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PRE FACE

This report is an edited version of notes distributed at the Summer Work-

shop on the UCLA General Circulation Model in June 1971. It presents the

computational schemes of the UCLA model, along with the mathematical and

physical principles on which these schemes are based.

Included are the finite difference schemes for the governing fluid-

dynamical equations, designed to maintain the important integral constraints

and dispersion characteristics of the motion.

Also given are the principles of parameterization of cumulus convection

by an ensemble of identical clouds. (A newer parameterization of cumulus

convection, by an ensemble of clouds with a spectral distribution of sizes,

will be published in a subsequent report.)

A model of the ground hydrology, involving the liquid, ice and snow

states of water, is included.

A short summary is given of the scheme for computing solar and infrared

radiation transfers through clear and cloudy air. A more detailed description

of the scheme, by A. Katayama, is in press as Technical Report No. 6.

The research reported here was done with the support of the National

Science Foundation, Atmospheric Sciences Section (Grants GA-1470 and

GA 34306X), and the National Aeronautics and Space Administration, Institute

for Space Studies, Goddard Space Flight Center (Grant NGR 05-007-328).
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I-1

1. GOVERNING EQUATIONS

IN a-COORDINATE

1. a-coordinate.

The vertical coordinate used in the model is a, defined by

a = , (I.1)
Ps -Pt

where PT is the pressure at the upper boundary of the model atmosphere, taken

as a constant, and Ps is the pressure at the earth's surface, which is a function

of the horizontal coordinates and time. It follows from (I. 1) that

a = 0 at p = PT (12)

a =1 at p = Ps 

so that the boundaries are coordinate surfaces.

I
(3=l

We define r by

PS Pt (1.3)

ir/g is the mass of the entire vertical column of the model atmosphere with unit

horizontal cross section. From (1. 1) and (1.3),

P = PT +ra. (1.4)
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1-2

From (1.4),

- dt dt '

where a- da/dt. Since ir is a function of the horizontal coordinates and time

only,

a
lw = ra +c('at +\V.v)T7r (1.5)

where \V is the horizontal velocity and v is the horizontal gradient operator.

We must remember that lir is not identical with w.

The earth's surface is a material surface as well as a coordinate surface.

The kinematical boundary condition there is simply & = 0. At a = 0 (p = PT), we

have 7ra = w . We may assume that w _= 0 is an acceptable approximation,
P PT P PT

if PT is chosen properly. Then

a=O at a= 0,1 . (1.6)

2. The hydrostatic equation.

When pressure is the vertical coordinate, we have

<? = - a , (I1.7)
apd a is the specific volume. From (1.4),

where t-gz and a is the specific volume. From (1.4),

-2-



1-3

6p = r 6or , (1.8)

where 6 denotes the differential under constant horizontal coordinates and

time (and, therefore, under constant ir). (1.7) and (1.8) give

86 = -ra 6a . (1.9)

The following alternative forms of the hydrostatic equation can be

derived from (1.9) and will be useful:

6(^h) = (a -oa ra)6a, (1.10)

68 = - cPe 6(pX ) , (1.11)

8(cpT+) = pXCp69 , (1.12)

where x - R/cp and e T/pX .

3. The equation of:continuity.

In the pressure coordinate system, the equation of continuity takes the

form

vp \V+ = 0 . (1.13)

We have the relation

vp = V +( vp · a) (1. 14)

This relation is illustrated in the accompanying figure.

-3-



1-4

b do

0. *.

Let A be an arbitrary quantity. Then

As /a As

The limit as As - 0 gives

vpA = vAA +a vPa.

From (1 . 1) and (1.3), we obtain

vro=v p( aPT) = p -E v =_P -PT 

Then (1. 14) gives

vp=v --ff-w iaa .(1.15)

Using (1.15) for vp,\V and (1.5) and (1.8) for aw/ap, results in

[Va * \V -. r Vw, LV] + a _ r +a( a +\V *v ) f=O

and finally

F a a (.. 16)

This form of the continuity equation, with the a-coordinate, is similar to the

continuity equation with the z-coordinate,

-4-



1-5

at aa
+ V v(p) + (p ,O

where p is density. Let AS be a horizontal area element. Then p Az AS is

the mass of the volume element AzAS. Similarly, (ir/g)Aa AS is the mass of

the "volume" element Aa AS, in a-space. However, 7r is a function of the

horizontal coordinates and time only, whereas p may also be a function of the

vertical coordinate.

The equation of continuity (I.16) is used for two purposes: to find

air/at (which is aps/at) and to find a.

Integrating (1.16) with respect to a, from 0 to 1, and using the boundary

condition (1.6), we obtain

at fO va. (tW)da (1.17)

1

=-v. 7r\Vda . (1.17)

This is equivalent to the so-called "surface pressure tendency equation".

Substituting air/at, obtained from (I.17), into (I.16), we get a(rar)/aa.

Integration of this derivative with respect to a, from 0 (or 1) to a given a, gives

ira at that a-level.

4. The individual time derivative and its flux form.

With the a-coordinate, the individual time derivative d/dt is

expressed as

-5-



1-6

d _ ·
Fdt (at)a + \V +a aaat (1.18)

Let A be an arbitrary scalar. By using the continuity eq. (1.16),

we obtain the flux forms

dr -=- (- tA)+ + a (iraA) (1.19)

and

rrA (d=5- - ) (,)½A2)+V .(rr \VL A2)+ -- (wI Af ) . (1.19)'

In (1.19)', A may be a vector.

5. The equation of motion.

The pressure gradient force is given by - vpc. Applying (1.15) to 4',

we obtain

vpc~ = v cD- a *V'r Ca (1.20)

and substituting from (1.9) into (1.20),

vp4) = VoP+ aa av . (1.21)

In the a-coordinate system, the pressure gradient force consists of

two terms, as shown by equation (1.21). Where the slope of the earth's surface

is steep, the individual terms are large but are approximately in the opposite

directions. In the particular case where vp4= 0, complete compensation occurs,

as shown in the figure below.
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1-7

co P'V7 (T- surface
P-SfACre - f

The horizontal component of the equation of motion is

dW+ fkx \V + va' +aaavr = , (1.22)

where IF is the horizontal frictional force and d \V/dt is the horizontal acceleration.

Note that

-r(vo C + a a v r) = VO(rr CD) - ( 4 -acm) m.-

Using (1.10), 4 - a arr = a(a)/a. This gives us another form of the equation

of motion,

dWt + f g x rl \V + V (I ) -a a< ()~ = (1.22)'dt aa

6. The equation of state.

a = RT. (1.23)
P

7. The first law of thermodynamics.

The specific entropy is cp, ne +const., where 0- T/pX. The first
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1-8

law of thermodynamics is

dt CP n = T. (1.24)

or

de _ 1 e Q
Qdt cp T (1.24)'

where Q is the heating rate per unit mass.

The flux form which corresponds to (1.24)' is

at (We) +o'-(,r \V ) + _a (as c Q (1.24)"at a(~') Cp T

The first law of thermodynamics can also be written as

dt cpT = P a + Q , (1.25)

where

w =-a +a(a + \ v) ,

as was given by (1.5).

The corresponding flux form is

a a

Using (1.5), (1.25)' may be rewritten as

t(rcpT) +a( n d\cpT)+pX .(Tracp) =a(a + \V -v)r n +rQ . (1.26)

-8-



1-9 - 11-1

8. The water vapor equation.

Let q be the water vapor mixing ratio. The continuity equation for

water vapor is

dq = _ C + E (1.27)(1.27)dt

where C is the rate of condensation and E is the rate of evaporation per unit

mass of dry air. The corresponding flux form is

a(f q) + -(f \Vq) + a (r 6q) = r(-C +E) . (1.28)(q a au

II. INTEGRAL PROPERTIES

The following integral properties of the governing equations, or of

selected terms in these equations, are useful in designing the vertical finite

difference scheme.

1. Mass conservation.

(1.17)' gives

at -. l\Vd . (11.1)at 0o

-9-



11-2

The area integral of (11.1) over the entire globe vanishes. This shows that the

total mass of the model atmosphere is conserved.

2. Vertically integrated horizontal pressure gradient force.

With the z-coordinate, the horizontal pressure force per unit mass is

1 vz p, and per unit volume it is - vzp. Integrating vertically,
P

- S vzpdz vpd =- pdz + , (11.2)
zs Zs

where zs is the height of the earth's surface.

A line integral of the tangential component of the first term on the right

in (11.2), taken along an arbitrary closed curve on the sphere, always vanishes;

and only the second term can contribute to the line integral. Therefore (except

for the possible effect of a surface stress), only when there is a non-horizontal

boundary surface can there be a "spin-up" or "spin-down" of the atmosphere

along the arbitrary curve.

The accompny ing figure is a vertical cross section of the earth

The acc ompnaying figure is a vertical cross s ection of the eartth's

topography in the plane of its slope. psn is the pressure force normal to the

-10-
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surface and the horizontal component of this force is pscos(2 -a) = Ps sina.

This is the horizontal force per unit area of the surface. Per unit horizontal area,

we have Ps sina/cosa = Ps tana = Ps I vzs I.

With the p-coordinate, the horizontal pressure gradient force per unit

mass is -pvp . Its vertical integration, with respect to mass, is

1Ps Ps
- PV d dp= r- F [v dp- v s - (11.3)

=- -Fv fSOp (c-c s ) dp + Ps v s j.
g ,_

With the a-coordinate, if we start with the form of the horizontal pressure

gradient force given in (1.22)', we immediately obtain the equivalent relation

i 1rd [v. r tQfrdodr) rom h e du o[ gv n (-)dA + Krv (11.4)

In order to derive (11.4) from the form given by (1.22), we must use the

relation

Cs = Jo (-a a)da , (11.5)

which is obtained from (1.10). (11.5) can be rewritten as

S1 (P-s)da 1ada
0 o

When PT = 0, (11.5)' is equivalent to the familiar relationship between the vertically

integrated geopotential and internal energies.

-11-
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3. The kinetic energy equation.

From the equation of motion (1.22), we obtain

d I -2 = -r\V . v + aa r + r \V. (11.6)dt 2 a

The left hand side of (11.6) can be written in the flux form (1.19)'.

The rate of kinetic energy generation by the pressure gradient force is

-ir \V .[v +aavr = -v(r ) + Dv (r \V) -a a \V Vir

= -V .(r\Vr\ +-()-ara- +\V*Vr

= Va*V )- (irac't' +ira-aira'\Vvir
o -at at aa

= v .( \V )-v(+i= a (11.7)a=r+ a
a a-V..(Tr1 \v' w) D+Ca - a

Here (1.16), (1.9), (1.10) and (1.5) were used. The vertical integration of the

last form of (11.7) is

- o1 r \ v.[v +aaV irda =--v. r\Vda s ¢-- I rwada
g o a a o g at g

(11.8)

4. Conservation of total energy.

From (11.6), (11.7) and (1.25)', we obtain

-12-



11-5

(-,t) O(t\V2)+~V' ( \V r\V 2
) +e (a~ 42- v a +aaV-, (11.9)

vO .(\V. )+ a( a, + a)] = cD \V v a a aVwX -¶ r a, (11.10)

and

at (~rcT) +v (w\V cT)+aa (7 cpT)= irQ +rwa . (11.11)

Taking the sum of (11.9), (11.10) and (11.11) , and integrating with

respect to a, from 0 to 1, gives

T[L +J lr( \V2+cpT)d +v. J r\V( \V2 +cpT +)do

= 1(\V.+Q)do

The area integral of (11.12) over the entire globe makes the contribution of the

divergence term vanish, and we have the conservation of total energy when

P7 =Oand Q =0.

5. Integral constraints on 8 and 02.

Under an adiabatic process, we have de/dt = 0. The corresponding

flux form, given by (1.24)", is

a a(re) +V(\V 8 e) + F (lT6)Z = o . (11.13)Ft(e) +a.( we) + a(e

Integration of (11.13) with respect to a, from 0 to 1, gives

a 1at forOda +v* .f ir\V d = O. (11.14)

Because the second term in (11. 14) vanishes when the area integral is taken over

-13-



11-6

the entire globe, we see that the global integral of 8, with respect to mass,

is conserved.

Because (d/dt)82 = 0 under an adiabatic process, we can similarly

derive

t 0 r 82 doa + v r \Ve2 do =0 (11.

Again the second term vanishes when the area integral is taken over the entire

globe so that the global integral of e2, with respect to mass, is conserved.

Under an adiabatic process, the frequency distribution of potential

temperature does not change with time. The integral constraints are not suf-

ficient to maintain the frequency distribution of 0, but they effectively maintain

its variance as well as its mean.

6. Introduction to vertical differencing.

The integral properties discussed above will be used for the design of

the vertical finite difference scheme that is presented in the next chapter.

The solutions obtained with any convergent scheme will satisfy these

integral properties in the limit as the vertical grid size approaches zero. But

the solutions obtained with these various schemes approach the true solution

through different paths in a function space. Our aim is to find that scheme

whose solution approaches the true solution through that path along which the

finite difference analogs of the integral properties are maintained regardless of

the grid size.

-14-
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The principle that will be used here is similar to what is usually done

when approximations are introduced into the governing equations. For example,

when the hydrostatic equation is used as an approximation, we also use an

approximate form of the horizontal component of the equation of motion, so

that certain integral properties, such as energy conservation, are maintained.

In doing that, however, the definition of energy is changed from its original

definition. This modified energy approaches the true energy as the accuracy

of the hydrostatic approximation increases.

Many schemes which do not maintain the integral constraints on 0 and

02 were designed and tested. But none of these gave better results with long

term integrations than the scheme, described in the next chapter, which does

maintain these integral constraints.

-15-
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II. VERTICAL DIFFERENCING, PART A

1. The vertical index.

The index k is used to identify a level.

At levels with odd k, \V, T and q are carried.

At levels with even k, 6 is carried.

