Julas AD. 759562

COINCIDENCE DEGREE AND PERIODIC SOLUTIONS OF NEUTRAL EQUATIONS

ру

Jack K. Hale

Division of Applied Mathematics Brown University Providence, Rhode Island 02912

and

J. Mawhin⁺⁺

Université Catholique de Louvain Institut Mathématique B-1348 Louvain-la-Neuve, Belgium MAY 1973

RECEIVED

NASA STI FACILITY

INPUT BRANCH

INPUT BRANCH

N73-22556

(NASA-CR-131887) COINCIDENCE DEGREE AND PERIODIC SOLUTIONS OF NEUTRAL EQUATIONS (Brown Univ.) 22 p HC \$3.25 CSCL 12A

Unclas G3/19 . 17.642 .

^{*}Research supported in part by the Air Force Office of Scientific Research under AF-AFOSR 71-2078, in part by the National Aeronautics and Space Administration under NGL 40-002-015 and in part by the Army Research Office under DA-ARO-D-31-124-71-G1282.

⁺⁺ Work realized in part when the co-author was visiting the Division of Applied Mathematics of Brown University.

1. Introduction

solutions for some nonautonomous neutral functional differential equations. It is essentially an application of a basic theorem on the Fredholm alternative for periodic solutions of some linear neutral equations recently obtained by one of the authors [2] and of a generalized Leray-Schauder theory developed by the second one [3, 4]. Although their proofs are surprisingly simple, the obtained results are nontrivial extensions to the neutral case of a number of recent existence theorems for periodic solutions of functional differential equations. In particular, section 3 generalizes some existence criteria due to one of the authors [5] and a corresponding recent extension by J. Cronin [6], the example following Theorem 4.1 improves a condition for existence given by Lopes [14] for the equation of a transmission line problem, and Theorem 5.1 generalizes a result due to R. E. Fennell [7]. Lastly, criteria analogous to Theorem 5.2 for the retarded case can be found in [8]. For partly related results concerning periodic solutions of neutral functional differential equations, see [9].

This paper is devoted to the problem of existence of periodic

2. Fredholm Alternative for Linear Equations

Let $C([a,b],\mathbb{R}^n)$ be the space of continuous functions from [a,b] into \mathbb{R}^n with the topology of uniform convergence. For a fixed $r \geq 0$, let $C = C([-r,0],\mathbb{R}^n)$ with norm $|\phi| = \sup_{-r < \theta < 0} |\phi(\theta)|$

for $\varphi \in C$. If $x \in C([\sigma - r, \sigma + \delta], \mathbb{R}^n)$ for some $\delta > 0$, let $x_t \in C$, $t \in [\sigma, \sigma + \delta]$ be defined by $x_t(\theta) = x(t + \theta)$, $\theta \in [-r, 0]$. Suppose $\omega > 0$ fixed, A: $\mathbb{R} \times C \to \mathbb{R}^n$ is continuous, $A(t + \omega) \varphi = A(t) \varphi$ for all $(t, \varphi) \in \mathbb{R} \times C$, $A(t) \varphi$ is linear in φ and there exists a continuous function $\gamma: [0, \infty) \to \mathbb{R}$, $\gamma(0) = 0$, such that

$$|A(t)\phi^{S}| \le \gamma(s)|\phi^{S}|, \quad 0 \le s \le r$$

for all $t \in \mathbb{R}$ and all functions $\phi_s^S \in C$ such that $\phi_s^S(\theta) = 0$ for $\theta \in [-r,-s]$. Let $D: \mathbb{R} \times C \to \mathbb{R}^n$ be defined by $D(t)\phi = \phi(0) - A(t)\phi$. The operator D is said to be <u>stable</u> if the zero solution of the functional equation $D(t)y_t = 0$ is uniformly asymptotically stable; that is, there are constants K, $\alpha > 0$ such that if $y(\phi)$ is the solution of $D(t)y_t = 0$ with $y_0 = \phi$, then

$$|y_t(\varphi)| \le Ke^{-\alpha t} |\varphi|, \quad t \ge 0, \quad \varphi \in C.$$
 (2.1)

