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and Kelley [ 3 J . However, these papers were not concerned with

promoting the basic understanding of the traction between elastohydro-

dynamic contacts.

Crook [ 4 J used two kinds of rolling disk machines in measuring

the friction in a line contact as a function of sliding speed. In

the region of small sliding speeds, he used the four-disk machine, a

center disk surrounded by three equally spaced outer disks, shown in

Figure 1.1. Thie center disk is free-floating and the measured torque

does not contain any. extraneous torque from the supporting bearings.

For this reason,the four-disk machine gives very accurate frictional

torque measurements at small sliding speeds. .The four-disk machine

is not suitable in the region of high slips, however, since it cannot

maintain a stable sliding speed. For high sliding speeds, Crook used

the two-disk machine shown in Figure 1.2, where the rotations of both

disks are controlled by variable speed motors. Thus, Crook was able

to measure the friction characteristics throughout the entire range

of sliding speeds, using the four-disk machine in the low slip region

and the two-disk machine in the high sliding speed region.

Crook found a profound influence of rolling speed upon the

frictional torque in the low slip region. In this region, the slope

of the traction versus slip curve is equal to the "effective viscosity"

divided by the oil film thickness. Therefore, the effective viscosity

may be evaluated by measuring the slope of the traction curve and

calculating the oil film thickness from existing elastohydrodynamic

theory. If the thermal effects and the non-Newtonian effects of the

lubricant were both absent in this region, the effective viscosity

would not be a function of rolling speed. However, this condition was

3



(a)

Figure 1.1. Crook's four-disk machine. (a) Principle, (b) construction
(diagrammatic). A to D, disks; E,< aerostatic thrust;
F, gear train; G, band brake. Figure from Crook [ 4 J .



Figure 1.2. Crook's two-disk machine. A and B disks; C and D
swinging arms; E axle; F and G loading cables; H spring
beam; I dial gauge. Figure from Crook [ 4 ] .



not found in Crook's experimental results. On the contrary, he found

a marked influence of the rolling speed on the effective viscosity of

the lubricant that does not appear to be due to thermal effects only.

Crook speculated that it was the viscoelastic effect of the lubricant

which prevented it from reaching the static viscosity in the short

time interval as it passes through the contact zone.

Crook was able to extend the friction data in the high slip

region, with his two-disk machine, for loads ranging from 7.5 to 20 x 10

2
dynes/cm and rolling speeds from 400 cm/sec to 1200 cm/sec. All the

friction curves show the same basic trend which is characterized by

an ascending portion at 'small sliding speeds and a descending friction

at high sliding' speeds. An increase in load does not change the basic

characteristics of the friction curve, but does increase the level of the

friction force. Similarly, Crook found that an increase in the rolling

speed decreases the friction level.

Crook also attempted to predict the friction analytically by a

simplified thermal friction theory based on the following four as-

sumptions: the film thickness within the contact zone is uniform;

the pressure distribution in the contact region is Hertzian; the heat

carried away by the lubricant due to convection may be neglected; and

the temperature rise on the surface of the disk may also be neglected.

Using this simplified theory for a Newtonian lubricant, Crook was able

to calculate the coefficient of friction or the effective viscosity

as a function of sliding s.peed. However, he could not predict the

sharp reduction of the effective viscosity at small sliding speeds.

He concluded that the friction force at small sliding speeds cannot

be accurately predicted by considering the thermal effects only.



Cheng [ 5 ] employed his full elastohydrodynamic theory in

calculating the friction for the conditions corresponding to those

used in Crook's experiments. The temperature calculations are based

on the finite difference solution of the energy equation and are free

from all the assumptions made earlier by Crook. It is seen in Figure

1.3 that even with this refined thermal analysis there still exists a

large discrepancy in the low slip region. This strengthens Crook's

argument that the thermal effects alone cannot account for the sharp

reduction of effective viscosity in the low slip region.

Bell,'Kannel and Allen [ 6 ] developed an approximate analysis

to predict the temperature rise in the lubricant film at low sliding

speeds. Their analysis included the heat due to convection and the

heat generation due to the compression of the lubricant. They also

concluded that the temperature effects are too small to account for

the loss of effective viscosity at low sliding speeds. In addition

to the thermal theory, they developed a non-Newtonian friction theory

using a rheological model proposed by Ree and Eyring [ 7 ] . The

results of this analysis indicate that drastic reductions of friction

can exist if the lubricant viscosity is shear rate-dependent according

to Ree-Eyring. However, in all their calculated data, the friction

force was found to be dependent upon 1/h as the rolling speed is varied,

whereas all the experimental data gathered thus far has shown the

proportionality to be far greater than 1/h and in most cases more nearly

2
proportional to 1/h . Thus, the inclusion of the Ree-Eyring model

alone in the friction analysis would not be able to predict a suf-

ficient reduction of friction at low rolling speeds.

Smith [ 8 J employed the rolling contact machine shown in Figure 1.4
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Figure 1.4. Smith's disk machine.

a Cylindrical roller d Pivots
b Spherical roller e Motor
c-Bearings f Normal load

Figure from Smith [ 10 j .

g Strain gauge dynamometer



to measure the friction between two rollers whose axes are skewed at

an arbitrary angle. With this skewed arrangement, he was able to

measure the friction force due to the sliding velocity component. The

resulting friction versus sliding speed curves show trends similar to

those observed by Crook. Smith divided these curves into several

regions. He believed a Newtonian isothermal friction theory is ap-

plicable in the region where the friction varies proportionally with

the sliding speed. In the ascending portion of the friction curves,

where the friction force increases with sliding speed in a non-linear

fashion, Smith believed that the non-linearity is due to the non-

Newtonian behavior of the lubricant. He postulated that there is also

a region in which a shear plane exists at the center of the lubricant

film, such that the lubricant behaves like two solid layers sliding

over each other at the shear plane. He further stated that the re-

sistance to sliding at the shear plane is dependent upon the shear

plane temperature and the hydrostatic stress in the lubricant. Finally,

he defined a region where seizure would take place.

A more comprehensive study of friction covering a wide range of

loads, rolling speeds and sliding speeds was carried but more recently

by Johnson and Cameron [ 11 J with a two-disk machine. The maximum

Hertzian pressure was varied from 62,000 psi to 243,000 psi; the rolling

speed was varied from 8 in/sec to 260 in/sec; and the oil inlet tem-

perature was varied from 30 C to 90 C. The most striking feature

of Johnson and Cameron's data is that there exists a ceiling to all

the experimental traction coefficients which cannot be exceeded no

matter how the load and the rolling speed are varied. They also took

extensive data in the low slip region, and from the slope of the

10



traction versus slip curve were able to calculate the effective vis-

cosity as a function of rolling speed. Johnson and Cameron furnished

more convincing evidence that the thermal ef f ects.r a lone cannot account

for the experimentally measured friction, and that a Smith-type limiting

shear stress is dependent only on the shear plane temperature .and

pressure.

Jeffris and Johnson [12 ] investigated the effect of surface

roughness upon friction between two lubricated rollers. They concluded

that the measured coefficient of friction showed remarkably little

variation throughout the whole range of experimental conditions for

Hertzian pressures in excess of 175 kpsi. At lower Hertzian pressures,

the surface roughness effect can be substantial.

A rather interesting qualitative explanation of the velocity,

rate of shear, viscosity and temperature variations across the film

thickness of an elastohydrodynamic contact was offered by Flint [ 13 J

He postulated that at the entrance of the contact zone, the rate of

shear, viscosity and temperature are constant across the film thick-

ness and the velocity profile is linear. As the thermal effects take

over, the temperature at the mid-film increases and the viscosity is

at a minimum at this position. This thermal effect causes the velocity

profile to distort into a cusp such that the rate of shear becomes a

maximum at the mid-film. A ceiling curve similar to that of Johnson

and Cameron's was also found in Flint's experimental friction data.

Dowson and Holmes [ 14 ] modified Crook's four-disk machine

and investigated the effect of surface quality upon the traction char-

acteristics of rolling and sliding contacts. They showed that the

friction initially decreases with surface roughness } reaches a minimum,

and then increases steadily with surface roughness. Unlike Jefferis

11



and Johnson's conclusion on the effect of surface roughness on friction,

Dowson and Holmes found that the influence of surface quality is quite

pronounced. However, these two results may not be in direct contra-

diction since the loads used by Dowson and Holmes were much smaller

than those used in Jefferis and Johnson's experiments.

Recently, Dyson £ 15 j has made a pioneering study analyzing

the fractional force in an elastohydrodynamic contact by considering

the lubricant as a viscoelastic liquid. He simplified his analysis

by dividing the friction versus sliding speed curve into three regions,

as shown in Figure 1.5: the linear region, where the frictional force

varies linearly with the sliding speed; the non-linear ascending region,

where the slope of the friction curve reduces rapidly as the sliding

speed increases; and the thermal region, where the frictional force

decreases with the sliding speed. The results of this study are most

encouraging and have inspired the author's investigation of the rhe-

ological effects in an elastohydrodynamic lubricated contact.

The friction analysis presented in this thesis describes the

Theological behavior of the lubricant in an elastohydrodynamic concen-

trated contact in terms of two viscoelastic models. These models

represent the separate effects of non-Newtonian behavior and the

transient response of the fluid.

A unified description of the non-Newtonian shear rate dependence

of the viscosity is presented in Chapter II as a new hyperbolic liquid

model. The hyperbolic model is based upon a shear viscoelastic liquid

model with the addition of a limiting value of shear stress. The limit-

ing shear stress is related to the high frequency limiting shear modulus

12
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of the lubricant G , as proposed by Dyson [ 15 ] .

The transient response of the viscosity, following the rapid

pressure rise encountered in the contact, is described in Chapter III

by a compressional viscoelastic model of the volume response of a

liquid to an applied pressure step. Kovacs [ 16 J first investigated

this non-linear model for the volume creep of polymer melts.

• The governing equations, the fluid property functions and the

technique used to calculate the tractive force transmitted during

sliding between the two surfaces of a rolling disk machine are developed

in Chapter IV. The experimental investigation is detailed in Chapter V

and the analytical and experimental results are discussed and corre-

lated in Chapter VI.

14



CHAPTER II

NON-LINEAR SHEAR STRESS-STRAIN RELATION

A friction analysis based upon a Newtonian lubricant having a

viscosity varying with the statically measured pressure and tempera-

ture can yield a frictional coefficient far greater than those measured.

There is little doubt that the fluid ceases to be Newtonian. Thus, a

realistic friction analysis must consider a non-linear relationship

between shear stress and shear rate.

A major difficulty in predicting the friction for elastohydro-

dynamic lubrication is the lack of data available for the physical

properties of the lubricant at the extreme values of pressure, tempera-

ture and shear rate encountered in the concentrated contact. It is

very difficult to make direct measurements of shear stress versus

shear rate in continuous shear under EHD conditions. Therefore, the

physical property data must come from other fields. One source is

the study of supercooled liquids under oscillatory shear. A corre-

lation between this data and the behavior under conditions of continuous

shear, as well as the restrictions of such a correlation, are discussed

in this chapter. A hyperbolic shear stress-strain function is then

proposed as a useful non-linear model for use under elastohydrodynamic

conditions.

2.1 Shear Viscoelasticity

The phenomenologica1 theory of Viscoelasticity attempts to

describe the mechanical behavior of a material in terms of time-de-

pendent, or frequency-dependent, functions which relate the stress in

15



the material to the deformation. Classical elasticity theory for

solids is based on Hobke's Law which requires the stress to be di-

rectly proportional to the instantaneous strain but independent of the

rate of strain. Classical hydrodynamic theory is based on Newton's

Law. Newton's Law states that the steady-state shear stress in a

liquid is directly proportional to the instantaneous rate of strain

but independent of the strain itself. Many materials closely follow

the behavior specified by these laws. It is often impossible, however,

to characterize a material by either of the two classical types of

behavior. Substances which exhibit both solid-like and liquid-like

properties show viscoelastic behavior. '

The term viscoelastic is used to describe the properties of any

material which is able to store energy in elastic deformation and

dissipate energy as heat. If the strain arid strain rate are kept

sufficient small, so that in a given experiment the ratio of stress

to strain is a function of time only and independent of the stress

level, the material shows linear viscoelastic behavior. Most of the

physical properties of viscoelastic materials have been determined

by oscillatory shear experiments. Linear viscoelastic behavior is

easily obtained in these experiments since the amplitude of deform-

ation is extremely small. '

The work of Gross [ 17 ] and Alfrey [ 18 ] are examples of the

large literature concerning the mathematical aspects of the phenotn-

enological theory of linear viscoelasticity. It is more appropriate

here to develop the subject in terms of simple mechanical models.

The model approach is easier to understand and more closelyvrelated

to the physical behavior of the materials.

16



2.2 Viscoelastic Functions

In most of the high frequency techniques used for measuring the

viscoelastic properties of liquids, a plane shear wave is propagated .

through the liquid. The shear-stress T and the shear strain y are

related by a complex quantity, the shear modulus

G* - I - ' - (2.1)
Y

In a Hookean solid,the shear modulus is a real quantity since

the stress varies in phase with the strain. In a Newtonian liquid,

the stress is 90° out of phase with the strain. In the latter case,

the shear modulus is an imaginary quantity and is determined from

Newton's Law. The strain rate is represented by

Y = ^(Yoe
1<1)t) = icuY . (2.2)

and therefore the stress is calculated as • . • ,

T = TY = i^Yri •' (2.3)

The shear modulus is now calculated by its definition, equation (2.1).

G* = lam (2-4)

For a viscoelastic' material, the stress and strain differ by a 'phase

angle between 0 and 90 . Therefore, the frequency-dependent shear

modulus is a complex quantity with both real and imaginary components,

as represented by

G*(ico) = G'(ou)+ i G"(cu) (2.5)

The shear modulus will not have the simple form given in equa-

tion (2.4) for a Newtonian liquid except at low frequencies where

sufficient time is available during each stress cycle for viscous flow

to occur. At higher frequencies, the time required for molecular

translation becomes comparable with the period of the stress cycle and

17



the liquid exhibits a shear rigidity. At sufficiently high frequencies,

the behavior will be purely elastic. There is no molecular transition

during each cycle and, consequently, the energy loss due to viscous

flow is negligible. Under these conditions, the liquid behaves like

a glass. >

The real component of the complex modulus G', the ratio of the

stress in phase with the strain to the strain, is called the storage

modulus because of its association with the storage and release of

elastic energy. The imaginary component G", the ratio of the stress

90 out of phase with the strain to the strain, is called the loss

modulus because of its association with the dissipation of energy as

heat by viscous flow.

The modulus components for a liquid have the following limits.

At low frequencies where the behavior is purely viscous, or Newtonian:

Lira G'(cu) = 0 (2.6)
CD -* 0

Lim G"(cu) = „,-[) (2.7)
u) _ 0

At high frequencies where the behavior is purely elastic:

Lira G'(cu) = G (2.8)
CO

10 _ 05

Lim G"(u)) = 0 (2.9)
(1) -» 00

where G is the limiting elastic modulus.
00

A
The shear mechanical impedance Z , defined as the ratio of shear

stress to particle velocity, is the quantity most easily measured in

the oscillatory experiments. It is mathematically related to the

shear modulus by the equations governing shear wave propagation through

a liquid medium. Barlow and Lamb { 19 ] show this relationship to be

18



(Z*)2 = pG*(lo>) (2.10)

where p is the density of the liquid.

*
For a Newtonian liquid, where G is given by equation (2.4),

the real and imaginary components of the shear mechanical impedance

are given by

Z" = Z' + i Z" = (1 + i) J^- (2.11)

Equation (2.10) allows the components of the shear modulus to

be calculated from the experimentally measured components of the shear

mechanical impedance as follows:

P

7 7 1 7 "
G"(OB) = 2 Z ^ (2.13)

P

The liquid properties may be alternatively represented by a

complex viscosity defined by

. . • *

n*(ia>) = T I ' ( U > ) - in"(a)) = ° ^ (2.14)

The definition requires

(JO

and

•n'Xcu) = G'(oJ^ (2.16)
U)

The low frequency limit of the dynamic viscosity T)' is t) , the steady

flow Newtonian viscosity.

*
The complex compliance of J is the inverse of the complex

modulus.

J*<1«>) = J'(cu) - i J"(«)) = ^ 1 (2.17)"

19



It follows that

J'=- 2 F (2-18)
3') + (G")2]

and

J" 2
+ (G") j

The real component J' is the storage compliance and J" is the loss

compliance.

*
The inverse of the complex viscosity is the complex fluidity p, .

M*(iu>) = n,'(u>) + V((i)) = -IT - (2.20)
TJ

The definitions and interrelations of the viscoelastic functions

are summarized in Table 2.1.

2.3 The Maxwell Model

It is often convenient to visualize the behavior of a complex

material in terms of models. The basic mechanical model elements are

a coiled spring to represent Hookean elastic deformation and a dashpot

to represent Newtonian viscous flow. Extension of the elements is

analogous to shear strain and the associated force is analogous to the

shear stress.

The combination of a spring in series with a dashpot was studied

by Maxwell [ 20 J . This simple model, shown in Figure 2.1, exhibits

both viscous and elastic behavior. Viscous flow in the dashpot with

negligible extension of the spring takes place if the extension rate

is small. If the model is rapidly extended and immediately released,

the deformation is purely elastic since sufficient time is not avail-

able for flow to occur in the dashpot. Between these extremes, the

20



Table 2.1'

VISCOELASTIC FUNCTIONS IN OSCILLATORY SHEAR

T = shear stress acting in x-direction on x-z plane

| = particle displacement in x-direction

Y = o?/Sy = snea^ strain
•

= particle velocity in x-direction

= dt/dy = shear rate, rate of strain

u> = angular frequency

DEFINITIONS; - ' . ,

Complex shear modulus: G (iu>) = r/Y = G ' (u>) + i G"(cu)

Complex mechanical impedance: Z (iou) = -T/? = Z'Gju) + 1 Z"(tu)

Complex viscosity: r\ (ico) = T/Y = lV(<u) - i n"(u))
"3t

Complex shear compliance: J (i«)) = /f = J'(to) - i J"

* v
Complex fluidity: u. (iu>) = /T = n'(u)) + i pi,"

INTERRELATIONS;

-r1
J (iu))

21



behavior will be a combination of both the elastic and the viscous modes,

•n

Figure 2.1. The Maxwell element. The spring corresponds to a shear
modulus G and the dashpot corresponds to a viscosity r\ .

The basic equations of motion for the components of the model are:

T - T1YN (2.21)

for the dashpot; and

T » GYR (2.22)

for the spring, where

T = the applied stress

YN = the rate of extension of the dashpot

YH
 = tne extension of the spring

The rate of extension of the spring is YH = T/^
 anc* the total rate of

extension is then

Y = YN + YH
 = :L + | (2.23)

or T + g T = TlY (2.24)

Equation (2.24) is the constitutive equation of the Maxwell element.

The ratio r\/G has the dimensions of time and is called the Maxwell

relation time \ .

X =g (2.25)

22



For sinusoidal variations of stress and strain of frequency oo ,

equation (2.24) becomes

T + iouXr = woriY (2.26)

The complex shear modulus is evaluated from equation (2.1) as

(2-27>
Rationalizing this expression yields

G*(iu)) = l (2.28)

and substituting for r) from equation (2.25) gives the final form of

the complex shear modulus

2 2
r* f • \ r> (u X + iqiX /0G (KU) = G • — - 2 2 (2.

1 + U) X

The storage modulus is

\2

G'(co) = G • m * (2.30)
1 + co X

which reduces to G'(u)) = G in the limit as cu -• » ; but this limiting

value has been defined as G . Thus, the spring in the Maxwell element
00

corresponds to the instantaneous or limiting high frequency shear

modulus of a liquid. The loss modulus is given by

= G
1 + to X

which in the limit as CD -* 0 becomes G"(cu) = G • ouX = urn • The dashpot
00

of the Maxwell element therefore corresponds to the steady flow vis-

cosity of a liquid. In normalized form, the variation with frequency

of the modulus components and the dynamic viscosity is given by equa-

tions (2.32), (2.33) and (2.34).

f\ rt

G'(cu) =
G , 2 2
« 1 + 10 X

23



.
2 2

» 1 + cu X.

Hi = £liffil = _ L_ (
T) cut] ... 2 21 ' 1 + ID \

*
The complex compliance of J for the Maxwell element is given by the

simple expression ' . '

! I- (2.35)
HJUTI G

OO

The frequency variation of the modulus components and the dynamic

viscosity for the Maxwell element are shown in Figure 2.2.

Gruber and Litovitz [ 21 ] have postulated that a Maxwell element

can predict the behavior of certain liquids. The viscosity of these

liquids is governed primarily by the energy required for a molecule to

surmount the potential barrier due to interaction with its nearest

neighbors, and jump from one site in the liquid to another. The steady

flow viscosity of such a liquid is given by the Arrhenius equation:

In n = A + B/T (2.36)

where T is the absolute temperature.

For liquids which have viscosities above about 0.1 poise, however,

the viscosity is primarily a function of the relative availability of

free volume as described by Barlow, Lamb and Matheson f 22 ] . There-

fore, the Arrhenius viscosity-temperature relation and the Maxwell

description of viscoelastic relaxation are not adequate governing equa-

tions. The lubricant in an EHD concentrated contact is in a state

where the viscosity is limited by available free volume, and, therefore,

another viscoelastic liquid model proposed for such liquids by Barlow,

Erginsav and Lamb f 23 ] must be investigated.
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2.4 The B. E. L. Liquid Model

Barlow, Lamb and Matheson [ 22 ]have shown that liquids having

viscosities above about 0.1 poise obey the Doolittle free-volume F 24 j

equation:
v

In n = A+ B -2 (2.37)
Vf

where r] = viscosity

v = occupied volume

v_ = free volume

A,B = constants of a given liquid

The specific volume v = v + v,. and the density is a linear function

of temperature. Therefore, equation (2.37) becomes

In n = A' + B«/(T-T ) (2.38)

where r\ = viscosity at temperature T

T = absolute temperature

T = reference temperature, at which there would be

no free volume

A*,BI = constants for a given liquid

Barlow, Lamb, Matheson, Padmini and Richter [" 25 J and Barlow,

Erginsav and Lamb f 23 ] have demonstrated that the viscoelastic

properties for a large number and wide variety of liquids, which obey

the Doolittle viscosity-temperature relation, can be represented by

JL. !
two standard curves: Z'/(pG )2 and Z"/(pG )2 versus logir.(uWG ).

00 00 iU CO

Figure 2.3 shows that the experimental results for many liquids are

indistinguishable when plotted in this manner. This suggests a simple

underlying phenomenological explanation. Barlow, Erginsav and Lamb

propose a new liquid model consisting of the parallel combination of
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the shear mechanical impedances for a Newtonian liquid and a Hookean

solid. The shear mechanical impedances result from equations (2.8),

(2.10) and (2.11). Thus,

ZN= (1+ i) (2.39)

for a Newtonian liquid and

ZH = (pCJ* (2.40)

for a Hookean solid.

