Lorentz's hydrodynamic equation —

dv. v. , V • P.~i ~i /->- ->- ->- ->• -̂ \ =1—— + -i=n.(E + v. XB + V . X B ) (i)
dt T. i\~ ~i o 01 ~) n.m.

i 11

Maxwell's curl E equation —

V x E = -jwyH (2)

Maxwell's curl H equation —

V x H = J + jwef

= ju>4E (3)

- 10 -



the definition of the current density —

J. = p . v. + p. V (4)
-i 01 ~i -i oi v '

and the continuity equation —

V • J± = -juip.. (5)

where the subscript ± denotes the quantities pertaining to various

classes of carriers and takes on the symbol e or h for electrons and

holes, respectively; the additional subscript o refers to the dc

value, and a wiggle underneath the symbol to the ac value of the

respective quantities.

->• th
v. = ac velocity of i carriers
*" 1

->
V . = dc velocity
01 3

T. = 1/v .
i ci

v . - the collision frequency of i carriers

p . = dc charge density of i particle

p. = ac charge density

ni = qi//m*

u . .th
q. = charge of i carriers

m* = effective mass of i carriers

P. - partial pressure tensor due to i carriers = n.kT
=T. . i B=i

T. = temperature tensor

Further assume that the permittivity of the semiconductor material

- 11 -



without the carrier streaming effect is isotropic and the partial

pressure tensor P.'s are isotropic also. Then

n.m* - po. Ti

where VT±

For simplicity we define

. = -£• + — =j(u)-lc • V . - jv .)i dt T. J V 01 J ci/

w. '= a) - k • V .i 01

. = CH.P -/e) , the plasma radian frequency of the i
pi v. carrier

Since all the ac quantities are varying with exp j(wt - k • r)

and can be written as

A(r,t) = A(0,0) ejv^ " w (6)

where i(0,0) is a constant vector, then

->- -*- — T lc • V
V • A(r,t) = V • A(0,0) e J

. " * • • * • ' •
= A(0,0) • V e"'' " r

.•*• -*• ' '
= -jk - A(0,0) e~j * r

t which is valid for InSb, InAs, and most III-IV compound semiconductors

- 12 -



= -jk k • A(0,0) e
•t "*"-jk • r

-jk k • A (7)

Similarly,

V x A(r , t ) = -jk x A

= -jk k x A (8)

where the unit vector k is defined by k = k/k. Combining the above

equations, we obtain

2 2 \-' i
. - c o . l v . = — 1

2 -»- ->• - > - / - » - ->w
£!. E + jf i . to . x E - I 0) . • E to

i ~ J i ci ~ V ci ~/ c

V 2 .p .
. . + j

01 - J 2a) . e
P1

+ _
i J i ci V ci y ci

1
ij

= — < w . x . + V . • E + j
0) 11 01 ~ J 2 i

j .e
(9)

P .k • v.
01 i

where

ci
.B , the cyclotron radian frequency of i carrier

- 13 -



. = fi.E + jfi. to .x E - fw . • Ejo!) .i i- i ci V ci -/ ci ' (10)

• 2-> -»• -v /-»• ->-\->-
. = fl.k + jQ. u> .x k - u> . • k)u> .
i i i ci V ci / ci (ID

The permittivity tensor can be derived from Eqs. 3, 4, 5, and 9. After

simplification the permittivity tensor can be written as

e = e

£12 £13

£21 e22

£31 E32 E33

(12)

where

en = 1 - I A. w.(n2 - a). + V . Y. +
cixy oix ix D

V2 YVT± x.

i w.
x
(n2 -
\ i

a). + k
cix/ y

l.o). - u . a i . l + k f - j f i . o ) . - a ) . w
i ciz cix ciy/ z\ i ciy cix

.oix\ ci (13)

,012 = - y X. Jw.f-jn.oi . - u . to . j + V . Y.5- i j i\ i ciz ciy cix/ oiy

- 14 -



.
IV i

\
- UJ . )V . + V . Y.i/

2 \ 2
. + V . .

oix Ti ix
D i w. k I - j f l .o j . - uj . u .1 i ciz ciy cix

f 2 2 \ f
k I f2. - uj . I 4- k Hf i .u ) . - uj . u)

yV i ciy/ z\ i cix ciy ci

.
oiy

- •
k V . a: - a) . • k.C1

- . .
? i iv i

. . . V . Y.
ciy ciz cix/ OIE ix

2 2 > 2
7 - a; . )V . + V*. Y.
1 Cl/ OIX ll IX

D
Vf . k f j Q . c o . - uj . u . )
i[ xv i ciy ciz cix/

cix . uj . I + kciz ciy/ z

k V - r
V

.
i V ci

(15)

eoi = ~ y ^ • "sw.fjn.uj . - u .
21 V i iv i ciz ci

. . + V Y.
cix ciy./ oix ly

- 15 -



2 V +v 2 .
ci/ oiy Ti iy

D
i r / 2 2 \
,w. k ( f i f - to . )
I i[ x\ i cix/

+ k Hft . to . - to . co . j + k (- j f t .co . - to . co .
yV i ciz cix ciyy z\

. . . .
i ciy cix ciz

k 2 V
bixV i V ci

. k)2} (16)

'22 = i - IA. w^2 - co . + V . Y. +ciy/ oiy iy

/ 2 2 \ 2
j .(n7 - oi .)v . + v:,.
i\ i ci/ oiy Tici/ oiy Ti xiy

D

J . - CO . (0 .
ciz ciy cix. ) + k (ft2 - co2. ̂ ) + k f-jn.to . co . }\

ix/ yV i ciy/ zV i ciy ciz/J

.
oiy\ i (17)

Xi
.to . - to . to . } + V . Y.
L cix ciz ciy/ oiz iy

. . + V2 Y.ci/ oiy Ti iy— -1 - -^
/ r/ / \
w.k hfi .co . - co . t o . I

V i L xv i ciy ciz cix/
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/ \ , / 2 2 \
+ k -iU.o) . -10 to . I + k I fl — a) I

y\ i cix ciz ciy/ z\ i ciz/

/" 2 /-»• " v2

V . flf - (u . •
01Z\ 1 V Cl

(18)

e-n = ~ I x- ^w.f-jJ2.to . - u . u . ) + V . Y.Jl V i i\ i ciy cix ciz/ oix iz

.(ft2 - u)2.V
xy i ci/

+ V Y / r
oiz Ti iz f [, / 2 2
^r I w. k I S2. — u .
D \ i x\ i cix

+ k ( -)$} .u . - u . <o
y\ i ciz cix ciy;

. ) + k f - jn .01 . - w . to . ) I
iy/ z\ i ciy cix ciz/J

k V . [ft -u . • koix\ i v ci (1.9)

'32 7 A. ^w. f jQ. to . - to . a) . ^ + V .V i i v_ i cix ciy cizy 01

f 2 ° \ 2
2. (flf - oj". ) V . + YT. Y.i\ i ci/ oiz Ti iz

'oiy iz

w. k 1-ifl . t o . - ( j j . w .
V i(_ x\ i ciz ciy cix
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+ k + Ik f jn .u . - u . w .
L z v i cix ciy ciz (20)

e_, = 1 - ) A. < w . / a 7 - w . ) + V . Y. +33 V i | i\ i ciz/ oiz iz

/ . + V 2
T .Y .

OIZ 11 IZ

D

U/ . l k H f i . i i J . - w . o ) . ) + k I - j n . u j . - o j . ( j o
i[ x\J i ciy ciz cix/ y\ i cix ciz

2 Nl +l2 L2 f+
ciz/J o izV i V ci (21)

2 / 2 ^ / 2 2 \A . = o ) ./oj n . n . - w .i pi' i\ i ci/

/ 2 2N 2 2 (D • = ' w . n . ( n f - w .) - k v£.
i iV i ci/ Tl\

2 2 2. n: -.
T l 1

~ \. • k)cl '

2.2 General Dispersion Relation of Drifting Semiconductor Plasma

The wave equation can be obtained by combining the two curl

equations,

7 x H = jo)£ | . .

V x E = -jwy H
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in the usual fashion, getting

V E - V(V • E) + u) p_e_E = 0 (22)

For convenience, Eq. 22 can be written in the tensor form:

2 2 2 2 2
k - k - co ye ein -k k - oj pe eno -k k - u pe enox 11 x y 12 x z 13

-kykx - co pe
, 2 , 2 2
k - ky - u) pe -k k - to pe e

y z 23

2 2 2 2 2
-k k - w pe e.,, -k k - u> pe e_0 k - k - w pez x 31 z y 32 z

= 0 (23)

or

2 2 t
6 k - k k - u) pe e E = 0mn m n mn n (24)

where m, n are chosen as x, y, or z.

Equation 23 is the general wave equation which describes all

->• ->
the possible wave solutions if V ., B and all the material parameters

Einstein's notation.
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(e.g., v . , a) . , vTi» etc.) are given. From the nontrivial solutions

of Eq. 23, we can obtain the dispersion relations of the possible

modes and their corresponding field. Each wave has different propaga-

tion constants which depend on the order of the corresponding disper-

sion relation. The complete solution for a particular wave should be

a linear combination of all possible solutions, and it can be expressed

as

- > • - > • ' - > • - * •
n -ik • r n -jk • r

. •*" • V « "*" m V A "* HI /r,r\x + ) A x e = } A x e (25)
o o ^ m m ^_. m m

m=l m=0

x could be the electric field, carrier current densities, or carrier

velocities, x can also be represented by a column matrix:

x = J.
i

where the A 's are undetermined constants which depend upon the

boundary conditions, and the x 's are eigenvectors corresponding to

each of the k. propagation constants.

In the following section, two special and interesting cases

will be discussed.

2.3 Special Case I (B || E || z)

If k | V . II z, B II z, thenn 01 ii > 0 n »
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•) . • x = to . =0ci cix

--
0) • y = (i) . =0
ci ciy

Y. = 0
IX

Y. = 0

2 2Y. = n: k - oi .12 i ci

D = w . f t . ( f i t - <o". ) - k2 V 2 . f f i 2 - (A

And the elements of the effective permittivity tensor can be simplified

as:

~ E

2
o . w . Q .
pi i i

22 " " • L u 2/^n2 2

i=e,h a) fi. - w .
V i ci

i to . w. u .
Y P1 i cl _ •

£12 ~ E21 *• 2 2 \. - to .i ci/

'23 £32

2
0) .
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The general expression of Eq. 25 can be written as

2 2
- a) ye e -u ye

.̂•no ye , 2 2

k - u ye e,, 0

-a) ye

= 0

The dispersion relation is

, 2 2k - to ye e + (w ye = 0 (26)

/ 2 2 A 2 / 2
If fk - to ye e,,J + Uo ye = 0, i.e.,

/ 2 2 A 2
( k - a) ye e-^-j) = ±jco ye

2 2
k = k U^o V 11

2 2
k = k

2to . w.
Pi i

f 2 An . ± w .
V 1 Cl/

This implies

J x + E yx y

± (28)

2 2
where k = to ye.

o
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This is a transverse wave, and it is usually called a helicon

wave, which may have either counterclockwise (positive) polarization

or clockwise (negative) polarization of electric field. Bok and

Nozieres1 result19 can be obtained from Eq. 27.

If

-oj2Me eQQ = 0 (29)

i.e.

1 - I P = 0 (30)
±=e,h Wn - k v

2
0) .

i=e,h u - kVU - kV. - jv. - k VT.

This implies S" = Ez, a pure longitudinal wave (or space-charge wave).

Equation 30 is the familiar double-stream interaction equation.

The complete solution can be obtained by solving the linear simultaneous

equations (1-5) and the result is

19 J. Bok and P. Nozieres, op. ait.

R. W. Grow, "Physical Electronics," multilithed notes handed out in
class.

- 23 -



x =

V.

Ji

E

4
V

m=0 A m

n.w.

• r 2 2 1
L J

f| . QJO .
i oi

, 1

-jk zJ m
e

(31)

Since J. + jueE = J = const., then

Voi
j a) - iv .J J ci

= J (32)

and

A =o
Voi

(33)

The A 's (m = 1, 4) can be determined by other boundary conditions.
m

Furthermore, if the k V 's are small (i.e., a small diffusion

effect) ,

x = L A
m=0

m

-ik z
m

(34)
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2.4 Special Case II (B j(E fl z)j
' " ' " ' ' r ~ O 0

If k ||E || z and B || y, then

to . • x = a) . =0
ci cix

to . • z = u . =0ci ciz

Y. = jfl. <D . k
ix i ci

Y. = 0

Y. = ft k
iz i

2 2 \ 22 2
D = w.fi.fl. - a) . ) - k V^. fi.

i IV i ci/ Ti i

The elements of the effective tensor can be simplified as

2 f 2 2 1
w . w. w.n. - k V^.
P1 ll 1 X - ^J'ii L :w t / 2 2 \ 22 1w . f n : - w .) - k^ v^. n.iV i ci/ Ti ij

= E21

2
i u> w tor ci i pi

-•is ~ ~fc3i ~ ^ r (j- 2 ^ ,2
| w . ( f t . - w . ) - k vT

2. n.lTi ij
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'22 1 - 1

2
CO . W.pi

) . n.pi
'33 2 2 ^ , 2 . 2

The wave equation (Eq. 23) can be written as

2 2
k - k e,, 0o 11

ei io 13

2 , 2
k - k 00o 22

-k e, Qo 13
-k 00o 33

= 0

(35)

So the dispersion relation is

'.2 .2 •k - k £„„
^ o 22

,2 .2k - k e
o 11

1-k e ) + k e
'o 33'

e
o 13

= 0 (36)

Either factor will lead to possible propagation. If

2 2
k - k e = 0o 22 (37)

i.e., k = ±kQ (e, then

1 - 2

a) . (w - kV .}piy oij
co2fu) - kV . - jv .^

V oi J ci/

(38)

This implies that E = E = 0 andx z
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E = Ey 1 B (39)

This is usually called an ordinary transverse wave.

