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MAXIMUM LIKELIHOOD IDENTIFICATION AND OPTIMAL INPUT DESIGN
FOR IDENTIFYING AIRCRAFT STABILITY AND CONTROL DERIVATIVES

By David E. Stepner and Raman K. Mehra

Systems Control, Inc.

INTRODUCTION

Aircraft parameter identification is the process of extracting
numerical values for the aerodynamic stability and control derivatives,
and other subsidiary parameters (wind gusts, sensors errors, etc.),
from a set of flight test data (a time history of the flight control
inputs and the resulting aircraft response variables). The field of
identification is one that has been pursued by diverse interests for
many years. The practical application of this work to aircraft
flight testing has existed for over 25 years. In spite of the wealth of
experience which has been accumulated in this span of time, important
requirements still exist for improving the techniques for extracting

stability and control derivatives.

First, there exists today a greater need for stability and control
derivatives. There are currently two principal requirements for the
mathematical models that these coefficients provide. These are (1) to
provide inputs to simulators*, and (2) to provide a basis for the
design of flight control systems. A third potential may also exist.
Because the stability and control derivatives define a given aircraft

more uniquely than the response mode criteria such as those in the

*This may include digital computer simulations, fixed and moving base ground
simulators, and in-flight simulators such as variable stability aircraft,



Flying Qualities Military Specification MIL-F-8785 there is reason to
believe that these parameters will ultimately play more of a major role

in the design, testing, and certification of aircraft.

Second, with the continuing advances in aircraft design and perform-
ance capabilities, the ability to extrapolate wind tunnel test results
18 diminishing and the importance of flight testing is growing. This is
aided by the new Department of Defense policy of building prototype air-
craft and thoroughly flight testing them before a production commitment

is made.

The principal elements of the aircraft identification process
(see Fig. 1.1) are: (1) the identification algorithm, (2) the flight
control input and (3) the instrumentation. The ultimate success of
the identification process is totally dependent on all three of these
elements, not just one of them alone. This study was concerned with
the first two points, namely, the development of a general advanced
digital identification technique based on the maximum likelihood criterion
and the design of control inputs which will enhance the ability to
identify specific alrcraft stability and control derivatives. Digital
parameter identification techniques have already reached a stage where
they are being used increasingly over analog matching techniques for
extracting stability and control derivatives from flight test data.
Systems Control, Inc., (SCI) under this present contract developed
the maximum likelihood identification technique, which was used
successfully to reduce data from flight tests where gusts were present.
In such cases both the measurement noisé and process noise statistics

were identified.

The importance of the control input in the identifiability of
stability and contrbl derivatives from response data has been apparent
for a long time. Under this contract, SCI has developed and applied
an efficient computational technique to design the optimal inputs for

identifying specific stability and control derivatives.
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This report is organized as follows:

® Section II includes the specific task objectives of this

contract and a summary of the principal results.

o Section III discusses the background material for the identi-

fication of aircraft stability and control derivatives.

e Section IV describes, in detail, the SCI Maximum Likelihood
Identification Method. The derivation is carried out for
both linear and non-linear models with and without process
noise. The relationship of the technique to the output
error and equation error methods 1s described and the re-
lated identifiability problems are discussed. Included also
is a detailed description of the SCI Maximum Likelihood

Identification Program.

e Section V presents the results on the identification of the
stability and control derivatives for several different
aircraft and under a variety of noise conditions. This
includes simulated data for a nonlinear model of an X-22
VTOL, actual flight data from an HL-10 lifting body (linear
model) and flight data containing gust effects for an M2/F3
lifting body (linear model).

® Section VI covers the requirements and the background material
relating to the design of inputs for aircraft parameter iden-

tification.

e Section VII describes the details of the theoretical develop-
ment and the ¢omputational technique of computing optimal
inputs for identifying aircraft stability and control derivatives.
Several examples for which analytical solutions for the optimal
input exist are presented to illustrate the form which the
optimal inputs take. Included also is a detailed flow diagram

of the SCI Optimal Input Design Program.



e Section VIII presents numerical results showing the character-
istics of optimal inputs, and comparing the performance of the optimal
input with a doublet input of equal energy and duration. The
results of a Monte Carlo simulation of the identification pro-
cess for the short period longitudinal derivatives of a C-8
aircraft are presented indicating a substantial advantage in

using the optimal input.

o Section IX states the conclusions based on the results

of this study.

e Section X contains recommendations for further work.



II
OBJECTIVES AND SUMMARY OF RESULTS

This section presents (1) a statement of the study objectives,
(2) an outline of the SCI Maximum Likelihood Identification Method and
the SCI technique for designing optimal inputs for aircraft stability
and control derivative identification and (3) a summary of the principal
results of this study. The section is self-contained and is intended

to provide the reader with an overview of the report.

2.1 Study Objectives

The objectives of this study were two-fold. First, it was desired
to further develop the Maximum Likelihood Identification techmique,
originated by SCI in 1970, to the.eitent that it would successfully process
actual flight test data containing random flight disturbances. This
processing was to include identifying the correlation function of the
random disturbance and determining a model for its representation. The
second objective was to develop the theoretical foundation and construct
a computer program for designing flight test inputs which would enhance
the ability to identify specified stability and control derivatives.

To achieve the above objectives the following tasks were defined

and completed:

Maximum Likelihood Identification:

(1) 1Investigate the effacts of different sensitivity terms in
the identification of stability and control derivatives
of X-22 VIOL aircraft, from simulated data, for a nonlinear

aexrodynamical model

(2) Check out completed ML identification algorithm on HL-10
(Lifting Body) flight data, for a linear aerodynamical

model, for which previous results had been obtained



(3) Identify stability and control derivatives of the M2/F3
(Lifting Body) from-flight data containing random disturbances,

for a linear model for which previous identification attempts
with output error method have not succeeded.

(4) Investigate symptoms, causes and remedies of parameter

identifiability and uniqueness problems.

Optimal Input Design:

(1) Construct operational computer program, based on results

of theoretical study, for designing optimal inputs

(2) Perform a Monte Carlo simulation of the identification process,
comparing the optimal input with a suboptimal input, for a
model of the C-8 linear longitudinal equations of motion.

2,2 Maximum Likelihood Identification Technique

For the last 20 years various techniques such as fourier analysis,
analog matching, and the time-vector method have been used to extract
numerical values for the aerodynamic stability and control derivatives
from records of flight test data. It has only been in recent years that
modern digital computer techniques have been proposed for this problem.
One of the most successful of these computer techniques is the Maximum
Likelihood method developed by Systems Control, Inc. This technique
holds great promise for future identification problems involving new
aircraft configurations (VIOL,STOL), high angle of attack transonic
flight regime,vflight test data contalning gusts and for aircraft with
stability augmentation systems.

In the most general case, the maximum likelihood identification
technique is a combination of three steps: (1) Kalman filtering to estimate
the states and generate a residual or "innovation" sequence, (2) a modified
Newton-Raphson algorithm for the parameter estimates and (3) an algorithm

. to estimate the noise statistics (mean and variances of the measurement and



process noise). In addition, the maximum likelihood technique provides a
lower bound on the variances of the parameter estimate, and models for

the measurement and process noise disturbances.

Under this contract the maximum likelihood identification technique
has been applied to a variety of flight test data both simulated and
real. The objective has been to ekercise the technique as much as
possible and to investigate the problems that arose. As each problem
was solved, the specialized algorithm needed for its solution (if any)
was added to the complete maximum likelihood identification program.

The goal was to develop a set of general computer algorithms capable of
dealing with problems that arise in the identification of aircraft
stability and control derivatives.

2.2.1 X-22 VIOL Simulated Data

The first phase of the identification study was the processing of
data from a simulation of the X-22 VIOL Aircraft. The longitudinal aero-
dynamic equations of motion were mnonlinear and the data contained both
measurement noise and process noilse. Each of the stability and control
derivatives was expressed as first or second order polynomial expansions
in terms of the longitudinal velocity. The objective was to identify
23 of these expansion coeffictents and the quantitative effect of in-

creased noise power on the quality of the parameter estimates.

The problems encountered were almost all associated with either the
aircraft model or the control input sequence. It was discovered quite
soon in the investigation that a simple step input did not sufficiently
excite the aircraft modes to allow for the accurate identification of
many of the derivatives. The use of a multistep input improved these
parameters a great deal , because of the model structure the input and
output noise sequences were correlated. Accounting for this correlation
improved the parameter estimates by increasing the estimate error co-

variances, thereby bringing many estimates to within one standard deviation



of the actual values. During earlier investigations, some of the
sensitivity terms were not included in the identification algorithm.
When these terms were added, however, the quality of the parameter

estimates changed very little, although the computer time, per iteration,
more than doubled.

A compilation of the results indicated that for "low" measurement
and process noise, the maximum likelihood identification technique was
able to identify all of the ekpansion coefficients, except those for
ZG’ accurately. When the expansions were recombined to form the time-
varying stability and control derivatives, the fit to the derivatives
ME, M, Mﬁ, 50 Xo’ Xw’ XG’ Zo was very good, the fit to Zw was acceptable

q
and only the fit to Z6 would be considered unsatisfactory. When "moderate"
process noise was used all the estimates of the expansion coefficients

degraded.

2.2.2 HL-10 Flight Data

The second phase of the identification study involved using the maximum
likelihood technique in the output error mode to identify the linearized
lateral stability and control derivatives from flight test data for an
HL-10 lifting body. Although the technique had no difficulty in accurately

fitting the observed data (p, r, $, B and n, ), several of the derivative
y

estimates had opposite signs from the wind tunnel/theoretical derived
values which were used as initial estimates. These incorrect signs vould
be attributed to any one of the following factors: (1) insufficient
excitation of particular aircraft modes due to inadequate input or action
of the SAS system, (2) the linearized dynamics not sufficiently accurate
for the flight conditions of the data, or (3) correlated measurement

noise due to instrumentation system dynamics.

In an effort to correct these signs, a modification to the maximum

likelihood technique was attemped. This modification was to add to the



likelihood criterion a quadratic term putting a weighted cost on the
difference between the a priori parameter estimates and the latest estimates.
Using the weights supplied by NASA Edwards FRC, this "a priori weighting"
method resulted in the correct signs and only a slightly (10Z) degraded

fit to the observed data, as long as the measurement biases were identified,

in addition to the other parameters.

2.2.3 M2/F3 Flight Data

This third phase of the study involved extracting the linearized,
lateral stability and control derivatives of an M2/F3 lifting body from
flight test data containing gusts. Unlike the HL-10 data which had been
sﬁccessfully processed earlier by the use of tﬁe Output Error technique
neither a satisfactory set of stability and control derivative estimates
nor a satisfacory fit to the observed data had not been obtained from
the M2/F3 data. Using an approximation that the gust noise in the sideslip
angle measurement was much greater than the measurement noise and the maximum
likelihood method with a Kalman filter model to account for the process
noise, an accurate fit to the observed data was obtained. However, as in
the HL-10 case, some of the estimated derivatives had signs opposite to
those of the a priori estimates.

The a priori weighting method, which was used successfully on the
HL-10 data, proved to be not useful on the M2/F3 data. Two other techniques,
both dealing with identifiability problems, were investigated. The first
technique involved fixing at their a priori values one or more of a set
of unknown parameters whose effect on the observed data was very similar
(e.g. parameters that appear as a sum) or any parameter which has neglible
effect on the data. The best fits to the M2/F3 data was obtained with
the derivatives Lb, Lr’ LB’ Np' Nr and all the Br derivatives fixed.
The quality of the fit, however, was below that obtained without any para-

meters fixed.

The other technique involved éliminating from the set of allowable

10



values for the parameter‘estimates,those eigenvector directions about

which very little information could be gained from the data. These

singular directions are associated with the smaller eigenvalues of the
information matrix. When applied to the M2/F3 data, three singular direct-
tions were determined. Unlike the other two techniques of fixing parameters
or a priori weighting, the fit to the observed data remained very good and
most of the sign problems were corrected. It is felt that this method

offers great promise in future applications.

2.3 Optimal Input Design

As was shown with the X-22 simulated data, the use of the proper
control input sequence can greatly improve the quality of the parameter
estimates. This is done by maximizing the sensitivity of the system
response to the unknown parameters to be identified. The optimal input
to be used in system identification would therefore be one which optimizes
some criterion based on the output sensitivity with respect to all the
parameters to be identified.

During the second part of this contract, a computer program was
developed which determines, for an arbitrary linear system and an arbitrary
selection of parameters to be identified, the optimal input for parameter
identification. The two criteria for optimality used in this program are
(1) maximum sum of the (squares of the) the output sensitivities and
(2) maximum product of the squares of output sensitivitles. The first
criterion is related to the trace of the Fisher Information Matrix and
the second criterion is related to the determinant of the same matrix.

The Information Matrix itself is the inverse of the Cfamer—RaO'lower

bound for the covariances of the parameter estimates.
The only constraint put on the input is one of total energy. State

and input amplitude constraints can be imposed indirectly by changing the
input energy content. In addition algorithms have been added which will

11



specify the optimal input for a specified data length as well as investigating
the frequency content of the optimal input.

The major emphasis in the optimal design part of the contract was
in two areas. The first was to investigate the properties of the optimal
input with respect to frequency content, comparison with a suboptimal
input and the effect of parameter uncertainties. The second involved
a Monte Carlo simulation of the identification process involving comparisons
of an optimal input and a suboptimal doublet input for identifying the
short period dynamics of a C-8 aircraft.

2.3.1 Optimal Input for C-8 Aircraft Identification

The optimal input for identifying the five stability and control
derivatives associated with the short period longitudinal dynamics of a
C-8 aircraft (assuming a priori wind-tunnel parameter values)was derived
using the trace of the Information matrix criterion. When compared to
the suboptimal doublet input of equal energy and duration the optimization
criterion was almost 20 time as large. Frequency domain analysis inferred
that the input was made up of a DC component to identify the gain para-
meters (control derivatives) and a sinusoidal component at the system
natural frequency. This was to maximize output signal power and optimize
the identification of the stability parameters. It was further found
that if the optimal input was determined based on estimates of the stability
derivatives which were 10% in error, the qualitative character of the optimal
input did not change, and the accuracy with which the parameters could be

identified remained approximately the same.

The last exercise of this first part was to determine the optimal
input based on the second performance criterion viz. maximizing the product
of the diagonal elements of the information matrix. Based on the value
of the expected standard deviations for the parameter estimates, the optimal

input determined from this second criterion was much improved over that

12



determined from the first.