Accordingly, the components of the shear mechanical impedance are

given by:

(pGaj)
2(u)Tl/2Geo)

2 Pi + (Zoffi/G^fM

+ (iun/2G )2~j2 + (o^/ZG )
, •. -. °° J °>

(pG
Z" = - = - --° — " • (2.42)'

* *
The components of the shear modulus G ,and the compliance J

for the B. E. L. model are given by:

4G (aff)/2G. )3/2 ("l 4- (cur|/2G )2
G« = - 5 - ! - 2 - ^ - • J . (2.43)

{ [l + ((^/ZG^)2]2 + (urn/2Gco)}
2

2G (con/̂ G ) l +((OT}/2G
G" = - - - ' - ̂-̂ r - ' - ̂- - (2.44)

j, =_ + - - (2.45)

J " = Z T + l r (2.46)
jv*
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Finally, the dynamic viscosity is given by

I- (u)Ti/2G )£]

-+ («)Ti/2G )2p + (urn/2G
-— ~-J

The variations of the storage modulus, the loss modulus and the

dynamic viscosity with frequency, calculated according to equations

(2.43), (2.44) and (2.47), are graphically displayed in Figure 2.4.

As compared with the result's for a Maxwell element, displayed in
\

Figure 2.2, the B. E. L. liquid model has a longer relaxation time.

This is consistent with the results of previous correlations based

upon distributions of Maxwell elements.

The curves plotted through the data points of Figure 2.3 are

calculated according to the B. E. L. liquid model from equations (2.41)

and (2.42). There is excellent agreement with the experimental results!

2.5 Relationship of Continuous and Oscillatory Shear

Dyson [ ; -15 ] has had considerable success in correlating
r

. the results of>elastohydrodynamic lubrication experiments with the

properties of fluids experimentally determined in oscillatory shear.

Dyson bases his comparison on a simplification of Oldroyd's [~ 39 ]

'theory of the steady motion of an idealized liquid.

The analysis postulates that a simple continuous shear deformation

includes a rotation of the liquid elements. It is therefore necessary

to refer all equations that describe its -viscoe.lastic behavior in

continuous shear to reference axes which rotate with the element of,

fluid. The rotating axes yield additional time derivative terms in

the equation of motion of the fluid and thus additional deformations.

These equations are solved subject to the velocity boundary conditions,

29



0)

M
O

to
O
u
CO

U
1-1
e

0)

4J

•oc
CO

CO
4J
C
0)
coa,
eou
CO

i-l

•3
i
<u

c
o •
•H .-I
4J CO
CO *O

•H O
>-l £
CO
> -d

•H

O D*
C i-l
CO .-I

cu hJ
M-l •

cu

fi«

CM

i-l

t>0

30



to determine the stresses in the fluid. Finally, the normal stresses

are described with reference to the fixed axes.

Dyson's [ 27] simplification of the_PJ.droyd_parameters permits

the normal stresses for a~fluid with relaxation time X = n/G . in
1 09 '

simple laminar shear, to be expressed in terms of one parameter K:

2

K2

1

v2nVJx. u A.

I + K
2D2X2

KDX
K 1 + K2D2X2

Pyy ° Pzz ' ° . <2-50>

where P = normal stresses

G = limiting shear modulus
00

K = parameter of the an£ lysis

X = Maxwell relaxation time

D = shear rate

x = direction of flow

y = direction of velocity gradient

z = direction normal to both x and y

Equations (2.32) and (2.33), repeated below, have been derived

for a Maxwell fluid subject to oscillatory shear.

f- m\2 . (2.52)
oo 1 -f u) A.

Dyson observed, as a result of the comparison of equations (2.48)

and (2.49) with (2.51) and (2.52), that the shear stress P is equal
xy
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to 1/K of .the,.value of G" at an angular frequency co = ,KD. Furthermorej
f\

one half of the normal stress difference..i(P -P ). should be 1/K
• ' 2 xx yy

of the value of G.1 at an angular frequency <u = KD. A comparison of

the dynamic viscosity for.continuous .shear ...

' • • " • - (2<53)

1 + K2D2X2

with equation (2.34), the dynamic viscosity in oscillatory! shear,

G
II _

— _ — •

1 + ID X

shows the variation with shear rate D is the same as with angular

frequency m, with w replaced by KD.

The hypothesis above is checked against the results of Russel ;

[ 28 ] in Figure 2.5. The variation of apparent Viscosity is shown

for the same three fluids in both oscillatory and continuous shear.

Note that the two curves begin to diverge at an abscissa value between

1 and 10. This corresponds to the conditions where G" reaches its

maximum. • . . • -

Whatever model is employed to represent the viscoelastic proper-

ties of the liquid, its application to continuous shear must"be made

in the rotating coordinate system. Therefore, the generalization of

this analysis is stated as . • • • • • =

T(D) =̂ ^ (2.55)

Dyson's application of equation (2.55) to the B. E. L. liquid model

is compared with the experimental results of Smith [. "29] at low shear

rates in Figure 2.6. Dyson [ 15..] reports that a constant value of

K = 7.5 shows good correlation over all Smith's experimenta-1 conditions.
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Figure 2.5. Comparison of variation of apparent viscosity in oscillatory
and in continuous shear.

oscillatory shear, ?//?/„ against ?;0«/.E0

continuous shear," ?/»/„ against 'Vo-D/^o

AFGO/H AFGO/L SLW.10
x o +
© © ©
0 Q ' EG

E is a parameter of the order of G . Curve from Dyson I" 27 ] .
O . . oo
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?/0 w or ?/0A'Z> (dyn/cm2)

Figure 2.6

Comparison of results of Barlow & Lamb in oscillatory shear with those of Smith in con-
tinuous shear—mineral oils, steel surfaces.

Oscillatory shear C" against ?/0w results of Barlow & Larnb [19 J : , LVI mineral oil;
, MYI mineral oil; , HVI mineral oil.

Continuous shear AT against ?/0A'Z> results of Smith [29"] : (figure number in original re-
ference) :

. fig- 8 fig. 9 fig. 10
x 23 CC V 23 °C Q 25 °C
© 100 CC + 100 CC O 100 °C

A 190°C

Curve from Dyson [ 27 ] .
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As a result of equation (2.55), (G /K), and not G will appear
00 00

in the equations of motion. A new limiting shear modulus for con-

tinuous shear is now defined to include the Oldroyd-Dyson"parameter K:

G = (G /K) (2.56)
00 00

2.6 Limiting Shear Stress

The Maxwell or B. E. L. liquid model, when applied to continuous

shear, predicts a shear stress that rises to a maximum and then falls

with increasing shear rate independent of thermal effects. This be-

havior is intuitively doubtful and Dyson [ 27 ] reviews the mathematical

objections. It is suggested that this behavior would give rise to an

unstable flow pattern. The correlation shown in Figure 2.5 suggests

a transition to another mechanism of flow as the shear rate approaches

the value which corresponds to a maximum shear stress. At this shear

rate, the correlation between experimental and predicted values weakens.

As an alternative to the falling portion of the shear stress-

deformation relation, the possibility of a limiting shear stress is

suggested. The limiting shear stress is the maximum stress a fluid

can transmit; an increase in the rate of shear can no longer cause an

increase in the shearing stress. Smith [.29 ] first suggested this

behavior of a fluid analagous to plastic deformation of a solid.

Flint's [ 13 ] results further suggest the existence of a limiting

shear stress in an EHD fluid film. He interpreted the limiting shear

stress to be the result of a discontinuous shear failure. Dyson [ 15•"]

suggested the limiting shear stress be a function of the limiting shear

modulus G . Figure 2.7 shows this results in a good correlation with
00

the experimental data of Johnson and Cameron [ 11 ] .
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Consequently, it is surmised that there are two mechanisms of

flow for a liquid under the conditions of continuous shear. The

material properties of the liquid, as well as the transition between

these two mechanisms_J,of_J low, are continuous. The liquid model" for_

continuous shear.is, therefore, a composite non-linear shear stress-

strain relation. It is comprised of a viscoelastic relation for shear

rates up to the value predicting the maximum shear stress, and a

limiting shear stress equal to this maximum at higher shear rates.

2.7 Hyperbolic Liquid Model ' .

Barlow and Lamb [ 19 ] investigated the viscoelastic relaxation

in three mineral oils of different viscosity index and composition.

The experimental results, shown in Figure 2.8, show slight deviations

from the B. E. L. liquid model. The experimental results are dis-

placed to higher values, of frequency and lower values of the loss

modulus.

To add flexibility in the analysis, a "hyperbolic" shear stress-

strain relation, is used which allows easy changes in the limiting

shear stress or ' the ra te 'of rise to this limit. The relation has the

additional feature of providing a smooth.transition to the flow domi-

nated by a limiting sheaf stress. The model is mathematically repre-

sented by

2 2
1 + a 1 + - c (2.57)

) \Gm

where T = shear stress

G = limiting shear modulus
CD

£_ flH } dimensionless shear rate (2.58)
G °y

00

37



Figure 2.8. Components of the shear modulus calculated from measured
values of Z« and Z": h.v.i.; , m.v.i.;
l.v.i. Curve from Barlow and Lamb [ 19]
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c = limiting shear stress/limiting shear modulus ratio

a «= rise parameter, rate of rise to limiting shear stress

decreases as a increases
\ _ . <—

Four~mode-ls__of. interest, the hyperbolic model for c — .25 and

c - .20, and the Maxwell and B. E. L. - limiting shear models are

illustrated in Figure 2.9.

The hyperbolic liquid model has the following limiting values:

Lim ^- = 0 (2.59)
n -» o G

00

Lim [~ — ^- I • G = T\ (2.60)

00

Lim ^- = c (2.61)
n - » G

00

T. rd T I ... ,,.Lira -TT:— (2.62)
n « LdD r Jil -» oo Goo

For the case of a = 0, equation (2.57) reduces to the true

hyperbola:

c~
G

0= 2— (2.63)
c - -1—

G
CO
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CHAPTER III

TRANSIENT VISCOSITY ,

The maximum pressure in the lubricant film between highly loaded

contacts may be as high as 250,000 psi. The; lubricant film is there-

fore subjected, .to .a. large pressure- transient as it passes through the.

contact, and the equilibrium viscosity at the maximum pressure is .

several orders of magnitude greater than the atmospheric pressure value.

Measurement of the tractional force'between-the twb' contact-

surfaces at low values of slip enables an "effective viscosity"""of

the lubricant to be calculated. At high rolling speeds, this effective

viscosity is found to be lower than the value calculated from the equi-

librium value of the viscosity as a function "of pressure. The effective

viscosity also decreases with increasing rolling speed, in a manner

which is not adequately explained by either viscous hea'tihg of the""lubri-

cant film or by variation of the viscosity as a function of shear rate.

Fein f 30 ] has suggested the failure of the lubricant'viscosity

to respond to the rapid pressure changes encountered in the conta'ct

area could be an explanation for the low values of effective viscosity

which are observed. His analysis shows that under certain conditions

the time! of transit of the lubricant through the contact zone could

be small compared with the time required for the"lubricant to reach

a state of equilibrium following an applied pressure;step. Consequently,

the compression of the lubricant never reaches the'equilibrium state;

corresponding to the peak pressure, and the viscosity has a lowerJvalue

than that measured under equilibrium conditions. An increase in the

rolling speed reduces the residence time of the lubricant in the contact
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zone. This results in an even lower value for the,viscosity attained

by the lubricant, and a consequent decrease in the effective viscosity.

Chapter III is an analysis of the effect of compressional visco-

elasticity on the pressure-induced viscosity changes that occur in

concentrated contact lubrication. The variation of viscosity with

time, following an applied step in pressure, is described by a non-

linear model proposed by Kovacs [ 16] for the volume creep of polymer

melts.

3.1 Compressional Viscoelasticity

The response of a liquid to a rapid change in pressure consists

of an instantaneous volume change, followed by a time-dependent volume

change. The instantaneous change is attributed to the elastic com-

pression of the liquid "lattice", while the time-dependent response

is attributed .to molecular rearrangements.. The instantaneous response

of the liquid, when the experimental time scale is small compared with

the time, required for molecular rearrangements, is characterized by a

bulk modulus K . When the experimental time scale is large compared
00 . • -. " '•

with the molecular rearrangement time, the bulk modulus has a lower

value, the equilibrium value K . This behavior may be represented by

the simple models shown in Figure 3.1.

Model A is widely used when volume relaxation is investigated

as a function of frequency. The overall modulus then rises from a low

frequency.value K to a high frequency limiting value K = K + K_.
O •. oo' o • ^

K is the high frequency value of the real part of the complex re-

laxational modulus, K (j<u) = K'(aj) + i K"(cu). For model A, the total

bulk modulus is given by the expression
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Figure 3.1. Models for compressional viscoelasticity.
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If — If -U If ^ •! \ — If ^- If v xo i\

"̂V

and the relaxation time

n..
_ V / O O \

where 'r\ = volume viscosity

0) = angular frequency

Model'B is more suited to a description of the change in volume

following a sudden increase in pressure, volume creep, since the

instantaneous and time-dependent parts of the response are easily

separated. The response is more simply expressed in terms of the over-

all compressibility, the reciprocal of the bulk modulus, given by••

equation (3.3;) as a function of frequency.

' •' 'il l ' ;/1
 r - ; . (3'3)

K is a modulus associated with molecular rearrangements corresponding

to changes, in the free volume and \ is the retardation time given by

l r\f\f = ?r (3.4)
f Kf

The viscosity rif; is associated with the changes in the .free volume.

The low frequency or equilibrium modulus K is obtained from equation

(3.3) for in = 0. '

_ _

K ' K K£ '
O oo f

K K.
K = " f (3.6)
O K + K.-

oo f

Models A and B describe the same behavior and a comparison of
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equations (3.1) and (3.3) yields the following additional .relations

between the parameters of the two models:

K = K + K (3.7)
oo O f. .

"f
It follows from equations (3.5) and (3.7) that

K K

The behavior of liquids is generally found to be more complex

than that described by these simple models and a combination of several

models, each with different time constant and moduli, is necessary.- •

Alternatively, a continuous distribution of relaxation, or retardation,

times may be used to characterize the liquid behavior. The introduction

of a distributed spectrum causes considerable complication in the

analysis and is not warranted in the present study. Model B of Figure

3.1 will be used to characterize the behavior of the lubricant.

3.2 Viscosity Response to a Pressure Step

The overall change in volume from an initial volume v.. to a

final volume v_ , caused by a pressure change P, is given by the def-

inition of the secant bulk modulus K :
o

••:>,•,, v P , , , . . . , .,. .. :.j
vrv2= — <3

o

The volume change corresponding to the purely elastic deformation

(v..-v.) is given by
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Equation (3.10), with the aid of equations (3.5), (3.10) and (3.11),

may be written as

v P v P
(v.-v.) + (v.-v9) = -L. + -i- (3.12)
1 1 1 f. N N..

00 f

Therefore,

-T-^-r (3vi Kf
Equation (3.13) may be taken as a definition of K .

The time dependence of this volume change is given by the

parallel spring and dashpot combination of model B. The response is

governed by

n, , v.-v
P=-I£+K. -i_ (3.14)

v- dt f v..

Combining equations (3.13) and (3.14) yields

^f dv

where v varies between v. and v_. For small changes in pressure, when

T|, and K can be regarded as constants, equation (3.15) has the solution

v-v2 = (
Vi-v2) exp(-t/Xf) (3.16)

and the total response to the pressure step is

v —v

1 co f

where the retardation time Xf = r\f/f.f.

However, for large pressure changes the parameters « , K andr oo

K, can no longer be regarded as constants. In particular, the vis-

cosity r\f may be expected to change by many orders of magnitude under

the pressures occuring in the contact zone. There is considerable
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evidence from ultrasonic studies of liquids that the volume viscosity

n , and hence r\f , is closely related to the shear viscosity r) and has

the same temperature dependence. Litovitz and Davis [ 3] 3 and

Taskoprulli, Barlow and Lamb f 45 J offer such-evidence for liquids'

including lubricating oils. It is assumed here that -p, has the same

dependence on the free volume as the shear viscosity. Then r\f is

related to the free volume vf by the Doolittle [ 24 ] equation:

In nf = A + B/f (3.18)

v-v
where f = - , fractional free volume (3.19)

o

v = specific occupied volume

A,B = constants

The value of A is characteristic of the liquid; the value of B is

usually close to unity. The occupied volume, a function of pressure,

is assumed to be independent of time and thus is associated with the

instantaneous bulk modulus K . The variation of r\f with pressure is
CO . I

described by the parameter s, defined by

- fi (3-20)- B

where f is the final volume of the fractional free volume, and r\fi t2

is the final value of nf, at pressure P. If no change in the fractional

free volume occurs during the instantaneous compression, the initial

va lue of s is

s, = ln(~) =B)f- -f-l (3.21)
:1 " 2
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where .t), and f are the values of nf and. f at the( initial equilibrium
*1 L

state when P = 0. .The shear viscosity is also described by equations

(3.18) and (3.20), so that.

/T)2\ '
(2.22)

l̂'

where r|, and.-ru are the .initial and final equilibrium values, respectively,

of the shear -viscosity r) . • • •

Following Kovacs [ 16.] , if it is assumed that the occupied

volume v remains constant after the initial compression, the parameter

s is evaluated from its definition: ' -

s = B rTT-TTTTT-2 !̂ ' (3.23)

Therefore, the differential dv is

2(v-v )
dv = - ° ds (3.24)

Equation (3.15) is written in terms of the parameter s with substi-

tutions from equations (3.20) and (3.24):

- 6XPs"S) (v'-O ds =— ? <3-25>

Noting that
; ''' 'sf_ (v»-v ) -

, i i o . ,,
-..... • o

equation (3.25) becomes • • • . . • :

l —i- ds - - (3.27)

where x^ is a retardation time characteristic of the final equilibrium
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state , given by

K = n = n e x p ( S ) (3.28)

The term (sf^/B) in equation (3.27)_i_s typically much less than-uriity,

so that the expression (l-sf_/B) may be expanded to give

ds + exp(-s) ds = - - (3.29)r -. s

as the differential equation describing the time-dependent compression

of the liquid. This may then be integrated from the initial value s.. ';.

at t - =• 0 to an intermediate value s at time t:

f 2 r I tEi(-s-) - Ei(-s) + ^=- exp(-s)-exp(-s ) = •£- (3.30)1 c [_ 1 J • \2

where Ei is the exponential integral. The viscosity at time t is

given by

n = n2 exp(-s) (3.31)

Figure 3.2 shows the variation of viscosity with time predicted

by equation (3.30) for the following parameters: P = 200,000 psi;

T^ = 10"5lbf-sec/in2; r\2 = 10
3lbf-sec/in2; f2 = 0.05; B = 1. These

values are typical of those experienced by a lubricant in the contact

zone of a heavily loaded rolling contact. For values of t of the order

of \_ or less, the viscosity is seen to be significantly less than the

equilibrium value.

3.3 Viscosity Response of a Lubricant to a Pressure Step

To determine whether the behavior described by equation (3.30)

has a significant effect on the properties of: the lubricant, values

of the residence time of the lubricant in the contact and the retardation
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time \2 must be determined. The lubricant in a rolling contact is

subjected to high pressure for a time equal to 2b/U where b is the

half-width of the contact zone and U is the rolling speed. For typical
*\ _ ____ ___ _ ._

values of b = 10" in and U = 100 in/sec, the residence time is of

-4
the order of 10 sec.

The time constant \~ is characteristic of the final equilibrium

state of the liquid. Values of r\f and K for lubricants are not

available, but reasonable estimates may be made from ultrasonic data

on other liquids. The viscosity r)f is related to the volume viscosity

2
•p by equation (3.8), ru = T) (K /K2) . Litovitz and Davis [ 31 ]

report that the ratio K /K0 is of the order of 3 for many liquids.
CO /

2
Therefore, a value for (K /K0) of 10 may be used. Ultrasonic studies

oo Z

also indicate that ri is closely related to the shear viscosity; a

ratio of n lr\ = 5 has recently been reported by Barlow, Lamb and

Taskoprulu [ 32 ] . The value of n is then given by 50̂ ., where •q1

is the atmospheric pressure shear viscosity. The time constant \2 is

given by exp(s..)nf/K = SOru/K . The bulk modulus K is related to

the relaxational modulus K2 by equations (3.7) and (3.9); for a ratio

K./K = Kjj/K- = 3, then K = 6K_ . But K is experimentally found to

be approximately equal to 4/3G , where G is the high frequency limiting
CO CO

4.
shear modulus of the liquid. A value for G of 4.35 x 10 psi

(3 x 10 dyn. cm"2) has been reported by Hutton [ 33 ] for a H.V.I.

lubricating oil at 30 °C giving a value of Kf of 3.5 x 10 psi. This

modulus will change significantly with pressure. Dyson f 15 J reports

measurements of G as a function of pressure give a typical value for
CO

SG /9P of 3. and K for lubricants varies in a similar manner in the
O3 O

Pressure-Viscosity Report [ 34 ] . If it is assumed that the ratio
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K,/K remains independent of pressure, then K = (3.5 x 10 + 9P) psi,

and the retardation time X0 is given by

X, c (3.32)
(3.5 x 10 + 9P)

For the values given above, \~ has a value of the order of

_2
2 x 10 sec, which is much greater, than the residence time of the

lubricant in the contact zone. The "instantaneous viscosity" of the

lubricant will therefore be much less than the equilibrium value,

resulting in greatly reduced values of effective viscosity in accordance

with experimental observations.
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CHAPTER IV

MATHEMATICAL FORMULATION

The present analysis of traction in elastohydrodynamic contacts

includes the iterative solution of the momentum and energy equations

with the fluid properties functions of pressure and temperature. The

shear rate and transient time effects have been isolated as discussed

in Chapters II and III.

In this chapter the momentum and.energy equations are developed

and the pressure profile, the film thickness and the material property

functions are discussed. The set of equations developed are then

solved numerically. • ..; - - ' •• -

4.1 Geometry and Coordinates '.

The geometry of a typical disk machine is'shown in Figure 4.1.

Two cylinders of radii R and R« , rolling with velocities U and U ,

respectively, are separated by a'lubricant film of thickness 2h. A

closer view of the contact zone as shown in Figure 4.2 is more useful

for the purposes of this analysis. The disks have deformed elastically

to form a contact zone of width 2b and the film thickness is approxi-

mately constant with the surfaces of the disks remaining nearly parallel.

The coordinate system is defined to have the origin on the center

lines of both the fluid film and the flat contact zone. The x-axis

is the center line of the lubricant film with the positive direction

in the direction of flow; while the y-axis, the perpendicular bisector

of the flat contact zone,.is arbitrarily taken positive toward the

disk rolling with velocity U . The z-axis, not shown in Figure 4.2,
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Figure 4.1. Typical disk machine geometry.
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Figure 4.2. Contact zone geometry and Hertzian pressure profile.
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is perpendicular to both the x and y-axes with the positive direction

consistent with a right-handed Cartesian coordinate system.

The control volume of interest is defined as an element of fluid

of length dx in the direction of flow, bounded by the disk surfaces

in the y-direction and of unit thickness in the third direction.