Let $\mathscr{G}_{\omega} = \{x \in C(\mathbb{R},\mathbb{R}^n) : x(t+\omega) = x(t), t \in \mathbb{R}\},\$ $\mathscr{U}_{\omega} = \{H \in C(\mathbb{R},\mathbb{R}^n) : H(0) = 0 \text{ and } H(t) = \alpha t + h(t) \text{ for some}$ $\alpha \in \mathbb{R}^n, h \in \mathscr{G}_{\omega}\}. \text{ For any } h \in \mathscr{G}_{\omega}, \text{ let } |h| = \sup_{0 \le t \le \omega} |h(t)| \text{ and for any } H \in \mathscr{U}_{\omega}, H(t) = \alpha t + h(t), \alpha \in \mathbb{R}^n, h \in \mathscr{G}_{\omega}, \text{ let } |H| = |\alpha| + |h|.$

Proposition 2.1. If D is stable, then, for any $c \in \mathbb{R}^n$, there is a unique solution Mc of the equation $D(t)x_t = c$ in \mathscr{G}_{ω} .

Furthermore, M is a continuous linear operator from \mathbb{R}^n to \mathscr{G}_{ω} .

<u>Proof:</u> Following the proof of Lemma 3.4 in [10], there are constants b>0, a>0 and an appropriate equivalent norm in C such that the solution $x(\phi,c)$ of $D(t)x_t=c$, $x_0=\phi$, satisfies $|x_t(\phi,c)|\leq |c|b+|\phi|\exp(-at)$, $t\geq 0$, $\phi\in C$, $c\in \mathbb{R}^n$. If $T\phi=x_\omega(\phi,c)$, then T is a contraction mapping. Thus, if d>0 is sufficiently large that $|c|b+d\exp(-a\omega)< d$, then T has a unique fixed point such that $|\phi|< d$. Consequently, there is a solution of the equation in \mathscr{S}_ω . The fact that D is stable implies the uniqueness, linearity and continuous dependence on c.

Let us rephrase Proposition 2.1 in a different way. Let L: $\mathscr{P}_{\omega} \to \mathscr{U}_{\omega}$ be the continuous linear mapping defined by

'
$$Lx(t) = D(t)x_{+} - D(0)x_{0}$$
, $t \in \mathbb{R}$.

Proposition 2.1 implies that

$$\ker L = \{x \in \mathscr{S}_{\omega} : \exists c \in \mathbb{R}^n \text{ with } x = Mc\}$$

is an n-dimensional subspace of \mathscr{S}_{ω} . Let P: $\mathscr{S}_{\omega} \to \mathscr{S}_{\omega}$ be a continuous projection onto ker L.

For the statement of the next proposition, let Q: $\mathscr{U}_{\varpi} \to \mathscr{U}_{\varpi}$ be the continuous projection defined by

$$QH(t) = \omega^{-1}H(\omega)t$$
, $t \in \mathbb{R}$.

Proposition 2.2. If D is stable, then Im L = ker Q and there

is a continuous linear operator K: Im L → ker P such that K is

a right inverse of L. Thus, L is a Fredholm operator with index O.

Proof: The second proof given in [2] of the Fredholm alternative holds equally well for the equation $D(t)x_t = H(t)$. Thus, from [2], dim ker L = codim Im L. Proposition 2.1 implies dim ker L = n. For the equation Lx = H to have a solution, it is clearly necessary that $H \in \ker Q$. Since codim ker Q = n, it follows that $Im L = \ker Q$. The existence of the bounded right inverse follows from [2] or one may apply the closed graph theorem to $L|(I-P) \mathcal{P}_{Q}$.

For the applications, it is necessary to be able to compute ker L. In some simple cases, this is easily accomplished. For example, if $a(t) = a(t+\omega)$, $t \in \mathbb{R}$, is an $n \times n$ matrix with $|a(t)| \leq k < 1$ for $t \in \mathbb{R}$, then the unique solution Mc in $\mathscr{S}_{(1)}$ of

$$x(t) - a(t)x(t-r) = c$$
 (2.2)

is given by

(Mc)(t) =
$$\left[I + \sum_{k=0}^{\infty} \prod_{j=0}^{k} a(t-jr) \right] c.$$
 (2.3)

Another case particularly interesting in the applications is when $D(t)\phi$ is independent of t. Then ker $L=\{\text{constant functions in }\mathcal{P}_0\}$.

