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and Kelley [ 3 ] . However, these papers were not concerned with
promoting‘the basic understanding of the traction between elastohydro-
dynamic contacts,

Crook [ 4 ] used two kinds of rolling disk machines in measuring
the friction in a line contact as a function of sliding speed. 1In
the region of small sliding speeds, Ee used the four-disk machine, a
center- disk sur?éunded by éhreevequally spéced'ou;er disks, shown in
Figure-1.1. The céntér_disk is free-floating-and the-measured torque
does not cﬁntain aﬁy_extraneous torque.frop the supporting bearings.
For this rééson;the féur-disk machine giVeg very ac;urate frictional
térque méésurements at-smail sliding Speeds.. The féurldiéﬁ machine
is;hét suitable in-the region 6f high slips, héwevef, éiﬂcé it cannot
maipédin a stable sliéing speed. For high sliding ngéds, Crook used
the.twofdisk machine shown in Figure 1.2,‘where the gopaFions of both
disks are controlled 5y variable speéd motors., Thus,’CrooL was able
to measure the fricfion chafacteristics throughout the entire range
of sliding Speeds,Ausing the four-disk machine in the low siip region
and the two-disk machine in the high sliding speed region.

Crook found a profound influence of rolling speed upon the
frictionél torqué>in the low slip region, In this ?egion, the slope
of the traction versus siip curve is.eéual to tﬁe "effective viscosity"
divided by the oil film thickness. Therefore, the effective viscosity
may be evaluated by measuring the slope of the traction curve and
calculating the oil film thickness from existing elastohydrodynamic
theory. 1If the thermal effects and the non-Newtonian effects of the
lubricant were both absent in this region, the'effective viscosity

would not be a function of vrolling speed. However, this condition was



Figure 1.1, Crook's four-disk machine. (a) Prin-ciple,' (b) construction
: (diagrammatic). A to D, disks; E; aerostatic thrust;
F, gear train; G, band brake. Figure from Crook [ 4 ] .



t

Figure 1.2. Crook's two-disk machine. A and B disks; C and D
.. swinging arms; E axle; F and G loading cables; H spring
beam; I dial gauge. Figure from Crook [ &4 ] .
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not found in Crook's experimental results. On the contrary, he found
a marked influence of the rolling speed on the effective viscosity of
the lubricant that does not appear to be due to thermal effects only,
Crook speculated that it was the viscoelastic effect of the lubricant
which prevented it frpﬁ'feaching tbe static viscosity in the short

' time interval as it pasées~through the contact zone,

Crook was able t6 éxtena the friction data in the high slip
region, with his two-disk ﬁaéhine, for 16ads ranging from 7.5 to 20 x 107
dynes/cm2 and rolling SpéedS;frém.400 cm/ééc t§ 1200 cm/sec., All the
friction curves show the same basic trénd‘which is characterized by
an ascending portion at ‘small sliding speeds and é descending fricfion
at high sliding speeds., An incfease in loéd dogs not change the basic
characteristics of the friction curve,:but doesvincrease the level of the
friction force, Similérly; Crook found that an increase in the rolling
speed decreases the friction level,

Crook also attempted to predict the friction analytically by a.
simplified thermal friction theory,based on the following four as-

. sumptions: the'film thickness within the contact zone is uniform;

the pressure disttibutioﬁ in tﬁe{contact.regién is Hertzian; the heat
carried away by the lubricant due to convection may be neglecteq; and
the temperature rise on the surface of the disk may also be neglected.
Using this simpiified theory for a Newtonian lubricant, Crook was able
to calculate the coefficient of friction or the effective viscosity

as a function of sliding speed. However, he could not predict the
sharp reduction of the effective viscosity at small sliding speeds.

He concluded that the friction force at small sliding speeds camnnot

‘be accurately predicted by considering the ‘thermdl effects only,



Cheng [ 5 ] employed his full elastohydrodynamic theory.in
calculating the friction for the conditions corresponding to those
used in Crook's experiments. The temperature calculations are based
on the finite difference solutioﬁ.of the energy equation and aré free
from all the assumptions made earlier by Crook. It is seen in Figure
1.3 that .even with this refined tﬁermal analysis there still exists a
large discrepancy in the low slip region. This strengthens Crook's
argument that the thermal effects alone cannot account for the sharp
reduction of effective viscosity in the low slip region.

Bell, Kannel and Allen [ 6 ].developed an approkimate analysis
to predict the tempefature rise in the lubricant film at low sliding
Speeds. Théir analysis iécluded the heat due to convection and the
heat gene;ation due to the compréssion\of ﬁhe lubricant. - They also
concluded that the temperature effects are téo small to account for
.the loss of effective viscosity at low slidingISPeeds. In addition
to the thermal theory, they developed a nén—Newtonian friction theory
using a rﬁéological ﬁodel'proposed by Ree and Eyring [ 7 ] . The
results.of this analysis indicate that drastic reductions of friction
can exist if the lubricant viscosiéy is shear rate-depeﬁaent according
to Ree;Eyring. However, in all their calculated data, the friction
force was found to be dependent upon 1/h as the rolling speed is varied,
whereas all the experimental data gathered thqé far haé shéwn‘the
proportionality to be far greaﬁer than 1/hvan& in most cases more mnearly
proportional to 1/h2. Thus, the inclusion ef the Ree-Eyring model
alone in the friction analysis would not be able to predict a suf-

ficient reduction of frictionm at low rolling speeds.

Smith [ 8 ] employed the rolling contact machine shown in Figure 1.4
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Figure 1.4. Smith's disk machine’

a'Cyiindrical'roller d Pivots = g Strain gaugé dynamometer
b Spherical roller e Motor _
c-Bearings ‘ f Normal load

Figure from Smith [10] .



to measure the friction between two rollers whose axes are skewed at

an arbitrary angle. With this skewed arrangement, he was able to
measure the friction force due to the sliding velocity component. The
resulting friction versus sliding speed curves show trends similar to
those observed by Crook. Smith divided these curves into several
regions. He believed a Newtonian isothermal friction theory is ap-
plicable in tﬁe region where tﬂe'friction varies proportionally with
the sliding speed. In the ascending portion of the friction curves,
where the friction force ihcreéses’w?th_sliding speed in a non-linear
fashion, Smith believed that thé ﬁon-linearity ié due to the non-
Newtonian behavior of the iﬂbriéaﬁt; He postulated that there is also
a region in which a shear plépé exists at the center of the lubricant N
film, such that the lubricant behavéé like two solid layers sliding
over each other at the shear plane, He further stated that the re-
sistance to sliding at the shear plane is dependent upon the shear
plane temperature and the hydrostatic stress in the lubricant, Finally,
he defined a region where seizure would take place, -

A more cémprehensive study of friction covering a wide range of
loads, rolling speeds and sliding épeeds was' carfied but'mdfg'recently '
by Johnson and Cameron [ 11 ] with a two-disk maéhine. The maximum.
Hertzian pressure was varied from 62,006 psi té 243,000 psi; the rolling
speed was varied from 8 in/sec to 260 in/sec; and the oil inlet tem-
perature was varied from 30 °c to 90 OC., The most striking feature
of Johnson and Cameron's data is that there exists a ceiling to all
the experimental traction ;oefficients»which cannot be exceeded no
matter how the load and the rolling speed are varied. They also took

extensive data in the low slip region, and from the slope of the

10



traction versus slip curve were able to calculate the effective'vls-
cosity as a fnnction of rollfng speed. Johnson and Caneron furnished
more conv1nC1ng ev1dence that the‘thermal effects.alone cannot account
for the exper1menta11y measured friction, and that a Smith-type limiting
shear stress is dependent only on the shearvplane temperature and
pressure, | | | |

Jeffris and dohnson [12 A] investigated the effect of Surface
roughness upon friction between two lubricated rollers, They conclnded
that the measured coeff1c1ent of fr1ct10n showed remarkably 11tt1e N |
variation throughout the whole range of experlmental condxtlons for”
Hert21an‘pressures in excess of 175 kpsi. At lower Hertzlan pressures
the surface roughness effect can be snbstantlal - | |

A rather interesting qualitatlve explanation of the velocity, _
rate of shear, viscosity and temperatnre variations across the film
thlckness of an elastohydrodynamlc contact was offered by.Pllnt [ 13
"He postulated that at the entrance of the contact zone, the rate of
shear, viscosity and temperature are:constant across the film thick-~
ness and the velocity profilevis linear.‘ As the thermal_effects take...
over,'the teﬁperature at the mid-filn increases and the viscosity‘is
at a mininumvat this position, fhis.thermal effect causes the velocity
profile to dfstort into a cusn.sochﬁthat the rate of shear becomes a -
maximum at the mid-film, A ceiling curve similar to that of Johmnson
and Cameron's was also found in P11nt's experlmental frlctlon data,

Dow50n and Holmes [ 14 ] mod1f1ed Crook‘s four- dlSk machine
and lnvestlgated the effect of surface quallty upon‘the tractlon char—
acteristics of rolllng and slldlng contacts. They showed that the
friction initiall§-decreases with surface roughness, reaches a minimum,

and then increases steadily with surface roughness. Unlike Jefferis
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and Johnson's conclusion on the effeet.ef surface roughness un frlction,
Dowsou aud‘hdlues‘found that the influence of surface quallty is quite
pronouhced However, these two results may not be in direct contra-
dlctlon since the loads used by Dowson and Holmes were much smaller
than those used in Jeffer1s ‘and Johnson s experiments.

Recently, Dyson [ 15 } has made a pioneering study analyzing
the frictiohal fhrce in an elastohydrodynamic contact by consldering
the lubrlcaht as a viscoelastic llquid; He simplified his analysis
by dividiug'the friction versus sliding speed curve into three regions,
as shown:in Figure 1.5: the linear reglon, where_the frictional foree
.varies lihearly with the sliding speed; the non-linear ascending region,
where the slope of the friction curﬁe reduces rapidI& as the sliding |
speed lhcreases' and the thermal regien, where the frictional ferce
decreases w1th the sliding speed The results of this ‘study are most
encouraging and have 1nsp1red the author's investigation of the rhe-
ological effects in an elastohydrodynamic luhricated contact.

‘The friction analysis.presented in this thesis describes the
rheological behavldr of the lubrieant in an‘elastohydrodynamic concen-~
trated contact in-terms of two viscdelastie models., These models
represent the separate effects”ef non-Newtunian behavior aud‘the
transieht respdnse of the fluld. “

A un1f1ed descrlptlon.of the non-Newtonlan shear rate dependence
of the v1sc051ty is presented in Chapter II as a new hyperbollc.llquld
model, The hyperbollc model is based upon a shear v1scoelast1c llquld

v

model w1th the addltlon of a 11m1t1ng value of shear stress.‘ The llmlt-

1

ing shear stress is related to the h1gh frequency 11m1t1ng shear modulus

A
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Figure 1.5. Friction versus sliding speed curve. Curve from
Dyson [ 15 ] .
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of the lubricant G°° , as proposed by Dyson [ 15 ] .

The transient response of the viscosity, following the rapid
pressure rise encountered in the contact, is described in Chapter IIIL
by a compressional viscoelastic model of the volume response of a
liquid to an applied pressure step. Kovacs [ 16 ] first investigated
this non-linear model for the volume creep of polymer melts.

The governing equations, the fluid property functions and the
‘technique used to calculate the tractive force transmitted during
sliding between the two suffaées of a rolling disk machine are developed
in Chapter IV. The experimental investigation is detailed in Chapter V
and the analytical and experimental results are discussed and corre-

lated in Chapter VI,

14



CHAPTER 1II

NON-LINEAR SHEAR STRESS-STRAIN RELATION

A friction analysis based upon a Newtonian lubricant having a
viscosity varying with the statically measured pressure and tempera-
ture can yield a frictional coefficient far greater than those measured.
There is little doubt that the fluid ceases to be Newtonian. Thus, a
realistic friction analysis must consider a non-linear reiationship'
between shear stress and shear rate.

A méjor«difficulty in predicting the friction for elastohydro-
dynamic lubrication is the lack of data available for the physical
properties of the lubricant at the extreme values of pressure, tempera-
ture and shear rate encountered in the concentrated contact. It is
very difficult to make direct measurements of shear stress versus
shear rate in continuous shear under EHDrconditions; Therefore, the
physical property data must come from other fields. One source is
the study of supercooled liquids under oscillatory shearr A corre-.
lation between this data and the behavior under conditions of continuous
shear, as well as the restrictions of such a correlation, are discussed
in this chapter. A hyperbolic shear stress-strain function is then
proposed as a useful non-linear model for use under elastohydrodynamic

conditions.

2.1 " Shear Viscoelasticity

The phenomenological theory of viscbelasticity attempts to
describe the mechanical behavior of a material in terms of time-de-

pendent, or frequency-depehdent, functions which relate the stress in

15



the material to the deformation. Classical elasticity theory for
solids is based on Hooke's Law which requires theé stfess to be di-
rectly proportional to the instantaneous strain but independent of the
rate of strain. Classical hydrodynamic theory is based on Newton's
Law. Newton's Law states that the steady-state shear stress in'a
liquid is ‘directly proportional ‘to the instantaneous rate of strain
but independent of the strain itself; Many materials closely follow’
the behavior specified by these laws. It is often impossible, however,
to characterize a material by either of the two c¢lassical types of
behavior. Substances which exhibit both' solid-like and liquid-1like
properties show viscoelastic behavior.

The term viscoelastic is used to describe the properties of-any
material which is able to store energy in elastic deformation and
dissipate. energy as heat. If the strain and strain rate are kept
sufficient small, so that in a given experiment the ratio of stress
to strain is a function of time' only and independent of the stress
level;fthe méteriai shows linear viscoelastic behavior. - Most of '‘the
phygical properties of viscoelastic materials have been determined
by oscillatory shear experiménts. Linear viscoelastic behavior is
easily obtained in these experiments since the amplitude ‘of deform-
ation is extremely Small,

The work of Gross [ 17 ] and Alfrey [ 18 ] are examples of the
large literature concerning the mathematicaliaSPectsmof the pheqqm-
enological theory of linear viscoelasticity. Itiishmérekapproériate.
here to deveiop the suéject in term$ of simple mechanical models,

The model approach is égsier to undefst?nd and ﬁore plééely\rélateq

to the physical behavior of the materials.

16



2.2 Viscoelastic Functions - - - T

In most of the high frequency techniques used for measuring the
viscoelastic properties of liquids, a plane shear wave is-propagated
through the liquid. The shear.stress 7 and the shear strain y are
related by a complex quantity, the shear modulus
- (2.1)

\

In a Héokéan solid  the shéar modul&é is a real qﬁantity since
the sfress vérieé in phase w%th thévstrain. .In é.Newtonian liquid,
the stress is éOo éuﬁ of phase witﬁ tﬁe strain. In the latter case,
the shear modulué is én imaginary quantity and is détermined from
Newton's Law. The strain rate is represented By

hnt)

d . ‘ |
v = EE(Yoe = iwy o o ‘7(2.2)

and -therefore the stress is calculated as
T =Y = dwyn . . (2.3)

The shear modulus is now calculated by its definiﬁionl equation (2.1).

*
G = iynm ' (2.4)

For a viscoelastic material, the stress and strain differ by a phase
ahgle between 0° and 90°. Therefore, the fréduénchdependent shear
modulus is a complex quantity with bothlreal and imaginary components,
as represented by
¢ (i) = 61 + 1 G"@) @5y

' The shear modulus will not have the simple form given in eqﬁa-
tion (2.4) for a Newtonian liduid except at low frequencies where
sufficient time is available during each stress cycle for viscous flow
to occur. At higher frequencies, the time required for molecular

translation becomes compardble with the period of the stress cycle and

17



the liquid exhibits a shear rigidity. At sufficiently high frequencies,
the behavior will be purely elastic. There is no molecular transition
during each cycle and, consequently, the energy loss due to viscous

flow is negligible., Under these conditions, the liquid behaves like

a glass, ’

The real component of the complex modulus G', the ratio of the
stress in phase with the strain to the strain, is called the storage
modulus because of its association with the storage and release of
elastic energy. The imaginary component‘é", the ratio of the stress
90° out of phase with the strain to the strain, is called the loss
modulus because of its association with the.dissipation of energy as
heat by viscous flow.

The modulus components for a liquid have the.following limits,

At low frequencies where the behavior is purely viscous, or Newtonian:

Lim G'(p) =0 (2.6)
u)-.O
Lim  G"(w) = o 2.7)
(.l)-oo

At high frequencies where the behavior is purely elastic:

Lim G'(w) =G (2.8)
W~ ® ®

Lim G"(w) =0 (2.9)
W - o

where G°° is the limiting elastic modulus.

The shear mechanical impedance Z*, defined as the ratio of shear
stress to particle velocity, is the quantity most easily measured in
the oscillatory experiments. It is mathematically related to the
shear modulus by the equations governing shear wave propagation through

a liquid medium. Barlow and Lamb { 19 ] show this relationship to be

18



(Z*)2 = pG*(iw) : (2.10)
where p is the density of the liquid.
For a Newtonian liquid, where G* is given by equation (2.4)?
the real and imaginary components of the shear mechanical impedance

are given by’

al.

z‘=z'+iz:l=(1+i)J%ﬁ C(2.11)

Equation (2.10) allows the components of the shear modulus to
be calculated from the expefimentally measured components of the shear
mechanical impedance as follows:

2 2

[ - n
Gr(p) = &=L (2.12)
P
"
G"(w) = E_Z'_E_ (2.13)
[
The liquid properties may be alternatively represented by a
complex viscosity defined by
% .
& : ¥
n"(w) = n'W) - in"@) = LE (2.14)
The definition requires
G"
') = LW (2.15)
w
and
Gt
n"(w) = ;w) (2.16)

The low frequency limit of the dynamic viscosity m' is n , the steady
flow Newtonian viscosity,
The complex compliance of J is the inverse of the complex
modulus.
J (i) = J3'(w) -1 J%w) =—5— (2.17)
B G (iw) -

19



It follows that

Gl
J1 = (2.18)
[@n? + @]
and "
J" & (2.19)

= 2 2
[@©)®+ @]
The real component J' is the storage compliance and J" is the loss
compliance,
*
. The inverse of the complex viscosity is the complex fluidity ,, .
1

p.*(iw) = pw) + ip"(@) = 5

o (2.20)
n (iw)

The definitions and interrelations of the viscoelastic functions

are summarized in Table 2.1.

2.3 The Maxwell Model

It is often convenient to visualize the behaviqr of a complex
material in terms of models. The basic mechanical model elements are
a coiled spring to represent Hookean elastic deformation and a dashpot
to represent Newtonian viscous flow. Extension of the elements is
analogous to shear strain and the associated force is analogous to the
shear stress,

The combination of a spring in series with a dashpot was studied
by Maxwell [ 20 ] . This simple model, shown in Figure 2.1, exhibits
both &iscous.ahd'elastic behavior. Viscous flow in the dashpot with
negligible extension of the spring takes place if the extensidnvrate
is small. If the model is rapidly extended ;hd immédiately released,
the deformation is purely elastic since sufficient time is not avail-

able for flow to occur in the dashpot. Between these extremes, the

20 -



Table 2.1

VISCOELASTIC FUNCTIONS IN OSCILLATORY SHEAR

7 = shear stress écting in x-direction on x-z plane

€ = particle diSplaceme;t in x-direction |

Y = 3€/3y = shear strain

é = 3E/at = particle velocity in x-direction

Y = av/at = aé/ay = shear rate, rate of strain

o = angular freQﬁencf | |

DEFINITIONS:

Complex shear modulus: G*(ﬂp) =n7/§'= G'(w) + i G"(w)

%* .
Complex mechanical impedance: Z (iw) = -1/ = Z'(p) + 1 2"(w)

*
Complex viscosity: n w) =71/y =ntWw) - i n"()
*
Complex shear compliance: J Gw) =Y/ = 3@ - i 3"(w)
" .
- Complex fluidity: p-(w) = Ve = pll) + 1 ")
INTERRELATIONS :
v
* . Z . X 1 i
G (m))=( ) = iyn(iv) = -3 = (f‘”)
- P AU €77 BN

21~



behavior will be a combination of both the elastic and the viscous modes.

Figure 2.1, The Maxwell element. The spring corresponds to a shear
modulus G and the dashpot corresponds to a viscosity m .

The basic equations of motion for the coﬁponents of the model are:
for the dashpot; and

T = G'YH . (2.22)

for the spring, where

the applied stress

T=
Yy = the rate of extension of the dashpot
Yq = the extension of the spring

The rate of extension of the spring is QH = ¢+/G and the total rate of

extension is then

or T+ g‘ =Ty (2.24)

Equation (2.24) is the constitutive equation of the Maxwell element.
The ratio n/G has the dimensions of time and is called the Maxwell
relation time 3 .

