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ABSTRACT

This is a semiannual progress report about a program of research in

the field of Artificial Intelligence. The research areas discussed in-

clude automatic theorem proving, representations of real-world environ-

ments, problem-solving methods, the design of a programming system for

problem-solving research, techniques for general scene analysis based

upon television data, and the problems of assembling an integrated robot

system. Major accomplishments include the development of a new problem-

solving system that uses both formal logical inference and informal

heuristic methods, the development of a method of automatic learning by

generalization, and the design of the overall structure of a new complete

robot system. Eight appendices to the report contain extensive technical

details of the work described.
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I INTRODUCTION

A. General

This is a report of progress during the past six months in a program

of research into techniques and applications of the field of Artificial

Intelligence. This field deals with the development of automatic systems,

usually including general-purpose digital computers, that are able to

carry out tasks normally considered to require human intelligence. Such

systems would be capable of sensing the physical environment, solving

problems, conceiving and executing plans, and improving their behavior

with experience. Success in this research will lead to machines that

could replace men in a variety of dangerous jobs or hostile environments,

and therefore would have wide applicability for Government and industrial

use .

This project began in October 1970 as a direct continuation of work

performed and reported under previous contracts.1 Some of the work

reported here has been partially supported by other, concurrent SRI proj-

ects whose goals are closely related to the general Artificial Intelli-

gence problem. Such joint support is acknowledged below wherever relevant

During the past six months we have written several Technical Notes,

consolidating some of the results obtained both during the present proj-

ect and toward the end of the previous project. The contents of these

notes are summarized in the following sections of this report, and the

complete notes are attached as appendices .

*
References are listed at the end of this report



The balance of this section summarizes our general orientation,

activities, and major results thus far in this project. Subsequent

sections and appendices contain additional technical details.

B. Background

The basic goal of our work is to develop general techniques for

achieving artificial intelligence. To this end, we are pursuing funda-

mental studies in several areas: problem solving, perception, automated

mathematics, and learning. However, we find it productive to choose as

a goal the creation of a single integrated system, and thus bring to a

common focus the activities in these separate studies. Such a specific

goal helps us define interesting research problems and measure progress

towards their solutions.

Our research method has involved studies aimed at both short-term

and long-term results. The short-term studies usually consist of first

defining an "intelligent" task that is slightly beyond present capabilities

for the system to perform, and then attempting to develop a specific

solution for that task. Long-term studies are concerned with developing

more general methods for achieving future intelligent systems. We be-

lieve that pursuing these two kinds of studies in parallel, and using

short-term task domains as test beds for proposed long-term techniques,

has been (and will continue to be) a fruitful research strategy.

C . The Problem

Our system consists of a mobile robot vehicle controlled by radio

from a large digital computer. The principal goal is to develop soft-

ware for the computer that, when used in conjunction with the hardware

of the vehicle, will produce a system capable of intelligent behavior.



Before we changed computers (at the end of 1969), our robot system

had achieved a primitive level of capabilities: It could analyze a

simple scene in a restricted laboratory environment; plan solutions to

certain problems, provided that exactly the correct data were appropriately

encoded; and carry out its plans, provided nothing went wrong during

execution. Therefore, when we began planning a new software system for

controlling the robot from a new computer, we set more difficult short-

term goals: The system is to be able to operate in a larger environment,

consisting of several rooms, corridors, and doorways; its planning ability

must be able to select relevant data from a large store of facts about

the world and the robot's capabilities; and it must be able to recover

gracefully from certain unexpected failures or accumulated errors.

We have not yet accomplished these goals. However, we have essen-

tially completed the design and partial implementation of a system that

we believe can exhibit such performance. This system differs from our

previous robot system in several basic ways . We expect to demonstrate

the new system before the end of the next six-month period.

D. Report Organization

The remainder of this progress report consists of four major sections

and eight appendices, describing our current robot system and associated

longer-term studies . We now present brief overviews of the contents of

those sections.

Every integrated "artificially intelligent" system must contain

several component elements. Some of these elements may define signifi-

cant long-term research fields, as well as requiring short-term formula-

tion as part of a current system. Section II describes our recent progress

in several of these areas: logic, modeling, planning, and implementation

language. Our logical inference research is still based upon the QA3.5



program for proving theorems in first-order predicate calculus. However,

the basic inference rule (viz., resolution) has been considerably aug-

mented by a variety of devices, e.g., predicate evaluation, heuristic

equality substitution, and parametric terms, that enable close coupling

between the general inference program and a particular problem domain.

How to model the real world is a basic problem in many AI systems.

Our present approach is simpler than the dual geometric and symbolic

models that we used in previous years, and is highly related to the logic

system.

Part C of Section II describes our work on problem-solving systems.

Our previous use of the logic system as the entire problem solver has

been discarded in favor of a more efficient scheme that uses logical

inference as a subroutine within a GPS-like2 framework.

Finally, Section II-D reports on the status of a long-term effort

to develop a new implementation language, QA4, that will simplify the

programming of future problem-solving and logic systems.

Section III is devoted to the problems, and potential benefits, of

assembling the components discussed above into a complete integrated

system. First, we consider the nature of an executive program that can

carry out plans generated by a problem solver like STRIPS. Second, we

examine a proposed internal structure of the subroutines—the "intermediate

Level Actions"—that are called upon by the executive in order to ac-

complish things in the real world. This structure, based upon a Markov

algorithm formalization, provides a conceptually easy way to specify

methods for communication between subroutines and recovery from errors.

Finally, the largest part of Section III describes a proposal for

"bootstrap learning" by constructing and storing generalized plans. This

promising technique for learning depends upon several of the previously

discussed features of the overall robot system.



Section IV describes recent work in vision research. Short-term

vision work has consisted of developing particular program packages,

compatible with the rest of the system, for gathering visual data about

an environment containing corridors and doorways. Longer-term studies

of color and stereo vision have also been initiated.

Finally, Section V discusses _the bottom-level software and hardware

that make the rest of the research possible. This consists of the robot

vehicle and its recent modifications, the PDP-10/PDP-15 computer systems,

and the software that enables LISP and FORTRAN programs on the PDP-10 to

control the vehicle by radio link from the PDP-15.



II INDEPENDENT RESEARCH STUDIES

A . Automatic Theorem Proving

QA3.5 is a question-answering system containing a resolution-based

theorem-proving program for first-order predicate calculus, and various

features for indexing axioms, extracting answers from proofs, and so on.3

During the past few months, we have completed the implementation of an

efficient version of QA3.5 on our PDP-10 computer, and added a variety

of features that make QA3.5 usable as the logic component of a larger

problem-solving system. In addition to a general clean-up of QA3 and
I

its interface to other routines, we have made the following developments

in the general area of theorem proving (all aimed at extending resolution

to improve the effectiveness of automatic procedures):

Equality—A method was developed for using efficient tree-search

heuristics for guiding the use of the "paramodulation" rule of inference

for first-order logic with equality. This work is described in detail

in Appendix A, and the method has been implemented and is available for

experimentation.

Analogy—A study of reasoning by analogy has used QA3.5 proofs as

a subject domain, and has concluded that automatic theorem proving can

be aided by making appropriate use of analogies to similar proofs. This

work is detailed in Appendix B.

Evaluation—For some time a "predicate evaluation" feature has been

present in QA3.5, although this important innovation has not been ade-

quately documented. The basic idea is that it is sometimes more efficient

to use a special program to test the truth of a simple logical assertion

than to deduce its truth from axioms. (For example, this technique



would permit the inclusion of arithmetic relations such as "3 > 2" in

our axioms without axiomatizing arithmetic.) Such predicate-evaluation

functions, if appropriately used, could eliminate the need for large

(perhaps infinite) sets of axioms. QA3.5 contains provisions for in-

serting a broad class of predicate evaluation functions.

Parameters—Expressions of first-order logic in clause form, the

standard form for all resolution-based theorem provers including QA3.5,

contain two classes of individual symbols. constants, each of which has

a unique identity (unless the equality relation between two of them can

be proven), and variables, which are assumed to be universally quantified.

We have discovered that a third class of individuals, parameters, would

be extremely useful in problem-solving work and may have much wider

significance in logic. The use of parameters in a mechanism for making

an axiom set into a scheme of alternative possible axiom sets. A param-

eter is an unspecified constant. It may take on any—but only one—value

during a proof (subject to certain limitations discussed below). For

example, suppose we wish to use QA3.5 to determine a convenient initial

placement for the robot before carrying out some task. We would like to

assert that, in that initial configuration, the robot is someplace; and

then let the particular place be chosen by the normal unification pro-

cedure of the theorem prover as it considers other relevant facts. How-

ever, if we encode, "The robot is someplace," by the existential assertion,

(3place)AT(Robot,place), i.e., "There exists a place where the robot is

at," then the Skolemization process chooses a new constant to name the

place and give us the clause AT(Robot,a), where a_ cannot be identified

as any particular place that we know anything about (unless we intro-

duce many more axioms and equality). On the other hand, if we try

AT(Robot,v) where y_ is a universally quantified variable, v ranges over

all the relevant constants, but we can also prove all kinds of silly

false results (because we have asserted that the robot is everywhere at

8



at once). The solution is to use AT(Robot,p), where the parameter p is

a new kind of individual that sometimes behaves like a constant and

sometimes like a variable, giving just the appropriate results. We be-

lieve we have identified the appropriate behavior of parameters, and they

are now available within QA3.5.

The basic property of any parameter is that it represents precisely

a single element of a given domain. This property implies that parameter

names (and, therefore, their interpretations) are global to the entire

set of clauses involved in a QA3.5 proof (as opposed to variables, whose

names are local to a single clause) . This further requires^ that any

parameter appearing in a proof tree have but one interpretation in that

tree.

The allowed instantiations of a parameter are restricted in accordance

with the above basic property. Bindings can be formed between a param-

eter and another parameter, or to a non-Skolemized (possibly parameterized)

ground term only. It is illegal to bind a parameter to a variable, or

a function of variables (i.e., a nonground term), as this allows a single

parameter to represent a whole class of interpretations. Also, a param-

eter may not be instantiated by a term containing Skolem functions,

since such terms represent new individuals, while parameters are intended

to represent previously known (although perhaps not yet specified)

individuals.

B. Models of the Environment

1. The Robot's World Model

As a result of our experience with the previous robot system

and our desire to expand the robot's experimental environment to include

several rooms with their connecting hallways, we have adopted new con-

ventions for representing the robot's model of the world. In particular,



whereas the previous system had the burden of maintaining two separate

world models (i.e., a map-like grid model and an axiom model), the new

system uses a single model for all its operations (an axiom model); also,

in the new system conventions have been established for representing

doors, wall faces, rooms, objects, and the robot's status.

The model in the new system is a collection of predicate calcu-

lus statements stored as prenexed clauses in an indexed data structure.

The storage format allows the model to be used without modification as

the axiom set for STRIPS' planning operations (see Appendix C) and for

QAS.S's theorem-proving activities.

Although the system allows any predicate calculus statement to

be included in the model, most of the model will consist of unit clauses

(i.e., consisting of a single literal) as shown in Table 1. Nonunit

clauses typically occur in the model to represent disjunctions (e.g.,

box2 is either in room K2 or room K4) and to state general properties of

the world (e.g., for all locations loci and Ioc2 and for all objects

obi, if obi is at location loci and loci is not the same location as

Ioc2, then obi is not at location Ioc2) .

We have defined for the model the following five classes of

entities: doors, wall faces, rooms, objects, and the robot. For each

of these classes we have defined a set of primitive predicates which

are to be used to describe these entities in the model. Table 1 lists

these primitive predicates and indicates how they will appear in the

model. All distances and locations are given in feet and all angles

are given in degrees. These quantities are measured with respect to a

rectangular coordinate system oriented so that all wall faces are parallel

to one of the X-Y axes. The NAME predicate associated with each entity

allows a person to use names natural to him (e.g., halldoor, leftface,

K2090, etc.) rather than the less-intuitive system-generated names (e.g.,

dl, f203, r4450, etc.) .

10



Table 1

PRIMITIVE PREDICATES FOR THE ROBOT'S WORLD MODEL

Primitive

Predicate

FACES

type

name

f aceloc

grid

boundsroom

DOORS

type

name

doorlocs

joinsfaces

joinsrooms

doorstatus

ROOMS

type
name

grid

OBJECTS

type

name

at
inroom

shape

radius

ROBOT

type
name
at
theta
tilt
pan
whiskers
iris
override
range
tvmode
focus

Literal Form

type( f ace"f ace")
name(face name)
faceloc(face number)
grid(face grid)
boundsroom( f ace room direction)

type( door"door")
narae(door name)
door locs( door number number)
joinsfaces(door face face)
joinsrooms(door room room)
doorstatus(door status)

type( room" room")
nameCroom name)
grid(room grid)

t y pe( ob iect" object")
nameCobject name)
at(object number number
inroom( object room)
shapeCobject shape)
radius(object number)

type("robot""robot")
name( " robot" name)
at("robot" number number)
t he ta(" robot "number)
t i 1 t (" robot " number )
pan(" robot "number)
whisker s(" robot" integer)
iris(" robot" integer)
override( "robot" integer)
range(" robot" number)
tvmode(" robot" integer)
f ocus( " robot" number)

Example Literal

typeCfl face)
nameCfl leftface)
facelocCfl 6.1)
gndCfl gl)

boundsroom(f 1 rl east)

typeCdl door)
name(dl halldoor)

doorlocs(dl 3.1 6.2)

joinsfaces(dl fl f2)

joinsrooms(dl rl r2)

doorstatus(dl "open")

type(rl room)

nameCrl K29090)

gridCrl gl)

typeCol object)

name(ol boxl)

at(ol 3 1 5 2 )

inroom(ol rl)
shape(ol wedge)

radius(ol 3 1)

type( robot robot)
name( robot shakey)

at(robot 4.1 7.2)

theta( robot 90.1)
tilt(robot 15.2)

pan( robot 45 3)

whiskers( robot 5)

iris(robot 1)

overnde( robot 0)

range( robot 30.4)

tvmode( robot 0)

focus(robot 30.7)

11



Figure 1 shows a sample environment and a portion of the cor-

responding world model . Rooms are defined as any rectangular area, and

therefore the hallway on the left is modeled as a room. There is associ-

ated with each room a grid structure that indicates which portions of

the room's floor area have not yet been explored by the robot. During

route planning the grid is employed to help determine if a proposed path

is known blocked, known clear, or unknown.

Four wall faces are modeled in Figure 1. The FACELOC model

entry for each face indicates the face's location on either the X or Y

coordinate depending on the face's orientation. There is associated

with each face a grid structure to indicate which portions of the wall

face have not yet been explored by the robot. This grid is used in

searching wall faces for doors and signs.

Two doors are modeled in Figure 1. The DOORLOC model entry

for each door indicates the locations of the door's boundaries on either

the X or Y coordinate, depending on the orientation of the wall in which

the door lies. Any opening between adjoining rooms is modeled as a door,

so that the complete model of the environment diagrammed in Figure 1

would have a door connecting rooms Rl and R3. This door coincides with

the south face of room R3 and will always have the status "open."