4.2 Pressure Distribution

The pressure distribution in the contact zone is assumed to

have the elliptical Hertzian dry contact profile given by

1 - I-
Vb

where pu = maximum Hertzian pressure
nz

x = distance from the center of the contact

4R p..
(4.2)

= half Hertzian width

R = effective radius of the disks

E = effective modulus of elasticity

The deviations from this assumed distribution are mainly in the entrance

zone at low pressure levels. Their effect on the sliding friction is

very small and is neglected.

4.3 Film Thickness

The minimum film thickness in elastohydrodyriamic contacts at ,

moderate rolling speeds can be accurately predicted by the Dowson

and Higginson [ 35] formula:

1.6 a0'6 (P U)°'7 (E)°-03 R°'43

. ent /. .»ho= - ^ - (4.3)
w
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where h = minimum film thickness
. o • • - . . - . • • . . • • • - - . - . - . - . . - t • • . . -

a = viscosity-pressure exponent

•p = viscosity of the lubricant at the conditions of

entry to .the contact
~' - • * ..•" '-• . '

U = mean rolling speed

E = effective modulus of elasticity

R = effective radius of the disk pair

w = load per unit length of cylinder

Note that the minimum film thickness is only slightly dependent on

the load w and virtually independent of the elastic modulus E.

Dowson and Higginson [ 36] suggest the parallel film thickness

2h is 20% greater than the minimum film thickness h' . -.-.. :;

The Dowson and Higginson prediction of film thickness is based

on an isothermal" ana lysis which is no longer adequate for heavily loaded

contacts operating at high rolling speeds. Cheng [ 37 ] has calculated

the lubricant film thickness in the Hertzian flat for high speed and '

heavily loaded rolling and sliding contacts. He us.ed a Grub in-type

inlet analysis including full therma1-hydrodynamic effects. The results

obtained for a wide range of load, speeds and lubricant properties

showed that the loss of film due to thermal effects is strongly in-

fluenced by the rolling velocity and the inlet viscosity of the lubri-

cant, while it is somewhat insensitive to the change of load. The

presence of sliding does not have a significant influence on-the-calcu-

lated film thickness, whereas the rolling speed has a far more pre-

dominant effect at the inlet. . . - . - • ... •

The loss, of. film thickness due .to thermal, effects can be most

conveniently represented by a thermal: reduction, factor §_, which is • • " •
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defined as the ratio of the actual film thickness to that predicted

by isothermal theory. Run #29 of Cheng's work is most applicable to

the lubricant properties of this study and has been reproduced in

Figure 4.3. Cheng's parameter Q is defined by

2-n U2

S. • -TF- <*•*>ent

2
where r\ = viscosity at entry conditions (Ibf-sec/in )

U = average rolling speed (in/sec)

k = thermal conductivity of lubricant (Btu/ F-hr-ft)

T = temperature of lubricant at entry ( R)

The film thickness including the thermal effects is calculated

by multiplying the isothermal film thickness, based on the Dowson-

Higginson formula, by the parameter $T determined in Figure 4.3. For

example, at a rolling speed of 500 in/sec at 175 F, equation (4.4)

requires

o - 2(.87 x 10"5)(500)2 _ .
\ ~ (.0216)(635) ~ '

and Figure 4.3 determines the thermal reduction factor

«T = '81

Values for other conditions are similarly calculated. The results

are shown in Table 4.1.

4.4 Momentum Equation

In applying the principle of conservation of momentum to the

lubricant in the contact zone, we make the following assumptions:

1. For the case of a line contact, all the variables are

independent of z, the direction of the axes of the disks.
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Table 4.1

VALUES OF THERMAL REDUCTION FACTOR AT

TYPICAL EXPERIMENTAL CONDITIONS

175 °F 220 °F

500 in/sec

1000 in/sec

ftp •= .81

Q = 1.27m

§T = .58

$T = .89

Q = .60m

$T = .72
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2. As compared with the lubricant film thickness, the radii of

curvature of bearing components are generally very large. In the

specific case of the disk machine, the radii of the disks R and

R » 2h. Accordingly, all effects due to curvature of the fluid film

are neglected.

3.' As compared with the much larger pressure and viscous forces,

the inertia and body forces of the lubricant are negligible. This

imples that the pressure and viscous forces acting on the fluid are

in equilibrium.

4. As compared with the other dimensions of a lubricated con-

centrated contact, the"film thickness is very small. Therefore, the-;.--'

derivative of u with respect to y is large in comparison with all

other velocity gradients.

5. The pressure gradient across the lubricant film is also

insignificant due to the relative smallness of the film thickness.

Accordingly, p = p(x) ^ p(x,y). ;

The assumptions outlined above reduce the surface forces acting

on a fluid element in the contact zone to those shown in Figure 4.4.

The momentum equation can be derived directly from the balance of

these surface forces. Equilibrium in the x-direction requires

The shear stress T must have two components. The rolling of
xy

the two cylinders produces the first component, while the second

component results from the difference in. rolling velocities, or slip.

Consider a control volume bounded in the y-direction by the surfaces

of the disks as shown below. .
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Figure 4.4. Surface forces acting on a fluid element.

(Troll + T
Sllp)

»")

p(2h) 2h ( P + 7t 6x

(-Troll+ Tslip) 6x

1(210

Figure 4.5. Forces acting on the control volume.
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The size of the fluid element considered in Figure 4.4 can be

increased to that of the control volume used in Figure 4.5 by inte-

grating equation (4.5) with respect to y over the film thickness.

or

" dp(x) . f °Txy .—\ dy = ; *• dy,.. dx „ . ay~Q ™n

2h ~£ ~ (T,,,,) - (•!•„„)
~' y=h Xy y= -h

hdx" =Troll (4'6)

Thus, the rolling component is independent of the slip and is a function

of the pressure gradient through the contact zone. Only the component

of stress that arises due to the relative sliding of the two disks is

of interest in this study. This component is easily separated by

neglecting the pressure gradient term of equation (4.5). For convenience,

we redefine (7 ) = T and the final form of the momentum equation
Xy slip

becomes

a-O (4.7)

The shear stress x is supplied by one of the Theological models

considered for the lubricant. The form of the model is

Therefore at any position x

and

where C is a constant of integration. When a specific model is used,

one can isolate "— and integrate with respect to y from y = -h to y = h.9y
Moreover, it is assumed that the profile for ̂ — is symmetric with respectdy
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to the x-axis. The symmetry of ~- allows the use of twice the integral

from y = 0 to y = h for evaluation of U -U .

At the surface y = h, the fluid must have the same velocity as

the disk. Therefore,

u = U2 at . y = h (4.11)

Similarly, at the surface y = -h, the fluid will have a velocity

u = U . Due to the symmetry of •*— , one can specify the velocity at

the center line of the film as the boundary condition. Therefore,

u = |(U1 + U2) at y = 0 . (4.12)

4.5 Energy Equation

Figure 4.6 illustrates the energy transfer from the fluid element

in the concentrated contact.

-
6 y ) 6 x f t

/ I \

cuT

pcf vT

I 1cvT

6y)
I

pc(ul

Figure 4.6. Energy, balance.for a fluid element.

64



It is assumed that the heat generated in the fluid element will

be dissipated in two modes. Convection, the first mode of heat transfer,

is the process by which energy is carried out of the contact zone with

the lubricant. In the second mode, heat will be conducted across the

film to .the disks. Since the lubricant film thickness is small in

comparison with the Hertzian contact width (xrdirection) and even smaller

in comparison with the cylinder width (z-direction) , the temperature

gradients in the x and z-directions must be small in comparison with

those across the film. Therefore, only conduction in 'the y-direction

is considered. These modes of energy transfer are shown for the fluid

element in Figure 4.6. -

The rate of heat generation per unit volume q is given by the

product of stress with the rate of strain.

q = T M ' (4.13)

An energy balance on this fluid element requires that the net energy

into the control volume be zero.

Heat Transported to Heat Conducted to Heat Generated in
Control Volume Control Volume Control Volume

where T = temperature of the lubricant

p = density of the lubricant

c = specific heat of the lubricant

k = thermal conductivity of the lubricant

Continuity requires that

^ + = 0 (4.15)
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Therefore,

. U v mp V BX ay; 2 ay
OJ

Convection Cross- Conduction Viscous Heat Generation
Convection

The ratio of convection to conduction is estimated, by assuming

a triangular temperature profile, to be

Equation (4.17) demonstrates that convection will have its

2
largest effect for a maximum value of (Uh /b) . This corresponds to the

condition of maximum rolling speed and minimum load.

For the thin lubricant films in EHD contacts, where h<< b, the

convective heat transfer can usually be neglected. Therefore, the

governing energy equation may be written as a balance of viscous heat

generation and heat transported by conduction.

Oy
The consequences of this assumption are discussed in section 6.3.

The lubricant in contact with the disks assumes the surface

temperature of the disks. Blok [ 38 ] has analyzed the problem of a

moving heat source. His results demonstrate that the disk surfaces

in the concentrated contact will have a mean "flash temperature"

higher than the bulk temperature of the disk. Equation (4.19) is

the expression Blok derived for the flash temperature.

0.48 nwlU -U I

(k p c U b)
mKm m
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where T = mean surface temperature in the contact zone,
S '

"flash temperature"

T. = surface temperature entering the junction, bulkb . . .

temperature of the disk

k = thermal conductivity of the disks
m

c = specific heat of the disks
m

p = density of the disks

4.6 Equilibrium Viscosity Function

The equilibrium viscosity is the viscosity measured after the

lubricant has reached a state of static equilibrium under a given

temperature and pressure. Viscosity deserves special attention in

the study of friction in concentrated contacts. Unlike other physical

properties, which change only slightly with temperature and pressure,

the viscosity of a lubricant can change by several orders of magnitude.

Viscosity is most simply defined by Newton's Law:

T = TIY (4.20)

2
where T = shear stress (dynes/cm )

Y = shear rate (sec )

r\ = viscosity (Poise)

This can be generalized to equation (4.21) for a viscoelastic fluid.

•H = Lim (£} (4.21)
Y - CrV'

The viscosity of a liquid is basically the resistance of molecules

to move past the force fields of neighboring molecules. It is a compli-

cated pressure and temperature-dependent function.

The viscosity of a liquid and the rate of change of the viscosity
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due to a temperature change decrease with increasing temperature. An

increase in temperature of the fluid increases the 'thermal agitation

of the molecules which, in turn, lessens the forces of attraction be-

tween molecules. Thus the viscosity decreases.

The has been considerable effort to find an accurate relationship

for predicting the variation of viscosity with temperature. Some of

these relationships have theoretical foundations but the empirical

formulas provide the most satisfactory predictions. The viscosity-

temperature relationship found by Herschel [ 46 ] is . .

where r\ is the viscosity (centipoise) at the temperature T ( F) and

Ti ,; and P are constants. Thus the "Herschel Chart", a plot of equa-

tion (4.22) on log-log graph paper, is a straight line for a given

lubricant. The equation is simple but Appeldoorn [ 40] has found it

surprisingly accurate for oils of very different viscosities.

The viscosity-temperature data for Mobil XRM 109 F4 and Shell

Turbo 33 is given in Table 4.2. This data determines the Herschel

equations:

Iog10 T] = 8.974 - 3.2 log1()T (4.23)

for Mobil XRM 109 F4 and •

Iog1() n = 7.3409 - 2.8 log1()T (4.24)

for Shell Turbo 33. Both of the equations above may be plotted on

log-log graph paper as shown in Figures 4.7 and 4.8 and used as con-

venient Herschel Charts.

The effect of pressure on viscosity is influenced by both the
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TABLE 4.2

VISCOSITY-TEMPERATURE DATA

Mobil XRM-109 F4- --

Viscosity (cP) Tempera tuire (°F)

32,150.

375.0

. .32.5 ..

4.46

0

100

2 10

400

Shell Turbo' 33

Viscosity (cp)

84

21

8.5

Temperature (°F)

; 86

140

194
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MOBIL XRM 109 F4

= 8.974-3.2 LogT

40 60 80 100 200 400 600 800 1000 2000

T(°F)

Figure 4.7. Herschel Chart for Mobil XRM 109 F4 calculated from
equation (4.24).
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Figure 4.8. Herschel Chart for Shell Turbo 33 calculated fron>
equation (4.25).
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pressure level and the bulk viscosity of the fluid. The same increase

in pressure will have a greater effect on the viscosity at a high

pressure level than at a lower level. This results from the fact that

more of the free 'space between molecules is already taken up at the

higher pressure level. The same effect is responsible for a fluid of

high viscosity undergoing a greater viscosity change than a fluid of

lower, viscosity for the same increase in pressure.

The Pressure-Viscosity Report [ 34 ] , which includes data

on several paraffinic and napthenic mineral oils, pure hydrocarbons

and synthetics, is an excellent source of pressure-viscosity data.

Chu and Cameron [ 41 ] have analyzed the results of this report

in an attempt to find a sufficiently accurate pressure law and corre-

lation. The usual simple exponential law was found inadequate for

paraffinic oils. Paraffinics were found to obey the law

(Iog1() T})"' = m(p + a) (4.25)

and there was a simple correlation between m and ru the base

viscosity. Including this correlation, equation (4.25) becomes

'—x 2/3
0.18(log10 r p + 13.2 iog n (4.26)

where r\ = viscosity in centipoise at pressure p

r\, = base viscosity at p = 0

. '.. p = pressure in kpsi • - .

Note that this convenient form of the Chu and Cameron viscosity-pressure

law automatically correlates to each lubricant through IT
D3 S6

Cheng [ 37] has analyzed- the data of the same. PressurerViscosity

Report. He used the following alternative viscosity-pressure relationship:
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_..„ -p + (P + YP>(£ - 4-1 I (4.27)
% T VT V

where r) = viscosity at pressure p

T| =. reference to viscosity at p = 0 and T = T

p = pressure (psi)

T = absolute temperature ( R)

d = viscosity-pressure coefficient

P =,.5.1 x 107 d

y .=. 930 Cf • -'.

Figure 4.9 exemplifies the .pressure dependence of the equilibrium

viscosity function according to'. Cheng, and Chu and Cameron. It has : -i
* ..-• '*

been calculated for the Mobil XRM 109 F4'lubricant at 175 °F.

4.7 Limiting.Shear Modulus •

The pressure-and temperature function for the high frequency

limiting shear modulus has been developed by Dyson [ 15 ] in a corre-

lation with Smith's [29 ] experimental data. The development, is

outlined below. '

Button [33 ] experimentally determined that a high viscosity •

index mineral oil at atmospheric pressure varies with temperature ac-

cording t o , . . . . . . - '

7T- = 2.52 + 0.024 T (4.28)u • • ' • • • - .o o • ' • • • • •

and referenced to conditions at 20 °C,

G (T) , ' • - • '
3 (4.29)

G (20°C) 2'52 + °-024 T

where G is in GNm"2 (1010 dynes/cm2) and T is in °C.
00
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12

Chu ond Cameron

)*—Approximate Upper
Pressure Limit For
Pressure - Viscosity Report
Experimental Data

100 150 200 250

p(kpsi)

Figure 4.9. Example of T](p) for XRM 109 F4 at 175 F calculated from
equations (4.26) and (4.27).
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Variation with pressure of the high frequency limiting shear

modulus is more difficult to estimate, since there is insufficient

lubricant" da ta~~at~~hfigh pr e s sure s . GuTded~ty equation (4.29), Dyson

looked for a correlation of the shear modulus with the quantity

3p _
2.52 + 0.024 T

Figure 4.10 is the correlation found with Smith's experimental results

Although this correlation predicts an impossible negative value for G
- CO

at p = 0, the predicted values at higher pressures are the best avail-

able. The limiting shear modulus function, as determined from Figure

4.10, is

^<P>T> " °'4 [2.52 +P0.024 T] - 10& <

Converting equation (4.30) into English units, one obtains

' - 2.52 +

where G is now in psi, p is in psi and T is in °R. Equation (4.31)

has been used in determining the limiting shear stress in the liquid

mode Is .

4.8 Numerical Solution

The numerical solution of the equations governing the friction

in elastohydrodynamic lubrication is a Fortran IV coding for use on

a CDC 6400 digital computer. The program is outlined in Figure 4.11

and a complete listing is given in Appendix B.

Program CONTROL is the backbone of the traction calculation

calling on several subroutines as they are needed. The load is a

Hertzian elliptical pressure profile, as developed in section 4.2, and

the lubricant film of uniform thickness is calculated according to
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Figure 4.10. Correlation of limiting shear modulus with-the. .experi-
mental values of Smith [ 29 ']. Curve from Dyson [ 15 ]

76.



Read Data and
•. ' ' ' • . - . ' i

Set Physical Constants

Initialize Variables.and

Set Boundary Conditions

: Calculate Load,
Film Thickness

and Pressure Profile

Calculate

Transient Viscosity

Solve Momentum Equation

for Shear Stress

Solve Energy Equation

for Temperature Gradient

'-'•'"' • Solve for

Temperature Profile

,. ^

Yes
' . .

Calculate

> Friction Coefficient

Numerica 1.Output

Plotted Output

:VISC, RTMI, ZERO, EXPI

SECANT, PSI, TNTEG

Figure 4.11. Simplified diagram of Program CONTROL and its subroutines.
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section 4.3. The material properties of the lubricant are allowed to

vary as functions of local pressure and temperature as discussed in

sections 4.4 and 4.5. The variation of the lubricant properties also

includes the shear rate effects proposed in Chapter II and the transient

time dependence analyzed in Chapter III. An iterative solution of the

momentum and energy balances (sections 4.6 and 4.7) is used to determine

the shear stress, and the velocity and temperature profiles in the

contact zone. The tractive force on a disk surface, resulting from

a given sliding velocity, is determined by integrating the shear stress

at the disk surface over the contact area. The traction coefficient

is then defined as the tractive force divided by the applied normal

load.

Function VISC supplies the transient value of the viscosity

according to the model analyzed in Chapter III. For the purposes of

computation, the contact area is divided into six equal zones, the

pressure being taken, as constant within each zone. For the first two

zones, the pressure step is assumed to be applied at the beginning of

each zone. The viscosity attained at a time corresponding to passage

through half the zone is calculated, and this value is used as an

average viscosity for the zone. For a rolling speed U and contact

width 2b, this time is b/6U sec. For the third zone, allowance is

made for the viscosity increase in the preceding zones by calculating

the viscosity at a time b/2U sec. In each case, the initial viscosity,

at the instant of applying the pressure step, is taken as the viscosity

at atmospheric pressure and the disk temperature. For simplicity, a

viscosity distribution which is symmetrical about the center of the

contact is assumed, although the actual distribution is asymmetrical,
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with the maximum viscosity occurring on the exit side of the center.

This approximate method provides a rapid and simple method of computing

the effect of the rolling speed on the viscosity of the lubricant.

If the transient effect is to be neglected for any reason, the

following trivial subprogram may be substituted for Subroutines VISC,

RTMI, ZERO and EXPI.

FUNCTION VISC (P,ETA2,CODE)

VISC = ETA2

RETURN

END

Subroutine RTMI supplies the solution s. of equation (3.30)

Ei(-Sj) - Ei(-s) +~£ex.p(-s) - exp(-s1)l = —

to Function VISC. Muller's iteration scheme of successive bisections

and inverse parabolic interpolations is used. RTMI is available in
/

the Vogelback Computing Center at Northwestern University, Its listing

is included in Appendix B for completeness. It is a requirement of

RTMI that equation (3.30) be represented as a separate function sub-

program. Function ZERO meets this need.

The evaluation of the exponential integral in equation (3.30)

is performed in Function EXPI. This routine computes the exponential

integral for negative arguments in the range -20 to zero. For negative

values of argument x the exponential integral is defined by

r00 e~*
Ei(x) = J ^- dt (4.32)

-X

In equation (4.32), a polynomial approximation is obtained, for values

of the argument between zero and -5, by means of the Taylor series
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expansion by Luke and Wimp £ 42- ] '

14
EXPI(x) = ln|x| - V bv(-x)v (4.33)

v=0

where bQ = - .57721566

-b - = • 1.0

b2 = - .25

b = .055555520

b. = - .010216662
4

b5 = .0016666906

b, = - .23148392 x 10"3
o

b •=. .28337590 x 10"4

bQ = - .30996040 x 10~5
o

b = .30726221 x 10"6

b1Q = - .27635830 x 10"7

't>n
 s" .21915699 x 10"8

b12 = - .16826592 x 10"9

b^ = .15798675 x lO"10

b = - .10317602 x 10"11

Equation (4.34) is the exponential approximation used for. arguments

in the range -5 to -20.
. - • . . .. . x . . . - . • . . . . . •

EXPI(x) = -2.658760 - 3 (4.34)

Function PSI specifies the shear stress^strain relationship. tp: :.

be used in the momentum equation. The liquid model may be changed

simply by replacing the deck of this function. Routines for the fol-

lowing three liquid models are included in the listing of •. the ..program:.;
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• : •• 1. Maxwell- - Limiting Shear Stress Model

- .'• 2.^ B; E. L. - Limiting Shear Stress Model

3. Hyperbolic Shear Stress-Strain.Model.

The routine defines the function^ as : . • . .

where the velocity gradient Bu/gy is a.function of the shear stress, ,.

and therefore, dependent upon the liquid model. ... . . . .

!:.: '. - _ .1 -./l-Â yU-: - . -V-.- > .V ,-.••,--

G ^ '
|^ = -^. .. . ... .. .". ,,.:: ...-;:..:-.',», - , < • (4.36)

G ,--
00

for the Maxwell model;

G
(4.37)w ^ ri I V" — 1 — r • \-r*->i /

&> ~ L \ G ' G
0 0 0 0 . " . . . . r « , . . • -

for the B. E. L. model; and . . , : ... ,

. „, •- ,., :-• _--.:c^ . : . .-- '.. , .. •;.. ,i - .„>:>,•
G G----- -f^^nT ••••••»--••'-•>••-*••••«**>

G ' . • .:.r-' v---. ••
oo

for the hyperbolic model.' The boundary conditions specified by equa-

tions (4.11) and (4.12) require

»h • "-(11̂ -u.r" '-'•'•'••"• •-'• -;' - •'-...•.•••••-•• -••

Equations (4.35) and (4.3'9) combine to require

Y = o ' •••-••' -'• . .
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Subroutine SECANT determines the shear stress solution of the

momentum equation by solving equation (4.40). This routine is a modi-

fication of Newton's method. For any function f(x), two initial guesses

of the root x and x? are required. A straight line is "drawn" through

f(x..) and f(x2) and extended to cross the x-axis. This new point x_

determines f(x ) which is then connected with f(x_) to determine x,,

as depicted in Figure 4.12. This process continues until the root of

the function is determined. A number of checks are also included in

Subroutine SECANT to both guarantee and expedite convergence.

Subroutine INTEG integrates any non-equidistantly tabulated

function f(x.) between the limits a and b, where a or b must equal

f(Xj). The integrated function may be defined as

nb
INTEG ff(x.)l = f f(x.)dx.

L i J J „ J- ia

A method of overlapping parabolas is employed with suitable modifications

to yield the fastest possible integration with second order accuracy.

The development of the quadrature for this subroutine is shown in

Appendix A. Subroutine INTEG is called upon to integrate the velocity

gradient in the solution of the momentum equation and again, to inte-

grate both the Laplacian and temperature gradient in the solution of

the energy equation.