3. Existence Theorems for Nonlinear Equations

With the above notations, let us consider the neutral functional differential equation

$$\frac{d}{dt} D(t) x_t = f(t, x_t)$$
 (3.1)

where D is stable and f: $\mathbb{R} \times \mathbb{C} \to \mathbb{R}^n$ is ω -periodic with respect to t, continuous and takes bounded sets into bounded sets. If we define N: $\mathscr{G}_{\omega} \to \mathscr{U}_{\omega}$ by

$$Nx(t) = \int_{0}^{t} f(s,x_s)ds$$
, $t \in \mathbb{R}$,

it is clear that finding ω -periodic solutions of (3.1) is equivalent to solving the operator equation Lx = Nx in \mathcal{S}_{ω} with L defined in (2.7). To apply coincidence degree theory to this problem still requires that N should be compact, i.e. continuous and taking bounded sets of \mathcal{S}_{ω} into relatively compact sets of \mathcal{S}_{ω} .

Proposition 3.1. Under the conditions listed above, N is compact.

<u>Proof:</u> The continuity is obvious. If S>0 and $x\in\mathscr{S}_{\omega}$ is such that $|x|\leq S$, then $|x_t|\leq S$ for every $t\in S$ and thus $|f(s,x_S)|\leq T$ for some T>0 and every $s\in \mathbb{R}$. It then follows easily that

$$|Nx(t)| \leq T(1+2\omega), t \in \mathbb{R}$$

and

$$|Nx(t_1) - Nx(t_2)| \le T|t_1 - t_2|, t_1, t_2 \in \mathbb{R}$$

and Proposition 3.1 is a consequence of the Arzela-Ascoli theorem.

A direct application of Propositions 2.2, 3.1 above and of Theorem 5.1(i) of [3] gives the following

Theorem 3.1. If there exists an open bounded set $\Omega \subset \mathscr{S}_{\omega}$ whose boundary $\partial\Omega$ contains no ω -periodic solution of (3.1) and if the \mathcal{L}_{+} -coincidence degree d[(L,N), Ω] is not zero, then equation (3.1) has at least one ω -periodic solution in Ω .

This result is quite general but requires the solution of two difficult problems, namely, finding Ω (it is an a priori bound problem) and estimating $d[(L,N),\Omega]$. Theorem 7.2 of [3] reduces this last question to the study of Brouwer degree of some well-defined finite-dimensional mapping if the a priori estimate condition is slightly strengthened. Let $g: \mathbb{R} \times \mathbb{C} \times [0,1] \to \mathbb{R}^n$, $(t,\phi,\lambda) \to g(t,\phi,\lambda)$ be ω -periodic with respect to t, continuous, taking bounded sets into bounded sets and such that

$$g(t,\varphi,1) \equiv f(t,\varphi), (t,\varphi) \in \mathbb{R} \times \mathbb{C}.$$
 (3.2)

Let M: $\mathbb{R}^n \to \mathscr{G}_\omega$ be the mapping defined in Proposition 2.1 and define $\mathscr{G}\colon \mathbb{R}^n \to \mathbb{R}^n$ by

$$\mathscr{G}(a) = \omega^{-1} \int_{0}^{\omega} g(t, (Ma)_{t}, 0) dt.$$

If $D(t)\phi$ is independent of t, one can put M=I, the identity in this definition. Theorem 7.2 of [3] implies the following

Theorem 3.2. Suppose there exists an open bounded set $\Omega \subset \mathscr{S}_{\omega}$ for which the following conditions are satisfied.

1. For each $\lambda \in (0,1)$, the equation

$$\frac{d}{dt} D(t) x_t = \lambda g(t, x_t, \lambda)$$

has no ω -periodic solution on $\partial\Omega$.

- 2. $\mathscr{G}(a) \neq 0$ for every $a \in \mathbb{R}^n$ such that Ma belongs to $\partial \Omega$.
- 3. The Brouwer degree $d_B[\mathcal{G}, \widetilde{\Omega}, 0]$ is not zero, where $\widetilde{\Omega} = \{a \in \mathbb{R}^n : Ma \text{ belongs to } \Omega\}$.

Then equation (3.1) has at least one ω -periodic solution in Ω .