The RADIUS and AT model entries for the object modeled in

Figure 1 define a circle circumscribing the object. These entries simplify

the route-planning routines by allowing each object to be considered

circular in shape. Our current set of primitive predicates for describing

objects is purposely incomplete; we will add new predicates to the set

as the need for them arises in our experiments.

We do not wish to restrict the model to only statements con-

taining primitive predicates. The motivation for defining such a predicate

class is to restrict the domain of model entries that the robot action

12



0)
00

-n
8 " •»_ E
< S » S •§

Hill

oci inCM

_ S o ~
8 •? ">_ E

& E 8
2: S »

LU
O
O
5

a.

III& s &

£

8
(N

•2 " «N "> 2
CM r. " 2

£ - X « -S— o» O ^ J:

Mill*- C *_ 01 •£]

in _
CN n

tr

& ?-8 ° 2.
o "5 g o 2
O a | ̂  «
DC & c S •£

in
T CM _ (N _
O •" N >- C

IP ' -C IS r! r- •• o
* » *g •; 8? s s

c^i,| „ * ; ? » § s j» ° : ; o^^
S ^ - - S c S S g g o S O o 5 ^ E 3 - 2s-? gMll|i 3115111

13



routines have responsibility for updating. That is, it is clear that

the action routine that moves the robot must update the robot's location

in the model, but what else should it have to update9 The model may

contain many other entries whose validity depends on the robot's previous

location (e.g., a statement indicating that the robot is next to some

object), and the system must be able to determine that these statements

may no longer be valid after the robot's location has changed.

We have responded to this problem by assigning to the action

routines (discussed in Section IV-B) the responsibility for updating

only those model statements which are unit clauses and contain a primitive

predicate. All other statements in the model will have associated with

them the primitive predicate unit clauses on which their validity depends.

When such a nonprimitive statement is fetched from the model, a test

will be made to determine whether each of the primitive statements on

which it depends is still in the model; if not, then the nonprimitive

statement is considered invalid and is deleted from the model. This

scheme, which is also discussed in Section 2 of Appendix C, ensures that

new predicates can be easily added to the system and that existing action

routines produce valid models when they are executed.

2 . Model-Manipulating Functions

We have designed and programmed a set of LISP functions for

interacting with the world model. These functions are used both by the

experimenter (as he defines and interrogates the model) and by other

routines in the system to modify the model. To the experimenter at a

teletype, these functions are accessible as a set of commands. A brief

description of these commands follows.

ASSERT—This is the basic command for entering new axioms into

the model . The user follows the word ASSERT by either CUR or ALL to

14



indicate whether the entries are to be for the current model or are to

be considered part of all models. The system then prompts the user for

predicate calculus statements to be typed in using the QA3 .5 expression

input language. After each statement is entered, the system responds

with "OK" and requests the next statement. To exit the ASSERT mode the

. II t !tuser types I.

FETCH—This is the basic command for model queries. The user

follows the word FETCH by an atom form, and the system types out a list

of all unit clauses in the model that match the form. Each term in an

atom form is either a constant or a dollar sign. The dollar sign indi-

cates an "l don't care" term and will match anything. The last term of

an atom form can also be the characters "$*" to indicate an aribtrary

number of "l don't care" terms. For example, the atom form "(AT ROBOT

$*)" will fetch the location of the robot, and the atom form "(INROOM

$ Rl)" will fetch a list of model entries indicating each of the objects

in room Rl.

DELETE—This is the basic command for removing statements from

the model. The user follows the word DELETE by an atom form, and the

system deletes all unit clauses in the model that match the form. Atom

forms have the same syntax and semantics for the DELETE command as de-

scribed above for the FETCH command.

REPLACE—This is a hybrid command combining the operations of

DELETE and ASSERT. The user follows the word REPLACE by an atom form

and by a predicate calculus statement. The system first deletes all

unit clauses in the model matching the atom form and then enters the

statement into the model. This command is useful for operations such as

changing the robot's position in the model, indicating in the model that

a previously closed door is now open, and so forth.

15



3. Long-Term Modeling Studies

We have been investigating some different ways of representing

the robot's model of the world, for possible use in future system imple-

mentations. In particular, we will need to represent a large store of

knowledge of the world, hopefully including many objects, actions the

robot can take, and general principles about the world in which it re-

.sides. Until now we have only used small domains for specific problems

and have not entirely faced the problem of a lot of information in one

model .

The main concentration so far has been on comparing semantic

nets with the first-order predicate calculus representations now used .

Preliminary study seems to indicate that either can be used to make a

reasonable model for the robot. One major concern is that the system

have the ability to make inferences from the model—so the robot can

solve the problems posed to it. So far, we have not found any inference

mechanism for semantic nets that has the formal completeness of the

resolution-based theorem prover, QA3.5, that we now use. The net struc-

ture does, however, have the advantage of directing one's attention to

pertinent information to be used in the deduction. This is of particular

importance when the amount of information in the model is large in com-

parison with the amount needed to solve a specific problem.

A possible next step is to see if we can develop an inference

scheme for semantic nets which has some of the formal completeness

properties of logic. Another approach is to try to incorporate semantic

information into QA3.5 to guide the resolution toward the axioms perti-

nent to the current problem. Because we already have a working theorem

prover, and are getting some experience in resolution strategies, the

latter approach seems the one to pursue.

16



Another method of representation that has been used recently

entails encoding information in procedures rather than data structures .

During the next six months we plan to explore this alternative, particu-

larly with respect to using the QA4 language (see Section II-D) .

C. Problem-Solving Studies

A problem-solving process generally consists of two parts: planning

a solution, and executing the plan. Most previous work in heuristic

problem solving has really been concerned with the planning aspects,

since interesting problems of execution do not arise until a complete

robot system has been created. We shall delay discussion of our work on

the execution phase of problem solving until Section III of this report.

The need for a new planning program for our robot system followed

from our decisions, discussed above, to enlarge the robot's environment

(by adding rooms and hallways), and to model the world by predicate-

calculus formulas. In the new experimental environment a world model

will contain 100 or more formulas. The complexity of these models raised

certain difficulties with previously developed problem-solving systems,

and led to the design of a new problem-solving system.

The first difficulty was that our world models are too large for

any problem solver to create a complete new world model at each step in

its search. That is, when a problem solver considers some action taken

in the world, it creates a new model to indicate the state of the world

after the action. Typically, this new model is formed by copying the

old model and then making the changes implied by the action in the copy.

For our models this process would be extremely costly in both memory

space and computing time. Our response to this problem was to establish

conventions for representing a model as a set of changes from the initial

model given to the problem solver. That is, each model created during
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the problem-solving process is represented by two lists: one of formulas

that exist in that model but do not exist in the initial model, and the

other of formulas that exist in the initial model but do not exist in the

new model. Since most formulas in a model are not changed by an action,

the two lists representing each new model contain only a small number of

formulas (usually less than about ten) and can be managed efficiently.

The second difficulty was that for large models, the use of axioms

to represent the effects of action routines, our previous planning method,

becomes extremely clumsy. That is, in our previous automaton system each

model change produced by an action was described by an axiom. Unfortu-

nately, it was also necessary to include axioms describing all those

portions of the model that were not changed by an action. (This latter

set of axioms allowed the system to produce those portions of the new

model which were unchanged from the old model when an action was applied.)

The problems with this scheme are basically twofold: First, a large

number of axioms need to be written by a person in order to describe an

action to the system; and secondly, when the problem solver applies an

action to a model it must perform a deductive step using one of these

axioms to produce each portion of the new model. Large world models

amplify these problems to the extent that the problem solver becomes

completely impotent. Reference 4 discusses these problems more fully.

We have responded to this second difficulty by removing the descrip-

tions of actions from the predicate calculus . We provide a form for

describing actions that requires only that the person indicate the changes

produced by the action. The assumption is made that all portions of the

model not mentioned in an action description are not changed by the

action. This assumption enables concise action descriptions to be written

with little effort. Our new problem-solving program, which we call STRIPS

(STanford Research Institute Problem Solver), contains an action-application
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routine, which takes as input a world model and an action description,

and produces as output the model that would be produced by applying the

action to the input model. This routine uses the "change list" world-

model representation discussed above and is quite efficient, even with

large models.

The third difficulty we have responded to in our new system is that

of providing the problem solver with powerful heuristics for guiding its

search for a plan. In our previous system, all the search was carried

out by the theorem prover, QA3.5. Although the search heuristics in

QA3.5 may be adequate for proving theorems, they are unacceptably weak

when used to conduct the search for a plan in a space of world models.

Again, this difficulty is accentuated by the large models we are now

using. We have responded to this difficulty by designing STRIPS so that

standard graph-searching techniques can be applied to its search for a

solution. We may consider STRIPS to be searching in a space of world

models for a path from the initial model to a model in which a given goal

predicate is satisfied. During its search it uses the action-application

routine discussed above to create new models, and it uses the theorem

prover, QA3.5, to ask questions of any given model (e.g., Is the goal

true in this model'') . Hence, it can employ powerful heuristic-search

techniques to determine which action application to consider next, and

it can use QA3.5's powerful deductive techniques to determine properties

of individual world models .

The primary search strategy employed by STRIPS is means-ends analysis.

This strategy, borrowed from GPS,2 uses the following basic technique-

Given a world model and a goal, compare the two to determine a difference

between them, select an action that is relevant to reducing the difference,

establish a new subgoal of achieving a world model to which the relevant

action can be applied, and repeat the process to achieve the new subgoal.
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This strategy provides STRIPS with a strong sense of direction toward a

goal and has produced very encouraging results with the problems we have

given to the program. (STRIPS is described more fully in Appendix C.)

D. Language Development

During the past six months this project has participated in the

support of the design and implementation of a new programming language,

QA4. (QA4 development is primarily supported by SRI Project 8721 under

Contract NASW-2086 with NASA.) QA4 contains a novel combination of

features that promise to make it more useful for programming theorem-

proving and problem-solving systems than any existing language. Appendix

D contains a general description of QA4.

The QA4 programming language has reached a first major milestone in

its development. Micro-QA4 is implemented. This restricted version of

the full QA4 language lacks only the more advanced control statements

and the complete pattern matcher. It includes the following debugged

program packages:

• Input-Output—A parsing system that converts the mathematical

style infix notation of the QA4 language to internal format.

e Expression Storage—A set of programs that:

(1) Store QA4 expressions in a discrimination net and

recognize equivalence of sets and expressions with

bound variables.

(2) Store and retrieve properties of expressions with

respect to QA4 "contexts," automatically handling

process-variable bindings and backtracking.

e QA4 Evaluator—A set of programs that:
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(1) Evaluate all the QA4 primitive functions (e.g.,

PLUS and UNION).

(2) Execute QA4 statements (e.g., IF and GO).

(3) Work in small nonrecursive steps so that time can

be shared between parallel processes .

Features such as backtracking, process-control structures, set operations,

and tuple pattern matching make Micro-QA4 suitable for experimenting and

testing designs for future heuristic programs.

The immediate plans are to finish the pattern matcher and complete

the implementation of the control and strategy statements. The resulting

initial version of the full QA4 language will then be used for the con-

struction of theorem provers and automatic program writers. Throughout

the implementation, however, we have consistently used general data

structures and clear program design instead of the specific structures

and tight code dictated by space and time considerations. Thus, as we

use the language, we expect to enter an iterative cycle of modification

and extension. As we gather statistics we can properly optimize, and

as we discover language deficiencies we can extend the semantics.
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Ill ASSEMBLING AN INTEGRATED ROBOT SYSTEM

A. The Executive

One of the difficulties in devising a robot system is that of pro-

viding feedback during the execution of plans. That is, since a plan

produced by STRIPS must be executed in the real world by a mechanical

device (as opposed to being carried out in a mathematical space or by

a simulator), consideration must be given to the possibility that opera-

tions in the plan may not accomplish what they were intended to, that

data obtained from sensory devices may be inaccurate, and that mechanical

tolerances may introduce errors as the plan is executed. Hence, we wish

STRIPS to provide information in a plan that will allow the executor to

determine whether each of the plan's actions is achieving the desired

result in the real world. The executor can then use this information

to recognize failures as they occur during plan execution, and can take

appropriate steps (e.g., initiate replanning) to put the system back on

a course toward the goal.

Appendix D describes algorithms for including the needed information

in STRIPS plans and for using that information during plan execution.

These algorithms produce and use a plan containing steps of the follow-

ing form:

Bi:BEGIN
FAILTEST<predicate-calculus formula)FOR Bjl,Bj2, ...,Bjn;

FAILTEST^predicate-calculus formula)FOR Bkl,Bk2, ...,Bkm;

IF(preconditions for action ^THEN DO action.

ELSE GOAL (relevant results of action.,)
END;
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The predicate-calculus formulas in the FAILTEST statements indicate what

STRIPS expects to be true in the world model at this point in the plan.

If one of these formulas is not true, then the executor deletes those

subsequent portions of the plan having the labels, Bxy, listed in the

right side of the FAILTEST statement; that is, STRIPS determines that

the portions of the plan being deleted cannot produce the desired re-

sults unless the formula in the FAILTEST statement is true, and there-

fore they should not be executed. The IF statement in the plan tests

to see whether the next action in the plan (action ) is applicable to

the model. In the case where it is, then the action is executed; in

the case where it is not, a replanning effort is initiated with the goal

being the model changes that action was expected to make. If a replan-

ning effort succeeds, then the new plan takes the place of the IF state-

ment in the old plan and execution proceeds as before. These plan for-

mation and execution schemes are designed to provide continual checking

on the progress of plan execution and to allow a productive interaction

between the planning and execution sections of the system.

A comment is in order on the status of this work. The world-model

maintenance routines and the STRIPS problem solver exist as running

programs. The mechanisms for creating and executing the FAILTEST and

IF statements in plans have been specified but have not yet been coded.

We have successfully run STRIPS with several example problems and are

engaged in experimenting with various search heuristics for it. We

have not yet had the opportunity to put the entire system together and

input a problem, have STRIPS produce a plan, and then have an executor

carry out the plan. The primary missing link presently is a set of

intermediate-level action routines (described below) for the robot.

These should be completed shortly, and we expect to be able to exercise

the entire system in the next few months.
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B. Intermediate-Level Actions

1. Introduction

A planning program such as STRIPS assumes the existence of

certain action routines that enable the robot to interact with the world.

Thus far in this report we have assumed the availability of some such

set of routines, with their preconditions and effects assumed to be for-

malized and known to the problem solver. Now we face the task of actually

creating an appropriate set of routines.

As with most programming tasks, the problem of programming

robot actions is simplified when it is done in terms of'well-defined

subroutines. At the lowest level it is natural to define routines that

have a direct correspondence with low-level robot actions—routines for

rolling, turning, panning, taking a range reading, taking a television

picture, and so forth. However, these routines are too primitive for

high-level problem solving. Here it is desirable to assume the existence

of programs that can carry out tasks such as going to a specified place

or pushing an object from one place to another. These intermediate-

level actions (ILAs) may possess some limited problem-solving capacity,

such as the ability to plan routes and recover from certain errors, but

the ILAs are basically specialized subroutines. None of these routines

has as yet been written. However, considerable thought has been devoted

to their design, and this section describes our plans for a set of ILAs

that are suitable for use with the STRIPS problem-solving system. (Low-

level actions, the robot's elementary hardware capabilities, are described

in Section V of this report.)