Subroutine PRINTS provides the numerical output of the program,

and Subroutine SETPLOT issues rapid line printer plotting of the

temperature profiles and traction coefficient versus slip curves. SETPLOT

is a library routine of Vogelback Computing Center and will probably

require considerable changes in the coding for use at another facility.

Since it is not required for the traction analysis, the listing for

SETPLOT is not included with that of the program.
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'f(x)

Figure 4.12. S6cant method of solving f(x) = 0.
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CHAPTER V

EXPERIMENTAL INVESTIGATION

The design and manufacture of a disk machine was completed as

part of this study. The purpose of the experimental investigation

was to gather extensive data for two new synthetic lubricants,

Mobil XRM 109 F4 and Mobil XRM 177 F4. The conditions under study

were those of high loads and high rolling speeds where there was, a

paucity of experimental data. Special emphasis was given to the effect

of additives upon the frictional torque. This chapter describes; the

disk machine, the lubricant properties and the test procedure.

5^1 The Disk Machine

The design of the disk machine for this experimental investigation

was guidedJby the following requirements. The disk machine must be

capable of accurately measuring the tractive force transmitted across

the line contact of the two disks for a wide range of loads, rolling

speeds andrslips. A sufficient normal load is required between the

disks to insure operation in the e la stohydrodynamic, regime 1 The drive

to the disks must allow easy adjustments of the mean rolling speed

and the amount of sliding at the contact. The lubricant must be de-

livered to the contact at a controlled rate and temperature, instru-

mentation is required to measure the normal and tangential forces on

the disks. The angular velocities of the disks, as well as the slip

or difference in the disk velocities, must also be accurately measured.

Finally, the surface temperature of the disks as they enter the con-

tact zone is required for an accurate knowledge of the friction. A

detailed description of the machine designed to meet these requirements

follows.
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The disk machine, pictured in Figures 5.1 through 5.3, was

designed with two 6-inch diameter disks. These large disks were se-

lected to allow a direct drive system at high speeds, thus minimizing

any possible vibrations. The lower disk is supported on two high-

speed roller bearings which are mounted in the main frame and the

upper disk is contained in a loading arm which is hinged on the frame

with a spherical roller bearing.

The load is applied by an air cylinder at the far end of the

loading arm. With a 30 psi air supply, a maximum Hertzian stress of

300,000 psi can be obtained for a £-inch contacting width. The ap-

plied normal load is monitored by a four-strain gauge bridge mounted

on the air cylinder shaft. This is necessary for accurate measure-

ment of the normal load, as the friction in the air cylinder is incon-

sistent. The loading arm was designed to permit the necessary align-

ment to insure a uniform load across the line contact in the axial

direction.

Each of the disks is attached through flexible couplings to

separate 40 hp D.C. field controlled electrical machines. The shunt-

field current method of speed control is simple and efficient and the

speed regulation, for a given speed adjustment, is excellent. The

complete electrical circuit, schematically shown in Figure 5.4, is

the Hopkinson mechanical-loss-supply feedback circuit described, for

example, by Kloeffler, Kerchner and Brenneman [ 43 "* . This circuit

was inspired by a related feedback system successfully used in the

experiments of Jefferis and Johnson [ 12 ]. One of the D. C.

machines behaves as a motor driving one of the disks. The second disk

is driven by the friction force transmitted at the contact and drives
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the second D. C. machine as a generator. The energy is electrically

recycled by supplying the generated voltage to the armature of the

motoring machine. The losses in this cycle are mechanically supplied

by a 20 hp motor connected to the double-ended armature shaft of the

40 hp D. C. motor.

The speed of the upper shaft is controlled by the small 20 hp

booster motor. A wide range of rolling speeds can be obtained by

varying the supply voltage and the field resistance of the booster

motor. The speed differential between the two shafts is controlled

by adjusting the field resistors of the 40 hp D.C. motors which are

connected together across the armature terminals. This arrangement

allows a wide and continuous range of sliding speeds to be easily

obtained. This differs greatly from the typical two-disk machine

arrangement in which the slide-to-roll ratio is fixed by a gear ratio,

or the ratio of the diameters to the disks.

Jefferis and Johnson reported torsional vibration difficulties

with the original design of their disk machine. Every effort was made

to eliminate vibration problems in this design. The lower shaft of

the disk machine can be approximated as indicated in Figure 5.5, for

the purpose of determining the natural torsional frequency of the shaft,

The lowest natural frequency of this system is calculated to be 55

cycles per second which is slightly above the condition existing at

the maximum experimental rolling speed of 1000 in/sec. The flexible

couplings used in the system were chosen, in part, for their high

damping characteristics to further insure smooth operation. Vibration

problems were not encountered in the course of the experiments.

The frictional torque transmitted through the line contact is

90



tr
o

UJ

LJ
O

M XI

2

CO

•H
CO

1
§

is g 1 d »
3 u . 9.

a: 9; H o *UJ 3 (0 • ro
T o «1 s -s

U- V^ v_ II II

^ co •> ̂
UJ

2K dO u_ <t
cc < ^
0 I
J- CO JT O

o o o

— 1 ^ *4-"
Q. O "
2 .1

<

Q
LJ ,0

t 8
_J i-l

& «
1 g

CO
<. "H
^ *ci

v, ' *»o -> ̂ J2
4-1

<M
r>

1 | g - I i
Q cu

co-J 5

LO

cu
VJ
3
bO

91



measured by a torquemeter mounted in the lower shaft of the disk

machine. The measured torque and the known radius of the disk are

used to calculate the tangential tractive force of the contact. The

torquemeter consists of a four-strain gauge bridge mounted on a cali-

brated torsion shaft. The electrical output signal of the torquemeter,

passed from the rotating shaft through a set of slip rings, is a measure

of the instantaneous torque in the lower shaft. This signal is dis-

played on an oscilloscope or measured by a digital voltmeter if an

integrated average value is desired. The torque measured in this

manner includes the frictional torque of the two lower support bearings

which is accounted for as follows. The Hopkinson electrical circuit

allows rotation of the disks in both directions and, therefore, pure

rolling is possible. The bearing friction and any minute rolling

friction are calculated from the measurements at pure rolling. The

combined value is small and averages to a frictional torque corre-

sponding to a friction coefficient of 0.002.

The angular velocity of each disk is measured by a timing wheel,

seen in Figure 5.3. Each timing wheel has 100 equally spaced holes

along the circumference. Light supplied from a high intensity source

to the timing wheels is chopped into a stream of pulses as the timing

wheel rotates. A pair of photomultiplier tubes converts these light

pulses to electrical pulses which are then counted electronically.

Thus the speed of the disk is measured. Fiber optic light guides are

used for the transport of the light beams throughout this system.

The sliding velocities are calculated as the difference of the measured

velocities of the disks.

Filtered oil is supplied to the exit side of the contact allowing
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the lubricant one revolution with the disk before entering the con-

junction. The lubricant is pumped from a 5 gallon supply tank, with

a thermostatically controlled electric immersion heater and circulator,

at rates up to 1 gallon per minute. The filter has a paper filter

element which removes particles down to 1 micron.

The surface temperature of the disk as it enters the contact zone

is monitored by an iron-constantan thermocouple trailing on the moving

surface. An ice bath reference junction is used with the thermocouple.

Crook [ 44 ] has demonstrated that this method gives accurate results;

and Johnson and Cameron [ 11 ] have found this method agrees closely

with the temperatures measured by a thermocouple embedded in the surface

of the disk.

The electrical output signals of the strain gauges, photomultiplier

tubes and the thermocouple are continually monitored by a scanning

digital voltmeter.

A surface trace of a disk, shown in Figure 5.6, indicates that

the disks were manufactured with a maximum peak-to-valley roughness

of 4 micro-inches.

5.2 The Lubricants

The experimental program consisted of the gathering of extensive

friction data for the two experimental fluids, Mobil XRM 109 F4 and

Mobil XRM 177 F4. Mobil XRM 109 F4 is a synthesized paraffinic hydro-

carbon base fluid. Mobil XRM 177 F4 is comprised of Mobil XRM 109 F4

formulated to improve its anti-fatigue properties. Table 5.1 is the

physical property data, kindly supplied by the Mobil Research and

Development Corporation, determined on Mobil XRM 109 F4. The proper-

ties of Mobil XRM 177 F4 are expected to be the same within experi-

mental error.
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Table 5.1

PHYSICAL PROPERTIES OF MOBIL XRM 109 F4

, v — - >v _ _ _ . - "—: '

Kinematic Viscosity, cs @ 400 F

•: @ 210°F

@ 100°F

@ 0°F

Total Acid No.

Flash Point, °F

Fire Point, °F

Pour Point, °F

Density @ 100°F

@ 200°F

@ 300°F

@ 400°F

Specific Heat-@.300°F

@ 400°F

Autogeneous Ignition Temp., F

Surface Tension

6.0

40.4

447

37,000

0.0

520

595

-60

0.8389

0.8082

0.7777

0.7428

0.635

0.692

760

30.9
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5.3 Test Procedure

The strain gauges, photomultiplier tubes, voltage supplies,

and digital voltmeter must warm up and reach a stable temperature be-

fore any calibrations are performed. The lubricant supply is also

heated to the desired temperature during this time. After the warm-up,

the strain gauge bridges measuring the normal load and frictional

torque are calibrated. The air cylinder gauges are calibrated to zero

load, while the torquemeter gauges are calibrated against a shunt re-

sistance simulating a known torque.

The oil supply is then turned on and the disk machine may be

started at minimum load with the field resistances of the two 40 hp

machines at equal settings. The load and rolling speed are then in-

creased to the desired values and the bearing torque is measured at

pure rolling conditions.

The sliding speed is now varied, while maintaining a constant

mean rolling speed, to obtain the data for a friction versus sliding

speed curve. It is easiest to keep the surface temperature within a

5 degree C range by making some high slip torque measurements first

and then returning to the low and middle slip values.

5.4 Results

A typical set of experimental results is shown in Figure 5.7.

The friction coefficient, defined as the tractive force divided by the

applied normal load, is plotted against the sliding speed. The maxi-

mum Hertzian pressure, rolling speed and lubricant inlet temperature

remain constant. The friction coefficient rises from zero at pure

rolling to a maximum value and then decreases with any further in-

crease in sliding speed.
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Complete results of the experimental study are presented with

discussion in the next chapter.
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CHAPTER VI

DISCUSSION OF RESULTS

A new elastohydrodynamic friction analysis has been developed

in Chapters II, III and IV. The separate effects of both shear rate

and time have been included. Shear viscoelasticity results in a

non-Newtonian relation between the shear stress and shear rate, while

compressional viscoelasticity results in a time-dependent viscosity

function. A numerical solution of the momentum and energy equations,

with pressure, temperature and time-dependent parameters, is achieved.

Traction measurements have been made on two synthesized hydro-

carbon fluids under elastohydrodynamic conditions. The experimental

apparatus and procedure have been described in Chapter V.

This chapter discusses the results of these analytical and experi-

mental programs. A good correlation of the friction coefficients

determined by analysis and experiment is shown.

6.1 Values of the Friction Coefficient Determined by Experiment

The tractive force transmitted by a thin lubricant film, under

elastohydrodynamic conditions has been measured for a wide range of

loads and sliding speeds at high rolling speeds. Specifically, the

loads ranged from 115,000 psi maximum Hertzian stress to 250,000 psi;

the sliding speeds varied from zero to over 60 in/sec; the high rolling

speeds were 500 and 1000 in/sec; and the oil entrance temperatures

were 175 F and 220 .F. The friction coefficient, or.traction coef-

ficient, calculated from this data for two synthetic paraffinic fluids,

show variations similar to those found for other lubricating oils by
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Johnson and Cameron [ 11 ], Crook [ 4 ] and Bell, and Kannel and

Allen [ 6 J •

The friction coefficient rises to a maximum value with increasing

sliding speed and then decreases with any further increase in the

sliding speed. The coefficient is also found to increase with increasing

pressure and to decrease with increasing,rolling speed and temperature.

Any parameter variation that results in an increase in the friction

coefficient also results in the maximum friction occurring at a lower

sliding speed. Examples of this behavior for both experimental fluids

are shown in Figures 6.1 through 6.14 where the friction coefficient

is plotted as a function of sliding speed for fixed values of maximum

Hertzian pressure, rolling speed and oil inlet temperature.

This behavior may be explained in terms of the liquid model that

has been developed. At low values of sliding and therefore,.low

shear rate, there is no appreciable temperature gradient across the

lubricant film. The shear stress increases with shear rate according

to the effective viscosity predicted by the compressional viscoelastic

model developed in Chapter- III. • "At slightly higher-sliding speeds,

the temperature rise in the fluid film is significant and cannot be

neglected. For the range of conditions under study, the analysis

predicts a rise of film temperature of 15 F to 20 F at the sliding

speed corresponding to the maximum friction coefficient. For even

higher sliding speeds, it is hypothesized that the mechanism of flow

changes and is dominated by a pressure and temperature-dependent

limiting shear modulus/ The temperature at the center of the lubri-

cant film at the highest sliding speeds is calculated to be 100 F

to 150 F higher than the surface temperature of the disks."
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Therefore, the friction coefficient u-, which is defined as the

ratio of the tractive force transmitted to the normal load, is pro-

portional to the following:

for sliding speeds smaller than that corresponding to the maximum

value of the friction coefficient; and

G
u.a— (6.2)
. P

for higher sliding speeds. .

An increase in the pressure level results in an increased viscosity

T), which accounts for the higher friction coefficient at low sliding

speeds seen in Figures 6.1 through 6.4. For higher sliding speeds,

the limiting shear modulus as a function of pressure must be reviewed.

Figure 6.15 simplifies the relationship of Figure 4.10 and equation

(4.31).

G (p) = mp-b

-b .

Figure 6.15. Simplified limiting shear modulus-pressure relationship.
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Although the actual limiting shear modulus probably follows the dashed

line, the linear portion at higher pressure levels may be given by

the relationship shown. Equation (6.2) therefore yields

u C t m - - (6.3)
p •

and the friction coefficient also increases with pressure at. high

sliding speeds.

An increase in the inlet temperature of the lubricant results

in lower values of both the viscosity and limiting shear modulus.

The entire friction coefficient versus sliding speed curve is thus

lowered according to equations (6.1) and (6.2). This is seen in Figures

6.5 through 6.7.

As the rolling speed increases, the film thickness increases

according to equation (4.3). At low sliding speeds, this higher film

thickness will reduce the shear rate, which in turn reduces the shear

stress according to the viscoelastic fluid model. At higher values

of sliding speed, an increased film thickness results in a higher film

temperature as indicated by equation (4.18). This will then lower the

limiting shear modulus. Either of these results, the lower shear stress

or the lower limiting shear modulus, causes lower friction coefficients

as seen in Figures 6.8 through 6.14 for the two experimental lubricants.

6.2 Correlation of Values of the Friction Coefficient Determined

by Experiment and Analysis

The values of the friction coefficient determined by experiment

for the Mobil XRM 109 F4 synthetic paraffinic base fluid are compared

with those predicted by the new analysis in Figures 6.16 through 6.23.
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Figures 6.24 through 6.31 show a similar comparison for the Mobil

XRM 177 F4 paraffinic fluid with anti-fatigue additives. A further

correlation is shown in Figures 6.32 through 6.37 for some of the

experimental data of Johnson and Cameron f" 11 J .

As in the previous section, the values of the friction coefficient

are plotted as a function of the sliding speed U -U , for fixed values

of maximum Hertzian pressure P, rolling speed U and oil entrance tem-

perature T. The units of P, U and T are psi, in/sec and degrees F,

respectively, except for the Shell Turbo 33 correlations where the oil

entrance temperature is given in degrees C. Values determined by

experiment are shown as data points on the curves, while values pre-

dicted by the analysis are shown by smooth curves.

The analysis predicts friction coefficients that show the same

variations as observed experimentally. The friction coefficients rise

to a maximum value and then decrease with increasing sliding speed;

they increase with increasing pressure and decrease with increasing

rolling speed and oil temperature.

Good correlation is found between the experimental data for Mobil

XRM 109 F4 and Shell Turbo 33 and the values predicted by the analysis

using the straight exponential viscosity function adopted by Cheng

[ 5 ] and the hyperbolic liquid model with c = .25. This corresponds

to the Barlow, Erginsav and Lamb [ 23 ] liquid model with a limiting

shear stress. In most cases, the friction coefficients agree within

10%, with a few extreme cases differing by less than 25%.

It is necessary to use the hyperbolic model with c = .20 to

obtain the same correlation for the Mobil XRM 177 F4 lubricant. This
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lubricant consists of the Mobil 109 F4 as a base with an anti-fatigue

polymer additive. This additive may change the limiting shear modulus

function which corresponds to a change in the hyperbolic model constant

c. A more likely possibility, however, is that the additive increases

the film thickness. If this is the case, the shear rates would be

lower in the low sliding speed region and the film temperatures would

be higher in the high sliding speed region. As previously discussed

in section 6.1, this would lower the entire friction coefficient curve.

Thus, if the additive does cause an increase in the film thickness,

the hyperbolic model with c = .25 might hold true for this lubricant

also.

Figure 6.38 shows a comparison of friction versus sliding speed

curves analytically determined using the viscosity relationships

adopted by Cheng (equation 4.27) and Chu and Cameron (equation 4.26).

The curves are extremely close at low sliding speeds but begin to

diverge at higher sliding speeds as the temperature rise in the lubri-

cant film becomes larger. The divergence is due to the higher tempera-

ture dependence of the Chu and Cameron formulation. It is of little

consequence which formulation is used at low sliding speeds since the

compressional viscoelastic effects dampen the effects of small changes

in equilibrium viscosity. The Cheng formulation gives a slightly "•

better correlation with all experimental data. Unitl extremely high

pressure viscosity data is available for lubricants, there will be no .

other means of choosing among empirical pressure-temperature-viscosity

functions.
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6.3 Fluid Property Profiles

In addition to calculating the friction coefficient, the numerical

solution of the momentum and energy equations also determines the

fluid property profiles in the lubricant film. The profiles confirm

the .qualitative estimates of Flint [ 13 ] .

As the lubricant enters the contact zone, the temperature, and

therefore the viscosity and the limiting shear modulus are constant

across the film. At small sliding speeds and low pressures, the

temperature across the film remains constant and equal to the disk

surface temperature. The velocity profile is linear and the other

property profiles are easily predicted.

Under more severe conditions such as higher sliding speeds and

pressures, the thermal effects dominate the profiles. The tempera-

ture profile becomes parabolic, and at the most severe conditions,

almost triangular. The central plane temperature is 100 F to 150 F

higher than the disk surface temperature. This results in a sharp

S-shaped velocity profile with an enormous velocity gradient at the

central plane of the lubricant film. The viscosity, and usually more

important under these conditions, the limiting shear modulus have

minimum values on the central plane. Thus, even though the material

properties and the fluid flow are continuous, the conditions are close

to those that would occur in a fluid undergoing a discontinuous shear

failure on the plane of minimum limiting shear stress.

Two examples of the profiles at the center of the contact zone,

those of temperature, velocity, viscosity and limiting shear modulus,

are shown in Figures 6.39 and 6.40 for the analysis of Mobil XEM 109 FA
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at 200,000 psi maximum Hertzian pressure, 500 in/sec rolling speed and

175 F oil inlet temperature. Figure 6.39 is for a 2 in/sec sliding

velocity where the velocity profile is no longer linear. Figure 6.40

is for a 50 in/sec sliding velocity where the shear rates at the center

plane are extremely high.

6.4 Effect of Convective Heat Transfer

The simplified energy balance given by equation (4.18) was derived

by assuming the heat transported by convection was negligible as

compared with the heat conducted in the two disks. A ratio of con-

vection to conduction is estimated in equation (4.17) as

pcUh2

2 bk

2
Convection has its largest effect for a maximum value of (Uh /b).

This corresponds to the condition of maximum rolling speed and minimum

load. A program was written to include the effects of convection.

Figure 6.41, the friction coefficient-sliding speed curves, include

and neglect the convective heat transfer.

As expected, the convection will carry some heat from the contact

zone and the lubricant will be slightly cooler. For example, under

the conditions for maximum convention, the mid-film temperature at the

center of the contact zone is determined by the analysis to be 5 F

cooler; that is, 210 F compared with 215 F, at the point of maximum

friction coefficient. This only affects the friction coefficient at

higher sliding speeds where the temperature gradient in the film be-

comes significant.

The program including the convective effects takes four times
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the tine required by the simpler program which considers conduction

only. The results, differing by 5-10% at a maximum, do not warrant

this expenditure.

6.5 Effect of Compressional Viscoelastlcity

The overall effect of compressional viscoelasticity on the

friction coefficient is seen in Figure 6.42. The most prominent

feature is the shifting of the maximum value to higher sliding speeds.

This is the same effect a longer shear relaxation time would have on

the curve. At higher sliding speeds, the flow is dominated by the

limiting shear modulus. Therefore, to study the~effects of compres-

sional -viscoelasticity, attention is focused on the region of low

sliding speeds.

The values of traction coefficient for very low sliding speeds

have been calculated are are shown in Figures 6.43, 6.44 and 6.45

plotted as a function of the ratio of sliding speed to rolling speed,

£ = IL-IL/U, for fixed values of peak pressure and U. To simplify

comparisons with experimental data, the calculations have been made

for the conditions used by Johnson and Cameron [ 11 T ; that is,

hard steel disks of 3 in diameter, a lubricant of viscosity 84 cP at

atmospheric pressure and 30 C, and maximum Hertzian pressures of 87,

110, 147, 176 and 224 x 103 psi.

The variation of traction coefficient with rolling speed may also

be presented in terms of an effective viscosity. The effective vis-

cosity r\ is defined as that constant viscosity which, for a contact

area of width 2b and uniform thickness 2h, would give rise to the

measured tractional force. Then the effective viscosity may be
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calculated from the traction coefficiently the expression

* - (S W-uh » (6-4)

Alternatively, . '•
~~ _ At\ -.r U" rfi o

~ VF) HU • \°«3/

where ,̂/E; is the initial slope of the traction curve when plotted as a '..

function of the slide/roll ratio. Values of -r\ calculated in this way,

in the limit of zero sliding speed, are plotted as a function of rolling

speed in Figure 6.46.

The calculated values of traction coefficient show a small dependence

on rolling speed when plotted as a function of the ratio of sliding

speed to rolling speed. Johnson and Cameron [ 11 ] report that the

traction coefficient was experimentally found to depend only on the

slide/roll ratio and to be independent of the rolling speed. In the

present analysis, this behavior is found only at the lower pressures,

and then only over a limited range of rolling speeds (Figure 6.43),

although the values of traction coefficient are similar to those meaured

by Johnson and Cameron. - . .

