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EXPERIMENTAL INVESTIGATION OF THE CORNERING CHARACTERISTICS
OF A C40 x14-21 CANTILEVER AIRCRAFT TIRE

By Robert C. Dreher and John A. Tanner
Langley Research Center

SUMMARY

An experimental investigation was conducted at the Langley aircraft landing loads
and traction facility to define the cornering characteristics of a size C40 X 14-21 aircraft
tire of cantilever design. These characteristics, which include the cornering-force and
drag-force friction coefficients and self-alining torque, were obtained for the tire oper-
ating on dry, damp, and flooded runway surfaces over a range of yaw angles from 0°
to 20° and at ground speeds of 5 to 100 knots, both with and without braking. The results
of this investigation show that the cornering-force and drag-force friction coefficients and
self-alining torque were influenced by the yaw angle, ground speed, brake torque, surface
wetness, and the locked wheel condition.

INTRODUCTION

As the weight and landing speeds of airplanes increase, more severe demands are
placed upon the braking capability of the landing-gear system for safe ground operations.
One of the more efficient approaches to obtain greater brake torque for larger aircraft is
to increase the brake diameter, but to do so requires a wheel with a larger diameter.
This approach implies a tire with a larger diameter, an increased storage space require-
ment, and added landing-gear weight. Recently, however, the tire industry introduced a
new tire design which has the same overall diameter as that of the standard or conven-
tional tire but with a larger inside diameter (rim opening) which permits the use of larger
brakes. This design has been referred to as the cantilever tire, so-called because the
sidewalls overhang the rim in an unsupported manner. A few of these cantilever tires
have become available for airplane use, and in view of the continuing interest of the
National Aeronautics and Space Administration to determine the performance character-
istics of aircraft tires of various design and \construétion, a study was undertaken to
determine the cornering properties of a tire of cantilever design. The purpose of this
paper is to present the results of that study. o : '



An experimental investigation was conducted at the Langley aircraft landing loads
and traction facility to define the cornering characteristics of a size 40 X 14-21 aircraft
tire of cantilever design. These characteristics, which include the cornering-force and
drag-force friction coefficients and self-alining torque, were obtained for the tire oper-
ating on dry, damp, and flooded runway surfaces over a range of yaw angles from 0°
to 20° and at ground speeds of 5 to 100 knoets, both with and without braking.

(1 knot = 0.5144 meter /second.)

SYMBOLS

Measurements and calculations were made in U.S. Customary Units and converted
to SI Units. Values are given in both SI and U.S. Customary Units.

BT, D brake torque measured on dry surface

Ty, self-alining torque

v ground speed

kg drag-force friction coefficient parallel to direction of motion

Mg cornering-force friction coefficient normal to direction of motion
Y wheel yaw angle

APPARATUS AND TEST PROCEDURE

Test Tire

The cantilever tires used for this test were size 40 X 14-21 bias-ply aircraft tires
of 22 ply rating and they had a rated maximum speed of 200 knots. A photograph of one
of the tires, taken subsequent to the investigation, is presented in figure 1. Several large
commercial and military airplanes are presently using a tire of this diameter on their
main landing gears. Throughout this investigation, the tire inflation pressure was main-
tained at 107 N/cm2 (155 psi) and the vertical load was fixed at a nominal 111 kN
(25 000 1b). The tire was replaced when approximately 50 percent of the original tread
was worn off. ‘

The sketch of figure 2 compares the cross section of the cantilever tire with that
of the corresponding tire of conventional design. As illustrated, the larger rim opening



available with the cantilever tire provides space for a larger brake assembly without
increasing the tire outside diameter. An additional advertised feature of the cantilever
tire is its "run-flat" capability. In the event of complete loss of inflation pressure, the
tire purportedly collapses symmetrically without folding to one side as does a conven-
tional tire.

Runway Surface Conditions

For the tests described in this paper, approximately 174 meters (570 feet) of a
concrete test section were divided into three subsections to provide tire cornering data
on dry, damp, and flooded surfaces. The first 76 meters (250 feet) of the test section
were maintained dry, the next 37 meters (120 feet) were dampened (no standing water
visible), and the remaining 61 meters (200 feet) were surrounded by a dam and flooded
with water to a depth of approximately 0.8 cm (0.32 in.). Thus, during the course of one
test, data were obtained for the three surface-wetness conditions. The dry subsection
was necessarily long to provide time for full wheel spin up, and, for those tests which
involved braking, time for brake actuation. The concrete surface in the test section had
a light broom finish which was somewhat smoother than that of most operational con-
crete runways.