Another useful special case of Theorem 3.1 follows at once from Theorem 7.3 of [3]. Suppose that the mapping g defined above verifies (3.2) and the supplementary condition

$$g(t, -\phi, 0) = -g(t, \phi, 0), (t, \phi) \in \mathbb{R} \times C.$$
 (3.3)

Theorem 3.3. Suppose there exists an open bounded set $\Omega \subset \mathscr{S}_{\omega}$ symmetric with respect to the origin, containing it and such that $\partial\Omega$ contains no ω -periodic solution of each equation

$$\frac{d}{dt} D(t)x_t = g(t,x_t,\lambda), \lambda \in [0,1]$$

with g verifying (3.2) and (3.3). Then equation (3.1) has at least one ω -periodic solution in Ω .

Let us note that (3.3) will always be satisfied if $g(t,\phi,0)$ is linear with respect to ϕ . Also, Theorems 3.1, 3.2 and 3.3 are respective generalizations of Theorems 2, 3 and 4 of [5] which all correspond to the case of retarded functional differential equations, i.e. $D\phi = \phi(0)$, and Ω an open ball. Also, an extension to the neutral case of Theorem 1 of [6] is easily obtained by a suitable choice of Ω and the properties of coincidence degree.

4. An Application

Let us consider the neutral equation

$$\frac{d}{dt} \cdot \left[x(t) - \sum_{k=1}^{N} A_k x(t - \tau_k) \right] = \operatorname{grad} V[x(t)] + e(t)$$
 (4.1)

where, V: $\mathbb{R}^n \to \mathbb{R}$ is of class \mathscr{L}^1 , $e \in \mathscr{S}_\omega$, $\tau_k \in [-r,0)$ $(k=1,2,\ldots,N)$ and the $n \times n$ constant matrices A_k are such that

$$\sum_{k=1}^{N} |A_k| = 1 - \alpha, \quad \alpha > 0.$$
 (4.2)

Let e be the mean value of e.

Theorem 4.1. If there exists R > 0 such that $e + \omega^{-1} \int_{0}^{\omega} \operatorname{grad} V[x(t)] dt \neq 0$ for every $x \in \mathscr{S}_{\omega}$ satisfying $\inf |x(t)| \geq R$ and if the Brouwer degree $d_B[e + \operatorname{grad} V, B(0,R),0]$ teR is not zero, then equation (4.1) has at least one ω -periodic solution.

<u>Proof:</u> Let $|\cdot|$ and $\langle \cdot, \cdot \rangle$ respectively denote the Euclidean norm and the inner product in \mathbb{R}^n . It is well known [10] that condition (4.2) implies that the operator D: $\phi \to \phi(0) - \sum\limits_{k=1}^N A_k \phi(-\tau_k)$ is stable and the right hand side of (4.1) clearly takes bounded sets into bounded sets. Let us consider the family of equations

$$\frac{d}{dt}\left[x(t) - \sum_{k=1}^{N} A_k x(t-\tau_k)\right] = \lambda \operatorname{grad} V[x(t)] + \lambda e(t),$$

$$\lambda \in (0,1).$$
(4.3)

If x is any ω -periodic solution of (4.3) for some $\lambda \in (0,1)$ then

x(t) must have a continuous first derivative (see [14]) and

$$\omega^{-1} \int_{0}^{\omega} \langle \dot{x}(t) - \sum_{k=1}^{N} a_{k} \dot{x}(t-\tau_{k}), \dot{x}(t) \rangle dt =$$

$$= \lambda \omega^{-1} \int_{0}^{\omega} \langle \operatorname{grad} V[x(t)], \dot{x}(t) \rangle dt + \lambda \omega^{-1} \int_{0}^{\omega} \langle e(t), \dot{x}(t) \rangle dt,$$

which implies, using Schwarz inequality and (4.2),

$$\left(\omega^{-1}\int_{0}^{\omega}|\dot{x}(t)|^{2}dt\right)^{1/2}\leq\alpha^{-1}\eta$$

with $\eta^2 = \omega^{-1} \int_0^{\omega} |e(t)|^2 dt$. Then, for every t, t' $\in [0, \omega]$, we have

$$|x(t) - x(t')| \leq \alpha \alpha^{-1} \eta. \tag{4.4}$$

On the other hand, every ω -periodic solution of (4.3) verifies the equation

$$\frac{1}{e} + \omega^{-1} \int_{0}^{\omega} \operatorname{grad} V[x(t)]dt = 0$$

and hence there must exist some $\sigma \in [0, \omega]$ for which $|x(\sigma)| < R$. Taking t' = σ in (4.4) we obtain

$$|\mathbf{x}| < \mathbf{R} + \omega \alpha^{-1} \eta = \mathbf{S}$$

for every ω -periodic solution of (4.3). The result then follows

from Theorem 3.2 by taking for Ω the open ball of center 0 and radius S in \mathscr{S}_{Ω} .