2.3.2 Monte Carlo Simulation

The more realistic test for the optimal input is to use it under
actual identification conditions, to determine if the statistics
of the parameter estimates and computed information matrices match those
predicted from a priori analysis. A four state linear model of the full
C-8 longitudinal dynamics was used in generating the simulated flight
data, with the control input designed to identify only the five short
period dynamics. In addition, the control input was designed with each of
the short period stability and control derivative changed by 50% from the
values used in the data generation. This was to model the situation where
the control sequence for aircraft identification is detemined from a
priori wind tunnel or theoretical derivative values. 50 complete identi-
fication runs were made both with the optimal input and with a suboptimal

doublet input of equal energy and duration.

The parameter estimates from each run were compiled and total results
evaluated based on 50 runs. With all measures of comparison, the optimal
input greatly out performed the suboptimal input. Histograms of the
parameter estimates were also compiled and compared. The results after
50 runs closely matched the results predicted by the Cramer-Raoc lower
bound. Experiments were also run by modifying the optimal and the doublet
inputs through the servo transfer functions. The use of optimal inputs
in flight testing for the determination of aircraft stability and control

derivatives appears, therefore, to be a very useful and powerful tool.

13



III
BACKGROUND FOR AIRCRAFT PARAMETER IDENTIFICATION

Although extensive time and effort, over a period of the last 20 years,
has been expended in the development of more exact alrcraft stability and
control derivative identification techniques, up until recently, the extrac-
tion of these derivatives from flight data remained a difficult and time-
consuming problem. An emphasis on working directly with flight data, in
addition to dealing with wind tunnel tests or theoretical calculations, has
evolved as a result of what is often gross disagreement betwéen wind tunnel -
and flight test derivatives, as well as the known difficulties of obtaining
dynamic derivatives and extrapolating them to full scale derivatives from

the wind tunnel values.

There have been many methods proposed and tried for extracting stability
and control derivatives from flight data. Most of these have proved to be
successful only under idealized conditions such as no wind gusts or modeling
errors and known instrumentation accuracies. Very often a good deal of the
data collected during a flight test program has to be discarded for lack of
a technique which is general enough to process it under less than ideal con-

ditions.

The emergence of the digital techniques during the past few years,
resulting in the development of the Maximum Likelihood Identification Techniques,
has given rise to the realization that much of the previously discarded data
can be successfully processed. As the limitations of the instrumentation system,
flight control input and inadequate aerodynamic model are recognized and com-
pensated for, and the presence of wind gusts is included in the model structure
and accounted for in the identification algorithm, the best set of identified

values for the stability and control derivatives can be obtained.

14



, This section will discuss several of the previous identification
techniques which have been used to process flight data. This discussion
will bring out the similarities that exist among these methods, and mention
the aircraft flight data to which the methods have been applied. The next
section, then, will provide a detailed explanation of the Maximum Likelihood
Technique to be applied later on to flight test data containing gusts.

3.1 Previous Identification Methods

Although a large number of identification methods have been used in the
past, only some of the more common methods which are currently in use will
be described.

3.1.1 Time Vector Method

The time vector methods for derivative identification is derived fromtﬂe
time-invariance of the amplitude and phase relations between the state
variables (degrees of freedom) of an exponentially damped second order system
and the derivatives and integrals of the state variables. This invariance

. 18 used to determine the values of the amplitude-phase relations, thereby
determining the aircraft stability and control derivatives (Ref. 1).

When more than one state variable (degree of freedom) is involved in the
transient response, and there is a common natural frequency, the instantaneous
value of any one state may be readily determined if the characteristics of any
one of the motions are known, along with the amplitude ratio and phase angle
relative to the characteristic motion. The time invariance of the amplitude
ratios and their phase angles permits the representation of any one of the
linearized equations of motion as vectors. The properties of these vectors,
plus the requirement that the vector sum of the quantities in any one equation
equal zero, makes possible the determination of two unknown derivatives in any

one equation.
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As Ref. 2 points out, the time vector method has the principal
disadvantage that it can only be applied to control-fixed, transient-
oscillation aircraft responses with damping ratios less than-~.3. Further-
more, the successful application of the time-vector method is highly de-

pendent on the operators' skill.

3.1.2 Analog-Matching Methods

The analog matching technique is actually an output error method since

it strives to iteratively minimize the errors of the various responses through
operator manipulation of the values of the stability and control derivatives.
It is often used as a backup method for validating the more modern digital
techniques. However, there are several disadvantages to the analog match-

ing technique. First, the method works most successfully only when a

single control surface is moved at a time and then only when the ﬁaneuvers

are simple.(Ref. 1). Second, when the maneuvers are made with a stability
augmentation system or other form of dependent control input, the data is
difficult to analyze. Finally, this method is extremely time consuming,

even in face of the fact that recent procedures, through the use of hybrid
computers, has reduced the time considerably. For example, the time in-
“volved in analyzing a lateral-directional flight maneuver, from receipt of
flight data to final results, is approximately four hours (Ref. 2); the analog
matching technique is also extremely susceptible to uniqueness problems

since the success of a data analysis is very dependent upon the type of
control maneuvers used. In such a case the skill and knowledge of the operator

would play an important part in determining the ultimate success of the analysis.

The analog matching technique has been used by the Air Force Flight Test

Center (Ref. 3), the Naval Air Test Center (Ref. 4), and the NASA Flight Test
Center (Ref. 5) for the F-104, X-15, B-70, HL-10, M2/F3, X-24 and PA-30 aircraft.
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Most of the remaining identification techniques, almost all of which

require the use of a digital computer, can be cldssified as either

1. Equation error methods,
2. Output error methods, or

3. Advanced methods.
These methods differ by (1) the performance criterion that they are
developed from, (2) the kinds of estimates they produce, and (3) the problems

to which they can be applied.

3.1.3 Equation Error Methods

Equation error methods (Ref. 6) assume a performance criterion
that minimizes the square of the equation error (process noise). All of
these methods are basically least squares techniques and, in general, it is
necessary to measure all the response variables and their derivatives. The
procedure is to express the stability and control derivatives as functions
of the measured responses using the equations of motion. This results in
n or more linear equations in n unknowns. For those cases where the time
derivatives are not measured, various "method functions' are used to operate
on these equations (take time derivatives, Laplace or Fourier transforms,
etc.) to obtain equations that are linear in the unknown stability and control
derivatives. Since these methods do not allow for measurement errors (instru-
mentation errors), they result in biased estimates when this type of error
does exist. The principal use of these methods are as start-up techniques

for the output error and advanced methods.
The equation error methods have been used or are being used by Cornell

Aeronautical Laboratory (Ref. 6), Air Force Flight Test Center (Ref. 3),
and Delft University of Technology (Ref. 7).
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3.1.4 Output Error Methods

Output Error Methods (Refs. 8 through 17) minimize the square
of the error between the actual system output and the output of
a model used to represent the actual system. This method assumes measure-
ment noise but no process noise. Typical output error methods include
Newton-Raphson, Gradient methods, the Kalman Filter (without process noise),
and modified Newton-Raphson, differential correction, and quasilinearization
(all three of which are the same method).

The modified Newton-Raphson method has been used extensively in flight
test applications for the past several years. It is the omne method that has
beer used on an operational basis and for which the most experience exists.
This method has been or is being used by (among others): (1) the NASA Flighf
Test Center (Ref. 5) on the X-24, X-14, XB-70, 990, HL-10, M2/F3, Jet
Star and PA-30 aircraft; (2) the NASA Ames Research Center (Reference 18)
on the Learjet, XV-5, 990 and the C-8 aircraft; and (3) the NASA Langley
Research Center (Refs. 19,20) on the XC-142, Navion and F-4 aircraft.

(NASA Langley program has automatic update of the weighting matrix based on
the maximum likelihood criteriom.)

The principal disadvantages of the output error methods is that, because
they do not include process noise in their performance criterion, the results
degrade when process noise (gusts, modelling errors) exists. This may result
in the computer program not converging or in estimates that have large var-
iances or poor estimates (Ref. 21). However, as long as these methods
are applied to linear flight reglons, or where the form of the equations is

known, or where gusts do not exist, they work very well.,

3.1.5 Advanced Methods

The most general identification problem is one of extracting stability

and control derivatives, for non-linear aircraft models, from flight data
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containing both measurement and process noise. The one advanced technique
that has demonstrated the capability of extracting stability and control
derivatives from flight data under these circumstances is an implementation

of the maximum likelihood criterion. This numerical algorithm, developed

by SCI, is a combination of three steps: (1) Kalman filtering to estimate
the states and generate a residual sequence, (2) a modified Newton~Raphson
algorithm for the parameter estimates, and (3) an algorithm to estimate the
noise statistics (means and variances of the measurement and process noise).

The details of the numerical method are outlined in the next section.

The success of the SCI maximum likelihood technique can be attributed

"to several important attributes of this method:

1. It does not require a priori knowledge of the process noise
covariance, measurement noise covariance or the initial parameter
estimate covariance. These covariances are determined as part of
the identification procedure.

2. When process noise does not exist, this method simplifies to the
modified Newton-Raphson output error method (although with a spe-
cific weighting matrix). _

3. When no measurement noise exists (an unlikely event) this method
simplifies to the least squares equation error method.

4. The Cramer-Rao lower bound on the covariance of the error in the
stability and control derivative estimates are obtained as part
of the algorithm.

5. The minimum mean-square aircraft state variables (response variables)
are obtained as an integral part of the algorithm. It is not re-

quired, however, that initial state estimates be supplied.

The following section gives a detailed derivation of the Maximum Likelihood
Identification Method.
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MAXIMUM LIKELIHOOD (ML) IDENTIFICATION

The notion of the maximum likelihood estimate which was introduced
into statistics by R. A. Fisher in 1906 is based on a relatively simple
idea. Assume that the outcome Z of an experiment depends on an unknown
parameter 6. We want to infer the best value of 6 from the observation
Z. One answer is to choose that value of 6 which makes the observed
value Z the most probable one to have occurred. This can be rigorously
stated as: choose 0 to maximize the conditional probability of Z, given

a value of 6 3 i.e.

; = max p(zle)
6

-~

where 6 is the maximum likelihood estimate of 6 and p(Zle) is the
conditional probability of Z, given 6. The same estimate is obtained by
maximizing log p(Zle) which is known as the likelihood function.

The above basic idea can be carried over to linear and nonlinear
dynamic systems, with process and measurement noise, but the details of the
application become quite involved. In practice, there are two major pro-

blems in obtaining ML estimates for dynamic systems. These are:

1. Deriving an expression for the likelihood function, and
2. Maximizing the likelihood function with respect to the unknown

parameters.

These two problems are elaborated upon further. The likelihood function
is the logarithm of the joint probability density of the observations given
the parameters. If the observations are independent, the joint probability

density function is easily written down since it is just the product of the
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probability densities of each observation given the parameters. The deriva-
tion of the likelihood function becomes much more difficult when the obser-
vations are correlated. This is necessarily the case for dynamic systems
with random inputs since the state at any time is correlated with the state
at all the previous times. 1In the next section, it is shown how the likelf-~
hood function for a dynamic system can be derived in a simple form using a
Kalman filter and the resulting white noise innovation sequence, This {is

shown schematically in Figure 4.1.

The second problem in obtaining ML estimates is a computational one.
Generally, the likelihood function is highly nonlinear in terms of the para-
meters. For finite data lengths, it is also known to have several local
maxima. In the case of dynamic systems, certain differential equation
constraints have to be satisfied. The choice of a suitable search algorithm

is very important for the successful application of ML identification.
The maximum likelihood identification method, as implemented by SCI,

is an adaption and extension of the recent work of Astrom (Ref. 22),
Kashyap (Ref. 23) and Mehra (Ref. 24), It is capable of solving the most general

Measurement Noise
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!
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FIGURE 4.1 IMPLEMENTATION OF MAXIMUM LIKELIHOOD ESTIMATOR
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identification problem, including (1) systems governed by non-linear
differential equations of motionm, (2) the presence of additive random
process noise in the equations of motionm, and (3) random disturbances
cdrrupting the measurements of the system inputs and outputs. In this

section the development of the theory justifying the use of the likelihood
function as an optimizing criterion for jdentification is developed and

the numerical algorithm for implementing' the maximum likelihood identification
method is outlined. The development is first given for linear systems and

then extended to nonlinear systems.

4.1 Linear Systems:

Consider the linearized aircraft equations of motion
x = Fx+ Gu+ Iw (4.1)
where

x(t) = n x 1 state vector (p, 4, ¥, U, V, W, etc.)
u(t) = p x 1 input vector (§,, 6, 8,)

w(t) = q x 1 vector of random forcing functions
Let the measurement equations be

where y(t) = Hx(t) + Du(t) + v(t)
y(t) = r x 1 output or measurement vector

v(t) = r x 1 vector of random measurement errors (4.2)

and

E {w(t) } =0, E{wt)w(r) }=qé-1)
vhere 6(t - t) is the Dirac Delta function.
E { w(t)vi(t) } =0

E{v(t) }=0, E{v()V(x)}= RS _.
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It 1s assumed that the structure of the model is known. The
vector of unknown parameters in F, G, T, H, Q, R and x(o) are denoted by
6. Thus © 1includes all the unknown stability and control derivatives,

noise variances and the initial states.

If a sequence of observations y(1),......0.... >, Y(N) 1is made of the
system state with noise, the maximum likelihood estimate of

©, following the idea stated earlier, is given by

~

© = max p(YNIO) (4.3)
e
where Y& = {y(l),..... » Y(N)}. With successive applications of Bayes

N
Rule, an expression for p(YNIO) can be derived as

p(¥,/0) = p(y(1),... 7(¥)/0)
=y |y, ;. Oty ;]0)
= pOM[Y ), Oy (- ]y, . 0y, ,l0)

W S e e em e en e Gm e wr e Gm S Gm e Gn AE ma Ba G = e

- 111 PO, ©

Since the logarithm is a monotonic function, the maximum likelihood estimate

can also be written as

N
é = max [log p(YN,O)] = maxz log p(y(j)IYj_l,G)] (4.4)
o €]
=l

where log p(YNIG) is the likelihood function.
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1f x(o), w(t) and v(t) are normally distributed, p(y(j)le_l,e)

will also be normal and can be uniquely determined by computing the mean

and covariance. Therefore define

TN ARG ERTCIERY (4.5)

and

covly(Y,_; 0} = ELG() - yG13-D) G@yG ") (46)
& 3313-1)

With these assumptions, the term log p (y(j)[Yj_1 0) can be written as
?