If (k2 - k2El1V-k
2e_„") + k4e2 = 0, then

V o 11'V o 337 o 13 '

£11£33 + £

£33

This implies

e33E = — E
£13

E = 0
y

* -1- £ v+ v) i so <*»

This is a hybrid wave.

With the slow wave approximation, k » k , the dispersion rela-

tion of Eq. 40 can be simplified to

£00 * 0 (42)

i.e.

. n.
\ X

l-e,h w.. - U - k
1 - —r- - 2 2 - = 0 (43)
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->• " II •>and E - 0, E = E z || k.
X J.

So this is usually called a pseudolongitudinal or quasi-

longitudinal wave, which has almost the same properties as space

charge waves. The complete form of Eq. 43 is:

L=e,h (a> - kV .
01

oJ2.(oj - kV , - jv •',}piV oi J ci/
\2 2

- JV . ) - 0)J CI/
.ci - kVoi - jvci)

(44)

This is a sixth order equation. There will be six possible propagation

constants in this case. Hence the complete solution will be the linear

combination of six components corresponding to these six propagation

constants, which can be written in a matrix form as

Vix

V .
IZ

J.
IX

Jiz

E

6

- £ \m=0

niwiuci
/ 2 2 A

ml S2 . - 0) . )
V 1 CI/

i i i
/ 2 2 \ 2 2

^"iV^i ~ "cij ~ J Tini.

niwclpol
^2 2 ~\
lni - wci/

nipoiniu

/" 2 2 \ •Ic
2
v2

JWiV i ~ "ci/ -1 Ti i

1

' -jk z
m

e

(45)
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where k = 0 when m = 0. The first term of m = 0 corresponds to the

steady-state solution and the k 's (m = 1 to 6) are the possibleJ m

propagation constants. The A 's (m = 1 to 6) are the undetermined

constants which depend upon the boundary conditions. While A can be

determined by J = J + jweE = a constant independent of z; i.e.,

"jvci) I,
i=e,h f(u-jv .)

2-"2.r°L\ ci/ cij'

so

A = r-
L-. r (46)o n.p . fu) - iv , i

r 1 Oil ClJ

2,5 Summary

The behavior of waves propagating through the semiconductor

plasma has been generally discussed. The possible existing waves and

their corresponding fields and ac velocity variations are derived

"*" ii ~* n " "*" i "*" ii "under two special cases, one is B || E || z and the other is B j_ E || z.
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III. IMPEDANCE ANALYSIS

3.1 Introduction

From the previous chapter, it is known that different waves

exist in a semiconductor plasma if a drifting field and an external

magnetic field are applied. These waves may be longitudinal waves,

pseudolongitudinal waves, transverse waves, or hybrid waves which

mainly depend upon the orientation of the magnetic field.

From conventional circuit theory, the voltage is defined as

V = E • dz, and the impedance is defined as Z = V/I where I
•'a

is total current flow. Now let us consider the voltage between two

different specific planes AA' and BB1 in a semiconductor plasma, as

shown in Fig. 3.1, which are parallel to the xy plane. The voltage

E
z

1 * - » - » -

1
I a

i

b

A' B'

Fig. 3.1. The voltage difference between AA1 and BB'.

between AA1 and BB' is determined mainly by the electric field which

is the sums of the existence of waves in the plasma. If a longitudinal
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wave exists, a voltage difference between AA' and BB' will be found ,

fbsince V = E • dz ^ 0. If a transverse wave exists, a voltage dif-

ference will net be found due to V = E • dz = 0. If a hybrid wave

V + -
exists, a voltage will be found as V = (E • z)dz. In other words,

'•'a
f\

the voltage difference is caused by the z component of electric field

of the existing wave, and the total voltage difference is the sum of

each voltage difference due to each specific wave since there may be

several waves in a plasma. In the one-dimensional case, the total

current density, which is the sum of convection current and displace-

ment current, is a constant (independent of z) . So the voltage dif-

ference can be converted very easily to the impedance change due to

the existence of waves. By measuring the impedance, it may be pos-

sible to detect the existence of waves, especially longitudinal or

pseudolongitudinal waves. This could be an excellent tool for

investigating the wave behavior inside a plasma. Of course, this

impedance idea will not contribute anything to the transverse wave

case.

This impedance concept has been adopted by Llewellyn and

Peterson20 to study the electronic tube, and furthermore to study

20 F. B. Llewellyn and L. C. Peterson, "Vacuum-Tube Network,"
Proceedings of the IRE, Vol. 32, March 1944, pp. 144-166.
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plasma diodes,21 avalanche Read22*23 diodes, and Gunn diodes21* quite

successfully. It is our belief that this concept will provide some

information about the space-charge wave behavior in a semiconductor

plasma, which has been puzzling for a long time.

In this chapter we will first define the impedance more

clearly. Then a procedure to calculate the interaction impedance

will be described. Next we will discuss the boundary condition and

analyze the impedance of one-carrier stream interaction, two-carrier

stream interactions with and without the external magnetic field.

In the meantime the effects of thermal diffusion and the hole velocity

on the wave-propagations and the interaction impedances will be

clearly discussed. Finally, a summary of impedance concepts will be

given.

3.2 Definition of Impedance

Impedance concepts at microwave frequencies are complicated

21 F. R. Holmstrom, "Stability and RF Behavior of Plasma Diode,"
Technical Report No. 0833-2, Stanford Electronics Laboratory,
Stanford University, Stanford, California, August 1964.

22 M. Gilden and M. E. Hines, "Electronic Tuning Effects in the Read
Microwave Avalanche Diode," IEEE Transactions on ED, Vol. ED-13,
January 1966, pp. 169-175.

23 T. Misawa, "Negative Resistance in p-n Junctions under Avalanche
Breakdown Conditions, Part I," IEEE Transactions on ED, Vol. ED-
13, January 1966, pp. 137-143.

24 R. W. H. Engelmann and C. F. Quate, "Linear or Small Signal Theory
for Gunn Effect," IEEE Transactions on ED, Vol. ED-13, January
1966, pp. 44-52.
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because unique voltage and currents cannot always be defined. There

are, however, special situations in which meaningful voltages and

currents can be defined, and sometimes an impedance can be defined

in terms of voltage and power, or current and voltage.

Let us discuss a cylindrical semiconductor plasma with per-

fectly conducting planes at both ends as shown in Fig. 3.2. It is

V

-a

H,

Perfect conducting
plane

Perfect conducting
plane

Fig. 3.2. A cylindrical semiconductor plasma with
perfectly conducting planes at both ends.

assumed that 9/9r = 8/8<f> = 0, and d is extremely small compared to a

wavelength. Then the semiconductor can be regarded as a point source

to an external circuit. Therefore a meaningful voltage can be defined

as
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d

V = J E(z) dz (47)

0 .

A meaningful current can be defined as

2i\

_ H • dt = I H a d<f. = 27T a H (48)T J
0

Since

V x H = J + jcoeE = JT = constant (49)

IT = JT • Tra (50)

Thus

JTa

The impedance is often simply defined as Z = V/I , which fits

with the idea of low-frequency circuit analysis. However, from the

microwave point of view, which is more appropriate here, there can be

no ac currents in the perfect conductors, and hence no power can be

transmitted through the conductors. The only alternative is that the

microwave power be transmitted radially through the r.= a boundary to

the external circuit. This does not fit well with circuit theory

concepts, and makes the definition of impedance as Z = V/IT question-

able.
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In addition, in a three-dimensional analysis, IT will in

general be a function of z, which further complicates the definition

of impedance, because an impedance which is a function of z would not

be useful in this case. A meaningful impedance can be defined, how-

ever, in terms of voltage and power. To get the impedance in the

normal sense (i.e., a resistance corresponds to a power loss), the

power is taken to be the power in the -r direction; that is, the

power passing into the diode through the r = a boundary. Then the

impedance is defined as

Z = V2/P (52)

Happily, it can be shown that this impedance is exactly the same as

V/I for the one-dimensional case, in which case I is not a function

of z. The power is given by

P = I E x H • dS

In the one-dimensional case, this reduces to

d 27T

P = EH add. dz = 2ira E E± dz
j J z <!> J z <}>
0 0

Using Eqs. 51, 50, and 47,

-, 2 _ d2-rra J
P = —- E dz

0
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Hence

Z = V2/ITV = V/IT (53)

Thus the definition of impedance given in Eq. 53 is a general

definition which is valid for short samples and which satisfies the

microwave field concepts in the general case and reduces to the ordinary

circuit-theory kind of impedance for the one-dimensional case. We will

use Eq. 53 in all our subsequent work.

The concept of impedance given by our definition is very important,

because it provides a method of getting a good approximate solution to

the very complicated problem of the coupling of the semiconductor sample

to an external microwave circuit. The principal alternative to the

impedance kind of analysis is writing infinite-series field solutions

inside and outside of the semiconductor and matching the boundary condi-

tions. This seems to be hopelessly complicated and not likely to

provide insight into the solution of the problem.

3.3 Calculation Procedures

The procedures for calculating the impedance are summarized

below.

1. Write down the equations of motion for carriers (electron^

or holes): The Lorentz force equations, the continuity

equation, the current definition, and Maxwell's equations.

2. From the above equations, get the dispersion equation from

which the propagation constants can be calculated. Also,
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the wave quantities corresponding to each propagating wave

can be calculated.

3. Obtain the amplitude ratios of each propagating wave by

matching boundary conditions at the ends.

4. Calculate the voltage between the two metal plates by

integrating the electric field from injecting plate to

collecting plate.

5. Calculate the impedance defined by Eq. 53.

3.4 Boundary Conditions

The boundary conditions usually can be obtained by proper

integration of Maxwell's equations. In the one-dimensional case shown

in Fig. 3.3, the dc electric field is applied in the negative x-direction;

Semiconductor

&

'A
x = 0

Perfect
conductor

x = d

Fig. 3.3. Boundary conditions between a semiconductor
and perfect metal contacts.
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the boundary conditions are D = p , J + jojeE = J = constant, since
S J.

only a longitudinal electric field is present in the one-dimensional

case.

Unfortunately, these boundary conditions cannot provide enough

information to solve the problem. Some other boundary conditions must

be found or postulated. Van der Ziel25 used as boundary conditions

that the ac electric field E = 0 and the ac potential <j> = 0 at the

initial plate x = 0, and the ac potential <ji = <|> at the second plate,
3.

x = d, in the space-charge-limited solid-state diode case. Kawamura26

used the boundary conditions that the ac normal electric field E must

be zero at both ends, x = 0 and x = d.

Van der Ziel's boundary conditions do not fit the present

problem because it is not the space-charge-limited case. Kawamura's

boundary conditions appear to be unreasonable. Normal E = 0 at both

ends implies that no surface charge exists on the perfect conducting

surface. The author thinks that there needs to be a better physical

explanation.

As shown in Fig. 3.3, electrons move against the dc electric

field, i.e. , they move from x = 0 to x = d, while holes move along

the dc electric field, i.e., move from x = d to x = 0. In this case,
«

the ac velocity of electrons should be zero at the initial plate,

25 A. van der Ziel, S. T. Hsu, "High-Frequency Admittance of Space-
Charge-Limited Solid-State Diodes," Proceedings of the IEEE, Vol. 54,
September 1966, p. 1194.

26 M. Kawamura, S. Morishita, "A New Negative Resistance of Semiconductor
Bulk," Proceedings of the IEEE, Vol. 56, July 1968, pp. 1213-1215.
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i.e., v = 0 at x = 0, as the first priority boundary condition for

reasons which follow. In the perfect conductor the ac field, current

and charge density are all zero ; the electrons which leave the perfect

conductor and enter the semiconductor will be accelerated by the ac

electric field in the semiconductor. But since it takes a finite

time for these electrons to acquire ac velocity, their ac velocities

at the initial plane must be zero. For the same reason the ac

velocity of holes should be zero at the end plate, i.e., v, = 0 at

x = d if necessary; otherwise this boundary condition can be removed.

If further boundary conditions are required, J = 0 at x = 0

will be used as a second priority boundary condition by adopting the

same kind of physical arguments. The boundary condition of p =0

at x = 0 can naturally replace J = 0 at x = 0. Since J = p V +J r e e Ke oe

p v , v =0 and J = 0 at x = 0 implies v = 0 and p = 0 at x = 0,
oe e e e e e

too.

These boundary conditions mentioned above have been used suc-

cessfully in the electron beam cases and some semiconductor cases.

They give quite satisfactory results which appear to explain some

important physical results.

3.5 Impedance Analysis of Double-Stream Interaction in Solid-State
Plasma without Magnetic Field or with Longitudinal Magnetic Field

From the previous chapter, the dispersion relation for space-

charge waves under a longitudinal or no magnetic field is

2
03 .

0 (30)- -
- kV .)(u> - kV . - jv . ) - k V

oiJ\ oi J ci/ Ti
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If no approximations are made, Eq. 30 is a fourth-order equation. It

will have four propagation constants in this situation. The complete

solutions are given in Eq. 31 in Chapter II. It is impossible to

solve Eq. 30 analytically without the aid of a computer. However, in

the InSb case, some of the factors (e.g., the hole drifting velocity

V the diffusion velocities V .'s, and (w - kV .| « v . collision

dominant case) are so small that they can be neglected or simplified

compared to some dominant terms. Such approximations and simplfica-

tions can result in reducing the order of Eq. 30 and still give a good

expression for the wave properties in a semiconductor.