Perhaps the most difficult problem that confronts the designer

of ILAs is the problem of detecting and recovering from errors. Some-

times errors are detected automatically, as when an interrupt from a

touch sensor indicates the presence of an unexpected obstacle. Other
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times it is necessary to make explicit checks, such as checking to be

sure that a door is open before moving through it. When an error is

detected, the problem of recovery arises. This problem can be very

difficult, and is one aspect that distinguishes work in robotry from

other work in artificial intelligence.

It is natural to think of an intermediate-level action as a

composition of somewhat lower-level actions, which in turn are composi-

tions of lower-level actions. While this hierarchical organization

possesses many advantages (and is in fact the organization that we use),

it is not ideally suited for error recovery. Errors are made most fre-

quently at low levels by routines that are too primitive to cope with

them. An error message may have to be passed up through several levels

of routines before reaching one possessing sufficient knowledge of both

the world and the goal to take corrective action. If any routine can

fail in several ways, this presents the highest-level routine with a

bewildering variety of error messages to analyze, and requires explicit

coding for a large number of contingencies.

To circumvent this problem, we have chosen to have the sub-

routines communicate through the model. With a few special exceptions,

neither answers nor'error messages are explicitly returned by subroutines.

Instead, each routine uses the information it gains to update the model.

It is the responsibility of the calling routine to check the model to be

sure that conditions are correct before taking the next step in a sequence

of actions. Detection of an error causes returns through the sequence

of calling programs until the routine that is prepared to handle that

kind of error is reached. In the following sections we describe in more

detail the formal mechanism by which this is done.
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2. The Markov Algorithm Formalization

a. General Considerations

The formal structure of each ILA routine is basically
*

that of a Markov algorithm. Each routine is a sequence of statements.

Each statement consists of a statement label, a predicate, an action,

and a control label. When a routine is called, the predicates are eval-

uated in sequence until one is found that is satisfied by the current

model. Then the corresponding action is executed. The control label

indicates a transfer of control, either to another labeled statement

or to the calling routine.

Table 2 gives a specific example of an ILA coded in this

form. This routine, gotoadjroom (rooml, door, room2), is intended to

move the robot from rooml to room2 through the specified door. The first

test made is a check to be sure that the robot is in rooml. If it is

not, an error has occurred somewhere. Since this routine is not pre-

pared to handle that kind of error, no action is taken, and control is

returned to the calling routine. The subroutine return is indicated

by the "R" in the control field.

Under normal circumstances, the first two predicates will

be false. The third predicate is always true, and the corresponding

action sets the value of a local variable "s" to give the status of the

door. The function "doorstatus" computes this from the model, and eval-

uates to either OPEN, CLOSED, or UNKNOWN. Rather than tracing through

all of the possibilities, let us consider a normal case in which the

door is open but the robot is neither in front of nor near it. In this

*
It also bears a close resemblance to Floyd-Evans productions,
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Table 2

SUBROUTINE GOTOADJROOM(ROOM1,DOOR,ROOM2)

Label Predicate Action Control

1

2

3

4

in(room2)

T

infrontof(door) Aeq(s,OPEN)

near(door) Aeq(s,OPEN)

near(door)AS q(s,UNKNOWN)

eq(s,CLOSED)

T

setq(s,doorstatus(door))

bumblethru(rooml, door, room2)

align(rooml, door,room2)

doorpic(door)

navto(nearpt(rooml, door))

R

R

4

2

4

3

R

4

case, the action taken is the last one, navto(nearpoint(rooml,door)).

Here the function "nearpoint" computes a goal location near the door.

The function "navto" is another ILA that plans a route to the goal point

and eventually executes a series of turns and rolls to get the robot

to that goal. Of course, unexpected problems may prevent the robot

from reaching that goal. Nevertheless, whether navto succeeds or fails,

when it returns to gotoadjroom the next predicate checked will be that

of statement 4. If navto succeeds and the robot is actually in front

of the door, the butnblethru routine will be called to get the robot into

room2. If navto had failed and the robot is not even near the door,

navto will be tried again. Clearly, this exposes the danger of being

trapped in fruitless infinite loops. We shall describe some simple ways

of circumventing this problem shortly.

b. Predicates and Actions

The predicates used in the ILAs have the responsibility

of seeing that preconditions for an action are satisfied. In general,
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the evaluation of predicates is based on information contained in the

model. If this information is incorrect, the resulting action will

usually be inappropriate. However, the act of taking such an action

will frequently expose errors in the model. When the model is updated

(which typically occurs after bumping into an object or analyzing a

picture), the values of predicates can and do change. Thus, the values

of the predicates will depend on the way the execution of the I1A pro-

ceeds, and will steer the routine into (hopefully) appropriate actions

when errors are encountered.

The actions can be any executable program. The most com-

mon actions are to compute the values of local variables, update the

model, call picture-taking routines that update the model, or call other

ILAs. Only the first of these causes any answers to be returned directly

to the calling program. This constraint of communicating through the

model occasionally leads to computational inefficiencies. For example,

the very computation used by one routine to determine that it has com-

pleted its job successfully may be repeated by the calling routine to

be sure that the job has been done. While some of these inefficiencies

could be eliminated with modest effort, they appear to be of minor im-

portance compared to the value of having a straightforward solution to

the problem of error recovery.

c. Loop Suppression

We mentioned earlier that the failure of a lower-level

ILA might result in no changes in the model that are detected by the

calling ILA. In this case, one can become trapped in an infinite loop.

There are a number of ways to circumvent this problem. Perhaps the

most satisfying way would be to have a monitor program that is aware of

the complete state of the system, and that could determine whether or

not the actions being taken are bringing the robot closer to the goal.
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An alternative would be to have each ILA keep a record of whether or not

its actions are leading toward the solution of its problem.

The simplest kind of record for an ILA to keep is a count

of the number of times it has taken each action. In many cases, if an

action has been taken once or twice before, and if the predicates are

calling for it to be taken again, then the ILA can assume that no prog-

ress is being made and return control to the calling program. This

strategy can be improved by computing a limit on the number of allowed

repetitions, and making this limit depend on the task. For example,

if the action is to take the next step in a plan, the limit should

obviously be related to the number of steps in the original plan. Both

of these strategies can be criticized on the grounds that they are in-

direct and possibly very poor measures of the progress being made. How-

ever, they constitute a frequently effective, simple heuristic, and will

be used in our initial implementation of the ILAs.

d. Status and Implementation

As mentioned earlier, none of the ILAs has been imple-

mented to date. However, some 15 have been sufficiently well defined

to allow coding to begin. These are listed in Table 3, together with

the ILAs that they call. The specification of the ILAs has also led to

the specification of a number of specialized planning and information-

gathering routines. The planning routines include programs for planning

pushing sequences, tours from room to room, and trips within a single

room. These will be developed along the lines of the navigation routines

that were one of our earliest efforts on this project. The information-

gathering routines are primarily special-purpose programs for processing

television pictures. For example, PICLOC is a special-purpose routine

that uses landmarks to update the location of the robot, and CLEARPATH

30



XI
cd

W

ca

Ul
-p
C
0e
6
O
CJ

•o
0

r— |

rH
cd
0

Ul
0
G
H
•P
3
O
03

3
1-1

Ul

CM
33
W
&
ft

O

Ul
0
H
(-1
0
Ul

cd

0
-p
3
0
0

0

73
C
cd

d
cd
rH
a
c
cd
O

CM
33
CO

ft

*\

*

K>

O

CQ

i

*Ĵ
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Ĵ

ft

O
£>

^J15

Ul
-p
O
0
n
XI
O

rj

0̂c
a
3

O
-P

0
3

73

Ul

Ô
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analyzes a picture to see whether or not the path to the goal is clear.

(The status of these routines is described in Section IV of this report.)

One aspect of implementing the ILAs that has not yet been

resolved concerns whether the ILAs should be written as ordinary LISP

programs, or should be kept in tabular form as data for an interpreter.

It is quite easy to go from a representation such as that in Table 1 to

a LISP program realization; the basic structure is merely a COND within

a PROG. However, the use of an interpreter would simplify the imple-

mentation of the loop suppressor, and would also simplify monitoring

and the incorporation of diagnostic messages. In addition, the same

program that interprets the ILAs might be used to interpret the plans

produced by STRIPS; that is, the Markov algorithm structure of ILAs is

similar to the FAILTEST structure of STRIPS-produced plans so that, if

we can make these structures identical, the same executive program will

be usable for both. Uniformity in program structure is also important

for the plan generalization ideas (to be discussed in the following

section). Final decisions on ILA implementation will be made in the

near future.

C. The Construction of Generalized Plans

1. Introduction

There are several senses in which a program or machine can be

said to learn. A robot may "learn" about the physical objects in its

environment; for example, it may discover the presence of a doorway at

some particular location. In another sense, a program may "learn" the

values of parameters through what is essentially an estimation process;

for example, threshold levels may be set in a picture-processing program

on the basis of average light levels. In a third sense, a program may

"learn" (i.e., remember) solutions of earlier problems in order to solve

later problems. This form of learning, which we term bootstrap learning,
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has been the subject of much interest but few serious investigations in

artificial intelligence.5 This section presents some preliminary results

in this area, based upon the robot system organization described in pre-

vious sections.

We consider bootstrap learning within the context of the STRIPS

problem-solving program that composes sequences of ILA operators to manip-

ulate objects in a domain. In this setting we envision a problem-solving

program that can store a solution to a problem in some appropriate form

and use this information to help solve a subsequent (and possibly more

difficult) problem. The solution to the new problem can also be stored,

and so on through a progression of increasingly difficult problems.

Perhaps the most important advantage of bootstrap learning in

this context has to do with reducing the amount of search done by the

problem-solving program. The solution to a problem involves searching

for appropriate sequences of operators; composing longer sequences of

operators requires more search. If bootstrap learning can be accomplished,

then a "useful" or "powerful" sequence of primitive operators is available

to the problem-solving program as a single operator and the combinatorics

of the search thereby reduced.

2. Parameterization of a Sequence of Operators

a. The Need for Parameterization

Let us consider the following very simple problem. A

room contains a box named BOX1 at Position 1 and another box named BOX2

at Position 2. Using a robot initially at Position 3, capable of moving

through the room and pushing boxes, the problem is to create a state in

which BOX1 and BOX2 are at the same place. (We ignore here for simplic-

ity the refinement that two boxes cannot be literally at the same place,

but only near each other.) Using the primitive operators
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GO(initial position, final position)

and

PUSH(box, initial position, final position) ,

we would expect STRIPS (or any other competent problem-solving program)

to compose a sequence of primitive operators such as the following:

G0(3,1)

PUSH(30X1,1,2) .

While this sequence solves the stated problem, it is unlikely that we

would want to save it for future use because the solution is in terms

of constants. Unless there is some special reason to believe that we

will again be in a state characterized by BOX1 being at Position 1, BOX2

at 2, and the robot at 3, this particular sequence of instantiated prim-

itive operators will be useless. It would be far more useful if the

entire situation were expressed in parametric form. Using the previous

situation as an example, we would prefer to save for future use informa-

tion of the following sort, where all symbols written in lower case

letters are parameters and AT is a predicate with the obvious inter-

pretation:

Starting from the state

AT(oba, a), AT(obb,b), AT(ROBOT,c) ,

the sequence of primitive operators

GO(c,a) ,

PUSH(oba,a,b)

produces a state in which oba and obb are at the same place—namely, b.

In this section we shall present a means for producing a parameterized

sequence of operators using STRIPS as the basic problem-solving program.
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b. Solving Parameterized Problems with STRIPS

There appear to be two distinct approaches to the problem

of producing a parameterized sequence of operators using the STRIPS

problem solver: We can use STRIPS to solve a specific problem and seek

ways to generalize the arguments of operators from constants to param-

eters, or we can generalize the problem statement so that it is in terms

of parameters only and seek ways to modify STRIPS so that it can solve

parameterized problems. Surprisingly, perhaps, the second of these two

approaches has proven to be the fruitful one. Following this approach,

the modification to STRIPS is as follows:

(1) Replace every constant in the description of

the initial state by a distinct parameter symbol.

(Multiple occurrences of the same constant lead

to differently named parameters.) For each

parameter symbol, create a "binding" that binds

it to the constant it replaces.

(2) Similarly, replace each constant in the goal

statement with a distinct parameter symbol.

Bind each parameter to the constant it replaces.

(3) When performing resolutions within QA3, parameters

obey the rules for parameter bindings as discussed

in Section II-A. However, no parameter is ever

actually replaced by its binding in a logical

expression. Instead, separate lists are used to

keep track of parameter bindings, and the logical

unification operation must be aware of this special

bookkeeping.
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Upon completing the solution to a problem, STRIPS produces

a sequence of primitive operators whose arguments are parameters. If

all parameters bound to constants are in fact replaced by those constants,

we will have precisely the sequence of instantiated operators produced
*

by the existing, unparameterized problem solver. Remarkably, the STRIPS

search for a solution to the parameterized problem is isomorphic to the

search for a solution to the unparameterized problem . Thus no more

effort is expended in producing the general solution than would be ex-

pended in producing the specific solution.

3. Construction of a Plan Description

Once STRIPS has solved a problem and generated a parameterized

plan, we can make it into a new complex operator to be added to the

existing repertoire of ILAs available to STRIPS as operators. To do

this, the complex operator must be characterized in the same fashion

as any other operator; we must construct a precondition wff, an add-

list, and a delete-list.

In order to extract the appropriate information from a plan

to make these constructions, we need the notion of a kernel state. A

kernel state is a collection of axioms constituting a subset of the
t

axioms defining a given state. We intend to include in each kernel

*
It is possible, even using the standard unparameterized STRIPS problem

solver, to produce as a final solution a sequence of operators that

are only partially instantiated.

Note that if we extract from a set s of axioms a subset k, then the

totality of worlds satisfying s is a subset of the totality of worlds

satisfying k. In other words, fewer axioms specify a more general

world.
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state only those axioms relevant to fulfilling the goal. Figure 2 illus-

trates the situation we have in mind. STRIPS can produce both the se-

quence of (parameterized) operators OP ,...,OP and the sequence of
1 n-1

(parameterized) states s ,...,s . The kernel states k ....,k are to

be computed. We first assume that the sequence of operator preconditions

have been labeled g ,...,g , and g is the final goal. The following

algorithm computes kernel states by beginning from the final state and

working backwards to the initial state.

OP.

OP
n-1

TA-8973-1

FIGURE 2 SEQUENCE OF STATES AND
KERNEL STATES
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Start:

Put in k exactly those axioms of s used in the
n n

proof of the overall goal g .
n

Recursion:

Put an axiom in kernel k only if

(1) It is in s and used in the proof of the
i

precondition of OP., or

(2) It is a member of k but is not on the add-
i+l

list of OP .
i

It is not difficult to prove that the following properties

are consequences of this algorithm definition:

(1) Each set k of kernel axioms is in fact a subset
i

of the corresponding set s of state axioms.