The curvature of the lines in Figures 6.43, 6.44 and 6.45 reflects

the departure from Newtonian behavior of the .lubricant with increasing

shear rate. At low sliding speeds, the heat generated due to shearing :

in the lubricant is negligible. No temperature gradient exists within

the lubricant film, and the temperature throughout the contact zone

remains equal to the disk temperature. The decreasing slope of the

traction coefficient curves with increasing sliding speed is thus a

consequence of the decrease in the apparent viscosity with increasing

shear rate. The effect is most marked at the higher pressures and lower
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rolling speeds when the small values of film thickness result in1 higher

values of shear rate. The variation of traction coefficient with sliding

speed is shown in more detail in Figure 6.47 for a peak pressure of

176,000 psi. The behavior at the other measures conforms to the same

general pattern. In Figure 6.47 Newtonian behavior, a viscosity which

is independent of shear rate, is shown by a straight line of unity

slope.

It may be calculated from Figure 6.47 that at low rolling speeds

it is experimentally impossible to obtain Newtonian conditions, as the

low sliding speeds required -- less than 0.01 in/sec -- are well below

the experimental range. This fact has important consequences when

attempts are made to evaluate the effective viscosity from experimental

data at lower rolling speed.

Two features of Figure 6.46, showing the variation of effective

viscosity with rolling speed under isothermal and Newtonian conditions,

merit special attention. The first of these is the great similarity

in the shapes of the curves at rolling speeds above 50 in/sec, at all

but the lowest pressure. This type of behavior has been observed

experimentally, as seen, for example, in Figure 6.48 taken from Crook

[4 ]. The second feature is the extremely rapid fall in the effective

viscosity at low rolling speeds for pressures above 110,000 psi. Re-

liable measurement of the traction force is difficult at rolling speeds

below 10 in/sec and high values of peak pressure, as the small film

thickness becomes comparable with the dimensional irregularities of

the disk surfaces, and full elastohydrodynamic conditions no longer

exist. Extrapolation of results obtained at higher rolling speeds is
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therefore necessary if a value of effective viscosity at zero rolling

speed is desired. Furthermore, the present analysis predicts that

shear rate effects will be significant even at the lowest sliding speeds

which can be reached experimentally. The measured values of the traction

force will therefore be less than the values which would be obtained

under Newtonian conditions. This effect, taken in conjunction with

the rapid change in value of the effective viscosity at low rolling

speeds, makes the extrapolation of experimental data to zero rolling

speed subject to extremely large errors, the magnitude of the error

increasing as the peak pressure is increased. •

It is suggested therefore, that the observation of Johnson and

Cameron, [ 11 , Figure 15] whereby the same reduction in effective

viscosity with rolling speed was observed at all pressures, is a

consequence of the errors inherent in such an extrapolation. If this

is so, it follows that the sharp change in the rate of increase of

viscosity with pressure at pressures above 110,000 psi shown in Figure

6.49, from'Johnson, and Cameron's paper f 11 ], is also a consequence

of the errors in extrapolation, and is hot a true property of the

lubricant. ..,...'

To explore this possibility in detail, hypothetical values of

effective viscosity at zero rolling speed have been obtained by extra-

polation of the curves of Figure 6.46•, :ignoring .the calculated values

at rolling speeds below 50 in/sec. The shear rate dependence of the

lubricant viscosity is included by using values of effective viscosity

calculated at a sliding speed of 0.02 in/sec instead of at the limit

of zero sliding speed. The values so obtained are shown in Figure 6.50,

plotted as a function of rolling speed over the range 50 to 500 in/sec.
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The curves are then extrapolated below 50 in/sec to obtain a hypothetical

value of effective viscosity at zero rolling speed. These values are

plotted in Figure 6.51 to a base of peak pressure (dashed line), and

show a large deviation from the true values of -effective viscosity

(solid line) at pressures above 120,000 psi, The experimentally de-

termined values of effective viscosity shown in Figure 6.49 are also

plotted in Figure 6.51. The close agreement between the hypothetical

viscosity curve and the experimental values strongly supports the

contention that the change in the slope of the viscosity-pressure

curve at high pressures is an artifact arising from the difficulties.

inherent in the extrapolation procedure, and is not a physical pro-

perty of the lubricant.

. It has been found that by plotting the data of Figure 6.46 on a

logarithmic, instead of a linear, scale of rolling speed, the separate

curves for the different pressures can be combined into a single

normalized curve. The effective viscosity values are normalized with

respect to the value at the limit of zero rolling speed TVt_n, and the

*
rolling speed values are normalized with respect to U , the rolling .

speed at which the effective viscosity is equal to 0.5rin_n. ^e re~

— — • &
suiting curve of logOri/n,, n) versus log(U/U ) is shown in Figure 6.52.

*
The variation of U with the peak pressure in the contact ,is shown in

Figure 6.53. These two graphs provide a quick and simple. method of

determining the variation of the effective viscosity with rolling speed

for a given value .of maximum pressure. •

In this study of the role of compressional viscoelasticity in a

rolling contact system, 'it 'has been necessary to simplify the analysis
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as developed in Chapter III. Among these simplifications, the most

important are the use of a viscoelastic model with only a single

retardation time, and the assumption of a symmetrical viscosity dis-

tribution over the contact zone. It has also been necessary to esti-

mate the viscosity r\f and the bulk modulus K. as discussed in detail

in section 3.3. The simplifications could be eliminated in a more

detailed analysis. Such improvements are of little value,however,

unless they are matched by improved information about the physical

properties of the lubricant under the extreme conditions found in

bearings and other heavily loaded contacts.

6.6 Comparison of Thermal Theories

A comparison of several thermal analyses is shown in Figure 6.54.

These include the Johnson-Crook analysis and the author's numerical

analysis for the Maxwell-limit ing shear stress model and the hyper-

bolic liquid model (c = .25) corresponding to the B. E. L.-limiting

shear stress model. Friction coefficients.were also calculated"

neglecting the effects of compressional viscoelasticity. It is ap-

parent that these effects must be considered to predict an accurate

value of the maximum friction coefficient at the correct value of

sliding speed.

6.7 Summary and Conclusions

1. The results of this study demonstrate that values of friction

coefficient calculated according to the hyperbolic liquid model

(c = .25) have a good correlation with those determined by experi-

ment for the two lubricants, .Mobil XRM 109 F4 and Shell Turbo 33. A

similar correlation is obtained using c = .20 for Mobil XRM 177 F4.
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This change in the value of c might possibly be explained by an in-

creased film thickness due to the polymer additives in this fluid.

This hypothesis is described in section 6.2.

2. The effects of shear rate and time are separated and explained by

the two phenomena of shear viscoelasticity and compressional visco-

elasticity, respectively.

3. A unified description of the non-Newtonian shear rate dependence

of the viscosity is presented as a new hyperbolic liquid model. With

this model, the transition from the non-linear region to the shear

modulus dominated region is shown to be a smooth one. In the high-

slip region, where the friction is dominated by the shear modulus,

the variation of friction with load is very sensitive to the pressure

dependence of the shear modulus.

4. The friction coefficient rises to a maximum value with increasing

sliding speed and then decreases with any further increase in the

sliding speed. The coefficient is also found to increase with in-

creasing load and to decrease with increasing rolling speed and tem-

perature.

5. The effects of compressional viscoelasticity are developed in terms

of a simple model for the volume creep of a liquid following the ap-

plication of a pressure step. This model is used to determine the de-

pendence on rolling speed of the friction coefficient between highly

loaded rolling contacts. Curves are presented which show the vari-

ation with rolling speed of the effective viscosity of the lubri-

cant in the contact zone under isothermal conditions. Both the shape

of the curves and the values of effective viscosity are consistent

with the results of experimental measurements. The shape of the curves
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in this region is found to be nearly independent of the peak pressure

in the contact.

6. At very low values of rolling speed, in a region which is experi-

mentally inaccessible, the analysis predicts a very rapid variation

of effective viscosity with rolling speed. It is shown that, as a

consequence, the extrapolation of experimental data to zero rolling

speed can result in extremely large errors in the estimated values of

effective viscosity.

The results of this study suggest future work that will increase

the understanding of friction in elastohydrodynamic lubrication. The

most urgently needed research is in the field of fluid rheology. The

viscosity and density of lubricants at high pressures would be extremely

helpful, and shear and compressional relaxation experiments must be

performed to measure the fluid moduli at high pressures. This work

is needed to confirm and expand our understanding of the mechanism

of flow under EHD conditions.
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APPENDIX A

NUMERICAL INTEGRATION OF A

NON-EQUIDISTANTLY'TABULATED FUNCTION

A method of overlapping parabolas is employed to yield a 'second

order approximation to the integral of a non-equidistantly tabulated

function graphically represented in Figure A.I. ;

The function f(x) may be represented by a second order Taylor's

series expansion about x :

(x-x ) (x-O
f(x) = f(xn) + 1; ° f ' (xn) + 2, " f"(xn) + • • • ' (A.I)

Accordingly,

h2 ^
f n + l = fn + hnfn + 2* fn + - <A '2>

and •

h2
 v

f = f -h .f« +-^i f" + ••• (A.3)
n-1 n n-1 n 2 n

where £
n +l s f ( *n + l)

fn-l -««»-!>

h = (x , n-x )
n n+1 n

h .. = (x -x ,)
n-1 n n-1

Equations (A.2) and (A.3) are solved simultaneously to yield

2 2 2f = f " ~ f

n h .(h . + h ) n-1 h .h n h (h . + h ) n+1 v ' 'n-1 n-1 n' n-1 n n n-1 n

and

"hn (hn"hn-l5 hn-l
fn = h T(h . + h ) fn-l + "h Th fn + h (h + h ) f n + l

n-1 n-1 n n-1 n n n-1 n

(A.5)
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Figure A.I. Graphical representation of the non-equidistantly tabu-
lated function f(x).
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The shaded area of Figure A.I is calculated by integrating f(x)

-between the limits x and x ,. The function is approximated by a
n n+ 1

parabolic curve through f ., f and f . This integral is called
n-1 n n + 1

n+ 1
i1
1 n

Xn+l
f(x) dx

x
n

x
r n +V •? T

f + (x-x )f• + i(x-x ) f" dx
J L n n n 2 n njx
n

h2 h3
f + f (A-6)

The derivatives are evaluated by equations (A. 4) and (A. 5), resulting

in the following expression:

. . -h3 h (3h , + h )_n+ 1 _ _ n _ n n-1 n
In 6h .(h . + h ) n-1 6h . . nn-1 n-1 n n-1

h (3h . + 2h )
. n n- 1 _ n - - /A T\

+ 6(h , + h ) fn + l (A'7)

n-1 n

Similarly, the same integral may be calculated using a parabolic

approximation for f(x) through the points f , f , and f . Equa-

tion (A. 1) determines

f = f + (h + h )£» + 4(h . . + h )2f* (A.8)n + 2 n n + 1 nn 2 n+1 nn v

This second integral, „! , is defined by the Taylor's series ex-

pansion about x . :
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X

" \f .. + (x-x ^ J f ' . + KX-X J.1)2f" ,1
L n+l n+1 n+1 ^ n+1 n + lj

, .. . dx2 n j
X

n

2 3
li ti

= hf .. - -^ f« . + T11 f ,, (A. 9)n n +1 2 n + 1 6 n+ 1

The derivatives f" , , and f' ,, are evaluated in exactly the same
n + 1 n + 1

manner as determined equations (A.4) and (A.5). These results are sub-

stituted into equation (A.9) yielding

. . h (2h + 3h .) h (h + 3h .,)
Tn +1 _ n n n + 1 f , n n n + 1 ,.

2n ~ 6(h +h . .. n 6h , , n + 1n n+ 1) n+1

6 h , , ( h hn +1 n n

The best possible second order approximation of the integral is

the average of the two values just calculated; this is the method of

overlapping parabolas. Therefore, the average integral, I , is

defined as

n+1 ! f" Tn + 1 Tn 4I = -y ,1 + „!
n ^ L 1 n 2. n

where -I and „! are defined by equations (A.7) and (A.10),

respectively.

The integral of the function f(x) between the limits x = a and

x = b is defined by equation (A.12):

K b-2

n=a + 1

In order to keep the integral a function only of values in the

range of integration, the method of overlapping parabolas is not used

on the two extreme intervals.
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APPENDIX'S

NUMERICAL ANALYSIS

The FORTRAN IV coding of the friction analysis is listed in

this appendix. It is followed by examples.of data cards and the

optional subroutines.
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*
% •

*
*
*
*
*
*
*
*
*
*
*
*
*
*
* # *
*
*

*
#
*
*
*
*
#
*
9QOO
9001

9002

9003

*

*

PROGRAM CONTROLC INPUT «TAPE60= INPUT* OUTPUT* PUNCH)

PROGRAM CONTROL

CALCULATES THE FRICTION AND VELOCITY AND TEMPERATURE PROFILES
IN AN ELASTOHYDRODYNAMIC LUBRICATED CONTACT.

REQUIRED SUBPROGRAMS -
SUBROUTINE PRINTS . • -
FUNCTION VISC . r
FUNCTION ZERO
FUNCTION PS I . .
SUBROUTINE SECANT
FUNCTION EXPI
SUBROUTINE I NTEG • .
SUBROUTINE RTM I

PROGRAM SET UP FOR MOBIL DATA NEGLECTING CONVECTION
COMMON C«GC.LLLL
COMMON /CPSI/ GINF.ETAO«T»Y«H,U2U1 »NP«DUDYt I C.* TG . OMEGA «CH t AH
COMMON /CPSI OX XK1»XKO
COMMON /CO/ Q . .-
COMMON /CZERO/ I PTRANS« TRANS ( 6 )
COMMON /CPR/ ETA2
DIMENSION GINF(21 > .ETAOC21 ) « T C 21 > « Y ( 21 ) «DUDY<21 > »TG< 21 > *OMEGA(21
DIMENSION Q(21 )
DIMENSION CC2.3.21 ) «GC<21 »21 >
DIMENSION ETA2(21)
DIMENSION DTDY(21 ) .NEWT(21 ) .TRACTCFI20) ,SLIP{20)
EXTERNAL PS I
REAL LOGETA»NEWT
.INTEGER COUNT

PHYSICAL CONSTANTS AND DATA

IRDP MAXIMUM HERTZIAN PRESSURE / 1000. .,
IRDU MEAN ROLLING SPEED
I ROT LUBRICANT INLET TEMPERATURE
PHIT THERMAL REDUCTION FACTOR
AH. CH HYPERBOLIC LIQUID MODEL PARAMETERS
READ 9OO1 « IRDP* IRDU* IRDT*PH I T « AHtCH
FORMATC4XI3* 15, I4«F6.3« 10XF3. 1 «6XF4»2) .
I F < EOF ( 60 » 9999 . 9002
CONTINUE - '.
PUNCH 9003
FORMAT </)
PHZ=1OOO.#FLOAT< IRDP)
U=FLOAT( IRDU)
TOIL=FLOAT< IRDT)+460.
NP NUMBER OF GRID POINTS ACROSS THE HALF-FILM THICKNESS
NP=11
NH = NP - 1 ,
NIP NUMBER OF PRESSURE STEPS IN HALF CONTACT-LENGTH
NIP = 3

CONTR
* CONTR
*CONTR
*CONTR
•M-CONTR
*CONTR
*CONTR
*CONTR
#CONTR
*CONTR
*CONTR
*CONTR
*CONTR
#CONTR
*CONTR
*CONTR
*CONTR
*CONTR
*CONTR

» ^*OKITDt,VJIN | K

.*CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR

) CONTR
CONTR
CONTR
CONTR
CONTR
CONTR

. CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR

1

3
4
5

6
7
8
9
10
1 1
12
13
14
15
16
17
18
19
ort20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45

46
47
48
49
50
51
52
53
54
55
56
57

58
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*

*

•It

*

*

*
*
#

TW=TOIL
TMAX=950.
COND THERMAL CONDUCTIVITY OF THE LUBRICANT
COND=» 1*778. /3600.
CYLW CONTACT WIDTH OF THE DISKS
CYLW=0.25
Rlt R2 RADII OF THE DISKS
R1=R2=3.0
El« E2 ELASTIC MODULUS OF THE DISKS

El=E2=3O.E+6
POIS1« POIS2 POISSONS RATIO FOR THE DISKS
POIS1=POIS2=0.3
ALPHA VISCOSITY PRESSURE COEFFICIENT FOR THE LUBRICANT
ALPHA= 1.04E-4
BETA=5i 1E7*ALPHA
GAMMA=930«*ALPHA
DK THERMAL CONDUCTIVITY OF THE DISKS
DK=21 .7*778./3600.
DRHO DENSITY OF THE DISKS

DRHO=.2S3
DC SPECIFIC HEAT OF THE DISKS
DC=. 109*778. *12.
HERSA, HERSB CONSTANTS FOR THE HERSHEL VISCOSITY EQUATION
HERSA=8.974
HERSB=-3.2
NGRAPH REQUIRED NUMBER OF GRAPHS FOR EACH TEMPERATURE PROFILE
NGRAPH=0
MGRAPH REQUIRED NUMBER OF GRAPHS OF TRACTION COEF . VS SLIP
MGRAPH=1
PRNT=2HON GIVES ADDITIONAL OUTPUT FOR DEBUGGING PURPOSES
PRNT=3HOFF

INITIALIZATION AND BOUNDARY CONDITIONS

COUNT=0
1C = 1
DTDYC 1 )=0«0
Y( 1 )=0.0
TRACT=0.0
FLASH=0.0
PI=3. 1415927
DO 10 1=1 «NP
NEWTC I >= 10.*< 1 .-Y< I ) >+TW
IF (I.LT.NP) Y( 1+1 >=Y( I )+l./FLOAT(NH)

10 CONTINUE

.-POIS2*POIS2>/E2)

*
•*•

R=R1#R2/<R1+R2)

E=2 . / ( (1 . -POIS1*POIS1
B=4.*R/E#PHZ
FLASHK=0.24/SQRT< PI*PHZ*DK*DRHO*DC*U*R/E)
TRANS(1)=B/U/6.
TRANS(2)=B/U/6.
TRANS(3)=B/U/2.

CALCULATION OF LOAD

W=PHZ*PHZ*PI#(2./E)*R
PRINT 2 . P H Z « W » R » E

2 FORMAT(*1 CONTROL PHZ = *E15.8»* VJ = #E15.8«* R = *E15.8,

CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR

CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR
CONTR100
CONTR101
CONTR1O2
CONTR103
CONTR104
CONTR1O5
CONTR106
CONTR107
CONTR108
CONTR109
CONTR110
CONTR111
CONTR112
CONTR113
CONTR114
CONTR115
CONTR116

CONTR117

59
60
61
62
63
64

65
66
67

68
69
70
71
72
73
74
75
76
77

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
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1* = *E15.8>
#
*

*
*
*

*
#
*

*
*

CALCULATION OF HALF-FILM THICKNESS

ETAENT=10.**(HERSA+HERSB*ALOG10(TOIL-460. ) >*1 .45E-7
H=l .6*ALPHA**O.6*(ETAENT*U)**0.7*E**0.03*R**0.43/W**0. 13
H= 1 »2*H
H=PHIT*H
H=0.5*H •
PRINT i ,H«ALPHA,ETAENT.U«CH« AH
FORMAT(*OH = #E12.5»* ALPHA = *E12«5«* ETAENT = *E12.5i
1* U = *F6.«0«* CH = *F5.3»# AH = *F7«3)

SLIP LOOP

NSLIP=15
DATA (SLIPCIU)«IU=l»20)/.5«l.»2.t3.«4.»5».6.»8.«10««15.«20.130

1 • «50.«6C. «5*O.O/
DO 6000 IU=1»NSLIP
DATA <TRACTCF< IP) « IP=1 «20)/2O*0.0/
FLASH=FLASHK*TRACT#SLIP< IU>
PRINT 6, FLASH
FORMAT<* CONTROL FLASH = *E15.8)
U2U1=0.5*SLIP( IU)
PRINT 8. IU«SLIP< IU)
FORMAT(*1CONTROL IU = *I3«* SLIP = *E15»8)

HERTZIAN PRESSURE LOOP

TRACT=0.0
DO 5999 IP=1 «NIP
IPTRANS= IP
XB=(2.*FLOAT( IP>-1 • )/2 ./FLOAT (N IP )
P=PHZ*SQRT ( XB* ( a.-

SOLVE' MOMENTUM EQUATION

ITCOUNT=0
4 IF (PRNT.EQ.2HON) PRINT 44 t COUNT

44 FORMAT (*OCOUNT = *I3)
COUNT=0
DO 1 1 1= 1 tNP
IF ( ITCOUNT.EO.O.OR. ITCOUNT.GT. 10 > T(I)=NEWTtI)
IF ( ITCOUNT.GT. O. AND. ITCOUNT.LE. 10 } T ( I ) =0 .5* ( T ( I ) +NEWT ( I ) )

IF ( ITCOUNT.GT. 100 > GO TO 6003

IF <T( I ) .GT.TMAX) T(I)=TMAX
TW=TOIL+FLASH
GINF( I )= 1 .2*P/(2.52+.01333*(T( I 1-492. > )-l .45E4
IF (GINF( I ) .LT. 1 • ) GINF(I)=1.
CALCULATION OF STEADY-STATE VISCOSITY
ETEXP= ALPHA#P4- ( BETA + GAMM A*P ) # ( 680 . -T ( I ) ) /680 . /T ( I )

ETA2< I )=.62*EXP(ETEXP)*1 .45E-5
CALCULATION OF TIME-DEPENDENT VISCOSITY
ETAO( I )=VISC(P.ETA2( I ) . IVCODE)

11 CONTINUE
DUMMY=PSIO(0.0)
CALL SECANT<XKOtXKl «TAU«PSI t XK , .001 «500, I TERR >
IF (ITERR.EO.l) STOP

CONTR118
CONTR119
CONTR120
CONTR121
CONTR122
CONTR123
CONTR124

CONTR125
CONTR126
CONTR127
CONTR128
CONTR129

CONTR130
CONTR131
CONTR132
CONTR133

! «40CONTR134
CONTR135
CONTR136
CONTR137
CONTR138
CONTR139
CONTR140
CONTR141
CONTR142
CONTR143
CONTR144
CONTR145
CONTR146
CONTR147

CONTR148
CONTR149

CONTR150
CONTR151
CONTR152
CONTR153
CONTR154
CONTR155
CONTR156
CONTR157
CONTR158
CONTR159
CONTR160
CONTR161
CONTR162
CONTR163
CONTR164

CONTR165
CONTR166
CONTR167
CONTR168
CONTR169
CONTR170
CONTR171
CONTR172
CONTR173
CONTR174
CONTR175
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*
*
*

.IF (PRNT.EQ.2HON) PRINT AliTAU
.41 FORMAT<*OTAU = *E15.8)

'SOLVE ENERGY EQUATION

DO 500O 1=1,NP

Q(I)=-TAU*DUDYCI)/COND*H
5000 CONTINUE

IF <PRNT.EQ»2HON) CALL PR 1
DO 5010 1=2.NP
CALL INTEG1 (0.«Y< I )•Y.Q.NP.DTDYC I ) »C.GC«LLLL« I ERR)

501.0 IF(IERR.NE.O) PRINT 5O12. I ERR
5012 .FORM AT <# INTEGRATING O. IERR = #13)

DO 5O20 I=2»NP
CALL INTEG1 (0.,Y( I )•Y,DTDY»NPtNEWT< I ) «C«GC»LLLL» IERR)