A =2 | (2.25)
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For sinusoidal variations of stress and strain of frequency w ,
equation (2.24) becomes
T + okt = iwnmy ' (2.26)

The complex shear modulus is evaluated from equation (2.1) as

* 3

6 (in) = — 21— | (2.27)
Rationalizing this expression yields

2

* g )

G (ig) = Q_D.L+2_1w2ﬂ (2.28)
l1+w by

and substituting for m from equation (2.25) gives the final form of

the complex shear modulus

2 2
* ; .
G (ig) = ¢ . A0 (2.29)
1+ :
The storage modulus is
2 .
G'(w) =G - --—‘-”2)‘—2-5 (2.30)
1+ o)

which reduces to G'(w) = G in the limit as @ - o ; but this limiting
value has been defined as Gw'. Thus, the spring in the Maxwell element
corresponds to the instantaneous or limiting high frequency shear

modulus of a liquid., The loss modulus is given by

6"(w) = G » —Hhoes ; (2.31)
1+ w)
which in the limit as @ — O becomes G"(w) = G°° ‘oA = wn . The dashpot
of the Maxwell element therefore corresponds to the.steady flow vis-
cosity of a liquid., In normalized form, tﬁe variation with frequency
of the modulus components and the dynamic viscosity is given by equa-
tions (2.32), (2.33) and (2.34),. |
G'(w) _ w??
Gm 1+ u)2}\2

(2.32)
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G"(w). - X . . . ’
G("’) = X : (2.33)
) 1+ @A o

n-‘- - G"((D) _ 1
n wn 1+ wzxz

(2.34)

o %* ' ’
The complex compliance of ' J for the Maxwell element is given by the

simple expression o o

J*(iw) =1._.L*‘.'&7}.=.1_ - i.l'_ . (2.35)

The frequency variation of the modulus components and the dynamic
viscosity for the Maxwell element are shown in Figure 2.2,

Gruber and Litovitz [ 21 ] have postulated that a Maxwell element
can predict the behavior of cegtain liquids., The viscosity of these
liquias is governed primarily by the energy required for a molecule to
surmount the potential barrier due to interaction with its nearest
neighbors, and jump from one site in.the liquid to another. The steady
flow viscosity of such a liquid is giVen By the Arrhenius equation:

| Inn=A+B/T T @238
where T is the absolute temﬂp'eratu're.x ) ”
For liquids which have viscosities above éﬁbut O.i poise, however,
the viscosity is primarily a function of the relative availaBility of
free volume as described by Barlow, Lamb and Matheson [ 22] . There-
fore, the Arrhenius viscosity-temperature relation and thelMaxwell
deécription of viscoelastic relaxation are not adequate governing equa-
tiéns. The lubricant iq an EHD concen;rated contact is in a state
where the viscosity is limited by ava;laﬁle f:ee volume.and, therefore,
another viscoelastic liquid model proposed for such liquids by Barlow,

Erginsav and Lamb [ 23 ] must be investigated.
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2.4 The B, E, L, Liquid Model

Barlow, Lamb and Matheson [ 22 Jhave shown that .liquids having

viscosities above about 0.1 poise obey the Doolittle free-volume [ 24

equation:
Yo
Inn=4A+B— (2.37)
v
f
where o n = viscosity
v, = occupied volume
ve = free volume
A,B = constants of a given liquid

The specific volume v = vo + Ve and the density is a linear function

of temperature. Therefore, equation (2.37) becomes

Inn=A'+B'Y/(T-T) " (2.38)
where n = viscosity at temperature T
T = absolute temperature
T° = reference temperature, at which there would be
no free volume
At B' = constants for a given liquid

Barlow, Lamb, Matheson, Padmini and Richter [ 25 ] and Barlow,
Erginsav and Lamb [ 23 ] have demonstrated that the viscoelastic
properties for a large number and wide variety of liquids, which obey

.the Doolittle viscosity-temperature relation, can be represented by
two standard curves: Z'/(pr)% and Z"/(pr)% versus loglo(wn/Gw).
Figure 2.3 shows that the experimental results for many liquids are
indistinguishable when plotted in this manner, This suggests a simple
underlying phenomenological explanation. Barlow, Erginsav and Lamb

propose a new liquid model consisting of the parallel combination of
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the shear mechanical impedances for a Newtonian liquid and a Hookean
solid. The shear mechanical impedances result from equations (2.8),

 (2.10) and (2.11). Thus,

N

zy = (L+ 1) (m2e> | (2.39)

for a Newtonian liquid and

ZH = (me) (2.40)
for a Hookean solid.
Accordingly, the components ofA the shear mechanical impedance are
given by:
ook DE[1+ e ¥
06 )2(am/26 1+ (20m/G )2
2 = “J» (2.41)
2
1 nizegf] 4 e
(g Rz o
pG un/2G .
" = - 2 pET) = - - (2.42)
2
[1+ @n/26)?]" + (ens2e))
*
The components of the shear modulus G .and the compliance J
for the B, E. L. model are given by:
46_(n/26 )% [ 1+ (wni2c )2 |
G! = —— v 5 —5 (2.43) -
{ [1+ @n/26)2]" + @nize )}
26 263 [1 +onf2e )}
wn - [1 +(wn/2G ]
G" - o] T 2 [--] 2 (2‘44)
{[ 1+ n/26)?]" + @n/2e )}
1 1
Jr = ct— (2.45)
o (G /2)2
n_ 1 1
J° = E + — (2.46)

(wnG_/2)2
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Finally, the dynamic viscosity is given by

v Gz

gn ¢ . ML+ (n/26)2) (2.47)

n' = — = . - 1 Wi N ;\I
© {0 s T | )

The variations of the storage modulus, the loss modulus and the-
dynamic viscosity with frequency, calculated according to equations
(2.43), (2.44) and (2.47), are graphically displayed in Figure 2.4.
Aé compared with the réspl;ﬁ for a Maxwell element, diéblayed in
Figure 2.2, thé B, E, L.vliquid model has a longer reléxation time.
Tﬁis is conéistent with the results of previous correlations based
épon distributioﬂs of Maxwell elements. ‘

The CurVéS‘pldtted th;oughvthe data points of Figure 2.3 are
célculaféd according ﬁo'ghéﬂﬁ. E. L. liquid model from equations (2.41).ﬁ

and (2.42), There is ‘excellent agreement with the experimental results;l

2.5 Relationship‘of Continuous and Oécillatory Shear

Dyson t: ; ;5 ] has had considerable‘5uccess in correlating
, Ty .

“the results offeiastohydrodynamic lubrication expéfiments with the
g properties of'fiuids-experimentally determined in osciflatory shear,
Dyson bases his comparison on a simplification of Oldro&d;s.r 38 ]
’_theory of th; éteady motion of an idealized liquid.

' The anaiysis postulates that a simple continuous shear déformation
'éﬁcludes a rofation of the liquid elements, It is therefore necéssary T‘
té refer all equations that describe its viscoelastic behavior in'
continuous sh;ar to reference axes ;Bich'rotage with the éiement of?l
fluid. The rotating axes yield additional time derivative terms in

Ehe equation of motion of the fluid and thus additional deformations.

These equations are solved subject to the velocity boundary conditions,
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to determine the stresses in the fluid. Finally, the normal stresses
are described with reference to the fixed axes.

Dyson's [ 27 ] simplification of the Oldroyd_parameters permits N

- - e N - e g . .
the normal stresses for a fluid with relaxation time A = n/Ga , in

simple laminar shear, to be expressed in terms of one parameter K:

Pxx 2 ., K2D2)\2
T S T3 (2.48)
© K 1 +K D)
sz 1 KD\ Y
G K 2 2.2 (2.49)
© 1+ K DA
Pyy = Pzz =0 ‘ | (2.50)
where P__ = normal stresses
Gm = limiting shear modulus
K = parameter of the anzlysis
A = Maxwell relaxation time
D = shear rate
X = direction of flow
y = direction of velocity gradient
z = direction normal to both x and y

Equations (2.32) and (2,.33), repeated below, have been derived

for a Maxwell fluid subject to oscillatory shear.

2
% - _W_ZKZ_Z (2.51)
® 14+ wA
G" _ wl
G = 27\2 . (2.52)
[ 1+

Dyson observed, as a result of the comparison of equations (2.48)

and (2.49) with (2.51) and (2,52), that the shear stress ny'is equal
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to 1/K of the value .of G" at . an angular frequency w =.KD. Furthermore;
one half of the normal stress diﬁfergpqe}.%(Pxx-Pyy), should be 1/K2.
of the value of G' at an angular frequency w = KD. A .comparison of

the dynamic. viscosity for . continuous .shear

A I T L
L n! = = (2.53)
Dy + k%2

with ‘equation (2.34), the dynamic viscosiéy”in o$cillats¥y, shear,

(2.54)

_shows the variation with shear rate.D iélfié;saﬁe as with angular
:freqdency w, with @ replaced by KD,

The hypothesis above is checked against the reésults of Russel
[ 28] in Figure 2.5.- The variation of apparent viscosity is shown
for the same three fluids in both oscillatory and continuous shear.
Note that the two curves begin to diverge-at an abscissa value Eetween
1 and 10, This corresponds to the conditions where G" reaches its
maximum.

Whatevef model is -employed to represent the viscoelastic proper-
ties of the liquid, its application to continuous -shear must be made
in the rotating’ coordinate system. Therefore, the geﬁeraliéatidﬁ'of
this analysis is stated as

T(D)=g'11%u')l S (2.55)

Dysont's application of equation (2.55) to the B, E. L. liquid model
'i's compared with the experimental results pf Smith [. 29] at low shear
rates in Figure 2.6.‘ ston_[ 15¢1 reports that a constant value of

K = 7.5 shows good correlation over all Smithls experimental conditions.
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continuous shear

16°

oscillatory shear

10*

Figure 2.5.

10 1 0 10 10° 107
' 7o DI E, or g0/ E,

Comparlson of varlatlon of apparent V1sc051ty in osc111atory
and in continuous shear,

. AFGO/H AFGO/L SLW.10
oscillatory shear, /7, against 0] Ey '

, x e .+
R , . (disks ® o} ®

continuous shear, 37, against », D/L {SNS .
> » Uil against i, DL capillarics ol @

Eo is a parameter of the order of G_. Ci_zrvé from Dyson [ 27 7] .
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Figure 2.6

Comparison of results of Barlow & Lamb in oscillatory shear with thosc of Smith in con-
tinuous shear—mincral oils, steel surfaces. '

Oscillatory shear G against 9,0 results of Barlow & Lamb [19] 1 ..... ., LVI mineral oil;

— = =, MVI mincral oil; , HVI mineral oil,

Continuous shear K7 against 9, KD results of Smith [297 : (figure number in original re-
fercnce): ‘

fig. 8 fig. 9 fig. 10
x 23 °C v 23°C o 25°C
© 100°C + 100 °C O 100°C
A 190°C

Curve from Dyson [ 277 .
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As a result of equation (2.55), (GQ/K), and not G_ , will appear

in the equations of motion. A new limiting shear modulus for con-

e e =
.
LA

tinuous shear is now defined to include the Oldroyd-Dyson-patameter K

E; = (6_/K) i (2.56)

2.6 Limiting Shear Stress

The Méxwell or B, E. L, liquid model, when applied to continuous
shear, predicts a shear stress that rises to a maximum and then falls
with increasing shear rate.independent of thermal effects. This be-
havior i; intuitively doubtful and Dyson [ 27 ] reviews the mathematical
objections. It is suggested that this behavior would give riée to an
unstable flow pattern., The correlétion.shown in Figure 2.5 sﬁggests"

a gransition_to another mechanism of flow as the shear rate approachesv
the value which corresponds to:a maximuﬁ shear streés. At this shear
rate, the correlation between experimental and predictéd values weakens,

As an alternative to the falling portion of the shear stress-
deformation reiation, the possibility of a 1imitiﬁg‘shéar étress is
suggested., The 1imiting shear stress is the maximum stress a fluid
can transmit; an increase in the rate of shear can no longer cause an
incfease in the shearing stress. Smith [ 29 ] first suggested this
behavior of a fluid analagous tO‘plastié deformation of a solid.

Plint's [ 13 ] results further suggest the existence of a limiting
shear stress in an EHD fluid filﬁ. He interpreted the limiting shear
stress to be the result of a discontinuous shear failure. Dyson [ 15 7]
suggested the limiting shear stress be a function of the limiting shear
modulus E; . Figure 2.7 shows this results in a good.correlation with

the experimental data of Johnson and Cameron [ 11 ] |,
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Consequently, it is surmised that there are two mechanisms of
flow for a liquid under the conditions of continuous shear. The
material properties of the liquid, as well as the transition between

these two mechanisms'of§§&ow, are continuous. The 1iquid~99€er for
\\*\ﬂ__,——————/\'.,_ e . . - R T - e

continuous shear is, therefore, a composite non-linear shear stress-
‘strain relation.. It is comprised of a viscoelastic relation for shear

rates up to the value predicting the maximum shear stress, and a

limiting shear stress equal to. this maximum at higher shear rates.

2.7 Hyperbolic Liquid Model

Barlow and Lamb [ 197 investigated the viscoelastic pelaxation
in three mineral oils of different viécosity index and cdmpdsifion.
The experimental results, shown in Figure 2,8, show slight deviations
from the B, E. L, liquid model;: The experimental results are dis-
placed té'higher”valqgs_of frequenqy and lower values of theiloss
modulus. h .

To add flexibility in the analysis, a "hyperbolic" shear stress-
stra?n relafionués used?which a%lbws easy ghanges in the 1imiting
shear stréss or' the rate of risé to thié_xiﬁic; ‘The relation has the

additional feature of providing a smooth.transition to the flow domi-

nated by a limiting shea¥ stress, The model is mathematically repre-

sented by
c2 c 2
0 = 1+a 1+ ————— -c (2.57)
I - ¢ /1—-- c
(G ) \G )
-] (-]
where v = shear stress
E; = limiting shear modulus
0 = E}-%& , dimensionless shear rate (2.,58)
G

--]
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Figure 2.8, Components of the shear modulus calculated from measured
values of Z' and Z2": s hov,i,; «=-=, mv,1,; ««--,
1.v.i, Curve from Barlow and Lamb [ 197 .
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¢ = limiting shear stress]limiting shear modulus ratio
a = rise paramete., rate of rise to limiting shear stress
decfeases as a increases
kw“—_—“—____“‘Failr—mode.ls\of,int:,ga,re,s,t, the hyperbolic model for ¢ = .25 and
c  ,20, and the Maxwell and B, E, L, - limiting shear models are

illustrated in Figure 2.9.

The hyperbolic liquid model has the following limiting values:

Lim I- =0 | (2.59)
Q-0 G
- -}
L ord g -
Lin [$Z | .3 =7 (2.60)
: = - [}
Y G
©
Lin I- =c¢ . (2.61)
Q0 G
o«
Lin [$ T ] | (2.62)
O
-]

For the case of a = 0, equation (2.57) reduces to the true

hyperbola:

(2.63)
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CHAPTER III
; TRANSIENT VISCOSITY .

~The maximum pressure in the lubricant film betwegn highly loaded
contacts may be as high as 250,000 psi. Theilqbﬁig;nt_f;}m is there-
fore subjected to .a large pressure. transient as it passes gh;ough thi
contact, and the equilibrium viscosity at the maximum pressure is -

several orders of magnitude greater tham the atmospheric pressure value.

27 0 st .'{.{ PRI iy, : v
Measurement of the tractional force between the two contact

surfaces at low véldés“of'élip énables an "effective Viéébéity"jﬁf
the lubricant to be céicﬁiéééd: ‘A£ high'}Bliiﬁglgbée&s; this efféctive
visc6§it§'i§?fouﬁdgto:be iowéf:ﬁhaﬁ:tﬁéAvaihé Caiéuiafé&ﬂfréQ the equi-
librium valué of tﬁeaﬁiscdsiﬁﬁ as ‘a fuﬁcfidﬂ'bf ﬁfeééﬁré: ‘The efféctive
visdbéityLgiég“éeéréaées'witﬁhiﬁéfeééfﬁgfféilfhg?épéed, in a manner
wﬁiéﬁ;{;sﬁoﬁuaéé&uétélyﬂekﬁiaihed b§ either viscous héﬁtiﬁé gflthé'lﬁﬁri-
cant film or by variation of the viscosity és.a:fqﬁétiOn of shear rate.
‘Fein fxgbz]ihas s&égééfédéfhé‘féiiﬁfé watﬁe'iﬁbriéaﬁé:discoéié§
to feéﬁond Eé'tﬁéffépfd preséﬁ;e‘chéﬁgés?énc8untéred‘iﬁ tﬁé coﬁfécf'
areahééuidy5é¢an éxpianatiéﬁ'for‘thé'low values of effective viscosity
which are observed. His analysis sﬁo&é Ehat'&ndér'cerééin-coﬁaitioh§i
the timé of transit of the libficant through the contact zoné could
Se;saail comBatédAwifh“fhé'Efmé:feqdiréd'for:the'iuﬁfiéang to reack
a stafe.of'eduilibiiﬁﬁ fbiléWiﬁg'aﬁ:ahpiiéd pressure:step. ~Consequently,

the compression of the lubricant never réaches the equilibrium state:

cortesponding to the peak pressure, and the viscosity has a lowet valie
than that measured under equilib¥ium conditions. An increase in the

rolling speed reduces the residence time of the lubricant in the contact
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zone. This results in an even lower value for thefviscosity attained
by the lubricant, and a consequent decrease in the‘effective viscosity.
Chapter III is an analysis of the effect of compressional visco-
elasticity on the pressure-induced viscosity changes that occur in
concentrated contact lubrication. The variation of viscosity with
time, following an applied step in pressure, is described by a non-
linear model proposed by Kovacs [ 16 ] for. the volume creep of polymer

melts,

3.1 CompgessiqnaL Viscoelasticity

The.respense of a liquid to a rapid change in pressure consists
of an instantaneoue volume change, followed by a time-dependent volume
change. The instantaneous change is‘attributed to the elastic com-
pression of the liquid "ia;tice", while the time-dependent response
is att;ibuteq.to molecular rearrangements. The instantaneous response
of the liquid, when the experimental time scale is small compared with
the time required for molecular':earrangement;,,is_eharacterized by a
bulk qodulus Kﬁ. Wheq the experimental time seale‘;s large compared
with‘the molecular.rearrangemenp time, the bulk quulus has a lower
value, the eqqilib;igm value Ko. Ihis behavior may be represented by
the simple models shown in Figure 3.1.

Model A is widely used when volume relaxation is investigated
as a function of frequency. The overall modulus then rises from a low
frequency. value Ko to a high frequency limiting value Km_= Ko +'K2.

2
laxational modulus, Kr(jw) = K;(w) + iIK;(m). For model A, the total

K, is the high frequency value of the real part of the complex re-

bulk_modulus is given by the expression
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Figure 3.1. Models for compressional viscoelasticity,
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w)\v

g = Ko + Kt(h”) = Ko + K2 T—;—;;x; (3.1)
and the relaxation time
Ty
A =R B (3.2)
2
where ;fnv = volume viscosity
w = angular frequency

ModeI'BfiSTmore suited to a description ofithéﬁghange 55 volﬁme
following a sudéén increase in pressure, volume creep, since the
instantanepus an& timefdependeﬁt parts of thé response are ea;ily
separated.'vThe résponée is more simply expressed in terms of the over-
all compreésibility, tge reciprocal of the bulk ﬁodulus, given by«‘

equation (3.3) as a function of frequency.

4

i

1 1 '
= == 4. - AT (3.3)
K, K1+ iwkg) ‘ s :

&

Kf is a modulus associated with molecular rearrangements corresponding

to changes. in the free volume and Ag is the retardation time given by

A = G.4)

f

NI'_?

f
The viscosity né?is associated with the changes in the free volume.
The low frequency or equilibrium modulus Ko is obtained from equation

H

(3.3) for w = O.

PR

K "k 'K -3)
o © £
or Kwa
X, =TT KL ©.6
o f

Models A and B describe the same behavior and a comparison of
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equations (3.1) and (3.3) yields the following additional relations

between the parameters of the two models:

K =K +K, o | | 3.7
- k.2 0 T -
Mg = nv(iz> (3'8)-

It follows from equations (3.5) and (3.7) that

NISW

(3.9

'NLJN

o]

2
The behavior of liquids is generally found to be more complex

than that described by these simplé models and'é'combinatiOn:of several
models, each with different time constant and moduli, is necessary. - °
Altanatively, a continuous di;tribution ofirelaxatiop; or retardation,
times may be used to characterize the liqﬁid behavior. The introduction
of a distributed spectrum causes considerable complication in the
analysis and is not warranted in the present study. :Modél B of Figure

3.1 will be used to characterize the behavior of thé iubricant.

3.2 Viscosity Response to a Pressure Step

The overall change in volume from an initial volume v, to a

1

final volume vz,'caused by a pressdre change P, is given by the def-
inition of the secant bulk.moﬂuiué kof“

vl-vz = l—(—— - L o . (3.10)

The volume change corresponding to the purely'eiéstic~defofméti6ﬁ

. .
4

(vl-vi)-lsng1v§n'§y:4

VL TR S (3.11)
VL TR o oL Bt
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Equation (3.10), with the aid of equations (3.5), (3.10) and (3.11),

may be written as

le le
(v + V) =g * g - (3.12)
® f
Therefore,
V.-V .
12 2 (3.13)
V1 £

Equation (3.13) may be taken as a definition of Kf.
The time dependence of this volume change is given by the
parallel spring and dashpot combination of model B, The response is

governed by

n V.-V
_ _f dv i
P = -—-vl T + Kf v (3.14)

-y (3.15)

where v varies between A\ and v,. For small changes in pressure, when

nf and K_ can be regarded as constants, equation (3.15) has the solution

£
v-v, = (vi-vz) exp(-t/lf) (3.16)

and the total response to the pressure step is

M ST .
el T('f'[l - eXp(-c/xf)]} (3.17)

where the retardation time.)_\f = ﬂf[Kf.
However, for large pressure changes the parameters Ng> Koo and
Kf can no longer be regarded as constants., In particular, the vis-

cosity ng may be expected to change by many orders of magnitude under

the pressures occuring in the contact zone. There is considerable
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evidence from ultrasonic studies of liquids théﬁ the volume viscosity
nys and hence Ng> is closely related to the shear viscosity n and has
the same temperature dependence, Litovitz and Davis [ 31 ] and
‘Taskoprulii, Barlow and Lamb [ 45 ] offer such;eVidence for Tiguids™
including lubricating oils., It is assumed here that nf'has the same
dependence on the free volume as the shear viscosity. Then ¢ is

related to the free volume v_ by the Doolittle [ Z4 ] equation:

b §
Inn. = A+ B/E . (3.18)
v-v
where £ = » fractional free volume : i (3.19)
o
v, = specific occupied volume

A,B = constants
The value of A is characteristic of the liquid; the value of B is
usually close to unity. The occupied volume, a function of pressure,
is assumed to be independent of time and thus is associéted with the
instantaﬁeous bulk modulus K - The variation of N¢ with pfessuré is

described by the parameter s, defined by

Nt
s= m(=2) =38 - ] (3.20)
ﬂf 2
where f2 is the final volume of the fractional free volume, and Ng
2

is the final value of Mg, at pressure P. If no change in the fractional
free volume occurs during the instantaneous compression, the initial

value of s is

n
f2 r11°
s = W) =8¢ - (3.21)
g ~f2 N
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where‘nfi and fl
state when P = 0.  The shear viscosity is also described by equations

are the values of ne and f at the initial equilibrium

(3.18) and .(3.20), so.that..

s = IRCE') (2.22)
1
| 1/ . R
where mn andmn2 are the .initial and final equilibrium values, respzctively,
of the shear .viscosity 7 .
. Following Kovacs [ 16.] , if it is assumed that the occupied

volume v, remains constant after the initial compression, the parameter

s is-evaluated from its definition: = - °

(v-v,)v
2’0
s =B [ : ]' (3.23)
(v-vo) (vz-vo) |
Therefore, the differential dv is
(v-v )?
v = fds o (3.24)
o

Equation (3.15) is written in terms of the parameter s with substi-

tutions from equations (3.20) and (3.24):

(v-v )
exp(-s) o _dt .
s Gy TN, .23

Noting that

2

l-== (v-v ) (3.26)
O .
equ%tion (3.25) becomes
exp(-s) 1 dt : .
ds = - — (3.27)
W 2
- _B:) 5 :

where Ay is a retardation time characteristic of the final equilibrium
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state, given by

)\sz =mng = nfl exp(sl) (3.28)

The term (sf2/§) in equation (3.27)_is typically much less. than-unity, --

so that the expression (1-sf2/]3)-1 may be expanded to give
552§:§1~ds + exp(-s) 53 ds = - 3t (3.29) .
. R A>T . - -

as the differential equation describing the time-dependent compression

of the liquid. . This may then be inteérated from the initial value s

1
at t-= 0 to an intermediate value s at time t:
£, : T ¢ g
Ei(-sl) - Ei(-s) + . [exp(-s)-exp(-sl)lié X; (3.30) ~
" where Ei is the exponential integral. The viscosity'at time t-is "
given by )
n = m, exp(-s) L @an

_ Figure 5.2_shqws_§he variation of viscosity with time predicted
by equation (3.30) for the following parameters: P = 200,000 psi;

5

n = 10° lbf-sec/inz; n, = 1031bf-sec/in2; £, = 0.05; B = 1. These

2
values are typical of those ekperienced by a lubricant in the contact
zone of a heavily loaded rolling contact. For values of t of the order

of x2 or less, the viscosity is seen to be significantly less than the

equilibrium value,

3.3 Viscosity Response of a Lubricant to a Pressure Step

To determine whether the behavior described by equation (3.30)
has a significant effect on thetprbpérties of:-the lubricant, values

of the residence time of the lubricant in the contact and the retardation
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\

Viscosity (Ib¢ sec inx10?)