- -1 -
log ply(1)]¥,_; 0 = Const.= F-r(1)v(15-1)" BGI3-D & E-yG11-1)

- log |B(3|3-1)] G.7

The problem of determining the maximum likelihood estimate has now
become one of finding a way of calculating the conditional mean, ;(j[j—l),
and the error covariance , B(j[j-l). These quantities, however, are precisely
the output of a Kalman Filter (Ref. 25)state estimator. given 8. This filter
is designed to recursively process measurements one at a time, and, at each
point produce the minimum variance state estimate based on all the data

received up to that point.

The Kalman filter prediction and update equations can be derived as
*
follows :

*
For a more rigorous derivation of the Kalman Filter, see either Kalman (Ref. 26)
or Kailath (Ref. 27). Also note that the conditioning on O has been omitted

“from the equations to simply notation.
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Initial Conditions: The Kalman filter is started with a priori
state estimate £(0]/0) and covariance P(0]0).

The state prediction is done using the equations of motion and

state update is done using the measurements.

Prediction Equations: At time (j-1), the Kalman filter has a state
estimate i(j—llj—l) and covariance P(j—llj—l). It is required to

predict the state at time j. The resulting state estimate is denoted
by ﬁ(jlj-l) and has a covariance of P(jlj—l). The relationship be-
tween the updated and the predicted estimates can be obtained by taking
conditional expectations on both sides of Eq. (4.1) and interchanging
the operations of expectation and differentiation. This gives

]

& r(t]3-1)

i Fx (t]3-1) + cu(t) (4.8)

G-1) < t < 4

where the predicted value of the white noise w(t) based on previous infor-

mation is equal to zero.

The covariance equation for the predicted estimate x(t/j-1)
can be obtained by subtracting Eq. (4.8) from Eq. (4.1) and using

the covariance propagation equation derived in Bryson and Ho (Ref. 25).

d

dc PCli-1) = Fr(el5-1) + p(e]3-1)F" + rort (4.9)

Update Equations: The update equations for the Kalman filter can be

derived using a well-known property of the conditional normal distribu-
tions (Ref. 28), viz.,

E{alb )= T+2_pl (b -¥) (4.10)

-1 T
cov(a|b) Paa = PapPob Pab _ (4.11)
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where a and b are normal random variables with
E{a} = a » E{b} = b

cov(a) = Pa . cov(b) = P

a bb

E{ (a-a) (b-B)~ } = P,

Replacing a by x(j) with mean a = x(jlj-l) and covariance

Paa = P(j|3-1) and replacing b by y(j) with mean

‘S = ;(j[j-l) = H;(j|j-1) and covariances

T
Py = HP(j|j-1) H + R (4.12)

LI P(3]3-1) e (4.13)

we obtain,

x4l = x G0 + K@) Q) - BxE]3-1) C4.14)

KG) = pG3-uET @Gli-uet + »7t (4.15)
and

PG = @ - KGIH) PGE3-1) ' (4.16)

The quantity (y(j) - y(J|3-1) ) represents the new information
brought forth by the measurement y(j). It is known as the “innovation"
sequence and has been shown to be zero mean, Gaussian and white (Ref. 29)

Denoting the innovations by v(j), the likelihood function can be

written as

N
log p(YN|@) = —% 2{ vT(j)B'l(j|j-1) v(j) + log|BGl3-1) |} (4.17)
j=1
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where B(jlj-l) = HP(j[j-—l)HT + R (4.18)

The maximum likelihood estimate O 1s obtained by maximizing

(4.17) with respect to ©, subject to the constraints in equation
(4.8)-(4.9), (4.14)-(4.16). This is a very difficult optimization
problem. An approximation suggested in Ref. 24 simplifies the problem

tremendously. It is assumed that the filter gain K(j) and covariance
B(j[j-l) have reached constant values K and B. The vector @ of un-
known parameters is now defined to include (in addition to F,G) K and

B instead of Q and R. Reference 57 gives a detailed derivation of the
relation between K, B and Q, R. Then

N
log p\(YNIB) = - —21— z{ng)B’lv(j) + log|B|] (4.19)
j=1

Maximizing (4.19) over B, produces
N
> 1 A~ T -
Be x> vGlavigl s (4.20)
j=1

where o 1s the ML estimate of unknowns of F, G and K. It is given by
the root of the equation

N
z vT(j)B"l E;—(&ﬁ= 0. (4.21)
j=1

v
where —Ségl is calculated from Eq. (4.8) - (4.18). The root of (4.21)

~1s found by a Newton-Raphson iteration. Once o 1s obtained, R and Q

can be obtained from equations (4.9) and (4.18). 1In this way the non-linear

constraints imposed by the equations (4.9), (4.15), (4.16) and (4.18) are
avoided during optimization.

4.2 Nonlinear Systems

The approach to obtaining the maximum likelihood parameter estimates

for nonlinear models is conceptually similar to that for linear models,
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Consider a nonlinear dynamic system model of the form

x(t) = £(x(t), 8, u(t)) + Iw(t) (4.22)

y(t) = h(x(t)) + v(t) (4.23)
where f(*) and h(*) are n X 1 and r x 1 vectors of nonlinear functions.
Also, w(t) and v(t) are Gaussian white noise sequences with zero mean

and covariances Q and R.

The evaluation of the exact maximum 1ikelihood estimate involves the
calculation of the conditional probability p(y(j)lY l,e) as in the linear
model case. This would require an optimal nonlinear filter, which, to date,
is computationally unfeasible since a complete description of p(y(j)[Yj_l,e)
requires computing all its moments. As a result, it is proposed to use an

Extended Kalman Filter (Ref. 30) of the following form:

% = £(x(t]3-1), 8, u(t)) (4.24)
2319 = 2@l3-1 + RGEIVE) (4.25)
v(j) = y() - h@[3-1)) (4.26)

The Kalman gain K(t) is calculated from equations (4.13)-(4.16) by
using the time varying matrices H and F, defined by

H(E) = o (4.27)
x = x(3]3-1)

F(o) = o] (4.28)
x = x(3[1)

Notice that the Extended Kalman filter linearizes the equations around
the latest best estimate of the state. More advanced filters such as Second
Order Filters, Single Stage Smoothing Filters, etc. (Ref. 31) can be used for
state estimation, but for the aircraft parameter identification problem, when
all the states and accelerations are being measured accurately, an Extended

Kalman filter comes quite close to the optimal nonlinear filter in accuracy.
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Kailath (Ref. 27) has shown that the density of the innovation v(t) tenas to
a Gaussian density as the sampling rate is increased. Thus, for high sampling

rates the likelihood function can again be written as
N
F o= g 1 T -
J = log(yyle) = -3 Z Vi) 75 v() + log[B()] (4.29)
i=1

The validity of the above two assumptions viz: high sampling rates and accurate
measurements should be checked in practice for each application of this

method.

Remark:

The use of an Extended Kalman filter here is for state estimation only.
It is also possible to use an Extended Kalman Filter for simultaneous state
and parameter estimation (Refs. 21, 32). 1In the authors' opinion, this is not
desirable since the uncertainties in the states are much smaller than the
uncertainties in the parameters. Therefore, the assumptions of lineariza-
tion which are valid for state estimation are generally not valid for para-
meter estimation in the aircraft parameter identification problem. Moreover,
the Extended Kalman Filter for simultaneous estimation of the state and the
parameters assumes knowledge of the a priori covariances which are unknown
for the parameters. This is one of the reasons why an Extended Kalman
filter typically gives unreliable confidence limits on the parameter
estimates (Ref. 21). The maximum likelihood method described here will be
shown to provide realistic estimates of confidence limits on a test case.
It has also been found to converge in several cases where the Extended Kalman
Filter for simultaneous state and parameter estimation failed to converge

properly due to poor a priori values for the parameters.
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4.3 Numerical Optimization Algorithm

The optimization algorithm described here for obtaining the maximum of
the likelihood function is the Modified Newton-Raphson or Quasilinearization
Methodf Determining an update to a set of parameter estimes 6, which will

decrease the value of the likelihood function (cost), J, using this method in-

volves computing two matrices: the gradient of the cost with respect to the

unknown parameters,-%% , and the information matrix, M.

For the case of a nonlinear system with process noise, the 1likelihood

function, J, is computed using an extended Kalman filter. The gradient and

information matrix computation must therefore include at least the first order
partials of the Kalman gain with respect to the parameters. With the nonlinear
system model given by Equations (4.22)-(4.23), and the extended Kalman filter

by Equations (4.24)-(4.28), the gradient of J with respect to 6 is given by

n

B S Toste P -Vo o BA 514y v
3=1
+ 2 et (4.30)
i 3% (4 |3-1
- where g;( ) . -H(t) Eﬁ%gi—-)‘ %%‘ (4.31)

and

3B : T
agé ) = 3_}3{6(12' P@J lj"l) HT(j) + H{) 3P(j l%;l)ﬂ 1)
k k .

T, .
+u) pal-n Sy -g-‘;:

Based on prior experience (Ref. 33), the convergence of other optimization

algorithms, including conjugate gradient and Davidon method, has been

found to be slower than that of the quasilinearization method.
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The recursive equations for 32 (113-1) are obtained directly from the

CL

Riccati'equations, with the separation into update at the measurement times

and prediction between measurement times again being made.

Prediction:

From Equation (4.9), the prediction equation for (j-1) <t < j

becomes

3P ;e -1) _ _g_g_ P(t|j-1) + F anng-l) + aP(géj—l)
k k k k
3F' , 3T _ T _  3Q IT 3T
+ P(t]3-1) 5e—k + 5—6—1( Qr + 7T 30, +IQ 3

Update:

The update equation, at the jth measurement point, is obtained

from Equation (4.16)

PG _ P(]1-1)  3k()
5, K@ T = - S HP (3 3-1)

-k () 3 PG5
k

where

aK() _ 3P(il3-1) T T -1
B T 99, H™ [HP(j|3-1) H® + R]

T
+ P(3]3-1) gl;-k [HP (3 |3-1) g+ Ryt

K@) [g—g pql3-1) uF + p QLD T
k

aek

T

+ HP(j]3j-1) %;ik + R :|(Hp(j|j—1)HT+R)"1

aek
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The recursive equations for the term 25£%g13123 defined as the sensi-

tivity equations and appearing in Equation (4.31), are obtained from the
update and prediction filter equations (4.24)-(4.25).

Prediction:
ak of
= = zx + F(t) 3 -1t < (4.35)
aek aek Kk

Ugdate:

(111 2@ l3-D | k() . 32(1]4-1),
a8, 36, * 'jaéi_ v(i) - k@ [H(j) ——ag-i‘(-j—+ aek] (4.36)

These same sensitivity equations are used to compute the information

matrix, which is given by

n
2 T
A aJd . 2 g Bv‘jl V@ 57 29 5t os o
M0 " 30,30, ; 26, 36, %,

HOLRCIE SR 223
k

1 3B(J) - BB 4,37
1, { gy By 2O (4.37)

Note that second order partial terms and several first order partials (of
matrix inverses) have been neglected. All the partial derivative terms appear-

ing in Equation 4.37 can be obtained via Equation 4.31.
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The update to the parameter estimates 6, or step size A6, is then com-
puted using the following equation

u)”

-1 (
A8 -M 30

(4.38)
Since M 1is the Fisher Information Matrix, M-1 provides the Cramér-Rao
Lower Bound on the covariance of the 6 estimates. The ML method approaches

this lower bound asymptotically.

4.4 Relationship to Output Error and Equation Error Methods

As stated earlier, one of the principal advantages of the maximum
likelihood method is that, under special circumstances, it reduces to the
output error or equation error method, both of which have been widely used

for extracting stability and control derivatives from flight test data.

For the case where there is no process noise present, i.e., w(t) = 0,
the process noise covariance, Q(t), is identically zero. With P(0) either
equal to zero, (if the initial state estimates are known) or small, this
implies P(tlt—l)EO for all t after some initial transient (see Equations

(4.9 )-(4.16)). The Kalman gain will then also be identically zero (Equa-

tion (4.15) and the innovations sequence reduces to
v(t) = y(t) - Hx(t)

for the linear case, and
v(t) = y(t) - h(x(t))

in the nonlinear case. In both cases wv(t) is exactly the output error.
The only difference then between the maximum likelihood method and the more
classical output error method is the choice of the weighting matrix. 1In

the maximum likelihood method, it is given as R, the measurement noise
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covariance, or its estimate. In the maximum likelihood method, is is

chosen as
N

ﬁ "l]q; E \)(jsa) VT(jsa)-
i=1

For the case where no measurement noise exists, the measurement noise
covariance R(t) is identically zero. For the case in which all the states
and their time derivatives are measured, the likelihood function is the sum
of squares of the equation error at sampling times., Thus, the ML estimates

are identical to the equation error estimates.

4.5 Identifiability and Uniqueness Problems in Extraction of Stability and

Control Derivatives

Although the maximum likelihood method discussed in the previous section
represents one of the most advanced identification techniques developed to
date, there still remain some basic problems associated with extracting
stability and control derivatives from flight test data. Most of these pro-
blems can be classified under the heading of "identifiability,"” which is re-
lated to the degree of excitation for the particular modes of the system under
investigation and the ability to identify the associated parameters. Identi-
fiability also relates to whether the parameters themselves can be identified
or whether they can only be identified as part of a linear combination. This
section will discuss some of the symptoms and causes of identifiability pro-

blems, and a few of the methods which have been used to solve them.

4.5.1 Symptoms and Causes of Identifiability Problems

The most obvious symptoms of identifiability problems are physically
nonrealizable parameter estimates and large associated error covariances.
Either of these symptoms may arise for a number of different reasons. If
the input sequence does not adequately excite some of the modes, or if the

Stability Augmentation System is operating, thereby suppressing some of the

34



aircraft modes, the associlated parameters may not be identifiable. If the
model chosen to get the input-output data is inadequate, the parameters of
‘that model may be forced to account for some major unmodeled effects. The
estimated parameter values may, therefore, be quite different from what aero-
dynamic theory and previous results may indicate. If there are large, un-
accounted for instrumentation errors or errors in the location of the c.g.
and the sensors, again non-physical parameter values may result. Finally,
such additional factors as too short a data length, local minima in the cost
functional and poor initial parameter estimates may also result in non-

physical parameter values.

Large error covariances principally result from poor input sequences
and attempts at identifying too many parameters. The first factor reduces

the sensitivity of the ouput to variations in some parameter values, and
the second factor causes linear dependencies between parameter estimates.
Since an extraneous parameter in the model does not, by definition, improve
or degrade the fit to the observed data, its estimated value will be of

no significance and the error covariance of the estimated value will be

large.