The upper boundary is k = 0 and the lower boundary is K+ 1.

k
0 / / / // / / /.// / / / // 0 a=0
1 ------------------------------------------ \,T,q
2 a a = 2

3 --------------------------------------- \V,T, q

k-2 ---------------------------------------- \V,T,q
k-1 i a =k-

k ------------------------------------------ \VT, q
k+1 - = ak +1

k+2 ---------------------------------------- \V, T, q

K-2 ---------------------------------------- \V,T,q
K-1 a =aK-

K ---------------------------------------- \V,T,q
K+I VO a=l

We define ak- ak - ak-1.1)

Then &'A k= 1, where Z' is summation over odd k. We also define
k =l

ak =-2 (ak+l+ak-) (111.1)'

The current UCLA 3-level model (December, 1971) uses pT= 100 mb,

K = 5, AaI = 3/9, Aas = 4/9 and &ae = 2/9.

-16-
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2. The equation of continuity.

We use the form

at +- (V) *+ rk-.l) =0 . (111.2)

rS' (111.2) Aok gives
k=1

at E ' v. (I\Vk) Aok (111.3)
t k=

which is an analog of (1.17).

6k+I is given by

=rt 1+V(r\Vk)]Ak(111.4)
k 1at

3. Flux forms.

For a variable A, carried at odd levels, flux forms analogous to (I. 19)

can be written as

at- (rAk) +v .(r \VkAk ) + ' (i& +lAk+l-1_Ak _Ak-) (111.5)

Because A is a variable carried at odd levels, we must somehow determine A

at even levels (such as Ac+l, Ak_1).

From (111.5) and (111.2) we get

ri+ \VkvAk+> k((Ak+l- Ak) + k (AAk Ak1))]. (111.6)

The expression in the bracket gives the form for dA/dt which is consistent with

the flux form (111.5).

-17-



111-3

If we require that irA dA/dt also be written in a flux form corresponding

to (1.19)', then A at even levels must be chosen properly. (111.6) multiplied by

Ak gives

fr A. +\Vk v-A+ (&k+l(Ak+lAk A) +-(A)) (1117)

Using the equation of continuity, (111.7) can be rewritten as

at (1Af ) A2+V( ) + (1 [mkk +l(Ak+lAk - Ak )~T(~A~ ) L\+ V'(WkAk -~ A

-1rkl(Ak -- A jAk-2)A) (111.8)

In order that (111.8) be in flux form, Ak+lAk-2 Ak must be ½A2 at level k+ 1

and Ak_lAk-L A2 must be A2 at level k- . Therefore,Ak
_

lAk-{A k , with kand Ak ,Ak-2 k 2 k 2 Tnk with

replaced by k+2, must be equal to Ak+ 1 Ak- 2Ak . Then
Ak+Ak+ 1A2 2 =Ak AA -zA2
kl k+ 2 k+2 kl 2 k

or

Ak+l (Ak+2 -Ak) =2 (Ak+2-A )

Because Ak+2- Ak is generally not zero, we must have

Ak+l =2 (Ak +Ak +2) (111.9)

4. The acceleration term.

Following (111.6),we write the acceleration term as

td\V a\v ) 1
) ) t( + (\vk v) \Vk k kk+l\Vk+l k k \V k-1)] (I1 .10)

To have a flux form for \V(d\V/dt)k, we choose

\Vk+l = 2 (\Vk + \Vk+ ) * (111.11)

-18-



111-4

This guarantees the conservation of total kinetic energy, insofar as vertical

advection is concerned. The finite difference expression for the kinetic

energy in a vertical column is

K

' 1 2 (111.12)
g k=2

K

5' is the summation for odd k.
k =1

5. The pressure gradient force.

We wish to maintain the property of the vertically integrated pressure

gradient force discussed in Chapter II, Sec. 2. For this purpose, it is convenient

a
to start from the form given by (1.22)'. We write Va( r0)- aa ()vr as

V Or(',rq) (4'k+lak+l -ok-...la.k-jl)V'r 7.(111. 13)

The symbol ^ is a reminder that the variable is at an even level. The analog

to (11.4) is

K;, 1+~ i. ( K4)

g k=l k=l 

In this way the integral property is maintained.

(111.13) is equivalent to

Let Vk+ -{ , (k+k+ ok-lak 1 ) V T (111.15)

Let

( (1.16)
ll(O'C)k k- o k (k+laktl - 1k-lak-1) *(1.6

-19-



111-5

This is an analog to (1.10). However, at this stage (111.16) is only the definition

of the symbol (aa)k, rather than the hydrostatic equation, because the dependency

of (pca)k on temperature, pressure and a is not yet specified. Using (111.16), the

quantity inside the bracket of (111.15) can be written as

v c'k +(aa)k Vr , (111.17)

which is an analog of v ac +a av rr at level k.

6. Kinetic energy generation.

To obtain the kinetic energy generation in finite difference form, we

follow the procedure used in deriving (11.7).

- \Vk 'rv, +(aa)kv -

k \Vk)I + ak(k+ - r&k- 1 )- r(aa) \Vk vr

1 ~

- -v.(71rVk k)-~- L k (

1 a~~~. "

V '(r \VA a (lr k+j;k+jI -k-jiCk-d) epk a

1 .
*(1r \Vk C)- /- (wr&k+4k +1 rk- k-) - (4k -_r(aa)k) , '

-i(aa), (t + \V, v )r r tk+ (C+k1-6?k) _rak-_1 _~)k-1)

V (r \Vk Ok) -Aa (rk+l k +1 lt )kl - kl at

- ir(wa)k (111.18)

Here (wua)k is defined by
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(w a)k -(aa)k (at +\V .v),r- { {rk+l (k +1-ok) + i6k- (' Ak--1)} . (111.19)

At this stage, (111.19) is the definition of the symbol (Uwa)k.

From a finite difference scheme for the first law of thermodynamics, we

will determine a form for (wa)k. Then, by comparing it with (111.19), we will

determine a form of (aa) k and then a finite difference expression for the hydrostatic

equation.

7. The first law of thermodynamics.

As an analog to (1.24)", we use the form given by (111.5) with A = .

at (ITok) '1+ \' Ok) + (76 )+lek+l-l-k 1k (111.20)

By using

Ok+l =(ek + ek+, ) (111.21)

we have a scheme which conserves

K K

f s' r kAakdS and Jk k' s oAk dS
k=-1 k=1

under an adiabatic process. Here jdS is the area integral over the entire globe.

As in (111.6), (111.20) is equivalent to

r(at \Vk'V)ek [ ( r 9) +w =-() Qk. (111.22)

We define ok by

Ok = Tk/pX, (111.23)
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wherep = PT + wk. (111.22')x pk gives

a a
r(+ \Vk*V )Tk- l k (at +\Vk* V) Pk

+ [ak+1.(PkX 9k+I Tk) +Wrk-(Tk-Pk ) -Qk

from which we obtain

(at +\Vk-V )Cptk +a k+l CP(Tk+l Tk) +14k- I Cp( -(Tk--) 

RT a
i R Tk k(at + \Vk V) 7r

Pk
1 X A A

[k +1 CP(k +1T Pk Ok +l)+''k- Cpk Ok-1 k-1

+ rQk * (111.24)

The left hand side of (111.24) may be written, in the flux form, as

aF ·ak A A

a(cp
k

)+v (r \kcp T
k

) + (k+Tk+l-lT ) (111.25)

8. Total energy conservation and the hydrostatic equation.

In order that the total energy be conserved under an adiabatic,

frictionless process, the right-hand side of (111.24), except for 7rQk, must agree

with lr(wca)k, where (wua)k is defined by (111.19). First we must require

RT
(aa)k = k k . (111.26)

Pk

Because (aa)k is defined by (111.16), we have

k ( RTk
&k (%+- Ck - -I ak 1') ic= 7r Pk (111.27)
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This is a form of the hydrostatic equation which corresponds to (1.10). We must also

require that

Cp Tk +l-Pk Cp ok +1 4k - k+l + (111.28)

and

Pk Cp_-. CpTk. -1= ok- 1- k . (111.28)'

Rearranging the terms,

(c P +l +ik+l) - (cpTk +ek) = p, cP(ek+-Ok ) (111.29)

and
A A A

(cpTk+k) - (cpTk l+ k-l) Pk cP (ek o-k- ) (111.29)

(111.29) and (111.29)' are analogues of another form of the hydrostatic equation,

(1.12). 8k+, (and therefore 8k-1) is given by (111.21).

Replacing k, in (111.29)', by k+2 and adding it to (111.29), we obtain

(cpTk+2 + k+ 2 ) - (cpTk +k) = cP (pk+2 +pk) (ek+ 2 -ek)
or

4k+2 -_ k = _ c(PkX+ 2- PX) e__2 * (111.30)

(111.30) is an analogue of (1.11). (111.30) shows that CIk(at odd levels) is related

to the neighboring levels as if e is linear in pX between the levels.

(111.30) is used for computing a at the odd levels. To do so, we need

to know a1 at a single (odd) level, say, k = K. We use (111.27) for this purpose.

From (111.27), we obtain
K .K RT

("Dkk - -(S = I' R Tk A Ok , (111.31)
k=1 k=. Pk

K
which is an analogue to (11.5). We can write ;' Ok Zak as

k =1
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K K

;'kZ4Aak = ;'*k(Ok+l-,ak-l)
k =1 k=l

K-2

K= K+ ;' ak+ 1 (k Ik+ 2 ) -
k=1

(111.32)

Using (111.30) in (111.32) gives

ZI ;' ,x = ,I:K + I' a 1 CP(Pk 2 - Pk) (9 +Qe)
k = k=l1

K-2 c x x
K- r 2 VTak+l(Pk+2 P k) + ak-jl(Pk-Pk-)1 Oek

+ 2 
°

K-1(PK PK-2) K

= -K - , 1) + ak -( (1 (p) )T
k-.

+ 2 aK¶ -1 ( ) x) TK . (111.33)
2 PK

Substituting (111.33) into (111.31), we obtain

K O= {S + [ak R ak -Cp(ak+o Pk+a.k.ak) Tk , (111.34)k~~~~~~~~~~~~~~~~11.4

where

*P (( 2±)X - 1)

0

0 or any value

Pk

for k < K-2,

for k = K,

for k = 1,

for k > 3 .

-24-
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9. Summary of sections 5-8.

We have now constructed a vertical difference scheme which maintains

the property of the vertically integrated horizontal pressure gradient force, total

energy conservation under adiabatic and frictionless processes, and conservations

of 8 and 92, integrated over the entire mass, under adiabatic processes.

Pressure gradient force (per unit mass):

From (111.17) and (111.26),

-[ ~ P+ak Rk V] (111.36)

where Pk = PT + a'rk ·

The hydrostatic equation:

(111.34)

K A= + [' [Tr p R kcP(ak +lPk+ak-l ak) ]Tk' (111.37
k= 1 L Pk

(111.35) (( 1) for k • K-2,
PkP

0 for k = K,
(111.38)

kO or any value for k = 1,
ak -

..(1 -(EPi+a OX) for k 2 3

And from (111.30) and (111.38)

k -k+ = cp (ak+2 Tk+2 + PTk ) . (111.39)
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The first law of thermodynamics

Using (111.25) for the left hand side of (111.24), rearranging, the terms,

and dividing by cp,

at (k) +v.(\r \kTk) + A [+Pk Ok+ 1)-7-l(Pk Ok-1 )]

= 1x ?L.ak( at +\Vk*V ) +rQk/Cp , (111.40)
Pk at

which corresponds to (1.26)/cp.

From (111.21),

Pk k+l =(T k +(Pk )Tk+
a

)

(111.41)
PX k1 1 P( k )XT +T) Pk ok-l=2 (P k-2 k

Among the results given in Secs. 5-8, (111.36-41) are all that we need

for the main computations. However, for computing moist convection, we also

need (111.29) and (111.29), which, with (111.21), can be written as

(cp Tk+l+k+l) - (cp Tk +Ck) = pkX(ek+ 2 - k) , (111.42)

and

(cpTk++k) - (c, Pk-_ +k_-) = - p.X (k-k._, ) . (111.42)'

For diagnostic analyses of the results of the computations, such as the

vertical transfers of energy and momentum, we may need to know ~pk+ and Tk+, separately-

,k+, is obtained by summing (111.27) from k = to k. Tk+l is then obtained from (111.42).
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IV. VERTICAL DIFFERENCING, PART B

1. The flux form for the water vapor equation.

The flux form (111.5) applied to the water vapor equation is

at -(rqk) +v- ( \Vk qk) + V ((7Ck+qk+.1- ,kqk 1) =r(-C +E) . (IV.1)

This form guarantees the conservation of total water vapor when there are no

water vapor sources and sinks. (IV. 1) is equivalent to

(a \Vk V)qk + [I k+l(qk+l -q k)+ 7k-(qk qk-1)

= (- C + E), (IV.2)
k

but we must choose q at even levels properly.

2. Moist adiabatic process--continuous case.

Consider, first, the moist adiabatic process in the continuous atmosphere.

Let the air be saturated and remain saturated, and let there be no heating other

than the heat of condensation..

Let q*(T,p) be the saturation mixing ratio. Then, the water vapor

equation is

d* U~ q =~~-C,~ ~ ~(IV.3)

when condensation is occurring. The first law of thermodynamics is

dt cpT = wa + LC, (IV.4)

where L is the heat of condensation per unit mass.
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From (IV.3), we obtain

(a*) dTt (aq*) w=-C. (IV.5)aT ,'dt ap T

From (IV.4) and (IV.5) we have

C ) + () . (IV.6)
+ L ap T cP aT p

Cp aT ,

Substituting (IV.6) into (IV.4), we obtain

dT aT
dT = ( aT) (IV.7)

where

,aT) c., c, ap T
LaT CP ~ a~ T~ ~(IV.8)1+ L+(a

Cp aT (

or
a + \V T = T aT (IV.9)

Here a/ap without the suffix is the derivative under constant horizontal

coordinates and constant time.