O 0.5 [.O [.5 2.0

t /X,

Figure 3.2, Variation of viscosity with time, following an appl%ed
pressure step. Initial viscositg = 1'0'51bf-_sec-in' H
final viscosity = 10°1lbf-sec-in~<,
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time 12 must be determined. The lubricant in a rolling contact is
subjected to high pressure for a time equal to 2b/U where b is the
half-width of the contact zone and U is the rolling speed. For typical
values of b = 10.2 in and U = 100 in/sec, the residence time is of
the order of 10“4 sec,

The time constant xz is characteristic of the final equilibrium
state of the liquid., Values of Ng and Kf for lubricants are not
available, but reasonable estimates may be made from ultrasonic data
on other liquids. The viscosity Ng is reiated to the volume viscosity
Ny by equation (3.8), ng = nv(Km/Kz)z. Litovitz and Davis [ 31 ]
report that the ratio KQ/K2 is of the order of 3 for many liquids.
Therefore, a value for (Km/KZ)Z of 10 may be used, Ultrasonic studies
also indicate that n, is close;y related Fo the shear viscosity; a
ratio of nv/n = 5 has recently been reported by Barlow, Lamb and
Taskoprulu [ 32 ] . The value of ng is then given by 50n,, where n,
is the atmospheric pressure shear viscosity, The time constant 12 is

given by exp(sl)nf/Kf = SOnz/Kf. The bulk modulus K. is related to

f

the relaxational modulus K2 by equations (3.7) and (3,9); for a ratio

Kf/Ko = K.w/K2 = 3, then K

£ = 6K2. But K, is experimentally found to

2

be approximately equal to 4/3Ga, where GQ is the high frequency limiting
shear modulus of the liquid., A value for G@ of 4,35 x 104 psi

(3 x 109dyn. cm-z) has been reported by Hutton [ 33 ] for a H.V.I,
lubricating oil at 30 °c giving a value of K. of 3.5 x 10'5 psi. This
modulus will change significantly with pressure. Dyson [ 15 ] reports
measurements of G@ as a function of pressure give a typical value for

aGw/aP of 3, and Ko for lubricants varies in a similar manner in the

Pressure-Viscosity Report { 347, If it is assumed that the ratio
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Kf/l(o reméins ihdependént of pressure, then Kf = (3.5 x 10S + 9P) psi,

and the retardation time A, is given by

S . ~ son,

Ay = '
"2 (3.5 x 10° + 9P) - ,;

(3.32)

For the values given above, Ay has a value of the order of
2 x lo-zsec, which is much greater than the residence time of the
lubricant in the contact zone. The "instantaneous viscosity" of the
lubricant will therefore be much less.than the equilibrium va;ue,
resulting in greatly reduced values of effective viscosity in accordance

with experimental observations.
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CHAPTER 1V

MATHEMAT ICAL FORMULATION

The present analysis of traction in elastohydrodynamic contacts
includes the iterative Qolution of the momentum and energy equations
with thé fluid propérties functions of pregsure and temperature. The
shear rate and transient time effects have been isolated as discussed
in Chapters II and III.

In this chapter the momentum éndAenergy equations are developed

and the pressure profile, the film thickness and the material property
functions aré'discussed. The set of equations developed are then

solved numerically. Cw T

4,1 Geometry an&:Coordinatgs.zw
The geométry of a typical disk maghine is*shown in Figure 4.1.
Two cylindgfs of radii R1 and Rz,.roliing with vé{ocities U1 and UZ’
respectively, are separated byfg'iubricant film of-thickness 2h. A
closer vie& of the contact zone as shown in Figurej4.2 is more useful
for the purposes of this analysis. The disks have deformed elastically '
to form a contact zone of width 2b and the film thickness is aﬁproxi-
mately constaanwith the surf%ces of the di§k§ remaining nearly parallel.
The coordinate system is defined to Aave the origin on the center
lines of both the fluid filéiaAd the flat éontact zone, The x-axis
is the center line of the lubficant film with the positive direction
in the direction of flow; while the y-axis, the perpendicular bisector
of the flat contact zone, .is arbitrarily taken positive toward the

disk rolling with velocity U The z-axis, not shown in Figure 4.2,

2°
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Figure 4,1, Typical disk machine geometry,
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Y

Figure 4.2, Contact zone geometry and Hertzian pressure profile.

55



is perpendicular to both the x and y-axes with the positive direction
consistent with a right-handed Cartesian coordinate system,

The control volume of interest is defined as an element of fluid
of length dx in the direction of flow,:bounded by the disk surfaces

in the y-direction and of unit thickness in the third direction.

4.2 Pressure Distribution

The pressure distribution in the contact zone is assumed to

have the elliptical Hertzia? dry contact profile given by

P60 = by, J1 - &) &) “4.1)
where Py, = maximum Hertzian pressure
x = distance from the center of the contact
4R p . .
___Hz - :
R -2
= half Hertzian width
R = effgctive radius of the disks
E = efféctive modulus of elasticity

The deviations from this assumed distribution are mainly in the entrance
zone at low pressure levels, Their effect on the sliding friction is

very small and is neglected.

4.3 Film Thickness

The minimum film thickness in elastohydrodynamic contacts at
moderate rolling speeds can be accurately predicted by the Dowson

and Higginson [ 357 formula:

1.6 a0.6 (n U)0'7 (E)O.03 R0.43

_ ent '
h, = 0.13 4.3)
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where h = minimum film_thickness

[o] i
a = viscosity-pressure exponent
n = viscqsity of the lubricant at the conditions of

entrydto,the contaeq .

U = mean rolling speed

E = effective modulus of-eiasticity
R = effectlve radius of the dlSk pair
'&4 =A10ad per un1t 1ength of cyllnder

Note that the minlmum f11m thickness is only sl1ght1y dependent on
the load w and v1rtua11y’1ndependent of the e1ast1c modulus E,

Dowson and H1gg1nson [ 36] suggest the parallel 'film thickness
2h is ZOZ'greater than the minimum film thickness ho."q

The Dowson and'Higginsdn'bfedictidnidfyfiiﬁ;fhiEkness'fs based
on' an isothermdl analysis which is no longer adequate fdi'heanlfrieaded
contacts qperating at high'rolling'speédsfj;Cheng T 37A]1has'balcdi§fed
the lubricant film thickness in the Hertzian flat for high speed'and“ﬁ
heavily loaded rolling and sliding contacts._ He used a Grubln-type

1n1et analys1s 1nc1ud1ng full thermal-hydrodynamlc effects. The reSultsv

obtained for a w1de range of load speeds and 1ubr1cant propertles
showed that the loss of film due to thermal effects is strongly in-

crei

fluenced by the rolllng velocxty.and the 1n1et v1scos1ty of the 1ubr1-
cant, while it is somewhat insensitive to the change of load Thev‘ .
presence of sliding does not have a significant influence on. the.'calcu-
lated film. thickness,:whereas ‘the rolling speed has.a far more pre-
dominant effect at the inlet.. . . . . : ;-' oo IR

The loss. of film thickness-due.to.thermal;effeets.can-be most

conveniently represented by a thermal reduction. factor QT; which is -
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defined as the ratio of the actual film thickness to that predicted
by isothermal theory. Run #29 of Cheng's work is most applicable to
the lubricant properties of this study and has been reproduced in

Figure 4.3, Cheng's parameter Qm is defined by

2n U2
Q = —kf-;—;t— | (4.4)
where Nent = viscosity at entry conditions (1bf-sec/in2)
U = average rolling speed (in/sec)
k = thermal conductivity of lubricant (Btu/oF-hr-ft)
Tent = femperature gf lubricgnt at entcy (oR)

The film thickness inciuding the thermal effects is calculated
by multiplying the isothermal film thickness, based on the Dowson-
Bigginson formuia, by the parameter QT determined in Figure 4.3, For
example, at a roiling speed of 500 in/sec at 175 °F, equation (4.4)

requires

-5 2
a . 2(.87 x 107 7)(500)° - :
Q= (- 0216)(635)  ~ 32

and Figure 4,3 determines the thermal reduction factor

o = .81

Values for other conditions are similarly calculated. The results

are shown in Table 4.1.

4.4 Momentum Equation

In applying the principle of conservation of momentum to the
lubricant in the contact zone, we make the following assumptions:
1, For the case of a line contact, all the variables are

independent of z, the direction of the axes of the disks.
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Table 4.1
VALUES OF THERMAL REDUCTION FACTOR AT

TYPICAL EXPERIMENTAL CONDITIONS

175 F 220 °F
Q = .32 N Q = .15
500 in/sec 7
' & = .81 dp = .89
: Qm = 1,27 qm = ,60
1000 in/sec
. QT = ,58 QT = ,72.
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2. As compared with the lubricant film thickness, the radii of
curvature of bearing components are generally very large. In the

specific case of the disk machine, the radii of the disks R, and

S
R2 S>> 2h. Accordingly, all effects due to curvature of the fluid film

are neglected.

[

"3." As compared with the much larger pressure and viscous forces,
the inertia and body forces of the lubricant are negligible. This
imples that the pressﬁre-and»viscous-forces~acting<on the fluid are

in equilibrium,

4, As compared with the other dimensions of a lubricated con-

centrated contact, the film thickness is very small. Therefore; thei.-

derivative of u with respect to y is large in comparison with all
other velocity gradients.

-5. The pressure gradient across the lubricant film is also
insignificant due to-the rélafive smallness. of the film thickness.

Accordingly, p = p(x) # p(x,y). .- :
The assumptions outlined above reduce the surface forces acting
on a fluid element in the contact zone to those shown in Figure 4.4,

The momentum equation can be derived direétly from the balance of

these surface forces. Equilibrium in the x-direction requires

AT
dp _ T xy
= = 4.5)

The shear stress Txy must have two éomponents. The rolling of
the two cylinders produces the first component , while the second
component results from the difference in:rolling velocities, or slip.
Consider a control volume béunded iﬂ the y-direction by the surfaces

of the disks as shown below.
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dp
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"‘( 6X ) Ca
o Txy &x

Figure 4.4, Surface forces acting on a fluid element.

A
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Figure 4.5. Forces acting on the control volume.
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The size of the fluid element considered in Figure 4.4 can be
increased to that of the control volume used in Figure 4.5 by inte-

grating equation (4.5) with respect to y over the film thickness, I

[”_d_pmd _rt Ry
dx Y= 3y Y
“-h -h
or 2h %ﬁ = (Tx ) - (Tx )
Y y=h Y'y= -h
dp =
h 3% Troll (4.6)

"Thus, the rolling component is independent of the slip and is a function

of the pressure gradient through the contact zone., Only the component
of stress that arises due to the relative sliding of the two disks is
of interest in this study. This component is easily separated by

neglecting the pressure gradient term of equation (4.5). For convenience,

we redefine (Tk ) = ¢ and the final form of the momentum equation
slip
becomes
§§ =0 ' .7)

The shear stress T is supplied by one of the rheological models

considered for the lubricant. The form of the model is

= ¢f2Y
. f(ay 4.8)

Therefore at any position x

21(2%) <
=0 4.9)

Y
and
f(L =C . 4,10
3y 1 ( )
where C1 is a constant of integration., When a specific model is used,
one can isolate g% and integrate with respect to y fromy = -h to y = h.

A . u .
Moreover, it is assumed that the profile for g; is symmetric with respect
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to the x-axi

B .

s. The symmetry of %ﬁ alLowsrthe use of twice the integral
fromy = 0 to y =.h:for_evalua;ion of UlfUZ.

At the sprface y = h, the fluid‘mgst have the same velocity as
the disk; fﬁereforé,

u=1U at . y=h ' (4.11)

2
Similarly, at the surface y = -h, the fluid will have a velocity

u = Ul' Due to the symmetry of %3 s one can specify the velocity at
the center line of the film as the boundary condition. Therefore,

us=3(U, +0U,) at  y=0 D R +)

4.5 Energy Equation

Figure 4,6 i1llustrates the energy transfer from the fluid element

in the concentrated contact.

2
-(k %I + k a—% 5y\ 8% T T pc(vT + a£¥zl 6y> 86X
bcuT gy —> . ..': 8y | —>

T
pc(uT + aé‘i—) 5%} &Yy

A

- TT
k 3y o Pcv 5%

Figure 4.6, Energy balance.for a fluid element,
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It is assumed that the heat generated in the fluid element will -
_be dissipated in two modes: Convection, EE§ f;rst mode of heat transfer,
i; ghe process b§;which energy is carried out 6f the contact zone with
thé iuﬁricant;- fﬁ the second mode, heat will be éonduééed across the
film to -the disks. Since the lubricant film thickness is small in
comparison with the Hertzian contact width (x-direction) and even smaller
in comparison with the cylinder width (z-dirg;tion), the temperature
graaienté in the x and z-directions must be‘;hall in comparison with
those across the film. Therefore, only conduction in ‘the y-diréction
is considered.'~The§e modes 6f energy’ transfer are shoéwn for the fluid
elehent in Figure 4.6,

The rate of heat generation per unit volume q is‘given by the

product of ‘stress with the rate of strain.

- _au g ' (4.13
q '1'ay | ( )

An energy balance on this fluid element requires that the net energy

jinto the control volume be zero.

2

cpc 2D 20D, 2l - s Eoo (414)
& oY : ' ’ ooy
oy
Heat Transporéed to Heat Conducted to Heat Generated in
- Control Volume Control Volume Control Volume .
where . - T = temperature of the lubricant
- p = density of the lubricant
c = specific heat of the 1lubricant )
k = thermal conductivity .of the .lubricant
Continuity requires that

L. ) 4
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Therefore,

T T 2T u
- pc(u a- + v 'a—) + k o = -7 au ., 16)
¥ 3y 2 Yy
. oY
Convection Cross- Conduction Viscous Heat Generation
Convection

The ratio of convection to conduction is estimated, by assuming

a triangular temperature profile, to be

2
Uh
ok .17)

Equation (4.17) demonstrates that convection will have its
largest effect for a maximum value of (th/b). This corresponds to the
condition of maximum rolling speed and minimum load.

For the thin lubrican; films in EHD contacts, where h << b, -the
convective heat transfer can usually be neglected., Therefore, the
governing energy equation may be written as a balance of viscous heat

generation and heat transported by conduction.

2. |
T
k8= = - %3 (4.18)
ay

The consequences of this assumption are discussed in section 6.3,

The lubricant in contact with the disks assumes the surface
temperaturé of the disks, Blok-[ 38 ] has analyzed the problem of a
moving heat source, His results demonstrate that the disk surfaces
in the concentrated contact will have a mean "flash temperature"
higher than the bulk temperature of the disk. Equation (4.19) is
the expression Blok derived for the flash temperature.

0.48 yw|U,-U, |

T -T, =

Ty (4.19)

1
3
(k p c Ub)
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where T

mean surface temperature in the contact zone,

]
"flash temperature"
Tb = surface temperature entering the junction, bulk
o o ~“temperature of the disk o .
k[n = thermal conductivity of the disks
c, = specific heat of the disks
Pm = density of the disks

4.6 ‘Equilibrium Viscosity Function

The equilibrium viscosity is the viscosity mgasured after the
lubricant has reached a state of static equilibrium under a given
temperature and pressure. Viscosity deserves épecial attention in
the study of ffictiqn in concentrated contacts. Unlike other physical
properties; which change only slightly-with temperature and pressure,
the viscosity of a lubricant can chaﬁge by several orders of magnitude.

Viscosity is most simply defined by Newton's Law:

T =y o . (4.20)
where ¢ = shear stress (dynes/cmz) '
y = shear rate (sec-l)
‘ n = viscosity (Poise)

This can be generalized to equation (4,21) for a viscoelastic fluid, -

n = Lim <I> (4.21)
¥ -0

The viscosity of a liquid is basically the resistance of molecules

to move past the force fields of neighboring molecules. It is a compli-

cated pressure and temperature-dependent function.

The viscosity of a liquid and the rate of change of the viscosity
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due to a temperature change decrease with increasing temperature., An
increase in temperature of the fluid increases the ‘thermal agitation
of the molecules whiéh, in turn, lessens the forces of attraction be-
tween molecules, Thus the viscosity decreases,

The has been considerable effort to find an accurate relationship
for predicting the variation of viscosity with temperature, Some of
these relationships havg theoretical foundations but the empirical
formulas provide the most satisfactory predictions. The viscosity-

temperature relationship found by Herschel [ 46 ] is

og. (A N\_-p . - '
1og10&nref) =B IOgIOT (4.22)

where n is the viscosity (centipoise) at the temperature T (OE) and
Noes and P are constants. Thus the "Herﬁchel Chart", a plot of equa-
tion (4.22) on log-log graph paper, is a straight ling for a given
lubricant, The equation is simplg but Appeldoorn [ 40] has found it
surprisingly accurate for Qils.of very different viscosities.

The viscosity~temperature data for Mobil XRM 109 F4 and Shell

Turbo 33 is given in Table 4.2, This data determines the Herschel

equations:

loglo n = 8.974 - 3.2 log,,T (4.23)
for Mobil XRM 109 F4 and
1°g10 n=7.3409 - 2.8 logloT (4.24)

for Shell Turbo 33. Both of the equations above may be plotted on
log-log graph paper as shown in Figures 4.7 and 4.8 and used as con-
v;nient Herschel Charts.

The effect of pressure on viscosity is influenced by both the
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TABLE

4.2

VISCOSITY-TEMPERATURE DATA

Mobil XRM-109 F&- - —

"Shell Turbs 33 = —

Viscosity (cP) ?'T'etﬁperafui’:e (OF)

‘Viscosity (cP)

:

Temperature (OF) A

32,150, 0
355.0 IR | 100 ‘84 86
Us2s | a0 21 140
4.46 | 400 8.5 194
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Figure 4.7, Herschel Chart for Mobil XRM 109 F4 calculated from
equation (4.24). '

70



1000 | S E— r T T T T T
8001—

400}~

2001+ A | L0g|° 17 = 7. 3409 - 2.8 LOQIOT

1004—
got

sot

s01

7{cp)

M |

6004 e IS ! R

1 i !
40 60 80 100 200 400 6CO 800 1000 2000

T (°F)

Figure 4.8, Herschel Chart for Shell Turbo 33 calculated from
equation (4.25).
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pressure level and the bulk viscosity of the fluid, The same increase
in pressure will have a greater effect on the viscosity at a high
pressure level than at a lower level, This results from the éact that
.more of the free space between molecules is already taken up ;t the
“higher pressure level. The same effect is regponsible for”é fluid of
high biscééity undergbipg é ggeater viécosity change than a fluid of
lower:visé;sit§ for the same increase in pressérg.

The Pressure-Viscosity Report [ 341 , which includes data
. on several paraffinic and napthenic mineral oiis, pure hydrocarbons
and synthetics, is an excellent source of preésure-viscosiq; data.

Chu and Cameron [ 41 ] have analyzed the results of this report
in an attempt to find a sufficiently accurate pressure law and corre-
lation., The usual simple exponential law was found inadeqhate for

paraffinic oils. Paraffinics were found to obey the law
3/2 : :
(log;4 M) = m(p + a) - (4.25)

and there was a simple correlation between m and Nbase the base

 viscosity. Including this correlation, equation (4.25) becomes

\ 2/3
323 (54 13.2‘J10g10 “base> (4.26)

logjg m = 0.18(log ) My ge

viscosity in centipoise at pressure p -

- where n =
Npase = base viscosity at p = 0
L. p‘ =

pressure in-kpsi - . T
.ﬁote tﬂat this conveni;nt fqrm of the Chu and Cameron viscosity-pressure
law automatically correlates to each lubricant through Mhase”

Cheng [ 37] has analy%ed-thetdata of the same Pressure-Viscosity

Report. He used the following alternmative viscosity-pressure relationship:
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-:‘l- = exap + (@ + yp)(‘% - %—) ] (4.27)
o o
whgrgff"'““’ n ="viscosity at pressure p jf_““—“f’ ) o7 _
M = reference to viscosity at p=0and T = To ‘
. p = pressure (psi) .
l.T = absolute température (°R) l
a =-Vi§cosity-pressure coefficient
B"=M5,1ﬂx 10’ a
y -90a. i i -

Figure 4.9 exemplifies\théfgressure dependence of the equilibriﬁﬁ
viscosity function according to;Cﬁéﬁg{ and Chu and Cameron., It has .'}§
been calculated for the Mobil XRM 109 F;’iubpicant at 175'°F.

4.7 Limiting Shear Modulus -

The pressuréfand-tempefatﬁre function for th; Aigh‘frequency }
liﬁiti;é Egééf:@ggulugjhg§'§éen:developed by Dyson [ IS.]gén a corre- h
lation with Smith's [29 ] experimental data. The deve10pmehf=is
outlined below. A

Hutton [ 33 ] experimentaily determined that a high viscosity i
index mineral oil at atmospheri; pressure varies with temperature ac-?
cording to.

S émzjz¥m@quv: . (4.28)
- RS
and refereqced to copditions at 20 OC,
. e ' S T R4
W0 3~ (4.29)
Gw(ZOOC) 2.52 + 0,024 T ’

10

where G_ is in GNa™2 (10 dynes/cmz) and T is in °C,
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1 M i I 1
Y 50 100 150 200 250
p (kpsi)

Figure 4.9. Example of T(p) for XRM 109 F4 at 175 °F calculated from
equations (4.26) and (4.27).
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Variation with pressure of the high frequency limiting shear
modulus is more difficult to estimate, since there is insufficient

lubricant data at high pressures. Guided by equation (4.29), Dyson

looked for a correlation of the shear modulus with the quantity

3p
2,52 + 0,024 T

Figure 4,10 is the correlation found with Smith's experimental results,
Although this correlation predicts an impossible negative value for a;
at p = 0, the predicted values at higher pressures are the best avail-
able., The limitipg shear médulus function, as determined from Figure

4,10, is

- 3p 8
6T = 0.4 [ 757 F5g ) - 10 (4.30)

Converting equation (4.30) into English units, one obtains
1.2p . 4 S
3.52 + ,0133(1-497) ~ -% * 10 (4.31)

E@(P ,T) =

where G°° is now in psi, p is in psi and T is in °R. Equation (4.31)
has been used in determining the limiting shear stress. in the liquid

models.

4,8 Numerical Solution

The numerical solution of the equations governing the friction
in elastohydrodynamic lubrication is a Fortran IV coding for use on
a CDC 6400 digitai computer. The program is outlined in Figure 4.11
and a complete listing is given in Appendix B,

Program.CONTROL';é the backbone of the traction'caiculation
calling on séveral subroutines as they are needed. The load is a
Hertzian elliptical pressure profile, as developed in section 4.2, and

the lubricant film of uniform thickness is calculated according to
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Figure 4.10. Correlation of limiting shear modulus with-the experi-
~ mental values of Smith [ 29 ]. Curve from Dyson [ 15].
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Figute 4.11. Simplifiéd ‘diagram of Program CONIROL and its subroutines.
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section 4.3, The material properties of the lubricant are allowed to
vary as functions of local pressure and temperature as discussed in
sections 4.4 and 4.5, The variation of the lubricant properties also
includes the shear rate effects proposed in Chapter II and the transient
time dependence analyzed in Chapter III. An iterative solution of the
momentum and energy balances (sections 4.6 and 4.7) is used to determine
the shear stress, and the velocity and temperature profiles in the
contact zone. The tractive force on a disk surface, resulting from

a given sliding velocity, is determined by integrating the shear stress
at the disk surface over the contact area, The traction coefficient

is then defined as the tractive force divided by the applied normal
load.

Function VISC supplies the transient'value of the viscosity
according to the model analyzed in Chapter III, For the purposes of
computation, the contact area is divided into six equal zones, the
pressure being taken as constant within each zone. For the first two
zones, the pressure step is assumed to be applied at the beginning of
each zone. The viscosity attained at a time corresponding to passage
through half the zone is calculated, and this value is used as an
average viscosity for the zone. For a rolling speed U and contact
width 2b, this time is b/6U sec. For the third zone, allowance is
-made for the viscosity increase in the preceding zones by calculating
the viscosity atva time b/2U sec. In each case, the initial viscosity,
at the instant of applying the pressure step, is taken as the viscosity
at atmospheric pressure and the disk temperature, For simplicity, a
viscosity distribution which is symmetrical about the center of the

contact is assumed, although the actual distribution is asymmetrical,
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with the maximum viscosity occurring on the exit side of the center,
This approximate method provides a rapid and simple method of computing
the effect of the rolling speed on the viscosity of the lubricant.