Probably the most common identifiability problem encountered in
processing flight data results from parameter dependencies. This may
occur through a pair of parameters which always appear in the equations

of motion together, as with CM and CM- s, or through a poor choice of
q o

inputs such that some of the aircraft response variables are linearly
correlated, or it may occur through an overspecification of the number

of parameters to be identified. In each case, the result of the
dependencies is a nearly singular information matrix, which when inverted
to obtain the step size in the parameter estimates, causes numerical

problems.

Additional numerical problems associated with a nearly singular
information matrix arise when the control input is expressible as a linear
combination of the aircraft response variables. This matrix singularity

results from the linear dependence between the partial of a response
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variable with respect to a parameter in the input matrix and the

partials with respect to a parameter of the dynamics matrix. Since

the same singularity exists at each data point, the resulting information

matrix will also be singular. A second input related problem arises when

the input is of such a nature that the time histories of several of the

aircraft response variables appear highly correlated. All the elements

of the partial derivative of the output vector with respect to any one of

the parameters will be the same, introducing a singularity.

4.5.2 Approaches to Identifiability Problems

Four different approaches have been used to alleviate identifiability

problems. These are:

1'

Fixing Parameters - The usual remedy for parameter dependencies

has often been to fix some of the dependent parameters during iden-
tification. While this generally improves the numerical convergence
the choice of a particular parameter to fix and the value at which

it is fixed are generally not clear. Although it is possible to fix
the parameters at the wind tunnel or theoretical (DATCOM) values, the.
estimated parameter values may depend upon these fixed values. 1In
those instances where the wind tunnel values are inaccurate oxr DATCOM
doesn't apply and no other a priori information is available, a better

way of dealing with the parameter dependency is needed.

A priori Weighting - Whenever a priori values exist for certain parameters

in a given model structure, they can be included in the maximum likeli-
hood method by using a Bayesian formulation. If the a priori values have
a Gaussian distribution, a quadratic term involving the weighted dif-
ference between the estimated parameter values and the a priori para-
meter values is added to the likelihood function. Depending on the
weights given to these differences, it 1s possible to force any of the

parameter values to the a priori ones. The a priori values for the
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aircraft stability and control derivatives are usually derived
from the wind tunnel estimates and theoretical calculations.

The weights, which are the most subjective part of this technique,
signify the confidence in the a priori values. An alternate pro-
cedure is to successively reduce the weights at each iteration,
thereby discounting the dependence on a priori information. The
main advantage of this procedure is numerical since the information
matrix with a priori weighting is generally better conditioned than

the one without it. This procedure is a special case of Tychonov

Regularization used for solving an ill-conditioned set of equations (Ref. 34).

Constrained Optimization - If, from practical or theoretical con-

siderations, a range of allowable values or relationships between

the stability and control derivatives can be specified, they can be
used as constraints on the parameter estimates to avoid non-physical
estimates. Such a procedure would require a constrained optimization
technique in lieu of the Newton-Raphson optimization method normally
used (for the output error criterion). Including such parameter

value constraints will most probably also reduce the convergence rate.

Rank-Deficient Solutions - Without any of the above remedies, the

parameter identifiability problems will usually appear as a difficulty
with inverting the information matrix and obtaining accurate parameter
estimates and error covariances. This numerical problem can be related
to the spread in the eigenvalues of the information matrix. A perfect
dependency among the parameters should, strictly speaking, result in a
zero eigenvalue. However, since round-off and other numerical errors
prevent the matrix from being exactly singular, all the eigenvalues
will be non-zero with a spread between the smallest and largest eigen-
value being many orders of magnitude. In such a case, it might be

better to use a rank deficient solution for the inverse rather than
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a full rank solution (Ref 35). That is, the inverse to the information
matrix should be computed leaving out one or more of the smallest
eigenvalues. Each eigenvalue which is left out relates to a singular
direction in parameter space and, therefore, indicates a combination

of parameters which cannot be identified uniquely. (see section 5.3.6)

The maximum likelihood identification program described below has options
to use the above methods for solving identifiability problems. Further research
in this important area is badly needed if identification programs are to be
used on a routine basis for extracting stability and control derivatives. It
should be mentioned that two other topics related to identifiability (one of
which is discussed elsewhere in this report) are those of input design and

model structure determination.

4.6 Maximum Likelihood Identification Program

This section describes the computer program that was designed to
implement the maximum likelihood identification method for extracting
stability and control derivatives from flight test data. Three options
are provided for dealing with the identifiability problem: (1) a priori
weighting, (2) fixing parameters at a priori values, and (3) rank-deficient
solution for the information matrix inverse. At the outset of an identi-
fication run one of these three options is indicated (including the weight-
ing matrix if a priori weighting is specified) and the program thereafter
runs automatically, Step size cutting (in the event of a cost increase)
and parameter bounding routines are always included in the algorithm, al-

though they can be easily rendered inactive, if it is so desired.

The flowchart for the maximum likelihood program is shown in Fig. 4.2,
The principal steps of the algorithm are all blocked out, omitting the
numerical procedures used to compute such quantities as the solution to
differential equations, matrix inverses, etc. The following paragraphs
briefly outline the functions carried in each of the numbered blocks and

how the logic progresses from block to block.
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1)

(2)

(3

READ IN:
(1) initial parameter values, Po (NP parametersj
(2) parameter bounds P, PU
(3) observation and input control sequence y;, uy (N data pts)

(4) initial process and measurement noise covariance estimates,
Q and R, and state error covariance.

SPECIFY:
(1) which parameters are to be fixed (if any)

(2) whether a priori welghting 1s used (if yes, supply
welghting matrix).

(3) whether rank deficient solution is to be used.

Compute cost assoclated with a priori parameter
estimates:

N
3 (% Zl oTDE V() - 10g | 8D |)

j=

1

| BEGIN NEW ITERATION |

Solve the following equations simultaneously (using
updated parameter estimates)

(1) Time history of aircraft states via Kalman
or extended Kalman filter (equations 4.24 - 4.,26)

(2) Kalman gain time history (equations 4.9, 4.15,

4.16, 4.27, and 4.28) -
(3) Time history of sensitivity equations %%

(equations 4.35, 4.36)
. (4) Time history of additional partials anPi -1) R

k
22( > 2§£11 (equations 4.32 - 4.34)
k k

FIGURE 4.2 MAXIMUM LIKELIHOOD PROGRAM FLOWCHART
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Compute
%) (1) gradient vector DJ (equation 4.30),
(2) information matrix M (equation 4,37
o [ aRe ANY PARAMETERS FIXED ? |
{ vES
Eliminate those rows of the gradient, and those
“(5) rows and columns of the information matrix
associated with the fixed parameter.

Compute eigenvalues A, and eigenvectors v
(6) of M (Ai is largest, XN is smallest)

{

__NO_ Jl 1S RANK DEFICIENT INVERSE FOR M DESIRED? J

YES
K = NP SPECIFY K = minimum no. of aigenvalues to be retained
Fl-|-l-l-l-I-l-l_l-l-I-I_I-l-l-l—l-l-l-l—I-l-l-|-ll
1
i FOR, L = K, NP
|
! Compute: .
1 (1) Rank deficient information matrix inverse M-l = E: A;l viviT
S i=1
] .
(7) ] (2) Parameter step size, APE = —M-l DJ
I
i (3) Cost associated with new parameter values
i P, = P+ AP,
i N
1 T -1
i 3=1 5 st - 1o | ) |
- =1
! PO SOLIRTE S )
| £ 4] L o
! (W = 0 if a priori weighting NOT used)
! i
]
L B

FIGURE 4.2 (CONTINUED)
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i
!
I A
|
(8) I
i
-
!
-
o M
!
-
1
(10)

NO. I IS cost, J, greater than cost from previous fteration?

YES

Do minimization of J £ times: NC = 1, «cc, 2

% 1
(1) reset Pl P +§€—5 (APz)

(2) recompute cost

IF cost, J, still greater than cost of previous iteration,
increase NC by 1,

I-'-l-l-lﬂl-l-l-III:I-l-l-l-l-l-l-l-l-l-l_

* * *
From amongst (PN, APN), (PN—l’ APN_l), vea (PK’ APK)

retain pair with lowest cost; define asg P*; AP

*
For new parameters P s are any parameters constaints

(12)

violated

YES

(1) 1f any component of P (previous parameter estimate set)
was on a constraint and AP took it into infeasible
region, set that component of AP = (

*
(2) compute new P* = P 4 ap
(3) For each component of P beyond constraint boundaries,
compute ratio
APi - distance beyond boundary

AP:l

if none are beyond boundary, go to step (12)
(4) find smallest bpst, 4 DST

DSTi =

{

replace parameter estimates P with new set of estimates

P + AP'DST

{

return to step 3 to begin new iteration

FIGURE 4,2 (CONTINUED)

41



The initialization procedure for the maximum likelihood identification
method, indicated in blocks (1) and (2), consists of specifying a set of
a priori parameter values, including the measurement and process noise
covariances and, if desired, a set of upper and lower bounds for each
parameter. The observations and input control time histories are then
read in and stored. Since the maximum likelihood method is a batch pro-
cessor, it will use the entire data record for each iteration. The ini-
tialization concludes by specifying which of the several options are to
be used: (1) fixing parameters, (2) a priori weighting, (3) or rank

deficient solution for the information matrix inverse,

With block (3) the first iteration begins. Using the equations given
in Section 4.3 for the nonlinear system equations, the extended Kalman
filter, the sensitivity functions and all the required partial derivatives,
the time history for each of these quantities at each data point is com-
puted. These differential equations can be solved using any one of a
number of numerical techniques, e.g., Runge-Kutla. However, the majority
of the computer time for each iteration will be consumed in solving these
equations. When there is no process noise, Denery (Ref. 36) has shown that by
using a transformation some of the sensitivity equations need not be evalu-
ated, but rather can be expressed as a function of the others. The number

of differential equations which need to be solved is thereby reduced.

In block (4) the time histories of the quantities computed in block
(2) are combined to form the gradient, DJ, and the information matrix, M.
Up to this point, all the computations can be performed considering a
very complete and general set of parameters to be identified. This set
may, however, be more general than needed for a particular application.
For example, it may not be desirable to identify the rudder derivatives
if there is no rudder input. If this is the case, the components of
the information matrix and gradient due to the parameters which are not
to be identified (thereby being considered fixed) must be removed. Follow-
ing through the computation of DJ and M, this can easily be done by
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- simply deleting the rows of DJ and the rows and columns of M associated
with the fixed parameters. This is performed in block (5).

Many of the computational problems associated with the Newton-Raphson
optimization technique are involved with the large spread in the eigen-
values of M. Perhaps the most exact way of computing M_l is therefore
to use the eignvalue - eigenvector decomposition. This decomposition is
performed in block (6). The eigenvalues and eigenvector are also

required if a rank deficient inverse for M is desired.

The second program option consists of specifying if a rank dificient
inverse is to be used, and if so, specifying, in addition, the minimum
number of eigenvalues which are to be retained in computing M_l . Note
that if a rank deficient inverse is not desired, this minimum number

is just set equal to the total number of parameters.

The logic for determining the rank deficient M is given in blocks
(7) - (9). For each rank from the minimum to the full rank, the
appropriate number of smallest eigenvalues are discarded and the information
matrix inverse is computed. The assoclated parameter step is calculated
and the likelihood function value is determined using the new set of
parameter estimates. This involves computing the dircraft state and
observation time histories and deriving the innovation sequence. Note that
the third option enters in block (7) 1in the specification of whether a

nonzero a priori weighting matrix is to be used.

Blocks (8) and (9) are concerned with the solution where the cost
determined from the new parameter set is greater than the cost of the
previous iteration. (If this is the first iteration, the previous cost
is that associated with the a priori parameter estimates). When the new
cost is higher, the parameter step size is cut in half and the cost
reevaluated. If the new cost is still larger than the cost from the
previous iteration, the step size is cut in half again. This same procedure
is repeated a given number of times. The reason for this step size

cutting is the nonquadratic nature of the likelihood surface.
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This same step size cutting routine can be carried out for
the rank deficient solution procedure. The end result is
(k) sets of parameter estimates, each one resulting in some value of
the likelihood function. In block (10), the set of parameter values
and step sizes associated with the lowest cost is picked out and

retained. The other sets of parameter values need not be saved.

The final option of the maximum 1ikelihood program is to alter the
parameter step size if any of the parameter constraints are violated.
If this option is not desired, the parameter bounds are simply set to
very large values. The routine for computing the optimal step size
without exceeding the parameter constraints. involves four calculations.*
The first calculation checks the individual parameter values to see
which ones are on a constraint. If the parameter step. associated
with any of these parameters results in violation of the constraint
boundary, that step size is set equal to zero. In the second
calculation, the new set of parameter estimates are computed, using

the modified step size (some elements are Zero).

In the third calculation, each component of the new set of
parameter estimates is compared with the constraint boundaries. For
any individual parameter value which is beyond the boundary, the
absolute value of the ratio of the allowable parameter step to the
actual parameter step is computed. This ratio is exactly the factor
needed to have that particular parameter value fall on the constraint
boundary. The smaller that factor, the farther beyond the constraint
boundary the new parametexr estimate would have been. In the last
calculation, the smallest factor from among those computed for the

individual parameter estimates i{s determined and retained.

* This procedure is based on the Generalized Reduced Gradient method

of Abadie (Ref.37).
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The final block (12) of the algorithm involves multiplying all the
parameter step sizes by the smallest factor determined in block (11) or
by 1, if the constrained otimization option was not chosen. If the
option was used,only one additional parameter estimate will be on the
constraint boundary. All other parameter estimates besides the ones

with zero step sizes will be within the constraint boundaries.

The computation of a new step size for parameters marks the end
of an iteration. To begin another iteration, these parameter values
are used in the computations of block (3), and the cycle is restarted.
The original cost now becomes the cost associated with these new

parameter estimates,
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v

RESULTS OF IDENTIFYING AIRCRAFT STABILITY AND
CONTROL DERIVATIVES

This section discusses in detail, the experience and results of applying
the maximum likelihood identification technique to simulated and real flieht test
data from three different aircraft. Included will be a discussion of the
problems that were encountered and all the techniques that were used to

alleviate them. Wherever possible, the cause of the problems is also

spelled out along with possible implications for flight test procedures.

The first data that was used was from a computer simulation of
X-22 VIOL aircraft. The aircraft model was highly non-linear and the
data included process noise as well as measurement noise. Experiments were
run with different input sequences and different measurement noise levels
to investigate their effects on the parameter estimates. In all, 23
parameters were identified, excluding the measurement and process noise

covariances, which were assumed known.