(2) If a set of kernel axioms k is satisfied by a

configuration of the world, then application of

OP will produce a configuration of the world in

which kernel k is satisfied,
i+l

In other words, if we are in a situation in which k is satisfied for

some i, then application of the remaining operators in the sequence

will result in a state in which the overall goal g is satisfied. Thus,

the sequence of kernel states k ,...,k defined by our algorithm serves

as a set of natural milestones for monitoring the execution of a sequence

of operators.

We may now complete the description of a complex operator

(from a plan generated by STRIPS), by using the following simple rules,

where s and s are respectively the initial and final parameterized
1 n

states. (Note that the parameters in s and s are those resulting
1 n

after making whatever substitutions were necessary in constructing the

plan.)
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(1) The precondition wff is the conjunction of the

axioms in the initial kernel.

(2) The add-list consists of all axioms in s and

not in s .

(3) The delete-list consists of all axioms in s and
*

not in s .
n

By the definition of the kernels, if any set of kernel axioms is satis-

fied, then application of the remaining sequence of operators must lead

to a state in which the goal is satisfied; hence, Rule (1). Notice

that the add- and delete-lists are formed by set differences on the

initial and final states rather than set differences of kernels. This

is because these lists reflect all the (planned) effects of an operator

on the world, not just those effects that happen to be relevant to a

particular problem.

This rule is still somewhat tentative, but works well in "typical

situations.
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IV VISION RESEARCH

A. Introduction

Three separate efforts are currently in progress in the area of

vision research. The first concerns the development of special-purpose

picture-processing routines needed for the intermediate-level actions.

The second conerns an exploration of the use of color and stereoscopic

information to obtain better-formed regions for general region analysis.

The third is an investigation of ways in which visual information ob-

tained during exploration can be used to build a world model; this work

is described in Appendix F.

These activities represent a dichotomy between short-range and

long-range plans for vision work. Our long-range plans continue to be

based on a region-oriented approach to general scene analysis. However,

we have encountered problems in getting the merging heuristics to func-

tion well in the corridor environment. In addition, the amount of com-

putation required for a general scene analysis is often excessive for

the limited amount of information required by the intermediate-level

actions. Thus, the special-purpose routines are being written to pro-

vide users of the robot with certain specific kinds of visual informa-

tion. Hopefully this information will be useful for more general scene

analysis programs as well, and thus the short-range effort will also

contribute to the long-range effort.

B. Vision Programs for Intermediate-Level Actions

The special-purpose vision programs basically perform only three

functions: orienting and locating the robot, detecting the presence
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of objects, and locating objects. We shall consider each of these func-

tions in turn.

When the environment of the robot is represented accurately and

completely in the model, the chief role of vision is to provide feed-

back to update the robot's position and orientation. Angular orienta-

tion information is often needed in advance of a relatively long trip

down a corridor, where a small angular error might be significant. The

simplest way to obtain orientati-on feedback is to find the floor/wall

boundary in the picture, project it into the floor, and compare this

result with the known wall location in the model; any observed angular

discrepancy can be used to correct the stored value of the robot's

orientation.

For manuevers such as going through a doorway, both the robot's

position and orientation must be accurately known. This information

can be obtained from a picture of a known point and line on the floor.

Such distinguished points and lines are called landmarks, and include

doorways, concave corners, and convex corners. The basic program for

finding such landmarks has been described previously.6 The program has

undergone several refinements and improvements, and now works with the

model described in Section II-B of this report. Execution time is
*

essentially the time required to pan, tilt, and turn on the camera.

Concurrently, the accuracy is limited by mechanical factors to between

5 and 10 percent in range and 5 degrees in angle. Increased accuracy,

if needed, can be obtained by improving the pan and tilt mechanism for

the camera.

*
Since the camera, television control unit, and television transmitter

draw a large amount of power from the batteries, they are normally off.

Approximately ten seconds is required from the time these units are

turned on to the time that a picture can be taken.
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Before the robot starts a straight-line journey, it may be desirable

to check that the path is indeed clear. A simple way to do this is to

find the image of the path in the picture and examine that trapezoidal-

shaped region for changes in brightness that might indicate the presence

of an obstructing object. This is a simple visual task, and a program

implementing it has been written. In its current form the program uses

the Roberts-cross operator to detect brightness changes. When we first

ran the program, we were surprised to discover that at steep camera

angles the texture in the tile floor can be detected and give rise to

false alarms. This is an instance of a major shortcoing of special-

purpose vision routines, namely, the failure of simple criteria to cope

with the variety of circumstances that can arise. This particular

problem can be solved by requiring a certain minimum run-length of

gradient. However, shadows and reflections can still cause false alarms,

and the only solution to some of these problems is to do more thorough

scene analysis.

If there is reason to believe that an object is in a given area,

but its location is not known exactly, vision can be used to locate the

object. We are currently working on an object location routine that

will

• Use the model to compute the image of the floor area

• Delete all but the floor area from the picture

• Use the region-merging routines to partition the floor area

into regions

• Inspect these regions to find the faces of the object

that touch the floor

• Calculate the coordinates that locate the object.
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This is the most complicated of the special-purpose vision programs.

By making use of the model to exclude extraneous data and limiting

attention to finding merely the points where the object meets the floor,

we hope to obtain an efficient, reliable, and still useful special-

purpose vision routine.

C. Techniques for General Scene Analysis

For the past 18 months, we have based our work in general scene

analysis on the partitioning of the digitized picture into regions.7?8

If this partitioning is substantially correct, there are several ways

to identify the regions and complete the analysis of the scene.e>s>9

Unfortunately, it has not been possible to obtain reliable partitioning

in the corridor scenes. Regions that we wish to keep distinct—such as

two walls meeting at a corner—are frequently merged, and fragments of

meaningful regions that should be merged are too often kept distinct.

There are several ways in which this problem can be attacked. One

is to try to improve the quality of the input data. Another is to seek

improved merging heuristics. Another is to guide the merging by more

a priori knowledge, such as the fact that real region boundaries are

straight, and many edges are vertical. Another is to guide the merging

by feedback from recognition of parts of the scene. One can even con-

sider using the information in the model to compute an expected parti-

tioning, and turn to confirming, augmenting, and/or rejecting the hypoth-

esized partitioning.

Of these possibilities, we have concentrated on the first two.

One of the more promising ways of obtaining better input data is through

the use of color. When we explored color previously,10 we encountered

problems chiefly because of the low sensitivity of the vidicon sensor,

the low saturation of most of the colors encountered in the real world,
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and the sensitivity of color measurements to such factors as the type

of ambient light, specular reflections, shadows, the dynamic range, and

nonlinearities in the camera tube.

To attack these problems and gain the advantages of color infor-

mation, the following program has been initiated and is now being car-

ried out:

(1) The vidicon has been replaced by a plumbicon, resulting

in an approximately ten-fold increase in sensitivity.

(2) A set of color filters has been selected and experimentally

checked. The filters match both the spectral transfer

characteristics of the plumbicon and the spectral charac-

teristics of the fluorescent lights used in the laboratory

and the corridors.

(3) An effort has been made to obtain adequate discrimination

with unsaturated colors covering a wide range of objects

in the laboratory. These colors range from pastels to

unsaturated but deep reds, greens, etc. It appears that,

with appropriate adjustment of the camera characteristics,

such discrimination will be adequate under most operating

conditions.

(4) A subsidiary investigation is planned to automatize the

iris control of the camera, such that the dynamic range

is automatically adjusted as a function of varying light

level of a scene. A fairly simple program will be written

to read one picture, analyze the distribution of light

levels, adjust the iris setting, and repeat the process

until a satisfactory distribution is obtained.
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(5) The Fennema-Brice region analysis program has been

modified to accept color data. In addition, an alter-

native approach to region analysis tailored to the charac-

teristics of color data is being developed. Although

several test pictures have been taken and analyzed, this

work is still in a formative stage and requires further

investigation.

Another area that is being investigated is the use of stereoscopic

information to aid scene analysis. This study assumes that correspond-

ing vertex points in stereo pairs can be identified, and that the range

to these points can be computed. The basic question concerns the use

of this information in detecting and correcting errors in partitioning

the picture. One of the early observations was that this kind of in-

formation can detect errors and suggest corrections, but it can not

detect all errors or yield unique corrections. For example, if Figure

3(a) is an imperfect representation of part of a box, they by knowing

the range to the vertices of region A one will conclude that the region

is not planar. However, as the other constructions in Figure 3 illus-

trate, no unique correction of the errors is possible. Nevertheless,

if a list of possible corrections can be obtained, one can try to see

which one best explains the original picture data. (This is essentially

the line proposer and verifier technique suggested by Minsky and inves-

tigated by Griffith.11) Hopefully, the improvements provided by color

or stereo information will allow us to attack the more interesting,

higher-level problems in scene analysis.
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TA-8973-3

FIGURE 3 SOME POSSIBLE WAYS OF CORRECTING AN
IMPERFECTLY PARTITIONED PICTURE
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V HARDWARE AND SYSTEMS SOFTWARE

A. Introduction

The work of the systems group can be divided into three parts:

hardware modification and addition, monitor and diagnostic programs,

and user support programs. The first section deals with hardware, and

includes discussion of problems as well as current additions and future

modifications. The second section treats diagnostic programs and moni-

tor modifications. The third section discusses user programs and their

relation to existing hardware.

B. Hardware

The AI computer system is pictured in Figure 4. The dotted figures

and connections are future additions; the solid lines indicate existing

equipment. The left side shows the PDP-10 and its peripherals, the

right side the PDP-15 complex.

Changes in the past six months include:

• Moving two DECtape units from the PDP-15 to the PDP-10.

It is still possible to use these on the PDP-15 by switch

control.

• Modifying the TV interface from manual control to program

control.

• Modifying the robot.

The robot was adjusted to fix slippage in the wheels. A new gear

is on order to fix the pan motor. A new sensor was added, which enables

49



CO

CO

QC
LU

O
u
Q.

O
oc

LU
O

a

LU

O

LL

CO

LU
cc

50



the robot to generate an interrupt (which is ovemdable) when it loses

contact with an object that it was pushing. Built into this sensor is

an interrupt capability which is triggered when the robot tries to push

against something that is too heavy for it (e.g., a wall).

During the past period it was determined that the DA25 interface

was unsatisfactory because the transfer rate was too slow. The maximum

rate that could be hoped for is one 18-bit word every 8 |j.s. In fact,

due to a design flaw, the best we have been able to obtain is a word

every 12 |is, and this is maximum rate. Average rate is closer to 16 |is.

Since we shall eventually require speeds approaching a word per

microsecond, we entered into negotiation with DEC. The resulting design

of the DA28 was a result of our joint efforts, and meets our needs. It

is to be delivered to SRI in August.

Another new development is the future receipt of the TENEX system.

This is a system designed and implemented by BBN to convert the PDP-10

into a paged machine. This will greatly increase throughput. The sys-

tem includes both hardware and software.

The hardware includes a paging box and certain modifications to the

PDP-10 CPU. These modifications are being made now.

Design specifications have been developed by us for an interface

between the IMP remote host and the PDP-15. This is to enable us to

enter the ARPA network. This design has been let out for competitive

bids and we are evaluating them prior to awarding a contract to build

it.

The final hardware modification is another future development.

This is our device multiplexer. It is possible, in the future, that

devices as yet unspecified will be added to the system. Rather than

designing an interface to the PDP-15 for each device, a universal
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interface is being built to multiplex these future devices, one of which

is a Grafacon, which we would like to use in conjunction with our display.

C. Diagnostic and Monitor Programs

The Systems Group completed checkout of the diagnostic programs

for the drum and display during the past six months. The drum diagnostic

exercises all tracks of the drum (reading and writing), both fixed and

random patterns. It checks timing and parity. It also turns out to be

a good memory diagnostic, when used in conjunction with other programs.

The display diagnostic enables the standard Adage diagnostic pat-

tern to be displayed and refresh rate and interrupt levels to be checked.

The major monitor modification was a new swapper. This uses the

drum as a swapping device (rather than the disk packs). Preliminary

study seems to indicate an average enhancement of response time of from

150 to 200 percent. We plan to optimize the code in hopes of getting

another 50 percent increase in user response time. We have decided not

to implement any files on the drum, since the entire system will be

changed with the advent of TENEX.

Some modifications to the LOGIN and LOGOUT routines were implemented.

This gave a clearer picture of where most of the time was spent, and

which users were spending it.

The monitor was modified to handle the PDP-15 as a sharable device.

The PDP-15 peripherals (i.e., robot, display, A/D converter) are handled

as single-user subdevices. Also the monitor was modified to handle TV

input. When a picture is to be taken, the monitor ensures that no

accesses to the disk pack will take place. It then allocates core to

the user area and acknowledges that a picture may be acquired. The

picture is read in through the TV A/D converter via the DF10 channel.
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It is then written on a unique disk file in that user's area. The TV

is then released by the monitor, and that core allocated for the pic-

ture acquisition is returned to the available area.

Currently, we are learning about TENEX and its monitor. The first

job we hope to do on that monitor is to change its file-handling I/O.

It currently treats all tertiary file space as one large disk. We want

to have removable, separate disk pack software, thereby giving each

subproject a disk pack for its own files and allocating one disk pack

for systems and backup availability. We are also starting to consider

rewrites for the various parts of the system which will change under

TENEX—specifically TV interface, DA25 interface, and drum utilization.

D. User Support Programs

The most important user support programs that were written were

the robot programs in the,PDP-10 and PDP-15. They are described in

Appendix G, "Robot Communications Between the PDP-15 and the PDP-10."

The PDP-15 programs have been written entirely by the Systems

Group. This was necessary because existing DEC software was written

for the customer who had a stand-alone PDP-15. Our monitor (if such

it may be called) is efficient and compact. It appears that our pres-

ent 12K will be sufficient core memory on the PDP-15 for the immediate

future, but it is easy to visualize that amount as being too small.

Currently we handle the PDP-10 interface, robot, display, and A/D con-

verter programs.

The PDP-10 interface program always assumes that the PDP-10 is the

master and the PDP-15 the servant. Therefore if any information has

to go from the PDP-15 to the PDP-10, it must be asked for by the PDP-10.

Similarlym if the PDP-15 is sending a message and the PDP-10 decides to

initiate a transfer the other way, it takes priority, its message is

sent, and the original message is retransmitted afterwards.
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All assembling of programs for the PDP-15 is done by an SRI-written

PDP-15 assembler on the PDP-10 and then transferred to the PDP-15 via

the DA25. This is much faster and does not interfere with existing

PDP-15 routines while the assembly is running.

The Adage display has been programmed so that a user on the PDP-10

writing in MACRO or FORTRAN can use it. This is described in Appendix

H, "User Display Software Memo," Currently, a higher-order implementa-

tion for use by LISP programmers is being done.

Two other user routines currently being written are an A/t> converter

routine, and a magtape-to-DECtape program.
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Appendix A

A HEURISTICALLY GUIDED EQUALITY RULE

IN A RESOLUTION THEOREM PROVER

ABSTRACT

A new way of handling the equality relation within the framework

of a resolution theorem prover is described. The system uses a modi-

fication of Morns' E-resolution, a rule of inference to handle equality,

controlled by heuristic tree search techniques. The modification makes

possible an implementation to which new rules of inference may be added

easily.