If the transient effect is to be neglected for any reason, the
following trivial subprogram may be substituted for Subroutines VISC,
RIMI, ZERO and EXPI.

FUNCTION VISC (P ,ETA2,CODE)
VISC = ETA2
RETURN
END
‘Subroutine RTMI supplies the solution s; of equation (3.30)

f

Ei(-SI) - Ei(-s) + E-Z-[,exp(—s) - ex?(-si)] =t

A2
to Function VISC., Muller's iteration scheme of successive bisections
énd inverse parabolic interpolations is used. RIMI is available in
the Vogelback Computing Center at Northwestern University, Its listing
is included in Appendix B for completeness, It is a requirement of
RTMI that equation (3.30) be represented as a separate function sub-
program. Function ZERO meets this need.
The evaluation of the exponential integral in equation (3.30)
is performed in Function EXPI. This routine computes the exponential
inteéral for negative arguments in the range -20 to zero. For negative
values of argument x the exponential integral is defined by
G -t
BiG) = [ S ac (4.32)
-X
In equation (4.32), a polynomial approximation is obtained, for values

of the argument between zero and -5, by means of the Taylor series

79



expansion by Luke and Wimp [ 42. ]

EXPI(x) = In|x| - i?'bv(-x)v T © (4.33)
v=0
where bo = - 57721566

b, =" 1.0 :
b, =- .25
by, = .055555520
b, =- .010216662
b, = .0016666906
b, = - .23148392 x 1073

by, o= 28337590 x 107%
by = - .30996040 % 107>
by = .30726221 X 16'6
by = - 27635830 x 1077

by s 21915699 x 1070
by, = - .16826592 x 10"
by = .15798675 x 107 '°

"5, = - .10317602 x 10711

Equation (4.34) is the exponential approximation used for. arguments
in the range -5 to -20.
- - ) . . - x

EXPI(x) = -2.658760 - 3  (4.34)

Function PSI specifies- the- shear stre§s=strain relationship to::
be used in the momentum equation. The.liquid model may be changed
Aéimply by replacing the deck of this function. Routines for the fol-

lowing .three liquid models are included in the listing of .the.programs::
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1. Maxwell. - Limiting Shear Stress Model.-
2, By E. L, - Limiting Shear Stress Model
s e -3, - Hyperbolic Shear Stress-Strain.Model. -
The routine:defines the function-Y as
- j S dy
o _‘odf .
¥ = 1°310 T,

%:35)

--where the veloc;ty gredient'au[ay_ is a function qf the shear stress, .

and therefore dependent upon the 11qu1d model

roL - . /1 4<<:;L> A AN » .-

for the Maxwell model;
SR = lssa(I) 4] e o wan
&y ‘G G_

L e

. T .
-~ -C,’:— H A
G- G
‘m "2 '—L T L PN SR SRS S (438)
Tyt UL
G " ".
«©

for the hyperbolic model.” The boundary coﬁaitibhs‘gbeeifieh'6§'eqﬁa-
tions (4.11) and (ﬁ;lZ)’réqﬁife‘ 4 A
Ih . (U,-.)
gy Y - L N

o
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Subroutine SECANT determines the shear stress solutionm of the
momentum equation by solving equation (4.40). This routine is a modi-
fication of Newton's method. For any function f£(x), two initial guesses
of the root x, and x, are required. A straight line is "drawn" through
f(xl) and f(xz) and extended to cross the x-axis. This new point X5
determines f(x3) which is then connected with f(xz) to determine X5
as depicted in Figure 4.12, This process continues until the root of
the function is determined. A number of checks are also included in
Subroutine SECANT to both guarantee and expedite convergence.

Subroutine INTEG integrates any non-equidistantly tabulated

function f(xi) between the limits a and b, where a or b must equal

f(xl). The integrated function may be defined as

INTEG [f(xi)] = erf(xi)dxi
a

A method of overlapping parabolas is employed with suitable modifications
to yield the fastest possible integratiom with second order accuracy.
The development of the quadrature for this subroutine is shown in
Appendix A, Subroutine INTEG is called upon to integrate the velocifyA
gradient in the solution of the momentum equation and again, to inte-
grate both the Laplacian and temperature gradient in the solution of
the energy equation,

Subroutine PRINTS provides the_numerical output of the program,
and Subroutine SETPLOT issues rapid line printer plotting of the
temperature profiles and traction coefficient versus slip curves., SETPLOT
is a library routine of Vogelback Computing Center and will probably
require considerable changes in the coding for use at another facility.
Since it is not required for the traction analysis, the listing for

SETPLOT is not included with that of the program,
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Figure 4.12, - Secant method. of solving f(x) = 0,
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CHAPTER V

EXPERIMENTAL INVESTIGATION

The design and manufacture of a disk machine was completed as
part of this study. The purpose of the experimental investigation
was to gather extensive data for two new synthetic lubricants,
Mobil XRM 109 F4 and Mobil XRM 177 F4. The conditions under study
were those of high loads and high rolling Speedé where there was;a
paucity of experimental data. Special emphasis was given to theieffect

“of additives upon the frictional torque. This chapter describes: the

disk machine, the lubricant properties and the test procedure,

5.1 The Disk Machine -

The aesign of the disk machine for this experimental investigation
was”guidedéby the following reqﬁ;éémepts. The disk machine must be
capable of}accurately measuring the trédéive force transmitted aéross
the line contact of the two disks for a wiée répgg of loads,'roliing
speeds andislips. A sufficient normal léad is required_betwgen ;he
diskggto ih%ure“bpérétiaﬁ in théreiéstéhydro&&ﬁéﬁic,regiﬁé? The drive
to the disks must allow easy adjustmen£s of the mean rofli#g speed
and the amount of sliding at the contact. The lubricant mﬁét‘be de-

livered to the contact at a controlled rate and temperature. Instru-

.

mentation is required to measure the normal and tangential forces on
the disks. The angular‘Qelocities of the disks, as well as the slip
or difference in the disk velocities, must also be accurately measured.
Finally, the surface temperature of the disks as they enter the con-
tact zone is required for an accurate knowledge of the friction. A

_ detailed description of the machine designed to meet these requirements

follows.
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The disk machine, pictured in Figures 5.1 through 5.3, was
designed with two 6-inch diameter disks. These large disks were se-
lected to allow a direct drive system at high speeds, thus minimizing
any possible vibrations. The lower disk is supported on two high-
speed roller bearings which are mounted in the main frame and the
upper disk is contained in a loading arm which is hinged on the frame
with a spherical roller bearing.

The load is applied by an air cylinder at the far end of the
loading arm. With a 30 psi air supply, a maximum Hertzian stress of
300,000 psi can be obtained for a %—inch contacting width, The ap-
plied normal load is monitored by a four-strain gauge bridge mounted
on the air cylinder shaft. This is necessary for accurate measure-
ment of the normal load, as the friction in the air cylinder is incon=-
sistent. The loading arm was designed to permit the necessary align-
ment to insure a uniform load across the line contact in the axial
direction.

Each of the disks is attached through flexible couplings to
separate 40 hp D.C, field controlled electrical machines. The shunt-
field current method of speed control is simple and efficient and the
speed regulation, for a given speed adjustment, is excellent. The
complete electrical circuit, schematically shown in Figure 5.4, is
the Hopkinson mechanical-loss-supply feedback circuit described, for
example, by Kloeffler, Kerchner and Bremneman [ 43 7 . This circuit
was inspired by a related feedback system successfully used in the
experiments of Jefferis and Johnson [ 12 ] . One of the D. C.
machines behaves as a motor driving one of the disks, The second disk

is driven by the friction force transmitted at the contact and drives
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the second D. C. machine as a generator. The energy is electrically
recycled by supplying the generated voltage to the armature of the
motoring machine. The losses in this cycle are mechanically supplied
by a 20 hp motor connected to the double-ended armature shaft of the
40 hp D, C. motor.

The speed of the upper shaft is controlled by the small 20 hp
booster motor. A wide range of rolling speeds can be obtained by
varying the supply voltage and the field resistance of the booster
motor. The speed differential between the two shafts is controlled
by adjusting the field resistors of the 40 hp D.C. motors which are
connected together across the armature terminals., This arrangement
allows a wide and continuous range of sliding speeds to be easily
obtained. This differs greatly from the typical two-disk machine
arrangement in which the slide-to-roll ratio is fixed by a gear ratio,
or the ratio of the diameters to the disks.

Jefferis and Johnson reported torsional vibration difficulties
with the original design of their disk machine. Every effort was made
to eliminate vibration problems in this design. The lower shaft of
the disk machine can be approximated as indicated in Figure 5.5, for
the purpose of determining the natural torsional frequency of the shaft.
The lowest natural frequency of this system is calculated to be 55
cycles per second which is slightly above the condition existing at
the maximum experimental rolling speed of 1000 in/sec. The flexible
couplings used in the system were chosen, in part, for their high
damping characteristics to further insure smooth operation. Vibration
problems were not encountered in the course of the experiments,

The frictional torque transmitted through the line contact is
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measured by a torquemeter mounted in the lower shaft of the disk
machine. The measured torque and the known radius of the disk are

used to calculate the tangential tractive force of the contact. The
torquemeter consists of a four-strain gauge bridge mounted on a cali-
brated torsion shaft. The electrical output signal of the torquemeter,
passed from the rotating shaft through a set of slip rings, is a measure
of the instantaneous torque in the lower shaft. This signal is dis-
played on an oscilloscope or measured by a digital voltmeter if an
integrated average value is desired. The torque measured in this

manner includes the frictional torque of the two lower support bearings
which is accounted for as follows. The Hopkinson electrical circuit
allows rotation of the disks in both directions and, therefore, pure
rolling is possible. The bearing friction and any minute rolling
friction are calculated from the measurements at pure rolling. The
combined value is small and averages to a frictional torque corre-
sponding to a friction coefficient of 0.002.

The angular velocity of each disk is measured by a timing wheel,
seen in Figure 5.3. Each timing wheel has 100 equally spaced holes
along the circumference. Light supplied from a high intensity source
to the timing wheels is chopped into a stream of pulses as the timing
wheel rotates. A pair of photomultiplier tubes converts these light
pulses to electrical pulses which are then counted electronically.

Thus the speed of the disk is measured. Fiber optic light guides are
used for the transport of the light beams throughout this system.

The sliding velocities are calculated as the difference of the measured
velocities of the disks.

Filtered oil is supplied to the exit side of the contact allowing
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the lubricant one revolution with the disk before entering the con-
junction. The lubricant is pumped from a 5 gallon supply tank, with

a thermostatically controlled electric immersion heater and circulator,
at rates up to 1 gallon per minute. The filter has a paper filter
element which removes particles down to 1 micron.

The surface temperature of the disk as it enters the contact zone
is monitored by an iron-constantan thermocouple trailing on the moving
surface. An ice bath reference junction is used with the thermocouple.
Crook [ 44 ] has demonstrated that this method gives accurate results;
and Johnson and Cameron [ 11 ] have found this method agrees closely
with the temperatures measured by a thermocouple embedded in the surface
of the disk.

The electrical output signals of the strain gauges, photomultiplier
tubes and the thermocouple are continually monitored by a scanning
digital voltmeter.

A surface trace of a disk, shown in Figure 5,6, indicates that
the disks were manufactured with a maximum peak-to-valley roughness

of 4 micro-inches.

5.2 The Lubricants

The experimental program consisted of the gathering of extensive
friction data for the two experimental fluids, Mobil XRM 109 F4 and
Mobil XRM 177 F4., Mobil XRM 109 F4 is a synthesized paraffinic hydro-
carbon base fluid., Mobil XRM 177 F4 is comprised of Mobil XRM 109 F4
formulgted to improve its anti-fatigue properties. Table 5.1 is the
physical property data, kindly supplied by the Mobil Research and
Development Corporation, determined on Mobil XRM 109 F4, The proper-
ties of Mobil XRM 177 F4 are expected to be the same within experi-

mental error.
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Table 5.1

PHYSICAL PROPERTIES OF MOBIL XRM 109 F4

e ——— e e R

e ——

Kinematic Viscosity, cs @ 400°F
@ 210°F
@ 100°F
@ 0o°F
Total Acid No.
-
Flash Point, F
. X o
Fire Point, F
. o
Pour Point, 'F

tDensity @ 100°F
@ 200°F
@ 300°F
@ 400°F

Specific Heat'@_BOOQF
@ 400°F
Autogeneous Ignition Temp,, °F

Surface Tension

95
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6.0
40.4
447
37,000

0.0
520
595
-60
0.8359
0.8082

0.7777
0.7428

0.635
0.692

760

30.9



5.3 Test Procedure

The strain gauges, photomultiplier tubes, vol;age supplies,
and digital voltmétef ﬁust warmA;p and reach a.stablé temperature be-
fore any calibrations are performed. The lubricanglggpply is also
heated to the desired temperature during this time. After the warm-up,
the strain gauge bridges measuring the normal load and ffictional
torqu; ére calibrated. The air cylinder gauges are calibrated to zero
load, while the torquemeter gauges are calibrated againsé a sﬁunf re-
sistance simulating a known torque. |

The oil supply is then turned on and the disk machihé&Qay be
started at minimum load with the field resistances of the.tﬁo 40.hp
machiné;uét equal settings. The load and rolling speed afe tﬁen in-
creased to the desired values and the bearing torque is measured at
pure rolling conditions.

The sliding speed is.now varied, while ﬁaintainiﬁg a constant
mean folling speed, to obtain the data for a friction versus sliding
speed cﬁrve; It-is easiest to keep the sﬁ%facé témpéragﬁfe.ﬁithin a
5 degfeé C range by making some high slip torque measurementé fir;t

and then returning to the low and middle slip values.

5.4 Results

A typical set bf experimental results is shown in Figure 5.7.
The friction coefficient, defined as the t;active force divided by the
applied normal load, is plotted against the sliding speed. The maxi-
mum Hertzian pressure, rolling Speéd and lubricant inlet temperature
remain constant. The friction coefficient rises from zero at pure
rolling to a maximum value and then decreases with any further in-

crease in sliding speed.
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Complete results of the experimental study are presented with

discussion in the next chapter.
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CHAPTER VI

DISCUSSION OF RESULTS

- —— - - _ e

A new Elastbhy&rodynaﬁic friction aﬁélysis has been developed
in Chapters II, III and IV. The separate effects of both shear rate
and time have been included. Shear viscoelasticity results in a
non-Newtonian relation between the shear stress and shear fate, while
coﬁpressional Qiséoelasticity-resuICS in a time-dépendeﬁt viséosity
function. A numerical solution of the mbméntﬁm énd'enefgX equétions,‘
with pressure, temperature and’time-dependént'patametefs; is achieved,

Traction measurements have Been made-oh two synthesized hydro-“
carbon fluids under eiéstohydrodyhamic conditions; The exberimental
appératds and pfoceﬂufeAhéve béén described in Chapter:V} h .

This chapter discusses the results of these ahal&ticél'and experi-é
mental‘programs. A good correlation of the frittioﬂ'coefficiehfs

determined by analysis and experiment is shown.

1

6.1 Values of the Friction Coefficient Determined by Experiment

The tractive force transmitted by a thin lubricant film under
elastohydrodynamic conditions has been measured for a wide range of
loads and  sliding spegds at high rolling speeds. Specifically, the .
loads ranged from 115,000 RSi maximum Hertzian stress to 250,000 psi;
the sliding speeds varied from zero to over 60 in/sec; ;he.high rolling
speeds were 500 and 1000 in/sec; and the oil entrance temperatures
were 175 ?F and 220 °F. The friction coefficient, or.traction coef-
ficient, calcﬁlated from this data for two synthetic paraffinic fluids,

show variations similar to those found for other lubricating oils by
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Johnson and Cameron [ 11 ] , Crook [ 4 _] and Bell, and Kannel and
Allen [ ¢ ] .

The friction coefficient rises to a maximum value with increasing
sliding speed ;nd then decreases with any further increase in the
slid}qg speed. The coeffi;ient_is also found_to increase with increasing
pressure and to decrease with increasing,rolling speed and temperature.
AnyAparametgr variation that results in an increase in the frictién
coefficiént also resul;s in the maximum friction‘occurring at a lower
sliding s?eed._ Exampies pf_;his behaviorafo; Poth experimen;al fluids
are”shown in Figures 6.1 through 6.14 where the friction coefficient
is plqttgd as a function of sliding Spggd for f;xeq values of maximum
Hertzian pressure, rolling speed and 0il in}gt temperature,

This behavior may be explained in terms of the liquid modgl that
has been developed. At low valges.of'sliding and};herefore;.low
shear ?éte, there'is no appreciablg temperature gradient across the
lubricant film. The shear stress increases with shear rate according
to the effective viscosity predicted by thé compressional viscoelastic
model developed in Chapter III. - At slightly higher -§1iding speeds,
the temperature rise in the fluid film is significant and cannot bé
neglected. For the range of conditions under study, the’analysis
predicts a rise of film temperature of 15 °F to 20 °F at the sliding
speed corresponding to the maximum friction coefficient. For even
higher sliding épeeds; it is hypothesized that the mechanism of flow
changes and" is dominated by‘; pressure and teﬁperdthréAdekeﬁdent
limiting shear modulus,” The témperature'at the cehéerhbf the lubri-
cant film at the highest sliaing‘speeds:is calculated to be 100 °F

to 150 °F higher than the surface témperature of the disks.”
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Therefore, the friction coefficient p, which is defined as the
ratio of the tractive force transmitted to the normal load, is pro-
portional to the following:

p e ﬂf@—;') , (6.1)

for sliding speeds smaller than that corresponding to the maximum

value of the friction coefficient; and
p o= (6.2)

for higher.sliding speeds,

An increase in the pressure level resul;s in an inq?eased viscosity
n, which accounts for the higher f:ictioq}cbefficient at low §1iding
speeds seen in Figures 6,1 through 6.4. For higher sliding speeds,
the limiting shear,modulus as a func;ion_of pressure must be reviewed.
Figure 6.15 simplifies the relationship of Figure:4.10 and equation
(4.31).

G (p)
=)

-b |

Figure 6.15. Simplified limiting shear modulus-pressure relatiénship.
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Although the actual limiting shear modulus probably follows the dashed
line, the linear portion at higher pressure levels may be given by

the relationship shown. Equation (6.2) therefore yields
b
u..a m'-; - ) ’ (6.3)

and the friction coefficient also ingreqses‘with pressure at high
sliding speeds.

An increase in the inlet temperature of the lubricant results
in lower values of both the viscosity and limiting shear modulus.

The entire friction coefficient versus sliding speed curve is thus
lowered acéofding to equations (6.1) and (6.2). This is seen in Figures
6.5 through 6.7. '

As the rolling speed incréases, the film thickness increases
accoraing to equatiﬁn (4.3). At low sliding speeds, this higher film
thickness will reduce the shear rate, which in turn reduces the shear
stress according to the viscoelastic fluid model. At higher wvalues
of sliding speed, an increased film thickness results in a higher film
temperature as indicated by equation (4.18). This will then lower the
limiting shear modulus, Either of these results, the lower shear stress
or the lower limiting shear modulus, causes lower friction coefficients

as seen in Figures 6.8 through 6.14 for the two experimental lubricants.

6.2 Correlation of Values of the Friction Coefficient Determined

by Experiment and Analysis
The values of the friction coefficient determined by experiment
for the Mobil XRM 109 F4 synthetic paraffinic base fluid are compared

with those predicted by the new analysis in Figures 6.16 through 6.23,
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Figures 6.24 through 6.31 show a similar comparison for the Mobil
XRM 177 F4 paraffinic fluid with anti-fatigue additives. A further
correlation is shown in Figures 6.32 through 6.37 for some of the
experimental data of Johnson and Cameron [ 11 ].

As in the previous section, the values of the friction coefficient

are plotted as a function of the sliding speed U for fixed values

1702
of maximum Hertzian pressure P, rolling speed U and oil entrance tem-
perature T. The units of P, U and T are psi, in/sec and degrees F,
respectively, except for the Shell Iurbo 33 correlations where the oil
entrance temperature is given in degrees C, Values determined by
experiment are shown as data points on the curves, while values pre-
dicted by the analysis are shown by smooth curves.

The analysis predicts friction coefficients that show the same
variations as observed experimentally. The friction coefficients rise
to a.maximum value and then decrease with increasing sliding speed;
they increase with increasing pressure and decrease with increasing
rolling speed and oil temperature.

Good correlation is found between the experimental data for Mobil
XRM 109 F4 and Shell Turbo 33 and the values predicted by the analysis
dsing the straight exponential viscosity function adopted by Cheng
[ 5 1 and the hyperbolic liquid model with ¢ = .25, This corresponds
to the Barlow, Erginsav and Lamb [ 23 ] liquid model with a limiting
shear stress, In most cases, the friction coefficients agree within
10%, ﬁith a few extreme cases differing by less than 25%,

It is necessary to use the hyperbolic model with ¢ = ,20 to

obtain the same correlation for the Mobil XRM 177 F4 lubricant, This
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lubricant consists of the Mobil 109 F4 as a base with an anti-fatigue
polymer additive, This additive may change the limiting shear modulus
function which corresponds to a change in the hyperbolic model constant
€. A more likely possibility, however, is that the additive increases
the film thickness., If this is the case, the shear rates would be
lower in the low sliding speed region and the film temperatures would
be higher in the high sliding speed region. As previously discussed
in section 6.1, this would lower the entire friction coefficient curve,
Thus, if the additive does cause an increase in the film thickness,

* the hyperbolic model with ¢ = .25 might hold true for this lubricant
also.

Figure 6.38 shows a comparison of friction versus sliding speed
curves analytically determined using the viscosity relationships
adopted by Cheng (equation 4.27) and Chu and Cameron (equation 4.26).
The curves are extremely close at low sliding speeds but begin to
diverge at higher sliding speeds as the temperature rise in the lubri-
cant film becomes larger. The divergence is due to the highér tempera-
ture.dependence of the Chu and Cameron formulation., It is of little
consequence which formulation is used at low sliding speeds since the
compressional viscoelastic effects dampen the effects of small changes
in ‘equilibrium viscosity. The Cheng formulation gives a slightly -
better correlation with all experimental data. Unitl extremely high
preséure viscosity data is available for lubricants, there will be no ~.,
o;her means of choosing amonglempiriéal pressure~temperature-viscosity

functions.
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6.3 Fluid Property Profiles

In addition to calculating the friction coefficient, the numerical
splution of the momentum and energy equations also determines the
.fluid property profiles in the lubricant film. The profiles confirm
the qualitative estimates of Plint [ 13 7.

As the lubricant enters-the contact zone, the temperature, and
therefore the viscosity and the limiting shear médulus are constant
across the film. At small sliding speeds and low pressures, the
temperature across the film remains constant and equal to the diék
surface temperature. The velocity profile is linear and the other
property profiles are eésily predicted.

Under more severe conditions such as higher sliding speeds and
pressures, the thermal effects dominate the profiles., The tempera-
ture profile becomes parabolic, and at the most severe conditions,
almost triangular. The central pléne temperature is 100 °F to 150 °F
higher than the disk surface temperature. This results in a sharp
S-shaped velocity profile with an ehormous velocity gradient at the
central plane of the lubricant film. The viscosity, and usually more
important under these conditions, the limiting shear modulus have
minimum values on the central plane. Thus, even though the material
properties and the fluid flow are continﬁous, the conditions are close
to those that would occur in a fluid undergoing a discontinuous shear
failure on the plane of minimum limiting shear stress.