The corresponding equation with the a-coordinate can be readily

obtained by using the following relations in (IV.9):

a a a a a(a + \V.v) a(-+ W'v) ( -- +\V. v). a (from 1.15)at P atpa at a' '
and a

Tu =a( + \Ve).nr + . (1.5)

Then,

+\V T)8TT aT 
at + aV.oT: ,pp' o (\)pp)- pp ] ('V.10)
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a ] a
ap r au

Using the relation

ap ap T aT ap

(1.8)

r

(IV.8) and (IV.11) give

aT aT
ap .ap

1 . a aT L aq* 
+L( a) cp ap cp ap 

I + xalp a Oa*]
1 +pL () , ap cp ap -CP aTp

From (IV.10) and (IV.12), we obtain

(at+ V ) T = aT a .V) 7r -ju) aa(- +\V~v) i -

x aH ,L
p cP+ 

1+ L (q
cP aT p

Equation (1.12) is

cp pX (09) =- y (cpT + ) .

Defining h and h* by

h -cpT +c+ Lq ,

x ae + L
P p+ papCP

h*- cp T +ff +Lq* ,

aq*= 1 ah*
ap cp ap

Finally, (IV. 13) may be written as

(aa +\V~v~aTaaT a(a +\V.v) T =('p)F cr +\V -at a )M a(yt . v-v),r-
ah*
ap )

cp +L(aT -)RT ·,

-29-
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3. Moist adiabatic process--discrete case.

Let q k -- q*(k', Pk) When level k is saturated and remains saturated,

(IV.2) may be rewritten as

(t +\Vk v)q k q*+l( qk) k-l(q k -qk-1) C, (lV 16)

when condensation is occurring.

The first law of thermodynamics is, from (111.24),

+at +\Vk v)Tk + r (Pk t+lTk)+k-(Tk Pk 9k-1l)i

1 a +L
I--ak 'k( + \VIV)Tr + C ,cp at cP (IV.17)

RT
where a k - Pk -

Pk

From (IV.]6), we obtain

aT( )k (at + \Vk.-v)T k + (a) ( + )

+ * k +.l(qk+l- q k ) k- (q k -q -1) = c , (IV. 8)1TAU k I i

where

aT pk T kP k ap ki
OTkPk' aP k aPk Tk

(IV. 17) and (IV. 18) give

C L ac~k -t ,ikcIaq* c(a_ *aC = - Lap Tk Cp k )p' k C OT Pk-})
. aT Pk

- ILTI Pk" kc +1(k+lkel) +nr&k-l(8k-k )

{&k+l(qk+l:q* ) *k- (q -)J -

-30-
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Define (aT/8p),,,k by
c k -L /(l*

(aT) Cp_ Cp ap T,.

CpL ,a.~

Substituting (IV. 19) into (IV. 17), we have

a aT a
(-+\w~.v)T (ap) k (a-t+v)

+'r&k-,(Pk ek+ C qk PkX ek-- qk-1 ) IV. 20)

(IV.20) is an analogue of (IV. 13).

The coefficient of rok+
1

in (IV.20) is

Pk (k+ 9-k) C (qk+l- q )

k= i(ek+_e:k) + L (qk+l q*k
Cp k

= -_ (CpTk+l +ek+1 +Lqk+I) (cpT k "+k +Lqk )
Cp L

- c (hk+l-hk ) · (IV.21)

Here (111.21) and (111.42) were used. Similarly, the coefficient of vtk_
1

in

(IV.20) is

Cp k
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Then, from (IV.20) we obtain

a aT a
(at +\\k v)Tk (P )k k(akt +\Vk V)r

C+ L(-) lrAcrk k+l(hk+l -hk )
aT Pk

k-+ (hk hk -). (IV.22)

(IV.22) is an analogue of (IV. 15).

Let us suppose that wrk+1 is negative and hk+l > hk . From (IV.21)

L (qk+l-q ) 
>

PX (Ok- k+J) (IV.23)

From (111.21), Ok- -k+l = (ek- ek+2 )1 and this is maintained positive or zero

(dry adiabatically stable or neutral) by the dry convective adjustment which will

be described later. Therefore, qk+1 >qk when hk+>hk . The coefficient of

r6k+l in the bracket of (IV.19) is (a *) P (Ok- k+l) + (qk +1-qk ), except
aT Pk

for a constant factor. This coefficient is positive. Consequently, the negative

rak+l makes a positive contribution to the condensation. (This is not true when

qk+1 < qk . In that case, the negative ~m pumps drier air up from below.) From

(IV.22) we see that the negative ra6k+l has a warming effect for hk+l > hk*,

which leads to a moist convective instability. This instability may occur even

when no conditional instability exists between the odd levels, which carry the

temperatures and the mixing ratios. Then the instability is a result of a poor

choice of q at the even levels and is a kind of computational instability.
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We may call this "conditional instability of a computational kind (CICK)".

Similarly, when Ir6_k is negative, hk_-2 hk* is required for

stability. Therefore, when condensation is taking place at the level k, we

must choose qk+l and qk-1 which give

hk+l < h when lrk+1 < 0
(IV.24)

hkl hk* when t6fk- l < 0

There are three situations for a particular even level which has

negative ir6 as shown below.

condensation k
(a) k+l hk+l < hk

no condensation k+2 

no condensation k
(b) k+ 1 hk+l hk+, (IV.25)

condensation k+ 2

condensation k
(c) hkl 1hk. 1 hk

condensation k+ 2

4. Choice of q at the even levels.

The difficulties of vertical differencing of the water vapor equation are

not limited to the saturated case.

For the potential temperature, the arithmetic average, 9k+l=(9k +ek+2),

was used. The integral constraint on 82 was maintained and, together with the

conservation of the average e, this resulted in a conservation of the variance of e.

But the arithmetic average, qk+ = 2 (qk+qk+2), is not a comparable good choice,
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because, unlike e, the variance of q is so great that conservations of only its

lower moments are not effective constraints on its frequency distribution.

Moreover, the arithmetic average does not guarantee that q remains

positive or zero. For example, if qk = 0, qk+, > 0 and t&,k+l >0, then the

downward current removes a positive amount from zero.

The upstream scheme

qk+l = qk for 7rk+l > 0

qk+l = qk+2 for 'mk+l < 0

does not produce this difficulty. But the upstream scheme tends to make q

homogeneous in the vertical, and thereby produces an excessive condensation

in the upper levels.

At present (December 1971) we are testing various choices of q at the

even levels.
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V. INTRODUCTION TO HORIZONTAL DIFFERENCING

1. Distribution of variables over the grid points.

We now consider the horizontal grid and the way of distributing the

variables over the grid points.

Our governing equations are the primitive equations. Under normal

conditions in the atmosphere (low Rossby and Froude numbers), these equations

govern two well-separable types of motions. One type is low-frequency, quasi-

geostrophic motion; the other is high-frequency gravity-inertia waves. It is

known that the energy of locally excited gravity-inertia waves disperses away

into a wider space, leaving the slowly changing quasi-geostrophic motion behind.

This process is called "geostrophic adjustment".

Consequently, there are two main computational problems in simulating

large-scale motions with the primitive equations. One computational problem is

the proper simulation of the geostrophic adjustment. The other computational

problem is the simulation of the slowly changing quasi-geostrophic (and, therefore,

quasi-nondivergent) motion after it has been established by geostrophic adjustment.

Winninghoff and Arakawa examined the geostrophic adjustment process

with various finite difference schemes and found that it depends on how the

variables are distributed over the grid points. The following discussion is taken

from their paper.

*Winninghoff, F. J. and A. Arakawa, 1972: "Dispersion Properties of Gravity-
Inertia Waves in Space-Centered Difference Schemes and Their Effect on the
Geostrophic Adjustment Process. (In Preparation).
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Dispersion properties of gravity-inertia waves in space-centered difference
schemes and their effect on the geostrophic adjustment process.

Consider the simplest fluid in which geostrophic adjustment can take

place: namely, an incompressible, homogeneous, non-viscous, hydrostatic,

rotating fluid with a flat bottom and a free top surface.

The basic equations which govern such a fluid are:

du ah(1.1) dt - + g ax = 

(1.2) ddv + fu + a = h
(1.2) dt ay

(1.3) ~dh+h(au +av =0

(1.3)~ dt ax ay

where t is time, x and y are the horizontal coordinates, u and v are the

velocity components respectively in the x and y directions, h is the depth of

the fluid, f is a constant coriolis parameter, and g is gravity. The individual

time rate of change is

(1.4) d +u +vdt - at ax ay

In most of this study we consider the problem with a linearized version

of these equations. The linearization is done by replacing d/dt by a/at; and

replacing h as the factor on (au/ax +av/ay) in equation (1.3) by H, the mean

value of h. This is justified if the Rossby number is small and the horizontal

scale is of the order of the radius of deformation.
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We consider five ways of distributing the dependent variables, h, u

and v, in a square grid in space, as illustrated in figure 1.

U1

(A)
,v,h u,v,h

j-// I

· d-
(C)

... , h u h u

'l 1i4

V v

h u h u

V V

h u h u
i-I i
-- d -

i1

u,v,h
T

,u,v,h

lu,v,h
f/

h

h

h
L/

jt/

/

Ij+

/I

/ 

ji-

(B)
hh

+- d ·,

(D)
, h v h v

i-/ i
4- d-o

i*'

h

h

h

/i-_Z /
h

h

h
/

(E)
u,v h U,V

U,V
i-2 i i+ I

- d 4

Fi. I1

The space finite difference schemes we use for the linearized equations are

the -simplest second-order schemes for each of these five ways of distributing

the' variables. They are:
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au -x
at fv+g(8 h) = O ,

av - y 
Ft+fu + g(67 h) ,

aht +H 6. (TYv) Ij=0L5t L i~~~~~~~~

au
at

av
at

ah
at

au
at

av
at

ah
at

- fv + g(6h) =0 ,

+ fu + g( yh) = 0 ,

+H (6u) + (6) =0;

- f;-xy +g(6x h) = 0 ,

+ fuXY+ g(6yh)= ,

+ H(, u) + (6yv) =0 ;1( y~

au - )x V = 0,x
at -f7 Y+ g(6h) =

av + f-x y + g(yh)x
Y = 

a+t ++ (6 v) =0i

H V ) +X Y] = 0;
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scheme A,

(1.5)

(1.6)

(1.7)

scheme B,

(1.8)

(1.9)

(1.10)

scheme C,

(1.11)

(1.12)

(1.13)

scheme D,

(1.14)

(1.15)

(1.16)
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scheme E,

(1.17) a fv + g(6xh) = 0,at

~~(1 ~.18) at + fu + g(6yh) ,

(1.19) ah+ H -(6, u) +(6 v) = 0;

where we define,

(1.20) (6,a) 1 i (a+ i -a1.i)

(1.21) Ca)+ 21 ( j+ ai 'i)

where i and j are the indices of the grid points in the x and y directions. For

the schemes A through D, d* is the grid size d, as shown in figure 1. For

scheme E, d* equals J/ times d, as shown in the figure. This choice of d for

scheme E will make scheme E have the same number of grid points as the other

schemes in a given two-dimensional domain. (6 a).. and (a ).. are defined

in a similar manner, but with respect to the y direction. Finally,
-y

(1.22) (a ) (a)

In this study, all analyses with the linearized equations leave the time-

change terms in differential form. The reason for doing this is that unless an

implicit scheme is used, we must choose a time interval short enough to satisfy

the Courant-Friedrichs-Lewy type condition for linear computational stability

of the wave which has the largest possible phase speed. For the primitive
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equations of atmospheric motion, this is the Lamb wave. In that case, the

time interval is adequately small for all other waves, including internal gravity

waves, and we can then ignore the time truncation error in the first approximation.

We consider, first, one-dimensional linear equations. The equations

we use are:

(2.1) at-fv+gah=O,at ax

(2.2) aav + fu = 0(2.2) at

(2.3) h +H au = 

Eliminating v and h, we obtain,

(2.4) at2+f 2 u-gH-ax = .

If we assume that the solution has a form proportional to ei(kx-vt), then

the frequency v is given by

(2.5) (V)2= 1 +gH(1)

where k is the wave number in the x direction.

Next, we examine the effect of the space truncation error on the

frequency. In this one-dimensional case, the space distributions of the

dependent variables, for the schemes A through E, are shown in figure 2.
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(A)
u,v,h u,v,h
i-/ (

' d- 

(C)
v,h u v,h
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i- 
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(D)
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U
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2

dc -4
22

The forms of the space difference schemes are:

The forms of the space difference schemes are:
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au
at

av
at

ah
at

au
at

av
at

ah
at

- fv + g(6xh) = 0,

+ fu = 0 ,

+ H(86v) = 0 ;

- fv + g(86h) = 0 ,

+ fu = 0 ,

+ H(8xu) = 0 i

atu f;x+ (6 h) = 0

av + fu-X = 0 ,
at

ah +H(68U)= 0;

at f~,+ g(6xh) = 0 ;

av + fFU = ,
at

ah + H(8 u) = 
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scheme A,

(2.6)

(2.7)

(2.8)

scheme B,

(2.9)

(2.10)

(2.11)

scheme C,

(2.12)

(2.13)

(2.14)

scheme D,

(2.15)

(2.16)
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scheme E,

au(2.18) at- fv + g(6 h) = 0 

(2.19) + fu = 0at

(2.20) 8h + H(6xU) = 0

In this one-dimensional case, scheme E is equivalent to scheme A, but with

a smaller grid size.

For each of the schemes, we obtain the following frequencies

(2.21) A: ()= 1 + (X sin2 kd

(2.22) B: ( = 1 +4()2sin (2kd)

f kd 2 x d
(2.23) C: ( )=cos2 ( kd) +4(A 2sin2( kd

(2.24) D: (f) = cos2 (k') + ( d ) sin2 (kd)

(2.25) E: ( )2 = 1 +2 (X)2 sin2 (kd)

vFr is the speed of the gravity wave, which is the theoretical maximum

group velocity of the gravity-inertia waves given by equation (2.5). The radius

of deformation, X, is defined by v/F['/f. The non-dimensional frequency, v/f,

depends on two parameters, kd and X/d.

From these frequencies for the gravity-inertia waves in each scheme,

we can see their dispersion properties. From (2.5) for the continuous case, we see
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that the frequency of gravity-inertia waves is a monotonically increasing

function of the wave number k, unless the radius of deformation, X =-- OF/f,

is zero. Then the group velocity, av/ak, is not zero unless X= 0. This non-

zero group velocity is very important for the geostrophic adjustment process.