In the following sections, the dispersion relation of Eq. 30

will be investigated under some simple and proper assumptions so that

the wave properties can be analyzed algebraically, and then the

impedances will be calculated based on such assumptions.

A. Assume no hole drift velocity (V = 0), no diffusion effect (i.e.,

a zero temperature model V . = 0), and the collision dominant case

- kV . - iv . = -iv .^ : then Eq. 30 can be rewritten as
01 J ci ci/

2 2
0) 0)

i

Then

= 0) j F
 2 N (55)

I i • >v 1 - j —E—
ce\ (jjv ,

V ch
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Defining a. = eto ./v ., we have
i pi ci

kV = to - joe
e l +

J0)£

(56)

If a = 0 (no holes exist), then

kVoe

a
- j —

e (57)

This is a one-stream carrier wave which is heavily damped. If o, <

jcoe, then

a
/ = a, - j -£
oe e we

a) e
(58)

So the existence of hole plasma can reduce the magnitude of the

damping.

The main difference between Eq. 56 and Eq. 57 is the background

medium. In Eq. 56 the electron carrier wave is propagating through

a stationary hole plasma background, while in Eq. 57 it is propagating

through an ordinary dielectric background. Furthermore, Eq. 56 can be

written as

kV
oe - 3

o U + j —e\ J we

e 1 + 2 2
) e
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to e / V we

We can see that the damping factor of the electron carrier

wave decreases radically due to the existence of the hole plasma, so

the hole plasma makes the electron carrier wave much more significant,

If a » we, Eq. 59 can be further expressed as

2
/ a to\ a a) e

kV = to + -S- - j -~r-
06 a ^

n y \ n n ajv ,
ii L e e \ . e e ch= co 1 -1 jw —n \i / J n y 2

h h/ h h 03 ,ph

i.e.

/ n y \ n y c o v ,
i a) /, . e e \ . co e e ch ,, .
k = r;— 1 H J ~ ^— (60)

V \ n^Viu / v nu^u 2
oe \ n h/ oe h h a) ,

ph

Since aj « v . . to , in InSb, the damping term can be considered very
ch ph

small.

The complete solution for electron velocity, current density,

and electric field is
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V
e

Je

E

1
V
Zi

m=0 m

1e

v
ce

T\ 0)p
e oe

v (t» - kV ")
cev oe/

1

-ik zJ me

(61)

where

A =o Z
(62)

Using v = 0 at z = 0 as a boundary condition, which is equivalent to

E = 0 at z = 0 in this case, we have

An = -A1 o (63)

so

E = (6A)

As shown before, the impedance of the carrier wave can be derived as

Z = -f̂ r E dz
VJ

V L e^kd - 1
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Awe + E y
ll -

-jkd (65)

If the presence of the holes is neglected so that the interaction

becomes a one-carrier stream interaction,

V J eV
oe oe

~^kdThen e~ « 1 and |l/kd| « 1. Hence

(57)

Z -
Apcoe + oj

which is the impedance of a leaky capacitor, as expected.

For the two-carrier stream interaction,

(66)

oe

.
L T

i y >
e e

W

n y
e e

oe
n y
h h

ch
2
°ph

If the damping term is neglected, then

+ +
1 -

4 ^ ['
jwe + a + a, I L

6 - sin 8 . (1 --cos 6)
A ju>eJ e h

(60)

(67)

where



/ n y \
6 = » (i + .JLJL} d

Voe V Vh/

and

o\ = y .p .i i 01

The impedance is a spiral curve and is a function of 6 in which u), V
oe

n , n , y , y . and d are involved,
e h e n

If it is a high resistivity dielectric diode (e.g., a silicon

diode) , to - 0. Then

_ d l - J6 - e-
z ~ JO.CA I -je ; (68)

which is quite similar to the impedance of the space-charge-limited

diode derived originally by Shao and Wright.27 The derivation will

be given in Appendix 1.

If the frequency is not so low that the inductive effect plays

a significant role in the hole plasma, i.e., the -jv , term in the

above equation should be replaced by (to - jv \ , then the propagation

constant of the carrier wave should be modified as

27 J. Shao and G. T. Wright, "Characteristics of the Space-Charge-
Limited Dielectric Diode at Very High Frequency," Solid State
Electronics, Vol. 3, November 1961, pp. 291-303.
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oe

n y
1 +

Vh ch

n y / \ wv ,
1 _fiL_ _e_i . (! + < _JiL_A . _£h ! + • u
JTT I -1- ^^ J . . I « IX~

Voe Vh ch/ to

0)

oe

y
e e

n y
e e

oe

to ch 1 -
vch j ,

ph ch
W)

Obviously the carrier wave will be a growing wave if

ch
1 -

0)ph
2

o
2

;ch,

- 1 < 0 (70)

This implies

2 2
00 , > V
ph ch

(71)

From the impedance point of view, the wave will not change

its magnitude, drastically since the growing rate is still small

compared with phase velocity. How the propagation constant affects

the impedance will be studied in the following section.

B. Assuming no diffusion effect (V = 0), the collision-dominant

case [Yu> - kV . - jv /) - -jv . 1, and small hole drifting velocity, we

have



. 2

1 -
v (u - kV ") v , (
ce\ oe/ ch\ kV ,

oh
= 0 (72)

i.e. ,

k 2-k U 0)

V Voe oh
- J v Vce oe

- J v , V ,ch on

V V ,oe oh

2
0) 0)

v V V ,
ce oe oh

2
0) , U)

v , V , Vch oh oe
= 0 (73)

Solutions of Ea. 73 are:

U) . 0)
0)

- J
oe oh/

,v V
ce oe

£h

v V
ch oh/

0) 01

V
oe

2
ope
Vce oe

2
°ph

V

- 2j
cj to pe

V Uch oh,
, V V
\ oe oh/ v V

ce oe U uch oh/

1/2

(74)

We shall be interested in the situation where cu/V , w/V , are
oe' oh

o o
much smaller than 01 /v V . to , /v . V , . Then

nt>' rp np nn' rn once oe' ph' ch oh'
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CO CO

IVoe
Voh

CO
pe

. V
ce oe

CO
Ph

v V ,
ch oh,

± -
CO

,v V
ce oe

COph
v , V ,ch oh/

1 + J

0)

oe V . I Vv V v ,V ,oh/ \ ce oe ch oh/

f V
v V '\ ce oe

»2,Aph
v , V , /ch oh/

COpe
CO
ph

v V v , V ,
ce oe ch oh

J>h_
v V
ce oe

v , V ,
ch oh>

(75)

Taking the upper sign, we have

kl =
CO

oe oh/

CO

oe

CO

oh>

0)
pe

2
CO

v V
ce oe

v V
ch oh

CO CO

V V v , V ,
ce oe ch oh

CO
pe
V

ce oe

CO
Ph

VchVoh,
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Assuming V « V and V , /V « n y /n, y, ,
oh oe oh oe e e h h

i ~ 2 v
voh

v uoh
n

9~ 2
t.e e oh

,
oh uoh \ oe h oe,

a)
- J2 v V

ce oh

n u V ,
e e oh

n, y V
h h oe,

oh
1 -

n v V .
e e oh

n, jj V
h h oe

- J 1 +
,
oh

n u V ̂e e oh
n u V
h h oe/

a)
,oh

.h

oh
(76)

Thus, k- is the hole carrier wave which is heavily damped since

a, > we.h

Taking the lower sign, we have

k,, = -=•
U) oe

V , / \v V v , V ,
oh/ \ ce oe ch oh>

oe oh/

; V v V
ce oe ch oh,
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2
/ 0) 0) \

/ V
oe

2
(i)\ pe

\v V 'A ce oe

V . \oh
2

to ,ph 1
v , V , /ch oh/

/ "2
/ pe
f v V

ce oe
2

(0

\ pe i
\v V '\ ce oe

v\
v , V , \ch oh 1

2
0) . /ph /

v , V , /ch oh/

0)

Voe

n y / V . V-, , e^e [ oh]ii I i i T7 In^y, I V /h h \ oe/

n y
a) e e

J v nuUuoe h h

OJV ,ch
2

0) ,
nn

1 v, n VI V ,
1 _ 2 ° , e e oh

V
oe Vhv

oe>
(77)

Thus k« is the electron carrier wave, which is less damped.

If V approaches zero, then

k -»• -°° + j00 (78)

n

oe
1 + e e

, ,h h

.
ch

V nuy, 2
oe hrh co ,ph

(79)

which is the same as the first case. From Eq. 77, we can see that

the effect of hole drift velocity on the electron carrier wave is to

increase its damping since the ratio of V , to V is negative.oh oe

The complete solution for electric field is

-jk z -jk z
E = A + A 1 e + A _ ez o 1 2 (80)
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Using v = 0 at z = 0 and v = 0 at z = d (which is equivalent to E

= 0 at z = 0 and z = d) , we obtain

A + A + A = 0 (81)

Then

-jk d -jk d
+ A e + A e =0 (82)

and

A, = —~r :-r~7 A = ° (83)1 -Jk2d -J^d o
e - e

•i A -i, A - " (84)-jk2d -jk,d o o '
e - e

V = Edz - Aod + A, _jk - + A, _jk - (85)

0

Substituting Eqs. 83 and 84 into Eq. 85,

-JV
A le l - Ij le ' - 1

V = A d + -^
o

e - e
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z =
A d

V o
JTA ~ JTA i +

- e

(86)

If we assume V , -> 0, then k, -»• °° - j°° and e
on l

Equation 86 becomes

Z =
A do

V

-jk,d
e - 1

-JV

which is exactly identical to Eq. 67.

C. Assuming collision dominant (fa) - kV - jv ."\--jv . and small
l\ oe J ci/ cij

/ 2 2 \
diffusion effect (4 V_ /V • oi/v « 1, V_, = 0), we have

\ Te oe ce Th /

1 -

2

VL
(u> - kV V-jv
V oe/V ce

2 2
VTe

tal-
= 0 (87)

i.e.

. 2 _2 + jv fu - kV
k V,., J ce V oe

= 0

1 - j (OV
ch

then,
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I- 1
1 ~ 2
2 TG

jv V ±ce oe
2 w2 ,w2

ce oe Te
( •'. \JOJV + • — *• ^ —

i Ce u)ph 1

\ ^ch/

1/2

We have

0)

7
oe Vh/

v V

V.
Te

(88)

k - " U H "e^lk2 ~ V I1 nuyuoe \ n n/

. to e
J V n

oe h

M cov ,
e en

r\

v2
. Te to

V Vce

1 I 66 to
V

oeoe
(89)

Thus there are two waves existing in this case; one wave k is

the reflected wave with quite a large damping factor, and the other

wave k» is the usual electron carrier wave traveling in the direc-

tion of electron drift. The effect of the diffusion on the electron

carrier wave is to increase its damping factor, which is physically

reasonable.

The complete solution for electric field is

E = A + A n e
o 1

Using v = 0 at z = 0 and v = 0 at z = d as our boundary conditions,

we have once again
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= 1 - e
ll -jk2d -jk d o

e - e

A2 =

Then the impedance is given by

1 - e
-jk0d o

E d
o

JTA

( ~jkld

1 i ^e

M1
Ve

}( "Jk2d 1 /- lAe ^ - 1^ f 1

C2d _ e"^^) ^"Jk:

1

If V approaches zero, then

/ n y A
a) /, , e e \ . .

, -»- - 7;:— 1 H + i°1 V I n y / J

oe V h h/
(90)

n u
e e

2 Voe V h^h-

• ^ e e ch
J V n, y, 2oe h h to ,

Ph

(91)

A2 * Ao



and the impedance is given by

A d
- ) °

-Jk2d

1 e ~ 1

-jk2d

which is the same as the former case.

D. Summary: Under a longitudinal or no magnetic field and low-

temperature condition, the impedance of a semiconductor plasma based

on carrier stream interaction is approximately equal to

- sin 0 . . I - cos 8_ ,,,..
A[jue + ae + aj e e

where A is the cross-sectional area of the sample, d is the length

of the sample, and 6 = w/V I 1 + n M /n, y 1. •r oe \ e e h h'

Obviously, the impedance Z is a function of A. By choosing A,

the impedance can be calculated theoretically. Of course, this

impedance is a realistic one and able to be measured experimentally

if proper operating conditions are given.

3.6 Impedance Analysis of Double-Stream Interaction in Solid-State
Plasma with a Transverse Magnetic Field

From Section 2.4, the dispersion relation for a pseudolongitudinal

wave is

.t The impedance of the space-charge-limited dielectric diode has
been measured by Shao and Wright.

tt This will be discussed in the next chapter.
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u>2. 0.
1 - I —r-2 2

PN * 2 2 = 0 (44)
i=e,hw.(fi. -a) .) -k V fi.

If no assumptions are made, this is a sixth order equation. However,

Eq. 44 will only be studied under some simple and proper assumptions

so that it can be analyzed algebraically. Furthermore the calcula-

tion of the impedance will be based on such assumptions.