Two examples of the profiles at the center of the contact zone,

those of temperature, velocity, viscosity and limiting shear modulus,

are shown in Figures 6.39 and 6.40 for the analysis of Mobil XRM 109 F4
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at 200,000 psi maximum Hertzian pressure, 500 in/sec rolling speed and
175 °F oil inlet temperature, Figure 6.39 is for a 2 in/sec sliding
velocity where the velocity profile is no longer linear. Figure 6.40
is for a 50 in/sec sliding velocity where the shear rates-at the center

plane are extremely high.

6.4 Effect of Convective Heat Transfer

The siﬁplified energy balance given by equation (4.18) was derived
by assuming the heat transpdrted by convection was negligible as
compared with the heat conducted in the two disks., A ratio of con-
vection to conduction is estimated in equation (4.17) as

Qcth
2 bk

Convection has its largest effect for a maximum value of (th/b).

This corresponds to the condition of maximum rolling speed and minimﬁm
load. A program was written to include the effects of convection.
Figure 6.41, the friction coefficient-sliding speed curves, includei
and negiect the convective heat transfer,

As‘expected, the convection will carry some heat from the contact
zone and.the lubricant will be slightly cooler. For example, under
the conditions for maximum convection, the mid-film temperature at the
center of the contact zone is determined by the analysis to be 5 °F
cooler; that is, 210 3 compared with 215 oF, at the point of maximum'
friétion coefficient. This only affects the friction coefficient ét

"higher sliding speeds where the temperature gradient in the film be-
comes significant.

The program including the convective effects takes four times

143



*3083U0D PaJBIJUIDOUOD BYJ ur sayrjoad L3asdoad prnTg °*6€°9 2aIn8Tyg

SNINCOW HV3HS ONILIWT  ALISOOSIA
1sd,01%0  01X2 , SULERCIED
ALIDOTIA | | o J¥NLYHIdIIL

4,08l om._:
_

"305/°01 @

s8s/u) 2 =2n-n S d.821=1
*998/°U1 0QS = N 1sd 000'002=d

S371308d ALd3d0y¥d dind

144



*3083U02 wwuwwuamocoo 9yl uf soa1fgoad L3xadoad pinyg °*0%°'9 °2an8yJg

SATINQOW YV3IHS -9 NILLIWA

1sd ¢o_xm_.¢_u «o:_“m.m |

ALID0T3A

[e——"085/'U} OG ———=| |

99s/01 06 =°n-n
'995/°U} 00G = N

ALISOJSIA

d oI1*9  ol*g

h_om.m._ =1
1sd 000002 = d

34NLVHIdNIL

4,02¢ 4,521
! ]

S371404d AY¥3dO¥d dinid

145



*JUBTOTIIS00 UOTIDTAF BY3J UO I9JSUBI) JBIY SATIOBAUOD JO 3933FI2 oYL °IH°9 2andig

(33S/NI) en-1n
00a-oL 00003 00008 000" Oh ooa* ot 000°02 000°01 000°0

hd 601 WX

NDILJ3ANDI *TONI &
NDILJ3IANDD *T93N X

SL1=1

000T=N |

000ST1=d i
NOIL34ANDD 4B 133444

000°0

0e0’

0h0*

030’

*44303 NRILIJTYS

146



the time required by the simpler program which considers conduction
only. The results, differing by 5-10% at a maximum, do not warrant

this expenditure.

6.5 Effect of Ccmpressional Viscoelasticity

The overall effect of compressional viscoelasticity on the
friction coefficient is seen in Figure 6.42. The most prominent
feature is the shifting of the maximum value to higher sliding speeds,
This is the same effect a longer shear relaxation time would have on
the curve. At higher sliding speeds, the flow is-dominated by the
limiting shear modulus., Therefore, to study the effects of compres-
sional:viscoelasticity, attention is focused on the region of low
sliding speeds.

The values of traction coefficient for very low sliding speeds
have been calculated are are shown in Figures 6.43, 6.44 and 6.45
plotted as a function of the ratio of sliding speed to rolling speed,

g=10U UZ/U’ for fixed values of pgak pressure and U, To simplify

-
comparisons with experimental data, the calculations have been made
for the conditions used by Johnson and Cameron [ 11 ] ; that is,
hard steel disks of 3 in diameter, a lubricant of viscosity 84 cP at
atmospheric pressure and 30 oC, and maximum Hertzian pressures of 87,
110, 147, 176 and 224 x 103 psi.

| The variation of traction coefficient with rolling speed may also
be presented in terms of an effective viscosity. The effective vis-
cosity ; is defined as that constant viscosity which, for a contact

area of width 2b and uniform thickness 2h, would give rise to the

measured tractional force. Then the effective viscosity may be
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calculated from the traction coefficient y by the expression

kWb

n = (Ul'Uz)b (6.4)
 Alternatively, ‘ g e

- i _‘_Jh :

,n." (E) X 10 - (6.5)

'where w/E is the initial slope of the traction curve when plotted as a.
function of the»slide?roll ratio. Values_of»ﬁ'celculated in this way,
in the limit of zero sliding speed, are plotted as a‘function of rolling
speed in Figure 6.46.

The calculated values of traction coefficient show a small dependence
on'rolling speed whenlplotted as a function of the ratio of sliding
speed to rolling speed. Johnson and Cameron [ 11 ] report that the
traction coefficient was experimentally found to depend only on the
slide/roll ratio and to be independent of the rolling speed. In the
present analysis, this behavior is found only at the lower pressures,
and then only over a limited range of rolling speeds (Figure 6 43),
although the values of traction coeff1c1ent are similar to those meaured
by Johnson and Cameron.

The curvature of the lines in Figures 6. 43 6.44 and 6. 45 reflects
the departure from Newtonian behav1or of the lubricant w1th increasing
shear rate. At low sliding speeds, the heat generated due to shearing :
in the lubrieant is negligible. No temperature gradient exists within
the lubricart film, and the temperature throughout the contact zone
remains equal to the disk temperature. . The decreasing slope of the
traction coefficient curves Qith increasing sliding speed is thus a

consequence of the decrease in the apparent viscosity with increasing

shear rate. The effect is most marked at the higher pressures and lower
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Effective Viscosity, 7 (Ibs sec in™)
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' Figure 6.46. Effective viscosity versus ‘rolling speed, in the limit’
of zero sliding speed, for different values of peak
Hertzian pressure,
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rolling speeds when the small values of film thickness result in' higher
values of shear rate. The variation of traction coefficient with sliding
speed is shown in more detail in Figure 6.47 for a peak pressure of
176,000 psi. The behavior at the other measures conforms to the same
general pattern. InAFigurg 6.47 Newtonian behavior, a viscosity which
is independent of shear rate, is shown by a straight line 6f unity
slope.

It may be calculated from Figure 6.47 that at low rolling speeds
‘it is experimentally impossible to obtain Newtonian conditions, as the
low sliding speeds required -- less than 0.0l in/sec -- are well below
ﬁhe experimental range. This fact has important consequences when
attempts are made to evaluate the effecﬁive ﬁiscosity from experimental
data at lower rolling speed. |

Two features of Figure 6.46, showing the variation of effective
viscosity with roIling-épeed under isothermal and Newtonian conditions,
merit special attention., The first of thesé is the great similarity
in the shapes of the curves at rolling speeds above 50 in/sec, at all
but.the lowest pressure. This type of behavior has been observed
experimentally, as seen, for example, in Figure 6.48 taken from Crook
[ 4 ]. The second feature is the extremely rapid fall in the effective
viscosity at low rolling speeds for pressures above 110,000 psi. Re-
liable measurément of the traction force is difficult at rolling speeds
below 10 in/sec and high values of peak pressure, as the small f£ilm
thickness becomes comparable with the dimensional irregularities of
the disk surfaces, and full elastohydrodynamic conditions no longer

exist. Extrapolation of results obtained at higher rolling speeds is

154



*spoads SuyyTox Jusaagyyrp ao3 ‘1sd O0°9/T
3o sanssoad uejzlaoy deod e e ‘posds BUIPTIS SNSIDA JUITFOTIJOO0D UOTIOBAI, °*/H°9 2InSfg

(08s/ ut) °*n-'n ‘peadg Buiplis
.0l 2.0l .0l - L0l ¢.0l

aul

N

1sd 000'9.L!
= 94NSS9Id HDOd. -
. (o]
\ _ \ e
o
=3
| o
O
D
o
\ 2Ol o

nel

155



10000

5000

1000

" 300L— L |
0 - 200 400
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- Figure 6.48.

The effective viscosity (7,,) as a function of rolling speed. (a) 30°C; (b) 45°C.
—0— deduced from experimental results; ————, calculated from visco-elastic hypothesis.
Load = 7-4x 10’dyncm™!. - o :

Curve from Crook [ 4 ] .
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therefore necessary if a value of effective viscosity at zero rolling
speed is desired. Furthermore, the present analysis predicts that

shear rate effects will be significant even at the lowest sliding speeds
which can be reached experimentally. Thé-measured values of the traction
force will therefore be less than the values which would be obtained
under Newtonian conditions. This effect, taken in conjunction with

the rapid changé in value of the effective viscosity at low rolling
speeds, makes the extrapolatioh of experimental data to zero rolling
speed subject to extremely large errors, the magnitude of the error
increasing as the péak pressure i;:iﬁcreaééd.

It is suggested therefore, th;t the-observation of Johnson and
Cameron, [ 11 , Figure 157 whereby the same redﬁction in effective
viscosity ﬁith rolling speed was observed at all éressures, is a
consequence of the érrors inherent in §uchAan ext;apolation. If this
is so, it follows that the sharp changélin the rate of increase of
viscosity Qith pressure at pressures above 110,000 psi shown in Figure

6.49, from'Johnson. and Cameron's paper [ 11 ] ,"is also a consequence

LA e

of the e;fsfé in éktfépolatioﬁ; and is:ﬁot a true property of the
lubricant. |

- To exp}gré thig.possibility in detail, hypothetical values of
effective viscosity at zero rolling speed have been obtéined by extra-

,polgtién_of the curves of Figure 6.46, .ignoring the calculated-values

- - +

at folliﬁg'éﬁeeds Béidw'sowih/sec. ~Th;st;e‘arura;te déﬁéndence of the
lubricant viscosity is included by using values of effective viscosity
calculated at a sliding speed of 0.02 in/sec instead of at the limit

of zero sliding speed. The values so obtained are shown in Figure 6.50,

plotted as a function of rolling speed over the range 50 to 500 in/sec.
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Figure 6.50., Effective viscosity at a sliding speed of 0.02 in/sec
versus rolling speed for different values of peak
Hertzian pressure. Below 50 in/sec, the curves have
been extrapolated to zero rolling speed (dashed line).
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The curves are then extrapolated below 50 in/sec to obtain a hypothetical
value of effective viscosity at zero rolling speed. These values are
plotted in Figure 6.51 to a base of peak pressure (dashedlline), and
show a large deviation from the érué values of-effective viséosity
(solid line) at pressures -above 120,000 psi, The-experimentally de-
termined ﬁalﬁes’of effective ;iscosity shown in Figure 6.49 are also
plotted in Figute“6.51. The close égreement between the hypotheticai
viscosity‘curve and the experimental values éé?ongly supports the
contention’ that the change in the slope of the viscosity-pressure
curve at high:pressures-is an artifact arising from the difficulties.
inherent in the extrépolation procedure, and is not a physical pro-
perfy of the lubricant. |

It has been found t@aé by plotting thg data of Figurg 6.46 on ;V
logarithmic, instead of a linear, scale oé rolling speed,:the separate
cur&es for the different‘pféésures can be combined into a single |
norma}ized curve. The effective viscosity values are normalized with
respect to the value at the limit of zero rolling speed ;U=0’ and the
rolling speed values are normalized with respect to U*, the rolling'.
speed at which the effective viscosiFy is equal to 0.Sﬁh=0. Thg re-
sulting curve of log(ﬁ/;ﬁ=o) véréus log(U/U*) is shown in Figure 6.52.
The  variation of U* with the peak pressure in éhe contact .is shown in
Figure 6.53. These two graphs provide a quick and éimple:methdd of
determining the-Qariation of the effeégive viscbsity with rolling speed
for a given value of maximum pressure.

In this study o?_;he ro%g of compressiogal viscoelasticity in a
rolliﬁg cogﬁéct systém,riﬁfhas‘b?eﬁ necessary to simplify the analysis

T
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Figure 6.51. Effective viscosity versus peak Hertzian pressure
; values at zero rolling speed, in the limit

of zero sliding speed
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o ; measured values, from Johnson and Cameron [ 11 ]
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Figure 6.53. Variation of U , the rolling speed at which the effective
viscosity is reduced by a factor 2, versus peak Hertzian

pressure.
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as developed in Chapter III. Among these simplifications, the most
important are the use of a viscoelastic model with only a single
retardation time, and the assumption of a symmetrical viscosity dis-
ﬁfibuﬁion over the contact zone. it has aléo-Bgen ﬁecesséry to esti-
mate the viscosity Ne and the bulk m&dulus Kf a; discussed in detail
in section 3.3. The simplifications could be eliminated in a more

" detailed analysis. Such improvements 'are of little value ,however,
unless they are matched by improved information about the physical

properties of the lubricant under the extreme conditions found in

bearings. and other heavily loaded contacts.

6.6 Comparison of Thermal Theories

A comparison of several thermal analyses is showﬁ in Figure 6.54.
These include the Johnson-Crook analysis and the author's numerical
analysis for the Maxwell-limiting ;hear stress model and thé hyper-
bolic liquid model (¢ = .25) corresponding to the B, E, L,-limiting
sﬁear.stress,model. Frictionicoefficients<were also calculated”
neglec&ing the effects of compreséional viscoefasticity. It -is ap-
parent that these effects must be considered to predict an accurate
value'of:thé ma#imﬁm'frictish‘éoéféicient at the correct value of

sliding speed.

6,7 Summary and Conc lusions

1. The results of this study demonstrate that values of friction
coefficient calculated according to the hyperbolic liquid model

(c = .25) have a good correlation with those determined by experi-'
ment for the two lubricants, Mobil XRM 109 F4 and Shell Turbo 33, A

similar correlation is obtained using ¢ = .20 for Mobil XRM 177 F4.
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This change in the value of ¢ might possibly be explained by an in-
creased film thickness due to the polymer additives in this fluid,
This hypothesis is described in section 6.2,

2, The effects of shear rate and time are separated and explained by
the two phenomena of shear viscoelasticity and compressional visco-
elasticity, respectively,

3. A unified description of the non-Newtonian shear rate dependence
of the viscosity is presented as a new hyperbolic liquid model. With
this model, the transition from the non-linear region to the shear
modulus dominated region is shown to be a smooth one. In the high-
slip region, where the friction is dominated by tﬁe shear modulus,
the variation of friction with load is very sensitive to the pressufe
dependence of the.shear modulus.

4, The friction coefficient rises to a maximum value with increasing
sliding speed and then decreases with any further increase in the
sliding speed. The coefficient is also found to increase with in-
creasing load and to decrease with increasing rolling speed and tem-
perature,

5. The effects of compressional viscoelasticity are developed in terms
of a simple model for the volgme:creep of a liquid following the ap-
plication of a pressure step., This model is used to determine the de-
pendence on rolling speed of the friction coefficient between highly
loaded rolling contacts. Curves are presented wﬁich show the vari-
ation with rolling speed of the effectivé viscosity of the lubri-
cant in the contact zone nnder isothermal conditions. Both the shape
of the curves and the values of effective viscosity are consistent

with the results of experimental measurements, The shape of the curves
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in this region is found to be nearly independent of the peak pressure
in the contact,

6. At very low values of rolling speed, in a region which is experi-
menta lly iqaccessible, the analysis predicts a very rapid variation
of effective viscosity with rolling speed., It is shown that, as a
consequence, the extrapolation of experimental data to zero rolling

speed can result in extremely large errors in the estimated values of

effective viscosity.

The results of this study suggest future work that will increase
the understanding of friction in elastohydrodynamic lubrication.r The

most urgently needed research is in the field of fluid rheology. The

viscosity and density of lubricants at high pressures would be extremely

helpful, and shear and compressional relaxation experiﬁents must be
performed to measure the fluid moduli at high pressures., This work
is needed to confirm and expand our understanding of the mechanism

of flow under EHD conditions.
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APPENDIX A
NUMERICAL INTEGRATION OF A
NON-EQUIDISTANTLY TABULATED FUNCTION

A method of oveflabping_pa;abolaé is employed to yield a second
-order>a§prOXimation to the iﬁtegfal of a non-equidistantly tabulated -
fuﬁcfioﬁ\graphically répreSehfed in Figure A.1, -

The function £(x) may be represented by a second order Taylor's

series expansion about X

(ern) ' (x-xn)2 ' 4
. po = .- —_——n ., 3 e . ceas
£(x) f(xn) + I £ (xn) + X f (xn) + (A.1)
Accordingly, .
n2 :
= “h £? C—— W oo .
fn+—1 ,fn + hnfn + 7 fn + ‘ L . . (A,Z)
and
= - ] — " con :
fn-l fn hn—lfn + 2 fn + , 4(A'3)
where £ 4 =G +1
fn-l = f(xn-l)
hn = (xn-+1 xn)
n-1 ~ (xn-xn 1)

Equations (A.2) and (A.3) are solved simultaneously to yield

2 ' 2 2

£ = £ -—f + £ (A.4)
n hn-l(hn-l + hn) n-} hn-lhn n hn(hn-l + hn) n+1
and
-h (h_-h ) h
£ s T el T R = fn+h(hn-1+h)f +1
n n-1" n-1 n n-1n n n-l n n

le8



f(X)A

iz

x.n-Z Xn-l )‘(n ' XM-I xn+2

Figure A,1. Graphical representation of the non- equldlstantly tabu-~
lated function f(x).

AY
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The shaded area of Figure A.1l is calculated by integrating f£(x)

-between the limits X and x The function is approximated by a

n+1°

parabolic curve through f fn and fn This integral is called

n-12 +1°
+1

" .
1'n :

X

+1
n+1l n
A0 _,J' £(x) dx
X
n

X
n-FW[ 9 .
- N _L - 1"
Jx fn + (x xn)fn + 5(x xn) fn dx

n
hrz1 hi
- — — 11
=hf +5 f!+=f" (A.6)

The derivatives are evaluated by equations (A.4) and (A.5), resulting

in the following expreésion:

3
In+1 _ -hn £ + hn(3hn-1 + hn) £
1™n 6hn-1(hn-1 + hn) n-1 6hn.__1 n
h_(3h + 2h_)
n n-1 n
*T6h . T h) fa+l 4.7).
BRI 1T | n

Similarly, the same integral may be calculated using a parabolic

approximation for f£(x) through the points fn’\fni-l’ and fn-+2' ‘Equa-
tion (A.1) determines
2
= 1 L u
fn+2 fn + (hn-+1 + hn)fn + Z(hnrkl + hn) fn (4.8)
This second integral, 2124-1, is defined by the Taylor's series ex-
pansion about X 41 :
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X

n+
n+1l 1 2 _y
= + (x- ' 3(x-
ZIn ‘!‘x l[fn+l (x *n+ l)fn+1 + 2= xn+1) fn+1__] dx
n
by hy
= - — f1 —_— f1
=hfi+1°7 fa+1tF fa+r (4.9)
. : 1" . [1 . r
The derivatives fn4-1 and fn-+1 are evaluated in exactly the same

manner as determined equations (A.4) and (A.5)., These results are sub-

stituted into equation (A.9) yielding

In-kl _ hn(2hn + 3hn-+1) - hn(hn + 3hn-+1) )
2'n 6(hn + hni—l) n 6hn-+1 n+1
'hi
+ f (A.10)

6h (h +h ) n+2

n+l' ' n n+1

The best possible second order approximation of the integral is
the average of the two values just calculated; this is the method of
+
overlapping parabolas, Therefore, the average integral, 12 1, is

defined as

n+1l n+l  .n+l
In T e 1In + ZIn (A.11)
where 1124-1 and 2I2.+1 are defined by equations (A,.7) and (A.10),

respectively.
The integral of the function £(x) between the limits x = a and
x = b is defined by equation (A.12):
b b-2
[£(x) ax ~ 11:“ + 2 ™ty 21‘;_1 ' (A.12)

J n
a
n=a+1

In order to keep the integral a function only of values in the
range of integration, the method of overlapping parabolas is not used

on the two extreme intervals.
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_ APPENDIX B

NUMERICAL ANALYSIS
The FORTRAN IV coding of the friction analysis is listed in

this appendix. It is followed by examples:of data cards and the

optional subroutines,
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Kok K Kk ok K K ok kK K ok ok K K R X K kK

%
%*

* Kk ok ok R % K

9000
9001

9002

9003

PROGRAM CONTROL ( INPUT s TAPEG60=INPUT s OUTPUT s PUNCH)

CONTR

H O 3 3+ ¥ I % X R ¥ ¥ F % O % R F K ¥ * ¥ # ¥ ¥ X ¥ ¥ ¥ 3 ¥ ¥ ¥ ¥ CONTR

PROGRAM CONTROL

CALCULATES THE FRICTION AND VELOCITY AND TEMPERATURE PROFILES
IN AN ELASTOHYDRODYNAMIC LUBRICATED CONTACT. ’

REQUIRED SUBPROGRAMS -

SUBROUTINE PRINTS - ,

FUNCTION VISC ' e
FUNCTION ZERO ’
FUNCTION PSI1

SUBROUTINE SECANT

FUNCTION EXPI

SUBROUTINE INTEG

SUBROUTINE RTMI

#CONTR
#*CONTR
#CONTR
#CONTR
#CONTR

. ¥CONTR

#CONTR
#CONTR
#CONTR
#CONTR
*CONTR
#CONTR
#CONTR
#CONTR
#CONTR
#CONTR
#CONTR

LR A T L X oH OH ® O O % ¥ ¥ ¥ ¥ % 3 ¥ % ¥ CONTR

PROGRAM SET UP FOR MOBIL DATA NEGLECTING>CONVECTION
COMMON C+GColLLL

COMMON - /CPS1/ GINF+ETAO4TeYsHsU2UL sNPeDUDY s ICs TGIOMEGASCH» AH
COMMON /CPSIO0/ XK1 ¢XKO

COMMON sCQr/s Q - -

COMMON /CZERO/ IPTRANS.TRANS(&)

COMMON /CPR/ ETAZ2

DIMENSION GlNF(Zl)-ETAO(Zl)OT(ZI)'Y(ZI)QDUDY(ZIJoTG(Zl)OOMEGA(Zl)
DIMENSICON Q(21)

DIMENSION C(2+3+¢21)4GC(21021)

DIMENSION ETA2(21)

DIMENSION DTDY(21) sNEWT(21) s TRACTCF(20) ,SLIP(20)
EXTERNAL - PSI

REAL LOGETANEWT

INTEGER COUNT

PHYSICAL CONSTANTS AND DATA

IRDP MAXIMUM HERTZIAN PRESSURE / 1000. L
1RDU MEAN ROLL ING SPEED '
IRDT LUBRICANT INLET TEMPERATURE

PHIT THERMAL REDUCTION FACTOR

AH4 CH HYPERBOL1C LIQUID MODEL PARAMETERS

READ 90014 IRDP+IRDUs IRDT¢PHIT¢AHsCH
FORMAT(4XI3¢15+144F6e3+10XF3al¢6XF4s2). .
IFtEOF (60))9999,9C02 .
CONTINUE .