The second case involved actual flight data from an HL-10 lifting
body. The digitized data, comprising approximately six and one-half
seconds of flight, was supplied to SCI by NASA-Edwards FRC. A linear
aircraft model was assumed in fitting the data and, in all, 20 parameters
were identified, including the measurement noise covariance and the
initial flight conditions. The data was assumed not to contain any wind

gust (process noise) effects.

The third set of data, also supplied by Edwards FRC, was from an
M2/F3 lifting body. This data, covering approximately eight seconds of
the flight test, did contain wind gust effects and represented
a test of the maximum likelihood technique in reducing flight data which

had not been successfully reduced by the output error technique. 1In all
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.22 parameters were identified, including the measurement noise covariance,
the parameters (time constant and driving noise covariance) of a wind gust

model and the initial flight conditions.

5.1 X-22 Simulated Data

At the time this contract began, the maximum 1ikelihood method had
been applied to simulated X-22 data, containing the effects of gusts, with
very promising results. However there remained several important problem
areas which needed further investigation and improvements to be made to the
existing program. This section will outline these problem areas, including the

method of approach, results, and conclusions.

5.1.1 Generation of X-22 Simulated Data

The model of the longitudinal motion of the X-22 is given in Appendix

A. These equations can be put in the nonlinear form

X = f (x,e,p) + g (x,p)V

where

x = [q, 0, u, w]T is the 4-dimensional state vector
(qé pitch rate, Gé pitch angle, ué longitudinal velocity, wé vertical
velocity)

P 1s the 23 x 1 vector of unknown parameters (consisting of
the coefficients of the polynominal expansion in u of the

derivatives Mo, Mﬁ, Mq, Mg’ Xo, Xw, XG’ Zo’ Zw’ ZG)

¢ 1s the vector of deterministic control surface deflections and biases

T

= [1, Ges] (s

es é elevator deflection)

v 1s a 3-dimensional white, Gaussian Process noise with mean

O and covariance Q.

47



The elements of the g matrix are obtained from the matrix of
a .

first partials 35 and, therefore, the parameters and states

appearing in f also appear in g.

The measurement equations are

x| B x 7] n
q q Ng
z= n_ "l 4+ qw+ g sin @ + n,
n 7= qu - g cos @ n
A I ’
where

n o, i=1,...,7 are independent, white, gaussian measurement

noise samples with the properties E { gt} = 0 and E { r_xtgs} = Rﬁts

Substituting for U, g, and w, however, introduces, process noise
i{nto the measurement equations. The measurement equation can

then be rewritten as

1%
o

wvhere f' and g' are made up of specific rows of f and

g, respectively. This gives rise to a correlation between the
process noise and the measurement noise NOVW consisting of the sum of
the vector n and [0 | V¥

g

48



With the specification of an elevator deflection sequence, Ges’ and
the process and measurement noise covariances, Q and R, the data, z, could
be generated (using 4th-order Runga-Kutta integration of the nonlinear equations
of motion). For each trial approximately 10 secs. of data was used, with a

sampling rate of 20 per sec.

5.1.2 Program Description

The program that was initially used to extract the stability and
control derivatives from the simulated data consisted of basically two
parts. The first part was a least squares start-up routine (Ref. 13)
which generated an initial estimate of the parameter values. This
least squares technique is an equation error method which, in one pass
through the data, obtains parameters estimates that minimize the
following criterion

mn (& - £, )%, 1m1,..,
?

for each derivative ii which is measured or derived. Since, in the

X-22 simulation, (g, n_ and ny were measured, it was first necessary to
express these quantities as linear functions of the parameters to be identi-
fied. From Appendix A it is possible to write § as a linear function of

the parameters (polynomial coefficients) in the derivatives Mo(u), Mw(u),

Mq(u) and M (u); n_as a linear function of the parameters in Xo(u),

8
es

Xw(u) and XG (u); and ng as a linear function of the parameters in Zo(u),
es

Zw(u) and 26 (u). Since no parameter appears in more than one expression,
es

a unique least squares estimate can be obtained for all the parameters.

The second part of the program was the maximum likelihood
identification technique in a form designed to identify the parameters
of a non-linear model when both the process and measurement noise co-
variances, Q and R, are known. The least squares parameter estimates were

used as the initial conditions for the first iteration through the data
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of the maximum likelihood routine. These estimates are updated with each itera-
tion, until the algorithm converges. However, since one iteration through
the data of the maximum likelihood technique required 1 minute of UNIVAC 1108 CPU

time, only a few iterations were used.

5.1.3 Limitations of Previous Results

The first limited trial of the maximum likelihood identification
technique applied to the problem of extracting aircraft stability and
control derivatives was on simulated X-22 VTOL data supplied to SCI by
Cornell Aeronautical Laboratory. The complete data set consisted of four
cases; two without process noise and two with process noise. In each case
a single step input was used to generate the data. For the no process noise
cases 2A and 2C, satisfactory estimates were obtained for all parameters except for
XG and Z6 derivatives. For both the low process noise (2B) and moderate process
noise (2D) cases, the errors in all the identified parameters were much larger.
However, when a multistep input sequence, which supplied much more excitation,
was used, the results for the process noise case improved greatly. It soon

became apparent that the quality of the parameter estimates were very "input"

- dependent.

As outlined in Section4.3, the calculation of the update in the parameter

estimates involves the computation of the gradient 3J, and the information matrix
ap
32J, where J is the likelihood function (Eq.4.29). These quantities in turn in-
apZ
volve solving a differential equation for the sensitivity matrix 3% (i/i-1),
3P

where £ (i/i-1) is the output of a Kalman filter. Since the equation for the
state estimate error covariance, P (1/1-1), does not reach steady state and
involves the unknown parameters, the partial derivatives of P (1/i-1), and the

Kalman gain W, , with respect to p should be included in the computation of

i
2
3J and 3°J .(See Appendix B) These were neglected in the earlier X-22
ap

p

N
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identification work. It was orginally thought that the lack of monotonic
convergence of the identification algorithm could be attributed to these
extra partials being neglected in the computation of the partial derivatives,

As noted earlier the accelerometer measurements introduce process noise
into the measurement equation, thereby correlating the total effective
measurement noise with the pProcess noise. This correlation which effects
the equations of the Kalman filter and, therefore, the computation of the
sepsitivity matrix, was not accounted for in the earlier application. There
1s an additional correlation between the g(.) function in the dynamics equation
and the g”(.) function }n the measurement equation since both are a funétion
of the state estimate, x (1/1-1). It was originaliy thought that this might
also_have a significant effect on the parameter estimates and on the standard

deviations supplied by the Cramer-Rao lower bound.

In both the data supplied by Cornell and generated at SCI the process
noise and control were kept constant over an integration step. It was important
to distinguish the cases where the process noise changed value before or
after a measurement. In one case there would be a correlation between the
measurement noise at a sampling point and the process noise during the pre-
ceeding integration step while in the other case the ocrrelation would_be with

the succeeding integration step. This difference, though subtle, is important.

All these areas were investigated with the objective of determining the
effects, on the parameter estimates and standard deviations, of different
modifications. The following description of the results is broken up into
separate sections, each one involving a different area of investigation.
Included in an éccompanying table are the parameter estimates and standard
deviations resulting from each change in the algorithm. These standard de-
viations are actually lower bounds on the actual values and are obtained from

the diagonal elements of the matrix 32J -1. Also noted, in each case, is

2
p
the number of iterations of the algorithm used in obtaining the results.
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5.1.4 Comparison of Results with Single Step and Multi-Step Input Sequences

The initial processing of the data supplied to SCI by Cornel Aero-
nautical Labs resulted in unsatisfactory parameter estimates both for
the low and moderate process noise cases, as shown in Columns 1 and 2
of Table 5.1. Since it was already known that the input sequence shown
in Fig. 5.1, used to generate the Cornell data did not sufficiently
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FIGURE 5.1 INPUT SEQUENCE USED IN GENERATING CORNELL DATA

excite all the modes of the system to allow adequate identification and
since there was considerable uncertainty already as to how this data
was generated, SCI programmed its own data generator using the equations
of motion in Appendix A. The elevator deflection sequence used by SCI
in generating the X-22 simulated flight data is shown in Fig. 5.2 and
the process and measurement noise standard deviations are given in

Table 5.2.
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TABLE 5.1 X-22 IDENTIFICATION RESULTS

1t Case 2D| 2: Casa 28| 3: Case 28| 4: Case 2B 53 Case 2B | ¢ Cane 23
Paraneters After After Ustng SCI Wich vith Vith
Inicial Initial Hulclistop Forward Constant g | constant g
Coet J Changes Changes Coerelatton and Correlation
3,327 3.37%s 3.5388 5499 1.535% 1.837
1\ 28.33 138.3 72.46 28.04 30.96 .47 32.02
"o(",) -.176 -1.632 ~.833 -.159 -.206 ~.209 -.224
u/ -.0003ss 00429 .00211 -.000441 | ~,000284 -.000292 +.000174
w1y -2 -1.248 -7 -.0947 -.137 -.148 -.166
"( -) -.00017 -00558 | .000009 | -.00321 | -.00274 -.00268 -.00233
uf1Y - -1.0721 -.995 -.489 -.520 -.500 -.436
‘( u) ~.00103 00434 .00278 -.00116 -.000814 -.000973 -.00182
n‘(l) 18.66 ~11.8s I BTR T 18.17 18.15 18.11
u 0669 .31 179 .0708 L0734 .0733 .0758
1\ 18.3 35.80 23.00 . | 18.88 19.41 17.87 17.97
xo(uz) -.0917 -.352 ~.160 -.103 -.110 -.0849 -.0874
w‘/ -.0003 .0006591 -.0000539| -.00024 -.000228 -.00033 -.000316
- (1) 22211 .0182 174 .220 .2085 .2233 -.223
Y\o/ -.c0159 -.000051 [ -.c0122 -.00159 -.00143 -.00159 ~.00160
%, (1 ) -.178 8.586 ~.976 -.691 ~1.011 -.8%6 -.875
u .0184 -.0521 .0202 .01m .0212 .0199 .0196
1\-32.17 45.95 -31.22 -33.15 -27.08 ~30.19 -28.03
.°("z) .51 -.1367 s 969 .825 .879 .813
'/ -.007 -.0037 00568 -.00728 -.00669 ~.00692 -.0066
« {1) --29% -1.320 -.599 -7 -.361 -.3397 -.356
"(.,) ~.00287 00526 | -.00039% | -.00314 -.00213 -.00233 -.00213
"(1 ) -.351 20.6 -11.26 -.673 -1.143 -1.136 -1.11
u/ ~.0167 -.122 .106 .0200 0269 02697 +.0271
¥o. of lterations 3 2 2 2 2 ?
Cost J* 5794 9158 9061
Standard
Deviations
1 76.18 16.412 2,150 2.249 2.383 3.501
LS B 1.104 .254 .0352 .0371 +0418 .0573
o .00405 .000996 | .000145 | .000154 .000170 .000235
n, (1 ) .695 .138 0251 0259 ~0299 -0399
u 00581 .00121 .000236 000244 000279 000371
X (1) 467 .183 .0139 L0146 .0Le4 .0157
. .00371 00135 .000152 .000159 .000157 .000173
n,( 1) 100.4 18.64 .279 .288 «3339 3368
u 27192 265 .00306 00315 200361 00356
1 20.35 4.93 .873 .873 - 7850 1.010
*,(u 27 0688 L0132 L0135 .0127 .0163
u? 000940 000241 00005 0000531 -0000508 0000660
,v(z) 173 .0422 .0105 .0103 +00919 L0116
v 00142 000351 0000899 {  .0000893 -0000857 000109
,‘(1) £1.04 7.686 1138 1132 .1073 124
u L3173 +0596 001134 .00114 -00116 .00134
1 9%.71 120.78 2.631 2.8 4.667 6.533
',(u) 1.276 .28) .0427 04486 .0747 .1087
o 00428 000972 .000172 007181 .000299 000428
.v(l ) 79 .163 .032) .0334 0345 0749
u 00657 00142 .000121 007330 000507 000696
,'( 1 ) 221.0 4120 .388 .398 .636 682
u 1. 3189 00451 .0046 00688 00737
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TABLE 5.1 CONTINUED

7. Caes 28] 81 Case 20 ¢t Case 2D
vith With With
Some Added | Constant g | Constant g
Rertials No Added and Add
Partisls Partial
3.8767 3.53684 3.6949
33.58 47.291 76.69
-.261 -.427 1,049
=.0000339 +,000295 . 00243
-.157 -.421 -.583
«.00247 . 0000073 .00193
«.502 -.5088 -
-,00102 -.000826 -.00343
18.04 15.92 17.29
+0752 1003 .0807
19.37 16,349 13.50
= 109 =-.0593 -.033%9
-.000221 - . 000449 «.000449
<213 .228 2764
«.00130 -.00159 -.00191
-,952 -1.402 -.661
+0207 .0261 .0181
-35.88 ~14.18 29.94
+796 .66 -.179
-.00636 -.00619 -, 00245
-369 -.634 -.9659
-.00196 . 000741 +.00389
«1.213 -4.618 -1.146
+0289 0703 0278
2 2 2
«3829 22,8934 23.167
14.06
+2289
. 000934
<1628
+001351
0760
.000824
1.206
L0181
4,270
.0638
000217
0498
000462
oSG
.00581
25.27
A06
001631
<2953
00273
3.23
0344)
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TABLE 5.2 STANDARD DEVIATION OF PROCESS AND MEASUREMENT NOISE

Standard Deviation

Moderate

Low
gusts (process noise) v 1.0 fps
v, 1.0 fps
A7) .2 deg/sec
measurement noise n, 0.5 fps
n 0.075 fps
w
ng .03 deg
nq .01 deg/sec
n 001 g
X
n L005 g
z
n‘.1 .po25 deg/sec2
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The initial state estimates used in the Kalman filter were set equal
to the state measurements observed at the first data point, i.e.,
ﬁi (L/1) = zge Since these measurements consist of the true state
ﬁi(l) plus noise, the error covariance P (1/1) is given directly as
P (/1) = E{(x (1) = & (1/1)) (x (1) - & (/1)) " }= diag {Ry;, Ry,

R33, R44 } where Rii is the ith diagonal element of the measurement noise

covariance matrix, R.

The effect of using the SCI data generation program with a multistep
input sequence instead of a single step input sequence can be seen by
comparing Cols. 2 and 3 of Table 5.1. The parameter estimates are greatly
improved and the standard deviations are reduced. This enhanced ability to
identify the parameters is attributed to the fact that ‘the more varied the

input sequence, the more the system modes are excited and the higher is the

signal-to-noise ratio at the output.

