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ABSTRACT

Gravitational-wave observations can be powerful tools in the

testing of relativistic theories of gravity. Future experiments

should be designed to search for six different types of polariza-

tion, and for anomalies in the propagation speed of the waves:
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outlines the nature and implications of such measurements.
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Several viable gravitation theories now exist that differ radically

when describing strong gravitational fields, but that are identical to each

other and to general relativity in the "post-Newtonian limit." During the

next twenty years, one will probably not be able to distinguish these

theories from general relativity or from each other by means of "solar-

system experiments" (gravitational redshift, perihelion shift, light deflec-

tion, time delay, gyroscope precession, lunar-laser ranging, gravimetry,

Earth rotation, ...). However, gravitational-wave experiments offer hope:

These theories differ in their predictions of (i) propagation speed, and

(ii) polarization properties of gravitational waves.

Propagation speed: Some of the competing theories
1 -

predict the same

propagation speed for gravitational waves (Cg) as for light (Cem). But

others 
5
predict a difference that, in weak gravitational fields, is typic-

ally

(cg- Cem)/c (1/c2 ) X INewtonian potential|

10 -, for waves travelling in our region of the Galaxy or in the field of

the Virgo cluster. An experimental limit of S 10
-
8 would disprove most such

theories and would stringently constrain future theory-building. Perhaps the

most promising way to obtain such a limit is by comparing arrival times for

gravitational waves and for light that come from the onset of a supernova,

or from some other discrete event. If current experimental efforts continue

unabated, by 1980 one may detect gravitational-wave bursts from supernovae

in the Virgo cluster (- 3 supernovae per year). Then a limit of

Ic - c /c < 10-9 x (time lag precision)/(l week)
g em

will be possible.

Polarization: All of the currently viable theories fall into a class

called "metric theories of gravity." Recently we have completed an
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analysis of the polarization properties of the most general weak, plane,

null gravitational wave permitted by any metric theory. (Details will be

published elsewhere.8 Our considerations also apply to waves which are

approximately, rather than exactly, null.) We find that the most general

wave is composed of six modes of polarization (general relativity has only

two), as follows.

Use coordinates txyz. Let the wave propagate in the +z direction.

The wave is characterized by six amplitudes which depend only on "retarded

time" u, where u - t- z/c. Our analysis describes these amplitudes by two

real functions Y2 (u), ¢2 2
(u) and the real and imaginary parts of two com-

plex functions y3 (u), '
4
(u). These functions are related to those components

9
of the Riemann tensor which determine the action of the wave on a detector

by

1
2 6 zozo

1
3 2 ( Rxozo + i Ryozo)

4 = R yoo - Rxoxo 
+
2i Rxoyo

22 = (Roxo + Ryoyo)

Figure 1 shows the action of each mode on a sphere of test bodies. Y4

and 022 are purely transverse, T2 is purely longitudinal, and Y3 is mixed.

These waves can be classified in a Lorentz-invariant manner according

to the vanishing or nonvanishing of certain of the amplitudes. Imagine

many observers in different Lorentz frames, some moving with respect to each

other, but all measuring the same 4-momentum of the wave. The amplitudes

transform between observers in a complicated way [cf. Eq. (1) below] but the

waves fall into these invariant classes:
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Class II6. Y2 0. All observers in such Lorentz frames measure a non-

zero amplitude in the 2 mode, and agree on the value of this amplitude.

(But they will generally disagree about the presence or absence and ampli-

tude of all other modes.)

Class III
5.

12 5 0 T ¶3. All observers agree on the absence of 72 and

the presence of Y3. (But they generally disagree about the presence or

absence of y4 and 022 )

Class N3 . 2 0 Si 04 - ° T 22 All observers agree about the

presence or absence of all modes.

Class N2 . `2 3 ° 3; \4 ° = 22- All observers agree.

Class 2 90 ° 93; 4 = ° T O22- All observers agree.

Class II
6

is the most general; as one demands that successive amplitudes

vanish identically, one descends to less and less general classes. The class

of the most general permitted wave in some currently viable metric theories

is: General relativity, N2 ; Dicke-Brans-Jordan, N3 ; Will-Nordtvedt, III$;

1J4 5
Ni's new theory, II6; and Lightman-Lee, II

6
. All these but Dicke-Brans-

Jordan have the same post-Newtonian limit as general relativity, for a

reasonable choice of cosmological model.

We see that measuring the polarization of gravitational waves provides

a sharp experimental test of theories of gravity. The class of the "correct"

theory is at least as general as that of any observed wave. The observation

of a wave more general than N2 would contradict general relativity but would

2-5 10
be consistent with other viable theories. Weber has initiated such

experiments by searching for the 022 mode, with negative results.

To test theories, an experimenter musk classify the waves that he

detects. If he knows the direction of a wave a priori (e.g., from a partic-

ular supernova), he can directly extract the amplitude of each mode from his
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data and determine the class. If he does not know the direction, he cannot

extract the amplitudes or determine the direction without applying some

further assumption to his data (e.g., that the wave is no more general than

N3 and is therefore purely transverse). But he can usually say something

definite about the class of the wave:

(i) If the driving forces in his detector are not in any one plane,

the wave is II6 or III
5
.

(ii) If the driving forces are in a plane and are "pure monopole"

[as in Fig. l(c)], the wave is not N2.

(iii) If the driving forces are in a plane and are "pure quadrupole"

[as in Fig. l(a)], the wave is not 01.

(iv) Otherwise the wave is either II6, III5, or N3.

We now sketch the arguments that lead to these results about polar-

ization of gravitational waves in metric theories. Consider a weak, plane,

null wave described by a linearized Riemann tensor, R (u), with

Vu. Vu = 0. Work in an approximately constant quasi-orthonormal null

tetrad1 1 (k, 2, m, m), where k = vu. The Bianchi identities imply that

there are six functionally independent real components of the Riemann

tensor; take them, in the notation of Newman and Penrose, to be j2', T 3

12,, of Loren tafa
4' 022' as above. Consider the "little group " of Lorentz transforma-

tions of the tetrad which fix k: k' = k, m' = ei'(m+a k), £' = £+am

+ am +aYak, where a is complex and cp is a real phase. The action of E(2)

on the Riemann tensor of a wave is

4



~2 = 2

3'=e-ie((3 + 3 2 )

Y4' = e-2 P(4 + 4 a3 + 
2

Y2 )

022 = 22 + 2 ac53 + 2 a 3 + 6aaT 2.

The Lorentz-invariant classes of waves that are defined above correspond

precisely to the different representations of E(2) that can arise through

Eqs. (1).

The helicity (spin) decomposition of a wave is Lorentz-invariant only

for classes N3 , N
2
, and 01. Theories in classes N3 , N2, and 01 provide a

unitary representation of E(2) which is a direct sum of I-dimensional

12-14
massless particle representations, containing at most spins 0, ± 2.

Theories in classes II6 and III5 provide a reducible representation of E(2)

which is not completely reducible and is therefore nonunitaryl ; it is

likely that such theories cannot be quantized. No other representation of

E(2) (such as one with "continuous spin 13") can occur.

We are grateful to Dr. Kip S. Thorne for helpful suggestions and

comments on presentation.
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FIGURE CAPTION

The six polarization modes of a weak, plane, null gravitational

wave permitted in the generic metric theory of gravity. Shown

is the displacement that each mode induces on a sphere of test

particles. The wave is propagating in the +z direction (arrow

at upper right) and has time dependence cos wt. The solid line

is a snapshot at wt = 0, the broken line one at wt = T. There

is no displacement perpendicular to the plane of the figure.
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