PUNCH 9003

FORMAT (/)

PHZ=1000¢ #FLOAT ( IRDP)

U=FLOAT ( IRDU)

TOIL=FLOAT(IRDT)+460s

NP NUMBER OF GRID POINTS ACROSS THE HALF=FILM THICKNESS
NP=11

NH = NP - 1 L

NIP NUMBER OF PRESSURE STEPS IN HALF CONTACT-LENGTH
NIP=3
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10

2

TW=TOIL

TMAX=9S0 ,

COND THERMAL CONDUCTIVITY OF THE LUBRICANT
COND=1%778e¢,/3600, .

‘cyLw CONTACT WIDTH OF THE DISKS

CYLW=0425 :

Rle R2 RADII OF THE DISKS

R1=R2=340

Ele E2 ELASTIC MODULUS OF THE DISKS

E1=E2=304E+6 : :

POISles POIS2 POISSONS RATIO FOR THE DISKS
POIS1=POIS2=0e3

ALPHA VISCOSITY PRESSURE COEFFICIENT FOR THE LUBRICANT
ALPHA=1404E~4

BETA=Se 1E7#ALPHA

GAMMA=930 ¢ #ALPHA

DK THERMAL CONDUCTIVITY OF THE DISKS

DK=21e¢7%#778e /36004

DRHO DENSITY OF THE DISKS

DRHO= 4283

DC SPECIFIC HEAT OF THE DISKS

DC=4100%#778e %124

HERSAs HERSB CONSTANTS FOR THE HERSHEL VISCOSITY EQUATION
HERSA=8.974 ’ )
HERSB=~3,2

NGRAPH REQUIRED NUMBER OF GRAPHS FOR EACH TEMPERATURE PROFILE
NGRAPH=0

MGRAPH REQUIRED NUMBER OF GRAPHS OF TRACTION COEFe VS SLIP
MGRAPH=1

PRNT=2HON GIVES ADDITIONAL OUTPUT FOR DEBUGGING PURPOSES
PRNT=3HOFF )

INITIALIZATION AND BOUNDARY CONDITIONS

COUNT=0

“I1C =1

DTDY(1)=0e0
Y(1)=040
TRACT=0.0
FLASH=0,0
PI=361415927
DO 10 I=1eNP

NEWT(I)=10e¥*(1e=Y(I1))+TW
IF (TeLTeNP) YC(I+1)=Y(I)+1e/FLOAT(NH)
CONTINUE

R=R1¥R2/(R1+R2)
E=2e¢/((1e=POISI*#POIS1)/E1+(1e=POIS2#POIS2)/E2)
B=4 ¢ ¥R/E#PHZ
FLASHK=0¢24/SQRT(P]#PHZ¥DK*DRHO*DCH*U*R/E)
TRANS(1)=B/U/6e

TRANS(2)=B/U/6e

TRANS(3)=B/U/2.

CALCULATION OF LOAD
W=PHZ¥*PHZ¥P I # (2 /E) *R
PRINT 2+PHZeWsRE .
FORMAT (31 CONTROL PHZ = ®*E15e84% W = *E1Se89# [ =4 = ¥E15e8%
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*

*

1* E = *E1548) : o B CONTR118

‘CONTR119

CALCULATION OF HALF=FILM THICKNESS } . CONTR120

: CONTR121
ETAENT=10 ¢ ¥3# (HERSA+HERSB#ALOG1O{TOIL—=4606e))%1 e45E~7 CONTR122
H=1e6#ALPHA##0 ¢ 6% (ETAENT#U) ##0 ¢ 7HE# #0403 ¥R#%#0e43/W%%0e13 CONTR123
H=1e2%H CONTR124
H=PHIT*H CONTR125
H=0¢5#H - CONTR126
PRINT 1+HsALPHAETAENT sUsCH ¢ AH CONTR127

1 FORMAT(#0OH = #E12454% ALPHA = %¥E12eS54+% ETAENT = ¥E12¢5, . CONTR128
1# U = #F660¢%* CH = #FSe3¢#* AH = %xF7a3) ) CONTR129
) CONTR130

SL1P LOOP : CONTR131

: ) ~ CONTR132

NSLIP=15 . CONTR133
DATA (SLIP(IU) IUS1020)/e501e0269300b0 15006088001 00015602049300¢40CONTR134
14450046C s 45%060/ CONTR135
DO 6000 IuU=1sNSLIP CONTR136
DATA (TRACTCF(IP)+1P=1420)/20%#0,0/ : CONTR137
FLASH=FL ASHK* TRACT*SLIP(IU) CONTR138
PRINT 6+¢FLASH . CONTR139
6 FORMAT (% CONTROL FLASH = ¥F1548) CONTR140
U2U1=0e5#SLIP(IU) . . CONTR141
PRINT 8+ IUsSLIP(IU) ) ' CONTR142
8 FORMAT (#*1CONTROL IU = *I34% SLIP = %#E15e8) ' CONTR143
_ CONTR144

HERTZIAN PRESSURE LOOP , CONTR145

_ . CONTR146
TRACT=040 i CONTR147
DO 5999 [P=1,NIP CONTR148
IPTRANS= IP CONTR149
XB=(2e*¥FLOAT(IP)=1s)/2e/FLOATI(NIP) CONTR150
P=PHZ¥SART(XB* (2e—XB)) . ' CONTR151
T CONTR152

SOLVE" MOMENTUM EQUATION CONTR153
CONTR154

ITCOUNT=0 CONTR155

4 IF (PRNTeEQe2HON) PRINT 44 4COUNT CONTR156
44 FORMAT(%OCOUNT = *13) CONTR157
COUNT=0 ) CONTR158
DO 11 [=1sNP _ CONTR159
IF (ITCOUNTeEQeOeORe ITCOUNTeGT«10) T(1)=NEWT(I) CONTR160
IF (ITCOUNT¢GTeOsAND e ITCOUNTCLE«10) T(I)1=0eS#(TIII+NEWT (1)) CONTR161
IF (ITCOUNTeGT«100) GO TO 6003 ‘ CONTR162
IF (T(I)eGTeTMAX) T(I)=TMAX : CONTR163
TW=TOIL+FLASH CONTR164
GINF(I)=1e2%P/(2:¢52+01333%#(T(1)=4924))=145E4 ) CONTR165
IF (GINF(1)sLTele) GINF(I)=1s ) CONTR166
CALCULATION OF STEADY=STATE VISCOSITY CONTR167
ETEXP=ALPHA#*P+ (BETA+GAMMA¥P) ¥ (680 e=T(1))/6804/T(1) CONTR168
ETA2(1)= ¢ 62%EXP (ETEXP)#1445E-5 . CONTR169
CALCULATION OF TIME~DEPENDENT vISCOSITY CONTR170
ETAO(I)=VISC(PsETA2( 1)+ IVCODE) CONTR171
11 CONTINUE ' CONTR172
DUMMY=PS10(0,0} CONTR173
CALL SECANT(XKOsXK]eTAUIPST 4XKe¢001450041TERR) CONTR174

IF (ITERReEQel) STOP CONTR175
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.41

5000

5010
50!2

5020.
5022.

5030

5034

5040

5999

6002

5050

*

5051

5052
6000

6003

6001

6005

-IF (PRNTeEQe2HON) PRINT 41¢TAU
FORMAT(*#0TAU = #E15.8)

' SOLVE ENERGY EQUATION

DO S000 I=1.NP
Q(1)==TAU*DUDY (I ) /COND*H
CONTINUE

IF (PRNTeEQs2HON) CALL PRI1
DO 5010 [=2+NP o .
CALL INTEGI(OesY(I)eYeQsNPsDTDY(I)4CeGCoLLLL ¢ IERR)
IFC(IERR«NE.O} PRINT 50124 1ERR ) ‘

FORMAT (% INTEGRATING Qe IERR = #13)

DO 5020 1=2+NP

‘CALL INTEG1(OeeY(I)sYsDTDYINPINEWT(I)eCoeGCoLLLL IERR)

IF (IERR+NE+O) PRINT 5022+ ERR
FORMAT (% INTEGRATING DTDYs [ERR = #13)
XK7=TW-NEWT (NP)

ITCOUNT=1TCOUNT+1

NEWT(1)=0e0

DO 5030 I=14+NP

NEWT (I )=NEWT (I )+XK7
HF(ABS(1e=(TCI)I/NEWT(1)))sLTe0e001) COUNT=COUNT+1
IF(COUNT «NEsNP) GO TO 4 ’

IF (IVCODESNE«O} PRINT 5034

FORMAT ( #0 MINIMUM VISCOSITY REDUCTION#)

CALL PRI ' :

PRINT 99

PRINT S040s ((NEWT(I)s1)el=14NP)

FORMAT (% NEW TEMP = %F7e24¢% 1 = %14)

CALCULATION OF TRACTION

TRACT=TRACT+2+#B/NIP*#TAU

CONTINUE

TRACTCF (TU)=TRACT/w

PRINT 6002«TRACTCF(1IU)

FORMAT (#OCONTROL TRACTCF(1U) = %*E1548)

PLOT TEMPERATURE PROFILE

IF (NGRAPHOEQe0) GO TO 6000

DO 5052 NGR=1+NGRAPH

PRINT S05CeSLIP(IU) .

FORMAT(#1(U2 = Ul) = *E1548)

PRINT 99

CALL STPLTI1(1+NEWTeYsNPs1H#*41s1HY)

PRINT 5051

FORMAT( 1HG+92X e | IHTEMPERATURE )

CONT INUE

CONT INUE

PRINT 98

PRINT 6001+ ({TRACTCF(IU) ¢SLIP(IUY)s1U=1NSLIP)
FORMAT (# CONTROL
PUNCH 6005 ( (SLIP(IU) ¢ TRACTCF(IUY) ¢ IU=14NSLIP)
FORMAT(2F 10e5)

PLOT TRACTION COEFFICIENT

176 -

TRACT = #E15e8+% yU2-Ul = #E15.8) .
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CONTR197
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6011
6012
6013
98
99

9999

IF (MGRAPHeEQe0O) GO TO 6013
DO 6012 MGR=1 ¢MGRAPH
PRINT 98

CALL STPLTI{(1+SLIP«TRACTCF«NSLIP+1H#4¢14414HTRACTION COEF s)

PRINT 6011 )
FORMAT (1 H{(1s 100X s 7HU2 -~ U1)
CONT INUE

CONTINUE

FORMAT (#1%)
FORMAT (#0#%)
GO TO 9000
CONTINUE
sSTOP

‘END
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SUBROUTINE PRINTS

COMMON /CPS1/ GINFsETAVITsYsHeUZ2UL +NP«DUDY« ICe TGsOMEGAsCH s AH

COMMON /CQ/ Q
COMMON /CPR/ ETAZ2

DIMENSION GINF(21)+ETAU(21)+sT(21)0Y

DIMENSION Q(21)
DIMENSION ETAZ2(21
ENTRY PR1
PRINT 1

1 FORMAT(*0 I Y(I
1 ETAZ(1)
PRINT 99

)

) T¢I
OMEGA(T)

 GINFOD)
DUDY (1)

TG(1)
QL))

(21)+DUDY(21)+TG(21) +OMECA(21)

ETAO(I)

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

PRINT 30((1oY(I)oT(I)oGINF(I)cTG(I)QETAOﬁI)oETAZ(I)oOMEGA(I)oDUDY(pRINT

11)eQ(IN) e I=1aNP)

3 FORMAT (3% #I2¢F7e21F9e2+¢7(2XE1104))

99 FORMAT(*0%)
RETURN
END
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FUNCTION VISC(P+ETAZ2+CODE) : vIsc 1
**********************************VISC 2
* *VvISC 3
FUNCTION VISC T#VISC 4
——————— ———— *vIsC 5
* #VvVISC 6
CALCULATES THE TRANSIENT VALUE OF THE LUBRICANT VISCOSITYe #VvI1SC 7
#* *vIsC 8
ARGUMENTS - #VISC 9
P PRE SSURE *#vIsC 10
ETA2 EQUILIBRIUM VALUE OF VISCOSITY : #VISC 11t
CODE ERROR PARAMETER : #VISC 12
*vISC 13

REQUIRED SUBPROGRAMS - *VISC 14
FUNCTION ZERO #VISC 15
FUNCTION EXPI *vISC 16
#VISC 17

COMMON STORAGE - . - *VISC 18
THE VARIABLE TAUP MUST BE IN LABELED COMMON CV1SCe *v1SC 19
_ *VISC 20

ERROR INDICATIONS - *#VISC 21
CODE = 0 INDICATES NO ERRORe *visC 22
“CODE = 1 INDICATES THE TRUE TRANSIENT yvISCOSITY IS OUT OF THE : #VvISC 23
RANGE OF THE PROGRAM AND THE MAXIMUM POSSIBLE *VISC 24

VISCOSITY REDUCTION WAS ASSUMEDe *vISC 25

. #*¥VISC 26
IO R K B ¥ X O R H OE K K O ¥ X % O X O % % ¥ K ¥ K ¥ x ¥ ¥ ¥ ¥ VISC 27

* ®¥vISC 28
COMMON /CVISC/ TAUP visC 29
EXTERNAL ZERO VISC 30
REAL KF VISC 31
INTEGER RTMIERR s CODE : visc 32
PRNT=3HOFF vIisc 33
CODE =0 . vIsSC 34
KF=3eSES+T e #¥P ‘ . visC 235
TAUP=504 #*ETA2 /KF VISC 36
1F (PRNT+EQe2HON) PRINT 81 +KF s TAUPSPWETAR : vIisc 237

81 FORMAT (% VISC KF = ¥E13e60% TAUP = ¥E13¢64% P = #E13e¢64 VISC 38
I#  ETA2 = #E1346) o visc 39

‘ © wvIsCc 40

TEST OF RANGE vISC a1

; visc 42
" IF (ZERO(=e01)%ZERO(«206)eGTe0s) GO TO 60 VISC a3
’ VISC 44

ROUGH BOUNDING OF ZERO - VISC 45

, _ visC 46

IF (ZERO (=54 )%ZERO(~20¢}¢GTs0s) GO TO 30 vISC 47
ROOT IS BETWEEN —-20e AND =S VvIsC 48
XL 1==20, visC 49
XR1==5, VISC S0
GO TO 50 vISC 51
ROOT 1S BETWEEN =5s AND =—a01 VISC 52

30 ICOUNT=0 VISC 53
XLI==54 visc 54
XR1==34 vISC 55
ZEROXRI=ZERO (XR1) vISC 56
ZEROXLI=ZERO (XL 1) vISC 57

40 IF (ZEROXRI%ZEROXL1sLE«Os) GO TO SO VvISC 58

179



%k

£ 3

50

60

IF (XRl1eGTe=e01) GO TO 60

XL I=XR1
XRI=XRI/3e

- ZEROXL I =ZEROXR1

ZEROXRI=ZERO (XR1)
ICOUNT=1COUNT+1

1

IF (ICOUNTeGTe100) GO TO 92

GO TO 40

.PRECISE DETERMINATION OF ZERO

CALL RTMI(SI +ZEROSI4ZEROWXLI+XRI ¢e054100+RTMIERR)

IF (RTMIERReNEO)
VISC=ETA2*EXP(SI)
RETURN

OUT OF RANGE

~IF (ZERO(~204)el.TeCe) GO TO 70

GO TO 90

" NEGLECT V.ISCOSITY REDUCTION OF LESS THAN 1« PER CENT

70

50

o1

Q92
o3

VISC=ETA2
RE TURN

MAXIMUM VISCOSITY REDUCTION

VISC=ETAZ2HEXP (—204)

CODE=1
RE TURN

ERROR MESSAGES

PRINT 914RTMIERR
FORMAT (% VvISC
sTOP

PRINT 93 '’
FQRMAT (#* VISC

STOP

" END

ERROR IN RTMI ERR = x12)

MAX NOs OF ITERIONS EXCEEDED IN PRERTMI PROCs#)
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VISC
VISC
vIiscC
vISC

. visc

VvISC

VvIsc

vISsC
visc
vIsC
VIsSC
VISC

- visC

visc
VISC

- VISC

viscC
vISsC

.. VISC

viscC

- vIsC

viscC
vIsc
viscC

VIsC

viscC
vIsc
visc
v1sc
vIsc
visc
v1Ssc
vIsc
visc
vISsC
vIsc
v1sc
visc
visc
visc
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**********************************ZERO
. #ZERO
FUNCTION ZERO *ZERO
——————— - ) . - . . %#ZERO

) : : ' ' *ZERO
THIS EXTERNALLY SUPPLIED FUNCTION IS NEEDED BY SURROUTINE RTMI #ZERO
CALLED FOR IN FUNCTION VISC. IT MYST BF PRESENT WHEN A TIME- #ZERO
DEPENDENT VISCOSITY FUNCTION IS USEDe . #ZERO
- ' ' ’ ' *ZERO
**.**********4****************} *.****ZEQO
COMMON /CZERO/ IPTRANS s TRANS(6) ) ’ ZERO
COMMON /CVISC/ TAUP ) ) ~ ZERO
INTEGER EXPIERR : e ’ . ZERO
PRNT=3HOFF ‘ ZERO

IF (Sl1eGEe=20e) GO TO 10 ZERO
S1==20,. ZERO
PRINT 20 i " ZERO

20 FORMAT (#ZERO S1 HAS BEEN READJUSTED TO =20e#%) : : ZERO
" 10 CONTINUE ' ZERO
CALL EXPI(EISI+SIVEXPIERR) ZERO
IF (EXPIERReNE.O) GO TO 90 - ZERO
ZERO=TRANS(IPTRANS ) +TAUP*(E151~0,05%EXP (S 1)) i ) ZERO

IF (PRNT4EQe2HON) PRINT 814SI+EIST s TRANS( IPTRANS) ¢ ZERO ) ZERO

81 FORMAT (# ZERO S1 =%E13¢6¢% EIS] = *E13464% TRANS = ¥E13e64ZERO
1% ZERO = #E1346) T o ZERO
RETURN . . ZERO

, _ ZERO

ERROR MESSAGE ZERO

' . ZERO

90 PRINT 914EXPIERR o ' ‘ ' "ZERO
91 .FORMAT (* ZERO ERROR IN EXP1 ERR = *13) ZERO
‘'sToP . , _ ZERO
END ' : _ . ZERO

*

*

FUNCTION ZERO(SI) . ) ZERO
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100

200

205

210

220

230
240
241

250

320
390

FUNCTION PSI(TAU) PS1

¥R O B % E O R O OB O X O ¥ R X R X H E % % ¥ E N K F K X * ¥ X PS]
' *PS 1
FUNCTION PSI #PS 1
————— ——— #PS1
*PS1
THIS FUNCTION SUBROUTINE SUPPLIES THE RHEOLOGICAL MODEL #PS 1
FOR THE LUBRICANTs IN THIS CASEs WE ARE USING THE *PS 1
HYPERBOL 1C MODEL » *PS1
, ¥PS |
*0® F O ¥ ¥ 3 ¥ F O O O O X o O X I O X O H O F X ¥ F o # ¥ X X PG]
COMMON C+GCoLLLL PSI
COMMON /CPS1,/ GINFsETAOsTsYsHeU2U1 sNP+DUDY s IC s TGesOMEGA¢CH s AH Psl
COMMON /CPS10,/ XK1 sXKO PS1
DIMENSION GINF(21)sETAO(21)¢T(21)sY(21) 4DUDY(21)+TG(21) 1OMEGA(21) PSI
DIMENSION C(2+3921)8GC(21421) PSI.
REAL INTG PS1
PRNT=3HOFF ' PsSl
CONTINUE PS1
IF (PRNT+EQe2HON) PRINT 200sTAU . PS1
FORMAT (#0TAU = ¥*E1548) ’ . PSI1
DO 210 I=1sNP ) ’ PSI
TG(I)=TAU/GINF (1) . PSI
IF(TG(1)eLTeCH) GO TO 205 . ’ ’ PS1
TAU=0¢99999999#CHXGINF (1) ' A o v PS1
GO TO 100 PS1
OMEGA( 1) =CH#TG(I)# (AH®CH¥TG( I )Y+ (TG(I)=CHI#¥(TG(1)=CH) ) /(CH=TG( 1)) %%PS]
13 PS1
DUDY(I)—GINF(I)/ETAO(I)*OMFGA(I)*H PS1 .
CONTINUE Psl
GO TO (2204230)s1C PS1
CALL INTEG (Oselee¢YsDUDYINPYINTGsCaGCsLLLL IERR) PS1
IC = 2 _ ' PS1
GO TO 240 Psi
CALL INTEG2(0Oes16sYsDUDYINPIINTGeCoGC oLt LL ¢ IERR) PS1
IF (IERReNEs0O) PRINT 2414+1ERR2TAU "PS1
FORMAT (% IERR = #I44% AT TAU = *E15.8) PSI
PSI=ALOG1C(INTG/U2U1) PS1
IF (PRNT¢EQe2HON) PRINT 2504 INTGsPSI . PSI
FORMAT (% INTG = *E15.8e% PSI = *¥E1548) PSI
TDUDY=0e0 PSI
DO 310 I=1NP PS1
TOUDY=TDUDY+DUDY( 1) . PSt
ADJ=U2U1 #FLOAT (NP) /TDUDY : . PSI
IF (ADJeGTa0e99) GO TO 390 PSI
DO 320 I=1.NP PSI
DUDY(1)=ADJ*DUDY (1) , PS1
CONTINUE PSI
RE TURN PSI
ENTRY PSIO PSI
XK1=0s 20#CH*GINF (1) PSI
XKKO=0 s 5¥XK1 PS1
PS1=0e0 Psl
RE TURN . : Psl
END PsSl
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SUBRCUTINE SECANT (X0 eX1! e XFINALFUNCaXsCONVIMAXITIERR)
¥R X R X X R % X S X O X O X % X F 3 kO 3 ¥ % % F ¥ ¥ X X ¥ SECNT

SUBROUTINE SECANT

——————— 1

SECANT METHOD SOLUTION OF FUNC(X) = Oa

ALLOWS POSITIVE X ONLY
ARGUMENTS =~

X0+ X1 TWO INITIAL GUESSES OF ROOT
. XF INAL FINAL ESTIMATE OF ROOT

FUNC EXTERNALLY SUPPLIED FUNCTION FUNC

X PARAMETER OF FUNCTION FUNC

CONvV TEST FOR CONVERGENCE :
MAXTT MAXIMUM NUMBER OF ITERATIONS TO FIND
IERR ERROR PARAMETER

REQUIRED SUBPROGRAMS -
FUNCTION FUNC (X}

COMMON STORAGE — NONE

ERROR INDICATIONS -
IERR = O INDICATES NO ERRORe

SOLUTION

IERR = 1 .INDICATES THE MAXe NOs OF ITERATIONS WERE EXCEEDED

EDWARD Ge TRACHMAN - MeE e

DEPT e

492=5640

SECNT

*¥SECNT
*#SECNT
*¥SECNT
#SECNT
#SECNT
¥SECNT
¥SECNT
*#SECNT

#SECNT -

*#SECNT
#SECNT
*#SECNT
#SECNT
*SECNT
#SECNT
#SECNT
#SECNT
#SECNT
#SECNT
*SECNT
#SECNT
*SECNT
*SECNT
#SECNT
#SECNT
*SECNT
#SECNT

#O0¢ ¢ % H ¥ 3 R F O ¥ K ¥ XK O 3 X ¥ K F K OH H X X O® K ¥ ¥ # ¥ % SECNT

PRNT=3HOFF

IT = O

1ERR=0

XMIN=~=1eES9

XMAX= 14E99

FXMIN==2,4E99

FXMAX= 2¢E99

FO=FUNC(X0)

IF (FOelLTeOe) XMIN=XO

IF (FOeLTe0s) FXMIN=FDN

IF (FOeGTeDe) XMAX=XO

IF (FOeGTe0s) FXMAX=FOD

F1=FUNCI(X1)