I INTRODUCTION

The equality relation is widely used but difficult to axiomatize

efficiently. We describe a new way of handling this relation within

the framework of a resolution theorem prover. The system uses a modi-

fication of Morns' E-resolution, a rule of inference to handle equality,

controlled by heuristic tree search techniques. The modification makes

possible an implementation to which new rules of inference may be added

easily.

Each time the resolution theorem prover makes an attempt to resolve

two clauses, but cannot unify a pair of literals, the "equality tree"

generator is called. A tree of clauses is built by substituting equal

terms in one of the literals, until unification is possible. The growth

of the equality tree is controlled by bounds on the processing time, the

59



breadth and depth of the tree, and a reluctance" function. The reluc-

tance function associates a cost with each node of the tree and selects

nodes for expanding with minimal cost. The function is a linear combi-

nation of several "features." Some of the features are the probability

that the literals will unify, the length of the literals, the number of

constants the literals have in common, and the length of the clauses in

which the literals occur.

Section II gives information on terminology, theoretical background

and completeness results for E-resolution and variants. Section III

describes the heuristic machinery of the system. It includes also

descriptions of the "equality tree" and the search strategies used to

find a path from the root to the goal node of the tree. Four sample

proofs are given in Section IV.

II E-RESOLUTION

It is assumed that the reader is familiar with the standard nota-

tion and terminology used in lierature on resolution.1 Among other

methods for dealing with equality, paramodulation is relevant as E-

resolution can be shown to be definable in terms of paramodulation with

resolution.1 Therefore, let us recall briefly the definition of

paramodulation.

Paramodulation—This is a rule of inference that, given two clauses:

A

and

a = p v B (or 3 - a v B) ,

*
References are listed at the end of this appendix.
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having no variables in common and such that A contains a term 5, with §

and ot having a most-general unifier a, forms A' by replacing in A one

single occurrence of 6 by p and infers A' V B .

Example: given the following three clauses

c = d V Qc

f(c) ^ f(d)

X = X

letting A correspond with f(c) ^ f(d), B with Qc, a = P with c = d, and

6 with d in A', then one can deduce by paramodulation the clause

f(c) ± f(c) V Qc

and, by resolution, the clause Qc.

Thus, intuitively, paramodulation provides a way to make use of the

substitutivity property of equality. The reflexivity property does not,

in E-resolution, require special axioms, and if a and 6 have no most-

general unifier, the program tries to find one for (3 and 6 (with the

same definition for y, 6> and p as in the paramodulation definition).

Each clause may generate many distinct paramodulators. One can define,

following Ref. 1, the descendants of a clause C from a set S obtained by

paramodulating into the literal & of C, in the following manner:

P (S,C,£) = (C} ,

P (S,C,jfc) - the set of descendants obtained from C ,
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and by induction:

P (S,C,,C) = the set of descendants obtained by paramodulating from

k—1
the clauses of P (S,C,1) into the literal j,

A. E-Resolution Defined

Using the preliminary definition above, one can define E-

resolution as follows:

oo k
Let P (S,C,4) be the union of the P (S,C,&) for the different

values of k. C is an E-resolvent of two clauses C and C iff there
3 1 2

exist a descendant clause C' from P (S,C ,1 ) and a descendant clause

C' from P°°(S,C ,H ) such that C is a resolvent of G' and c' and the

literals resolved upon in C7 and C7 are those descended from & and H ,
1 £i \. £

respectively.

The intuitive idea behind these concepts is to be able to deal

with the transitive property of equality. The two clauses C and C
i. £

generate two trees of descendant clauses, and a path in one of these

trees can be built by a chain of equalities and substitutions. This

definition is of little help for programming purposes because of the

necessity of developing two trees of paramodulants. It can be shown

that a similar definition, but using only one tree, is equivalent. This

definition is given below:

C is an E-resolvent of two clauses C and C iff there
3 1 2

exists G' from P (S,C ,j£ ) such that C is a resolvent
JL _L _L «j

of C and C and the literal resolved upon in C; is H
J - £ 1 1

or the descendant of H .
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This way of implementing E-resolution differs from the one used in Ref.

3, but is closer to the formal definition of E-resolution given by

Anderson.1

B. Completeness for Ground E-Resolution

To show that this modified definition of E-resolution is com-

plete, we will show that it is complete for ground E-resolution and

following Ref. 1, lift this result to the general level. Using the

terminology of the first definition of E-resolution, let C be a resol-
tJ

vent of the two clauses c' and c'. Let us denote G' by {&'} U L' and
\. £1 J. 1_ _L

c/ by {&'} U L', where L' and L are the sets of literals from c' and
£t £ &t \- £t J.

G' not deleted by the resolution. C is therefore expressed by I/ U L'
£ o J. ^2
and, since we have performed ground resolution, H, and & are comple-

1 £t

ments. By applying in reverse order to the literal H,' of the clause c',

the chain of equality replacements that took place to generate &', we

can generate the clause c" = {&"} U L" where Q," = ~Z . G" can then

resolve against C and as we apply the same chain of paramodulations,

the resolvent is C . It is shown in Ref. 1 that E-resolution, expressed
O

here in terms of resolution and paramodulation, is complete with or

without set of support, under the same condition as paramodulation: If

the reflexivity axiom (FA(x) x = x) (in which FA(x) stands for (Vx)) is

present and all reflectivity functional axioms

(FA(x,y)(x = y ID f(x) = f(y))) are also present.

C. Comments on E-Resolution

If E-resolution can be expressed in terms of paramodulation

and resolution, one might wonder to what extent it is a useful technique.

In contrast with paramodulation, E-resolution limits the number of

clauses on which a theorem prover works. This is an important advantage
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because the strategies used to select clauses that are resolved upon are

not very successful when the number of clauses increases. The reason

is that in E-resolution a clause is added to the set of clauses of the

system only if a resolvent is found, while in paramodulation the clauses

that would be on the intermediate nodes of the E-resolution tree would

be added. However, two clauses may yield more than one resolvent, and

E-resolution is complete only if from two clauses one can generate all

the possible distinct E-resolvents. To generate all the E-resolvents

from two clauses C and C , one would have to grow from C or C a tree
1 £i \- £t

P (S,C ,H ) or P (S,C ,!i ) until all the possible distinct paramodulants
.L J- £ £

of C or C into fa or i have been found. In practice, these trees are
\- £t \. £t

almost never generated entirely. They could sometimes be infinite trees

and, at any rate, the expansion of these trees is time consuming. Fur-

thermore, in most cases not all the E-resolvents of two clauses are

needed to obtain a proof. Instead, as in Ref. 3, one might use a tree-

level bound on the depth of the E-resolution tree. This bound limits

the number of nodes to be generated, and it is increased progressively

until a proof is found. Of course, then some procedure to save the

partially expanded trees of paramodulated clauses should be implemented.

If a proof is not found, the tree-level bound is incremented and the

search can continue using the saved trees. This tree-level bound serves

also the purpose of limiting the search when it happens that two clauses

have no E-resolvents. To further limit the search, Morris's E-resolution

program3 was activated only if the two literals H and H of two clauses

C and C did not unify. Although this limitation seems fairly natural,
1 £

it made the system incomplete, as was shown by Anderson1 using the fol-

lowing set of clauses:

(1) Pf(x)g(y) V Ph(x)i(y)

~Pf(a)g(b)
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~ph(b)l(b)
(4) f(a) = f(c)

(5) h(c) = h(b)

The only possible resolvents obtained, if E-resolution is called only

iff two literals do not unify, are:

Ph(a)i(b)

and

Pf(b)g(b)

However, by using the general E-resolution, one can generate the nil

clause:

(6) Ph(c)i(b) E-resolvent from (1) and (2) obtained by

paramodulation of (1) using (4)

(7) nil E-resolvent from (6) and (3) obtained by

paramodulation into (6) using (5).

D. The EQA3 E-Resolution System

The E-resolution program EQA3 was designed to be a package

that could be added to QA3.S QA3 is a question-answering system based

on the resolution principle, and it uses the set-of-support and unit-

preference strategy. EQA3 does not differ in principle from the system

described in Ref. 4 but actually suffers from its implementation in a

theorem-proving system whose conception and structure do not lend them-

selves to improvement and refinement. However, QA3 will probably be

rewritten or replaced by a more flexible theorem prover. With this

purpose in mind, we have tried to keep EQA3 as general as possible.

The descendant tree generator, which is the core of the system, could
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eventually be used to generate any type of clause that could be inferred

using a rule other than paramodulation. For example, to express that

the predicate P(x,y,z) is such that the order in which its arguments

appear is irrelevant, one can use the tree generator with a rule of in-

ference consisting of a permutation of the arguments. Special permuta-

tions such as cyclic permutation can be used. For example, when the

orientation of a line is irrelevant, one wants to express that the two

predicates LINE(A,B) and LINE(B,A) have the same truth value. A predi-

cate may have only a few ground instances. A model for this predicate

could then be the list of the ground instances for which the predicate

is true. Each clause containing a model evaluable predicate can be re-

solved against or subsumed by a model unit clause.

One can imagine that the tree generator could select, de-

pending on the problem, different rules of inference to produce descen-

dant clauses. The selection can be simply as in E-resolution, e.g.,

the failure of rule 1 (resolution) implies the use of rule 2 (E-

resolution). Another possibility is that each predicate has a property

list that tells what rule of inference has to be used.

In its actual implementation, EQA3 makes use of an evaluation

function or reluctance function to select the next node to be expanded.

The system actually uses only paramodulation to infer new nodes in the

tree. Not all the descendants of clauses obtained by paramodulation

into a literal are generated. Some of them would be of no use in trying

to get an E-resolvent. The substitution takes place only in the terms

of the literal or descendant of the literal when the unification algorithm

fails. Thus, this implementation suffers from the same incompleteness as

Morris's system (see Section II-C), but this limitation has no practical

consequences. The reflexivity axiom X = X does not have to be added as
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an axiom to the set of clauses. It is "built into the system and used

to resolve against inequality literals.

Each clause containing an equality literal is collected on a

list of equalities (EQLIST). This list is ordered by length of clause.

Thus equalities belonging to shortest clauses will be tried first for

possible application of the E-resolution rule. This was done in an

effort to keep the length of the eventual E-resolvent to a minimum (cf.

unit preference strategy).

The next section describes the structure of the tree generator

and the reluctance function in more detail.

Ill THE EQUALITY TREE

The essence of E-resolution is that each time two literals with the

same predicate but opposite sign do not unify, a special procedure is

invoked to show these two terms to be equal using unknown equalities.

The special procedure generates a tree of modified clauses obtained by

substituting terms in the literal of the clauses until they unify, using

a list of positive equalities. This tree is called the "equality tree."

The procedure is a rather general one given:

(1) A start node, a string of symbols, e.g., p(a).

(2) A goal node, also a string of symbols, e.g., p(b).

(3) A list of equalities, e.g., (a = c, c = b). We can

replace part of a string by another string known to be

its equal by a most-general common instance, and form

in this way other nodes (grow a tree), e.g., we can

form the nodes p(c) and p(b); the last node is equal

to the goal node.
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The procedure tries to find a path between the start and goal nodes.

In our example the path found is p(a), p(c), p(b). In our description

we showed only nodes consisting of single literals. In general, nodes

have more complex values (clauses), although the search is done for

specific literals in the start and goal clauses.

A. Search Procedures

Several difficulties arise if we want to implement such a

procedure:

(1) A path between two nodes does not have to exist; •

in this case we should be able to end the search.

(2) Some branches of the tree must be recognized as

unsuccessful, and the search stopped in favor of

other branches.

Because of such problems, we cannot use a "depth-first" search technique

as we are unable to recover from a single wrong decision in an infinite

tree, e.g., we grow a branch from the node f(x) = e * x and repeatedly

apply the equality x = e * x. Then we get the branch

f(x) = e * x

f (x) = e- * e * x

f(x) = e * e * e * x
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An alternative, is a breadth-first search; we avoid the difficulty

associated with infinite branches, but now we cannot use heuristic in-

formation in deciding which branch to develop first.

The method used in this system is search controlled by a re-

luctance function. In this method we may think of a "frontier" of those

nodes whose successors have not been examined. This frontier is extended

by choosing any node in it and examining the node's successors. The

node chosen will be that which has the minimum value of some function

called a "reluctance function." It is easy to see that breadth-first

and depth-first search are special cases of this last search method.

B. How to Grow a Tree

Several factors have to be considered when growing a tree.

(1) Control of the size of the tree; there are bounds

on:

• Breadth

• Depth

• Processing time spent working on this

specific problem.

(2) Successors or sons of the node. Not all of the

sons of a node are developed at once because

the number of sons may be unreasonably large,

for instance, when a long list of equalities

has to be used. Also, we may reach a goal node

without having to find all the successors.

(3) Some nodes are thrown away if associated cost

values are above a "cutoff" criterion. In
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our system this is a limiting of the length of

the literal relative to the length of the goal

literal used. If the global variable LIMIT

LENGTH is set to four, then any node with

literals whose number of symbols (length) is

four times the length of the goal literal will

be thrown away.

(4) Order of the evaluation of the nodes, the re-

luctance function: the essential function is

EVALCOST.

The tree-growing program is written in an elegant recursive

form as suggested by Burstall.5 The controlled search therefore could

be programmed in a manner very similar to depth-first search.

C. The Reluctance Function

Each time a node is to be selected for expanding, the candi-

dates are "open" nodes--nodes that do not have their maximum number of

sons (limited by the breadth bound). The node selected is the one with

minimal associated cost. The reluctance function should have a minimal

value for the chosen node. The cost given by the reluctance function

"EVALCOST" is a combination of several "features." A feature f is a

function that measures some properties of a node. EVALCOST makes use

of the linear combination

C = C f + C f ... + C f
11 22 n n

Of course, nonlinear combinations are possible, but for our system the

linear reluctance function is adequate.
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D. Features Used in the Reluctance Function

The features are all functions of the string (literal) asso-

ciated with the node under investigation. The goal literal is the

string that is the ultimate goal of the tree search. The features are:

(1) Length relative to the length of the goal literal

(2) Number of constants in common with the goal

literal

(3) Number of function symbols in common with the goal

literal

(4) Degree of nesting relative to degree of nesting

of the goal literal

(5) Length of the clause of which the literal is an

element

(6) Probability that the literal and the goal literal

will unify.

E. Detailed Description of the Features

(1) Length: number of symbols in the string (literal)

including parentheses, e.g., (f(e)3) -• 7.

(2) Number of constants: A list of constants occurring

in the literal is made and compared with the list

of constants occurring in the goal literal. An

integer expressing the number of shared constants

is computed. The algorithm gives, in this way,

a maximal value for literals with an equal number

of the same constants, while lower values are
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obtained for a smaller or larger shared number of

constants.

(3) Number of function symbols: each substring of

the form '((atom) (atom or list)1 contains the

occurrence of a function symbol, here, '(atom)'.

The procedure for the number of constants is re-

applied, this time with the two lists of function

symbols.