The wave length of the shortest resolvable wave is 2d. The corres-

ponding wave number, k , is ir/d. Therefore, in examining equations
max

(2.21)-(2.25), it is sufficient to consider the range 0 < kd < r.

Scheme A: The frequency reaches its maximum at kd = ir/2. This

means that the group velocity at kd = 'r/2 is zero. When gravity-inertia waves

at about this wave number are excited somewhere in the domain (by non-linearity,

heating, etc.), the wave energy stays there. Moreover, a wave with kd = Tr

behaves like a pure inertia oscillation.

Scheme B: It produces a monotonically increasing frequency for non-

zero X, in the range 0 < kd < Tr.

Scheme C: The frequency monotonically increases for d >X and

d. =l the group velocity is zero
monotonically decreases for /d < . For d 2, the group velocity is zero

for all k.

Scheme D: The frequency reaches a maximum at ( ) cos kd = 4. More-

over, kd = r is a stationary wave.

Scheme E: The frequency reaches a maximum at kd = T.

These results for the one-dimensional case show that scheme B is the most

satisfactory. However, when X/d is sufficiently larger than 1/2, scheme C is as
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good as scheme B. For internal gravity waves, it is the reduced gravity which

matters. When scheme C with a coarse grid is used for an atmosphere which has

a relatively weak stratification, X/d may not be sufficiently larger than 1/2 and,

therefore, geostrophic adjustment is poorly simulated by.scheme C. This comes

from the fact that the averaging of the coriolis force, in scheme C, makes the

shortest resolvable motion behave as if it were on a non-rotating frame.

Figure 3 shows the case for = 2 (for which scheme C is also good).

6

5

4 -

Ivl/f
~3~~~~~- _ E

2 a,- - - ,---,,--- x,

0 V 0.0
0.4 0.6 0.8 1.0

kd/7T

F,'. 3
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Cahn gave the solution of an initial value problem for which (2.1) to (2.3)

are the governing equations. At the initial time, he let h = constant, u = 0 and

v = V in the domain from x = -a to x = a, and v = 0 outside of this domain.o

We obtain the solution, u(x,t), for this same initial condition, by writing

the solution in the Fourier integral form:

1 ikx *

c(2.27) u( -ikx
(2.27) u*(k,t) = .re u(x~t)dx ,

where k is the wave number in the x direction, and u (k,t) satisfies

(2.28) au*(kt) + (f2 +k2gH)u*(k,t) = 0(2.28) at 2

Equation (2.28) has the general solution,

(2.29) u* (k,t) = A(k) cos(vt) +B(k) sin(vt),

where,

(2.30) v2 = f(1+2 k2 ) .

To determine A(k) and B(k), we apply equations (2.29) and (2.27) at t = 0.

Then,
co

*-ikx
(2.31) A(k) = u (k,o) = e' u(x,o)dx = 0

_ c

*Cahn, A., "An Investigation of the Free Oscillations of a Simple Current System",
Journal of Meteorology, Vol. 2, No. 2, June 1945, pp. 113-119.
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Moreover, equations (2.29) and (2.27) give

u*(kt) = v -A(k) sin(vt) +B(k) cos(vt)],

au*(k,t) =
8t

, e-ikx au(x,t) dx .
fS ·e atxt
-- co

Applying equations (2.32) and (2.33) at t = 0, we obtain

B(k) = 1 au*(kt)B(k) v* (b at =
t=o

1
V

.o -ikx
e

--C0

aut) dx .

t=o

From the initial conditions and equation (2.1), we have

(au(x,t)
at J

t=o

fV for IxlIa

0 for Ixl >a .

Therefore, from equation (2.34),

B(k) = e kx odx
-a

-ikxfV e

v ik

I x=a

x =-a

2fV
-= sin(ak) .kv

Finally, we obtain

faV
u(x,t) = o Re

1T

co

-Lc

2fa V 
u(x,t)= - °0

- Co

sin(ak)
ak

sin(ak)
ak

) sin(sin(vt ikx dk ,
V

sin(vt) cos kxdk .
v

-47-
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We can also write down the equations corresponding to equation (2.38),

for each of the finite difference schemes, A through E. These are identical to

equation (2.38), except for the frequency v, which is given by the expressions

(2.21) to (2.25) for each scheme.

We evaluated the integral (2.38) numerically for the differential case

and for each of the finite difference schemes. We used Simpson's rule, with

600 intervals in k from 0 to ir/a, to compute u at x = 0 for various values of t.

Then we obtained h, at x = a, from the equation of continuity. These solutions,

for a constant x, were calculated for values of t up to 40 hours, at 15 minute

intervals with f = 10 4 sec . Since equation (2.38) also enables us to evaluate

the solution for constant t over a range of x, this was also done for each of the cases.

Some results of the calculations, with a/d = 1 and X/d = 2, are shown in

figures 4 and 5. Figure 4 shows the time variation of h for the differential case, which

approximates the solution obtained by Cahn, and for each of the difference schemes,

at x = a. Figure 5 gives the space variation of h in the differential case and for each

of the schemes, at t = 80 hours.

As we expected, scheme B (together with scheme C in this case where X /d >-)

better simulates the geostrophic adjustment than the other schemes. However, even

scheme B has a difficulty in the two-dimensional case. Figure 6 shows I v I /f as a

function of kd/ir and Ad/ir, for scheme B, where k and A are the wave numbers in the

x and y directions. Again, X /d = 2.
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(B)
1.0-

0 .2 0 .0.6 0.8 1.

0.4 -
2.5

kd /7

Fi'. ¢

It thus appears that all space-centered schemes have some deficiency.

Because these deficiencies are due to the existence of false low frequencies for

high wave number motions, we cannot expect that any form of time-differencing

will avoid these deficiencies as long as we use space-centered schemes at each

time step. As shown, in Chapter 8, we overcome these deficiencies by using a

specially designed "time-alternating space-uncentered" difference scheme (TASU).

2. Two-dimensional nondivergent flow.

We now must consider the simulation of the slowly changing quasi-

geostrophic (and, therefore, quasi-nondivergent) motion after it is established

by the geostrophic ad justment process.
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We look, first, at the flow which is purely two-dimensional and

nond.ivergent. The following is extracted from the review paper by Arakawa*

(1970).

The principal computational problems can be illustrated with

the vorticity equation,

(13) a /at = J(,q,) ,

where

(14) J(',9) = (ac /ax)(a4/ay) - (ac/ay)(aN/ax),

(15)' = v 2 +,

and + is the streamfunction.

There are the following integral constraints, among others, on

the Jacobian:

(16) J(-() = 0,

(17) 'J(,") = 0O

(18) J(-,+) = o,

where the bar denotes the average over the domain, along the boundary

of which a is constant. From these integral constraints, we can see that

the mean vorticity, Z, the mean square vorticity, "2, and the mean kinetic

energy, 0(5, are conserved with time. Conservation of these quantities

during the advection process poses important constraints on the statistical

properties of two-dimensional incompressible flow. In particular, the

average wave number, k, defined as

(19) k2 = (Vp)2/(5ii ,
is conserved with time, so that no systematic cascade of energy into shorter

waves can occur.

Arakawa, A., "Numerical Simulation of Large-Scale Atmospheric Motions",
Numerical Solution of Field Problems in Continuum Physics, (Proceedings of a
Symposium in Applied Mathematics, Durham, N.C., 1968), Vol. 2, SIAM-AMS
Proceedings; edited by G. Birkhoff and S. Varga, American Mathematical Society,
Providence, R.I., 1970, pp. 24-40.
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If we wish to simulate the statistical properties numerically,

we must use a finite difference scheme which approximately conserves

these quadratic quantities. Avoiding computational instability, in

the nonlinear sense, is necessary but not sufficient for this purpose.

Two examples of stable schemes which have a false energy cascade into

shorter waves will be shown later.

It should be noted that if we apply Equation (13) to a one dimen-

sional problem, the nonlinearity will be lost. Therefore, the tests of

a finite difference scheme for incompressible flow must be made with

multi-dimensional problems.

The finite difference approximation for Equation (13) may be

written, in a relatively general form, as

(20) I(jk - jk = AtJj k(* A*) ,

where C' = (Wvkq)n is a finite difference approximation of C = vo2 at

the grid point x = jAx, y = kAy, and t = nAt. Ax and Ay are the grid

intervals, and At is the time interval. w-k and Jjk are finite difference

approximations for the operators v2 and J at the grid point x = jAx, y = kAy.

Hereafter, the suffixes j, k will be omitted unless they are necessary.

There are a number of schemes corresponding to different choices of C *and

*. For example, * may be a linear combination of C and Cn+l, such as,

(21) * =½(C n +f +l)

which is an implicit scheme of the Crank-Nicolson type. Or (*may be a

provisional value of C, prediction by

(22) *= Spn + catJ*( ",n ) ,

where S and a are 1, as in the Matsuno scheme, or S is a smoothing operator

and a = ½, as in the two-step Lax-Wendroff scheme. Here J* is not

necessarily the same as J. Or *may be extrapolated from (C-1 and Cn,

as in the second order Adams-Bashforth scheme; that is,

(23) *= 3 _1 -
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The change of mean square vorticity is obtained from (20), as

(25) (+2 - (n)-- = &t( n + l +n )J (*, ,3,

where the bar denotes the average over all grid points in the domain

considered. Equation (25) can be rewritten as

(26) (+17)2 - (') = (C n"'f + n _- 2 C*)(n+1 ) +2At*JI (C*,*) .

To conserve mean square vorticity, we must properly choose C* and the

form of J in such a way that the right-hand side of Equation (26) vanishes.

The first term on the right vanishes if C* is chosen as (cn+l +Cn)/2.

The second term vanishes if the finite difference Jacobian, X, maintains

the integral constraint given by (17) on the differential Jacobian, J.

Similarly, it can be shown that a properly defined kinetic energy is

conserved if 9l* is chosen as (q9u+1 + 9" )/2 and J maintains the integral

constraint given by (18).

Consider the following three second order, finite difference

Jacobians:

11 = ACAxy~ - Axe A

(42) 6 = A,(YA.c) - A.(4iAY),

J. = A&AAy,) - A(y(Akq) ,

where Axf(x) denotes [f(x +d) - f(x-d)]/2d. Ay is defined similarly

with respect to y. It was shown by Arakawa*[ 1966 ] that the Jacobian,

J, given by

Jr= ai + a, 2 + + 3% ,

a + y + ,= 1 ,

conserves mean square vorticity if a = 3, and conserves energy if a = y.

Examples of Jbcobians which have the form of (43) are:

14 = (JL + ~2 ) ,

(44) J = 2(J2 + I3 )

J[; = (Jl + J) ,= -(.~ + 4) 1

7m; = ~,+ + J ) + ).

*A. Arakawa, 1966: Computational Design for Long-Term Numerical Inte-
gration of the Equations of Fluid Motion: Two Dimensional Incompressible Flow.
Part I. Journ. Computation Physics, Vol. 1, No. 1, pp. 119-143.
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17 is the Jacobian proposed by Arakawa [1966]. It conserves both

mean square vorticity and energy. & and IF6 conserve mean square

vorticity, but not energy. J3 and -4 conserve energy, but not mean

square vorticity. These five schemes are stable. 11 does not con-

serve either quantity, and an analysis similar to the analysis by

Phillips*C1959], but with the implicit scheme (21), shows that it is

unstable. 'E also does not conserve either quantity, but experience

with numerical tests shows that the instability is very weak, if it

exists at all. This is not surprising as 2 = 3J-7 - I'. Because 17 is

a quadratic-conserving scheme the time rates of change of the mean

quadratic quantities using Is, for given ( and 9, have the opposite

sign to the time rates of change of the mean quadratic quantities using

37 is the best second order scheme, because of its formal guarantee

for maintaining the integral constraints on the quadratic quantities. 1?

is also just as accurate as any other second order scheme. A further

increase of the accuracy can be obtained by going to higher order

schemes. The more accurate fourth order scheme, which has the same

integral constraints as 17 , was also given by Arakawa [19661

Numerical tests have been made with the above seven Jacobians.

In these tests, the initial condition was given by

(45) + = \ sin(ij/8)(cos(irk/8) + 0.1 cos(7rk/4)),

and At chosen such that { At/d2 = 0.7. The leapfrog scheme was

used instead of the implicit scheme. In order to eliminate the gradual

separation of the solutions at even and odd time steps, which occurs in

the leapfrog scheme, a two-level scheme was inserted once in every

240 time steps. The simplest 5-point Laplacian was used. Figures 7

*N. A. Phillips, 1959: An example of non-linear computational instability.
The Atmosphere and the Sea in Motion, Rockefeller Press, N.Y., pp. 501-504.
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and 8 show the mean square vorticity and the energy obtained with

the seven Jacobians. We observe the expected conservation properties,

although the implicit scheme was not used. The energy conserving

schemes, IJ and J4, show considerable increase of mean square vorticity.

Figure 9 shows the spectral distribution of kinetic energy, obtained

by the energy and mean square vorticity conserving scheme 17 and

by the energy conserving scheme J3, at the end of the calculations.

The small arrow shows the wave number for sin(ij/8) cos (rk/8), which
contained almost all of the energy at the initial time. Although the

total energy was approximately conserved with 13, there was a consider-

able spurious energy cascade into the high wave numbers; whereas with

17 more energy went into a lower wave number than into the higher

wave numbers, in agreement with the conservation of the average wave

number, as given by Equation (19).

Whether the increase of the mean square vorticity is important in

the simulation of large-scale atmospheric motion will depend on the

viscosity which is used with the complete equation. A relatively small

amount of viscosity may be sufficient to keep the mean square vorticity

quasi-constant in time. However, the viscosity will also remove energy;

and as a result the average wave number, defined by Equation (19), will

falsely increase with time.