It is important to realize that the results as shown were obtained
for only one noise sequence, and therefore, although the parameter esti-
mates improved considerably, the parameter estimates by themselves are
not sufficient for comparison. Neither are the costs, themselves,
since changes in the noise sequence will influence the costs.
As will be seen in the later areas of investigation, some of the para-
meter estimates improved as the result of some change in the algorithm and some
did not. This is almost always the case, and unless the individual relative
effect of the parameters on the cost is known, it is very difficult to say
on the basis of only a few of the parameter estimates improving, that the
algorithm itself is improved by any change. The criterion that is more
suitable for comparison is the standard deviation of the parameter estimates.
A lower bound on the standard deviations is obtained from the inverse of the in-
formation matrix and this is adequate in many cases. However, if the differences
in standard deviations are small, the Cramer-Rao lower bound may not reflect

these differences.
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5.1.5 Comparison of Forward and Backward Correlation

The next area of investigation involved the effects on the parameter
estimates and standard deviations of the type of correlation between the
input and output noise sequences. The original Cornell data specified that
the process noise was kept constant over an integration step. This meant
that whatever correlation existed at the measurement times (note that the
measurements are taken at discréte instants) also existed throughout the
entire integration interval. The SCI multistep data was first generated with
the accelerations g, n_ and ny being calculated using the process noise from
the previous integration step and the control, which was also held constant
over an integration step, from the next integration step. Figure 5.3 below
graphically shows when the values of Vi the process noise, and di, the

control, were changed in relation to the measurement instances.

M1
— -
Vi4l
Vit2
I -  Process Noise
S111
. L 8142
5 Y  Control
i ,

\ 4

Measurements

FIGURE 5.3 v AND § ORIGINALLY USED IN THE CALCULATION OF é, n_, n
(DOTS INDICATE THE INTEGRATION TIME POINTS) 0y
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This seemed inconsistent with the way correlation between process and
measurement noise is usually represented in state space models. For example,

the discrete analog of the continuous time representation

x(t) = Fx(t) + G v(t)

y(t) = Hx(t) + n(t)
is

Ny TR T

e =Bx tn

vhere ¢,F and G,T are related by T, the sampling interval. In this

model, Vi and n, are correlated, i.e. the process noise during

(tyr tieay)
correlation between mn, and Vi effects X 41° not X Similarly, X4

is correlated with the measurement noise at tk. The

is calculated using Gk (the control at time _tk). In continuous time this
means that the correlation between v{(t) and n must be during the

interval between t, and tk+1' In addition, the derivative x(t) at

time tk must be calculated using the control that existed between tk—l

and t Therefore, 4, n_ and ny should be calculated using the

K
process noise that will exist in the next integration step and the control

that existed in the previous integration step, as in Fig. 5.4.

Vi
—
v
» v 1+2 Process Noise
i+l
61+1
{ -
8
+
°® 112 Control
i

FIGURE 5.4 v and 8 USED IN CALCULATING OF &, n,n AFTER CHANGE
y
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Note that the correlation between measurement and process noise has changed
from a backward correlatian to a forward correlation, i.e. the measurement
noise at the sampling instant is now correlated with the process noise during
the succeeding integration interval. This forward correlation, if unmodeled

with effect the (forward) Kalman filter operation while the backward correlation
will effect a second (backwards), smoothing run through the data. In an actual

application with continuous time dynamics and measurements, this problem will not
arise. However, if discrete measurements are recorded, the type of correlation that

exists will be an issue, and for data generated by a physical system the forward

correlation is the more natural.

_ The effect of using the forward correlation in the data generation

and then identifying the parameters, although not accounting for this forward
correlation in the Kalman filter, 1s shown in Cols. 3 and 4 of Table 5.1 (for
the low process noise case, 2B). Almost all the parameter estimates have
degraded, offset by an accompanying slight increase in standard deviation.
These results indicate that if forward correlation (the type normally used in
computer models of discrete systems) is not modeled, it can have a detrimental

effect on the quality of the parameter estimates.

5.1.6 Additional Performance Index

In Col. 4 of Table 5.1 a new performance measure is introduced,
labelled J'. This represents the unweighted mean square error in

estimating the output, given by

N

J' was introduced as another means of comparing the results of the
different runs and differs from J by the fact that changes in the Kalman
filter only éffect it through the state estimates ii/i-l' It was not
substituted for J in the identification algorithm since it does not weight
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the various state estimates and is not the likelihood function. As was
pointed out earlier, the weighting matrix used in J was a function of
the Kalman filter covariance and therefore varied as different changes

or additions were made in the filter.

Experience with the algorithm and the two costs, J and J', indicated
that J' was more sensitive to the parameter estimates than J, which
always appeared to be in the range 3.5 to 4. However, this is to be
expected since, if the parameter estimates are bad, the state estimates
will likewise be bad and the associated state estimate error covariances
will be large, The weighted residuals, which are inversely proportional
to the state estimate error covariance, may therefore change very little.
J', on the other hand, has no weighting, and therefore reflects the

absolute accuracy of the state estimates.

5.1.7 Accounting for Correlation Between Process and Measurement Noise

The initial attempts to account for the correlation between the
measurement and process noise were not successful either in reducing
the cost J or in improving the parameter estimates. It was decided that
part of this problem was due to the fact that the noise temm g(xi)-vi
appearing both in the system equations and the measurement equations, depends
on the state Xy and gives a long-term correlation. For this reason, it was
decided to alter the system equations to include a constant g matrix,
calculated from the initial control values, the nominal state values and

the actual parameter values.

The identification program was first run without accounting for
the process noise-measurement noise correlation, in order to get a
new standard for comparison. As shown in Column 5 of Table 5.1,
many of the parameter estimates were worsened and the J' cost increased
slightly. The fact that the J cost decreased slightly can be attributed
to the fact that the weighting matrix is a function of the g matrix.
Also the worsened parameter estimates were not,in all cases, offset by

increased standard deviations.
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The improved accuracy of the parameter estimates with the non-
constant g matrix can be attributed to the fact that the parameters
of the g matrix account for the system gain factors and are therefore
easily identifiable, Since, in the original system model, the same
parameters appeared in the f and g matrices, the parameter estimates

were overall improved.

It was agreed that, although the constant g assumption was a
large change from the original problem, it did not represent a
departure from reality. As can be seen from the system equations, the
g matrix was originally constructed from the linearized f ¢,
matrix, the motivation being that the process noise would then

enter the dynamical equation linearly.

With the constant g assumption, the correlation between process and

measurement noise was accounted for by adding the following terms (indicated

————

by :) to the identification algorithm. (See Section 4.3)

Defining Si = E{vg ni} to be the measurement noise and process noise

correlation at the i measurement time:

Kalman filter state prediction:

Kalman filter covariance prediction:

- T T, 02
Piim1 = %0 Pi1/k-1 %5-1 t 8 Qg (AD)

r—v - - |
-1 T T 2
|- g S R 78, , g (aT)"
i-1 i-1
|
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|
A |yp ot -1[an| 3% _ 3n}!
where ¢i—l I+ AT | g Si_1 x| 2p | 3p |
l.
b e e - —

x=X

i-1/i-1 X=Xy 9/4-1

Sensitivy equations:

ax 3f 3 22 _ ' s R—l sh
% 3p | p :g 1-1 ax

The resulting parameter estimates and cost are given in Col. 6 of
Table 5.1. Comparing these results with those of Col.5 it is seen
that, while some parameter estimates improved, others did not. The overall
cost J remained the same, while J' decreased slightly. An important
point is that the standard deviations for almost all the parameters increased.
This implies that, with the initial set of least squares parameter estimates
as good as they are, the inclusion of the terms accounting for the input/output
noise correlation does not gain much by way of the parameter estimates.
However, with these correlation terms included, the standard deviations
come out to be more realistic, in view of the differences between the actual
and estimated parameter values. All this is not to say, however, that for
a less exact set of initial parameter estimates, the correlation terms won't

improve the algorithm performance.

5.1.8 Inclusion of Additional Partial Derivatives

There were two principle motives for adding the additional first order
partial derivative terms of the state covariance matrix to the identificatior
algorithm. The first was that they would be required if Q and R were to be
jdentified, since they both appear explicitly in the equations for the state
estimate error covariance. The second motive was that the cost J, instead

of monotonically decreasing with each iteration, was oscillating.
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A possible cause of this was that the gradient direction was being
calculated incorrectly due to the fact that the neglected partial

derivatives have an appreciable effect on the gradient of the likelihood

. *
function in the vicinity of the minimizing set of parameter estimates.

It was necessary, therefore, to investigate the importance of these

extra partial terms in identifying the system paramters.

The inclusion of the additional first order partial derivatives into
the identification algorithm presented special problems due to the nature
of the X-22 model. Since the g matrix is a function of both the states
and of the parameters, the derivative of the g Q gT term (appearing in
the covariance equations) with respect to p must be included. This is a
particularly lengthy computation. A first attempt to include all the
additional partials except those of the g Q gT term is shown in Col. 7 of
Table 5.1. Comparing this with Col. 4 (since constant g was not assumed), it
is seen that both costs J and J' increased slightly and some of the parameter

estimates, themselves, are slightly degraded.

Two changes were then decided upon. The first was that case 2D
(moderate process noise) would be used instead of 2B (low process noise).
The second was that the g would again be modeled as constant.

The first change was motivated by the desire to see larger variations
in the costs. More process noise would make the initial least squares
parameter estimates worse and therefore the effect of the additional
partials would, potentially, be the greatest. The second change was
motivated by_the fact that with the constant g assumption, partials

of the g Q gT terms are identically zero.

* A second possible cause was too large a step size, which was corrected
by halving the step size along the calculated gradient direction whenever

the cost J, increased.
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Column 8 of Table 5.1 gives the parameter estimates, cost and standard
deviations for the 2D case without the added partial terms, and with the
constant g assumptions. Column 9 gives the same results with the
additional partials included in the algorithm. Once again the cost, J,
increased slightly ( A 5%). This can be attributed to the fact that the
convergence of the algorithm with the added partial terms may be slower.

The standard deviations of these parameter estimates (for both Cols. 7 and 9 )
are not given since their calculation requires another full iteration of the
algorithm. Since the added partials quadruple the run time per iteration,

it was decided not to calculate these values. The important point is that,
considering the slight variation in J, even for this worst case, and the
possible benefits of the added partials in terms of the vastly increased

run time, it is not necessary‘to include these added partials in the

identification algorithm.

5.1.9 Aerodynamic Derivative Estimates

As was noted at the beginning of this section, the aerodynamic deri-
vatives themselves were not identified. Rather, the coeffients of first
or second order polynomial expansions in the longitudinal velocity, u, of
these derivatives were identified. Using these identified coefficients, it
was then possible to reconstruct the time histories of the total derivatives,
and compare these estimates with the actual values. These comparisons are
shown in Fig. 5.5 for the 2B data and the original model structure. The
fits to most of the derivatives was good. This indicated that, although some
of the estimates of the polynomial coefficients had relatively large uncer-

tainties,their influence on determining the total derivative behavior was

small.
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5.2 HL-10 Flight Test Data

This data was used mainly for checking and validating the maximum
likelihood program. Flight data for the HL-10 lifting body was supplied
to SCI by NASA FRC (Flight Research Center) Edwards along with as much
information about the flight condition as was available at the time. FRC
also supplied SCI the results of their stability and control derivative
extraction program along with the specific measurement and a priori parameter
weights that were used. The HL-10 data did not contain gust effects and a

linear model for the lateral dynamics was used.

~ It should be noted for the case of unknown measurement and process
nolse covarlances an additional term, Nln(det(HPRgHt+ R)) is
added to the cost criterion, where PSS is the steady-state Kalman filter
error covariance matrix. This is because the weighted mean square error
will always have a constant value of g-x (no. of states) since the weighting

matrix is the sample covariance.

5.2.1 Dynamical Equations of Motion and Observation Equations

The linearized lateral equations of motion, including the éffect of

the wind gusts, are:
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where p 18 roll rate (°/sec)*
r is yaw rate (°/sec)
B 1s sideslip angle (°)
¢ is roll angle (°)
6& is aileron deflection (°)
Gr is rudder deflection (°)
Bn is wind gust in equivalent sideslip angle (°)
c is a transformation matrix
S I —
1 - 0 o
X
~he v 0 0
C= 'z
0 0 1 0
0 0 (N

All the quantities are in the body axes system.
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For both the HL-10 and the M2/F3 flight data, (which is discussed

in Section 5.3), a , the angle of attack, y, the flight path angle,
and V, the velocity, were assumed constant over the data record and
their values were supplied. The same was true of Ixz’ Ix and Iz. In
most cases, Y_ and Yr were assumed to be zero, which implied that there
were nominally 20 parameters to identify (7 in F, 9 in G and 4

initial conditions), excluding the wind gusts and biases in measurements.

The observation equations, again assuming the existence of gusts,

are given below:

_ . a4 rF - _ — -
N 1 0 0 0_0 P 0 0 1] ‘Sa
¥y o 1 0 0 O r 0 0 0 5r
Yz | = o 0 1 0 O 8 | + 0 0 0 ]
Ya 0o 0 0o 1 O | ¢ 0 0 0 .
| ¥5 | LO 0 vrB 0 o_ _Yaa Vs, Yo_
~———— " —— T — S~
y H D u
[0 7] 0]
0 n,
+ 1 sn+ ng
0 ng
Ys ng
d — L. —d
r n

where Y is the lateral acceleration

(5.2)

ny, i=1,...,5 are independent white noise Gaussian measurement errors.
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Notice that Bn always appears with B when gusts are assumed to exist.

In the processing of the HL-10 data, Bn=0, thereby leaving the
measurement noise, n, as the only random noise source. The Kalman filter
equations reduce to the original state equations and the Maximum Likelihood
Method is essentially similar to the Output Error Method with the exception

of the weighting matrix.

5.2.2 Characteristics of HL-10, Flight 19-2

The HL-10 data was assumed to contain no gusts and was, therefore,

processed by using the generalized output error criterion. The results,
however, were somewhat unexpected and, in all, eight different runs, each
with a variation on the original output error run, were made to solve the
problems which were encountered. It was later learned that these same
problems had been encountered by FRC. Each of the different runs are
described in this section, along with the objectives, observations and

conclusions particular to each.

Along with the observations and control time histories (see Fig. 5.6)
wind tunnel derived parameter estimates were supplied to SCI by FRC. There
were 327 data points at a sampling rate of 50 per second, for a total
of 6.54 seconds of data. The angle of attack of this flight was 16.8°

and the mach number was 1.22.