(4) Degree of nesting: this feature is defined as

£ K , where x is an element of the string under

consideration; x is not '('or')'; K is the number
x

of bracket pairs enclosing x—e.g., '(g(f a)(e))' -* 7.

(5) Length of clause: the literal associated with

the node is an element of a clause. The resolu-

tion system has a built-in strategy with a

preference for short clauses. In the E-resolution

part, too, nodes with long clauses are penalized.

(6) Probability that the literal and the goal literal

will unify: normally if two literals do not

unify, the unification algorithm fails and leaves

us without information on how "well" the unifica-

tion was doing. If the algorithm in this system

fails, it reports the degree to which the laterals

did match. The algorithm adds

• For each term that matches [I/number of

terms], the weight of the term, to a

running count
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• Inside a term, for each subterm, [weight

of the term/number of subterms] to the

running count.

The algorithm tries to unify the two literals and

adds each time that the unification succeeds on a

subterm the weight of the term or subterm of a

term to the running count, e.g.,

(P(f x)(a)), (P(g x)(a)) - 0.5

(P(f x)(a)), (P(f y) z) - 1

(P(f(a))x), (P(f(b))(a)) - 0.25

F. Performance of EVALCOST

Not much is known about the influence of the different features.

The sample runs are made with a setting in which the length of the

literal, and to a lesser degree the length of the clause of a node, de-

termine the expansion of the tree. The user will have to experiment

which setting to use for each problem. A semi- interactive use with

tracing, printing, and checking of the growth of the tree seems the best

approach.

G. Structure of the Tree

1. Structure of the Tree

The tree is built with atoms generated by GENSYM. Each

node has a property list with the following flags and information:

VALUE, the literal associated with the node

FATHER, a backpointer to the father node
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SONS, a list of pointers to son nodes

EXPBY, a pair of pointers to the terms of the

literal and the equality, used in the substitution

TERMINAL, T if node is terminal, otherwise NIL

BOUND, dotted pair of current depth and breadth

(number of sons) (in this order)

COST, cost as computed by EVALCOST.

2. An Example of a Small Tree'

START

G0001

((FATHER START)

(SONS NIL)(TERMINAL NIL)

(BOUND.(1.2))(COST 15))

((FATHER NIL)(SONS.(G0001 G0002))

(TERMINAL NIL)(BOUND.(0.0))(COST 10))

G0002 ((FATHER START)(SONS.(G0003))

(TERMINAL NIL)(BOUND.(1. 2))

(COST 9))

G0003 ((FATHER G002)(SONS NIL)

(TERMINAL NIL)(BOUND.(2.1))

(COST 0))

IV EXAMPLES OF RUNS

Three of the following examples come from elementary group theory.

'*' denotes the binary group operator. E denotes the identity of the

group and INV denotes the inverse operator. One example is about the

induction proof for the synthesis of the reverse function. REV denotes

the reverse function, and AP, LIST, and CDR denote the LISP functions

APPEND, LIST, and CDR. For each proof that implied only one E-resolution,

the penetrance—the number of nodes developed on the path divided by the
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total number of nodes developed in the tree—is given. In the sample

runs the theorems to be proven are preceded by TQ and the axioms by AX.

Literals derived by E-resolution from a part of the negation of the

theorem are preceded by NEG-THM.

Example 1. (See sample printout on page 72). The theorem

proven is: the identity element of a commutative group is

unique. The negation of the theorem is (el * x = x) &

el ^ e, or in prefix notation as used in the printouts:

= (*(E1,X)X) & ̂  (E1,E). EQA3 generates a contradiction

by paramodulating into ^ (E1,E) and resolving against the

reflexivity axiom = (X,X). A measure of goal directedness

of the proof is the ratio of the length of the path and

the total number of nodes generated during the proof.

This measure is called penetrance. The penetrance in

example 1 was 3/8.

Example 2. In the proof shown on page 73 the group is re-

stricted such that for all elements X, (X(* X X)E). The

theorem proven is (Vx) x-x = e. Penetrance 8/22.

Example 3. Page 74 gives a sample printout for the proof

of the theorem (Vx)(Vy)(Vz)x-(y-(x -y )) = e. The

penetrance was extremely low, 7/104. It seems that the

main reason for such a bad performance was the great

number of unproductive paramodulants that were generated

by using the commutativity axiom (FA(X,Y)(=(* X Y)(* Y X))).

Example 4. In the sample printout on page 75, SK45, SK46,

and SK47 denote the constants that replace the universally

quantified variables Yl, Y2, and X. As the system starts

from the negation of the theorem to find a contradiction,
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the universal quantifiers of the theorem become existential

quantifiers and the variables are replaced by Skolem con-

stants. The instantiation of Y2*, not given by the system,

is Y2* = AP(LIST(CAR(SK45)),SK46)) or for all Yl, Y2, and

X the theorem is true with Y2* = AP(LIST(CAR(Y1),Y2)).

Penetrance 3/5.

V CONCLUSION

After some experimentation with our implementation of the equality

rule several things became clear to us:

(1) An equality rule without any guidance is doomed to

fail on any nontrivial problem.

(2) A heuristically guided search gives good results

for a limited class of problems for which the reluc-

tance function features are properly "tuned."

(3) For a wider range of problems, watching the theorem

prover in the process of proving an equality and

introducing simple special rules of inference in

case of failure or bad performance turns out to be

the best solution.
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(PAS)
EXECUTIVE M0DF

-RESET

- A X C A X 1 AX2)
AX1 CFA (X Y) (= (* X Y) C* Y X»)
AXI0M

AX? CFA CX) ( = (* F X) X))
AXIOM

- T Q ( I F C F A C X > < = ( * El X) X»<= Fl F»

1. NEG-THM 0. = <*<£ ! ,X> ,X>

2. NFG-THM 0. -=CF1,E)

3. NFG-THM 0. -= (*( E, El >, E)

CLAUSE 3. EQUAL.

4. NEG-THM 0. -= <*< El, E), E)

CLAUSE 4. EPUAL.

5. NFtt-THM 0. -=<E, F)

CLAUSE 5. EQUAL.

6. AXI0M 0. = ( X * X )

7. PFSC5. 6.) 1. CONTRADICTION

YFS

Example 1
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( O A S >
EXECUTIVE M0DE

-PESET

«-AX(AX2 AX3 AX4 AX5)
AX2 (FA CX) ( = C* E X) X))
AXI0M

AX3 (Fft (X) (= <* X X) E))
AXI0M

AX4 (FA (X) (= (* X ( I N V X>> E))
AXI0M

AX5 (FA (X Y 7.) ( = (* X (* Y Z>> (* (* X Y) Z > > >
AXI0M

- T f > ( F A ( X ) ( = X ( I N V X ) ) )

1. NEG-THM 0. -=(SK45, INV(SK45»

?. NEG-THM 0. -=(SK45,*(E,INV(SK45»>

CLAUSE ?. EOUAL.

3. NEG-THM 0. -= ( SK45, *(*(X, X), I N V ( SK 45) ) )

CLAUSE 3. EOUAL.

4. NFG-THM 0. - = ( SK45,*(Y* *(Y» I NV( SK45) ) »

CLAUSE 4. EQUAL.

5. NEG-THM 0. -= (SK45»*( SK45, E))

Q.AUSE 5. EQUAL.

6. NFG-THM 0. - = ( SK45, * ( SK45* *(X» X) ) )

CLAUSE 6. EPUAL.

7. NEG-THM 0. -= ( SK45, *(*( SK45* Z), 7.) )

CLAUSF 7. EOUAL.

R. NEG-THM 0. -= (SK45* *( E, SK^5) )

CLAUSF R. EOUAL.
r̂

9. NEG-THM 0. -= (SK45, SK45)

CLAUSF 9. EOUAL.

1 0 . A X I O M 0 . = ( X , X >

11.RFS(9. 10.) 1. C0NTPADICTI0N

YFS 78
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EXECUTIVE M0DE

-PFSET

-AX(AX1 AXP AX4 AX5)
AX1 (FA CX Y) ( = (* X Y) (* Y X>»

AX? (FA (X) (= (* E X) X))
AX T 0M

AX4 (FA (X) (= (* X (INV X)) E»
AXIOM

AX5 (FA (X Y Z> (= (* X (* Y Z>> (* (* X Y) Z»>
AXI0M

-T"(FA(X Y ) ( = E (* X(* Y(* (INV XXINV Y))»»

1. NEG-THM 0. -=(E.»*(SK45**(SK46** . ( INV(SK45)* INV(SK46) )) »

?. NFG-THM 0. -=(E**(*(SK46,*( INV(SK45), INV(SK46)»* SK^5))

CLAUSE 2. EOUAL.

3. NFG-THM 0. -= ( E, *(*( SK46, *( I NV( SK 46) * I NV( SK/t5» ) , SK45) )

d.AUSF 3. FOUAL.

A. NEG-THM 0. -=(F,* f*(*(SK46* INV(SK46))» INV(SK45)>* SK45))

CLAUSE A. FOUAL.

5. NEG-THM 0. -=( E, *(*(£, I NV( SK45) )* SK45) )

CLAUSE 5. FOUAL.

6. NEG-THM 0. -= ( E* *( INV( SK 45) , SK45) )

CLAUSE 6. EOUAL.

7. NFG-THM 0. -= ( E, *( SK45* INV( SK45) ) )

CLAUSE 7. EOUAL.

8. NEG-THM 0. - = (F, E)

CLAUSF R. EOUAL.

9. AXI0M 0. =(X,X)

10.RFS(R. 9.) 1. C0NTRADICTI0N

Example 3
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E X E C U T I V E M0DF

-AX(AX? AX3)
AX2 (FA (U V W) (= (AP U (AP V W) ) (AP (AP II V) W) ) )
A X I O M

AX3 (FA (U) (IF (N0T (NULL U)) (= (PF.V U) (AP ( R E V (CDR U» ( L I S T (C
AP U ) ) ) ) ) )
AXI0M

-TPR0VF 01
(FA (Yl Y2 X) ( IF ( A N D (N0T (NULL Y l ) ) (= (AP ( R E V Yl ) Y? ) ( R E V X»)
(FX (YP*> (= (AP ( R E V (CDR Y l ) ) Y2*) (RFV X ) ) ) ) )
1. NEG-THM 0. -NULL(SK45)

£• NEG-THM 0. = ( A P ( R E V ( SK 45) * SK^6) , RFV( SK

3. NFG-THM 0. - = ( A P ( R E V ( CDP( SK ^55) )* Y2*) * R F V ( SK 47) )

4. NFG-THM 0. - = ( A P ( R E V ( C D R ( S K 45) )* Y2*) * A P ( R F V ( SK45) , SK 46) )

CLAUSF 4. EQUAL.

5. NEG-THM 0. - = C A P ( R E V ( C D R ( S K 4 5 ) ) , Y 2 * ) , A P ( A P ( R E V ( C D R ( S K 4 5 ) ) , L
I S T ( C A R ( S K 4 5 ) ) ) , S K 4 6 ) ) NULL (SK 45)

CLAUSE 5. EQUAL.

6. NEG-THM 0. - = ( A P ( R E V ( C D R ( SK45) ) , Y2*), AP( REV( CDR( SK 45) ) , A P ( L
I S T ( C A R ( S K 4 5 ) ) , S K 4 6 ) ) ) NULL (SK 4 5)

CLAUSE 6. EQUAL.

7. A X I 0 M 0. = ( X * X )

R. RES(6 . 7.) 1. N U L L ( S K 4 5 )

9. PFSd. 80 2. C O N T R A D I C T I O N

YES

Example 4
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Appendix B

REASONING BY ANALOGY AS AN AID TO HEURISTIC

THEOREM PROVING

ABSTRACT

When heuristic problem-solving programs are faced with large data

bases that contain numbers of facts far in excess of those needed to

solve any particular problem, their performance rapidly deteriorates.

In this paper, the correspondence between a new unresolved problem and

a previously solved analogous problem is computed and invoked to tailor

large data bases to manageable sizes. This appendix describes a particu-

lar set of algorithms for generating and exploiting analogies between

theorems posed to a resolution-logic system. These algorithms are be-

lieved to be the first computationally feasible development of reasoning

by analogy to be applied to heuristic theorem proving.
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Any contemporary heuristic deductive theorem-proving system that

proves theorems by applying some rules of inference to an explicit set

of axioms must use a carefully tailored data base. Most search pro-

cedures will generate many irrelevant inferences when seeking the proof

of some nontrivial theorem even when they are given a minimal set of

axioms. Generally, the effective power of a search procedure is limited

by the memory capacity of a particular system: most theorem provers run

out of space (absorbed by irrelevant inferences) before they run out of
*

time when they fail to prove a hard theorem.

Consider a particular theorem P that can be solved with a set of

axioms D. Suppose that a theorem-prover S can prove P within its memory

limitations. Suppose D is expanded to D; by adding axioms that include

many of the same relations that appear in D. If S attempts P again, it

will generate many new irrelevant inferences that are derived from the

axioms in D' - D. In fact, the size of D need not be too much larger

than that of D to render P unprovable by S. Typical theorem provers

work with a D composed of less than 20 axioms. If P is hard for S, then

just a few additional axioms may add a sufficient number of inferences

to the search space to exhaust the memory before a solution is found.

In the '60's, most research focused on the organization of S and the

development of a variety of ever-more-efficient search procedures. Con-

sequently, researchers could choose an optimal D for each particular

theorem without sacrificing their research goals. In contrast, as

heuristic deductive systems are being proposed to solve real-world

problems, such as robot manipulation,3 larger nonoptimal data bases are

necessary.

*
This observation is based upon my own experience with resolution systems

and is corroborated by other researchers using different paradigms.1 >3*

t
References are listed at the end of this appendix.
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Suppose we have a theorem P, and a large data base D . In general,

there is no way to choose a small subset D of D' such that D =*»P. Sup-

pose we had previously solved some theorem P that is analogous to P in

so far as analogs of the axioms used in the proof of P will be required

in the proof of P. If we could generate the analogy between P and P to

find the set of axioms and use them as D , then we could let S attempt

P with greater hope of success. This appendix describes a set of al-

gorithms for generating an analogy between some given pair of P and P

and for exploiting this relationship to estimate D'.

The preceding discussion has been rather general and applies to any

heuristic theorem prover such as LT2 and resolution.4 However, each

paradigm will require slightly variant representations and methods for

generating and using analogical information. Effective research demands

working with a specific theorem prover; for reasons of convenience, I

have chosen QA3,5 a resolution-based theorem prover. QA3 and the al-

gorithm ZORBA-I, described below, are implemented in LISP on a PDP-10

at Stanford Research Institute.