As an application of Theorem 4.1, let us consider the special case of a scalar equation with one delay,

$$\frac{d}{dt}[x(t) + ax(t-r)] = p(x) + e(t)$$

where |a| < 1, $e \in \mathscr{S}_{\omega}$ and p(x) is a given function of x. This equation arises in a transmission line problem with a shunt across the line (see [13], [14]). Then, if p is any continuous function such that $|p(x)| \to \infty$ if $|x| \to \infty$ and p(x)p(-x) < 0 for all x with |x| sufficiently large, there will exist one ω -periodic solution. Using Liapunov functions, Lopes [14] has obtained the existence of an ω -periodic solution of this special equation for |a| < 1/2 and $xp(x) \to +\infty$ as $|x| \to \infty$.

5. Neutral Functional Differential Equations with Quasibounded Nonlinearities.

We shall consider in this section $\omega\text{-periodic}$ equations of the form

$$\frac{d}{dt} D(t)x_t = b(t, x_t) + f(t, x_t)$$
 (5.1)

where D satisfies the conditions in section 2, b: $\mathbb{R} \times \mathbb{C} \to \mathbb{R}^n$, $(t,\phi) \to b(t,\phi)$ is linear with respect to ϕ and continuous,

f: $\mathbb{R} \times \mathbb{C} \to \mathbb{R}^n$ is continuous, takes bounded sets into bounded sets and is such that

$$\lim_{\|\phi\| \to \infty} \sup_{\phi \in \mathbb{R}} (|\phi|^{-1}|f(t,\phi)|) = \inf_{\phi \in \mathbb{R}} (\sup_{\phi \in \mathbb{R}} |\phi|^{-1}|f(t,\phi)|) = 0 (5.2)$$

uniformly in $t \in \mathbb{R}$.

Let us recall that a mapping $F: X \to Y$ between normed spaces is <u>quasi-bounded</u> if the number $F: X \to Y$ between normed spaces is <u>quasi-bounded</u> if the number $F: X \to Y$ between normed spaces is <u>quasi-bounded</u> $F: X \to Y$ between normed spaces is <u>quasi-bounded</u> $F: X \to Y$ between normed spaces is <u>quasi-bounded</u> $F: X \to Y$ between normed spaces is $F: X \to Y$ between normed spaces is $F: X \to Y$ between normed spaces is $F: X \to Y$ between normed spaces.

Proposition 5.1. If f satisfies the conditions above, then the mapping N: $\mathscr{G}_{\omega} \to \mathscr{U}_{\omega}$ defined by $Nx(t) = \int\limits_{0}^{t} f(s, x_s) ds$, $t \in \mathbb{R}$, is compact, quasibounded and N = 0.

<u>Proof:</u> The compactness follows from Proposition 3.1. Now, if $\varepsilon > 0$, it follows from (5.1) and the fact that f takes bounded sets into bounded sets that there exist $\gamma(\varepsilon) > 0$ such that, for every $(t, \varphi) \in \mathbb{R} \times \mathbb{C}$,

$$|f(t,\varphi)| \leq \varepsilon |\varphi| + \gamma.$$

Hence, for every $x \in \mathscr{P}_{ay}$

$$|Nx| = |\omega^{-1} \int_{0}^{\omega} f(s, x_s) ds| + \sup_{t \in [0, \omega]} |\int_{0}^{t} [f(t', x_{t'}) - \omega^{-1} \int_{0}^{\omega} f(s, x_s) ds] dt'|$$

$$\leq (1+2\omega)[\varepsilon|x| + \gamma(\varepsilon)]$$

which clearly implies N = 0.

Now we can prove the following

Theorem 5.1. With D, b and f as above, suppose the linear equation

$$\frac{d}{dt} D(t) x_t = b(t, x_t)$$
 (5.3)

has no nontrivial ω-periodic solution. Then equation (5.1) has at least one ω-periodic solution.