A. Assuming no hole drift velocity, no diffusion effect (absolute

zero temperature, V . = 0), low-frequency and the collision-

dominant case, a) - kV . - iv . - -jv . , we can rewrite Eq. 44 as' 01 J ci ci M

.2
JU V

i P£ ce

/ \ f 2 2 \
w - k V (v +o) )\ oe/ \ ce. ce/

2 2
, + ( o ,ch ch

The propagation constant can be solved for from

u - kV Wv2 + a)2oe>/ V ce ce
o ~ o

1 W V 1 0) , V .pe ce . ph ch

( 2 j. 20) V + UJ
V ch ch

Since

2
, v ,ph ch
2 2

0) (V . + 0) .
ch ch

» 1

then
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± jco(Vh + co2
h)

J
1 V Vch

2
CO V

ph ch

/ 2 2 A
col v + co , I

, . v ch chy

co2 v
ph ch

( 2 -L. 2 ̂CO( V + CO )
V ch ch/

(94)

Substituting Eq. 94 into Eq. 93, we have

co - kV
oe

2
CO V
pe ce
2

CO , V ,ph ch

Ve

Vh

(»
(«

(

L +2 +
ce

1 + V

1 + V

2 \
"chj

2 Y
CO Ice/

JeBo)

C 2
CO V

, . V ch
1 J 2

wph

( 2
CO V

V ch
1 J 2

CO
ph

x 2 "\
+ ajchj

Vch

+ -2n)"chy

Vch

(95)

and

k =
CO

V
oe

2 / 2 2 V
CO V 1 V , + CO , 1pe cev ch chy

1 + 2 / 2 , 2 \
0) , V , 1 V -r CO 1ph ch v ce ce/

2 /' 2 2 \
2 c o v ( v u + c o ,

co pe cev ch ch/
~ J V 4 2oe co , v ,

ph ch
(96)

The phase velocity is

V
oe

real
1 +

CO V I V .
pe cev ch

,
ch

2 , - . -
CO , V , V + CO
ph chv ce ce/

oe

1 H
n \i I

e e

h h 1

+

+

»yh o
2D2

V Be o

(97)

- 57 -



and since u « v . , it is found that Imfkl « Refkl.en

When B approaches zero, v approaches V /(I + n y /n, y N
o p of \ e e' h nj

which is identical (as expected) to the formal case without B .
o

The presence of the external magnetic field causes an increase in

/ - 2 2\ // 2 2\
v since 1 + y. B / 1 + y B I is always less than 1.p V h o// V e o/ J

From Eq. 45 the complete solution for the electric field E and

an electron velocity v can be written as1 ez

V
ez

E

= A
o

eV ce/
2 ^ 2

V +0)ce ce

1

+ A,
1

e v. cey
2 ^ 2

v + to
ce ce

1

-jkz

(98)

where

+j n . P . (- j v . "\V i oiy J ex/1
L 9 9 "*" juie

^V . + (i) .
Cl Cl

(99)

Matching the boundary condition v = 0 at z = 0, we have A.. = -A .
GZ J. O

So

E = A - A eo o
-jkz

(100)

The impedance is
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E dz

V
A r_io ^

TT ~ TT d ~JTA JTA L

1

A I
i=e,h

n.p .v .
1 01 Cl . .
2 2 1 J U E

V . + OJ .
Cl Cl

Id •• J M-i]
[ " -Jk J

(101)

where A is the cross-sectional area of the sample. The imaginary

part of the propagation constant k is far less than the real part of

k. In other words, this carrier wave is very slightly damped. If

the decaying term is neglected, the impedance will not change very

much.

Furthermore, if the second order terms of (u> - kV .^ are con-
V °ij

sidered, then k will be modified and will be obtained more accurately.

Under this assumption,

to . u) - kV . - j v . }pi\ _ 01 ciJ

L - kV .) | fuj - kV . - jv .^2 - a)2.1
V oi /[V ol ci/ ciJ

C1

a) - kV .^ox

ce
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(2 ^ 2 \
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ceV ce ce/
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(102)

So the dispersion relation, Eq. 44, can be rewritten as

1 -

2
j 0) . Vpe ce

(„- kV ^ fv2 +
oe/v ce

a)2 ")ce/

/• \ / 2 2 A
(a) - kV )(-v + o) ), , . V oe/ V ce ce/

, 2 2 A
V 1 V +0)

_ ceV ce ce /
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U)f V
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ch

2
ph Vch

2
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0)

+ J
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2
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0)

0)

2
ch
2
ch

)1
)]

(103)

After some mathematical operations, we obtain

oe

2 ( 2 ^ 2
0)0) V I V , + 0) ,pe cey ch ch
2 • ( 2 j. 2 "0) , V , V +0)ph chv ce ce

1 -

^ 2 . 2. >
0)1 -V , + 0) , )

. V ch ch/

a.V I V , + 0) ,
chv ch ch

- j
0)0)
2 2
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i u ,ch ph

- J
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),ch
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,ch
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/ ^
0) , V ( V +0)V
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) , V ( V
ph ch V ce

2 \
Jce/

(104)

The instability condition is

kT > 01m (105)

i.e.
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( . 2 . 2
i •

\ 2 / 2 ^ 2 \ 2 / 2 ^ 2 \
03 I -V +03 03 , -V , + 03 , )

L i 4. pe\ ce ce/ phy ch ch/
z
 1 + ^2 2

, 0 3 , / ' 2 . 2 V f 2 ^ 2 VCh ph I V + 03 I V , + 03 ,K V ce ce/ V ch ch/

2
03
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/ 2 ^ 2 ^ 2 / 2 ^ 2 \
-V +03 03 , -V , + 03 ,V ce ce.J , phy ch chy
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2 / 2_222 "\ 2 / 2 2\
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e o y pny n oj _ / i n c \
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9 /* 9 9 \ M ll i K
v (M B + 1 chV Mh o

cev e o /

This threshold condition is equivalent to Gandhi's and Crow's28 result.

However, from an impedance point of view, it still does not influence

the impedance value very much if the growing factor is omitted (assum-

ing the sample length is not too long).

B. Assuming no diffusion effect, V = 0, the collision-dominant case,

and small hole drift velocity, we have

. 2 . 2
1 U ) V 1 ^ i _ v .

i ____ Pe ce ___ Ph ch

\/2 2 \ f \f 2 2 \
)(v + u ) (u - kV , )(v , + u . I/ V ce ce/ V ohy V ch ch/- kV v + uoe/ V ce ce

28 0. P. Gandhi and R. W. Grow, op.
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Expanding Eq. 107 we obtain

k - k _ ,
IV - V . } J IV ' V u\ oe oh/ \ oe oh

v v 1,oe oh
- J

Aoi
V Voe oh

BID
V V ,

oe oh
= 0 (108)

where

A =

2
to vpe ce
2 ^ 2

+ w
ce ce

B =

2
to , vph ch
2 j.' 2

V , + CO ,ch ch

Equation 108 is a second order equation; it has roots of

2 oe oh
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\ oe oh oe oh
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V V .oe oh

1/2
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CO CO
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Since Ao/V ± to/V , ) < (A/V ± B/V .}, then
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V oe oh

B
V V ,

oe oh

to

1 - ̂ e ^r +

v
oe

to

1V " V K AVV oe oh/ \ oe

/A B \2

( V + V J
V oe oh/

~VolJ

to
V

^-
oe

to

oh oe
,V

oe oh
1-4

v
oe

oe \

+ j
/to to V A B \ /
i v " v , A v v , ; . v
\ oe oh / \ oe oh/ , 1 x

/A B \2 2

(v ' v )
V oe oh/

\2
to to \ /

Joe ~ Voh/ ^

/ A
(v +
V oe

'A B Vl
V ~ V j

V oe oh/

M2voh; J

- 63 -
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/ A ..-P.. i
( V ' V . J
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(110)

Taking the upper sign we have

1 V V B
oe oe

_ i
J

2 . / . V .. AV , >
" A [1 _ ? on o oh

V D2 \ V BV
oe B \ oe oe/
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oe
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0)ph chV ce ce/_
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Taking the lower sign we have

k "
2 " Voh

— + B

V V ,oe oh
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2toto , v ,
ph ch
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2 / 2to v I v
., , pe ceV ch
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+ to2 ^ Vch/ oh
^ 2 \V
+ to I oece/

(112)

Obviously the wave constant k is associated with electron drift,

while k is associated with hole drift.

If V , -+ 0, then
oh

( 2 2 \v , + to )
i\ ch chy

2 / 2 2
0) V V , + CO
pe ce\ ch

2 to" v fv", + to
- X

2 / 2
j v v
pe cey ch

2
ch

1 Voe
2 / 2

J , V , V
ph ch V ce

to , v , fv + to
2 >
cey

V 4 2 / 2 ^ 2
oe a) , v , v +0)

( 2 . 2 \
V +0) 1

\w ce ce 7
, ,
ph ch\ ce ce

which is the same as Eq. 96, and k_ •> -°° + j°°, which means the wave

is heavily damped.

The complete solution under these assumptions can be written

as:

V
ez

E

2

' S Amm=0

n ve ce
( 2 _,_ 2 \( V 4- to
V ce ce/

n, v ,h ch
( 2 2 \

1

-ik zJ m
e
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The boundary conditions v = 0 at z = 0 and v, = 0 at z = d imply

and

(114)

Then

-jk d -jk d
A + At e + A0 e =0
o I 2. (115)

1 - e
(116)

- e

- 1 (117)

Where

- e

~ = JTO Ty

V "i Poi Vci
. ^ , 2 2i=e,h v . + to .

ci ci

(118)

Then the impedance is

Z = — | E dz
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A d + A + A
o "1 -ĵ  • "2 -jk2

(119)

Substituting Eqs. 116 and 117 into Eq. 119, we obtain

Z =
A d

o
JTA

(e"3^ _ i)(e"jk2<i - l ) / l
. . . • ! , J I ' l ^ l

e"3 2 - e~J X ^"3 2 (120)

If we assume that V , -»- 0, then k,, -> -°° + j"5 and e
oh 2.

Then, from Eq. 120,

Z -»•
A d
o
JTA

1 -
- 1

which is exactly identical to Eq. 101. So the effect of the hole

drift velocity on the impedance can be seen as shown in Eq. 120.

C. Assuming no hole drift velocity V , = 0, the collision-dominant

case, and small diffusion effects ^V /V < 1, V = 0V we have

1 -
1 UJ V

pe ce

to - kV
oe

2 j. 2V +00
ce ce

•i 2 w2Tk V_ vJ Te ce

j to , vJ ph ch
2 +u2
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(121)

Expanding Eq. 121 we have
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kiv1 oe
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2 2
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oe/
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02 oe
= -co 1 +

2 f 2
(0 V V ,
pe ce\ ch

/ 2 . 2 A
I V + CO I
V ch ch/

2 / 2
0 V I V
ph ch\ ce

CO
ce

f 2 ^. 2 ̂( V 4- co
V ce ce/

'Te

V
ce

oe'

(124)

The complete solution for the electric field and ac velocity is

V
ez

Veh

E

2
= I A

A =0m

n ve ce
/ 2 2 A
I v + co )V ce ce/

1, v ,h ch

( 2 -L 2 ^V , + CO , IV ch ch/

1

-ik zJ m
e
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Matching the boundary condition v = 0 at z = 0 and v = 0 a t z = d ,

once again we obtain

Al = A0 B ~Ao
- e

1 - e

- e
-jk_d o

A = 0

The impedance is given by

Z =
A d

0

JTA
[, , ^

(

'^ - J

' ~jk2d

^e —

' -Jk2d
^e

-jk d N
e /

l)
( l l \
V-^V -JV/j

If V -»• 0, then the impedance Z once again approaches the value given

in Eq. 101.

D. Summary: The impedance of a pseudolongitudinal wave has been

calculated in the previous sections under different assumptions. In

each case it is approximately equal to

Z =

A jwe +
n . P . v .Y i 01 ci

• u 2 . 2i=e,h v . -t- a) .
' Cl Cl

L -j-e (101)

where
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It is quite similar to the space charge wave (longitudinal wave) case.

However, in the pseudolongitudinal wave case, A is not the cross-

sectional area of the sample. The reason is that the transverse

magnetic field redistributes the plasma carriers to form a Suhl layer.

Hence the quantities of A and p ,'s have to be redefined and they are

very difficult to evaluate. This complicates the quantitative

comparison between theoretical and experimental impedance. However,

a qualitative result can always be obtained.

3.7 The Effect of the Propagation Constant on the Interaction
Impedance

As shown in previous sections, the complete solution for the

electric field E in the semiconductor can be generally written as

n - j k. z n - j k. z
E = 7 A. e x = A + T A. e ^ (125)

i=0 1 ° 1-1 X

where i = 0, k =0 implies the steady-state solution. The k.'s

(i = 1 to n) are the permitted propagation constants. The impedance

is given by

d

Z = -~ = —- I Edz
J
T
A J

T
A J

o
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d .,
tl ~1 rC Z
V A i j) A. e dz

V
A d

-jk.dn J iG ~

1=1
.~J

(126)

The first term is the conventional impedance of a lossy capacitance.

The remaining terms

-jk.d
, n J i
rr I e .,, H"

 1 A.dJTA 1=1 ~jkid

are the incremental impedances due to the space-charge-wave effects

or the propagating wave effects. In general the number of n's depends

upon the mathematical model of the interaction system. And the A.'s

(i = 1 to n) are the undetermined constants which depend upon the

boundary conditions.

Usually there exists a significant propagating wave in the

double-stream interaction system, excluding the steady-state solution.

The remaining waves are less dominant and are heavily damped. As

shown in previous sections, after matching the boundary conditions at

the ends of the sample, only the dominant wave contributes large

.amounts of change in impedance while the remaining damped waves con-

tribute very little. So the total impedance of Eq. 126 can be written

approximately as
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z =
JTA

-jk.d

A d + A.d
o i (127)

and

so

A. - - A
i o

A d
o

JTA

-Jkd -
e - 1 d

A - , v ni Poi
jwe i 2, j/_ - iv ^

i=e,h Jv cij

-jk±d
e - 1
-jk d

(128)

where

A =
o ni poi

i=e ,h
- JV

The dominant propagation constants k. can be written as

ki = k±1+ jk.2 (129)

If k.- is positive, the wave is a growing wave. If k._ is

negative, the wave is a decaying wave. Thus,

-jfk., + 11
- 1

jki2>
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= 1 -
+ k;2jd

k. „ cos k d - ly + k... e sin k.,d
il ii il

2 . , 2
k,Ae cos -i). k!2d

k. 0 e sin k d
i2 il

(130)

This can be plotted in the complex plane for different values of k ...

and k.~ as shown in Fig. 3.4. This is a clockwise-spiral-like curve
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as k...d increases for a fixed value of damping term k._. The larger

the values of k , the less the amplitudes of the spiral curves con-

verge as k d increases. Since k. is a function of frequency, drift

velocities, and number densities of the carriers, changing these

factors will change k. and thus unveil the spiral-like impedance.