Before describing ZORBA-I abstractly, I want to exemplify the kinds

of theorems that it tackles. Briefly, they are theorem-pairs in domains

without constants (e.g., mathematics) that have close to one-to-one

analogies. The theorems include those that are fairly hard for QA3 to

solve even with an optimal memory. For example, ZORBA-I will be given

the proof of the theorem

T . The intersection of two abelian groups is an abelian group,

and is asked to generate an analogy with

T . The intersection of two commutative rings is a commutative
£t

ring;
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or, given

T . A factor group G/H is simple iff H is a maximal normal sub-
3

group of G,

and its proof, ZORBA-I is asked to generate an adequate analogy with

T . A quotient ring A/C is simple iff C is a maximal ideal in A.
4

None of these theorems is trivial for contemporary theorem provers. T

has a 35-step proof and T has a 50-step proof in a good axiomatiza-
O

tion. A good theorem prover (QA3) generates about 200 inferences in

searching for either proof when its data base is minimized to the 10 to

15 axioms required for each proof. If the data base is increased to 20

to 30 reasonable axioms, the theorem prover may generate 500 to 600

clauses and run out of space before a proof is found. Note also that

the predicates in the problem statement of these theorems contain only

a few of the predicates used in the proof. Thus, T can be stated

using only the predicates {INTERSECTION; ABELIAN], but a proof, in

addition (GROUP; IN; TIMES; SUBSET; SUBGROUP; COMMUTATIVE}. Thus, while

the first set must map into [INTERSECTION, COMMUTATIVERING], the second

set can map into anything.

Figure B-l shows a relational space R covering all the relations

in the data base. Let R' and R' be the set of relations in the state-
-L £

ments of the new and old theorems (T and T , for example). In addi-

tion, we know the relations R in some proof of T (since we have a

proof at hand). We need to find the set R that contains the relations
£t

we expect in some proof of T , and we want a map Q: G(R ) = R .
^ 1 2i

Clearly, a wise method would be to find some Q', a restriction of

G to R' such that G'(R ) = R', and then incrementally extend G' to G',
J- J. £ 1

G', ... each on larger domains until some G'(R ) = R . ZORBA-I performs
^ 1 2

in such a way that each incremental extension picks up new clauses that
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FIGURE B-1 VENN DIAGRAM OF RELATIONS IN STATEMENTS T, TA, AND D

could be used in a proof of T . In fact, if we get no new clauses from

an extended Q', that may be reason to believe that G' is faulty. I now
J J

will describe the generation algorithm in more detail.

The user presents ZORBA-I with the following information:

(1) A new theorem, T , to prove.

(2) An analogous theorem, T (chosen by the user), that has

already been proved.

(3) Proof [T]} which is an ordered set of clauses C such
K

that Vk, C is either
k

(a) A clause in —i T

(b) An axiom

(c) Derived by resolution from two clauses

c and c j < k and i < k.
J
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These three items of information are problem-dependent. It accesses

a large data base which includes more axioms than it needs for T or T
A

and is, in this sense, problem independent. In addition, the user

specifies a "semantic template" for each predicate in his language.

This template associates a (semantic) type with each predicate and

predicate-place and is used to help constrain the predicate mappings to

be meaningful. For example, (STRUCTURE SET OPERATOR) is associated with

the predicate "group." Thus, ZORBA-I knows that "group" is a structure,

"A" is a set, and "*" is an operator when it sees group [A;*]. Currently,

the predicate types (for algebra) are STRUCTURE, RELATION, MAP, and

RELSTRUCTURE; the variable types are SET, OPERATOR, FUNCTION, and OBJECT.

ZORBA-I can make up a description descr[c] of any clause c according

to the following rules:

(1) V If P and -i p appear in c, then impcond[p] e descr[c].
P

(2) V If p appears in c, then pos[p] e descr[c].
P

(3) V If —i p appears in c, then neg[p] e descr[c].
P

Thus, the axiom, "every abelian group is a group," e.g.,

V(x *) abelian [x;*] =s»group [x;*] ,

is expressed by the clause

—i abelian [x;*] V group [x;*] ,

which is described by

neg [abelian]; pos [group]
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The theorem, "the homomorphic image of a group is a group/' e.g.,

V (X Y *i *2 cp)

horn [cp;X;Y] A group [X;*̂

=>group [Y;*2] ,

is expressed by the clause

-i horn [cp;X;Y] V -, group [X;* ] V group [Y;* ]
_L £

and is described by

neg [horn], impend [group]

The semantic templates are used during both the INITIAL-MAP (when

the predicates and variables in the theorem statements are mapped) as

well as in EXTENDER, which adds additional predicates needed for the

proof of T and a candidate set of axioms for the data base. The clause
A

descriptions are used only by EXTENDER.

The INITIAL-MAP uses a rule of inference called

ATOMMATCH[atom 1; atom 2; ANA], which extends analogy by adding the

predicates and mapped variables of atom and atom to analogy ANA.
*

ATOMMATCH now limits ZORBA-I to analogies where atoms map one-to-one.

But a slight generalization of ATOMMATCH can be made so that ATOMMATCH

can accept many-many maps of atoms. INITIAL-MAP is a sophisticated

search program that sweeps ATOMMATCH over likely pairs of atoms, one

Atoms, not predicates.
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from the statement of T, the other from the statement of T . Alterna-
A

tive analogies are kept in parallel (no backup), and INITIAL-MAP termi-

nates when it has found some analogy that includes all the predicates
*

in theorem statements. Usually, this is the only analogy generated.

EXTENDER accepts a partial analogy G generated by INITIAL-MAP and

the (unordered) axioms used in the proof P. In addition, EXTENDER has

access to the data base D used by the theorem prover. It partitions

this axiom-list, called AXLIST, into three distinct subsets, ALL, SOME,

and NONE (AXLIST = ALL U SOME U NONE).

If all the predicates on an axiom Ax are in G , ax e SOME; and if
K J. K

none of its predicates are in Q , ax e NONE. This partition is trivial
-L K.

to compute, and initially, none or a few ax e ALL, and some ax e SOME
K K

and NONE. When EXTENDER has satisfactorily completed Q, ALL = AXLIST,

SOME = NONE = 0.

EXTENDER wants to pick up the analogs of each ax g AXLIST and in
K.

doing so incrementally extend the analogy. For the clauses in ALL, the

analog descriptions are complete since the analog of each predicate is

known. Thus, for all ax e ALL, its analog ax' is the set of all clauses
K K.

that satisfy the analog descriptions. This process is rather pat. In

contrast the clauses in SOME are a bridge between the known (restricted)

analogy and some additional unmapped predicates. Thus, if I know the

analog of a clause in SOME, I have an opportunity to extend the analogy

to cover one or more unknown predicates. EXTENDER focuses its attention

upon clauses in SOME that have a unique image under the current analogy.

*
In addition, it is rather fast. It generates the analogies for T - T

with about 2 seconds of PDF-10 CPU time.
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These clauses are used to extend the analogy, provide a new portion of

AXLIST into ALL, SOME, and NONE, and incrementally complete the analogy

by iteration. Thus the game becomes one of finding some way to move

axioms systematically from NONE to SOME to ALL in a way that for each

ax moved, some image set G (ax ) = ax' is found that can be used in
k j k k

the proof of T . Moreover, each new image should help extend G -• G
A J J ' I

When image clauses are sought, all the clauses that satisfy a par-

ticular description are sieved out of the data base. Theorem T described

above required the axiom:

-i int[x;y;z] V subset[x;y] ,

which is described by: pos[subset], neg[int]. When the system searches

memory for all clauses that satisfy this description, it finds, in

addition

—i int[x;y;z] V subset[x;z] ,

which has an identical description. ZORBA-I discriminates clauses only

in terms of their descriptions and does not discriminate between these

two clauses. Most clauses have but one image, but a few have two or

three.

Given a clause ax g SOME with description d , its image set ax',
K- K K

and the partial analogy G developed at this point, EXTENDER picks up
J

the analog information regarding the new predicates appearing in ax
rC

and ax' by deleting from d and d' all the terms referencing the predi-
K. K. K

cates G . If there is one term left in d and d', the corresponding
J K K

predicates are mapped by default. If more terms are left, the predicates
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are mapped in a way that preserves (1) description features (e.g., pos

terms are associated with pos terms) and (2) semantic types of predicates.

If the system knows that

abelian -• cring

and wants to associate

—i abelian [x;*] V commutative [*;x]

with

cring [x;*;+] V commutative [*;x]

it compares the description

neg[abelian], pos[commutative]

with

neg[cring], pos[commutative]

and extends the analogy to include commutative«—»commutative.

The preceding discussion provides an introduction to the ZORBA-I

algorithm, a complete description of which would be too lengthly for

inclusion here. It is developed in full detail elsewhere.6 Figure B-2

describes the relationship between ZORBA-I and QA3. While EXTENDER

iterates through the partitions of AXLIST to create a final analogy, it

accesses D' and builds up a small set of images of the clauses on AXLIST.
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FIGURE B-2 RELATIONSHIP BETWEEN SECTION OF ZORBA-1 AND QA3

When it terminates (all clauses have images), it passes this image set

into the memory of QA3, which then attempts to prove P using the re-

stricted data base.

At this time, the INITIAL-MAP and EXTENDER run on problem pairs in

algebra such as T -T , T -T . A large data base of 250 clauses includes
J- ^ o 4

the axioms needed for these proofs but is much too large for QA3 to use

in any effective way. In effect, without ZORBA-I, QA3 cannot prove any

of these theorems using the full data base.

Theorems T and T each require 13 axioms, whereas T and T re-

quire 12. When ZORBA-I is asked to find an axiom set for T given the

proof of T and the 250 clause algebraic data base, it finds 16 axioms,

which include the necessary 13. When it is applied to T given a proof

of T . it finds 15 axioms, including all the necessary 12. In both
o

cases, the QA3 is able to prove the new theorems (T and T ) with littl

more search than a humanly selected optimal data base would generate.
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Summary

The preceding sections described a specific (implemented) algorithm

for generating the analogy between a new and an old problem, extracting

pragmatically important information from this analogy to aid a problem

solver in its search for the solution to the new problem. The system

knows none of the associations that constitute the analogy in advance,

although it does have a description of some of the semantics (templates)

of the language. It can generate analogies that involve many relations

(predicates) but is implemented to meet several severe restrictions.

In particular

(1) The problem solver is a resolution-logic based system

with one rule of inference.

(2) The extracted information takes only the form of a

problem-dependent data base.

(3) The analogies are nearly one to one.

None of the restrictions is necessary, and weakening is quite possible.

In general, ZORBA-I restricts the environment that its associated prob-

lem solver (QA3) operates. Using this approach circumvents the need

for a sequential planning language and detailed information specifying

exactly how each (analog) axiom is to be used. Nevertheless, the analogy

generator is nontrivial and needs only a simple semantic type theory

represented by templates to supplement the problem-solving language

(first-order predicate calculus). Although the resultant analogies are

noninformal, they still can be developed in a way as to be used by a

highly formal problem solver with extremely weak semantics.
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Appendix C

STRIPS: A NEW APPROACH TO THE APPLICATION OF

THEOREM PROVING TO PROBLEM SOLVING

ABSTRACT

We describe a new problem solver called STRIPS that attempts to

find a sequence of operators in a space of world models to transform a

given initial world model into a model in which a given goal formula

can be proven to be true. STRIPS represents a world model as an arbi-

trary collection of first-order predicate calculus formulas and is de-

signed to work with models consisting of large numbers of formulas. It

employs a resolution theorem prover to answer questions of particular

models and uses means-ends analysis to guide it to the desired goal-

satisfying model.

DESCRIPTIVE TERMS

Problem solving, theorem proving, robot planning.

I INTRODUCTION

A. Overview of STRIPS

This appendix describes a new problem-solving program called

STRIPS (STanford Research Institute Problem Solver). The program has

been implemented in LISP on a PDP-10 and is being used in conjunction
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with robot research at SRI. (See the paper by Munson1 for a discussion

of the relationships among STRIPS and the robot executive and monitoring

functions.) STRIPS belongs to the class of problem solvers that search

a space of "world models" to find one in which a given goal is achieved.

For any world model, we assume there exists a set of applicable operators

each of which transforms the world model to some other world model. The

task of the problem solver is to find some composition of operators that

transforms a given initial world model into one that satisfies some par-

ticular goal condition.

This framework for problem solving, discussed at length by

Nilsson,3 has been central to much of the research in Artificial

Intelligence. A wide variety of different kinds of problems can be

posed in this framework. Our primary interest here is in the class of

problems faced by a robot in rearranging objects and in navigating.

The robot problems we have in mind are of the sort that require quite

complex and general world models compared to those needed in the solu-

tion of puzzles and games. Usually in puzzles and games, a simple matrix

or list structure is adequate to represent a state of the problem. The

world model for a robot problem solver, however, needs to include a

large number of facts and relations dealing with the position of the

robot and the positions and attributes of various objects, open spaces,

and boundaries.

*
References are listed at the end of this appendix.

It is true that many problems do not require search and that specialized

programs can be written to solve them. Our view is that these special

programs belong to the class of available operators and that a search-

based approach can be used to discover how these and other operators

can be chained together to solve even more difficult problems.
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Thus, the first question facing the designer of a robot prob-

lem solver is how to represent the world model. A convenient answer is

to let the world model take the form of statements in some sort of

general logical formalism. For STRIPS we have chosen the first-order

predicate calculus mainly because of the existence of computer programs

for finding proofs in this system. Presently, STRIPS uses the QA3

theorem-proving system3 as its primary deductive mechanism.

Goals (and subgoals) for STRIPS are stated as first-order

predicate calculus wffs (wee formed formulas). For example, the task

"push a box to place b" might be stated as the wff (3u)[BOX(u) A AT(u,b)],

where the predicates have the obvious interpretation. The task of the

system is to find a sequence of operators that will produce a world

model in which the goal can be shown to be true. The QA3 theorem prover

will be used to determine whether or not a wff corresponding to a goal

or subgoal is a theorem in a given world model.

Although theorem-proving methods play an important role in

STRIPS, they are not used as the primary search mechanism. A graph of

world models (actually a tree) is generated by a search process that

can best be described as GPS-like (Ernst and Newell4). Thus it is fair

to say that STRIPS is a combination of GPS and formal theorem-proving

methods. This combination allows objects (world models) that can be

much more complex and general than any of those used in previously im-

plemented versions of GPS. This use of world models consisting of sets

of logical statements causes some special problems that are now the sub-

ject of much research in Artificial Intelligence. In the next and fol-

lowing sections we will describe some of these problems and the particular

solutions to them that STRIPS employs.
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B. The Frame Problem

When sets of logical statements are used as world models, we

must have some deductive mechanism that allows us to tell whether or

not a given model satisfies the goal or satisfies the applicability con-

ditions of various operators. Green5 implemented a problem-solving

system based on the QA3 theorem-proving system3 using the resolution

principle. In his system, Green expressed the results of operators as

logical statements. Thus, for example, to describe an operator goto(x,y)

whose effect is to move a robot from any place x to any other place y,

Green would use the wff

(Vx,y,s)[ATR(x,s) =*»ATR(y,goto'(x,y, s))] ,

where ATR is a predicate describing the robot's position. Here, each

predicate has a state term that names the world model to which the

predicate applies. Our wff above states that for all places x and y

and for all states s, if the robot is at x in state s then the robot

will be at y in the state goto'(x,y,s) resulting from applying the goto

operator to state s. (If f is the name of an operator, we denote the

corresponding state-mapping function by f'.)