It was evident from the data that a substantial amount of clipping
and quantization had occurred during data collection. An accurate model
for the obseryations would include the dynamics of the instrumentation
system, but no information was available. One effect of not including a
model of the instrumentation dynamics and quantization effects would be

to have correlated nongaussian residuals, in each of the observations.
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5.2.3 Results of Flight 19-2

The first processing of the HL-10 data was with the maximum likelihood
identification program in an output error mode. As such, it differed from
the FRC Newton-Raphson identification program in only one way, the weight-~
ings of the fit errors. FRC uses a constant weighting matrix, based on
an idea of the instrumentation accuracies. The SCI approach estimates
the measurement noise covariance matrix and weights the fit errors by
the inverse of this matrix. It is shown in Section 4.4 that the ML estimate
of the measurement noise covariance matrix is given by the sample covar-
iance of the observations. Edwards also uses a priori weighting on the
difference between the parameter estimates and the wind tunnel estimates,

which was not initially included in the SCI maximum likelihood program.

The time histories of the five response varlables along with the
estimated values obtained after 11 iterations of the data are given in
Figure 5.7. Included also in Figure 5.8 is the fit error in the p and r
observations. A comparison of the parameter values themselves and the wind
tunnel values is given in Table 5.3 along with the associates standard devia-
tions in the parameter estimates. The parameter values obtained from the
FRC output error method with fixed weights after 7 iterations and a priori
weighting are also shown in Table 5.3, along with the associated confidence

bounds.

As Figure 5.7 shows, the fits in all the observations were very good.
However, as is often the case, the fit error alone does not indicate an
acceptable set of parameter values. The two major problems that appeared
were that (1) the signs of the Lp’ Lr' N

P

and Nr derivatives had all
% T
changed from those of the wind tunnel values and (2) the fit error in

* In this investigation, it was assumed that the wind-tunnel and theoretical
values had correct signs. This may not necessarily be the case for lifting
bodies flown at transonic speeds due to limitations of wind-tunnel testing
and theoretical calculations. The question of how much confidence can really
be placed in these values has not been resolved.
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TABLE 5.3 HL-10 PARAMETER ESTIMATES AND STANDARD DEVIATIONS

SL

Tu:i:g };Rix‘;:,l,r:;_’:himg Max. Lik, Estimates| Max. Lik. Estimates Max. Lik. Estimates Max. Lik. BEstimates
Parameter| and Theod (with confidence (vith St'd, dev.) with YP and Y With a pri?x:i Weighting| With a priord weighting and Bias
zgtical bounds) (with St"d dev.) (with St'd dev.) (with Sc'd dev.)

. LP ~0.3435 | -0.3436 {0.196) 0.915 (0.025) 0.395 (0.022) ~0.295 . (0.0114) -0.271 (0.0114)
Lr 0.2723 1.188 (0.0196) ~-1.363 (0.138) 0.0671 (0.111) 1.574 (0.0728) 1.349 (0.0747)
LB -30.75 ~52.073. (1.18) -56.489 €0.305) -46.94 (0.417) -47.179 (0.285) -50.32 (0.330)
Np 0.0245 0.0326 (0.0157) -0.160 (0.00429) | -0.187 (0.00370) 0.0380 (0.00352) 0.0550 €0.00323)
Nr -0.1290 | ~-0.1114 (0.0157; 0.432 (0.0187) 0.548 (0.0152) -0.111 (0.0114) ~0.0896 (o.oxbs)
Ng 6.8411 7.0496 (0.118) 8.523 (0.719) 7.474 (0.0978) 6.292 (0.0574) 6.845 €0.0570)
Yp -0.0617 | -0.0584 (0.00393) - 0.329* (0.00307) 0.335* (0.00192) 0.310 (0.00192)
Y. -0.0120 | -0.0122 0) -— -1.091* (0.0122) =1.064* (0.00754) -1.019 (0.00762)
YB =0.0916 | -0.0855 (0.00392) =-1.471 (0.0202) {-0.1458 (0.0161) ~0.0949 (0.00383) -0.0918 (0.00382)
Lo 11,2464 {11,996 (1.18) 12.415 (0.0731) |12.494° €0.0775) 12.124 (0.0586) 12.282 €0.631)
Lia 5.665 5.877 (1.18) 6.288 (0.173) 6.544 (0.148) 6.252 (0.111) 6.429 (0.114)
Lo - - 21,03 (0.302) 17.341 (0.222) 0.247 (0.117) =0.0137 (0.0951)
Ny 0.8135 1.456 (0.118) 1.262 (0.0136) 1.245 (0.0201) 1.404 (0.0131) 1.357 0.123}
oo ~3.617 -3.178 (0.118) -3.186 (0.033) -3.313 (0.0326) ~3.257 (0.0229) ~3.194 (0.0212)
No - - - -1.633 (0.0479) -1.206 (0.0401) 1.561 (0.0205) 1.562 (0.0163)
Yo -0.00180 |-0.0018 (0) 0.0623 (0.00390) | .0515 (0.00373 | =0.0231 (0.00435) ~0.0482 (0.00443)
Yoo 0.0111 {-0.00427 (0) 0.919 (0.00992) | 0.0629 (0.00895) 0.0717 (0.00782) 0.519 (0.00768)
Yo - 6.513 (0.00898) | 0.412 (0.00778) | -0.751 (0.0112) =-0.639 (0.00829)
Py itial 1.76 (0.158) 3.325 0.146) 2.225‘ (0.116) 2.348 (0.117)
R nitial 0.117 €0.322) 0.0251 (0.0263) | -0.710 (0.021) -0.599 (0.0201)
Blnithl 0.398 (0.0188) 0.1305 (0.0152) ~0.226 (0.0125) ~0.219% (0.0111)
915“:1“ 1.939 (0.0697) 1.767 (0.0511) ~1.748 (0.0663) =1.429 (0.0571)

Likelihood Function Value [ -2243 -2359 -1552 -2264

* R
The identified quantities are YP + gin o, Yr- cos o
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the observations (although only p and r are shown) exhibited a sinusoidal
characteristic, Although the precise reasons for these problems are not

known, there are several contributory factors.

The first factor is that the parameters with the opposite signs
are weak parameters -- that is, they cannot be accurately identifed from
flight test data. This is the approach FRC has taken with the Lr and
Np parameters and in the a priori weighting, they welghed their wind
tunnel values very strongly. There is also an identifiability problem
because the stability augmentation system (SAS) was used on this flight,
Such a system would tend to suppress certain modes of the system, while
emphasizing others. The parameters of the suppressed mode are, therefore,
hard to identify,

A second factor could be that the linearized dynamics are not accurate
enough for the flight conditions of this data. Also, there may be coupling
between the longitudinal and lateral modes, which is not included in the

model,

A third factor, which may account for the sinusoidal characteristic
in the fit error, is that due to the instrumentation dynamics, the measure-
ment noise is actually correlated. This hypothesis could be verified by
reprocessing the data with the measurement noise modeled by a second order
linear system. Final verification of these possibilities would have to be
based on processing additional data under similar flight conditions.
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In many instances, the solution to such problems is to adjoin to the
1ikelihood function other measures of performance, usually indicating some
a priori knowledge of the parameter values. Several examples of these
are the a priori weighting and constrained parameter values which are
discussed later. A less direct approach, of reducing the dimensionality

of the parameter space, is also presented.

5.2.4 Output-Error with Yp and Yr Identified

The remaining series of runs were all aimed at solving the problems
encountered with the first processing of the HL-10 data. First, the Yp
and Yr derivatives were considered as two additional parameters to be

identified.

In the previous rum, both Yp and Yr were considered zero. However,
by examining the equations of motion, p can be expressed as a function of
(Yp + sin @) and T can be expressed as a function of (Yr - cos a)r. This
would introduce previously neglected second order effects into the estimate
of p and r, and possibly account for the sinusoidal characteristic in the

fit error.

The results indicated that the fit in each of the observations was
about the same as in the straight output error case although, as shown
in Table 5.2, Lr does have the same sign as the wind tunnel value and Lp is
less positive. However, on the other hand, both Np and Nr are worse.
In addition, the sinusoidal characteristic of the fit error remained,

diminished only slightly.

5.2.5 Output Error With Constrained Parameter Values

Since it seemed clear that the opposite signs on the four parameters

were a result of trying to minimize the fit error, and until additional
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terms were added to the model, these signs were likely to remain opposite,
the next run constrained the values of Lp and Nr to remain negative. This
would answer the questions of whether there was a set of parameter values
which would minimize the cost criterion (although not globally) with the
indicated parameters having the same sign as the wind tunnel values. If

these values remained on the constraints, no such minimizing set exists.

The results of this run were that the Lp and Nr values remained on

the constraints and the Lr and N_ values again had the opposite signs. In

P
addition, the fit in the observations was drastically degraded. Only the

fit on r was of equal quality as in the two previous trials,

5.2,6 Output Error With Different Initial Conditions

One remaining possible cause of the changed values could be the
presence of local minima having the opposite signs on Lp’ Lr’ Np and Nr'
The next run used initial parameter estimates of Lp and Nr which were
more negative than the wind tunnel values, while keeping the control
derivatives the same. The results of this run were that the signs of all
four parameters (Lp, Lr’ Bp’ Nr) were again reversed and, if more itera-
tions had been performed, the final parameter values would have, more

- than likely, been equal to the initial set of output error values.

Although the results from many sets of initial parameter values would
be necessary to conclusively determine if the values from the initial
output were truly the global minimum, it appears that this might be the
case. If the signs on the four parameters are to be the same as the wind
tunnel values, an additional cost must be put on the difference between
the parameter estimates and the wind tunnel values. This is precisely the

reason for the "a priori weighting" mentioned earlier.

5.2.7 Output Error With A Priori Welghting

The values for the parameter weights used in this run were obtained
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directly from the FRC's runs supplied to SCI. Figure 5.9 shows the time
histories of the observations and the.resulting estimates (except for ¢)
for this weighting. It is clear that the fits to the observations, except
for p, have been degraded. However, as shown in Table 5.3, the values

of the four indicated parameters have the same sign as the wind tunnel

values.

It was found, however, that except for p and r there was appreciable
bias in the fits to the observed data. Not accounting for this bias
in the computation of the measurement noise covariance will cause
incorrect weights to be assinged to the different observation residuals.
This will effect both the computation of the gradient and the information
matrix, resulting in incorrect parameter step gsizes. Another run was
made with the sample bias of the observation residuals computed, at each
iteration, and accounted for in the sample covariance calculation. The
fits to the observed data for this second processing of the data with a
priori weighting are shown in Figure 5.10. The fits to r, f and ¢ are much
improved over the previous case. Only the fit to the lateral acceleration
data has not improved. As shown in Table 5.3, many of the parameter
estimates for the run are closer to the original wind tunnel values than
for the previous rum, without considering the biases. It, therefore,
appears that when using a priori weighting, consideration must be gilven
to the possibility of having biased residuals, which must be used in

computing the sample covariance.

A final processing of the data with a priori weighting and including
the identification of the output biases was made with the additional
feature of retaining only the diagonal elements of the sample covarilance
for the estimation of the instruction noise variances. All the off-diagonal
terms were set to zero. The rationale for this was that each of the
measuring instruments on board the aircraft operate independently and there-
fore the errors would be uncorrelated. The fit to the observed data did

not improve over the previous run and many of the parameters were now
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farther removed from the wind tunnel values.
No additional processings with varied a priori weights were made,
since sufficient data by which these variations could be justified were

not available.

5.2.8 Parameter Estimates Used for Prediction

It has been often stated that using a set of estimates for the stability
and control derivatives to predict the measurements from a flight test,
under similar conditions and with similar instruments as the omne used to
identify the derivatives, would be the most valid test of the accuracy of
the parameter estimates. gince another set of flight data for the HL-10,
under similar conditiomns, was not avallable, an experiment was run in which
only the first 227 points of data were used to identify the parameter
estimates and these results were used to predict the final 100 points (2
seconds) of data. The identification algorithm which was used included
the a priori weighting and the identification of the output biases. As
the fits to the observed data, glven in Figure 5.11, indicate, there is
some divergence at the end, especially for r. However, the divergence
in B and ¢ was anticipated since the observed data suffers heavily from
. clipping during the final 1 second. The fit to the lateral acceleration
was as good as might be expected considering the fit to the first 227
points.

5.3 M2/F3 Flight Test Data

The data supplied to Systems Control, Inc. on flight No. 21, case 6
of the M2/F3 lifting body is shown in Figure 5.12. The influence of
wind gusts is evident in the time histories of the sideslip angle and the
lateral acceleration. Referring to Section 5.2.1, the wind gusts were
assumed to enter the dynamical equations of motion in exactly the same

manner as the sideslip angle B . Nothing was known, a priori, about the
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statistics (correlation time, mean square value) of the wind gusts.

The only information supplied SCI was that the output error program used
by FRC had failed to match the time histories adequately. A total of
401 data points were supplied, representing 8.02 seconds of data. Once
again, the effects of the instrumentation (quantization, clipping) were
ignored as were the dynamics of the boom which measures sideslip angle
(B vane). It was also intereéting to note that the flight conditions
were appreciably different than for the HL-10. The angle of attack was
only 1.57° and the Mach number was .468.

Seven separate runs were made with the M2/F3 data, indicating a
succession of possible model representations for the equations of motion.
Since neither the measurement noise nor wind gust statistics were known
a priori, these were included, where called for, in the list of parameters
to be identified, along with the stability and control derivatives and
initial conditions.

5.3.1 Output Error - No Wind Gusts Included

The maximum likelihood algorithm, in the output error mode, with the
~wind gusts assumed zero, was first used in trying to process the M2/F3
flight data. It was intended that from such a run, it would become
apparent where the wind gusts were having the most impact and also the
results would serve as a standard against which the identification algorithm

performance with the wind gusts included, could be measured.