This provides a relationship between the propagation constant and the

measurable impedance. By comparing the measurable impedance and its

theoretical value, we can predict the wave behavior in the semicon-

ductor.

The value of d/A
p

juie + £ -
oi

is almost a real number

in the InSb case since to « v .. Then the total impedance is linearly

T ("jkid }/ lproportional to the value of 1 - \e - ly/(-jk.d^ . Presumably,

the capacitance effect of the sample is sometimes large due to the

inhomogeneous electric field distribution and the accumulation of

charge at the contact, especially in the presence of the magnetic

field. Then the value of d/A jue + Z
n. P .i 01

will be modified

as a complex value (a - jb), in which case the impedance becomes

Z = (a - jb) 1 -

-jk.d
e 1 - 1
-jk d

= c e-J4> l -
-jk d
e - 1

(131)

where

i 2 ,_2c = \ a + b
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<J> = tan —

I" / -jk±d \ 1
Under this situation, Z and 1 - \e - l)/(-jk.d\\ are no longer

in phase, which is physically reasonable for the space-charge-limited

dielectric diode case.

3.8 Summary

The impedance concept can be applied to the longitudinal and

pseudolongitudinal wave case, not to the transverse wave case. The

theoretical impedances of a semiconductor plasma due to one-carrier

and two-carrier stream interactions have been calculated. The results

are summarized as follows:

A. The impedances due to one-carrier stream interactions are

small and cannot be detected since the wave behaviors in

this case are not prominent. The diode looks like a

passive leaky capacitor.

B. The impedances due to two-carrier stream interactions are

.comparably large and detectable. The wave behaviors are

quite prominent according to the two-carrier stream inter-

action model.

C. The impedance and the propagation constants are related to

each other. An impedance measurement is feasible and a

comparison of these will provide information about the wave

behavior in the semiconductor. Impedance measurements

provide a direct proof of the existence of space-charge

waves.
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D. The carrier diffusion velocities V 's and the hole drift

velocity V , affect the propagation constants, which

directly influence the impedance value.
•

E. The transverse magnetic field produces the Suhl layer,

which complicates the impedance calculation. However, the

qualitative result of the impedance for pseudolongitudinal

waves can be predicted and is quite similar to the space-

charge wave case.
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IV. THE PHYSICAL PROPERTIES OF InSb

4.1 Introduction

The wave propagation characteristics and the impedance analysis

based on a one-dimensional mathematical model have been discussed in

the previous chapter. The dispersion relation mainly depends upon the

physical parameters such as the number densities, diffusion constants,

and mobilities of carriers, the external applied electric and mag-

netic fields, and the signal frequency. Once these factors are deter-

mined, the wave propagation constants can be predicted.

Since the carriers of InSb material have low effective masses

(m* = 0.013 m , m* = 0.16 m , m is the free electron mass) and high
e o n o o

mobilities (y - 50 m/vs, y, = 1 m/vs), InSb material has been con-
e h

sidered to be the most prominent material for studying the semicon-

ductor plasma effect. It is the objective of this chapter to deter-

mine these physical parameters which are critically important to the

wave constants, and discuss some important effects which will affect

the determination of these physical parameters in InSb material.

The material properties of InSb have been studied extensively

since the early. 1960's. It is impossible and not necessary to outline

all the detail in this report. Only the important conclusions which

are useful for the later work will be discussed. The description will

not be in great detail, but brief and from a macroscopic point of

view.

In this chapter, first the number densities of carriers (electron
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and hole) will be discussed. Next the pinch effect and the mobilities

and velocities of carriers will be studied. Finally miscellaneous

effects such as contact effects and diffusion effects will be

described.

4.2 The Determination of the Number Densities of Electrons and
Holes in InSb

The number densities of electrons and holes in a semiconductor

in thermal equilibrium is derived in most semiconductor textbooks.29

The number density of electrons in the conduction band of a semicon-

ductor crystal is given by

3/2 AJ - E VkT
n = 2 2TT m* kT/h eV g' (132)
eo \ e / ^

and the number density of holes in the valence band is given by

/ 2Y^ -n /kT
n, = 2(2Tr m* kT/h e y/Ki (133)
no \ n /

where y is the Fermi level and E is the energy gap, and the subscript
5

o means under thermal equilibrium conditions.

Multiplying Eqs. 132 and 133 together, we obtain the interesting

and important result that

( T\ f \3 /2 ~E /kT

n n, = 4(2i r kT/h ) (m* m* ) e (134)
eo ho V / v e h/

29 C. Kittel, Introduotion to Solid State Phi/sios, Third Edition, John
Wiley and Sons, Inc., New York, 1968, pp. 300-331.
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Thus we find that the product of the electron density and the hole

density is a constant which depends on temperature, but not on the

position of Fermi level. If an impurity semiconductor is doped with

donor atoms, n is large and n. is small. If it is doped with
' eo 6 ho v

acceptor atoms, n is large and n is small. However, the total

charge density within the semiconductor must remain zero.

When an external electric field is applied to an InSb sample

through ohmic contacts, the injection effect occurs. It has been

observed30 in p-type InSb that the electrons are injected from a

contact into p-type material due to the high mobility. They are driven

by the applied field E to drift into the sample at their natural

drift velocity y E . However, if only electrons were injected with

n1 comparable to the equilibrium density of holes n , large fields

would be produced inside the crystal because of space charge. There-

fore a roughly equal number of compensating holes must be associated

with the injected electrons in order to conserve space-charge neutrality,

These holes may receive energy from the same contact as the electrons

or from the region of the crystal surrounding the contact, in which

case they are ultimately replaced from the opposite contact. There

results a neutral electron-hole plasma moving down the crystal.

The total current I is the sum of the ohmic current I and the
i. • ĵj

injected plasma current I'.

30 B. Ancker-Johnson, R. W. Cohen, and M. Glicksman, "Properties of
Injected Plasmas in Indium Antimonide," Physical Review, Vol. 124,
December 1961, pp. 1745-1753.
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Assuming that

Then we have

n = n + n' = n1 (135)
e eo e e v '

"h = nho + nh (136)

(137)

b = ye/yh (138)

= efn y E + n, y, E
eo e o ho h o

~~ enho ĥ Eo A

I' = e(V y E + n' y, E
V. e e o h h o

= en1 y E (1 + b) A (140)
h o

= 6nho ̂ h Eo A f- + (b + X) n'/nho]

where n1, n' are the injected densities of electrons and holes, and

A is the cross-sectional area of the p-type material. Thus the injec-

tion ratio n' /n, can be determined by
ho
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*1_ho
*TL \i E A
no h o

- 1
1

b + 1

b + 1
(142)

Once the injection ratio is obtained, the number densities of the

sample are determined.

In order to obtain reasonably uniform plasma distribution

throughout a crystal, it is vitally important that the lifetime of

the plasma exceed the time required for the plasma front to ttaverse

the sample. The traversal time for a 1 mm long p-InSb sample is

about 15 nsec at the maximum velocity and twice that time with 100 V/

cm applied electric field. The measured lifetime of the injected

12
plasma is 1 ysec through a plasma density range of 1 x 10 to 2.5

13 -3
x 10 cm If the lifetimes were as short at the higher density as

at the lower, plasma experiments would be very difficult to perform.

If the external electric field reaches the breakdown region

at about 400 V/cm, the injected carriers become energetic enough to

excite additional electron-hole pairs by impact ionization. In this

case the current rises very steeply. The electron and hole densities

still can be determined by Eqs. 135-142. This density, however, can-

not be controlled as can the injected plasma density. Also, impact-

ionization plasma usually undergoes pinching promptly after production

The pinch effect will be discussed later in this chapter.
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so that their density distributions are unknown and essentially

uncontrollable.

Furthermore injection in n-type material is also possible,

but it is not as strongly affected as was the case in p-type material31

since the injected carriers are holes. It is reported32 that it is

not possible to produce an injected plasma of significant density in

~\ f\ 1

samples with the donors or acceptors much larger than 2 x 10 cm

If an external magnetic field is present across the sample

(longitudinally or transversely), the conductivity characteristics of

the injected plasma are drastically modified. Either field, if

large enough, flattens the humps in the I-V curves that are caused by

injection. Unless the electric field is high enough to produce

avalanche breakdown, the transverse field sweeps the injected carriers

to the surface where they recombine. Thus a fraction of the injected

carriers are lost by recombination. The longitudinal field also

sweeps the injected carriers to the surface because of an increased

radial diffusion of the injected carriers.

4.3 Pinch Effect

In 1934 Bennett introduced the concept of current pinching

31 M. Glicksman and W. A. Hicinbotham, "Hot Electrons in Indium
Antimonide," Physical Review, Vol. 129, February 1963,
pp. 1572-1577.

32 B. Ancker-Johnson, R. W. Cohen, and M. Glicksman, op. cit.

33 W. H. Bennett, "Magnetically Self-Focusing Streams," Physical
Review, Vol. 45, June 1934, p. 890.

- 83 -



in electron-ion plasmas. With the assumption of an isotropic plasma

possessing charge neutrality with more massive positive than negative

carriers, a simple theory was developed31* to predict the critical or

minimum current I required for the onset of pinching. The critical

current is given by

2c2k(T + T, } _ T + T\ e nj „ n _y e h /n . _.I = ^ - 2 x 10 — ampere (143)
c ev V

ez ez

where T and T, are the mean kinetic temperatures of the electrons

and holes expressed in eV, and V is the constant drift velocity of

the electrons expressed in cm/sec.

The occurrence of pinching in a solid was first deduced by

Glicksman and Steele35 from conductivity measurements on a plasma

produced by impact ionization in n-InSb at 77° K, and was verified by

Chynoweth and Murray.36 The pinch effect was also extensively

studied in plasmas produced by injection into p-InSb. Both sets of

experimental results represent good agreement between observations

and theory. In the presence of a pinch, current would no longer be

proportional to current density, and the I-V curve would rise less

3lt L. Spitzer, Jr., Physios of Fully Ionized Gases, Interscience
Publishers, New York, 1956, p. 41.

35 M. Glicksman and M. C. Steele, "Plasma Pinch Effects in Indium
Antimonide," Physical Review) Letters, Vol. 2, June 1959, pp. 461-462,

36 A. G. Chynoweth and A. A. Murray, "Pinch Effect in Indium
Antimonide," Physical Review, Vol. 123, July 1961, pp. 515-516.
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steeply than a curve of current density versus voltage. This slowness

is enhanced by increased electron-hole scattering due to the high

carrier density characteristics. However, the theory does not yield

the pinch radius. Thus the actual plasma density and its distribution

after the production of pinching is very difficult to predict and

essentially uncontrollable.

The presence of both longitudinal and transverse magnetic

fields would destroy or inhibit the pinch effect and change the plasma

density. And, furthermore, the longitudinal magnetic field would

produce the helical instability observed by Glicksman37 which makes

the plasma density random and unestimatable.

4.4 Mobilities and Velocities

The mobilities of InSb are sensitive to the total carrier

concentration. For lower doping levels, the mobility is determined

principally by scattering by the lattice vibrations. At higher doping

levels, however, scattering by ionized impurity atoms becomes in-

creasingly important. The mobilities versus the total carrier con-

centrations at 77° K for n- and p-type materials are plotted in

Figs. 4.1 and 4.2 which were constructed by workers at the Battelle

Memorial Institute.38

In the presence of an applied electric field, the charge

37 B. Ancker-Johnson, R. W. Cohen and M. Glicksman, op. cit.

38 R. K. Willardspn and H. L. Goering, Compound Semiconductor's, Vol. I,
Reinhold Publishing Corporation, New York, 1962, p. 227.
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Fig. 4.2. The curve of y versus n .
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carriers (electrons or holes) acquire a drift velocity. At lower

applied electric fields, the drift velocities V . are linearly

proportional to the electric field E , the charge carriers are

principally scattered by acoustical modes of vibration. At higher

values of electric field, the drift velocities increase much less

rapidly with increase in the applied field and the drift velocities
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are said to become saturated. These saturations are caused by

excitation of optical modes of vibration by charge carriers. Pulsed

measurements of the Hall voltage in InSb at 77° K allow calculation

of the electron drift velocity as a function of the applied electric

field. Such experiments were first performed by Glicksman and

Hicinbotham. 39 These have been repeated in our laboratory.1*0

Their results of the drift velocities as a function of

electric field at different magnetic fields agree qualitatively with

each other and are plotted in Fig. 4.3. The saturation value of drift

velocity as a function of magnetic field is shown in Fig. 4.4.

The drift velocity with no transverse magnetic field or with

a purely longitudinal magnetic field condition is impossible to

measure by using Hall effect measurements. Its velocity behavior

can only be properly assumed. At lower values of electric field, the

carrier velocity is still believed to be linearly proportional to the

electric field. While at higher values of electric field, its value

is quite difficult to estimate.

4.5 Contact Effects and Diffusion Effects

The contacts of the samples have a strong influence on the

nature of the plasma. This was first noted by Eidson and Kino.1*1 The

39 M. Glicksman and W. A. Hicinbotham, "Hall Drift Velocity at High
Electric Fields in InSb," Proceedings of the Symposium on Plasma
Effects in Solids, Paris, France, 1964; published by Dunod, Paris,
1965, pp. 137-146.

^ K. B. Verma and 0. P. Gandhi, private communication.