5020. IF(IERR.NE.O) PRINT 5O22.IERR
5022 FORMATC* INTEGRATING DTDY. IERR = #13)

XK7=TW-NEWT<NP)
ITCOUNT=ITCOUNT+1
NEWT<1)=0.0
DO 5030 I=1,NP
NEWT(I)=NEWT<I)+XK7

5030 !IF(ABS(1.-(T(I)/NEWT(I)))»LT.O.001) COUNT=COUNT+1
IF(COUNT.NE»NP) GO TO 4

. .IF (IVCODE.NE.O) PRINT 5034
.5034 FORMAT<*O MINIMUM VISCOSITY REDUCTION*)

CALL PR1
PRINT 99
PRINT 5040. ( (NEWT( I > » I ) « 1 = 1 t NP >

5040 FORMAT(* NEW TEMP = *F7.2»* I = #14)
*
*
*

5999

6002
*
#
*

CALCULATION OF TRACTION

TRACT=TRACT+2.#B/NIP*TAU
CONTINUE
TRACTCFCIU)=TRACT/W
PRINT 6O02«TRACTCF(IU)
FORMAT(*OCONTROL TRACTCF(IU)

PLOT TEMPERATURE PROFILE

= *E15.8)

5050

5p51
5052
6000
6003

6001

6005

IF(NGRAPH.EQ.O) GO TO 6000
DO 5052 NGR=1«NGRAPH
PRINT 5050,SLIP(IU) . . .
FORMAT(#ltU2 - Ul) = #E15.8>
PRINT 99
CALL STPLT1 ( 1« NEWT « Y « NP t1H*•1 •1HY >
PRINT 5051
FORMATC 1H0.92X. 1 1 HTEMPERATURE)
CONTINUE
CONTINUE
PRINT 98
PRINT 6001.((TRACTCFCIU)»SLIP(IU))«IU=1»NSLIP)
FORMAT(# CONTROL TRACT = *E15.8«* U2-U1 = *E15.8>
PUNCH 6005. ( (SLIP( IU) »TRACTCF(IU> ) » IU=1.NSLIP)
FORMAT12F10.5)

PLOT TRACTION COEFFICIENT

CONTR176
CON TP-177
CONTR178
CONTR179
CONTR180
CONTR181
CONTR182
CONTR183
CONTR184
CONTR185
CONTR186
CONTR187
CONTR188
CONTR189
CONTR190
CONTR191
CONTR192
CONTR193
CONTR194
CONTR195
.CONTR196
CONTR197
CONTR198
CONTR199
C.ONTR200
CONTR201
CONTR202
CONTR2O3
CONTR2O4
CONTR205
CONTR206
CONTR207
CONTR208
CONTR2O9
CONTR210
CONTR211
CONTR212
CONTR213
CONTR214
CONTR215
CONTR216
CONTR217
CONTR218
CONTR219
CONTR220
CONTR221
CONTR222
CONTR223
CONTR224
CONTR225
CONTR226
CONTR227
CONTR228
CONTR229
CONTR230
CONTR231
CONTR232
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CONTR234
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IF(MGRAPH.EO.O) GO TO 6O13 CONTR235
DO 6O12 MGR=!.MGRAPH . • CONTR236
PRINT 98 CONTR237
CALL STPLT1<1,SLIP.TRACTCF.NSLIP«1H*.14,14HTRACTION COEF•) CONTR238
PRINT 601 1 • CONTR239

6011 FORMAT! 1 HO. 1OOX.7HU2 - Ul) • CONTR240
6012 CONTINUE CONTR241
6013 CONTINUE CONTR242
98 FORMAT(*1#) CONTR243
99 FORMAT<*O*> CONTR244

GO TO 9000 CONTR245
9999 CONTINUE CONTR246

STOP . CONTR247

CONTR248
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SUBROUTINE PRINTS PRINT 1
COMMON /CPSI/ GlNF.ETAU,T»Y«HtU2Ul «NP«DUDY,IC»TG•OMEGA, CH»AH PRINT 2
COMMON /CO/ Q PRINT 3
COMMON /CPR/ ETA2 PR I NT 4
DIMENSION GINF(21>«ETAO(21}.1(21>»Y(21>.DUDY(21>«TG(21)«OMEGA(21) PRINT 5
DIMENSION Q(21) PRINT 6
DIMENSION ETA2C21) PRINT 7
ENTRY PR1 PRINT 8
PRINT 1 PRINT 9

1 FORMAT(*0 I Y(I) T(I) GINF(I) TG(I> ETAO(I) PRINT 10

1 ETA2(I) OMEGA(I) DUDY(I) O(I)#) PRINT 11
PRINT 99 PRINT 12
PRINT 3. ( CI • Y( I >.T( I ).GINFC I) .TGC I > «ETAO( I >»ETA2( I ) ,OMEGA( I) .DUDYCPRINT 13

1 I ) «O( I ) ) « 1 = 1«NP> PRINT 1A
3 FORMAT!* * I 2.F7.2*F9.2«7(2XE1 1•4) ) PRINT 15
99 FORMAT(*0*> PRINT 16

RETURN PRINT 17
END PRINT 18
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FUNCTION VISC(P«ETA2»CODE)

FUNCTION VISC

*
*
#
•*•
*
#
#
#
*
*
*
*
#
*
*
*

#
*
*

CALCULATES THE TRANSIENT VALUE OF THE LUBRICANT VISCOSITY.
*

ARGUMENTS -
P PRESSURE
ETA2 EQUILIBRIUM VALUE OF VISCOSITY
CODE ERROR PARAMETER

REQUIRED SUBPROGRAMS -
FUNCTION ZERO
FUNCTION EXPI

COMMON STORAGE -
THE VARIABLE TAUP MUST BE IN LABELED COMMON CV1SC.

ERROR INDICATIONS -
CODE = 0 INDICATES NO ERROR.
CODE = 1 INDICATES THE TRUE TRANSIENT VISC'

RANGE OF THE PROGRAM AND THE MAXIMUM POSSIBLE
VISCOSITY REDUCTION WAS ASSUMED.

* * * # * . * * * * * * * * * # # * # * * # # * * #

COMMON /CVISC/ TAUP
EXTERNAL ZERO
REAL KF
INTEGER RTMIERR.CODE
PRNT=3HOFF
CODE=0
KF=3.5E5+9.#P
TAUP=50.*ETA2/KF
IF <PRNT.EO.2HCN) PRINT 81«KF«TAUP«P.ETA2

81 FORMAT(* VISC KF = *E13.6»# TAUP = *E 1
1* ETA2 = *E13.6>

TEST OF RANGE

IF (ZEROC-.Ol)*ZERO(-20.>.GT.O.) GO TO 60

ROUGH BOUNDING OF ZERO

IF (ZEPO(-5»>*ZERO(-20«>.GT«O») GO TO 30
ROOT IS BETWEEN -20. AND -5»
XLI=-20.
XRI=-5.
GO TO 5O
ROOT IS BETWEEN -5. AND -«01

3O ICOUNT=0
XLl=-5.
XR I =-3.
ZEROXRI=ZERO(XRI)
ZEROXLI=ZERO(XL I )

40 IF (ZEROXRI*ZEROXLI.LE.O.) GO TO 50

VISC

•it-vise
*vtsc
*visc
*VISC

T VISCOSITY. *VISC
*VISC
•K-VISC
*VISC
*VISC
*VISC
*VISC
••wise
•it-ViSC

•it-VISC

*VISC
*VISC

ISC. *VISC
•it-VISC

•it-VISC

•it-vise
TY IS OUT OF THE *VISC
POSSIBLE *VISC

*VISC
•it-VISC

# * * * * * # * * # v i s c
*VISC
VISC
visc
vise
VISC
VISC
VISC
VISC
VISC
VISC

3.6,* P = #E13.6, VISC
VISC
VISC
vise
vise
VISC
VISC
VISC
VISC
VISC
VISC
VISC
VISC
VISC
VISC
VISC
VISC
VISC
VISC
VISC
VISC

1
2
3
4

5
6
7
8
9

1 0
1 1
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27
28
29

30
31
32
33
34
35
36
37

38
39

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

58
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•*•
*

*
*
*

*
#
*

IF (XRI.GT.-.O1) GO TO 60
XLI=XRI
XRI=XRI/3«
ZEROXLI=ZEROXRI
ZEROXRI=ZERO(XRI) Y

ICOUNT=ICOUNT+1
IF (ICOUNT.GT.100) GO TO 92
GO TO 40

PRECISE DETERMINATION OF ZERO

50 CALL RTMI (SI «ZEROS I«ZERO«XLI»XRI«.O5«lOOtRTMIERR)
IF (RTMIERR.NE.O) GO TO 90
VISC=ETA2*EXP(SI)
RETURN

OUT OF RANGE

60 IF (ZERO(-2O.).LT.O,) GO TO 70

NEGLECT VISCOSITY REDUCTION OF LESS THAN 1. PER CENT

VISC=ETA2
RE TURN

MAXIMUM VISCOSITY REDUCTION

70 VISC=ETA2*EXPf-20.)
CODE=1
RETURN

ERROR MESSAGES

90 PRINT 91»RTMIERR
91 FORMAT(* VISC ERROR IN RTMI ERR = *I2)

STOP . . . . .
92 PR I NT 93 '
93 FORMAT<* VISC MAX NO. OF ITERIONS EXCEEDED IN PRERTMI

.STOP
END

PROC.*)

vise
vise
vise
vise
vise
vise
.vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

78
79
80
81
82
83
84
85
86
87 (
88
89
90
91
92
93
94

95
96
97
98
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FUNCTION ZERO(SI) ZERO 1
* * # # * * * # # * * * * * * * * • » * # * # * * * * * * # * * * # « # * ZERO 2

* . *ZERO 3
* FUNCTION ZERO *ZERO 4
* . - . . . *ZERO 5
* ' ' *ZERO 6
* THIS EXTERNALLY SUPPLIED FUNCTION IS NEEDED BY SUBROUTINE RTMI *ZERO 7
*, , CALLED FOR IN FUNCTION VISC. IT MYST BE PRESENT WHEN A TIME- *ZERO 8
*' DEPENDENT VISCOSITY FUNCTION IS USED. *ZERO. 9
* " *ZERO 10
* . # * * ' # * * * * » * * * # * * * * # * * * * * * * * * # * * # * * # • * ZERO 1 1

COMMON /CZERO/ IPTRANS«TRANS(6) " ZERO 12
COMMON /CVISC/ TAUP ZERO 13
INTEGER EXPIERR . ZERO 14
PRNT=3HOFF ZERO 15
IF (SI.GE.-2O.) GO TO 10 ZERO 16
SI.= -20. ZERO 17
PRINT 20 ZERO 18

2O FORMAT(*ZERO SI HAS BEEN READJUSTED TO -20«#) ZERO. 19
" 1O CONTINUE ZERO 20

CALL EXPICEISItSl«EXPIERR> ZERO 21
IF (EXPIERR.NE.O) GO TO 90 ZERO 22
ZERO=TRANS(IPTRANS)+TAUP#<EIS1-O.O5*EXP<SI>1 . ZERO 23
IF (PRNT.EQ.2HON) PRINT 81 •SI «EI SI tTRANS( IPTRANS) «ZERO ' ZERO 24

81 FORMATC* ZERO SI =*E13.6v* EISI = *E13.6»* TRANS = *E13.6«ZERO 25
1* ZERO = *E13.6) " ZERO. 26
RETURN . .ZERO 27

*. ZERO 28
* ERROR MESSAGE ZERO 29
*. ZERO 30

90 PRINT 91«EXPIERR ' 'ZERO 31
91 FORMAT(* ZERO ERROR IN EXPI ERR = *I3) ZERO 32

STOP ZERO 33
END ' ' ZERO 34

181



* * H

*

*
.JJ.

*

*
*

*

*

.FUNCTION PSI

THIS FUNCTION SUBROUTINE SUPPLIES THE RHEOLOGICAL MODEL
FOR THE LUBRICANT.
HYPERBOLIC MODEL*

IN THIS CASE, WE ARE USING THE

PSI 1
PSI 2
*PSI 3
*PSI 4
*PSI 5
*PSI 6
*PSI 7
*PSI 8
*PSI 9
*psr 10
PSI 11

COMMON C,GC,LLLL PSI 12
COMMON /CPSI/ GINF,ETAO,T«Y»H»U2U1«NP«DUDY,IC«TG»OMEGA,CH«AH PSI 13
COMMON /CPSIO/ XK1,XKO PSI 14
DIMENSION GINF(21),ETAO(21)|T(21),Y(21)«DUDY<21),TG(21)tOMEGA(21) PSI 15
DIMENSION C(2,3«21)«GC(?lt21) PSI 16
REAL INTG PSI 17
PRNT=3HOFF PSI 18

100 CONTINUE PSI 19
IF (PRNT.EQ.2HON) PRINT 200»TAU PSI 20

200 FORMAT(*OTAU = *E15.8) PSI 21
DO 210 1=1,NP PSI 22
TG( I)=TAU/GINF( I ) PS I 23
IF(TG(I).LT.CH) GO TO 205 PSI 24
TAU=0»99999999*CH*GINF( I) PS I 25
GO TO 100 PSI 26

2O5 OMEGA(I)=CH*TG(I)*(AH#CH*TG(I)+(TG(I)-CH)*(TG(I)-CH))/(CH-TG(I)}#*PSI 27
13 PSI 28
DUDY(I>=GINF(I>/ETAO(I>*OMEGA<I)*H PSI 29

210 CONTINUE PSI 30
GO TO (220,230),1C PSI 31

220 CALL INTEG (O.«1.«Y,DuDY«NP«INTGtC<GC«LLLL«I ERR) PSI 32
1C = 2 PSI 33
GO TO 240 PSI 34

230 CALL INTEG2(0., 1 «,Y»DUDY«NP«INTG»C«GC,LLLL»I ERR> PSI 35
240 IF (IERR.NE.O) PRINT 241,IERR»TAU PSI 36
241 FORMAT(* IERR = *I4«* AT TAU = *E15»S) PSI 37

PSI=ALOG1C( INTG/U2UM PSI 38
IF (RRNT.EQ.2HON) PRINT 250«INTG»PSI PSI 39

250 FORMAT(# INTG = *E15.S«* PSI = *E15.8) PSI 40
TDUDY=0.0. PSI 41
DO 310 1=1,NP PSI 42

310 TDUDY=TDUDY+DUDY( I > PSI 43

ADJ=U2U1*FLOAT(NP>/TDUDY PSI 44
IF (ADJ.GT.0.99) GO TO 390 PSI 45
DO 320 I=1,NP PS 46

320 DUDY(I>=ADJ*DUDY(I) PS 47
390 CONTINUE PS 48

RETURN PS 49
ENTRY PSIO PS 50
XK1=0.20#CH*GINF< 1 ) PS 51
XKO=0.5*XK1 PSI 52
PSI=0»0 PSI 53
RETURN PSI 54
END PS I 55
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SUBROUTINE SECANTCXO.Xl«XFINAL«FUNC«XtCONV»MAX
• i t * * * * * * * * * * * * * * * * * * * * * * * *

SUBROUTINE SECANT

SECANT METHOD SOLUTION OF FUNC(X) = O,
*** ALLOWS POSITIVE X ONLY

ARGUMENTS -
XO. XI TWO INITIAL GUESSES OF ROOT
XFINAL FINAL ESTIMATE OF ROOT
FUNC EXTERNALLY SUPPLIED FUNCTION FUNC
X PARAMETER OF FUNCTION FUNC
CONV TEST FOR CONVERGENCE
MAX IT MAXIMUM NUMBER OF ITERATIONS TO FIND
IERR ERROR PARAMETER

REQUIRED SUBPROGRAMS -
FUNCTION FUNC(X)

COMMON STORAGE - NONE

ERROR INDICATIONS -
IERR = 0 INDICATES NO ERROR.
IERR = 1 INDICATES THE MAX. NO.

EDWARD G. TRACHMAN

OF ITERATIONS

M.E

PRNT=3HOFF
IT = 0
IERR=0

XMIN=-1.E99
XMAX= 1.E99
FXMIN=-2.E99
FXMAX= 2.E99
FO=FUNC(XO)
IF (FO.LT.O.) XMIN=XO
IF (FO.LT.O.) FXMIN=FO
IF (FO.GT.O.) XMAX=XO
IF (FO.GT.O.) FXMAX=FO
Fl=FUNC(X1)

1 IF (Fl.LT.O..AND.X1.GT.XMIN) GO TO 50

51 IF (Fl.GT.O..AND.X1.LT.XMAX) GO TO 52
53 IF (PRNT.EO.2HON) PRINT 2«XOtX1
2 FORMAT(* SECANT XO = *E15.8«*

IF (ABS(F1).LT.CONV) GO TO 10
IT = IT + 1
IF ( IT.GT.MAXIT) GO TO 99
SLOPE=(F1-FO}/(x1-XO)
CLOSE=DIM(ABStFO),ABS(F1)>

IF (PRNT.EQ.2HON) PRINT 80»XO«X1«FO,F1iSLOPE
80 FORMAT(COSECANT XO = *E15.3«# XI = #E15.8,*

1= #E15.8,* SLOPE = *E15.8)
IF (CLOSE.GT..OOO1 ) 5,6
USE XI

5 DELX=-F1/SLOPE

XI = *E15.8)

1T«IERR> SECNT 1
* * # * * * * * • * * SECNT 2

*SECNT 3
*SECNT 4
*SECNT 5
*SECNT 6
*SECNT 7
*SECNT 8
*SECNT 9
*SECNT 10
*SECNT 11
*SECNT 12
*SECNT 13
*SECNT 14
*SECNT 15

SOLUTION *SECNT 16
*SECNT 17
*SECNT 18
*SECNT 19
*SECNT 20
*SECNT 21
*SECNT 22
*SECNT 23
*SECNT 24
*SECNT 25

WERE EXCEEDED *SECNT 26
*SECNT 27

i DEPT. 492-5640 *SECNT 28
*SECNT 29

: * • * # * * * * * * SECNT 30

SECNT 31
SECNT 32
SECNT 33
SECNT 34
SECNT 35
SECNT 36
SECNT 37
SECNT 38
SECNT 39
SECNT 40
SECNT 41
SECNT 42
SECNT 43
SECNT 44

SECNT 45
SECNT 46
SECNT 47

SECNT 48
SECNT 49
SECNT 50
SECNT 51
SECNT 52
SECNT 53

FO = *E15.8.* Fl SECNT 54
SECNT 55
SECNT 56
SECNT 57
SECNT 58
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XO=X1 SECNT 59
FO=F1 SECNT 60
GO TO 7 SECNT 61
USE XO SECNT 62

6 DELX=-FO/SLOPE SECNT 63
7 X1=XO+DELX SECNT 64

* ALLOWS POSITIVE x ONLY SECNT 65
IF (Xl.LE.O.) Xl=l.E-8 SECNT 66
IF (Xl.GT.XMIN) GO TO 8 .SECNT 67
X1=XMIN SECNT 68
F1=FXMIN SECNT 69
GO TO 1 SECNT 70

8 IF (Xl.LT.XMAX) GO TO 9 SECNT 71
X1=XMAX SECNT 72
F1=FXMAX SECNT 73

- ,GO TO 1 SECNT 74
-9 F1=FUNC(X1) SECNT 75

GC TO J SECNT 76

1.0 XFINAL=X1 SECNT 77
IF (RRNT.EQ.2HON) PRINT 11.XFINAL•F1 . IT SECNT 78

11 FORMAT(*GSECANT XFINAL = *E1S.8«* F(XFINAL) = *E15.8t# IT = SECNT 79
1*14.) SECNT 80
RETURN SECNT 81

50 XMIN=X1 .. SECNT 82
FXMIN=F1 SECNT 83
GO TO 51 SECNT 84

52 XIV!AX=X1 SECNT 85
FXMAX=F1 SECNT 86
GO TO 53 SECNT 87

99 PRINT 100 SECMT 88
100 FORMAT(# SECANT MAXIMUM NUMBER OF ITERATIONS EXCEEDED*) . SECNT 89

IERP=1 SECNT 90
-RETURN SECNT 91
END SECNT 92
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SUBROUTINE EXPI <RES«X, IERR)

SUBROUTINE EXPI

COMPUTES THE EXPONENTIAL INTEGRAL FOR NEGATIVE ARGUMENTS.
IN THE RANGE -20 TO ZERO.

FOR X EQUAL TO 0 THE RESULT VALUE IS SET TO 1.E75.
FOR X LESS THAN -20 OR GREATER THAN ZERO THE CALCULATION IS
BYPASSED AND THE ARGUMENT REMAINS UNCHANGED.

THE EXPONENTIAL INTEGRAL IS DEFINED AS THE
RES INTEGRAL <EXP<-T>/T, SUMMED OVER T FROM x TO INFINITY)*

A POLYNOMIAL APPROXIMATION is USED FOR ARGUMENTS IN THE
RANGE -5 TO ZERO.
REF. LUKE AND WIMP, -JACOB I POLYNOMIAL EXPANSIONS OF A
GENERALIZED HYPERGEOMETR 1C FUNCTION OVER A SEMI- INF I Nl TE RANGE-,
MATHEMATICAL TABLES AND OTHER AIDS TO COMPUTATION,
VOL. 17, 1963, ISSUE 84, PP« 395-404.

AN EXPONENTIAL APPROXIMATION IS USED FOR ARGUMENTS IN THE
RANGE -2O TO -5.

ARGUMENTS -
RES RESULT VALUE.
X ARGUMENT OF EXPONENTIAL INTEGRAL.
IERR RESULTANT ERROR PARAMETER.

REQUIRED SUBPROGRAMS - NONE

COMMON STORAGE - NONE

ERROR INDICATIONS -
IERR = 0 INDICATES NO ERROR.
IERR = 1 INDICATES X IS LESS THAN -20.
IERR s 2 INDICATES X IS POSITIVE.

EDWARD G. TRACHMAN M.E. DEPT. 492-5640

TEST OF RANGE

IERR=0
IF (X»GT«0.) GO TO 60
IF (X.GT.-5.) GO TO 35
IF (X»LT.-20.) GO TO 55

ARGUMENT IS BETWEEN -20 AND -5.

C=-l .094 14E-3/3.**-5
C=-2.65876020E-01
RES=C*3.*#X
RETURN

ARGUMENT IS BETWEEN -5 AND ZERO.