<u>Proof.</u> The result is equivalent to solving the equation Lx - Bx = Nx in \mathscr{G}_{ω} with $B: \mathscr{G}_{\omega} \to \mathscr{U}_{\omega}$ defined by $Bx(t) = \int\limits_{0}^{\infty} b(s, x_s) ds$, $t \in \mathbb{R}$, and L,N as above. From Proposition 3.1 we know that B is a compact mapping and L being a continuous Fredholm mapping of index zero, the same is true for L - B [11]. As L - B is one-to-one by our assumption on (5.3) it will necessarily be onto and such that $(L-B)^{-1}: \mathscr{U}_{\omega} \to \mathscr{G}_{\omega}$ is continuous. The proof of Theorem 5.1 is then equivalent to the fixed point problem $x = (L-B)^{-1}Nx$ in \mathscr{G}_{ω} with

(L-B) -1N clearly compact, quasibounded and of quasinorm zero. The result then follows from Granas' theorem.

An interesting problem is now to try to drop the assumption about the nonexistence of nontrivial ω -periodic solutions for (5.3). It is clear from the Fredholm alternative that conditions upon f will then be needed. We consider here the simplest case, i.e. $b(t,\phi) \equiv 0. \quad \text{Let us define } \mathscr{F} \colon \mathbb{R}^n \to \mathbb{R}^n \quad \text{by } \mathscr{F}(a) = \omega^{-1} \int\limits_0^{\omega} f(t,(\text{Ma})_t) dt.$ If $D(t)\phi$ is independent of t, take M=I, the identity, in the definition of \mathscr{F} .

Theorem 5.2. Let D and f be as above and suppose there exists $\mu > 0$ such that $|(Mc)(t)| \ge \mu |c|$ for every $t \in \mathbb{R}$ and every $c \in \mathbb{R}^n$. If there exists $R_1 > 0$ such that $\int_0^{\infty} f(s,x_s) ds \ne 0$ for every $x \in \mathscr{S}_{\omega}$ verifying inf $|x(t)| \ge R_1$ and if $d_B[\mathscr{F},\Omega_R,0]$ is not zero, where $\Omega_R = \{a \in \mathbb{R}^n \colon Ma \in B(0,R)\}$ and $R = \mu^{-1} |M| R_1$, then the equation

$$\frac{d}{dt} D(t) x_t = f(t, x_t)$$
 (5.4)

has at least one ω-periodic solution.

<u>Proof.</u> We will use Propositions 3.1 and 5.1 above and Theorem 4.1 of [4]. The proof will be complete if we show the existence of $\alpha \ge 0$ and R > 0 such that every α -periodic solution $\alpha \ge 0$ and $\alpha \ge 0$ such that every α -periodic solution $\alpha \ge 0$ such that every α -periodic solution $\alpha \ge 0$ such that every α -periodic solution $\alpha \ge 0$ such that every α -periodic solution $\alpha \ge 0$ such that every α -periodic solution $\alpha \ge 0$ such that every α -periodic solution $\alpha \ge 0$ such that every α -periodic solution $\alpha \ge 0$ such that every α -periodic solution α

satisfies the inequality

$$|Px| < \alpha (I-P)x| + R.$$
 (5.5)

If x is any ω -periodic solution of (5.4), then $\int\limits_0^{\omega} f(s,x_s)ds=0$ and hence there will exist $\sigma \in [0,\omega]$ such that $|x(\sigma)| < R_1$. Therefore, if $c \in \mathbb{R}^n$ is such that Px = Mc, we have

$$|\mu| c| \le |(Mc)(\sigma)| < R_1 + |(I-P)x(\sigma)| \le R_1 + |(I-P)x|,$$

which implies

$$|Px| \le |M| |c| < \mu^{-1} |M| R_1 + \mu^{-1} |M| |(I-P)x|$$

and (5.5) holds with $\alpha \approx \mu^{-1} |M|$ and $R = \mu^{-1} |M| R_1$.