On the other hand, the mean square vorticity conserving schemes,

2' and IT, approximately conserve energy, in spite of no formal

guarantee. This is reasonable, because the mean square vorticity is

more sensitive to shorter waves, for which the truncation errors are

large. Js approximately conserves both quantities, again in spite of

no formal guarantees. 5 , like I1 and 17, maintains the property of

the Jacobian, J(C,9) = - J(A,'). 7 conserves both quantities, with

only negligible errors arising from the leapfrog scheme.
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SPECTRAL DISTRIBUTION
OF KINETIC ENERGY

AFTER 2,400 STEPS

J 7

t (wave number) 2

J 3

(wave number) 2

F;g. 9
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3. The inertia term in the momentum equation for nondivergent flow.

Because we are not dealing with purely nondivergent motion, we cannot

use the scheme discussed in the last section directly as it stands. Moreover, we

are using the momentum equation and not the vorticity equation. But, the large-

scale atmospheric motions are indeed quasi-nondivergent. A scheme

which is inadequate for purely nondivergent motion is almost certainly also inadequate

for quasi-nondivergent motion.

Our approach, here, is to first construct a suitable finite difference analog

to the inertia term in the momentum equation for non divergent flow, and then to

generalize it to allow for divergence.

Let us begin with the finite difference nondivergent vorticity equation for

a square grid in which 7 of the last section is used. For vorticity, we use the form

1
J= (a + - 1,J , -qJI ) 

d d t+:tJd d i d I I

(V.1)

For the grid points shown in the accompanying figure, we define u, v,

6yu and 8xv by

- ,,J+1-9~ - i+,j - iJ
LU :+I_- d t Vi+1,-- a (V.2)

(6yU) iJ uI - :- +- u_ , (6,v) - v+.(V.3)
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Then the vorticity given by (V. 1) is

1: = ((6xv)1 J - (6, u)) . (V.1)'

The vorticity equation may be written as

t ((6Xv) 1 - (6, u)) = JiJ (6xv - 6u, y) . (V.4)

Here the symbol J is used for J7. Define 9 andqY by

i )I ,4 =ikl "1+l1j) I I )J+I 2

(V.5)
Consider lT ,J+(u, I ). From a property of the Jacobian, which is maintained

by J7,,

JIIJ+i(U 3) = +J+l(Ut Ud) , (V.6)

oiJ- u A ( 1) Ji (u,i - iud) . (V.6)'

Note that ('+ ud), +~= ( -aud)s,_ =1ip for arbitrry i,j. Then, from

(V.6) and (V.6)',

(6y Z(u ,))i~ - Ji ,,,+ (U,+ ) - Ji ,_~ (u, ')

= JJ(6y u, I) (V.7)
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Similarly,

(8X (v,X ),j = IJj(6xv,T) (V.7)'

(V.7) and (V.7)' are analogs, respectively, of

au
ay J(u,) = J(a, a)

a J(v,q) = J (,) .

From (V.7), (V.7)' and (V.1)',

(6xJ(v , ))1T - (6 (u5,))1 J =- J (6X v -6y u, )

=dT (C IT) · (V.8)

We conclude that

J(u, ) for - \V vu at the u-points

and J(v, T'l) for - \V vv at the v-points

are consistent with

R(CMy) for - \V v at the +p-points

For purely nondivergent flow, the pressure must satisfy the balance

equation, which is the divergence equation applied to nondivergent flow. The

most logical place to carry pressure is then at the x points in the above figure, where

the divergence is most simply defined. This configuration is also suitable when we

are treating pure, gravity waves, without (or with small) coriolis force. However,

we already know that this configuration, which corresponds to scheme C in section 1,

is not suitable for the geostrophic adjustment process by the dispersive gravity-inertia

waves when the radius of deformation is small.
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For the design of the general circulation model, we are using the

configuration which corresponds to scheme B. We therefore sacrifice exact

consistency with the finite difference vorticity equation. The reason that we

do this is that if the geostrophic adjustment does not operate properly, the

simulated flow will not be quasi-geostrophic, and, therefore, it will not

necessarily be quasi-nondivergent. In that case, there would be no point in

requiring an exact consistency with the nondivergent finite difference vorticity

equation.

The integral constraint on mean square vorticity is effective in pre-

venting a spurious energy cascade, because vorticity is a higher order derivative.

Because of this, a similar constraint on the inertia term, not necessarily equivalent

to the mean square vorticity conservation, should (and does) also prevent a spurious

energy cascade.

For the differential case, we have

uJ(u, A) = o. (V.9)

In addition, we have

aua J(u,)=0 , (V. 10)ay ay

because

y J(u, 9) = ;J , ) .(V.ll)ay ay
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Let 9 be carried by those points shown in the accompanying figure.

Define l by

= ( q'9,:~ 4i+9+1,J +qi,+l+9~+l,~+l) ' (V.12)

;,j .+,
U.r lU.Ir

Here the stream function 9 is defined by

U' + J+ 2d('+' J+1 +lj +1 ,j +i )
(V.13)

Vi,+ J 1 X(9+l+, + 1+1, -d ,,J+ - 9t )j

It can be shown that use of ]7 for Jt + + (u, ) maintinsthe

constraints given by (V.9) and (V.10). Similarly, use of J7 for , +I.(v,+I )

maintains the constraints given by

v J(v,9) = O (V.14)

aV a J(v,y) =0. (V.15)
ay ay

The scheme for -\V vu and \V vv, which will be given in the next chapter, reduces to this

Jacobian when the mass flux is nondivergent.
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VI. HORIZONTAL DIFFERENCING

1. The governing equations in orthogonal curvilinear coordinates.

Let the orthogonal curvilinear coordinates be t and r7. The general

circulation model uses the spherical coordinates, X = X (longitude) and /= =p

(latitude).

Let the actual distance corresponding to dt be (ds) . Put

(ds) = -dt . (VI. 1)

and

(ds)1 ddt * (V1.2)

Consider a rectangular area element in the £ -t plane.

The actual lengths of the sides are L and . The area is1 A 1 .
m n mn

Let the component of \V in t be u and the component of \V in T/ be v. The

divergence is

F6 t(u AI, (v )/(Q (V,.3)

where 68 and 8 are increments in t and /7 directions, respectively. In the limit

as Ar, A77- 0, (VI.3) becomes

mnr (n) + )- ' (V'.3)'

Similarly, the vorticity becomes

·rmna r:(~vi )- a a1(u~) (VI.4)
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The equation of continuity

In view of (VI.3), the equation of continuity (1.16) may be written as

a + a u a v a .ra
at mn ag n am m(V,5)

The equation of motion

The equation of motion (1.22) may be written as

a-+\V + + (f + ) &x\V+v(\V2+i) + avr = If, (Vl.6)

where - vx\V =mn[a (V) -
a? (U)] (Vl.7)

The .- component of (VI.6) is

au au + mn a V a u 
t [f mn(r a( n a(m))

+ m (tui + I va + ¢) + aa F . (VI.8)

Rearranging the terms,

au + mu au au au mn a a 1 ) Iatat+ - a'+ mvu v -5at a anv - n a7 mn 

+m [ + aa+ ua= F (Vl.9)

Similarly,

. + muv + nv + .mnv a 1 a at ag a7 8, K' 7 a + n +u ma h+ 

+ + aa: = F (VI.9)'7 77 77
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Combining (VI .5) and (VI.9), we obtain the flux form for u,

a (- + a u) + (a (-U) + L(

L mn at n a7 m_

+ L a aw -- F (VI. Io)n La ag mn (

Similarly,

a v)+a u a v)+aa a
a (-'v) + L("

'v
)

+ L ('mv a"a ( m' v)

+

mma n a?7 m aa mn

+ VIn a- m

+ n FL")+aaal = 2 F . (VI.11)
m al+ aj mn 7

From this point on, we will consider only those coordinate systems,

such as the spherical and the cylindrical coordinate systems, in which m and

n do not depend on t .

From (VI.10) we obtain the (relative) angular momentum equation

a l u ) + a nu u a v u)+ u
at mn m ag n m a' ( m m m a mn m

-mn mn _ -]+ n m +a (V1.12)mn m at mn at mnJ mn m

The first law of thermodynamics

(1.26) can be written as

a + a nu a (rv xa nt (m-CPT)n c CTT) + a ,'c n p T )+ P a cO)

i=raa ( t mr(; 
+ -

a (VI.13)
~ at mr T ma+ i mn
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2. The equation of continuity.

We use the same distribution of the variables over the grid points as

in scheme B of section I, chapter V.

The equation of continuity is

(w.l5) -m +-a u_)+ v a ( v = a(Vm.5) =0

1 _ 1

Wt (-mn = - -a co sm aa mn

For the spherical grid, =X, 1= = a cosp' and - a.
n

We use the following form:

artiJ k k k k

·t + F+#,J. - Ft__·J + GIj+1 - GI,· _

1 k+l 'k-1

Auk( -J S ) = O. (VI. 14)

where

mn F =- ru 42 
n m S=_TT , (V1.15)
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and the vertical index k now appears as a superscript.

For the mass fluxes F and G, the following forms are used:

F.Y~, = 1 J[(u +j +* + (VI .16)

where

(u ) +1+½ u,+,+( n )+' . (VI.17)

For the time being, ignore the superior bar operator, which is a linear smoothing

operator in /. The form and the role of this operator will be described in

Chapter VII, section 2.

Similarly,

GJ+ =[ + +(V A9i - +1(iJ +1iJ) W (VI. 18)

where

(v L) + i - V +J+1(m)-+1 (Vl 19)

3. The pressure gradient force.

As in (VI.10), the pressure gradient force in the c-direction is

n + a. a (V1.22)

For the first term, we choose the form:

(7rLp k_ 1 A I ~Ck kI

(n amo A _ A n 7 4 [(7r+1 +1 + - AJ+A( i +lJ+n Pi,n +1)

+("i+ ,1 r',,) (p, +1- .,i )]j. (Vl.23)

Continue, for the time being, to ignore the bar operator.
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Corresponding to the relation - a- _1 I a'- (,r) - o - a we

can rewrite (VI.23) as follows:

_ac k = A- 1

_ .. k . k k k

x [1+l, l+i+ t+ I+,+J+l(J+, . +l+ , i+)(+,s+-,+)

k .. k k .

+ r,,, +1,j - I i(1, + 4.J) (+1,J -) J.

To be consistent with (VI.24), we choose the following form for the second term

in (VI.22).

_ (naa ar) = _1 71 1

n aj ^At7 n +, 4

k- 

x .+,((JRa , a)>lJ. a+(wa)+l) ('l j +1 7,,

+ ((IrMa)+ 1 ,j + (r.a).,) (ir,+,, 7r.J)] , (V .25)

where

(na)1 = tj a (VI.26)

At each grid point we apply (111.16) to waa in (VI.25). Adding (VI.25)

to (V1.24), we obtain a form which corresponds to - 1 (( )- a'w)'

from which we can readily show that the integral properties, discussed in section 2,

chapter 11 and section 5, chapter 11, are maintained. The momentum generation

at the grid point i +~, j +- by the slope of the earth's surface in a-direction is

given by
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+(Iril +n,)Q , J Q:,) )_Is ) (Vl.27)

where 4,s = (gZs)" .

In summary, the pressure gradient force which contributes to

k
5E- fU),jjrj is

k k

+n(.tir+,l,+ 1+rI
+

)(s, +1 , I+, ,, ) +,

+ ((=a) + (a)) +)] (V.28)

8 k
Similarly, the pressure gradient force which contributes to at Ov) 3 +1,j+ is

m 4+_ +-" +1 +,= +lJ) +lj+l ,++, )

k k

(, +1 + .l1,) (IJ - 4i,j)

+ ((ica): +1 I+1+ () ,) ) (Vl .29)

+((iraa)k +(mwa)k )Qr - 7r )] .
,J+1 1, ,+ ij

RTk

From (VI.26), (raa -iak pk

T[- l However,T at the u,v-points has not yet been defined.mn
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4. Kinetic energy generation and the first law of thermodynamics.

The contribution of the pressure gradient force to the kinetic energy

generation, L .T u2, is obtained by multiplying (VI.28) by

uk + 1 . The contribution of the gradients of c4 and 7r at j to the kinetic

energy generation is

- (u
i i+J+

x fir+lt .1 ile i+ + -i+l 4 J + k(7r) )+ (i a 'T
~x [, +1 I,~ I+,, ,,, ,. (a,,)(ir,+ 1 -r,

(VI.30)

However, the gradients of c4 and ir inside the brackets of (VI.30) also contribute

a ~ k
to the kinetic energy generation u . The combined effect is

1r((1. A + (u

x[( i+ 1 +ir )('+i 3- 4) +((i a)1+i +(iwa), )(irr+ 1,ir 1f)]

(VI.31)

As already indicatedthe superior bar denotes a linear smoothing operator

in t. From the form of the operator, we can show that the difference of (V1.31) from

_4((u n + (u ' )

+ rJ+k ki+l 
~xl+ir x (,-~,,r>3( 14') )+ ((-ra 3,,a)1+(r),, , -)( ) (VI.32)

vanishes when the summation over all i is taken. In other words,

2 RI+ = 0, (VI. 33)
I
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where

(VI. 33)'

and E is the summation over all i.
i

we obtain

(VI.32) =

Using the definition of F given by (VI. 16),

Ik k k

- Ft+ i, (~i+l,s - 4u)

n- I +b+(u __4( n +j',+, n ) -
l~~itJ+i* 2+,:

) (ra) I + ( a) I) (r I+I J - T )) .