EXPI

*EXPI
*EXPI

»EXPI
*EXPI
*EXPI
*EXPI
•ftEXPI
*EXPI
*EXPI
•ftEXPI
*EXPI
*EXPI
*EXPI
*EXPI
*EXPI
*EXPI

i *EXPI
*EXPI
*EXPI
#EXPI
*EXPI
*EXP1
*EXPI
*EXPI
*EXPI
*EXPI
*EXPI
*EXPI
*EXPI
ftEXPI
*EXPI
*EXPI
*EXPI
•ftEXPI
*EXPI
*EXPI
*EXPI
*EXPI

» O VO TEXPI
EXPI
EXPI
EXPI

EXPI
EXPI
EXPI
EXPI
EXPI
EXPI
EXPI
EXPI
EXPI
EXPI
EXPI
EXPI
EXPI

1
2
3
4

6
7
8
9

10
1 1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
f, o42?
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
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* EXPI 59
35 X=-X EXPI 60

IF(X> 40«50«40 EXPI 61
40 RES=-ALOG(ABS(X))-((((({«(((((.1 03 1760?E-11*X-.15798675E-10)#X+ EXPI 62

1.16826592E-9)*X-.219156Q9E-8)*X+.27635830E-7)*X-.30726221E-6)*X+ EXPI 63
2.3099604OE-5)*X-.28337590E-4)#X+«231483Q2E-3)*X-»0016666906>*X+ EXPI 64
3.0 10416662>#X-.0555?>5520>*X + .25)*X-1 .O)*X-.5772l566 EXPI 65

RES=-RES EXPI 66
X=-X EXPI 67
RETURN EXPI 68

* EXPI 69

* ARGUMENT IS EQUAL TO ZERO. EXPI 70
* EXPI 71

50 RES=1.E75 EXPI 72
RES=-RES EXPI 73
X=-X EXPI 74
RETURN EXPI 75

* EXPI 76
* ARGUMENT IS LESS THAN -20. EXPI 77
* . EXPI 78

55 IERR=1 EXPI 79
RETURN EXPI 80

* EXPI 81

* ARGUMENT IS POSITIVE. EXPI 82
* EXPI 83

60 IERR=2 ' EXPI 84
RETURN EXPI 85
END EXPI 86
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SUBROUTINE INTEG(A«B.X«FtNP«VALUE.C.GC«L» IERR)

SUBROUTINE INTEG

INTEGRATES THE NON EQUI D I STANTUY TABULATED FUNCTION F(X(IJ)
BETWEEN THE LIMITS A AND B» WHERE A OR B MUST EQUAL F(X(1)J.

A MODIFIED METHOD OF OVERLAPPING PARABOLAS IS EMPLOYED.

ENTRY POINTS -
INTEG FIRST TIME SUBROUTINE IS CALLED AND

WHEN NEW ABSCISSAS ARE USED.
INTEG1 WHEN NEW LIMITS OF INTEGRATION ARE USED.
INTEG2 WHEN USING THE SAME ABSCISSAS AND

LIMITS OF INTEGRATION AS THE LAST CALL.

ARGUMENTS -
A LOWER LIMIT OF INTEGRATION.
B UPPER LIMIT OF INTEGRATION.
X ARRAY OF ARGUMENT VALUES. MUST BE MONOTON ICALLY

INCREASING AND MUST BE DIMENSIONED NP.
F ARRAY OF FUNCTION VALUES* MUST BE DIMENSIONED NP.
NP NUMBER OF POINTS. NP MUST BE GREATER THAN 3.
VALUE RESULTANT VALUE OF THE INTEGRATION.
C. GC WEIGHTING FUNCTIONS PASSED TO THE MAIN PROGRAM

FOR STORAGE.
L LIMITS OF INTEGRATION PASSED TO THE MAIN PROGRAM

FOR STORAGE.
IERR RESULTANT ERROR PARAMETER.

REQUIRED SUBPROGRAMS - NONE

COMMON STORAGE - c

THE WEIGHTING FUNCTIONS C AND GC ARE STORED IN THE MAIN PROGRAM
AND REQUIRE THE FOLLOWING DIMENSION STATEMENT WHERE D.GE.NP.

DIMENSION C(2»3«D).GC(D«O)

ERROR INDICATIONS -
IERR = 0 INDICATES NO ERROR.
IERR = 1 INDICATES NP IS LESS THAN 4.
IERR a 2 INDICATES THE LIMITS OF INTEGRATION ARE NOT AT NODES

OR ARE OUT OF THE RANGE OF THE TABLE.

EDWARD G. TRACHMAN M.E. DEPT. 492-5640

fr*************.***.***-*-*****-***.*..***
DIMENSION X(NP) ,F(NP> »C(2.3«NP> »GC(NP«NP)
DIMENSION H( 100)

NP MUST BE GREATER THAN 3

IF (NP.LE.3) GO TO 96

CALCULATION OF INTERVALS OF X

NH=NP-1

INTEG

* I NTEG
*INTEG
* I NTEG
* I NTEG
* I NTEG
* I NTEG
* I NTEG
* I NTEG
* I NTEG
* I NTEG
* I NTEG
*INTEG
* I NTEG
*INTEG
* I NTEG
* I NTEG
* I NTEG
*INTEG
* I NTEG
* I NTEG
* I NTEG
* I NTEG
* I NTEG
* I NTEG
* I NTEG
* I NTEG
* I NTEG
* I NTEG
* I NTEG
* I NTEG
* I NTEG
* I NTEG
* I NTEG
* I NTEG
* I NTEG
* I NTEG
* I NTEG
* I NTEG
* I NTEG
* I NTEG
* I NTEG
'*INTEG
* I NTEG
* I NTEG
* I NTEG
* INTEG

INTEG
INTEG
INTEG
INTEG
INTEG
INTEG
INTEG
INTEG
INTEG
INTEG

1

2
3
4

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
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DO 10 1=1«NH
10 H( I )=X( 1 + 1 >-X( I )

DO 20 1=1«NH
IF ( I.EQ. 1 ) GO TO

#.
*

15

30

61

65

66

•x-
*
•x-

15

DEFINE COEFFICIENTS OF FIRST PARABOLA

C( 1 « 1 . I ) =-<H< I ) )**3/(6«*H< 1-1 >*(H< 1-1 >+H< I ) > >
C< 1 ,2. I ) =H( I )*(3.*H< 1-1 >+H< 1 > )/<6.*H< 1-1 M.
C( 1 «3« I > =H< I >*(3.*H< 1-1 )+2.*H( I ) )/(6.#<H( 1-1 >+HC I > M
CONTINUE
IF (I.EQ NH) GO TO 20

CA=C(1,I-L+2.L)
CB=C(2,I-L+1.L)

DEFINE COEFFICIENTS OF SECOND PARABOLA

C<2« 1 » I ) = H< I >*(2»*H< I )+3.*H< 1 + 1 ) )/(6.*(H( I >+H< I-t-1 ) ) ')
C<2.2» I ) =H< I )*<H< I )+3.*HC 1 + 1 ) )/<-6..*H( 1 + 1 ).)
C(2.3«I)=-(H(I) )**3/(6«*H( 1 + 1 )*(H.C I >.+H< 1 + 1 >.) )
CONTINUE

DEFINE GROUPED COEFFICIENTS

DO 61 L= 1 «NP
DO. 6 1 1 = 1 « NP
GC< I tl_) =0.0
GC( 1 « 1 )=C(8< 1 • 1 ) . .
GC(.2« 1 >=C (2»2. 1 )
GC( 3« 1 )=C (2.3, 1 ) . .
NPM?=NP-2
D O 6 5 L = 2«NPM2 . . . . . . .
LP2=L+2
DO 65 I=1«LP2
CA=0.0
CB=0.0
IF ( I-L+2.GT.O. AND. I-L+2.LT.4)
IF{ I-L+1 .GT.O.AND. I-L+1 .LT.4)
G.C { I «L) =GC( I tl_-l > + 0.5#(CA+CB)
NPM3=NP-3
DO 66 1=1 .NPM3
GC ( I « NP- 1 } =GC ( I « NP-2 >
GC ( NP-2 « NP- 1 > =GC ( NP-2 » NP-2 ) +C ( 1 • 1 » NP- 1 )
GC ( NP- 1 « NP- 1 ) =GC ( NP- 1 • NP-2 > +C ( 1 « 2 • NP- 1 )
GC <NP«NP-1 >=GC(NP«NP-2)+C< 1 .3»NP-1 )

ENTRY INTEGl

SETTING LIMITS OF INTEGRATION

IF (B-A) 40.92.30

BIS GREATER THAN A

30.ALIM = A
BLIM = B
SIGN = 1.0
GO TO 50

A IS GREATER THAN B

188-

1NTEG 59
INTEG 60
INTEG 61
INTEG 62

.INTEG 63
INTEG 64
INTEG 65
INTEG 66
INTEG 67
INTEG 68
INTEG 69
INTEG 70
INTEG 71
INTEG 72
INTEG 73
INTEG 74
INTEG 75
INTEG 76
INTEG 77
INTEG 78
INTEG 79
INTEG 80
INTEG 81
INTEG 82
INTEG 83
INTEG 84
INTEG 85
INTEG 86
INTEG 87

INTEG 88
INTEG 89
INTEG 90
INTEG 91
INTEG 92
INTEG 93
INTEG 94
INTEG 95
INTEG 96
INTEG 97
INTEG 98
INTEG 99
INTEG100
INTEGlOl
INTEG102
INTEG103
INTEG104
INTEG105
INTEG1O6
INTEG107
INTEG108
.INTEG109
INTEG1 10
INTEG111
INTEG112
INTEG113
INTEGl14
INTEGl15
INTEGl16
INTEGl17



•ft

*
*

*•ft

*

•ft
•ft

•ft
•ft

*

•ft
•ft

40 ALIM a B

SLIM a A
SIGN =-1.0 .

50 NH=NP-1

1 1 = 0
DO 59 1=1 tNP

IF (I 1-2) 55t57,599

55 X X X X = A L I M - X < i )
IF (ABS(XXXX).LT..0000000001> GO TO 56

IF (XXXX.GT.0.0) 57»97

5 6 IALIM = 1

1 1 = 1 1 + 2
57 IF (II .EQ.l) GO.TO 59 .

XXXX=BLIM-X(NP+1-I)
IF ( A B S f X X X X ) . L T . . O O O O O O O O O 1 > GO TO 58

IF (XXXX.GT.0.0) 97i59
58 I B L I M = NP+l - I

11 = 11 + 1
59 CONTINUE

599 IF (I1.NE.3) GO-TO 97 -
IF ( IALIM.NE.1> GO TO 97
L=IBLlM-1

ENTRY INTEG2

CALCULATION OF INTEGRAL OVER SUBINTERVAL

VALUE = 0.0
LP2=L+2
IF CLP2.GT.NP) LP2=NP
DO 80 1=1»LP2

80 VALUE=VALUE+GCCI»L)#F(I)

CALCULATE THE FINAL VALUE OF THE INTEGRAL

VALUEaSIGN*VALUE

SET ERROR PARAMETER FOR NORMAL RETURN

92 IERR = 0

RETURN

SET ERROR PARAMETER FOR TOO FEW POINTS

96 IERR a 1

RETURN

SET ERROR PARAMETER FOR A AND/OR B NOT AT NODES
OR OUT OF RANGE OF THE TABLE

97 IERR a 2
RETURN
END

INTEGl18
INTEGl19
INTEG120
INTEG121
INTEGl22
INTEG123
INTEGl24
INTEG125
INTEGl26
INTEGl27
INTEGl28
INTEGl29

INTEG130
INTEGl31
INTEGl32
INTEGl33
INTEGl34
INTEGl35
INTEGl36
INTEG137
INTEGl38
INTEG139
INTEG140
INTEGl'41
INTEG142
INTEG143
INTEG144
INTEG145
INTEG146
INTEG147
INTEG148
INTEG149
INTEG150
INTEG151

INTEG152
INTEG153
INTEG154
INTEG155
INTEG156
INTEG157

INTEG158
INTEG159
INTEGI60
INTEG161
INTEG162
INTEG163
INTEG164
INTEG165
INTEG166
INTEG167
INTEG168
INTEG169

INTEG170
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TYPICAL DATA CARDS

0000000001111111111222222222233333333334444444444555555555566666666667777777777b
12345678901X234567890123456789012345678901234567890123456789012345678901234567890

16 115 500 175
16 154 500 175
16 200 500 175
16 250 500 220
16 115 1000 175
16 154 1000 175
16 200 1000 175
16 200 1000 220
16 115 500 175
16 154 500 175
16 200 500 175
16 250 500 175
16 250 500 220
16 115 1000 175
16 154 1000 175
16 250 1000 220

.81

.81

.81

.89

.58

.58

.58

.72

.81

.81

.81

.81

.89

.58

.58

.72

AH=0.0
AH=0.0
AH=0.0
AH=0.0
AH=0.0
AH=0.0
AH=0.0
AH=0.0
AH=0 . 0
AH=0.0
AH=0.0
AH=0.0
AH=0.0
AH=0.0
AH=0.0
AH=0 . 0

CH=0.25
CH=0.25
CH=0.25
CH=0.25
CH=0.25
CH=0.25
CH=0.25
CH=0.25
CH=0.20
CH=0.20
CH=0.20
CH=0.20
CH=0.20
CH=0.20
CH=0.20
CH=0.20

PROG (MOBIL)
PROG (MOBIL)
PROG (MOBIL)
PROG (MOBIL)
PROG (MOBIL)
PROG (MOBIL)
PROG (MOBIL)
PROG (MOBIL)
PROG (MOBIL)
PROG (MOBIL)
PROG (MOBIL)
PROG (MOBIL)
PROG (MOBIL)
PROG (MOBIL)
PROG (MOBIL)
PROG (MOBIL)

vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise
vise

23J71
23J71
23J71
23J71
23J71
23J71
23J71
23J71
23J71
23J71
23J71
23J71
23J71
23J71
23J71
23J71
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#
Jt

•*
*
*
*
*
*
*
*
*
*
*
*
*
#
*
* * *
*
*

*
»
•X-

9QOO
9001

9Q02

9o03

*

*

#

#

PROGRAM CONTROL ( INPUT , TAPE60= I NPUT « OUTPUT « PUNCH)

PROGRAM CONTROL

CALCULATES THE FRICTION AND VELOCITY AND TEMPERATURE PROFILES
IN AN ELASTOHYDRODYNAMIC LUBRICATED CONTACT. THIS VERSION OF
THE PROGRAM INCLUDES THE EFFECTS OF CONVECTIVE HEAT TRANSFER.

REQUIRED SUBPROGRAMS -
SUBROUTINE PRINTS
FUNCTION VISC
FUNCTION ZERO
FUNCTION PS I
SUBROUTINE SECANT
FUNCTION EXPI
SUBROUTINE INTEG
SUBROUTINE RTM I

* * * * * • » * * * * * * * * * # * * # • * ! • • » # • » * * # # * * # • »

PROGRAM SET UP FOR MOBIL XRM OIL WITH CONVECTION
COMMON C«GCtLLLL
COMMON /CPSI/ GINF»ETAO«T« Y.H»U2U1 »NP«DUDY. I C » TG « OMEGA « CH« AH
COMMON /CPSIOX XK1.XKO
COMMON /CO/ O
COMMON /CZERO/ IPTRANS« TRANS ( 6.)
COMMON /CPR/ ETA2
DIMENSION GINF (21 } .ETAOC2U «T < 24 ) « YC 21 > «DUDY(21 ) «TG( 21 ) « OMEGA (
DIMENSION Q( 21 )
DIMENSION C(2«3.21)«GC<21«21)
DIMENSION ETA2C21)
DIMENSION DTDY(21 > , NEWT (21 > «TRACTCF<20> , SLIP<20>
D I MENS I ON T JM 1 < 2 1 )
EXTERNAL PS I
REAL LOGETA«NEWT

PHYSICAL CONSTANTS AND DATA

READ 9001 t IRDP. IRDU« IRDT«PH I T . AH«CH
FORMAT (4X1 3» 15, I4tF6.3» 1OXF3. 1 «6XF4.2>
IF (EOF (60) ) 9999. 9002
CONTINUE
PUNCH 90O3
FORMAT(/)
PHZ=1000.*FLOAT( IRDP)
U=FLOAT< IRDU)
TOIL=FLOAT( IRDT)+460.
NP NUMBER OF GRID POINTS ACROSS THE HALF-FILM THICKNESS
NP=1 1
NH = NP - 1
NIP NUMBER OF PRESSURE STEPS IN HALF CONTACT-LENGTH
NIP = 3
NIP2=2*NIP
TW=TO1L
COND THERMAL CONDUCTIVITY OF THE LUBRICANT
COND=« 1 *778»/360C«
OILRHO DENSITY OF THE LUBRICANT

CONV

*CONV
*CONV
jt y~ rtKIV/*^wrM v
*CONV
#CONV
*CONV
*CONV
*CONV
*CONV
#CONV
*CONV
*CONV
*CONV
#CONV
*CONV
*CONV
#CONV
*CONV

* * CONV
*CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV

21) CONV
CONV
CONV
CONV
CONV

CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV

1
2
3
4

6
7

B
9
10
1 1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37

38
39
40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58
59
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OILRHO=.0325
* OILC SPECIFIC HEAT OF THE LUBRICANT

OILC=•4*778.* 12.
CYLW=0.25

* ' CYLW CONTACT WIDTH OF THE DISKS
* Rlt R2 RADII OF THE DISKS

R1=R2=3.0 • • - • • - • . . ' . ;

* EI« E2 ELASTIC MODULUS OF THE DISKS
El=E2=30.E+6

* POIS1« POIS2 POISSONS RATIO FOR THE DISKS
POIS1=POIS2=0.3

* ALPHA VISCOSITY PRESSURE COEFFICIENT FOR THE LUBRICANT
ALPHA=1.04E-4
BETA=5.1E7*ALPHA
GAMMA=930«*ALPHA

* DK THERMAL CONDUCTIVITY OF THE DISKS
DK=21«7*778./3600.

* DRHO DENSITY OF THE DISKS
DRHO=.283

* DC SPECIFIC HEAT OF THE DISKS
DC=. 109*778.*12.

* HERSA. HERSB CONSTANTS FOR THE HERSHEL VISCOSITY EQUATION
HERSA=8.974 ' . .
HERSB=-3»2

* NGRAPH REQUIRED NUMBER OF GRAPHS FOR EACH TEMPERATURE PROFILE
NGRAPH=0

* MGRAPH REQUIRED NUMBER OF GRAPHS OF TRACTION COEF• VS SLIP
MGRAPH=1 , . •

* PRNT=2HON GIVES ADDITIONAL OUTPUT FOR DEBUGGING PURPOSES
PRNT=3HOFF

* .
* INITIALIZATION AND BOUNDARY CONDITIONS i '' •: -

1C = J
•DTDY(J)=0.0
Y(1 ) =0.0
TRACT = O . O . . . ' • .
FLAS'HsO.O
P I = 3 . 1415927 I - ' - . .
D O 1 0 1 = 1 i N P ' ' • „ • • • •
NEWT(I)=1•*<1.-Y(I))+TW
IF (I.LT.NP) Y(1+1>=Y(I>+l./FLOAT(NH)

10 CONTINUE

.-POISP*POIS2)/E2>

#
*

R = R1*R2/(RH-R2)

E=2.X( ( 1 .-POI S1*POIS1
B=4.*R/E*PHZ
FL ASHK=0 . 24/SQRT ( P I *PHZ*DK*DRHO*DC*U*R/E )
TRANS( 1 ) =B/U/6.
TRANS<2) =B/U/6.
TRANSO) =B/U/2. .
TRANS(4) = TRANSO)
TRANSf 5) =TRANS(2)
TRANSJ6) =TRANS( 1 )
DELXB=B/FLOAT (NI P> • -

. CALCULATION OF LOAD

CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
"CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
:CONV
CONV
CONV

CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103

104

105
106
107
108
109
10
1 1
12
13
14
15
16
17

192



#
*
*

*
*
*

*
*
*

*
*
*

W=PHZ*PHZ*PI *(2./E)*R
PRINT 2«PHZtW«R«E

! FORMAT(*1CONTROL PHZ = *E15«8t* W = *E15.8«* R = *E15.8«
1* E = *E15.8)

CALCULATION OF HALF-FILM THICKNESS

ETAENT=io.**(HERSA+HERSB*ALOGio < TOiL-460•>>*!•45E-7
H=l.6*ALPHA**0.6#(ETAENT*U)**0.7*E**O.03*R**0.43/W**0.13
H=l,2*H
H=PHIT*H
H=0»5*H " ;

PRINT 1«H»ALPHA.ETAENT»U«CH«AH '
FORMAT(#OH = *E12«5»* ALPHA = *E12»5«* ETAENT = *E12.5t
1* U = *F6.0«*'CH = *F5.3«# AH a *F7.3>

SLIP LOOP • • '

NSLIP=15
DATA (SLIP(IU).IU=l«2O)/.5tl.f2.»3.»4.»5»«6.i8.»10.tl5.»20.«3O.
1.t50.«60.«5*0»O/
DO 6OOO IU=1»NSLIP
DATA (TRACTCF(IP).IP=1,201/20*0.O/
FLASH=FLASHK*TRACT*SLIP(IU)
IF (FLASH.LT.0.5) FLASH=O.O
TW=TOIL+FLASH
PRINT 6.FLASH '

> FORMAT<* CONTROL FLASH = *E15.8)
U2U1=0.5»SLIP(IU>
PRINT 8»IU,SLIP(1U)

I FORMAT(*1CONTROL IU = *I3«* SLIP = *E15.8)

HERTZIAN PRESSURE LOOP

TRACT=O.O
DO 5999 IP=1,NIP2
IPTRANS=IP
:XB=(2«*FLOAT(IP)-1.>/?./FLOAT(NIP)
P=PHZ*SQRT(XB*(2.-XB))
DO 3 1=1«NP
I F ( I P . E Q . l ) T J M K I ) = T O I L
I F ( I P . G T . l ) T J M 1 ( 1 ) = N E W T { I )

I -CONTINUE

SOLVE MOMENTUM EQUATION

ITCOUNT=0
IT = 0
ITC=1
TMAX=950.
T(1)=951.