Let us remark that if $D(t)\phi$ is independent of t, ker L is the subspace of \mathscr{S}_{ω} of constant functions and the positive number μ involved above always exists and can be taken equal to one. Hence, a simple example for Theorem 5.2 is given by the scalar equation

$$\frac{d}{dt}[x(t) - ax(t-r)] = g(x_t) + e(t)$$
 (5.6)

where a ϵ (-1,1), e ϵ $\mathscr{G}_{(1)}$ has mean value zero, g: C $\rightarrow \mathbb{R}^n$ is

continuous, quasibounded with quasinorm zero, takes bounded sets into bounded sets and is such that, for some R > 0, either $g(\phi)\phi(\theta)>0 \quad \text{or} \quad g(\phi)\phi(\theta)<0, \text{ for every } \theta \in [-r,0] \quad \text{and every } \phi \in \mathbb{C} \quad \text{such that} \quad \inf \ |\phi(\theta)| \geq \mathbb{R}. \quad \text{It is the case, for example, } [-r,0]$ for the equation

$$\frac{d}{dt} [x(t) + ax(t-r)] = b \frac{x(t-r)}{|x(t-r)|^{1/2}} + e(t)$$

if |a| < 1, $b \neq 0$, $e \in \mathcal{P}_{\omega}$ has mean value zero and $y/|y|^{1/2}$ is extended by 0 at y = 0.

To apply Theorem 5.2 to a scalar equation of the form

$$\frac{d}{dt} [x(t) - a(t)x(t-r)] = g(x_t) + e(t)$$

with g and e as above and a $\in \mathscr{S}_{\omega}$, the crucial point is to prove the existence of $\mu > 0$ such that $|(Mc)(t)| \ge \mu |c|$ for every $t \in \mathbb{R}$ and every $c \in \mathbb{R}$. The following propositions give answers to this problem. For the sake of brevity, we shall say that the operator M associated with the scalar equation x(t) - a(t)x(t-r) = c has property μ if there exists $\mu > 0$ such that $|(Mc)(t)| \ge \mu |c|$ for every $t \in \mathbb{R}$ and every $c \in \mathbb{R}$.

Proposition 5.2. If $|a(t)| \le k$ for all $t \in \mathbb{R}$ and $k \in [0,1/2)$, then M has property μ .

Proof. From the relation

$$(Mc)(t) - a(t)(Mc)(t-r) = c$$

one obtains easily $|Mc| \le (1-k)^{-1} |c|$ and hence

$$| (Mc)(t) | \ge |c| - k | (Mc)(t-r) | \ge |c| (1-2k)(1-k)^{-1}$$

for every $t \in \mathbb{R}$ and every $c \in \mathbb{R}$.

The following example will show that Proposition 5.2 is the best possible without supplementary assumptions on the oscillatory character of a(t). Let $\omega = p$, p a positive integer, r = 1 and a(t) be a p-periodic continuous function such that $|a(t)| \le k < 1$, $t \in \mathbb{R}$, a(0) = -k, a(m) = k (m = 1, 2, ..., p-1). Then, if x(t) is the solution of x(t) - a(t)x(t-1) = 1, property μ clearly will not hold if we exhibit one $t \in [0,p]$ such that x(t) = 0. Using formula (2.3) and the form of a(t) we have

$$x(0) = 1 - k(1+k+k^{2}+\cdots+k^{p-1}-k^{p}(1+k+\cdots+k^{p-1}-\cdots)$$

$$= 1 - k(\frac{1-k^{p}}{1-k} - k^{p}(\frac{1-k^{p}}{1-k} - \cdots)$$

$$= 1 - k(\frac{1-k^{p}}{1-k})(1-k^{p}+k^{2p}-\cdots) = 1 - k(1-k^{p})(1-k)^{-1}(1+k^{p})^{-1}$$

$$= (1+k^{p})^{-1}(1-k)^{-1}(1-2k+k^{p}) = \gamma(k).$$

It is easy to show that $\Upsilon(k)$ is strictly positive in [0,1/2) and is strictly negative in a neighborhood of 1. Thus, $\chi(0) = 0$ for some $k \in [\frac{1}{2},1)$ and this zero is arbitrary close to $\frac{1}{2}$ if we take p sufficiently large, as follows at once from the form of $\Upsilon(k)$.

It is, however, possible to improve the condition upon k when a(t) has a constant sign as follows from

Proposition 5.3. If $|a(t)| \le k < 1$ and a(t) has constant sign, then M has property μ .

<u>Proof.</u> Let us first consider the case where $0 \le a(t) \le k$ for every $t \in \mathbb{R}$. Then M has property μ because

$$| (Mc)(t) | = | l+a(t)+a(t)a(t-r)+\cdots | | c | \ge | c |$$
.