(Vl .34)

Further, we can show that

; (VI.34) = ] [(Fk+, - F,_~,
s

) kJ
i i +i id t

8 ((u ~)1'8 n i+JJ+j +(u A) )
ni+&,j- 2

(( a) +( a) )(i ,)
i +IJ iJ 

+(u AO)k )ua) + (waa)i
1 1-~IJ-ZiJ + (m~a1

i-1 J
(V. 35)

Similarly, the contribution of the gradients of ~ and r at i to at (Mfl va)

is given by

k k

-O s-_ ) cbJIc Ic

k

+ (waa )7 
8I 

,+&,~+&

+ (V )I+ vra/a) -I ( I -

2' ~~~~~~2 ~(VI.35)'
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Z (VI.35) + Z (VI.35)', with the equation of continuity (V1.14),
: i

k
gives the contribution of cPij to the kinetic energy generation,

aTT+J +k+, .k-1, k
[S atTk+ (Ss - t )j -( (Vl.36)

Further, following the process which led to (111.18), we obtain the finite difference

expression for wa. Using that expression, the thermodynamic energy equation

(111.40) may be written as
k k k k

a kJ Tk+i+icT +Tc Txtj +Ti :
I(Tl' jT I ) F_ +_ Fi - I_ _F_*Ft Tf 1 I 2 a 2

2~ 2 2

1~k k k: k

c ~clma,'I at

81~ ~~~T : +l +Tn ,: k Ti,! +Tsi i-

n - n eI )((' 2 2 -- 14 Gi_ld 2

+((~ +) a-t +(v )(o ' ek+l k , k +l (k- ) k X k --l_ }

+ak ~ si. (pi. ) e.f -s. (pTa) eJ. j

+((U +. J + k k

+(v m i-,J-B) (I( )riJ + (na)iJ-l)( i i-

+ Q i3 (VI.37)
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5. The water vapor equation.

The difficulty pointed out in sec. 4, Chap. IV exists even with horizontal

differencing. However, it is much less serious in the horizontal differencing so that

we might simply use
k k k k

k k qi+ + qJ qJ +qJ -1I,

at (Tqij ) + F,+.*b 2 -Ft, 2
k k k k

k qi J+1 +qiJ k qtJ +qi J-1

+ GJ+* 2 - G 1 ,- 2

1 -k+l k+l Sk-1 k-1 -

+ 7, q. - S. q1 ]

=TTI (- C + E) . (VI.38)

But the arithmetic means should be replaced by zero when there is mass flux out

of the grid point where q is already zero. Possibilities other than (VI.38) are being

tested (August 1971).

6. Momentum fluxes.

The form we chose for -a (Ir T k u) + A L (7ru n U) + rn (V U)
mn au) n iu m

+ a .fa AtAn u) is
+-(a mn
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at (u i+) J+ + 3+l j+l(Uk r + U k

Ik J+I + (i +1 + i+-1 J + 1l)

9i +1 j i 12 + 
k k UUk1 k

9i +1 + + u+ 1_ 2)}

1k 'k + -k k k

(V. 39)

i+lJ+1L 4u (+ 3 ,J+1 + + 3 + i ++ + r 

k k k k

+ 2) _ . + t

i+1 J+I2 1 = +1i+ J- Gi+i I+Gi a+ + i J1

I (U k+l k+2 k + (u) k-1 k k-2 -1

-i+? ,J+I =u(FU+,1 +l +i+_a, - s+ b.. (u,+ Gi+l J+1)

9i J+( 1 J+1 - F+l J+ 1 J + GI u+1 +G 1 J+a )

'&a k2 i 2'- 2' -V 2 .2

(VI.39)

.j++~,j+~

where

~:t +I +~ - +1 F~+ , +F, +½, +j + F+_~, J)

gx+½/+z-ll- (O + +G+z, J+½ +Gi :+F 
+

GI J+z)

; = F , ~ 
+ F + ++

O~+:~+.j. + G4+
t+1_)

~,:+1 = {(- Ft_-,I+I - F,+ z +I J+ GI ji)+GI j 

(Vi.40)
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(u)
We have not defined ZT yet. If we put u = const. both in space

and time, (VI.39) must become zero. Then we get

a (u) 2 k k k k

k k k k

+ -(I+,j+ - + gj+- g1 + 1 )

1 (U ) k+ C(U) k-1
+ - ( j+1 i) = o . (Vl.41)

We derived (VI.41) rather formally. We can show that (VI.41) is necessary

for maintaining the conservation of kinetic energy under a pure advective process.

From the definitions of 3, g, and g given by (VI.40), we can show that

(VI.41) automatically holds if we define

-T ,+ J,+: = (TI+1 J+1++ TT +1 I + T,J,) 
(VI .42)

.(U)

2 = a J.(SI+1~~~~ *7 5 (Vl.43)

For v, we can use the exactly same form.

7. Coriolis force.

See (VI.10). Coriolis force, plus the metric term which contributes to

a (fu) is
A fA/ - uA t an m J rv (Vl.44)If mn 
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and coriolis force which contributes to at (fr v) is

Tf - f u Ai m A77 ru (VI.45)

Of course, kinetic energy is not generated by the coriolis force. We must

maintain the relation (VI.44) x u + (VI.45) x v = O. We use the following form

for (VI.44) at the point (i +., i +&).

1 - k k+ 7r + C
8[(, +IIJ++1 )1 (C+1 J+1 + +1J )

k k k
7(.,t +,l, (C±, + C, )i (V1.46)

and similar form for (VI.45). Here

Cl fj (4 ~ ) - V 4 (U,+1 +U':-:~++ Ui ,1 l+
b

+ U,_I + 

X ((A_..) +!- ( m )~--~ ) (VI.47)
m

When C is constant in i, that is, when the metric term is either negligible

or constant in i, the zonal average of (VI.46) is equal to the zonal average of the

mass flux G, except a constant factor. This is desirable for avoiding spurious

conversion from 0-momentum to u-momentum.
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VII. MODIFICATION OF THE HORIZONTAL DIFFERENCING NEAR THE POLES

1. Modification of the equations.

The poles are singular points of the spherical coordinates and the

velocity components cannot be defined there. Therefore, we let the poles be

ir-points.

1r at the poles must change as a result of the meridional mass flux, G,

at all of the points on the latitude circle where the velocity components are

carried, as shown by the dotted line in the figure.

To simplify the computation, we treat each pole as if it were a group of

points. Each point has index i. At each i we apply the equation of continuity

(VI.14). After computing T. and 5, at all of the points, we take the average.

We apply the same procedure to the first law of thermodynamics. It

follows that those terms in (VI.37) which are not defined at the poles make no

contribution.

In the equation of motion, the momentum flux and coriolis force terms,

but not the pressure gradient term, must be modified for the points next to the poles.
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Let the north pole be j = p. We begin by modifying (VI.42). From

geometrical considerations, we let

(u)

Th+i.,P-1 = Tip+z, ++1,P-1 + IP-, ) I

.(u)

S.+i,p_, =Sp +

ntqss .

43 L, P-~~LW~-

L.

(S ,-i + S, P -1 ) ·
z I +1'mqs1sI

'ass : I. -

, Y-m gsS:4 , p_

2r ' { +1,P-_ (u+ P_1 + Uk p _ )T~ P. T~a' * 2

-i kp_ (Uk~g p 1+ Uk3~1P IUj 1 ,P- - P- II _f 1 z 

3{ P1 (U+ l + U IP -1 P- ) - i+ 1 P- (U±+1 P-li~~f T 2 .f 

kk+2 + Uk 1( -p 1 _ ( ) l p Uk)

(V11.3)

For energy conservation, we require

-79-

(VII. 1)

(VII .2)

_ *

a + i, p iu+,u B)+Tt (IT(Ui , I I -,

- 9i+._ +1 I _._IP IU +* I ps )

+ Ui +Vl-· f 3)1



VII-3

at [ 3 ( L 1iP i ,P- lt +P-* 9_11)

3 I ', -1 i +1t .P-1 ),

I ;:.)k+l_-. _:u+k- ') = 0
Aak (,i+iP I i+'I PP2 2 21 2"

(VII .4)

* is not yet defined, but everything else is known. Therefore (VII.4) determines

;;, except for a constant part. For the constant part, we choose
-' 1 -;

Hi P-. = 2IFpk * (VII.5)As for the coriois force, we let = -

As for the coriolis force, we let (2 = 0.

2. Averaging the pressure gradient force near the poles.

For the purposes of illustration, we consider a simple system of equations

which governs a one-dimensional shallow water wave:
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au ah (VII.6)
at + g a = o

ah + H au (VII.7)
at ax

where the symbols are defined in section 1, chapter V. Introduce the grid,

shown in the figure, which is.a one-dimensional version of schemes B and C

(section 1, chapter V).
h -, /L - ,'.

a- i ;- z i +

Schemes B and C reduce to

au + d
at + d (h)+l -0 (VII.8)

ah! H
at + d (u+1 - u = (V11.9)

Assume that
^ (i+½) d

ut+_ =Au e (VII. 10)

^ ikid

h =he , where i=/-T (VII.11)

Substituting (VII.10) and (V11.11) into (VII1.8) and (VII11.9), we obtain

kdsin kd
dut + k (k

9
gh = 0 (VII.12)

2

kddA Sin-
dh + ik )Hu = 0(V11.13)

Eliminating h, we obtain
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sin kd 2

dadt
2

k2c2 (kd u) (VII.14)
2

where

C2 = gH . (VII11. 15)

(VII. 14) is an oscillation equation, and the frequency d is given by

. kd 2
sin

= ka c2 ( 2) (V11. 16)

2

For most conditionally stable time difference schemes, the stability

criterion is given by

i At < E, (V11. 17)

or

IclAt kd
c sin kd< E/2 ,(V11.18)

where e is a constant. For the leapfrog scheme E = 1. sin kd has its maximum

value for kd = ir, or the wave length L = 2d. To make the scheme stable for all

waves, we require that

I clAt
-d < E/2 . (V11.19)

Therefore, the smaller the grid size, the smaller must be the value of At.

Because the meridians converge to the poles, the grid-size in the

E-direction becomes very much smaller than the average grid size over the

globe as a whole. As a result, an extremely small At must be used to assure

stability.
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We might be able to use different At for the different latitudes, but

that procedure would be very complicated. The usual approach is to decrease

the number of grid points on the latitude circle as the latitude approaches the

pole. However, it will be extremely difficult to design a space difference

scheme, for such a grid, which will have the integral constraint given by (V. 10).

Another procedure is to keep the regular spherical grid, but use a larger space

interval to compute the finite difference quotient; but this decouples each grid

point from its neighboring points and introduces spurious computational modes.

The method used in our model is to smooth the c-component of the

pressure gradient force and the divergence in the C-direction. Let the smoothing

operator modify the amplitude of the pressure gradient and the divergence by

the factor S(k). (VI1.12) and (VII. 13) are replaced by
s' kd

d+k n( )g S(k)h = 0, (VI.20)

2

dh + -ik ( kd )HS(k) u = 0 (V11.21)

2

The stability criterion (VII 1. 18) then takes the form

d sin (-2) S(k) < (V 1.22)

If we choose S(k) such that

kd dsin(";) S(k) • d-, (VII.23)
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where d* is a specified standard length, then

IClIAt kd I clAt
d sin(-kd) S(k) 5 I,

so that the criterion for stability becomes

IclAt
d* < 2; (VII1.24)

This criterion depends only on the specified standard length d*.

In the model, we let d*be equal to the latitudinal grid size ds z 

which is a constant. The longitudinal grid size is d(4) - . Then

S(j,k) = /sin( dj)) (VII 11.25)

when the right hand side of (V11.25) is less than 1. Otherwise S(d,k) = 1.

To do this, we expand the zonal pressure gradient and the zonal mass

flux into Fourier series and reduce the amplitude of each wave component by the

factor Sj,k). These are the bar operations shown in chapter VI. The smoothing

in the mass flux given by (VI.16) is chosen to maintain the energy conservation.

It should be noted that this smoothing operation does not smooth the fields

of the variables, because it is simply a generator of multiple point difference

quotients. For the example that is given above, the solution of (V11.20) and

(V11.21) is a neutral oscillation.
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VIIl. TIME DIFFERENCING

1. Shortcoming of space-centered schemes.

As was pointed out in section 2, chapter V, all space-centered schemes

appear to have some deficiency when the time change is in differential form.

This situation is not modified by any time differencing scheme, if the space-

centered differencing is used at each time level. Every space-centered difference

scheme introduces averaging in either the pressure gradient force or the coriolis

force, and this is the cause of the trouble.

To illustrate this difficulty in a most dramatic way, the following

experiments were done by Winninghoff and Arakawa. They integrated the two-

dimensional shallow water equation, keeping the coriolis force and the advection

terms but no physical dissipation terms, and using scheme B and different forms

of time differencing. They prescribed a point mass source and a point mass sink

which were 10 grid intervals apart. The figure on the next page shows the height

of the free surface, h (when the average value of 1 km is substracted), around

the sink point, for four schemes of time-differencing. All of the schemes, but

one (the TASU-Matsuno scheme), show a false checkerboard pattern of the free

surface height instead of the monotonic slope toward the sink.

In the case of stratified flow, heat sources and sinks will have the same

effect on the temperature field as the mass sources and sinks have on the free

surface height field in these experiments.
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2. The TASU scheme (time-alternating space-uncentered scheme.)

Consider the two-dimensional, shallow water equation. For each of

the directions, x and y, we use a one-sided space difference at one time level.

But to obtain an overall accuracy comparable to the centered difference, we use

the one-sided space difference at the opposite side at the next time level.

The TASU (time-alternating space-uncentered scheme):

At even time levels,

ex) J 3 d(u. +, - u-. ,U+1)

} upper-uncentered

th) , + , (hi+l,J+1- hi,,+,)

()e (V 1I + J 1, V+1 +1 J- 1 ) } right-uncentered

ah I
(gy-)IrJ+_1j+ - d-(hi+l - h+J)

At odd time levels,

axJ 1d 2 - 2 2

} lower-uncentered

ax ii +1' +1 d (i +I, J1 i,h J·(h, h1 , )

eV (V=; -a :1 +½ -v, - )
} left-uncentered

)+, +_,J+l j d (hI,j+, - hJ )
2 2 I 

(VIII. 1)

(VI11.2)

(V11 .3)

(VIII.4)
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L-Ij- Lji-I L+Ij-

If there is no advection and no coriolis force, that is, if we are dealing with

pure gravity waves, it can be shown that a simple use of the Euler scheme with

the above time alternation is stable for small At. With advection and coriolis

force, the simple Euler scheme becomes unstable, so that we have to combine

the above alternation with some other scheme.

A scheme which combined the TASU scheme with the Matsuno scheme

was tested for the example described in section 1. To explain the procedure,

we write the equations symbolically in the following form:

dA_
d-t f(A) (V111.5)

The leapfrog scheme is

At+ - A = f (An ) 
The regular Matsuno scheme is

A¢"+ 1)*- An
At = fc ( A n)

An+ - Au = A+)
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Here fc is a space-centered difference scheme for f.