4 IF (PRNT.EQ.2HON) PRINT 44 , I T
44 FORMAT(#0 IT = *I3>

IF (ITC.EQ.O) GO TO 4970
. IT=IT+1
'IF (IT.GT.l) TMAX=T<IT~1)

- TMIN=TO1L
ITC = 0

4970 DO 11 I=IT,NP

CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV

•40CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV

' CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
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IF (ITCOUNT.EQ.O) TEMT=NEWT<I> CONV 177
IF (ITCOUNT.GT.O) TEMT=O.5*(T<I)+NEWT(I)) CONV 178
IF <ITCOUNT.GT.2OO) GO TO 6003 CONV 179
IF < IP»LE»NIP.AND»TEMT.LT»TJM1< I ) ) 4980«4979 CONV 180

4979 IF < IP«GT.NIP.AND.TEMT«LT.TJM1< I ) ) 4982«4985 CONV 181
4980 TEMT=0.5*(TJM1(I)+T<I)) CONV 182

GO TO 4985 CONV 183
4982 TEMT=O.5*<TOIL+YC I )*F|_ASH+T( I > > CONV 184
4985 IF (I.GT.IT) GO TO 4937 CONV 185
* UPDATE TMAX AND TMIN CONV 186

IF (TEMT.LT.TC IT).AND.TC IT) .LT.TMAX.AND.T ( IT).GT.TMIN) TMAX=T(IT) CONV 187
IF (TEMT.GT.T( IT) .AND.T( IT).GT.TMIN.AND.T( IT).LT.TMAX) TMIN=T(IT) CONV 188
IF (PRNT.EQ.2HON) PRINT 4988.TMAX.TMIN«TEMT CONV 189

4988 FORMAT<*OTMAX = #F9.4,* TMIN = *F9.4«# TEMT = #F9»4) CONV 190
* BOUND TEMPERATURE CONV 191

IF (TEMT.GT.TMAX.OR.TEMT.LT.TMIN) TEMT=o.5*<TMAX+TMIN) CONV 192
IF (PRNT.EO.2HON) PRINT 4989.TEMT•T<IT> CONV 193

4989 FORMATC* TEMT = *F9.4.* T(IT) = *F9.4) CONV 194
* TEST FOR CONVERGENCE CONV 195

IF {ABS(TEMT-T(IT))»LT.»3) 4986*4987 CONV 196
4986 ITC=1 CONV 197

IF (IT.EQ.NP) 5032.11 CONV 198
4987 T(I)=TEMT CONV 199

GINF( I ) = 1.2*P/(2.52+.O1333*(T( I)-492.) >-l.45E4 CONV 200
IF (GINFCI)»LT.l•) GINF(I) = 1. CONV 201

* CALCULATION OF STEADY-STATE VISCOSITY CONV 2O2
ETEXP=ALPHA#P+(BETA+GAMMA#P)*<680.-T(I>j/eeO./TtI) CONV 203
ETA2( I )=.62*EXP(ETEXP)*1.45E-5 CONV 204

* CALCULATION OF TIME-DEPENDENT VISCOSITY CONV 205
ETAOtI)=VISC(P.ETA2(I>•IVCODE) CONV 206

11 CONTINUE CONV 207
DUMMY=PSIO(O.O) CONV 208
CALL SECANT(XKO«XK1iTAUtPSI»XK».OOl«500« I TERR) CONV 2O9
IF (ITERR.EQ.l) STOP CONV 210
IF <PRNT.EQ«2HON> PRINT 41»TAU CONV 211

41 FORMAT(*OTAU = #E15.8) CONV 212
* CONV 213
* SOLVE ENERGY EQUATION CONV 214

* CONV 215
DO 5000 I=1,NP CONV 216
Q<I)=-TAU*DUDY(I)/COND*H CONV 217
QC=+OILRHO*OILC/COND*H*H*U*(TCI)-TJMl(I))/DELXB CONV 218
Q(I)=O<I)+QC CONV 219

5000 CONTINUE , CONV 220

IF (PRNT.E0.2HON) CALL PR1 CONV 221
DO 5010 I=2«NP CONV 222
CALL INTEG1 (0.,Y< I) .Y,Q,NP»DTDY( 1 > «C.GC,LLLL. IERR) CONV 223

5010 IF(IERR.NE.O) PRINT 5012«IERR CONV 224
5012 FORMAT(* INTEGRATING Q. IERR = * 13) CONV 225

DO 502O I=2«NP CONV 226
CALL INTEG1(0.,Y(I).Y.DTDY«NP«NEWT(I)«C»GC»LLLL»IERR) CONV 227

5020 IF(IERR.NE.O) PRINT 5O22«IERR CONV 228
5022 FORMAT<# INTEGRATING DTDY. IEPR = *I3) CONV 229

XK7=TW-NEWT(NP) CONV 230
ITCOUNT=ITCOUNT+1 CONV 231
NEWT(1)=0«O CONV 232
'DO 5O30 I=1«NP CONV 233

5O30 NEWTCI)=NEWT(I>+XK7 CONV 234
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GO TO 4
5Q32 DO 5033 I=1»NP
5033 NEWT<I)=TCI)

IF C IVCODE.NE.O) PRINT 5O34
5034 FORMATC*O MINIMUM VISCOSITY REDUCTION*)

CALL PR1
PRINT 99
PRINT 504O.< (NEWT( I )«I ) « 1 = 1 «NP)

5O4O FORMAT<* NEW TEMP = #F7.2«* .1 = *I4)
fr
* CALCULATION OF TRACTION

TRACT = TRACT+8/FLOAT(NIP > *TAU

5999 CONTINUE
TRACTCFCIU)=TRACT/W
PRINT 6O02.TRACTCFCIU>

60O2 FORMATt*OCONTROL TRACTCFCIU)
t

PLOT TEMPERATURE PROFILE

= *E15»8)

*
*

IF(NGRAPH.EQ.O) GO TO 6000
DO 5052 NGR=ltNGRAPH
PRINT 505G.SLIP(IU)

5050 FORMAT(*1(U2 - Ul) = *E15«8)
PRINT 99
CALL STPLT1 ( 1.NEWT»Y«NP. 1H*«1 . 1HY)
PRINT 5051

5051 FORMAT!1HC.92X*11HTEMPERATURE>
5052 CONTINUE
6QOO CONTINUE
6003 PRINT 98

PRINT 6001 «<<TRACTCF<IU)•SLIP<1U))»IU=1«NSLIP)
6001 FORMATC* CONTROL TRACT = *E15.8«* U2-U1 = *E15.8)

PUNCH 6005« < (SLIP( IU) »TRACTCF( IU) ) • IU=1.NSLlP)
6005 FORMATC2F10.5)

PLOT TRACTION COEFFICIENT
*.
#
#

IF(MGRAPH.EO.O) GO TO 6013
DO 6O12 MGR=1«MGRAPH
PRINT 98
CALL STPLT1 ( 1«SLIP.TRACTCF,NSLIP»1H#.14, 14HTRACTION COEF. )
PRINT 6011

6011.FORMATf1HO,100X.7HU2 - Ul)
6013 CONTINUE
6013 CONTINUE

98 FORMAT(*!*)
99 FORMAT<*0*)

GO TO 9OOO
9999 CONTINUE

STOP
END .

CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
.CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV
CONV

235
236
237
238
239
240
241
242
243
244
245
246
247

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
375
276
277

278
279
280

281
282
283
284
285
286
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•)t

*
#
Jt

*
#
*
•*
*

#

*

*

100

200

205'
208
210

220

230
240
241

250

310

320
390

410

FUNCTION PS I (TAU)

FUNCTION PS I

THIS FUNCTION SUBROUTINE SUPPLIES THE RHEOLOGICAL MODEL
FOR THE LUBRICANT. IN THIS CASE* WE ARF USING THE
BARLOW AND LAMB V ISC DEL AST 1C MODEL WITH A LIMITING SHEAR STRESS.
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COMMON C«GCtLLLL
CpMMON /CPSI/ GINF«ETAO«T,Y«H«U2U1 »NP«DuDY, I C « TG .OMEGA «CH « AH
COMMON /CPSIO/ XK1»XKO
DIMENSION GINF121 ) .ETA<J< 21).T(21).Y<21> , DUDY ( 2 1 ) »TG<21 ) .OMEGA (21
DIMENSION C(2.3.2M»GC(21«21>

REAL INTG
PRNT=3HOFF
CONTINUE
IF <PRNT.EQ.2HON) PRINT 200«TAU
FORMAT (*OTAU = *E15.8)
DO 210 1=1 ,NP
TG( I )=TAU/GINF( I )
IF (TG( I ) .LT.0.25) GO TO 205 : .
SLIP REGION
OMEGA ( I ) = (TG( I )-«2499963)*l «E6
GO TO 208 - .. ' :

VISCOELASTIC REGION

OMEGAC I )=55.2*TG( I )*TG( I >+TG( I )
DUDY( I ) =GINF( I )/ETAO( I )*OMEGA( I )#H
CONTINUE
GO TO (220.230) .1C
CALL INTEG ( O . . 1 . t Y«DUDY«NP t I NTG ,C . GC «LLLL . I ERR )
1C = 2
GO TO 240
CALL iNTEG2(o. . i . ,Y«DUDY«NP, INTG.C.GC.LLLL. IERR)
IF CIERR.NE.O) PRINT 24 1 . I ERR • TAU '
FORMAT(* IERR = *I4»# AT TAU = *E 1 5 • 8 )
PS I =ALOG10( INTG/U2U1 >
IF (PRNT»EQ.2HON) PRINT 250.INTG.PS!

FORMATC* INTG = *E15.8«* PS I = #E15«8)
TDUDY=0.0
DO 310 I = 1 ,NP '" '
TDUDY=TDUDY+DUDY( I )
ADJ=U2U1 #FLOAT(NP)/TDUDY . . . -'

IF ( ADJ.GT.O.99) GO TO 390
DO 32O I=1,NP ' '
DUDY ( I > = AD J*DUDY ( I )
CONTINUE
RETURN
ENTRY PS I 0
CHECK OMEGA =3.7
XK 1 =TAU=0»25*GINF( 1 >

DO 4 1O I = 1 .NP
TG( I )=TAU/GINF( I )

OMEGA ( I ) =55.2*TG( I )*TG( I )+TG( I }
DUDYC I ) =GINF ( I )/ETAO( I )*OMEGA( I ) *H
CALL INTEG C 0 . , 1 . , Y« DUDY .NP« I NTG «C , GC « LLLL . I ERR)

PSIBL

*PSIBL
*PSIBL
jtnc T m*PS I t$L
*PSIBL
*PSIBL
*PSIBL
*PSIBL
*PSIBL
* PSIBL
PSIBL
PSIBL
PSIBL

) PSIBL
PSIBL

PSIBL
PSIBL
PSIBL
PSIBL
PSIBL
PS I BL
PSIBL
PSIBL
PSIBL

PSIBL
PS I BL
PSIBL

PSIBL
PSIBL
PSIBL
PSIBL
PS IBL
PS I BL
PS I BL
PSIBL
PS IBL

' PS I BL
PSIBL
PS I BL
PS IBL
PS IBL
PS I BL
PSIBL

PS IBL
PSIBL
PSIBL
PSIBL
PSIBL
PSIBL
PS IBL
PSIBL
PSIBL

'• PSIBL
PSIBL
PSIBL
PSIBL
PSIBL

1

2
3
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6
7
8
9
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1 1
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IF (IERR.NE«0> PRINT 241«IERR»TAU PSIBL 59.
IF (ALOG10CINTG/U2U1>> 20«2C«3O . PSIBL 60
SLIP MODEL PSIBL 61

20 XKO=10.*XK1 ' PSIBL 62
PSI=0.0 • PSIBL 63
RETURN . - PSIBL 64
VISCOELASTIC MODEL PSIBL 65

3O XKO=O«l*XKl " PSIBL 66
PSI=0.0 PSIBL 67
RETURN ' . ' PSIBL 68
END . PSIBL 69
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10O

200

205

208
21O

220

230
240
241

250

310

320
390

FUNCTION PSI(TAU)

FUNCTION PS I

THIS FUNCTION SUBROUTINE SUPPLIES THE RHEOLOGICAL MODEL
FOR THE LUBRICANT. IN THIS CASE* WE ARE USING THE
MAXWELL VISCOELASTIC MODEL WITH A LIMITING SHEAR STRESS.

COMMON C»GC«LLLL
COMMON /CPSI/ GINFfETAO,T«Y«H«U2Ul «NPtDUDY» 1C » TG»OMEGA «CH« AH
COMMON /CPSI OX XK1«XKO
DIMENSION G INF (21 ) »ETAO(21 )«T(21),YC21) «DUDY<21 > ,TG<21 » «OMEGA(21
D I MENS I ON C<2«3»21)«GC(21»21)
REAL INTG
PRNT=3HOFF
CONTINUE

; IF (PRNT»EQ«2HON) PRINT 2OO«TAU
FORMAT<*OTAU = *E15«8)
DO 210 1=1, NP
TG( I )=TAU/GINF< I )
IF (TG( I ) »LT»0«5O) GO TO 205
SLIP REGION
OMEGA ( I ) = ( TG ( I ) -0 • 4999990 ) * 1 . E6
GO TO 208
VISCOELASTIC REGION
GINFK=0.5/TG( I )
OMEGA ( 1 )=1./(GINFK+SQRT<GINFK*GINFK-1 •> )
DUDY( I )=GINF( I )/ETAO( 1 )*OMEGA< I ) *H
CONTINUE
GO TO (220,230) , 1C
CALL INTEG ( 0» . 1 « » Y»DUDY»NP» INTG»C« GC .LLLL » I ERR)
1C = 2
GO TO 240
CALL INTEG2(0. , 1 • < Y»DUDY»NP« I NTG «C « GC iLLLL, I ERR)
IF (IERR«NE«0) PRINT 241«IERR«TAU
FORMAT(* IERR = *I4t* AT TAU = *E15»8)
PSI=ALOG10( INTG/-U2U1 )
IF (PRNT.EQ»2HON) PRINT 250|INTG«PSI
FORMATt* INTG = *E15.8,* PS I = *E15«8)
TDUDY=O»0
DO 310 1=1, NP
TDUDY=TDUOY+DUDY( I )
AD J=U2U1 *FLOAT ( NP) /TDUDY
IF ( ADJ.GT.O.99) GO TO 39O
DO 320 I=1,NP
DUD Y { I ) = AD J*DUD Y ( I )
CONTINUE
'RETURN
ENTRY PS 10
CHECK OMEGA =1
XK 1 =TAU= 0 • 50*G I NF ( 1 )
DO 410 I=1,NP
TG( I )=TAU/GINF( I )
GINFK=0.5/TG( 1 )
OMEGA ( I » = 1 • / C G I NFK+SQRT ( G I NFK*G I NFK- 1 • ) )

PS I MX

*PSIMX
*PSIMX
jtOC T MVr̂*o 1 rnA

*PS I MX
*PSIMX
*PSIMX
*PS I MX
*PS I MX

PSIMX
PS I MX
PS I MX

) PSIMX
PSIMX
PSIMX
PSIMX
PSIMX
PSIMX
PSIMX
PSIMX
PSIMX
PSIMX
PSIMX
PSIMX
PSIMX
PSIMX
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PSIMX
PSIMX
PSIMX
PSIMX
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41O DUDY<1)=GINFCI}/ETAO(I>*OMEGA<I)*H PSIMX 59
CALL INTEG {O.,1..Y«DuDY»NP»INTGtC»GCtLLLL«I ERR) PSIMX 60
IF (IERR«NE»0> PRINT 241«IERR«TAU PSIMX 61
IF (ALOGlOfINTG/U2U1)) 20«2O«30 PSIMX 62
SLIP MODEL. PSIMX 63

2O XKO=1O»*XK1 PSIMX 64
PSI=O»0 PSIMX 65
RETURN PSIMX 66
V/ISCOELASTIC MODEL PSIMX 67

3O XKO=0«1*XK1 PSIMX 68
PS I=0.0 . PSIMX 69
RETURN PSIMX 70
END PSIMX 71
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SUBROUTINE RTMUX, F, FCT« XL I « XRI « EPS* IEND. IER)

SUBROUTINE RTMI

PURPOSE
TO SOLVE GENERAL NONLINEAR EQUATIONS OF THE FORM FCT(X)=0
BY MEANS OF MULLER-S ITERATION METHOD*

USAGE
CALL RTMI (X«F»FCT»XLItXRI»EPS.IEND»IER)
PARAMETER FCT REQUIRES AN EXTERNAL STATEMENT.

DESCRIPTION OF PARAMETERS
X - RESULTANT ROOT OF EQUATION FCT(X)=0.
F - RESULTANT FUNCTION VALUE AT ROOT X.
FCT - NAME OF THE EXTERNAL. FUNCTION SUBPROGRAM USED.
XLI - INPUT VALUE WHICH SPECIFIES THE INITIAL LEFT BOUND

OF THE ROOT X.
XRI - INPUT VALUE WHICH SPECIFIES THE INITIAL RIGHT BOUNC

OF THE ROOT X.
EPS - INPUT VALUE WHICH SPECIFIES THE UPPER BOUND OF THE

ERROR OF RESULT X«
IEND - MAXIMUM NUMBER OF ITERATION STEPS SPECIFIED*
IER - RESULTANT ERROR PARAMETER CODED AS FOLLOWS

IER=0 - NO ERROR*
IER=1 - NO CONVERGENCE AFTER IEND ITERATION STEPS

FOLLOWED BY IEND SUCCESSIVE STEPS OF
BISECTION.

IER=2 - BASIC ASSUMPTION FCT<XL 1 >*FCT<XRI) LESS
THAN OR EQUAL TO ZERO IS NOT SATISFIED.

REMARKS
THE PROCEDURE ASSUMES THAT FUNCTION VALUES AT INITIAL
BOUNDS XLI AND XRI HAVE NOT THE SAME SIGN. IF THIS BASIC
ASSUMPTION IS NOT SATISFIED BY INPUT VALUES XLI AND XRI. THE
PROCEDURE IS BYPASSED AND GIVES THE ERROR MESSAGE IER=2.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
THE EXTERNAL FUNCTION SUBPROGRAM FCT<XI MUST BE FURNISHED
BY THE USER.

METHOD
SOLUTION OF EQUATION FCT(X»=0 IS DONE BY MEANS OF MULLER-S
ITERATION METHOD OF SUCCESSIVE BISECTIONS AND INVERSE
PARABOLIC INTERPOLATION. WHICH STARTS AT THE INITIAL BOUNDS
XLI AND XRI. CONVERGENCE IS QUADRATIC IF THE DERIVATIVE OF
FCT(X) AT ROOT X IS NOT EQUAL TO ZERO. ONE ITERATION STEP
REQUIRES TWO EVALUATIONS OF FCT(X). FOR TEST ON SATISFACTORY
ACCURACY SEE FORMULAE (3.4) OF MATHEMATICAL DESCRIPTION.
FOR REFERENCE. SEE G. K. KRISTIANSEN. ZERO OF ARBITRARY
FUNCTION. BIT. VOL. 3 (1963). PP.205-206.
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c
c
c
C PREPARE ITERATION

!ER = 0
XL = X1_I

XR=XRI

X = XL
TOL = X
F=FCT( TOD
IF(F) 1 » 16« 1

1 FL=F
X = XR
TOL=X
F=FCT(TOLl
IF(F)2« 16*2

2 FR=F
IF(SIGN( 1 «,FL)+SIGN< 1. ,FR> > 25, 3, 25

C
C BASIC ASSUMPTION FL*FR LESS THAN 0 IS SATISFIED.
C GENERATE TOLERANCE FOR FUNCTION VALUES.

3 1=0
TOLF=1 00.*EPS

C
C
C START ITERATION LOOP

4 1=1+1
C
C START BISECTION LOOP

DO '13 K= 1 « I END
X=.5*(XL+XR>

> TOL=X
F=FCT(TOL>
IF(F)5«16»5

5 IF (SIGNt 1 • »F>+SIGN< 1 . «FR) )7«6»7
C
C INTERCHANGE XL AND XR IN ORDER TO GET THE SAME SIGN IN F AND FR

6 TOL=XL
XL = XR
XR=TOL
TOL=FL
FL='FR
FR=TOL

7 TOL=F-FL
A=F#TOL

IF (A-FR#(FR-FL) )8t9,9
8 IF ( I-IEND) 17,17,9
9 XR = X

FR = F
C
C TEST ON SATISFACTORY ACCURACY IN BISECTION LOOP

TOL=EPS
A=ABS(XR>
IF( A-l . ) 1 1 , 1 1 , 10

10 TOL=TOL*A
11 IF( ABS(XR-XL)-TOL) 12, 12. 13
12 IFC A.BS(FR-FL)-TOLF) I*, 14, 13

•13 CONTINUE
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C END OF BISECTION LOOP
C
C NO CONVERGENCE AFTER I END ITERATION STEPS FOLLOWED BY IEND
C SUCCESSIVE STEPS OF BISECTION OR STEADILY INCREASING FUNCTION
C VALUES AT RIGHT BOUNDS. ERROR RETURN.

IER=1
14' IF ( ABSIFR J-ABS(FL) ) 16, 16, 15

15 X=XL

F=FL.
16 RETURN

C
C COMPUTATION OF ITERATED X-VALUE BY INVERSE PARABOLIC INTERPOLATION

17 A=FR-F
DX=(X-XL)*FL*(1.+F*<A-TOL>/<A*(FR-FL>)>/TOL
XM = X
FM = F
X=XL-DX
TOL = X
F=FCT(TOL>
IF(F>18.16.18

C
C TEST ON SATISFACTORY ACCURACY IN ITERATION LOOP

18 TOL=EPS
A=ABS(X)
IF(A-l•)20,20,19

19 TOL=TOL*A
20 IF(ABS(DX)-TOL)21,21,22
21 IF(ABS(F)-TOLF)16,16,22

C
C PREPARATION OF NEXT BISECTION LOOP

22 IF(SIGN(1»,F)+SIGN(1.,FL>)24,23,24

23 XR=X
FR = F
GO TO 4

24 XL=X
FL = F
XR=XM
FR = FM
GO TO 4

C END OF ITERATION LOOP

C
C
C ERROR RETURN IN CASE OF WRONG INPUT DATA

25 IER=2

RETURN
END
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APPENDIX C .

NOMENCLATURE

a rise parameter of the hyperbolic model

b = 4p R/E, half-width of Hertzian contact

c limiting shear stress/limiting shear modulus ratio

c specific heat of the lubricant

c specific heat of the disk

D shear rate

E = tjfd-Vi/E,) + (l-v-/E?)], effective modulus of elasticity

of the disks '•

E ,E elastic moduli of the two disks

Ei(x) exponential integral

f fractional free volume

f_ equilibrium free volume

*
G complex shear modulus

G high frequency limiting shear modulus
€0

G = G /K
eo eo

h ha If-parallel lubricant f i lm thickness

h minimum lubricant fi lm thicknesso

k thermal conductivity of the lubricant

k thermal conductivity of the disk

K Oldroyd-Dyson parameter

K bulk modulus

K low frequency bulk modulus

K high frequency bulk modulus
CO

K- bulk modulus associated with molecular rearrangements in

free volume

K complex relaxational modulus
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K high frequency value of K

K torsional spring constant

J inertia

*
J complex compliance

p pressure

p maximum Hertzian pressure
rlZ

P maximum Hertzian pressure (on graphs)

P pressure step

P normal stress

R = R R /(R + R ), effective radius of the disk pair

R R radii of the disks

s = ln(T]2/Tp

t time

T temperature

T lubricant inlet temperature (on graphs)

T. bulk temperature of the disk
b

T lubricant entrance temperature

T mean surface temperature of the disk in the contact zone,
S ' ' •

"flash temperature"

T reference temperature at which there is no free volume
o .

u,v velocity components in the fluid film

U mean rolling speed

U ,U surface speeds of the disks
* _ _

U reference rolling speed at which T| = ̂  T),. n

v specific volume

v, free volume
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v. specific volume after elastic deformation only

v occupied volume

v1 initial specific volume

v equilibrium specific volume

w load per unit length of cylinder

x,y,z Cartesian coordinates

*
Z complex shear mechanical impedance

OL viscosity-pressure coefficient

Y shear strain

y shear rate

T| shear viscosity

11 viscosity of the lubricant at entrance conditions'ent

7|, free volume viscosity

T\ volume viscosity

T|, initial viscosity

TJ? equilibrium viscosity

T| effective viscosity

X. Maxwell relaxation time

\- retardation time

X volume relaxation time

^ coefficient of friction

*
|j, complex fluidity

V,,v9 Poisson's ratio for the two disks

5 slide/roll ratio

p density of the lubricant

0 density of the diskrm

T shear stress
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$ film thickness thermal reduction factor

to angular frequency

O non-dimensional shear rate
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