41 J. C. Eidson and G. S. Kino, "A New Type of Oscillation in InSb,"
Applied Physics Letters, April 1966, pp. 183-185.
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samples with different contacts (indium contact on tin contact) have

different I-V characteristic curves and different threshold conditions

for microwave emission. To investigate the role of the contacts,

Kino used a probe to measure the voltage drop along the sample. He

showed that an electric-field inhomogenity appeared near, the contact,

especially in the presence of a transverse or longitudinal magnetic

field. However, the samples with low-resistance indium contacts will

presumably reduce the inhomogenity of the electric field.

Glicksman and Hicinbotham1*2 reported that the ratio of drift to

thermal velocity could be as high as 1.5. This suggests the use of the

hydrodynamic force equation, which treats the thermal diffusion

effect as a perturbation term. The use of the hydrodynamic force

equation of a plasma is a rather convenient method to solve the wave

propagation problem; however, it does not predict several important

properties, such as Landau damping. A better approach which resolves

these problems is to use the Boltzman velocity distribution function.

This is the most difficult method of attacking the problem, and it will

be left for future research.

4.6 Summary

For a uniform and controllable plasma, the pinch effect must

be avoided, the helical instability must be excluded, the low-resistance

contact must be used. Under such conditions, the number densities,

M. Glicksman and W. A. Hicinbotham, op. ait.
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mobilities, and velocites of carriers can be properly estimated.

Consequently the wave behavior in the semiconductor plasma is

possible to predict and then the theoretical impedance can be

calculated.
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V. EXPERIMENTAL WORK

The purpose of the experimental work described in this chapter

is to measure the interaction impedance of InSb semiconductor plasmas

in the presence of electric field and a magnetic field. The theory

predicts that the impedance change due to a two-stream interaction is

detectable, so the experimental results can be related to the theory

more or less.

5.1 Preparation of the Samples

The InSb samples used in the experimental work were cut from

two different doped single crystals supplied by Asarco Intennetallics

Corporation. Their physical parameters are:

A. N-type InSb single crystal Is59 with an electron concentra-

13 -3
tion n of about 1.1 x 10 cm , a mobility y of 3.28

S 2
x 10" cm /volt-sec, and a resistivity I/a of 2 ohm-cm.

14 -3
B. P--type InSb single crystal with n, = 3.35 x 10 cm ,

2
U, = 9,647 cm /volt-sec and l/o = 0.22 ohm-cm,
h

The samples were, cut by the wire saw with a cross section of

about 0.3 mm x 0.3 mm and with a length of 0.3 mm to 1 mm. Then each

sample was dipped in CP4 solution at room temperature for one second

to provide a better surface condition. CP4 etchant is composed of one

part by volume HF (48 percent), two parts by volume HNO (70 percent) ,

and one part by volume CH COOH (glacial). Then the samples were

soldered by indium solder (solder No. 2) and indium flux (flux No. 5),

obtained from Indium Corporation of America,on 50 mil copper posts.
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A 1.5 mil gold wire was soldered on the other end of each sample

using same kind of indium solder and flux. All the processes were

done in an air atmosphere. Since the melting point of InSb is about

523° C, there was a wide range of allowable temperatures for melting

the solder without damaging the crystal. The samples could not be

made much shorter than about 4 mils in length because the solder

diffused completely through the crystal.

5.2 Impedance Measurement at Microwave Frequency Range

5.2.1 Setup

The sample which was prepared as described in Section 5.1 was

inserted as an inductive post in the center of a long armed X-band

waveguide as shown in Fig. 5.1. The waveguide was ended by a short or

a termination. The copper post served as one lead for the applied

voltage as well as a heat sink. The other applied voltage lead is the

1.5 mil gold wire which passes through the waveguide hole and is

isolated from the waveguide so that it does not contact the waveguide

wall. Then the whole waveguide is lowered in a liquid nitrogen dewar

which is located in a Varian two-inch electromagnet gap. The magnet

is capable of producing a magnetic field of 15 k gauss at an exciting

current of 165 amperes. We also pressurized the waveguide to prevent

liquid N« vaporation inside the waveguide. A 2 MS width and 5 pps or

10 pps high-current pulser is used to prevent sample heating. So the

experiments were operated quite stably in liquid nitrogen (77° K)

temperature as shown in Fig. 5.2.
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Fig. 5.1. The mounting of InSb sample in the waveguide.
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Fig. 5.2. Experimental setup.

The microwave impedance was measured by the standing-wave-

ratio and the position of a voltage minimum. The whole experimental

arrangement is shown in Fig. 5.3. Two x-band attenuators were used.

One which could change the microwave input power was inserted between

the klystron and the slotted waveguide. The other one was inserted

between the sample waveguide and the detector, and was used to verify

that the InSb was producing microwave effects on the detector.

A dummy sample with the resistance approximately equal to the
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sample was prepared also. By replacing the InSb sample, the dummy

sample could be used to test the circuit and make sure any observed

effects were produced by the InSb and not by some sort of pickup.

The klystron oscillator generated a CW signal with frequencies

in x band, and the detector probe was connected to an oscilloscope.

By moving the position of the probe in the slotted waveguide, we were

able to measure the SWR and the position of the voltage minimum, and

then we could calculate the impedance.

5.2.2 Measurement and Observation

In order to have a better understanding of the InSb samples,

the I-V characteristics were first measured. The results are plotted

in Figs. 5.4 and 5.5.

In both figures the I-V characteristic curves show how the

injected plasma and the pinching affect the linearity of I-V curves.

The threshold field for avalanche breakdown is about 300-400 V/cm.

The parallel magnetic field eliminates the pinching effect and the

injection effect quite prominently as the previous chapter predicts.

These data are quite good compared with some authors' results.1*3 From

the previous chapter it is very easy to estimate the number densities

or injection .ratio.

In addition, the low-frequency current (or voltage) oscillation

i
was observed in p-type InSb (Is56) in the presence of a longitudinal

magnetic field of 4.6 kG as shown in Fig. 5.6. The threshold voltage

B. Ancker-Johnson, R. W. Cohen, M. Glicksman, op.- ait.
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10 °"

= 0

— < — B ., = 4.6 kG

/ /

10 20
1

30 40 V (volt)

Fig. 5.4. V-I curves of n-InSb Is59 with dimensions of 0.5 x 0.4
x 0.4 mm-*.

t- -# — B „ = 0oil

— < — B .. = 4.6 kG
oil

Oscillation

#*

/*

o

<
/

10 20 30 40 V (volt)

Fig. 5.5. V-I curves of p-type InSb Is56 with dimensions (36 x 10 x 12
mil3) (0.9 mm x 0.25 mm x .3 mm).
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Fig. 5.6. The oscillation of Is56, BQ = 4.6 k gauss. The
upper trace is voltage 10 V/cm; the lower trace
is current 4 amp/cm.

varied with magnetic field strength. The threshold condition of the

low-frequency instability is plotted in Fig. 5.7. The frequency of

the oscillation is about 10-40 MHz. This low-frequency instability

of the p-type (Is56) InSb sample is interpreted as the instability

of the drifted helical waves and was first observed in p-type InSb by

Ancker-Johnson and Glicksman in 1961 and was called a standing hydro-

magnetic wave at that time. The application of a moderate longitudinal

magnetic field B (B >B, , - , - , ) enhances the amplitude of the
o o threshold r

oscillations as expected if a helical hydromagnetic wave grows. Further

increasing the longitudinal magnetic field B produced an oscillation

that was no longer coherent. Several superimposed modes with different
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10 15 20 V (volt)

Fig. 5.7. Dependence of threshold magnetic fields on
voltage across sample for the helical instability.

frequencies were observed. Furthermore the orientation of the

magnetic field also affects this low-frequency oscillation. As shown

in Fig. 5.8,.the oscillation amplitude is a function of magnetic field

orientation. Since this helical instability causes oscillation in

the sample, and it will seriously influence the impedance measurement

(especially at RF range), the impedance measurement must be carefully

treated.

Observation of Impedance Change Due to the Drifting Pulsed Current

The theoretical impedance of a semiconductor plasma under a

drifting field has been calculated in the previous chapter. It is a

function of the dc field, signal frequency, etc. When a pulsed

In the RF range, the existence of the helical instability will rule
out the possibility of measurement on impedance.
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90e

30C

180°

-90e

Fig. 5.8. Polar plot of oscillation amplitude versus B
at a fixed value of current.

current is applied to the sample, the impedance change due to the pulsed

current should be observed from the detecting probe in the slotted wave-

guide. The actual experimental observation from the oscilloscope is

shown in Fig. 5.9 as predicted. The magnitude of the dip or the peak

in the detector voltage changes sinusoidally as the probe position

moves or the signal frequency changes. Also increasing the pulsed

voltage (current) changed the magnitude from upward to downward if

the detector was fixed, as shown in Fig. 5.10. Increasing the attenua-

tion with either attenuator in the system caused the.dip or peak shown

on the oscilloscope to die out. This establishes that the dip or peak

is actually a microwave effect.

- 100 -



Fig. 5.9. The upper trace is current,1 amp/cm; the lower trace is
detector voltage,10 mV/cm; time is 1 us/scale, B = 0.

Voltage
increases

t

2 ys time

Fig. 5.10. Detector voltage,
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The transformed impedance can be measured at the slotted wave-

guide by measuring the SWR during the 2 ysec period and recording the

minimum voltage position. The actual impedance of the sample must be

found by some kind of transformation according to transmission-line

theory. The actual equivalent circuit for the experimental setup can

be drawn as shown in Fig. 5.11.

F _H5_

io3
.oi

Liquid N

Short

Fig. 5.11. The equivalent circuit of the experimental setup
where:

d = the distance from the short to the sample post

d = the distance from the sample post to the liquid
nitrogen surface

d_ = the distance from the liquid nitrogen surface to
the teflon block

d. = the thickness of the teflon block
4

d = the distance from teflon to the slotted wave-
guide

Z n = the characteristic impedance of waveguide in free
air space

Z „ = the characteristic impedance of waveguide in
° teflon medium

Z .. = the characteristic impedance of waveguide in
° liquid nitrogen medium

Obtaining the actual impedance of the sample requires several
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cumbersome transformations. As a matter of fact, the distances are

quite hard to measure precisely and furthermore the liquid nitrogen

is vaporizing during the experimental process. These factors affect

the precision of the impedance calculation. Even the measured

impedance at the slotted waveguide is quite inconsistent. Experience

indicates that a small change in distance causes a large phase shift

in the calculation, and that is inevitable. Due to these difficulties,

consistent data are hard to obtain.

Observation of a Relaxation Effect in p-InSb Material by a Microwave
Technique

In the process of the impedance measurement, a delay relaxation

phenomenon was observed when the pulsed current exceeds a certain

value of current. This threshold current is above the impact ioniza-

tion current. This relaxation effect is magnetic field sensitive; the

application of a very small longitudinal magnetic field (about 200

gauss) significantly reduces the effect. The typical waveforms are

given in Fig. 5.12. The relaxation time is a function of pulsed

current. The higher the current, the longer the delay time. The

relation can be plotted in Fig. 5.13.

Several samples with different cross sections were tested to

study their threshold conditions. The results can be illustrated by

Table 5.1.

The effect of vaporization on the phase shift can be eliminated by
immersing the detecting probe in the liquid nitrogen if the detect-
ing probe can stand such low temperatures with correct calibration,
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No B

Current
4 A/div

Detector
voltage
10 mV/div

Time 2 ys/cm

Strong

Current
4 A/div

Detector
voltage
10 mV/div

Time 2 ys/cm

Fig. 5.12. Microwave relaxation effect.
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I (amp)

8 •__

4 -'

0-

T (ysec)

Fig. 5.13. The experimental relation between the
recombination time and the initial current
where T is delay time observed in the
microwave detecting probe after the pulsed
current is applied.
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Table 5.1. Threshold condition.

Cross section

10.0 x 11.6 mil2

13.6 x 13.5 mil2

14.0 x 18.4 mil2

Threshold current

2 . 3 amp

3 . 5 amp

4.6 amp

Jth = 1th/A

1.98 x 10~2 A/mil2

1.92 x 10~2 A/mil2

1.80 x 10~2 A/mil2

It seems that the cross sections have nothing to do with the

relaxation effect, but it is current density that is important. This

effect might be explained by the recombination process of the excess

carriers. If the voltage across the sample is above the avalanche

breakdown voltage, impact ionization occurs. The voltage (or the

electric field) creates electron-hole pairs which then drift, accord-

ing to the applied field, to produce a large impact ionization current,

This current is proportional to the number of electron-hole pairs

according to the equation

Jo =

where n and p are the number densities of electrons and holes, and

usually n - p in the impact ionization region.

After the voltage pulse is gone, these excess carriers stop

drifting and start recombining to produce the equilibrium state. The

recombination is characterized by a life time T. We have
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-
n

= - -f- Ap (145)
P

In the impact ionization region, T = T . Since An = n(t) - n ,
n p o

Eq. 144 can be written as

,. i [n(t) , n<>] (146)

Solving Eq. 146, we obtain

n(t) = ln(o) - n 1 e~t/T + n (147)
L oj o

where n is the steady-state number density, n(t) is the unequilibrium-

state number density, and n(o) is the initial number density. Ob-

viously more time is needed for more excess carriers to return to the

equilibrium state.

In our experimental work, the delay time we measured is the

recombination time required for these excess carriers. If we plot

current versus recombination time in the semilogarithm coordinate, as

shown in Fig. 5.13, we find that it has a linear slope of about 0.24;

i.e., A log I = 0.24 x 10 At. Comparing with Eq. 147 A log n = At/T

log e and A log I = A log n. So,

We assume that n « n(t) and n(o).
n
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log e x 10 0 iri-6
T = — Q 24 = x sec

Thus this kind of calculation consequently gives a recombination

life time of 1.8 x 10 sec which quite agrees with Ancker-Johnson's

observation.'*'*

So far, the recombination mechanisms are still obscure. This

technique appears to provide a direct observation of these effects

and contributes qualitative and quantitative data. However, this will

not be pursued in this report.