Test Facility

The invéstigation was performed at the Langley aircraft landing loads and traction
facility which is described in reference 1 and utilized the main test carriage shown in
figure 3. A photograph of the dynamometer used in the investigation is shown in figure 4
and a schematic of the instrumentation is presented in figure 5. The dynamometer was
instrumented with load beams to measure vertical, drag, and lateral forces, and the
brake torque at the wheel axle. Additional instrumentation was provided to measure
brake pressure, wheel angular velocity, and carriage horizontal displacement. Continu-
ous time histories of the outputs of the instrumentation were recorded by an oscillograph
mounted on the test carriage. For this investigation a landing-gear strut was not
employed because the dynamometer was needed to measure the forces accurately.

Test Prbcedure

The test technique consisted of setting the dynamometer and tire assembly to the
preselected yaw angle, propelling or towing the test carriage to the desired ground speed,
releasing the drop-test fixture to apply a preselected vertical load to the tire, and moni-
toring the outputs from the onboard instrumentation. The yaw angle was increased in
50 increments from 0° to 20° and ground speeds ranged from 5 to 100 knots. To obtain
a speed of 5 knots, the test carriage was towed by a ground vehicle; for higher speeds,



the carriage was propelled by the hydraulic jet as described in reference 1. In tests
which incorporated wheel braking, the brake was actuated after the vertical load had
been applied and the tire was in a steady-state rolling condition. Time histories of the
outputs of the instrumentation were recorded as the tire passed consecutively through
the dry, damp, and flooded test surfaces.

RESULTS AND DISCUSSION

Time histories of forces in the vertical, drag, and side directions; brake torque;
and wheel angular velocity were recorded on an oscillograph throughout each test.
These time histories were used to compute steady-state values of the cornering-force
friction coefficient ug perpendicular to the direction of motion and the drag-force
friction coefficient pq parallel to the direction of motion. The self-alining torque T,
about the vertical or steering axis of the wheel was computed from the load transfer
between the two drag load beams shown in figure 5. The following sections discuss the
variation of these cornering characteristics with yaw angle, ground speed, brake torque,
and surface-wetness conditions and concludes with remarks on tire wear and surface
rubber contamination resulting from the high-speed yawed rolling tests.

Effect of Yaw Angle

The effects of yaw angle on the cornering characteristics of the test cantilever
tire are presented in figure 6 for various ground speeds, surface-wetness conditions,
and braking torques. ‘ ’

Cornering-force friction coefficient.- Data obtained with no brake torque (fig. 6(a))
indicate that as the yaw angle ¥ increases from 0°, the cornering-force friction coeffi-
cient g generally increases sharply, reaches a peak value, and then gradually
decreases with a further increase in . Figure 6 also shows that there is a pronounced
effect of ground speed on pg, particularly on the damp and flooded surfaces. The lower
the ground speed, the higher the cornering-force friction coefficient, The maximum
value of pg occurred at the lowest test spéed, 5 knots, and was about 0.6 on the dry
surface and about 0.5 on the damp and flooded surfaces. On the flooded runway at the
higher ground speeds ug is shown to increase slightly when the yaw angle was
increased from 15° to 20°. This increase can be attributed to an increase in the side
force produced as the tire displaces surface water rather than to an increase in the tire
friction force. The maximum value of pug occurs ata 10° yaw angle for all cases
except at the 5-knot speed on the dry surface.

Two brake torque conditions are presented in figures 6(b) and 6(c). The brake
torque values given in the figures were those measured on the dry surface and the same
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brake pressures were used in the tests on the damp and flooded surfaces. With the
introduction of braking, the variation of cornering-force friction coefficient with yaw
angle at a test speed of 5 knots was very similar to that for the unbraked wheel. The
figures show that at 5 knots the maximum pug on all surfaces was developed at yaw
angles between 10° and 15°. At a ground speed of 100 knots, maximum png was devel-
oped at a 10° yaw angle on the dry surface and at a 59 yaw angle on the damp surface
when brake torque was applied. However, at yaw angles greater than 5 at that speed
on the damp surface, even light braking was sufficient to induce a locked wheel skid
which reduced pg ‘to negligible values. When the runway surface was flooded, any
braking effort at 100 knots resulted in a locked wheel skid and a corresponding loss in
cornering capability, regardless of the yaw angle.

Drag-force friction coefficient.- The drag-force friction coefficient pq4 for the
free rolling tire is shown in figure 6(a) to increase almost linearly with yaw angle on the
dry, damp, and flooded surfaces and to decrease slightly with increasing ground speed.
Figure 6(b) shows that with a light braking effort, pq increases with Y on all three
surfaces at a ground speed of -5 knots. A similar trend is noted at 100 knots on the dry
surface; however, at this speed light braking induces locked wheel skids on the damp
surface at high yaw angles and on the flooded surface at all yaw angles. With heavy
braking (fig. 6(c)), pgq reaches a peak value of about 0.4 at yaw angles of 10° to 15°
under the three surface conditions at a ground speed of 5 knots. The variation in the
drag friction coefficient with yaw angle at 100 knots on the dry surface is similar to that
at the lower speed although there was a partial wheel spin down at the 15° yaw angle. At
yaw angles above 5° on the damp surface and at all yaw angles on the flooded surface,
heavy braking at 100 knots caused locked wheel skids. The skidding value of p4 on
these wet surfaces is shown to be about 0.1 for both light and heavy braking.