The time histories of the fit in each of the five measurements are
given in Figures 5.13. As these figures indicate, the worst fits were
obtained on the.sideslip angle and lateral acceleration measurements,
although none of the fits were as good as with the HL-10 data., These
results also indicated that the model for including the wind gusts, suggested
in Section 5.3.3 is appropriate, since the measurements involving the
sideslip angle show the most random fluctuation when compared to the data
from the HL~10 flight.
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The parameter values obtained for this processing of the data are

given in Table 5.4,

5.3.2 Perfect Measurement of Sideslip Angle

For this processing of the M2/F3 data, it was assumed that the measure-
ment noise on the sideslip angle measurement is much smaller than the gust
noise. With this assumption there is a perfect correlation between the process
noise and the sideslip angle measurement noise, both being Bn. The state and

sideslip angle measurement equations now appear as

C}'(=FX.+Gu+I‘Bn

yg = B+ B8, +tng =B 4B

The Kalman filter for the complete four state, five output model must account
for the perfect Bn correlation. The most direct method for doing this is to
first construct an equivalent four state model which is uncorrelated with the
sideslip angle measurement. This is done by adding the quantity y3—6-8n,

which has value zero, to the dynamics, i.e.,
Cx = Fx + Gu + I‘Bn + 6 (y3—B—Bn)

and solving for 8 such that E {(FBn - esn) B;T} =. 0. 8 =T is seen to be

the solution and the equivalent model has the resulting from

Cx = Fx + Gu + F(y3—8)
This equation is in the form of the Kalman filter, and it can further be shown
that is the exact Kalman gain. Since is the third column of F, the

dependence of X on B is eliminated and the equations of motion and the measure-

ment equations can be rewritten as

94



S6

TABLE 5.4 M2/F3 PARAMETER ESTIMATES AND STANDARD DEVIATIONS

Wind Max, Lik. Estim;l:e Mak., Lik Estimate Max. lik. Estimate Max. 1ik. Estimates Max., lik. estimates
Parameter Tunnel |-output error mode Assunming perf. B8 Meas. |Directly fdent. of B_ Mith a priori weighting |with dependent params.

& Theo- (with St'd dev.) (with St'd dev.) (with St'd dev.) (with St'd dev.) fixed. fixed.
retical (with St'd dev.)

Lp -0,4673 | -1.548 (0.0935) 0.679 (0.035) =-1.779 (0.214) =0.461 (0.0182) *

Lr 0.8878 2.008 (1.187) 10,49 (0.547) 25.46 (1.908) 4.154 (0.140) *

LB 75.340 |-54.49 (2.45) ~97.79 (1.615) -135.38 (2.238) | -67.95 (1.02) *

.‘:P .0802 .102 (0.006) -.0203 (0.00393 -.142 (0.0147) .00475 (0.00349) *

Nr -.6876 -.0307 (0.078) -1.675 (0.0590) 1.628 (0.199) ~.764 (0.0134) *

N, 7.5342 2.876 (0.136) 7.324 (0.152) -9.890 (0.349) 6.763 ( .0876) 4.435 (.113)

Y * »

P

Yr * *

Ye -.2001 ~-.0476 (0.125) -1,249 (.0597) =1.466 (0.0386) -.202 (0.00352) -1.36 (.0594)

Lsa 14.04 14.82 (0.301) ' 9.804 (0.109) 16,022 (0.3017)] 10.96 (0.161) 9.66 (.169)

L6r 10.03 73,97 (8.59) ~109.28 (5.519) {-157.130 (17.88) ~42,18 (3.13) *

Lo o] 11.14 (1.828) =~10.46 (0.328) 145 (2.11) -.572 (0.115) -9.004 (.141)

N“ .83 596 { .0223) .719 (.0104) 2.128 (0.0456) 762 (0.111) .756 (.0134)

Ndr ~4.06 -12.874 (0.578) 6.844 (0.643) ~11.754 (1.467) =-4.,37 (0.106) *

No 0 -.348 (0.121) 177 (0.0357) 427 (0.198) -.233 (0.0433) -.00239 (.0320)

Y“ [} =-.00033 (0.0151) -,0363 (0.00669) -.0125 (0.00689 -.0847 (0.00867) -.0275 (.00634)

'6:‘ ] .0301 (0.363) ~.874 (0.222) -.926 (0.227) -1.932 (0.286) o

Yo 0 .0179 (0.354) .378 (0.0299) .295 {0.0313 -.0974 (0.378) <456 (.0189)

’bns -,281 {0.0531) 2.936 (0.0629)} ~6.01 (0.0933) -.667 (.108)

pinitnl 3.807 (0.521) .359 (0.188) 1.657 (0.852) 4,846 (0.296) ~3.125 (.239)

'1n1:1|1 =2.262 (0.0785) ~1.66 (0.0280) =-1.604 {0.0556) -2.22 (0.0453) -1.061 (.0597)

Bintetal ~.558 (.0251) * - .565 (.0279) * *

a

*tatedal =34.44 (.175) -32.69 (.138) -33.630 (.0796) | -31.91 (.223) ~31.52 (.224)

a 44,147 (.856)

q 6.231 {.107)

B N

Tntrial 2,937 €.256)

Likelihood ~1502 -2237 ~2038 =-1122 =-1051
Function
Value
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TABLE 5.4 (CONT'D)

Max. Lik. with

Parameter Rank Deficient Solution
Lp -.531 (.0189)
Lr 4,268 (.144)
Lg =103.35 (.105)
Np .0397 (.00682)
Nr -.989 (.0672)
Nﬁ 7.558 (.306)-
Y *
p
Yr *
YB -1.19 (.0590)
Lea 10.25 (.0845)
Ldr -5.539 (.0257)
L, -10.89 (.280)
Néa .561 (.0254)
Nér -.512 (.651)
N, .587 (.0833)
Yoa -.0360 (.00660)
Yor -.737 (.219)
Yo .408 (.0296)
®pias ~.164 (.0428)
Pinitial -1.029 (.139)
T nitial ~2.054 (.0552)
°initial =31.576 (.0705)
Likelihood -1689

Function Value
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where Y3 is treated as a deterministic control. The order of the dynamical

system has been reduced to 3 and the number of measurements to 4.

Once a complete set of parameters has been obtained for this reduced
order system, the time history of Bn can be recovered. This is important
since the identification of the statistics of the wind gusts is also
possible using identification., Sideslip angle estimate E can be found by
substituting the parameter values of the three state model into the original
four state model and solving for its time history. Then subtracting
from the sideslip angle measurement gives the time history of Bn + ng (nB was

originally assumed small). A first-order linear model of the form
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(v - B) = B, +mg

where vB is the process noise with covariance q, can be fit to this
data and the time constant a, the process noise covariance q, and the

covariance of the measurement noise nB identified.

The time histories of the fit to the four observations (not in-
cluding sideslip angle) are given in Figs. 5.14. The parameter estimates
along with the estimates of the process noise covariance and the (recip-
rocal of the) time constant for the wind gust are given in Table 5.3.

The time history of the wind gust Bn (including the neglible measurement
noise) is shown in Fig. 5.15.

The fit in each of the four measurements is very good, although time
histories of the fit error indicate that there is still the same sinu-
soidal variation, especially in p, that was observed in the HL-10 fit
errors. Only the fit error in the lateral acceleration, ay, approached
being white noise, which is the indication of the best possible fit. The
value of the covariance of the noise on the sideslip angle measurement was
almost two orders of magnitude smaller than the process noise covariance

which supports the original assumption of this run. One surprising result,
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however, is that the Lp’ N6 , and LG Parameters changed sign from the
T r

wind tunnel value.

There appeared to be two principle reasons for the N and L&

)
r r
parameters having the wrong signs. The first was that the magnitude

of the aileron variation was much larger than the rudder variation,
unlike in the HL-10 case. Since the effect of the controls is additive
in determining ﬁ and ;, there is an identifiability problem with respect

to NG and L6 . This is substantiated by the small values of the terms
T r

of the sensitivity matrix corresponding to the N6 and LG parameters.
r r

The second factor contributing to the incorrect signs 1is the opera-
tion of the yaw damper. This causes a feedback loop which activates the
rudder as a result of yaw rate. The time histories of r and 6r appear
in phase, therefore, in the M2/F3 time histories. 1In such a situation,
unless the control Gr is modeled as a linear combination of the states,
there is a uniquesness problem as to whether the actual aircraft dynamics
on the feedback loop is being identified. With the yaw rate and 6r in

phase, the N6 parameter, at least, will appear with a positive sign.
T

The problem of incorrect signs was of major concern and was the
motivating factor for many of the remaining Processing of the M2/F3
data. The experience with the HL-10 data indicated that constrdning
those parameters with wrong signs to have the same signs as the wind
tunnel values would not correct the problem. The solution had to lie
either in a more complete aircraft model or in dealing directly with

the numerical problems causing the incorrect signs.
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5.3.3 wind Custs Included: Direct Identification of Process Noise Cavariance
and Time Constant of Correlated Gusts

For the third processing of the M2/F3, the gusts were included dir-
rectly in the dynamical and measurement equations requiring that a full
Kalman filter be used in the maximum likelihood identification algorithm

in order to obtain the sensitivities. For this processing of the data,

the model of the wind gusts obtained from the previous run was used

+
n =ag +yvy

8

(5.3)

where .a 1is the reciprocal of the time constant and vB is an unknown

disturbance with covariance q. Replacing Bn in the original system

equations by equation (5.3) results in
bl TL L Coo ol Lo Ld6LTT
p b . . P L§a6L° 5, 0
r N N N, O 0
p v N "M, M Mol 1% | O
C |8 Yo+ Y + oy 96050 0 Y. Y, vI1 D Itlo
] fha cbsa BV §3 6 0
¢ 1 tane 0 0 01}]¢ 0 O % 0
8 0 0 B
r-'l L 0 0 a L N . L.O 0 OJ — L]

Note that an additional bias term ¢° has been added to the $ equation.

With t he inclusion of the covariance of vB and the Bn state, there are

now 24 parameters to identify:

Yr are assumed zero), 5 initial conditions, q and a.

The difficulty involved in setting up the.identification algorithm

17 stability and control derivatives (Yp and

in such a case is that both the measurement and process noise covariances,

R and q respectively, are unknowm.

However, both R and q are needed in

establishing the Kalman filter gain, which is assumed to be in steady state.

To begin the identification, therefore, some initial estimates of both q

and R are necessary.

covariance matrix obtained from the output error method.

for q is obtained from the results of the previous run.
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R is assumed to be the diagonal elements of the sample

An initial value




Once the initial iteration is completed, the value of q 1s updated
like any other parameter and the measurement noise covariance, R, is ob-
tained from the samp}e covariance. This last fact is derived from the
property that with xili‘l defined as the Kalman estimate of the state at
time ti given data up to time ti-l’

N

lim 1 ~ - T. T

N+ o 3 Z (5= g = Dug) (yg=bxg g g=Dug) T 2 wp T + R
i=1

where Pss is the steady state error covariance matrix, obtained from
solving a discrete Ricatti equation. The above expression is only

approximate for finite data lengths.

The time histories of the observations and the estimates are
given in Fig. 5.16, and the final parameter values are given in
Table 5.4. Although the fits to the p, B, ¢ and ay measurements
obtained from this run improved over those obtained from the output
error method, they are not totally acceptable. It is interesting to
note that the signs of the parameters Lp and Lr have retained the

same sign as the wind tunnel values.

The time histories in Fig. 5.16 also indicate that most of the
fits to the observed data are biased. Inclusion of measurement biases
in the list of parameters to be identified did not, however,

improve the performance.
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The reason the maximum 1ikelihood algorithm with the Kalman filter
cannot reduce the fit error any further is basically numerical. What
has occurred is that the diagonal element of the measurement noise
covariance matrix, R, associated with the measurement of the sideslip
angle has become very small when compared to the covariance of the wind
gust disturbance. Indeed, the wind gust itself is practically white.

As a result, the measurement noise cannot be distinguished from the wind

gust. The alternative was to restructure the model so that the measurements

of B + Bn‘ the total sideslip angle are perfect. This is precisely what

was done in the previous processing of the data.

5.3.4 Three State Model With A Priori Weighting

The results of the two previous processings of the M2/F3 data
indicated that the assumption of perfect measurements of the sideslip
angle was reasonable and produced the best fits to the data. However,
as stated earlier, the three state model resulted in wrong signs for
many of the parameters. The first processing of the data in an attempt
to correct these jncorrect signs used the priori weighting technique.

The same weights as for the HL-10 data were used for the M2/F3. Measure-
ment biases were included in the list of parameters to be identified

since the use of a priori weighting on the HL-10 data indicated the need

for bias estimation.

106



As shown in Fig. 5.17 the fits to the observed data resulting
from a priori weighting were quite poor, especially in roll angle
and lateral acceleration, although the parameter estimates themselves,
as given in Table 5.4, were quite close to the wind tunnel values. It

is interesting to note, however, that L still has a wrong sign.

§
r

5.3.5 Three State Model With Fixed Parameters

The basic causes of the incorrect signs for some of the parameters
are that either the sensitivity of the output to changes in that parameter
-are small, as indicated by a relatively small diagonal element in the
information matrix, or that there is a correlation, with respect to the
sensitivity, between two or more of the parameters being identified.
Such a situation would be indicated by an off-diagonal element of the
normalized information matrix being close to +1. 1If this were the case
the correlated parameters could not be individually identified.
Both these problems existed with the M2/F3 data.

One technique which has been used for treating both these problems
is to fix one or more of a set of parameters that are correlated.
The results of the identification run with fixed parameters indicated
(1) the convergence of the algorithm to the final set of parameters
estimates 1s more rapid and monotonic than when all the parameters
are being identified, and (11), the final fit to the observed data
is degraded to a certain degree. This latter characteristic is due
to the fact that the number of degrees of freedom (equal to the number
of parameters to be identified) for fitting the observed data has been
reduced. In comparing the value of the likelihood function or cost for
two cases with different numbers of parameters being identified (measure-
ment noise covariance R being identified in both cases) the comparison

should be made between a corrected cost, given by

£(N,k) 2n [R|
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where N is the number of data points, and k is the number of parameters
being identified and f£(N,k) is a monotonically increasing function of k
which depends upon the objective of identification. For certain types of
systems, Akaike (Ref. 38) has shown that the one-step ahead final prediction

error using the identified model is given by

J=N=k 2n |R]
N+

A plot of J vs k for a typical model is shown in Fig. 5.18. The important
thing to note is that the predictive qualities of a model do not improve
monotonically with the number of parameters, even though the fit error

decreases monotonically with the number of parameters

It was indicated earlier that there was very little variation in
the rudder during the M2/F3 flight, which would make identification of
the dr derivatives very difficult. 1In fact, the identified values of
the L6 and NG derivatives with the three state model were physically
unreasghable, géing opposite in sign from the wind tunnel values. The
first Processing of the M2/F3 data in this set of runs was therefore
made with the rudder derivatives fixed at the wind tunnel values, with
measurement noise biases being included in theunknown parameter set.
The results indicated a strong correlation between Lp and Nr and
almost all the other Parameters, and a fairly poor fit to the data.
Fixing the same parameters but including a priori weighting did not

improve the performance.

The second Processing of the data in this series included fixed

Lp and Nr derivatives as well as fixed L and Né . The results

8
r r
showed only a slight improvement over the previous Processing, and a

strong correlation still existed between Lr and Lp; Np and NB.and
H
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