5.2.3 Summary

From previous work we obtained that the propagation constant

in a drifting semiconductor plasma was approximately equal to

1 + Ve

Vh
(148)

and the guide wavelength was

X =
2jr
k

1 + Ve

Vh

(149)

Suppose n , IL , y , y , and u are unchanged, then .wavelength X is

B. Ancker-Johnson and W. P. Robbins, "Dynamic and Steady-State In-
jection of Electron-Hole Plasma in p-type InSb," Journal of
Applied Physios> Vol. 12, February 1971, pp. 762-773.
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inversely proportional to the frequency f. In other words, the higher

the applied frequency, the shorter the guide wavelength in semi-

conductor plasma.

If we assume u = 5 x 10 cm/sec, f = 10 cps, n = n, (at

breakdown region), and y /y = 50 in InSb, then, from Eq. 149, A -

-410 cm - 1 micron. '

The shortest sample which can be made at our laboratory is

about 7 mils (180 microns). Thus it is still approximately on the

order of one hundred plasma wavelengths long at microwave frequency

range. From the impedance point of view, this microwave measurement

would not make any significant indication of the wave propagation

behavior in a plasma. In other words, this measurement of impedance

is very hard to correlate with the propagation constant k.

Furthermore the skin effect plays an important role (the

first-order effect) at this microwave frequency range. The skin

depth is

S = /— (150)/Trfyo

where

y (permeability) = 4ir x 10 henries/m

a (conductivity) = n ey + n. ey,
e e h n

10 21 -3
If we assume f = 10 cps, n = 10 m , y =50 m/vs, we have
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a = 8000 (fi - m)"1

<S = 57 microns

The diameter of our InSb samples is comparable to the skin depth.

This makes our one-dimensional model assumption improper since the

one-dimensional assumption is good only if the skin depth is wider

than the sample width.tt5 We, therefore, can no longer adopt a one-

dimensional expression at this microwave frequency range. The

transverse boundary of the sample cannot be neglected either. Under

these conditions, the impedance calculation is impossible. Only if

/
we assume that the propagation effect can be neglected, k = 0 (i.e.,

no longitudinal variation), then microwave impedance of the semi-

conductor post can easily be calculated (equivalent to the calcula-

tion of the impedance of a round wire at high frequency). Such an

attempt had been made by Larrabee.46

Due to these two major problems, our experimental observations,

described in the previous reports, are very hard to correlate with

any space-charge-wave (or carrier wave) propagation. However, this

measurement will provide a good technique to study the life times of

the carriers and the densities of the carriers (if propagation effect

45 S. Ramo, J. R. Whinnery, and T. V. Duzer, Fields and Waves in Com-
munication Eleetronios, John Wiley and Sons, New York, 1965, p. 296.

1+6 R. Larrabee, "Microwave Impedance of Semiconductor Posts in Wave-
guides, Part I," Journal of Applied Physics, Vol. 36, May 1965,
p. 1597.
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can be negligible ).

The two problems mentioned above can be eliminated nicely by

reducing the applied frequency. The decrease in frequency will in-

crease the plasma wavelength and increase the skin depth, respectively,

arid it will make theoretical one-dimensional impedance much more

prominent. The radio frequencies from 10 MHz to 50 MHz, which have

plasma wavelength from 1 mm to 5 mm, will provide an excellent range

for the impedance studies.

5.3 Impedance Measurements in the Radio-Frequency Range

5.3.1 Experimental Setup

The impedance measurement at radio-frequency range can adopt

the conventional circuit theory. We use the most sensitive method,

an RF bridge measurement, to measure the interaction impedance. The

RF bridge used at our laboratory is a Type 1606-A designed by the

General Radio Company. Usually an RF bridge is used to measure the

impedance of a passive circuit element. When we applied a pulsed

current to a sample element in order to measure its impedance, we had

to separate the radio-frequency signal and the pulsed voltage. The

separation idea can be illustrated by Fig. 5.14.

The functions of the LP (low pass) filter and the HP (high pass)

When u) , « v , , the carrier waves are heavily damped. The
propagation effect can be negligible.

Note that the fundamental frequency of the pulsed signal (2 ps width,
10 pps) is far less than the RF signal frequency.
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To unknown
terminal of
the bridge

To pulser

Fig. 5.14. The separation circuit.

filter are designed to separate dc pulsed voltage and the RF signal.

The HP filter is to limit the dc pulsed current passing through the

bridge circuit to a minimum amount, so most of the pulsed current can

only flow through the LP filter and our sample element. The LP filter

is to prevent the RF signal leaking through the pulser, so most of the

RF signal can only flow through the HP filter and our sample element.

If HP and LP filters are properly chosen, the impedance difference due

to the pulsed current can be measured in a very simple and accurate

way. Our HP filter is a 100 pF condenser which contributes very high

impedance to dc pulsed voltage and a rise time of about 10 ns. Our

LP filter is a high frequency choke which is made of a 1-1/2" diameter

by 1-3/4" long plastic cylinder with 40 turns of No. 32 copper wire.

The impedance characteristics of the choke, as shown in Fig. 5.15, are

measured by an HP 4805 RF vector impedance meter designed by the

Hewlett-Packard Company. It has a quite high impedance (over 2 k ohms)

Rise time = RC; C = 100 pF; R - 100 n.
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(ohm)

6 k

4 k
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LV^ 10 15

>.

I
20 25 f (MHz)

Fig. 5.15. The impedance characteristics of the RF choke.

in the frequency range from 10 MHz to 18 MHz. Therefore, our applied

signal frequency will be restricted in this range unless we design

different coils.

The InSb sample is mounted in a cylindrical brass cavity. The

arrangement is shown in Fig. 5.16. The cylindrical brass cavity is

then lowered longitudinally into a liquid nitrogen dewar which is

t
Note the 2 k ohm impedance is much larger than our InSb sample

impedance which is about 100 ohms.
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Fig. 5.16. Interior view of brass cavity.

located in a Varian two-inch electromagnet. The connections from

cavity to the pulser and the bridge are RG 58A coaxial cable.

The complete experimental setup can be illustrated by Fig. 5.17,

and the RF equivalent circuits are shown in Fig. 5.18.

The relation between Z, and Z can be obtained by
b a J

Z, = Z
Z + j Z tan
a J o

b o Z + j Z tan
o a

where Z :characteristic impedance of coaxial transmission line (53
o

ohms).

- 114 -



Signal
generator
HP606A «

Detector oscilloscope
(Type 551 Tektronix

dual beam)

GR1606A
R RF bridge

Unknown
prmina]I I

Cylindrical
brass cavity

"J RG58A

n
Coaxial
transmission

line

7777

~LT

Fig. 5.17. Schematic diagram of RF bridge impedance
measurement.
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B'
B

B*

where

Coaxial

RG58A

Coaxial

•n̂ -i
RG58A

T _,InSb

I
A'

InSb Z'
a

AZ = Z' - Z
a a

AAA—

u
so n

Z =

Z, =

Z'
a

AZ =

AZ, =

impedance of InSb sample with no pulsed voltage
across (AA?)

impedance of Z at the unknown terminal of the RF
bridge (BB1) *

impedance of sample with voltage across

impedance of Z' measured at BB'
3.

impedance difference at AA'

7 ' — 7Zb Zb

Fig. 5.18. RF equivalent circuit.
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5.3.2 Procedure of Impedance Measurement

Indirect Method

When the desired pulsed voltage is applied to the InSb sample,

the impedance difference AZ , due to the pulsed voltage, can be

measured by following the bridge manual. We first balance the bridge

outside the 2 ys pulsed period. When a balance is reached, the

detector shows a waveform of Fig. 5.19. The initial readings on the

Detector voltage

Time scale
1 ys/div

Current

Fig. 5.19. Detecting waveform when an initial balance is reached.

dials are recorded. The ripple during the 2 ys period indicates the

impedance difference due to the 2 ys pulsed voltage. Then the bridge

is rebalanced during the 2 ys period. When a rebalance is reached,

the detector shows a waveform of Fig. 5.20. The final readings on the

- 117 -



Detector voltage

Time scale
1 ys/div

Current

Fig. 5.20. Detecting waveform when a final balance is reached.

dial are recorded. The difference on the dial readings will give the

resistance difference and the reactance difference due to the drifting

field. The various impedance readings can be obtained from the

different signal frequency and different pulsed voltage.

If the InSb sample is replaced by a dummy sample (pure resis-

tance) , and the pulsed voltage is applied, the ripple at the 2 ys period

will not be seen. This indicates the linearity of our dummy sample,

and agrees with our expectation.

The Z and Z, can be measured easily by an HP 4815 RF vector
a b

impedance meter. Once Z , Z, , AZ, are measured, Z1 and AZ can easilya b D a a

Z and Zv can also be measured by an RF bridge, if they have low
reactance value, since an RF bridge can measure maximum reactance
about 5000/XMC.
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be obtained by using a Smith, chart or by calculating from the

transmission circuit theory.

Direct Measurement Method

The indirect method described above emphasizes the impedance

difference due to the drifting pulsed current. The actual impedance

can be obtained by the further step of superimposing and transformation

as shown above. This is quite inconvenient and complicated. A more

convenient method is proposed to help to fill the gap.

First the BB' terminal is shorted and the initial reading

recorded. Next the InSb impedance is measured with the coaxial cable

connection at BB' terminal by balancing the ripple during the 2 p sec

period. The impedance is transformed from BB' to AA1, then we obtain

the actual impedance of the InSb sample under a pulsing condition.

The impedance of the InSb sample without an electric field across it

can also be obtained by the same procedures.

Due to the effectiveness of the direct method, we prefer to

adopt this method for our measurement. However, the indirect measure-

ment still is a good technique and worthy of mention.

In the radio-frequency range, the effect of the inductive

copper post and the gold wire lead on the impedance measurement cannot

be neglected. They must be added to the equivalent circuit as part of

the geometrical circuit impedance. The equivalent circuit of Fig. 5.18

must be modified as shown in Fig. 5.21.

Each geometrical reactance of one sample post is different from
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Z (circuit impedance)
O

} Z'
a

JInSb

Bf

Fig. 5.21. The equivalent circuit of the InSb sample.

the others. The reactance depends upon the dimension of the inductive

post and the gold wire lead. So each geometrical reactance Z must be
O

measured separately. A simple experimental evaluation of the

geometrical reactance may be accomplished by measuring the sample post

with the gold wire lead at room temperature where the conductivity of

the InSb sample is so high that the internal impedance is negligible;

i.e., Z , = 0 at room temperature. This can be measured either by

the RF bridge or directly by the vector impedance-meter. The results

obtained by both methods agree with each other. One measurement for

the geometrical reactance is plotted in Fig. 5.22. This shows that the

geometrical reactance is almost a pure inductance and its magnitude is

linearly proportional to the frequency. In this specific case,

X/27Tf a 0.04 UH.

Now the impedance bridge measurement will be summarized as

follows:

g
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jX (fl)

6

4

2

10 15
J
20 f (MHz)

Fig. 5.22. The magnitude of geometrical reactance.

1.

2.

3.

4.

Measure Z' at BB' at room temperature and then transform
o

Z' at BB' to Z at AA1.
g 8

Measure Z' at 77° K and plot Z' on a Smith chart,
b b

Calculate Z1 from Z' by the proper transformation.
3. D

Calculate ZT from ZT = Z' - Z .
InSb InSb a g

5.3.3 Observations and Experimental Results

As shown in previous chapters, the theoretical impedance of an

InSb sample based on carrier stream interaction is a function of n-type

or p-type doping, external drifting electric field and magnetic field,

and the applied frequency. Following the experimental procedure

described above, the experimental impedance will be reported in the

following sections.

n-type InSb Sample

When a pulsed electric current is applied to the n-type InSb
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sample (Is59) with n = 1.1 x 10 " cm" and y = 3.28 x 105 cm2/Vs,
6 G

the impedance change due to the pulsed current is too small (less than

1 ft) to be detected. When a longitudinal magnetic field is applied,

we obtain the same result. This means that the impedance of an n-type

InSb sample is not a function of electric field.

p-type InSb Sample (Is56)

The observations in the p-type InSb samples are quite different

from the n-type InSb samples. Sample No. 1 has the dimensions of .495

3
x .462 x .465 mm . First the I-V curve was measured as shown in Fig.

5.23, and then the geometric reactance Z was measured as shown in
o

Fig. 5.24. The impedance expression can be measured in two ways —

changing either applied signal frequency or electric field individually.

At 9 MHz, the impedance of sample No. 1 was measured at different

electric fields and the impedances Z''s (at BB') are plotted on a

Smith chart as shown in Fig. 5.25. The impedance locus of Z1 (at AA1)
3.

can be obtained by properly transforming Z'; the transformations are

also shown on the same Smith chart. Then the results of Z' and ZT 0.a InSb

are plotted in a complex impedance plane as shown in Fig. 5.26.

At some specific field, the impedance Z,' can also be measured
b

at different signal frequencies. The locus of Z' and Z' are shown in
D ' 3

Fig. 5.27.