Self-alining torque.- A positive value of the self-alining torque T, is a stabi-
lizing torque developed at the ground about the vertical or steering axis of the wheel
which would tend to aline an unrestrained tire with the direction of motion. The unbraked
yawed-rolling data of figure 6(a) indicate that T, reaches a maximum positive value at
a 5° yaw angle and then decreases with any further increase in yaw angle for all surface
conditions. Negative values of T, are generally noted for the higher yaw angles;
thereby an unrestrained tire at those angles would have a tendency to diverge from the
direction of motion. The figure further shows that ground speed has little effect on the
magnitude of T, on adry surface; however, T, generally decreases with increasing
ground speed on the wet surfaces. The data of figure 6(b) show that with light braking at
5 and 100 knots, there is a large reduction in the maximum positive value of . T, which
occurred at a yaw angle of 5% on all surfaces. At higher yaw angles the value of T,
becomes negative. At 100 knots on the wet surfaces, negative values of T, were




obtained for all yaw angles. Note that when the tire is in a locked wheel skid, the torque
values are very small. As shown in figure 6(c), negative values of T, are obtained
at all yaw angles and speeds on all surfaces when heavy braking is applied.

Effect of Ground Speed

The effect of ground speed on the cornering characteristics of the test cantilever
tire is presented in figure 7. These data were obtained from additional tests with the
tire free rolling (unbraked) at a fixed 10° yaw angle and covered a speed range from 5 to
100 knots.

Cornering-force friction coefficient.- Figure 7 shows that the ground speed appears

to have little effect on the cornering-force friction coefficient on the dry surface. How-
ever, on the wet surfaces, ug decreases significantly with an increase in ground speed.
This loss is attributed to thin-film lubrication and tire hydroplaning. The calculated
hydroplaning speed for this tire is 112 knots. (See ref. 2.)

Drag-force friction coefficient.- The drag-force friction coefficient pq for the
unbraked tire is the result of the tire rolling resistance and the drag-force component
generated by the yawed rolling condition. The figure shows that u q is essentially
unaffected by variations in the ground speed on the dry surface and decreases slightly
with increasing ground speed on the damp and flooded surfaces.

Self-alining torque.- The self-alining torque T, for the unbraked tire was shown
in figure 6(a) to reach a maximum positive value at a 5° yaw angle and then to decrease
with a further increase in Y. The data of that figure further show that the torque was
essentially independent of the ground speed on a dry surface and, at low yaw angles,
decreases with increasing ground speed on the wetted surfaces. The 10° yaw angle data
presented in figure 7 reflect this reduction in T, from its peak value for all surface
conditions. The data further show that at a 10° yaw angle, there is only a slight reduc-
tion in T, with increasing ground speed for the two wet surface conditions.

Effect of Brake Torque

Appropriate data of figure 6 are presented in figure 8 to show more clearly the
effect of brake torque on the cornering-force and drag-force friction coefficients. The
brake torque values given in the figure are those measured on the dry surface and the
same brake pressures were used in the damp and flooded runway tests.

Cornering-force friction coefficient.- The data presented in the ﬁgure indicate that

on the dry surface the maximum value of pg occurs ata 10° yaw angle and decreases
approximately 20 percent as the brake torque is increased from 0 to 12 205 N-m
(9000 ft-1b). Heavy braking at a 15° yaw angle causes the wheel to spin down toward a



locked wheel skid. On the damp surface the maximum value of g is reduced by
hydroplaning effects. The maximum value of pg is obtained at a 10° yaw angle with
no braking and at a 5° yaw angle with either light or heavy braking. Light braking on
the damp surface causes locked wheel skids for yaw angles above 5° and heavy braking
causes locked wheel skids at all test yaw angles. On the flooded surface the maximum
value of ug is even further reduced by tire hydroplaning effects, and any braking
effort causes a locked wheel skid and a complete loss in pg regardless of the yaw
angle.