Now suppose that $-k \le a(t) \le 0$ for every $t \in \mathbb{R}$. It is clear that the unique ω -periodic solution x of x(t) - a(t)x(t-r) = c is the limit of the sequence $\{x^m(t)\}$ of ω -periodic functions defined by

$$x^{0}(t) = c$$
, $x^{m+1}(t) = c + a(t)x^{m}(t-r)$, $m = 0, 1, 2, ...$

If c > 0, then $x^{1}(t) = [1+a(t)]c \ge (1-k)c > 0$, $x^{2}(t) = c + a(t)x^{1}(t-r)$ $\ge [1-k(1-k)]c = (1-k+k^{2})c > 0$, and if $x^{m}(t) \ge [1-k+k^{2}+\cdots+(-1)^{m}k^{m}]c > 0$, then $x^{m+1}(t) = c + a(t)x^m(t-r) \ge c\{1-k[1-k+\cdots+(-1)^mk^m]\} =$ $= [1-k+k^2+\cdots+(-1)^{m+1}k^{m+1}]c > 0. \text{ Hence, by induction and passing}$ to the limit, we have $|(Mc)(t)| \ge (1+k)^{-1}|c|$. Finally, suppose that c < 0. Then,

$$c \le x^{1}(t) = c + a(t)c \le (1-k)c < 0$$

and hence

$$c \le x^2(t) = c + a(t)x^1(t-r) \le (1-k)c < 0.$$

If we suppose that $c \le x^{m-1}(t) \le (1-k)c < 0$, then $0 \le a(t)x^{m-1}(t-r)$ < -ck and hence

$$0 > (1-k)c \ge x^{m}(t) = c + a(t)x^{m-1}(t) \ge c.$$

By induction and passing to the limit we have 0 > (1-k)c $\geq (Mc)(t) \geq c$ and hence $|(Mc)(t)| \geq (1-k)|c|$, which achieves the proof.

Corollary 5.1. If a is a constant verifying 0 < |a| < 1 then, for every $b \in \mathcal{P}_{\omega}$ such that $|b(t)| < \min(|a|, |1-a|)$, $t \in \mathbb{R}$, the mapping M associated with x(t) - [a+b(t)]x(t-r) = c has property μ .

REFERENCES

- 1. J. K. Hale, Functional differential equations, in "Analytic Theory of Differential Equations", P. F. Hsieh and A. W. J. Stoddart Ed., Springer, Berlin, 1971, pp. 9-22.
- 2. J. K. Hale, Oscillations in neutral functional differential equations, in "Nonlinear Mechanics", C.I.M.E., June 1972, in press.
- J. Mawhin, Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces, <u>J. Differential Equations</u> 12(1972), 610-636.
- 4. J. Mawhin, The solvability of some operator equations with a quasibounded nonlinearity in normed spaces, <u>J. Math. Anal. Appl.</u>, to appear.
- 5. J. Mawhin, Periodic solutions of nonlinear functional differential equations, <u>J. Differential Equations</u> 10(1971), 240-261.
- 6. J. Cronin, Periodic solutions of nonautonomous equations, Boll. Un. Mat. Ital. (4)6(1972), 45-54.
- 7. R. E. Fennell, Periodic solutions of functional differential equations, <u>J. Math. Anal. Appl.</u> 39(1972), 198-201.
- 8. J. Mawhin, Periodic solutions of some vector retarded functional differential equations, <u>J. Math. Anal. Appl.</u>, to appear.
- 9. B. N. Sadovskii, Application of topological methods in the theory of periodic solutions of nonlinear differential-operator equations of neutral type, (Russian) <u>Dokl. Akad. Nauk SSSR</u> 200(1971); English Translation Soviet Math. <u>Dokl.</u> 12(1971), 1543-1547.
- 10. M. A. Cruz and J. K. Hale, Stability of functional differential equations of neutral type, <u>J. Differential Equations</u> 7(1970), 334-355.
- 11. T. Kato, "Perturbation theory for linear operators", Springer, Berlin, 1966.
- 12. A. Granas, The theory of compact vector fields and some of its applications to topology of functional spaces (I), Rozpr. Matem. 30(1962), 1-93.

- 13. W. Miranker, Periodic solutions of the wave equation with a nonlinear interface condition. IBM Journal Res. Dev. 5(1961), 2-246.
- 14. O. Lopes, Asymptotic fixed point theorems and forced oscillations in neutral equations. Ph.D. Thesis, Brown University, Providence, Rhode Island, June 1973.