Changing the RF choke (LP filter) directly changes the frequency

range of operation as mentioned. Using the same sample and a different

The frequencies are chosen near the resonance frequency of RF choke.
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Fig. 5.23. I-V characteristics of sample No. 1.
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Voltage is indicated
in figure

f = 9 MHz

Fig. 5.25. The locus of Z' and Z' (see p. 116)
with electric field as parameters.
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Voltage is indicated
in figure

Fig. 5.27. The locus of Z' and Z1 (see p. 116)
with frequency as parameter.
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choke (resonance at 21 MHz) , we are able to measure the sample

impedance at higher frequencies. The impedance results at 19, 21,

and 23 MHz were measured and are plotted first on a Smith chart as

shown in Figs. 5.28, 5.29, and 5.30, and then in a complex impedance

plane as shown in Figs. 5.31, 5.32, and 5.33.

When a longitudinal magnetic field is applied to the sample,

the I-V curve changes drastically as shown in Fig. 5.23. Due to the

low frequency instability in the sample, the impedance can only be

measured below the threshold electric field. The results are plotted

in Figs. 5.34 and 5.35.

When a transverse magnetic field is applied, an impedance

change due to a pulsed current is also observed. Since it is quite

difficult to correlate to the theory as mentioned before, the data

will not be recorded and studied.

The experiments have been performed many times for each

individual sample. The experimental results are repeatable. Each

different sample shows more or less the same impedance characteristics.

The results can be summarized as follows:

A. The sample has to be cooled at 77° K in order to observe

the impedance change effect. This cooling is necessary to

keep the value of the thermal velocities low. At room

temperature, no impedance change due to pulsed current is

observed.

B. When no pulsed current is applied to the sample, the sample

impedance approaches that of a lossy capacitor. Since V = 0,
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Voltage is indicated
in figure

Fig. 5.28. The experimental impedance plot at
f = 19 MHz and B = 0. (See p. 116
for definitions of Z1 and Z'.)

a b
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Voltage is indicated
in figure

Fig. 5.29. ,T.he experimental impedance plot at f = 21 MHz and B .= 0.
(See p. 116 for definitions of Z' and Z'.)

. . . . . ' 3 . D •
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Voltage is indicated
in figure

Fig. 5.30. The experimental impedance plot at
f = 23 MHz and B = 0 kG. (See p. 116
for definitions of Z' and Z'.)

a b
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0.5

f = 19 MHz

B = 0o

" 5 1.6
V increases

1.0 0
1

0.5 1.0 1.5 2.0 R

(53 ft/unit)

Fig. 5.31. The experimental impedance plot.
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1.0

0.5

f = 21 MHz

.B = 0o

2.5 2
, +* .. 1.6
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1.5

0
I I

0.5 1.0 1.5 I 2.0 R
(53 ft/unit)

Fig. 5.32. The impedance plot of Z' with V as parameter.
Z' - Z . a

a 8
'InSb
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X (53 ft/unit)

1.0
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0.5

3 2,5 2
O-^ —^

'"^>1.6 V

f = 23 MHz

B = 0
o

0.5 1.0 1.5 2.0 R

(53 ft/unit)

Fig. 5.33. The experimental impedance plot
of Z' with no magnetic field.
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in figure

•fr Zb

Zf

a

Fig. 5.34. The experimental impedance plot at 21 MHz
and B || = 4.6 kG. (See p. 116 for defini-
tions "of Z1 and Z' )
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Fig. 5.35. The experimental impedance plot of
Z1 with a parallel magnetic field.
3.
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then V =0 and k = °° and the carrier wave effect is
oe

negligible in the impedance calculation.

C. When a high pulsed current is applied, the sample

impedance approaches zero since n and n, increase due to

injection.

D. The resistance of the sample always decreases as pulsed

current increases. The reactance of the sample increases

first and then decreases to zero as the pulsed current in-

creases.

E. The sample impedance changes due to different signal fre-

quency under fixed pulsed voltage (as shown in Fig. 5.27).

F. The impedance measurement indicates that the longitudinal

magnetic field does not change the impedance characteristics

very much.

These observations can be interpreted as carrier stream interaction

effects. To the author's knowledge, there is no other effect which

can well explain these observations. A discussion and comparison

between theory and experiment will be given in the next section.

5.3.4 Comparison and Discussion

A. The experimental impedances of n-type InSb are not influenced by

the pulsed voltage in agreement with calculated one-carrier stream

interaction impedances. This indicates that the electron carrier

wave in n-type InSb is heavily damped and is not measurable.

Therefore, the impedance of n-type InSb looks like a lossy capacitor

or can be regarded as an inactive semiconductor as shown in Eq. 66.
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B. The impedance of a semiconductor based on double stream interac-

tion as derived in Chapter III can generally be written as

Afjwe + (67)

where

= kd

oe

1 +

n u >
e e

Vh,
.

~ J

n u
e e

,
ch

VTe
' n^, 2oe h h u .

ph
V ,.2 v
oe V̂ ,, ce

in

ê
Vh.

C.

The theoretical impedances of sample No. 1 using different values

of thermal velocities (V = 3, 6, 8 x 10 m/sj and with voltage

as a parameter are computed and plotted in the complex impedance

plane as shown in Figs. 5.36 to 5.39. The diffusion effects damp

the propagating wave and depress the impedance curves as shown in

the figures. This is physically reasonable.

The experimental impedances of p-type InSb (sample No. 1)

only give a qualitative similarity with the theory; i.e., counter-

clockwise changes in impedance as voltage increases .

The measurements significantly deviate from the theory quantitatively.

The measured inductive component is far smaller than the calculated

one. One possible explanation is that our assumed model is not
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X p = 6 m /V-sec

50 100 R (fi)

Fig. 5.36.. Theoretical impedance plot for sample No. 1 for
several values of thermal velocity V with a
parallel magnetic field.

50

« /v= 6 m /V-sec

B = 0
o

1 1

50

2.0

1 1

VTe

Te

3 x 10
cm/sec7
6 x 10
cm/sec
8 x 107

cm/sec

•» .8 V

100 R

Fig. 5.37. Theoretical impedance plot for sample No. 1 for
several values of thermal velocity V with no
magnetic field.

- 138 -



X

VTe = 3

V = 6

(x 10 cm/sec)

_L
50 100

Fig. 5.38. Theoretical impedance plot for sample No. 1 for
several values of therms
parallel magnetic field,
several values of thermal velocity V with a

e

M = 10 m /V-sec

50

B = 0
o

2.0

VTe= 3

V = 6

VTe = 8.
.l.O (x 10 cm/sec)

0.8

50 100 R

Fig. 5.39. Theoretical impedance plot for sample No. 1 for
several values i
magnetic field.
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adequate because it is based on a uniform dc electric field across

the sample. However, it is quite likely that the electric field

across the sample is not uniform, and this might significantly

affect the results. In addition, the interaction length and sample

length can only be estimated, and may be quite different from what

we assumed them to be. It is also possible that the two end re-

gions of the sample are inactive semiconductor regions due to

solder diffusion and other effects (e.g., charge depletion, ac-

cumulation, etc.). Therefore, the interaction region decreases

and two passive resistances due to inactive semiconductor regions

must be added. If this is the case, the equivalent circuit should

be modified as shown in Fig. 5.40 where R is the parasitic

Inactive
semiconductor

region Contact

t

Interaction
region nd

V2
-VV- InSb

R /2
o

o < n < 1

Fig. 5.40. The modified equivalent circuit
of p-type InSb sample.
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resistance of the inactive zone and n is a value between 0 and 1.

This model^. has been used to analyze Read diodes quite success-

fully, and it will be applied to our case. For the current work,

we will choose n = 1/2, 1/3, and arbitrary R to get a closer

comparison with the measured impedance. The results with n and

R as indicated are plotted in Figs. 5.41 and 5.42. As shown in

f = 19 MHz

B = 4.6 kG
oil
y

Te

= 6 m /V-sec

= 8 x 10 cm/sec

X (ft)
# Experimental

50 -

100 R (ft)

Fig. 5.41. Comparison between experimental curve and theoretical
curves calculated using several values of the n and R
shown in Fig. 5.40.

M. Gilden and M. E. Hines, op. ait.
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x (n)

50

= 19 MHz

= 10 m2/V-sec

= 0

= 8 x 10 cm/sec

n = -, Ro - 25

# Theoretical

# Experimental

^ Modified

n = 1, R =0

50 100 R

Fig. 5.42. Comparison between theory and experiment.

the figures, the magnitudes of the inductive component reduce

drastically and become comparable with measured ones, although

the curves still do not fit the experimental curves very well.

By comparison, the parasitic resistance is on the order of
«

10 to 50 ohms, about one half of the dc resistance, and the inter-

action length nd is about 1/2 to 1/3 of the sample length. The

parasitic resistance seems to be a function of p.ulsed voltage,

which is smaller in the high field region and larger in- the low

field region, while in our plots we assume that R is a constant

which is independent of voltage. If we assume that R is pro-

portional to dc resistance R, , which is physically reasonable
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and possible, then R is no more a constant and is a function

of dc voltage, as shown in Fig. 5.43. Under this assumption

R (fi)

100

80

60

40

20

R
dc

R

1.0 2.0 3.0 4.0 V (volt)

Fig. 5.43. Magnitudes of parasitic resistance R
and dc resistance R, .

dc

the calculated impedance should be remodified as shown in Fig. 5.42.

Consequently it gives a much better correlation with the experi-

mental curve. Further investigation of these aspects are needed.

D. To get good quantitative comparisons, presumably we need both an

accurate model and precise determination of each quantity such as

carrier mobilities, thermal velocities, electric field distribution,

etc. However, using a simple model and reasonable assumptions, we

have obtained qualitative agreement between measurement and theory,
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and from this we conclude that the existence of space-charge wave

effects can be established by impedance measurements.

E. The observed impedance of the sample is a lossy capacitor in some

cases when no pulsed current is applied. This observation deviated

a little from our prediction since the theory predicts an almost

pure resistance when V =0, since we « E a.. This contradictionv oe . i

can probably be explained by the geometric structure of the con-

tacts .
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VI. SUMMARY AND CONCLUSIONS

In the previous chapters, the possibility of using impedance

concepts to investigate the carrier wave behaviors in a semiconductor

plasma has been studied both theoretically and experimentally. It is

now appropriate to summarize some of the important results, and to

draw some conclusions from this investigation.

1. Typical one-carrier and two-carrier stream interactions in solid-

state plasmas have been analyzed using the one-dimensional hydro-

dynamic equations with small-signal approximations.

2. The impedance concept was introduced to study the carrier-wave

behavior in a plasma. The theoretical impedances based on one-

carrier and two-carrier stream interactions have been calculated.

It is found that the impedance of a solid-state plasma based on

one-carrier stream interaction is a passive leaky capacitance,

and the impedance based on two-carrier stream interaction is

d e J - 1
Z = AMcoe + I a±J [

l " ~̂ J6

where

8 = kd

/ n v '. w / n , e e
k = -— 1 +

v V nuVuoe \ h h'

3. The presence of a longitudinal magnetic field does change the
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carrier number densities; however, it does not change the impedance

expression. The presence of transverse magnetic field complicates

the impedance expression due to the Suhl surface..

4. To the author's knowledge, this is the first attempt to use

impedance concepts to describe and measure the carrier-stream

interactions in semiconductors. The impedance concept has the

advantage that the calculated quantities can also be measured.

5. We developed a bridge method for measuring the impedance in the

radio-frequency range. The RF bridge measurement is a powerful

tool for measuring the impedance of any nonlinear element subjected

to a pulsed voltage. Sensitivity is high and reliable.

6. The theory of impedance analysis explains various experimental

observed results; in particular:

a. The impedance measurements of an n-type InSb sample indicate

that the carrier waves in n-type InSb semiconductors are

heavily damped in the low-electric field region, and con-

sequently it can be described adequately by a one-carrier

stream interaction model.

b. The impedance measurements of p-type InSb samples indicate

that the carrier waves in p-type InSb semiconductors are

quite dominant and detectable. The damping term is heavy in

the lower electric field region and decreases as electric

field increases.

7. The inductive components of the measured impedance are much smaller

than our theory predicts. The reason is still obscure. It may be

due to the following factors:
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a. The one-dimensional hydrodynamic model is too simple. The

predicted results are too optimistic. The assumptions of

the inactive zones in semiconductor were introduced to modify

our simple model and make the theoretical results correspond

more closely to the measured results.

b. The actual stream interactions are not strong, as expected.

The lattice vibration, carrier velocity spread, and some

other factors may decrease the interaction strength.

c. The transverse boundary is not included.

8. From our impedance measurement in p-type InSb material, we have

demonstrated the existence of carrier waves in a semiconductor

plasma; the effect is quite small, but detectable.

9. Since the carrier stream interaction is weak in InSb material,

especially in the low electric field region, and cooling at liquid

nitrogen temperature is needed, InSb is not likely to be useful

in fabrication of microwave solid-state devices based on double-

stream interaction.
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APPENDIX I

IMPEDANCE OF SOLID-STATE DIELECTRIC DIODE

The solid-state dielectric diode impedance is

then

Z =
d I 1 - j 9 - e-je

JweA -J8

Since

d (1 - cos 6) - j (6 - sin 6)
ueA - - - - - A - . ' . . .

JB, e- —
o

eAu
Y = )2(1 - cos 6) + j92(9 - sin 6)

(i - cos e)2 + (e - sin e)2

eAu
G =

6 (1 - cos 6)

d2 (1 - cos 6)2 + (6 - sin e)2

eAu
B =

6 (9 - sin 6)

d2 (1 - cos 6)2 + (8 - sin 8)2

If 9 approaches 0, then
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eAu 62ll - 1 + „ - ...
G = lira —TT-

3

2 eAu
o

d2

-, . B n . d B
C = lim — = lira — 3-

6-0 u 6->0 Uo 6

A , . 6(6 - sin 9)= — Ixm •= =•
9->0 (1 - cos 8) + (6 - sin 8)

3 d

which coincides exactly with Shao and Wright's formulas if E (x) is

assumed to be independent of x.
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