Drag-force friction coefficient.- The drag-force friction coefficient ugq increases
with increasing brake torque on the dry surface for all yaw angles tested. Because of
thin film lubrication and tire hydroplaning effects, igq 1is generally reduced from its
dry values when the surface is dampened. On the flooded surface pu 4 was essentially
unaffected by variations in the brake torque since any braking effort resulted in a locked
wheel skid and hence a low value of Kq-

Effect of Surface Wetness

To better illustrate the effect of surface wetness on the cornering-force and drag-
force friction coefficients, selected data of figure 6 are again presented in figure 9.
These data were obtained at a ground speed of 100 knots with no brake torque and cov-
-ered a range of yaw angles from 0° to 20°.

Cornering-force friction coefficient.- The maximum value of u. is shown to
reduce appreciably when the surface becomes wet. For the test condition shown in fig-
ure 9, the dampened surface results in more than a 50-percent reduction in ug from
its dry value at all test yaw ahgles. The percent reduction is even greater on the flooded
surface. These reductions can be chiefly attributed to thin-film lubrication and tire
hydroplaning effects.

Drag-force friction coefficient.~ Figure 9 shows that surface wetness also reduces
the value of unbraked u4 again as a result of lubrication and hydroplaning effects.
Increased fluid drag causes the value of d to be slightly higher on the flooded surface
than on the damp surface.

TIRE WEAR AND SURFACE CONTAMINATION

Since this study included tests at high yaw angles and/or brake torques, tire wear
was appreciable, and a considerable amount of rubber was deposited on both the dry and
damp test surfaces. No rubber contamination was observed on the flooded surface. A
photograph of the contaminated dry surface subsequent to this investigation is presented



in figure 10. Average texture depth measurements for the dry and damp surface test
sections obtained from a grease sampling technique (ref. 3) before and after the tests
are presented in the following table:

Dry section . Damp section
Before tests After tests Before tests After tests
0.0787 mm 0.0533 mm 0.0813 mm 0.0762 mm
(0.0031 in.) (0.0021 in.) (0.0032 in.) (0.0030 in.)

Results from cornering tests made at a 200 yaw angle with no brake torque indicate
that the value of ug decreased from 0.46 to 0.42 at 50 knots and from 0.42 to 0.39 at
100 knots because of the rubber contamination on the dry surface. On the damp surface
where the rubber contamination was less severe, no decrease in the value of pg was
noted. Although the absolute magnitude of the data obtained on the dry surface may be
affected by the deposited rubber from earlier tests, it is assumed that this contamination
had little effect on the reported trends.

CONCLUSIONS

Tests were conducted to determine the cornering characteristics of a C40 X 14-21
cantilever aircraft tire. These characteristics, which include the cornering-force and
drag-force friction coefficients and self-alining torque were obtained for the tire oper-
ating on dry, damp, and flooded runway surfaces over a range of yaw angles from 0°
to _20O and at ground speeds of 5 to 100 knots, both with and without braking. The results
of these tests suggest the following major conclusions:

1. The cornering-force friction coefficient was shown (1) to increase with yaw
angle, reach a peak value, and then gradually decrease with further increases in yaw
angle; (2) to decrease with an increase in ground speed, particularly on the wet surfaces
where tire hydroplaning conditions exist; (3) to decrease appreciably with increasing
brake torque at higher yaw angles; and (4) to be negligible when locked wheel skids are
encountered.

2. The drag-force friction coefficient was shown (1) to increase with yaw angle and
to decrease slightly with ground speed and (2) to increase with brake torque and then to
decrease to a skidding value when a locked wheel skid is encountered.

3. The self-alining torque was shown (1) to reach a maximum positive value at
a 5° yaw angle with no brake torque and to decrease rapidly with a further increase in



yaw angle; (2) to become negative with high yaw angles and /or brake torques; and (3) to
reduce to small negative values when locked wheel skids are encountered.

Langley Research Center,
National Aeronautics and Space Administration,
Hampton, Va., March 5, 1973.

REFERENCES

1. Joyner, Upshur T.; Horne, Walter B.; and Leland, Trafford J. .W.: Investigations on
the Ground Performance of Aircraft Relating to Wet Runway Braking and Slush
Drag. AGARD Rep. 429, Jan. 1963. '

2. Horne, Walter B.; and Dreher, Robert C.: Phenomena of Pneumatic Tire Hydro-
planing. NASA TN D-2056, 1963.

3. Leland, Trafford J. W.; Yager, Thomas J.; and Joyner, Upshur T.: Effects of Pave-
ment Texture on Wet-Runway Braking Performance. NASA TN D-4323, 1968.




T16Ly-2eL-"1

*§7S9] I93J8 da1) }S9L, - T 2Indig

10



" Cantilever, 40 x 14-21 Conventional, 40 x 1L-16

100 cm

4O in.
(b0 in ) ™~ Rim opening /

‘—~ Bead widthi
/ '

Figure 2.- Comparison-of cantilever and conventional tire cross sections.
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