IF (FlelLTeCeeANCeX1aGTeXMIN) GO TO SO

IF (F1eGTeOeesANDeX1aLLTeXMAX) GO TO 52

IF (PRNT+EQe2HON) PRINT 2¢X0sX1

FORMAT (* SECANT XQ = #E15e8e¢% X1 = %#E158)
IF (ABRS(F1)eLTeCONV) GO TO 10

IT = IT + 1

IF (ITeGTeMAXIT) GO TO 99
SLOPE=(F1~FO)/(X1=X0)

CLOSE=DIM(ABS(FO) s ABRS(F 1)) )

IF (PRNT«EQe2HON) PRINT 804X0eX14F0sF 1 4SLOPE
FORMAT( ¥OSECANT X0 = *¥E1Se89#% X1 = #E15e8B9%
1= #¥E15e8s% SLOPE = #E15e8)

IF (CLOSEsGTee0001) 546

USE X1 '

DELX==~F1/SLOPE
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Fo

¥E15e8s% F1

SECNT
SECNT
'SECNT
SECNT
SECNT
SECNT
SECNT
SECNT
SECNT
SECNT
SECNT
SECNT
SECNT
SECNT
SECNT
SECNT
SECNT
SECNT

SECNT

SECNT
SECNT
SECNT
SECNT
SECNT
SECNT
SECNT
SECNT
SECNT

QONPO L WN -

35
36
37

39
40
41
a2
a3
a4
48
46
47
48
49
50
51
52
53
54
55
56
57
58
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X0=%1

FO=F1

GO 10 7

USE XO

DELX=~F0 /SLOPE
X1=X0+DELX

AL I_OWS POSITIVE X ONLY
IF (X1eLEsOe) X1=1eE-8
IF (X1«GTeXMIN) GO TO 8
X1=XMIN

F1=FXMIN

GO TO 1

IF (X1esLTeXMAX) GO TO 9

X1=XMAX

-9
10
11

1

50
52

99
100 :

F1=FXMAX

GO TO 1

F1=FUNC(X1)
GL TO 1

XFINAL=X1.
IF (PRNTeEQe2HON) PRINT 11 eXFINALF141IT
*E1Se8 0¥

FORMAT ( #GSECANT XFINAL =
*14)

RE TURN

XMIN=X 1

FXMIN=F 1

GO TO 51

XMAX=X1

FXMAX=F 1

GO TO 53

PRINT 100 _
FORMAT (# SECANT

.. IERR=1
-RETURN

END

MAXIMUM NUMBER OF
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F (XF INAL)

ITERATIONS EXCEEDED?*)

SECNT
SECNT
SECNT
SECNT
SECNT
SECNT
SECNT
SECNT

. SECNT

SECNT
SECNT
SECNT
SECNT
SECNT
SECNT
SECNT

-SECNT

SECNT
SECNT
SECNT
SECNT

. SECNT -

SECNT
SECNT
SECNT
SECNT
SECNT
SECNT
SECNT
SECNT
SECNT
SECNT
SECNT
SECNT

59
60
61

62
63
64
65
66
67
68
69
70
71

72
73
74

75
76
77
78
79
80
81

82
83
8a

85

86
87
88
89
90
91
Q2
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SUBROUTINE EXPI(RESsXs IERR)

EXP1

3 ¥ O 3 % ¥ o9 3 3 3 X 3 F O OB I % ¥ I O o X % # ¥ R X F X x X ¥ F EXPI

SUBROUTINE EXPI

e emenas o me - —-———

COMPUTES - THE EXPONENTIAL INTEGRAL FOR NEGATIVE ARGUMENTS.
IN THE RANGE ~20 TO ZERO.

FOR X EQUAL TO O THE RESULT VALUE IS SET TO 1+E7S.
FOR X LESS THAN =20 OR GREATER THAN ZERO THE CALCULATION IS
BYPASSED AND THE ARGUMENT REMAINS UNCHANGEDe

THE EXPONENTIAL INTEGRAL IS DEFINED AS THE
RES INTEGRAL (EXP(=T)/TsSUMMED OVER T FROM X TO INFINITY)s

A POLYNOMIAL APPROXIMATION 1S USED FOR ARGUMENTS IN THE

RANGE =5 TO ZEROe

REF o LUKE AND WIMPs-JACOBI POLYNOMIAL EXPANSIONS OF A
GENERALIZED HYPERGEOMETRIC FUNCTION OVER A SEMI=-INFINITE RANGE-.
MATHEMATICAL TABLES AND OTHER AIDS TO COMPUTATIONg ‘
VOLe 17+ 1963 ISSUE 844 PPe 395=404.

AN EXPONENTIAL APPROXIMATION IS USED FOR ARGUMENTS IN THE
RANGE =20 TO =5Se

ARGUMENTS =

RES RESULT VALUEe.
X ARGUMENT OF EXPONENTIAL INTEGRAL e
IERR RESULTANT ERROR PARAMETERS

REQUIRED SUBPROGRAMS — NONE

COMMON STORAGE = NONE ‘

ERROR INDICATIONS =

1IERR = O INDICATES NO ERRORe

IERR = 1 INDICATES X IS LESS THAN =20,
z 2 INDICATES X IS POSITIVEe.

EDWARD Ge TRACHMAN MeEe DEPTe 492-5640

*EXP1
*EXPI
HEXPI
*EXPI
HFEXPI
#EXP [
*EXPI
*EXP 1
*EXPI
*EXPI
*EXPI
*EXP1
*#EXP1
*EXPI
#EXP1
*EXPI
HEXPI
FEXPI
*#EXP I
*EXP1
*EXPI
FEXP1
HFEXP1
*EXPI
*¥EXP1
#EXP 1
HEXPI
*EXPI
HFEXPI
#EXPI
*EXP I
*EXP]
HEXPI
*EXP1
*EXP1
#EXP1
#EXP1
¥EXPI
#EXP I

#0339 % I % F O 3 O F I I o ¥ O O O 3 K O I F X H R # * F K EXP]

TEST OF RANGE

IERR=0

IF (XeGTeOe) GO TO 60
IF (XeGTe~5e¢) GO TO 35
IF (XeLTe=204) GO TO 55

ARGUMENT [S BETWEEN =20 AND -5,
==10094 14E=3 /3 e #%#=~5
Cx=2e65876020E-01

RES=C# 34 ##X

RE TURN

ARGUMENT 1S BETWEEN =5 AND ZERO.
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EXPI1
EXPI
EXPI
EXPI
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXP1
EXPI1
EXP1
EXP1
EXPI
EXP1
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35

40 RES=~ALOGI{ABSIX))=({((({{(l((((e10317602E=11%X=0e1579B675E~-10)*X+
1016826592E-9)#X—021915690E=8) #X+427635830E~7)¥X=e30726221E=6) *X+
243099604 0E~5) #X~¢2B337590E~4) #X+e23148302E=3) ¥X=e 0016666306 ) X+

3e010416662)%#X~e 055555520 ) #X+e25)#X=1e0) #X—e57721566

50

55

60

X==X
IF(X) 40450440

RES=~RES
X==X
RETURN

ARGUMENT S EQUAL TO ZERO.
RES=1eE7S
RES=-RES
=-x
RETURN
ARGUMENT 1S LESS THAN =204

IERR=1
RE TURN

ARGUMENT 1S POSITIVE.
IERR=2

RE TURN
END
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EXPI1
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EXPI
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EXPI
EXPI1
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SUBROUTINE INTEG(AsBsXsFIaNPIVALUE «

1GCole IERR):
LR B R N A I N B R IR s *

O3 % # I * X F B o X

")

SUBROUTINE INTEG

INTEGRATES THE NON EQUIDISTANTLY TABULATED FUNCTION F(X(1))
BETWEEN THE LIMITS A AND Bese WHERE A OR B MUST EQUAL F(X(1))e

A MODIFIED METHOD OF OVERLAPPING PARABOLAS IS EMPLOYEDe

ENTRY POINTS -

INTEG FIRST TIME SUBROUTINE 1S CALLED AND
WHEN NEW ABSCISSAS ARE USED.

INTEG1 WHEN NEW LIMITS OF INTEGRATION ARE USED.

INTEG2 WHEN USING THE SAME ABSCISSAS AND

LIMITS OF INTEGRATION AS THE LAST CALL.

ARGUMENTS =

A LOWER LLIMIT OF INTEGRATION.

B UPPER LIMIT OF INTEGRATION.

X - ARRAY OF ARGUMENT VALUESs MUST BE MONOTONICALLY

) INCREASING AND MUST BE DIMENSIONED NPe '

F ARRAY OF FUNCTION VALUESs MUST BE DIMENSIONED NP,

NP NUMBER OF POINTSe NP MUST BE GREATER THAN 3e

VALUE RESULLTANT VALUE OF THE INTEGRATION. '

Cs GC WEIGHTING FUNCTIONS PASSED TO THE MAIN PROGRAM
FOR STORAGE s

L LIMITS OF INTEGRATION PASSED TO THE MAIN PROGRAM
FOR STORAGESs

1ERR RESULTANT ERROR PARAMETER.

REQUIRED SUBPROGRAMS -~ NONE

COMMON STORAGE -~ ¢ )

THE WEIGHTING FUNCTIONS C AND GC ARE STORED IN THE MAIN PROGRAM

AND REQUIQE THE FOLLOWING DIMENSION STATEMENT WHERE DeGEsNPe
DIMENSION C(2434D)sGC(DsD)

ERROR INDICATIONS -

IERR = O INDICATES NO ERRORe

IERR = 1t INDICATES NP IS LESS THAN 4,

[ERR = 2 INDICATES THE LIMITS OF INTEGRATION ARE NOT AT NODES
OR ARE OUT OF THE RANGE OF THE TABLEe

EDWARD Ge TRACHMAN MeEe DEPTe 492-5640

# 03 ¥ 3 % 3 I K H 3 ¥ O O K% O 3 ¥ O H K O K 3 % O ¥ H ¥ x X # I
DIMENSION X(NP)sF(NP)sC(2¢34NP} +GC (NP 4NP)

DIMENSION H{100)

NP MUST BE GREATER THAN 3

IF (NP4LEe3) GO TO 96

CALCULATION OF INTERVALS OF X

NH=NP=|
187
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INTEG

INTEG
#INTEG
*#INTEG
*#INTEG
*INTEG
*INTEG
#INTEG
#INTEG
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#INTEG
*¥INTEG
#INTEG
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#INTEG
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*INTEG
#*INTEG
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#TNTEG
*#INTEG
#INTEG
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*#INTEG
*#INTEG
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#INTEG
*#INTEG
*INTEG
*INTEG
*INTEG
#INTEG
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*
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INTEG
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10

15-
IF (1eEQeNH) GO TO 20

DO 10 I=14aNH
HOT)=X(I+]1)=X(I)

DO 20 I=1sNH

IF (1eEQel) GO TO 15

DEFINE COEFFICIENTS OF FIRST PARABOLA

Cllalal)==(H(I))#*3/(He¥H(I=1)#(H(TI=1)+H(I1)))
Cl1e201)=HUI)H(Be¥H{I=1)+H(T))/(He#*H(T=1)) .
Clle3al1)=HITI)H(Be#H(I=1)+2¢H*H(I))I/(He%H(H(I=1)+H{1)))
CONT INUE :

DEF INE COEFFICIENTS OF SECOND PARABOLA

Ct2olol)=H(I)*(2o*H(I)+30*H(I+1))/(6.*(H(I)+H(I+l))y

S C(2e2e ) =HITI)R(H(TI)+Be¥HII+1)) /(B #HII+1))

61

65

66

30.

Cl24301)==(H(1))¥*¥3/(He*H(I+1I#(HCII+H{T+1)))
CONTINUE

DEF INE GROUPED COEFFICIENTS

‘DO 61 L=1aNP

DO 61 1=1NP
GC(1+L)=040
GC(141)=C(24141)
GCL2+1)=Ct20241)
GC(341)=Cl24301) . -
NPM2=NP-2

DO 65 L=2+NPM2

LP2=t+2

DO -65 I=1s+LP2

CA=040

CB=0,0

IF(I-L+2eGCTeQeANDe I =L +2el.Te4) CA=C(lsI-~_+2+L)
IF(I-L+1eGTe0eANDeI=L+1elLTed) CB=C(241~L+14L)
GC{IsL)I=GC(IsLL=1)+0e5#(CA+CB)

NPM3=NP-3 . )

DO 66 1=1+NPM3

GC(IeNP~1)=GC (I ¢NP=2)

GC (NP=2sNP=1)=GC(NP=24NP~2)+C(1+1sNP-1)

GC (NP=1¢NP=1)=GC(NP=14NP=2)+C(1+2+NP~-1)

GC (NP eNP=1)=GC(NPsNP=2)+C(1+43sNP=1)

ENTRY INTEGI1
SETTING LIMITS OF INTFGRATION
IF (B=A) 40+924+30

B 1S GREATER THAN A

ALIM = A
BLIM = B
SIGN = 160
GO 70 %0

A 1S GREATER THAN 8B
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40

50

S5
56

57

58

59

599

80

92

96

o7

DO 59 1I=1«NP

IF (I1=2) 554574599

XXXX=AL IM=X(1)

IF (ABS(XXXX)oLTooOOOOOOOOOl) GO TO 56
IF (XXXXeGTe0s0) 57497

TIALIM = 1
11 = I1 + 2
IF (114EQel) GO .TO 59

XXXX=BL IM=X(NP+1-~1) -

1F lABS(XXXX)oLTooOOOOOOOOOl) GO TO 58
IF (XXXXeGTeOe0} 97059

IBLIM = NP+1-1

IT = I1 4+ 1

CONTINUE

IF (I1eNE#3) GO -TO 97 -

IF (IALIMONEoI) GO TO 97

L=1I8LIM-1

ENTRY INTEG2

CALCULATION OF INTEGRAL OVER SUBINTERVAL
VALUE = 040

LP2=L+2

IF (LP24GTeNP) LLP2=NP

DO 80 I=1¢LP2

VALUE=VALUE+GC (T sLLI*F (1)

CALCULATE THE FINAL VALUE OF THE INTEGRAL
VALUE=SIGN#VALUE

SET ERROR PARAMETER FOR NORMAL RETURN

IERR = O
RE TURN

SET ERROR PARAMETER FOR TOO FEW POINTS

IERR = 1
RETURN

'SET ERROR PARAMETER FOR A AND/OR B NOT AT NODES
OR OUT OF RANGE OF THE TABLE

IERR = 2
RETURN
END
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-TYPICAL DATA CARDS

00000000011111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890

16 115 500 175 .81 AH=0.0 CH=0.25 PROG (MOBIL) VISC 23371
16 154 500 175 .81 AH=0.0 CH=0.25 PROG (MOBIL) VISC 23371
16 200 500 175 .81 AH=0.0  CH=0.25 PROG(MOBIL) - VISC 23J71
16 250 500 220 .89 AH=0.0  CH=0.25 PROG (MOBIL) VISC 23J71
16 115 1000 175 .58 AH=0.0 CH=0.25 PROG (MOBIL) VISC 23J71
16 154 1000 175 .58 AH=0.0 CH=0.25 PROG (MOBIL) VISC. 23J71
16 200 1000 175 .58 AH=0.0  CH=0.25 PROG (MOBIL) VISC 23371
16 200 1000 220 .72 AH=0.0 CH=0.25 PROG (MOBIL) VISC 23J71
16 115 500 175 .81 AH=0.0 CH=0.20 PROG (MOBIL) VISC 23371
16 154 500 175. .81 AH=0.0 CH=0.20  PROG(MOBIL) visC 23371
16 200 500 175 .81 AH=0.0 CH=0.20 PROG (MOBIL) VISC 23371
16 250 500 175, .81 AH=0.0 CH=0.20 PROG (MOBIL) VISC 23371
16 250 500 220 .89 AH=0.0 CH=0.20 PROG (MOBIL) VISC 23371
16 115 1000 175 .58 AH=0.0 CH=0.20 PROG (MOBIL) VISC 23371
16 154 1000 175 .58 AH=0.0  CH=0.20 PROG (MOBIL) VISC 23371
16 250 1000 220 .72 AH=0.0  CH=0.20 PROG (MOBIL) VISC 23371
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9000
9001

9002

9003

PROGRAM CONTROL ({ INPUT s TAPE60= INPUT ¢ OUTPUT s PUNCH) CONV
****%****************************CONV
: #*CONV

PROGRAM CONTROL *CONV
————e— e o —— #CONV
. *CONV

CALCULATES THE FRICTION AND VELOCITY AND TEMPERATURE PROFILES #CONY
IN AN ELASTOHYDRODYNAMIC LUBRICATED CONTACTe THIS VERSION OF #CONY
THE PROGRAM INCLUDES THE EFFECTS OF CONVECTIVE HEAT TRANSFER. #CONV
%*CONV

REQUIRED SUBPROGRAMS - #CONV
SUBROUTINE PRINTS #CONV
FUNCTION VISC . #CONY
FUNCTION ZERO , #CONY
FUNCTION PST : #CONY
SUBROUTINE SECANT *#CONY
FUNCTION EXPI *CONV
SUBROUTINE INTEG » #CONY
SUBROUTINE RTMI _ : © #CONV
: #CONV
*************************#*******CONV
: #CONV

PROGRAM SET UP FOR MOBRIL XRM OIL WITH CONVECTION CONvV
COMMON C+GColLLL . CONV
COMMON /CPSI/ GINFsETACIT4YsHIU2UL ¢NP4DUDY« IC o TG s OMEGA + CH ¢ AH CONV
COMMON /CPS10/ XK1 4XKO CONV
COMMON /CG/ 0 . ) CONV
COMMON /CZERO/ IPTRANSs TRANS(6) CONV
COMMON /CPR/ ETA2 CONV
DIMENSION GINF(21) +ETAO(21)4T{21)+Y(21)4DUDY(21)+TG(21) 4OMEGA(21) CONV
DIMENSION Q(21) CONV
DIMENSION C(2¢3421)1GC(21421) . CONY
DIMENSION ETA2(21) CONV
DIMENSION DTDY(21) +NEWT(21) s TRACTCF(20) ¢SLIP(20) CONV
DIMENSICN TJUM1(21) . CONV
EXTERNAL PSI : CONV
REAL LOGETA+NEWT CONY
_ CONV

PHYSICAL CONSTANTS AND DATA . CONVY
. CONV

READ 9001 ¢ IRDP+IRDUS IRDT¢PHIT s AH+CH CONV
FORMAT (4X13415+144F6e3+s10XF3el ¢6XFGe2) CONV
IF{EOF {60))9999.9002 CONV
CONT INUE CONvV
PUNCH 9003 . CONV
FORMAT (/) CONV
PHZ=1000 4 #FLOAT( IRDP) . : CONV
U=FLOAT( IRDU) : . : : CONV
TOIL=FLOAT(IRDT)+460., CONV
NP NUMBER OF GRID POINTS ACROSS THE HALF~FILM THICKNESS CONV
NP=11 CONV
NH = NP = 1 CONV
NIP NUMBER OF PRESSURE STEPS IN HALF CONTACT-LENGTH CONV
NIP=3 CONv
NIP2=2%NIP CONV
Tw=T01L ) "CONV
COND THERMAL CONDUCTIVITY OF THE LUBRICANT CONV
COND=¢1%778e¢/360Ce CONV
Ol LRHO DENSITY OF THE LUBRICANT "CONV
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OILRHDO=40325

oILC SPECIFIC HEAT OF THE LUBRICANT
OILC=a43%#77Be#120

CYLW=0+25

CYLW CONTACT WIDTH OF THE DISKS

Rles R2 RADII OF "THE DISKS

R1=R2=30" - - - ’

Elese E2 ELASTIC MODULUS OF THE DISKS

E1=E2=30sE+6
POISls POIS2 POISSONS RATIO FOR THE DISKS
POIS1=PO1S2=0e3 '

ALPHA VISCOSITY PRESSURE COEFFICIENT FOR THE LUBRICANT
ALPHA= 1+ 04E~4

BETA=5e 1E7#ALPHA

GAMMA=930 ¢ #ALPHA

DK THERMAL CONDUCTIVITY OF THE DISKS
DK=2107%#778e¢/3600

DRHO DENSITY OF THE DISKS

DRHO=4283

DC SPECIFIC HEAT OF THE DISKS

‘DC=0109%#778e%#124

HERSAs HERSB CONSTANTS FOR THE HERSHEL VISCOSITY EQUATION
HERSA=8974 ’ : .

HERSBz =342 , .
NGRAPH REQUIRED NUMBER OF GRAPHS FOR EACH TEMPERATURE PROFILE
NGRAPH=0 : . '
MGRAPH REQUIRED NUMBER OF GRAPHS OF TRACTION COEFs VS SLIP
MGRAPH=1 . .

PRNT=2HON GIVES ADDITIONAL OUTPUT FOR DEBUGGING PURPOSES
PRNT=3HOFF )

INITIALIZATION AND BOUNDARY CONDITIONS

IC =1

‘DTDY(1)=0e0
Y (1)=040

TRACT=0e0

FLASH=040

PI=3e1415927 .
DO 10 I=1NP o .