The TASU-Matsuno scheme is

Tii
A(c+l )*_An

At = fC (Aln) EULER (F

An+1 -A n = fuk(A(n+l) Bac

A(+Q)* _An+1
At c

At = fDL(Atn2)) Bac

me

Forward)

kward

Foreward )

Space

centered

upper-right
uncentered

centered

kward lower-left
uncentered

The results obtained by these three procedures, as well as by a version of the

Lax-Wendroff scheme, were shown in the figure on page VIIIl-2.

3. Time differencing of the model.

The upper-flux in the t-direction is defined by

'k 2 2

(F+J)pper (u a-)I+1 j +1 (tt+1,J +t)'I ·

Similarly,

(F,+1 J)lower 2 _ u -- (U, *l, +J,j) ,

.:c )right ' -

k

(GII*½leff = ½(v A--
~
_ )2 lef I,\2I+

(VIII.5)

(VIII.6)

(VIII. 7)

(VII .8)
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Corresponding to (VI.28) and (VI.29), we also use the upper, lower, right and

left pressure gradients. Also, in the right hand side of (VI.37), only one of

the (u -.n) or (v Am) terms within each bracket is picked up, with 8 replaced

1
4' when we want the uncentered expression.

We must use uncentered expressions at the same side everywhere in

the system of equations at a given time: level. Otherwise, an instability may occur.

The actual time-marching procedure used in the model is primarily

the leapfrog scheme with a periodic use of the TASU-Matsuno scheme. At the

present time (December 1971), the TASU-Matsuno scheme is used every fifth time

step.
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IX. LARGE-SCALE PRECIPITATION, DRY AND MOIST CONVECTION

1. Large-scale precipitation.

k *k

Large-scale precipitation occurs when qJ - q j is the excess mixing

ratio; but not all of this excess condenses, because the temperature, and
*k

therefore q1 j , increases as a result of the condensation. A first guess of the

condensation is taken as,

qkJ q*k

CAt =
1 +-( L (a-~T-) (IX.1)

Cp Pk

Cht is subtracted from qk, and LCAt/cp is added to Tk . This process may be
iJ id

iterated for a better accuracy at the given step.

2. Dry convective adjustment.

k k+3
When 8j < 8 kj for any odd k (< K - 2), we assume that subgrid-scale

k k+2

dry convection occurs. We modify Tj and TUj in the following way:

k k+2

(AT)k = - (T ) Aa k+2 (IX.2)
k k;2

AT+ AT1iJ k+2 1J

861 + -) + k+3X (IX. 3)
(pU ~ (pUj r)

This temperature change at levels k and k + 2 may cause a new unstable lapse

rate at a neighboring interval. If it does, then the above adjustment is applied

to that unstable interval. This process is repeated until all of the intervals are

stable. In the three level model two steps are sufficient.
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3. Parameterization of cumulus convection.

Consider an ensemble of cumulus clouds. Here, the cloud is defined

as the saturated portion of the air. Let vi be the fractional area covered by the

i th cloud in a horizontal cross-section at level z. The total fractional area

0 d

O O
covered by all clouds is a = ] a, , where Z is the summation over all clouds

i i

in the unit area A.

As a basic continuity equation, we let

a
v (p\V)+ az (pw) = O , (IX.4)

where p is a function of z only.

The total vertical mass flux in the cloud ensemble is given by

M(z) S pwda. (IX.5)

We define the large-scale vertical mass flux by

t (z)= f pw da- pw · (IX.6)

M -t is the net downward mass flux in the environment. The schematic cloud

in the accompanying figure represents the ensemble of clouds.

->n.

D f ·rLs f__T__b M
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Define h by

h = cpT + gz + Lq , (IX.7)

where cpT, gz and Lq are, respectively, enthalpy, geopotential energy, and

latent heat. h is approximately conserved with respect to an air parcel, or

dh = (IX. 8)dt

Combining (IX.8) with (IX.4), we have

a' (ph) +v.(p\Vh) + 0. (pwh) IX .9)

We must consider entrainment and detrainment layers separately.

Inside the clouds, in an entrainment layer, and immediately outside of the

clouds, in a detrainment layer, we expect strong turbulent mixing. In the

entrainment layer, we integrate (IX.9) over an area slightly larger than the area

a,, at the boundary of which turbulent mixing may be ignored. Then we obtain

at (phii) -_ _( a+p )he +Z_ (M hi ) = 0 . (IX. 10)

where
h i h do , (IX.11)

M= apw, do . (IX.12)

Here, the vertical transport of h by the internal structure of the cloud is neglected.

aM,/az +pcala./t is the entrainment rate of environment air into the cloud, which

may not be steady.

In a detrainment layer, we integrate (IX.9) over an area slightly less than

the area a, at the boundary of which turbulent mixing may be ignored.
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Then we obtain

aat (P hr)_ (at) +p at + hi + (M1 h,)= O . (IX.13)

If we assume that the individual clouds are alike, then the summation

of (IX.10) over all clouds gives

a (P h c
a

) - (zM +p a ) he + z (MhC) = 0 (IX. 14)

where hc = hi. Similarly, from (IX.13),

a aM aa a
T(phca) ( + p-)h +z aZ(Mh) = . (IX.15)

Integration of (IX.9) over the environment gives

a aM ar a a
a-t (p ho(1 -a)) + (z + pa)(M h) = -v ( zwz vr(p\V h),

(IX. 16)

for the entrainment layer. Here \V is the large-scale horizontal velocity. For

the detrainment layer,

a (p h(-))+ -z
(IX.17)

We assume that a is much smaller than 1. Then we obtain the following

approximate equations;

for the entrainment layer:

from (IX.14), -a h + aZ(Mh) = , (IX.18)

from (IX.16), a ah a (pw- (IX19)
t(ph.) - M az (pwh V(p he) (IX.19)

*See the last paragraph of this section.

-94-



IX-5

for the detrainment lays

from (IX. 15),

from (IX. 17),

er:

A ah = 0az (IXx.20)

at (p C-h)aM a-Mh = .(p
(IX.21)

From the definitions, h = hC a + h (1 - a). Because we are assuming

that a << 1 (and hC ho), we approximate ho by h. Then,

for the entrainment layer:

8aM + a
-az + z (Mh c) = 0 ,

(IX.22)

for the detrainment layer:

M h= 0. (IX.23)az

In the environment no condensation occurs. Separating h into s and Lq, where

s -- cpT +gz, we obtain

for the entrainment layer:

at (ps) =M aS (pw s ) - (p \V s ) (IX.24)**

a ( )=M _q (pw ) _ a7(p V q (x.25)at az az

for the detrainment layer:

at (Pss (SC) -( s )a +M z s) -. (p Vs) (IX.26)**

~a - ah aM a (X2
a-(pq) = -(q-q) +M (pw q ) - (p V q ), (IX.27)Ft zZ az az

(IX.22-23) are diagnostic equations which determine hc as a function of height,

and (IX.24-27) are prognostic equations for the large-scale temperature and

*It is also assumed that there is no evaporation of liquid water in the environment.
See the last paragraph of this section.

**More exact equations are obtained by replacing s by the potential temperature, 9.
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water vapor fields.

Condensation in the clouds is given by water vapor inflow from the

environment, so that the environment water vapor loss, due to the flow induced by the

clouds, is the amount of condensation. From (IX.25) and (IX.27), this loss is

aM - aM
qxa.28)

[Mq cloud base q ] dz qc ] dz. (IX28)
e.l. d.l.

Finally, we express sc and qc by hc From the definition of h,

h c -h = s+Lq -(s+Lq ) .

Since q is saturated in the cloud and sc - s = cp(Tc - T ), we have

qc q ( T)P (TC T )

and

- 1 -*
SCs - (h ) (IX.29)

Then

qc -q 
=

L((h-h )1 (IX.30)

For the entrainment layer, the convective warming of the environmental

temperature (which is the large-scale temperature) is through M as This is also

approximately true for the detrainment layer, because sc-s is usually small there.

as
The warming effect through M az represents the adiabatic warming due to the

subsidence M in the environment, which compensates the upward mass flux M in

the clouds. (See the figure at the bottom of page IX-2.) It should be realized

that the heat of condensation released in the clouds is used for maintaining the
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excess temperature of the clouds against adiabatic cooling and entrainment of colder

and drier air, and, therefore, is used for maintaining M. The heat of conden-

sation is not directly used for warming the environmental air. (However, whether

net environmental subsidence exists or not depends on the sign of M -In.) The factor

t/ at a certain level in CISK models (for example, Ooyama *(1969)), may now be

interpreted as the ratio of M at that level to the large-scale upward mass flux at the

top of the boundary layer which is produced by the mass convergence below.

Our problem is to find M(z). If M(z) is somehow determined, we can find hC

from (IX.22) and (IX.23). Then we can find sc (and, therefore, Tc ) and qc from

(IX.29) and (IX.30). The condensation can be calculated from (IX.28). The temper-

ature and mixing ratio of the large-scale fields are predicted by (IX.24-27).

The above discussion indicates that relating the mass flux M(z) to the large-

scale fields must be, at least logically, the central core of a cumulus parameterization

scheme.

It is plausible to assume that cumulus convection adjusts the environment in

such a way that the energy supply from the environment to the cumulus convection is

eventually terminated and M(z) becomes identically zero, unless a counteracting

modification of the environment by large-scale processes exists. Here, radiation and

sensible and latent heat supply from the earth's surface are included in the large-scale

processes. When modification of the environment by large-scale processes exists, the

environment may gain energy in the form available for cumulus convection. We then

Ooyama, K., 1969: Numerical simulation of the life cycle of tropical cyclones.
Journ. Atm. Sci., 26, 1, pp. 3-40.
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consider a quasi-equilibrium of the cumulus ensemble in which the large-scale

processes, acting as forcing functions, are balanced by the convective adjustment.

M(z) can be determined when we assume this balance. The feasibility of a parameter-

ization of cumulus convection crucially depends on the existence and uniqueness of

such an equilibrium state. When M(z) is found, we can estimate the characteristic

1 aM _ 2acloud size in the entrainment layer provided that the relation M aM = r holds, at

least approximately.

Based on the considerations outlined above, A. Arakawa (1969)* proposed a

parameterization of cumulus convection for a three-level model. The current general

circulation model (December, 1971) uses essentially the same parameterization.

Recently, Arakawa (1971) **presented a new parameterization, which is physically

more realistic and is applicable to any number of levels. The assumption that all clouds

are alike is abandoned and, instead, a spectral distribution of cumulus convection is

considered. Evaporation of detrained liquid water in the environment and interactions

of the cumulus convection with the subcloud layer are taken into account. We are

in the process of testing this new parameterization in the general circulation model.

A. Arakawa, 1969: Parameterization of cumulus convection. Appendix I, Numerical
Simulation of the General Circulation of the Atmosphere. Proceedings of the WMO/
IUGG Symposium on Numerical Weather Prediction, Tokyo 1968, pp. IV-7 to IV-8-12.

**
A. Arakawa, 1971: A parameterization of cumulus convection and its application

to numerical simulation of the tropical general circulation. The Seventh Technical
Conference on Hurricanes and Tropical Meteorology, December 6-9, 1971, Barbadoes.
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X. SURFACE FLUXES AND PREDICTION OF GROUND CONDITIONS*

**
1. Surface friction.

The surface velocity, \Vs, is estimated by a linear extrapolation of \V,

with respect to a, from levels 3 and 5 to the surface, which is level 6.' The

surface stress is

s = - PC D I \VsI \V

When the' surface air temperature, Ts, is equal to the ground temperature Tg,

the "surface layer" is neutral, and then

over open ocean: CD = 0.001 x (1 + 0.7 | \V I ) 

with CD = 0.025 as the upper limit.

over land, ice or snow: CD = 0.002 + 0.006 x z5 /5000,

where zs is in meters. When the surface layer is not neutral, over all surfaces,

CD = (CD)neut. AT1 - 7.0 AT- for AT_=(T,,-Ts) < 0
,

CD = (CD) neut (1+ A for AT> O

where AT is in OC and I \Vs I is in m sec . When computing cD, AT is taken

as the average of the newly computed AT and AT at one time step earlier, in

order to avoid oscillations in time.

2. Surface sensible heat flux.**

The surface sensible heat flux is

Fs = P P CD I \Vs I (To - T ) 

*The formulations in this chapter were mainly done by Dr. Akira Katayama. A more
detailed description will be published as a technical report, Numerical Simulation of
Weather and Climate, Department of Meteorology, UCLA.

**See the footnote on the next page. .99_-99-
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To compute Ts, we assume that Fs is equal to the flux at the top of the surface

layer, which is taken as

- cppK((Ts -Ts ) T - Tscrt) / (Zs -Zs) -

2 -1We are currently using K = 10 m sec . We choose (T -Ts)crt
'

in the following

way:

(Ts Ts)crit = (Ts - Ts) dry adiabatic, when rs = 0
and

(T - Ts)rt = (s - Ts)moist adiabatic, when r = 1

Otherwise (Ts - Ts)crit is linearly interpolated between (Ts - Ts)d.a. and

(1T - Ts)m.a. with respect to rs , where rs is the surface relative humidity.

3. Evaporation.

For ocean, snow and ice, the evaporation is

ES = PCD I \Vs I (q*(T, ) - qs )

qs is determined in a way similar to determining Ts , but without (cq - qs) it

The evaporation from bare land is taken as

Es = E, P

where

ESP = P cD I \V I (q*(Tg) - qs)

*

=pcD I \Vs (Tg - Ts) + qs*- qs

is the potential evapotranspiration, and p is a coefficient which depends on

the wetness of the ground.

We are in the process of modification by introducing an explicit planetary
boundary layer following the line proposed by J. Deardorff, Mon. Weather
Rev., 100, (1972), pp. 93-106.
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We let w be the amount of water in the ground, per unit mass of ground,

which is available for evaporation, where w is its maximum possible value,

and we define the ground wetness by w' - w/wm . For relatively large w',

capillary forces are sufficient to carry the water to the surface for the potential

evapotranspiration, so that we let

o o0,5 1

3 =1 when w' > 0.5 ,

p= 2w' when w' < 0.5 .