NEWT(I)=1e¥{(1e=Y{I)}+TW
IF (TeLTeNP) Y(I+1)=zY(1)+1e/FLOAT (NH)
CONTINUE

R=R1%R2/ (R1+R2) ,
E=2e/((1¢~POIS1¥POIS1)/E1+(1e=POIS2%POIS2) /E2)
B=4e¥R/E*PHZ

FLASHK=0 ¢ 24/SORT (P [ ¥PHZ#DK*DRHO*DC*U*R/E )
TRANS(1)=B/U/6e

TRANS(2)=B/U/6

TRANS(3)=B/U/26

TRANS(4) = TRANS(3)

TRANS(5) =TRANS(2)

TRANS(6) =TRANS (1)

DELXB=B/FLOAT(NIP)

CALCULATION OF LOAD
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*

W=PHZ#PHZXPI# (24 /E)*R CONvV
PRINT 24PHZsWeRWE CONV
2 FORMAT (3#1CONTROL PHZ = #E1S5e¢8¢%* W = #E158¢% R = %E1548 CONV
1* E = *E158) . : CONV
. CONV

CALCULATION OF HALF=FILM THICKNESS CONvV

- CONvV

ETAENT=10 ¢ ## (HERSA+HERSB#*ALOG10(TOIL.—4604) ) * 1 e45E=-7 CONV
H=1e6*ALPHA#%0e 6% (ETAENTHU ) #%#0 ¢ 7HE* #0403 #R#¥0e43/W*#0e 13 CONvV
H=1e2%H CONV
H=PHIT#H- CONvV
H=0¢5#H i CONV
PRINT loHoALPHAcETAENToUoCHoAH - CONV

1 FORMAT(#0H = #E124Ss%# ALPHA = #E12e5+% ETAENT = #E1245, CONv
1# U = #F6e04% CH = #FSe30% AH = #F7e3) . - CONvV
CONV

SLIP LOOP CONV
CONV

NSLIP=15 CONV
DATA (SLIP(IU)sIUS1420)/050100206030040150960080¢100¢150+20s 0300 2 40CONV
1e95060604¢5#06,0/ CONV
DO 6000 (U=1+NSLIP © . CONV
DATA (TRACTCF (IP)+1P=1+20)/20%0e0/ CONYV
FLASH=FL ASHK#TRACT*SLIP( IU) CONV
IF (FLASHeLTe0e5) FLASH=040 CONV
“TW=TOIL+FLASH CONV
PRINT 6+FLASH . . . CONV
6 FORMAT (3% CONTROL FLASH = #E1548) CONV
U2U1=0e5#SLIP(IU) CONV
PRINT 8¢ IU+SLIP(IU) CONV

8 FORMAT (#1CONTROL IU = #I3¢% .. SLIP = #E1548) CONV
’ CONV

HERTZ!AN PRESSURE LOOP CONV

: : CONvV
TRACT=0e0 CONV
‘DO 5999 IP=1.NIP2 CONV
IPTRANS=1P CONV
‘XB=(2¢#FLOAT(IP)~14)/2e/FLOAT (NIP) CONvV
P=PHZ%#SQRT(XB*(2¢=XB) ) ‘CONY
DO 3 I=1+NP CONvV
"IF (IPeEQel) TUMI(I1)=TOIL CONV
IF (IPeGTe1l) TJMl(I)‘NEWT(I) CONV

3 CONTlNUE - CONV
CONV

SOLVE MOMENTUM EQUATION CONV
CONV

ITCOUNT=0 CONV
iT=0 ’ . CONV
ITC=1 CONvV
TMAX=950, - CONV
‘T(1)=951. CONV
4 IF (PRNT,EQe2HON) PRINT 4441T CONvV
44 FORMAT(#01!T = #I13) CONYV
IF (ITCeEQeO) GO TO 4970 CONV

L IT=1T+1 CONV
“IF (ITeGTel) TMAX=T(IT~1) CONV
TMIN=TOIL CONvY
1TC=0 CONV
4970 DO 11 I=ITsNP CONV
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4979
4980

4982
4985

4988

4989

4986

4987

11

41

5000

5010
S012

5020
5022

5030

IF (ITCOUNTSEQeQO) TEMT=NEWT(I)

IF (ITCOUNTeGTe0) TEMT=0sSH(T(II+NEWT(I1))

IF (ITCOUNT«GT200) GO TO 6003

IF (IPelLEsNIPsANDSTEMT e LToTIMLI(I)) 498044979
IF (IPeGTeNIP«ANDTEMT«LTeTUMI(I)) 498244985
TEMT=0eS5%#(TUMI(I1)+T(1))

GO TO 4985

TEMT=0eS# (TOIL+Y () #FLASH+T(I1))

IF (1eGT4IT) GO TO 4987

UPDATE TMAX AND TMIN

IF (TEMT oL TeT(IT)eANDeT(IT)eLToTMAXeAND¢T(IT)eGTeTMIN)

IF (PRNT,EQe2HON) PRINT 4988¢TMAXs TMINSTEMT

FORMAT(#0OTMAX = #FQed 4% TMIN = %¥FQeb4 % TEMT = #FQe4)

BOUND TEMPERATURE

IF (TEMT e GTe TMAXsOReTEMT oL Te TMIN) TEMT=0eS5S#( TMAX+TMIN)
IF (PRNT ¢EQe2HON) PRINT 4989+ TEMT+T(IT)

FORMAT (% TEMT = #F Qe 4% TUIT) = #F9e4)

TEST FOR CONVERGENCE

IF (ABS(TEMT=T(IT))eLTee3) 498644987

ITC=1

IF (ITsEQeNP) 5032411

T(1)=TEMT
GINF(1)=1e2%P/(2¢524e01333%(T(1)1~4924))~1e45E4
IF (GINF(I1)eLTele) GINF(I)=1e

CALCULATION OF STEADY-STATE VISCOSITY
ETEXP=ALPHA#P+ (BETA+GAMMA#P ) ¥ (680e¢=T(1))/680¢/T( 1)
ETAZ(1)=462%EXP(ETEXP) #1 845E-5

CALCULATION OF TIME-~DERPENDENT VISCOSITY
ETAO(I)=VISC(P«ETA2(1)+IVCODE)

CONT INUE

DUMMY=PS310(0.0)

CALL SECANT(XKOsXK1esTAUIPST aXK4e001450041TERR)
IF (ITERR«EQel1) STOP .

IF (PRNT+EQe2HON) PRINT 41¢TAU

FORMAT(#O0TAU = *E15.8)

SOLVE ENERGY EQUATION

DO 5000 [=14NP
Q(1)==TAU*DUDY (1) /COND#*H
QC=+0ILRHO*OILC/COND*H¥H*¥U* (T (1) =TJIM1( 1)) /DELXB
Qt1)=a(1)+QacC

CONT INUE . ,

IF (PRNT+EQe2HON) CALL PRI

DO 5010 1=24NP

CALL INTEG1(OesY(I)sY4sQeNPIDTDY (1) +CsGCyLLLL s IERR)
IF (1ERR«NE+0O) PRINT 50124 1ERR

FORMAT (* INTEGRATING Qs IERR = *13)

DO 5020 [=24NP

CALL INTEGI(OesY(I)sY+DTDYINPINEWT (1)4C4GCoLLLLs IERR)
IF (1IERR«NE«O) PRINT 50224 ERR

FORMAT (* INTEGRATING DTDYs IERR = #I13)
XK7=TW=NEWT (NP)

ITCOUNT=] TCOUNT+1

NEWT(1)=040

‘DO 5030 [=1sNP

NEWT (1) =NEWT (1) +XK7
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TMAX=T(IT)
IF (TEMT eGTeaT(IT)eANDeT(IT)oGTeTMINSAND¢T(IT)eLTeTMAX) TMIN=TC(IT)
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5032
5033

5034

5040

*

5999

6002

*

5050

.5051
5052
6000
6003

6001

6005

*

6011,

6012
6013
o8
99

9999

GO TO ¢

DO 5033 I=1sNP

NEWT(I)=T(1)

1F (IVCODE+NE«Q) PRINT 5034

FORMAT (%0 MINIMUM VISCOSITY REDUCTION#*)
CALL PR1

PRINT 99

PRINT SO4C ((NEWT(I)eI)el=1sNP)

FORMAT (3% NEW TEMP = #F7¢2¢% 1 = #14)

CALCULATION OF TRACTION

TRACT=TRACT+B/FLOAT(NIP)#TAY

CONTINUE

TRACTCF( ITU)=TRACT/W

PRINT 6002+TRACTCF (1U)

FORMAT ( #OCONTROL TRACTCF(IU)Y = %E158)

PLOT TEMPERATURE PROFILE

IF (NGRAPHeEQes0O) GO TO 6000

DO 5052 NGR=1 +NGRAPH

PRINT S0SC«SLIP(IW)

FORMAT(#1(U2 - Ul) = %E1548)
PRINT 99 ’

CALL STPLTI1(1+NEWTsYaNPolH%41s1HY)
PRINT 5051 ‘ )

FORMAT ( 1HC +92X+ 1 lHTEMPERATURE )

CONT INUE

CONT INUE

PRINT 98

PRINT 6001« ((TRACTCF(IW) +SLIPITIU)) s IU=14NSLIP)
FORMAT (% CONTROL TRACT = #*E1Se8e¢% y2-Ul = #E158)

PUNCH 6005+ {(SLIP{IU) s TRACTCF (IU)) s IU=14NSLIP)
FORMAT (2F 1Ce5)

PLOT TRACTION COEFFICIENT
IF (MGRAPHsEQeO) GO TO 6013

DO 6012 MGR=1+MGRAPH
PRINT 98

CALL STPLT1(1+SLIP+TRACTCF oNSLIPy1H¥*4+14414HTRACTION COEF o)

PRINT 6011
FORMAT(1HCs 100X 7HU2 -~ U1)
CONT INUE

CONT INUE

FORMAT (#1%)

FORMAT ( #0%)

GO TO 9000
CONT INUE
sTop

END .
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FUNCTION PSI(TAU)

PSIBL

*********************************PS]BL

FUNCTION PS1

THIS FUNCTION SUBROUTINE SUPPLIES THE RHEOLOGICAL MODEL
FOR THE LUBRICANTS IN THIS CASEs WE ARF USING THE
BARLOW AND . AMB VISCOELASTIC MODEL WITH A LIMITING SHEAR STRESSe

*PSIBL
*PSI1BL
*#PS 8L
*PSIBL
*PS1BL
#PS1BL
*PSIBL
*#PSIBL

*********************'************PSIBL

COMMON C «GCoLLLL

. COMMON /CPSI/ GINFsETACsTeYeHUZ2UL1 ¢+NPeDUDY ¢« ICeTGsOMEGA «CH ¢ AH
. COMMON /CPSIO/ XK1 4XKO
' DIMENSION GINF(ZI)vETAO(21)cT(21)oY(?l)0DUDY(21)0TG(21)oOMFGA(El)

DIMENSION c«2.3.21’.GC(21.21)

REAL INTG

PRNT=3HOFF

CONT INUE

IF (PRNTeEQe2HON) PRINT 2004TAU
FORMAT (#0TAU = #F1548)

DO 210 I=1«NP

TG(I)=TAU/GINF (1)

IF(TG(1)eLTe0e25) GO TO 205

SLIP REGION

OMEGA( 1) =(TG(1)~-e2499963)314E6

GO TO 208

VISCOELASTIC REGION

OMEGA( 1) =55 2% TG(1)#TG(I)+TG( 1)
DUDY(I)}=GINF(1)/ETAO(])*OMEGA (1) *H
CONT INUE

GO TO (220+230)s1C

CALL INTEG (Oesl1etYsDUDYINPIINTGsCoGColLLL » [ERR)
IC = 2

GO TO 240

CALL INTEG2(Ose1esYeDUDYINPyINTGeCsGCoLLLL ¢ IERR)
IF (IERReNEsO) PRINT 241¢1ERRsTAU"
FORMAT (% IERR = ¥[44% AT TAU = ¥E15.8)
PSI1=ALOGIC(INTG/U2U1)

IF (PRNTeEQeZHON) PRINT 2504 INTG4PS1

‘FORMAT(* INTG = #E1S5e8+% PSI = #E1548)

TOUDY=0e0

DO 310 I=1sNP

TOUDY=TDUDY+DUDY( 1)
ADJ=U2U1 #FLOAT (NP)/TDUDY

IF (ADJ«GT«Ge99) GO TO 390

DO 220 I=1,.NP

DUDY(1)=ADJ#DUDY (1)

CONTINUE

RE TURN

ENTRY PSI0

CHECK OMEGA = 37
XK1=TAU=0e25#GINF (1)

DO 410 I=1+NP

TG(1)=TAU/GINF (1)
OMEGA(1)1=5Se2#TGI I #TG(I)+TG( 1)
DUDY(I)=GINF(I)/ETAO(1)*OMEGA (1) #H
CALL INTEG (OeslesYeDUDY s NP3 INTGyCoGCoLLLL ¢ IERR)
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PSIBL

PSIBL
PSIBL
PSIBL
PS IBL
PSIBL
PSIBL
PSIBL
PSIBL
PSI1B8L
PSIBL
PS1IBL
PSIBL
PSIBL
PSIBL
PSIBL
PSIBL
Ps1BL
PSIBL
PSIBL
PSIBL
PSI1BL
PSIBL
-PS18L

PSIBL

" PSIBL
"PSIBL
PSIBL
‘Ps1BL
PSIBL
PS1BL
PSI1BL
PSIBL

PSS IBL

PSIBL
PSIBL
PS IBL
PSIBL

" PsSIBL

PS IBL
PSIBL
PSIBL

- PSIBL

PS1BL
PSIBL
PS IBL
PSIBL

VO NOWE LN —
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56
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30

IF (IERR.NE#O) PRINT 241+1ERRTAU
IF (ALOGI1O(INTG/U2U1)) 20s2Cs30
SLIP MODEL

XKO=10e%XK1

PS1=0e0

RETURN

VISCOELASTIC MODEL

XKO=0e 1 #XK1
PS1=0e0

RE TURN

END
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FUNCTION PSI(TAU)

PSIMX

****************************’****F’SIMX

FUNCTION PS1

—— -

THIS FUNCTION SUBROUTINE SUPPLIES THE RHEOLOG I CAL MODEL.
FOR THE LUBRICANT IN THIS CASEe WE ARE USING THE
MAXWELL VISCOELASTIC MODEL WITH A LIMITING SHEAR STRESS.

*PS IMX
*PS IMX
*#PS IMX
*#PS IMX
#PS IMX
*#PS IMX
*#PS IMX
*#PS IMX

********************************‘*DSIMX

COMMON C+GCoLLLL

COMMON /CPSI/ GINF+ETAOCsTaYeHsU2ULINPosDUDY ¢ ICs TGeOMEGA+CH e AH

COMMON /CPS10/ XK1 ¢XKO

DIMENS ION G!NF(ZI)oETAO(El)oT(El)0Y(21)cDUDY(21)~TG(21’OOMEGA(ZI)

DIMENSION C(2+3421)4GC(21421)
REAL INTG

PRNT=3HOFF

CONTINUE

"IF (PRNTeEQe2HON) PRINT 200¢TAU

FORMAT(#0OTAU = #*E1S8)

DO 210 I=1+NP

TG(I1)=TAU/GINF (1)

IF(TG(I)eLTe0e50) GO TO 205

SLIP REGION
OMEGA(I)1=(TG(]1)—-084999990)*1+E6

GO TO 208

VISCOELASTIC REGION

GINFK=0e5/TG(1)

OMEGA(1)=1e /(GINFK+SORT(GINFK¥GINFK=14))
DUDY(I)=GINF(I)/ETAO(]1)*OMEGA (1) 3H
CONTINUE

GO TO (220+230)¢1C

CALL INTEG (OeslasYsDUDYINPSINTGsCoGCol.LLL +IERR)
IC = 2

GO TO 240

CALL INTEG2(Oe+1asYsDUDYINP 4 INTGeCsGCobll LL s IERR)
IF (IERReNEsO) PRINT 24141ERRsTAU
FORMAT (3 T1ERR = #144% AT TAU = ¥E15,.8)
PSI=ALOGIOC(INTG/U2UL)

IF (PRNTeEQe2HON) PRINT 2503 INTGsPSI
FORMAT (3# INTG = #E1Se8e3t PS1 = #*E1548)
TDUDY=0e O

DO 310 I=1eNP

TOUDY=TDUDY+DUDY (1}
ADJ=UZ2UL ¥*FLOAT (NP) /TDUDY

IF (ADJeGTe0e99) GO TO 390

DO 320 1=1+NP

DUDY (1 )=ADJ¥DUDY(1)

CONTINUE

RETURN

ENTRY PSIO

CHECK OMEGA =1

XK1=TAU=0eS0#GINF (1)

DO 410 I=1sNP

TG(1)=TAU/GINF (1)

GINFK=0eS5/TG(1)

OMEGA( 1) =1e/(GINFK+SART(GINFK¥GINFK=14¢))
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DUDY(1)=GINF(I)/ETAO(I)*OMEGA (T )*H
CALL INTEG (Oes1esYeDUDYINPIINTGsCoGCoLLLL ¢IERR)
IF (IERReNE«O)} PRINT 241¢1ERRsTAU
IF CALOGIO(INTG/U2ULY))Y 20420430
SL1P MODEL

XKO=10s%XK1

PS1=040

RE TURN

VISCOELASTIC MODEL

XKO=0Oe 1 %#XK1

PSI=0e60

RE TURN

END
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SUBROUTINE RTMI(Xe Fe¢ FCTe XLIs XRIe¢ EPSe IENDs IER)

PG 00000 00000000000 CDLPOROOECEODBRRIGOOOENILIPNOEONN S0 300008000b000000000

SUBROUTINE RTMI

PURPOSE
TO SOLVE
B8Y MEANS

USAGE

CALL RTMI

GENERAL NONL INEAR EQUATIONS OF THE FORM FCT(X)=0
OF MULLER=S ITERATION METHODe

(XaFsFCTeXLIIXRI«EPS, IEND# IER)

PARAMETER FCT REQUIRES AN EXTERNAL STATEMENTs

DESCRIPTION
x -
F -

FCT -

XLI -

XR1 -

EPS -

IEND
IER

REMARKS

OF PARAMETERS
RESULTANT ROOT OF EQUATION FCT(X1=0s
RESULTANT FUNCTION VALUE AT ROOT Xe
NAME OF THE EXTERNAL FUNCTION SUBPROGRAM USEDe
INPUT VALUE WHICH SPECIFIES THE INITIAL LEFT BOUND
OF THE ROOT Xe
INPUT VALUE WHICH SPECIFIES THE INITIAL RIGHT BOUND
OF THE ROOT Xe
INPUT VALUE wHICH SPECIFIES THE UPPER BOUND OF THE
ERROR OF RESULT Xs .
MAXIMUM NUMBER OF ITERATION STEPS SPECIFIEDe
RESULTANT ERROR PARAMETER CODED AS FOLLOWS
IER=0 — NO ERROR»s
IER=1 — NO CONVERGENCE AFTER IEND ITERATION STEPRS
FOLLOWED BY lEND SUCCESSIVE STEPS OF
BISECTIONS
IER=2 = BASIC ASSUMPTION FCT(XLI1)*#FCT(XR!) LESS
THAN OR EQUAL TO ZERO 1S NOT SATISFIEDs

THE PROCEDURE ASSUMES THAT FUNCTION VALUES AT INITIAL
BOUNDS XLI AND XRI HAVE NOT THE SAME SIGNe IF THIS BASIC
ASSUMPTION IS NOT SATISFIED 8Y INPUT VALUES XLI AND XRle THE
PROCEDURE IS BYPASSED AND GIVES THE ERROR MESSAGE [ER=2e

SUBROUTINES

AND FUNCTION SUBPROGRAMS REQUIRED

THE EXTERNAL FUNCTION SUBPROGRAM FCT(X) MUST BE FURNISHED
BY THE USER.

ME THOD

SOLUTION OF EQUATION FCT(X)=0 IS DONE BY MEANS OF MULLER-S
ITERATION METHOD OF SUCCESSIVE BISECTIONE AND INVERSE
PARABOLIC INTERPOLATIONs WHICH STARTS AT THE INITIAL BOUNDS
XLI AND XRIe CONVERGENCE IS QUADRATIC lF THE DERIVATIVE OF
FCT(X) AT ROOT X IS NOT EQUAL TO 7ERQOe ONE ITERATION STEP

REQUIRES
ACCURACY

TWO EVALUATIONS OF FCT(X)s FOR TEST ON SATISFACTORY
SEE FORMULAE (344) OF MATHEMATICAL DESCRIPTIONe

FOR REFERENCEs SEE Ge Ke KRISTIANSENs ZERO OF ARSI TRARY
FUNCTIONs BlITe VOLe 3 (1G63)s PPe205~2060
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Oo0n

o000

PREPARE ITERATION
1ER=0

XL =XxL1

XR=XR1

X=X0L

TOL=X

F=FCT(TOL)
IF(F)141601

FL=F

X=XR

TOL=X

F=FCT(TOL)
IF(F)2e¢1602 .
FR=F
IF(SIGN(1e+FL)I+SIGN(163FR))2543425

BASIC ASSUMPTION FL#FR LESS THAN O IS SATISFIED. :
GENERATE TOLERANCE FOR FUNCTION VALUES.

1=0 .

TOLF =100 ¢ *EPS

START ITERATION LOOP
1=141

START BISECTION LOOP

DO 13 K=1s1END

X=05#XL+XR)

TOL=X '

F=FCT(TOL)

IF(F)541645

IF(SIGN( 18 +F)I+SIGN(1esFR) Y 74647

INTERCHANGE XL AND XR IN ORDER TO GET THE SAME SIGN IN F AND FR
TOL =XL . S
XL=XR -

XR=TOL

TOL=FL

FL=FR

FR=TOL

TOL=F=FL

A=F #TOL

A=A+A

IF(A-FR#(FR=FL))B8+949

IF(I=1END) 1741749

XR=X

FR=F

TéST ON SATISFACTORY ACCURACY IN BISECTIOMN LOOPRP
TOL=EPS

A=ABS(XR)

IF(A-14)11+11410

10
11
12

<13

TOL=TOL*A

IF (ABS(XR=XL)=TOL)12412413
IF(ABS(FR=FL)~TOLF)14,14413

CONTINUE
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14
15
16

17

18

19
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22
23

24

25

END OF BISECTION LOOP

NO CONVERGENCE AFTER IEND ITERATION STEPS FOLLOWED BY IEND
SUCCESSIVE STEPS OF BISECTION OR STEADILY INCREASING FUNCTION

VALUES AT RIGHT BOUNDSe

IER=1

ERROR RETURNS

IF(ABS(FR)=ABS(FL)) 16416415

X=XL
F=FL
RE TURN

COMPUTAT ION OF

A=FR=F -

ITERATED X~-VALUE BY INVERSE PARABOLIC INTERPOLATION

DX=(X=XL)*¥FL#(1e+F*{A~TOL)/(A¥(FR-FL)))/TOL

XM=X
FM=F
X=XL=-DX
ToL=X

F=FCT(TOL)
IF(F)18+169+18

TEST ON SATISFACTORY ACCURACY IN ITERATION LOOP

TOL=EPS

A=ARS (X)
IF(A=14)20+420019
TOL=TOL#A

IF(ABS(DX)=TOL)Y21421422
IF(ABS(F)=TOLF)16+16422

PREPARATION OF NEXT BISECTION LOOP
IF(SIGN(1esF)+SIGN(1esFL))I24423424

XR=X
FR=F

GO TO 4 -

XL =X
FL=F

XR =XM
FR=FM
GO TO 4
END OF

ITERATION LOOP

ERROR RETURN IN CASE OF WRONG INPUT DATA

IER=2
RETURN
END
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APPENDIX C

NOMENCLATURE

rise parameter of the hyperbolic model

= APHZR/E, half-width of Hertzian contact

limiting shear stress/limiting shear modulus ratio

specific heat of the lubricant

specific heat of the disk

shear rate

= %[(1~v§/El) + (1‘V§/E2)]’ effective modﬁlus of'elastiéity
of the disks ' » | |

elastic moduli of the two disks

exponential integral

fractional free volume

equilibrium free volume

complex shear modulus’

high frequency limiting shear modulus

= Gm/K

half-parallel lubricant film thickness

minimum lubricant film thickness

thermal conduccivity.of the lubricant

thermal conductivity of the disk

Oldroyd-Dyson paraﬁeter

bulk modulus

low frequency bulk modulus

high frequency Bﬁlk modu lus

bulk modulus associated with molecular rearrangements in
free volume

complex relaxational modulus
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high frequencyAvalue of‘Kr

torsional spring constant

inertia

complex compliance

pressure

maximum Hertzian pressure

maximum Hertzian pressure (on graphs)

pressure step

normal stress

= RlRZ/(Rl + RZ)’ effective radius of the disk pair

radii of the disks

In(1, /1)
ln(nzlnl)

]

time

temperature

lubricant inlet temperature (on graphs)

bulk temperature of the disk

lubricant entrance temperature

mean surface tempe:aturé of the disk in the contact zone,
"flash temperature"

reference temperature at which there is no free volume

velocity components in the fluid film

mean rolling speed

surface speeds of the disks

reference rolling speed at which‘ﬁ = %‘ﬁu:g

specific volume

free volume
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2

= =83 L

specific volume after elastic deformation only
occupied volume

initial specific voluqe
equilibrium specific volume

load per unit length of cylinder
Cartesian coordinates

complex shear mechanical impedance
viscosity-pressure coefficient
shear strain

shear rate

shear viscosity

viscosity of the lubricant at entrance conditions
free volume viscosity

volumg viscosity

initial viscosity

equilibrium viscosity

effective viscosity

Maxwell relaxation time
retardation time

volume relaxation time

coefficient of friction

complex fluidity

Poisson's ratio for the two disks
glide/roll ratio

density of the lubricant

density of the disk

shear stress
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film thickness thermal reduction factor
angular frequency

non-dimensional shear rate
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