However, when q* (T ) <qs, that is, when there is negative evaporation (dew

deposit), P = 1.

4. Prediction of ground conditions.

The table on the following page shows, by a check mark, those variables

which are predicted for the different types of ground condition.

Ground temperature

For sea ice, we assume a uniform thickness of 3 m, and calculate

the heat conduction through the ice from the ocean below. For the prescribed

permanent land ice and for the calculated snow over soil or ice, heat con-

duction from below is neglected. The heat capacity, C, is given by X,
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where X is the thermal conductivity, c is the heat capacity per unit volume,

and uw is the angular frequency of the diurnal change.

The prediction equation for T. is

aT5

C -t = SS- RS - FS - LES + QM 

where, at the ground surface, Ss is the net downward flux of solar radiation, Rs

is the net upward flux of long wave radiation, Fs is the upward flux of sensible

heat, LEs is the upward flux of latent heat, and QM is the heating (or cooling) due

to the freezing of water (or the melting of snow or ice). Rs , Fs and Es depend

on Ts. That part of Rs which is emitted by the ground depends on T, and is

proportional to T4.

We solve the prediction equation for T, by the backward implicit method.
n+l n

We do this by linearizing the equation with respect to the unknown, AT, Ts -T ,

where n is the index of the time level.

Snowfall, snow melting and ice melting

When Ts < 273.1°0 K, we let precipitation take place as snowfall

(or snow showers). The mass of snow over land or ice increases with snowfall

and decreases by evaporation and melting. Melting occurs when the predicted

temperature, without QM, is higher than 273.1 0 K. Then Ts is adjusted to 273. 1° K

by adding negative Q,, with a corresponding reduction in the amount of the

snow mass.
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Similarly, melting of the prescribed land and sea ice occurs,

with the adjustment of T. to 273.10K by adding negative QM; but the mass

of the ice, not being a time-dependent variable in the model,

never melts completely away.

Ground wetness P E

…. …F,

Fv
For bare land,

8tam =
P

-
E

-
F v -F FH

where

m is the total water in the surface soil layer (g cm- 2 )

P is the rate of rainfall (g cm 2sec )

E is the surface evaporation (g cm 2sec )

FV is the downward drainage of water through the lower boundary of the

surface soil layer which holds the available water

FH is the horizontal drainage of the available water in the soil, including

the runoff at the surface

Also, w = m/ph, where p is the bulk density of the soil and h is the thickness

of the layer which holds the available water.
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From the definition of the ground wetness,

w' w m 1
Wm WmPh

Then

aw' = P.- E - (FM+ Fv)
At wmph

The total drainage runoff, FH + Fv , depends on the rate of rainfall and the

wetness. The functional form currently used is

F. + Fv = (P3 + D3 ) _- D

where D is the water deficiency in the soil layer defined by

D (1l-w')wm ph

When w' = 1, all of the rainfall runs off. We are letting wm ph, the total

maximum available water in the ground, per unit horizontal area, be 10 gr cm 2

The ground wetness is also predicted for the soil under the snow. Both

rainfall, which penetrates the snow, and snow -melting contribute to an

increase of the available water stored beneath the snow.

The intersticial water in the soil may freeze, and become intersticial

ice, when T. <273.1°K. This type of ice is carried as a prognostic variable.

When T. becomes larger than 273. 1K, it melts. This freezing and melting also

affects the ground temperature.
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XI. RADIATION

1. Long-wave radiation.

Z --oo To

TZ

Z-- 0 7s

The net flux (upward positive) at the level z is given by

dB T dB dB
+ [T(u*-U*, T) d dT+ T (uz*-u*, T)FdT (Xl.1)

O T
z

where u * is the effective amount of radiating substance integrated from the

earth's surface to the reference level z, - is the mean transmission function, averaged

over the whole frequency range with the weight dnrBv/dt, rB, is the black body radiation

at frequency v, and 7rB - a T4 , the black body radiation integrated over the whole

frequency range.

A typical vertical profile of -r, as a function of a T4 , is shown in the

I.o
accompanying figure,

o ,r,4Tc ATr sIT&r?

The area below the curve is the integral (XI. 1).

The formulations in this chapter were done by Dr. Akira Katayama. A more detailed
description will be published as aTechnical Report, No. 6, Numerical Simulation of
Weather and Climate, Department of Meteorology, UCLA.
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The variation of 'r is mainly through u - uz or uz - u , for

temperatures higher than about 220 K (- Tc). For T >Tc , we can use a more

or less arbitrary average temperature T for Tr(u - u, T) or Tr(u - u T).

We may approximate (XI. 1) by

Rz =A + B + C

where the sub-areas A, B and C are given by

A = ~aTc T(u- uz Tc) T

* *
B .(aT c - a )T - Uz,

C = f t( I U -uz I T )d(aT4)

We choose T = 2600 K.- i is the mean transmission function, averaged over the

whole frequency range with the weight rB,.

A straightforward computation of the integral C requires very high

resolution near the reference level because of the sharp maximum of Tr.

The computation of flux in our general circulation model is done at

the even levels (0,2,4,6). Suppose we are computing the flux at level 4. For

the layer 0-2, we may use the simple trapezoidal rule. But for the layers 2-4

and 4-6, we need to take special care. We assume that the average of T

in the layer 2-4, for example, can be approximated by (1+m2 4 2 )/(1+m2 4 ).
.~~~~~~~~~~~~~2 2 . . .

2
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The optimum value for m was determined empirically. We found that we

can safely use a constant for each layer except for small regions such as high

mountains and for extreme situations such as very high or very low mixing ratio.

For the vertical spacing given in the figure, the constant optimum values for m are as

shown below.

of ot
.2 VL00

6 d /° t/ ooomb

A more general optimum value of m as a function of various parameters such as pressure,

temperature and mixing ratio is being tested.

For the transmission functions, the following empirical formulas are currently

used;

for H2 : -(u*, 260°K) 1 0.416
1+ 1.75u

(u*, 220 K) = * 0.408
1+ 3.0 u

for CO 2 : The effective amount of CO2 between the levels

p' and p (p' > p) is

uo¢(p ,p) = 127 p,2 . Poo = 1000 mb
2 ~Poo

(unit: cm-NTP)

rco(Uco ) = 0.930 - 0.066 log1 0 Uco2

In the 3 -level model, cloudiness is either one or zero. For large-

scale (non-convective) clouds, and T < - 40°C, we have the greyness factor a = 0.5.
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2. Solar radiation

Following the suggestion by Joseph* (1971), solar radiation is divided

into the

scattered part, SO = 0.651 SO cos ,

and the

absorbed part, SO = 0.349 So cos ,

where So is the solar constant and C is the zenith angle of the sun.

The absorptivity for the absorbed part is 0.271 (u*sec .)0.303

We define the function A(X) by

A(X) = 0.271X .

The albedo of the atmosphere due to Rayleigh scattering is

= 0.085 - 0.245 1og
1 0

( - cos)

where Ps is surface pressure in mb and Poo is 1000 mb.

For the albedo and absorptivity of clouds, the values used are those in

the table below, as given by C. D. Rodgers (1967).

Cloud Scattered part Absorbed part *
Type albedo (Ri') albedo (Ri) absorptivity ucI

(Al)

1 0.21 0.19 0.04 0.01

2 0.54 0.46 0.20 3.0

3 0.66 0.50 0.30 12.0

Joseph, J. H: On the calculation of solar radiation fluxes in the troposphere.
Solar Energy, Vol. 13, pp. 251-261.
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-r

0--

determined by solving the following equation
.- - Ri) o .A(*UA

A .S F1-A(uT)] = (1-Ri) So A(uCT +1.66 uC ) - A(UC T)

Assumed values of the surface albedo (as) are

bare land ... 0.14 sea ... 0.07 snow ... 0.7 ice ... 0.4.

The albedo of multi-layer clouds is determined as follows:

i) 2 layers of cloud:

Let the albedos of the two clouds be RI and R.. We need to consider

the multiple reflection between the two cloud layers. The total transmisivity, T1 2,

,, ,,l
is the sum of T 2 T1 , .. . . ... ; where

T- = (1 - R)(1 - R)

T, -(1 R.1 )(1 - Rs) R, .Ra

P 2

Tl = (1 - R,)(1 - R2 RI R2

and
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R: 1 - T1 2

= Ta I
+ Tl 

I
+ Tl

I II
+

= (1 - R )(1 - R) [1 + R R+ (R R ) + . . ]

- (1 -R)(1 -R')/(1 -RR2 ) 

(R. + Rg - 2R1 Ra )/(1 - R.R ) .

( -R,)(/-R 2 )

T-r T,

T,2
ii) 3 layers of cloud:

Let the albedos of the three clouds be R1 , R2 and R3 . The total albedo

of the 3 layers of cloud can be estimated as if they were 2 cloud layers for which the

albedos are RI2 and R3 . Then

Ri, 3 = 1 - T1 2 3

(1 - R1 2 )(1 - R3 )
=1 - i -1 R12 R3

I -1(1 -R-)(I - R,)(1 -R3)
1 - (IR''+ Ra R3 + R3R1 ) + 2RzR2R3 '
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Clear sky

For the absorbed part of the solar radiation, the downward fluxes,

S,a' at the level i are

a

So = S [ - A((uT - ) sec )] ,

a

Sa. = So [1 - A((UT - U ) secC ) ,

a

Sa4 = So E1 -A((uT- u4 ) sec t) ]

S e = So [ 1 -A(uT sec )] . '

S A °I

is

I I

6 ,aL6. I I I

Then, the absorption of solar radiation in the layer between i-I and i +1, AS1 ,

becomes:

AS, = Sa - Sa2 I

AS3 = Sa2 - Sa4

ASS = _ S&4 - Sa 

The absorption, by the earth's surface, of solar radiation reaching the surface is

absorbed part: Sa6

scattered part: So (1 - a o)/( - a as) ,

where the denominator is the correction factor due to the multiple-scattering
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between the atmosphere and the earth's surface. The total solar radiation

absorbed by the earth's surface is

S6 = (1- a)rSS a + So s

Cloudy sky

The general form for the optical length of the layer between the top of

the atmosphere and level i, with the cloud layers, DT I, is

DTO (uT - Uo) sec ,

DTa = DTO + (1 - CL1 )(Uo - u ) sec j + 1.66'CL 1 uc l ,

DT4 = DT2 + (1 - CL1 )(1 - CL )'(u2 - u 4 ) sec '

+ 1.66 [CL 'uC2 + CL1(1 -CL2 )(u - u)] I

DT6 = DT4 +(1 -CL3 ) U4 (1 - CL1 )(1 -CL2 ) sec '

+ [(1 - CL1 ).CL2 +(1 - CL.).CL1 1.66 ]

+ CL (t + uc3) 1.66

\\ I " Se )
I

I I I II /-6 I IT//-
S6 S06 S"6
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The downward solar radiation in the absorbed part, at level i

(i = 0,2,4,6), can be expressed as

a
Sao = So [1 - A(DTO)] ,

Sa = So (1 - CR1 )E [ 1 - A(DT 2 )J ]

S,4 = S o (1 - CR, )(1 - CR, ) [1 - A(DT4 ) ] ,

a
Sa = So (1 -CRy)(1-CR)( - CR3 ) [1 - A(DT6)]I,

where CRs = CLI Rt , and i = 1,2 and 3. Then, the absorptions in the

atmospheric layers with clouds are

AS1 = (1 - CR ) Sa S

AS3 = (1 - CRy) Sao - Sa4

AS5 = (1 -CR3 ) Sa4 - SOa

In the absorbed part, some of the solar radiation, which is reflected

at the tops of cloud 2 and cloud 3 (R3 Sa2 and R3 Sa4 ), can reach the earth's

surface, in addition to Sa,I after multiple reflections between the three layers of

cloud. If these amounts are defined by Sae and S."., which refer to R2 Sa and

R3 Sa4, respectively, they can be formulated as follows:

RI(l - R9 3 )

S'e = Sal R 1 -R 1.Ra3 '

Rl¢(l - R3)
Sal' = Sa4 RR 1 R2 R3)

I - R12 R
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The above expressions are applied when all three layers have complete cloud

coverage. To obtain more general formulae, the cloudiness must be taken into

consideration. That can easily be done by using CRI and CR, in place of R1 and

Ri , respectively. Then, the solar radiation in the absorbed part which reaches

the earth's surface becomes

CR· CR (1 -CR(3) CR3 CR1 (1 - CR3 ) 1
SaS, [SI, + S,, 1 - CR 1 . CR,3 - Sa, 1 -CR,. CR3 ] 1-as CR 1, 3

CRI 1 = (CRy + CR -2CR I CR,)/(1 -CRy.CRy) .

In the scattered part, the total albedo of the clouds can be expressed

by replacing Rs by RI. As a more general formula, we use CR' instead of R .

CRI = CLI *RI (i = 1,2,3),

where R, is the albedo of cloud i for the scattered part. Then

CR 1 - 1 (1 - CR)(1 -CR')(1 - CR3)
CRz,3 : - 1 - (CRy..CR ' +CR;.CRA + CR.CR~) + 2CR1 .CRa 'CR3

M
2 - M - (CR1 + CR; + CR

'

) + CR1 
.

C R. 'CR3,

where

M = (1 -CRy)(1 -CR;)(1- CR3) .

We assume that the total albedo of the atmosphere with clouds for the

scattered part is

a c = 1 - (1 - CRI2 3 )(1 - c) 
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The scattered part which reaches the earth's surface is

1 -ac s

Sss =
M 1 - a 'as o·

Finally, the total solar radiation at the earth's surface becomes

Sa + Sss. Therefore, the absorption at the earth's surface is

S6 = (1 - as )(SS + SsS)

=(1 -a) FS6 + CR1CR2 (1 - CR2 3 ) CR3 .CR 1 (1 -CR3 )_
I 1 - asCR, {- .1 - CR. <CR,2 3s 1 - CR .CR1 2

1 - as

+1 - acas S O '

-116-