With Green's formulation, any problem can be posed as a

theorem to be proved. The theorem will have an existentially quanti-

fied state term, s. For example, the problem of pushing a box B to

place b can be stated as the wff

(3s) AT(B,b,s)

If a constructive proof procedure is used, an instance of the state

proved to exist can be extracted from the proof (Green,3 Luckham and
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Nilsson9). This instance, in the form of a composition of operator

functions acting on the initial state, then serves as a solution to

the problem.

Green's formulation has all the appeal (and limitations) of

any general-purpose problem solver and represents a significant step

in the development of these systems. It does, however, suffer from

some serious disadvantages that our present system attempts to overcome.

One difficulty is caused by the fact that Green's system combines two

essentially different kinds of searches into a single search for a proof

of the theorem representing the goal. One of these searches is in a

space of world models; this search proceeds by applying operators to

these models to produce new models. The second type of search concerns

finding a proof that a given world model satisfies the goal theorem or

the applicability conditions of a given operator. Searches of this type

proceed by applying rules of inference to wffs within a world model.

When these two kinds of searches are combined in the largely syntac-

tically guided proof-finding mechanism of a general theorem prover, the

result is gross inefficiency. Furthermore, it is much more difficult

to apply any available semantic information in the combined search

process.

The second drawback of Green's system is even more serious.

The system must explicitly describe, by special axioms, those relations

not affected by each of the operators. For example, since typically

the positions of objects do not change when a robot moves, one must in-

clude the statement

(Vu,x,y,z,s)[OBJECT(u, s) AAT(u,x,s) =»AT(u.x,goto'(y,z, s)]
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Thus, after every application of goto in the search for a solution, one

may need to prove that a given object B remains in the same position in

the new state if the position of B is important to the completion of

the solution.

The problem posed by the evident fact that operators affect

certain relations and don't affect others is sometimes called the frame

problem.7>8 Since, typically, most of the wffs in a world model will

not be affected by an operator application, our approach will be to name

only those relations that are affected by an operator and to assume that

the unnamed relations remain valid in the new world model. Since proving

that certain relations are still satisfied in successor states is tedious,

our convention can drastically decrease the search effort required.

Because we are adopting special conventions about what happens

to the wffs in a world model when an operator is applied, we have chosen

to take the process of operator application out of the formal deductive

system entirely. In our approach, when an operator is applied to a

world model, the computation of the new world model is done by a special

extra-logical mechanism. Theorem-proving methods are used only within

a given world model to answer questions about it concerning which

operators are applicable and whether or not the goal has been satisfied.

By separating the theorem proving that occurs within a world model from

the search through the space of models we can employ separate strategies

for these two activities and thereby improve the overall performance of

the system.

II OPERATOR DESCRIPTIONS AND APPLICATIONS

The operators are the basic elements out of which a solution is

built. For robot-like problems we can imagine that the operators
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correspond to routines or subprograms whose execution causes a robot to

take certain actions. For example, we might have routines that cause

the robot to turn and move, a routine that causes it to go through a

doorway, a routine that causes it to push a box and perhaps dozens of

others. When we discuss the application of problem-solving techniques

to robot problems, the reader should keep in mind the distinction be-

tween an operator and its associated action routine. Execution of

routines actually causes the robot to take actions. Application of

operators to world models occurs during the planning (i.e., problem

solving) phase when an attempt is being made to find a sequence of

operators whose associated routines will produce a desired state of the

world. Since routines are programs, they can have parameters that are

instantiated by constants when the routines are executed. The asso-

ciated operators will also have parameters, but as we shall soon see,

these can be left free at the time they are applied to a model.

In order to chain together a sequence of operators to achieve a

given goal, the problem solver must have descriptions of the operators.

The descriptions used by STRIPS consist of three major components:

(1) Name of the operator and its parameters

(2) Preconditions

(3) Effects.

The first component consists merely of the name of the operator and the

parameters taken by the operator. The second component is a formula in

first-order logic. The operator is applicable in any world model in

which the precondition formula is a theorem. For example, the operator

push(u,x,y) which models the action of the robot pushing an object u
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from location x to location y might have as a precondition formula

(3x,u)[AT(u,x) A ATR(x)]

The third component of an operator description defines the effects

(on a set of wffs) of applying the operator. We shall discuss the pro-

cess of computing effects in some detail since it plays a key role in

STRIPS. When an operator is applied, certain wffs in the world model

are no longer true (or at least we cannot be sure that they are true)

and certain other wffs become true. Thus to compute one world model
*

from another involves copying the world model and in this copy deleting

some of the wffs and adding others. Let us deal first with the set of

wffs that should be added as a result of an operator application.

The set of wffs to be added to a world model depends on the results

of the routine modeled by the operator. These results are not completely

specified until all of the parameters of the routine are instantiated by

constants. For example, the operator goto(x,y) might model the robot

moving from location x to location y for any two locations x and y. When

this operator's routine is executed, the parameters x and y must be in-

stantiated by constants. However, we have designed STRIPS so that an

operator can be applied to a world model with any or all of the operator's

parameters left uninstantiated. For example, suppose we apply the

operator goto(a,x) to a world model in which the robot is at some loca-

tion a. If the parameter x is unspecified, so will be the resulting

*
In our implementation of STRIPS we employ various bookkeeping tech-
niques to avoid copying; these will be described in a later section.

We shall adopt the convention of using letters near the beginning of

the alphabet (a,b,c, etc.) to stand for constants and letters near the

end of the alphabet (u,v,w,x, etc.) as variables.
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world model. We could say that the application of goto(a,x) creates a

family or schema of world models parameterized by x. The power and

efficiency of STRIPS is increased by searching in this space of world

model families rather than in the larger space of individual world

models.

If we are to gain this reduction in search space size, then we must

be able to describe with a single set of predicate calculus wffs the

world model family resulting from the application of an operator with

free parameters. One way in which this can be done is to use a state

term in each literal of each wff. Thus, the principal effect of applying

the operator goto(a,x) to some world model s , say, is to add the wff

(Vx)(3s)ATR(x,s)

which states that for all values of the parameter x, there exists a

world model s in which the robot is at x. With expressions of this sort,

a set of wffs can represent families of world models. Selecting specific

values for the parameters selects specific members of the family.

Anticipating the use of a resolution-based theorem prover in STRIPS,

we shall always express formulas in clause form.1 Then the formula

above would be written

ATR(x,goto'(a,x, s ))

where goto'(a,x,s ) is a function of x replacing the existentially

quantified state variable. The value of goto (a,x,s ), for any x, is

that world model produced by applying the operator goto(a,x) to world

model s . Recall that any variables (such as x in the formula above)
o

occurring in a clause have implicit universal quantification.
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The description of each operator used in STRIPS contains a list of

those clauses to be added when computing a new world model. This list

is called the add list.

The description of an operator also includes information about

which clauses can no longer be guaranteed true and must therefore be

deleted in constructing a new world model. For example, if the operator
*

goto(a,x) is applied, we must delete any clause containing the atom

ATR(a). Each operator description contains a list of atoms, called the

delete list, that is used to compute which clauses should be deleted.

Our rule for creating a new world model is to delete any clauses con-

taining atoms (negated or unnegated) that are instances of atoms on the

delete list. We also delete any clauses containing atoms of which the

atoms on the delete list are instances. The application of these rules

might sometimes delete some clauses unnecessarily, but we want to be

guaranteed that the new world model will be consistent if the old one

was.

When an operator description is written, it may not be possible to

name explicitly all the atoms that should appear on the delete list.

For example, it may be the case that a world model contains clauses

that are derived from other clauses in the model. Thus from AT(Bl,a)

and from AT(B2,a+A) we might derive NEXTTO(B1,B2) and insert it into

the model. Now, if one of the clauses on which the derived clause de-

pends is deleted, then the derived clause must be deleted also.

We deal with this problem by defining a set of primitive predicates

(e.g., AT, ATR, BOX) and relating all other predicates to this primitive

*
An atom is a single predicate letter and its arguments.
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set. In particular, we require the delete list of an operator descrip-

tion to indicate all the atoms containing primitive predicates which

should be deleted when the operator is applied. Also, we require that

any nonprimitive clause in the world model have associated with it those

primitive clauses on which its validity depends. (A primitive clause is

one which contains only primitive predicates.) For example, the clause

NEXTO(B1,B2) would have associated with it the clauses AT(Bl,a) and

AT(B2,a+A).

By using these conventions we can be assured that primitive clauses

will be correctly deleted during operator applications, and that the

validity of nonprimitive clauses can be determined whenever they are to

be used in a deduction by checking to see if all of the primitive clauses

on which the nonprimitive clause depends are still in the world model.

In the next section, we shall describe the search process for

STRIPS and also present a specific example in which the process of

operator application is examined in detail.

Ill THE OPERATION OF STRIPS

A. Computing Differences and Relevant Operators

In a very simple problem-solving system we might first apply

all of the applicable operators to the initial world model to create a

set of successor models. We would continue to apply all applicable

operators to these successors and to their descendants until a model

was produced in which the goal formula was a theorem. Checking to see

which operators are applicable and to see if the goal formula is a

theorem are theorem-proving tasks that could be accomplished by a de-

ductive system such as QA3. However, since we envision uses in which

the number of operators applicable to any given world model might be
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quite large, such a simple system would generate an undesirably large

tree of world models and would thus be impractical.

Instead we have adopted the GPS strategy of extracting "dif-

ferences" between the present world model and the goal and of identi-

fying operators that are "relevant" to reducing these differences.4

Once a relevant operator has been determined, we attempt to solve the

subproblem of producing a world model to which it is applicable. If

such a model is found then we apply the relevant operator and reconsider

the original goal in the resulting model.

Note that in the GPS strategy, when an operator is found to

be relevant, it is not known where it will occur in the completed plan,

that is, it may be applicable to the initial model and therefore be the

first operator applied, its effects may imply the goal so that it is the

last operator applied, or it may be some intermediate step toward the

goal. The STRIPS search strategy maintains this flexibility and there-

fore combines many of the advantages of both forward search (from the

initial model toward the goal) and backward search (from the goal toward

the initial model).

Two key steps in this strategy involve computing differences

and finding operators relevant to reducing these differences. One of

the novel features of our system is that it uses a theorem prover as an

aid in these steps. The following description of these processes assumes

that the reader is familiar with the terminology of resolution-based

theorem-proving systems.

Suppose we have a world model consisting of a set, S, of

clauses, and that we have a goal formula whose negation is represented

by the set, G, of clauses. The difference-computing mechanism attempts

to find a contradiction for the set S U G using a resolution theorem
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prover such as QA3. (The theorem prover would likely use, at least,

the set-of-support strategy with G the set receiving support.) If a

contradiction is found, then the "difference" is nil and STRIPS would

conclude that the goal is satisfied in S.

Our interest at the moment though is in the case in which QA3

cannot find a contradiction after investing some prespecified amount of

effort. Let R be the set consisting of the clauses in G and the re-

solvents produced by QA3 that are descendants of clauses in G. Any set

of clauses D in R can be taken as a "difference" between S and the goal

in the sense that if a world model were found in which a clause in D
*

could be contradicted, then it is likely that the proof of the goal

could be completed in that model.

STRIPS creates differences by heuristically selecting subsets

of R, each of which acts as a difference. The selection process con-

siders such factors as the number of literals in a clause, at what level

in the proof tree a clause was generated, and whether or not a clause

has any descendants in the proof tree.

The quest for relevant operators proceeds in two steps. In

the first step an ordered list of candidate operators is created for

each difference set. The selection of operators for this list is based

on a simple comparison of the clauses in the difference set with the add

lists in the operator descriptions. For example, if a difference set

contained a clause having in it the robot position predicate ATR, then

the operator goto would be considered a candidate operator for that

difference.

*
That is, a proof could be completed if this new model still allows a

deduction of this clause in D.
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The second step in finding an operator relevant to a given

difference set involves employing QA3 to determine if clauses on the

add list of a candidate operator can be used to "resolve away" (i.e.,

continue the proof of) any of the clauses in the difference set. If,

in fact, QA3 can produce new resolvents which are descendants of the

add list clauses, then the candidate operator (properly instantiated)

is considered to be a relevant operator for the difference set.

To complete the operator-relevance test STRIPS must determine

which instances of the operator are relevant. For example, if the dif-

ference set consists of the unit clauses -ATR(a) and -ATR(b), then

goto(x,y) is a relevant operator only when y is instantiated by a or b.

Each new resolvent which is a descendant of the operator's add list

clauses is used to form a relevant instance of the operator by applying

to the operator's parameters the same instantiations that were made

during the production of the resolvent. Hence the consideration of one

candidate operator may produce several relevant operator instances.

One of the important effects of the difference-reduction

process is that it usually produces specific instances for the operator

parameters. Furthermore, these instances are likely to be those occurring

in the final solution, thus helping to narrow the search process. So,

although STRIPS has the ability to consider operators with uninstantiated

parameters, it also has a strong tendency toward instantiating these

parameters with what it considers to be the most relevant constants.

B. The STRIPS Executive

STRIPS begins by attempting to form differences between the

initial world model, s , and the main goal (as described in the previous

section). If no differences are found, then the problem is trivially
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solved. If differences are found, then STRIPS computes a sat of operators

relevant to reducing those differences.

Suppose, for example, that STRIPS finds two instantiated

operators, OP and OP , relevant to reducing the differences between s
* ' I 2' o

and the main goal. Let the (instantiated) precondition formulas for

these operators be denoted by PC and PC , respectively. Thus STRIPS
i. £t

has found two ways to work on the main problem:

(1) Produce a world model to which OP is applicable,

apply OP , and then produce a world model in

which the main goal is satisfied, or

(2) Produce a world model to which OP is applicable,

apply OP , and then produce a world model in
£i

which the main goal is satisfied.

STRIPS represents such solution alternatives as nodes on a

search tree. The tree for our example can be represented as follows:

where G , G , and G are sets of clauses corresponding to the negations
O J. ^

of the main theorem, PC and PC . respectively.
J. ^

In general, each node of the search tree has the form

((world model),(goal list)). The subgoal being considered for solution

at each node is the first goal on that node's goal list. The last goal

on each list is the negation of the main goal, and each subgoal is the

negation of the preconditions of an operator. Hence, each subgoal in a
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goal list represents an attempt to apply an operator which is relevant

to achieving the next goal in the goal list.

Whenever a new node, (s ,(G ,G ....,G ,G )), is constructed
i m m-1 1 o '

and added to the search tree as a descendant of some existing node, the

new node is tested for goal satisfaction. This test is performed by QA3

which looks for a contradiction to s U G .
i m

If a contradiction is found and G is G —i.e., the node has
m o

the form (s ,(G )) — then the main goal is satisfied in s and the prob-
1 0 i

lem is solved. If a contradiction is found and G is not G . then G
m o m

is the negation of a precondition formula for an operator that is ap-

plicable in s . STRIPS produces a new world model, s', by applying to

s the operator corresponding to G . The node is changed to
i m

(s',(G , ...,G ,G )) and the test for goal satisfaction is performed

on it again. This process of changing the node continues until a goal

is encountered which is not satisfied or until the problem is solved.

If no contradiction is found in the goal satisfaction test,

QA3 will return a set R of clauses consisting of the clauses in G and
m

resolvents that are descendants of clauses in G . This set of resolvents
m

is attached to the node and is used for generating successors to the

node.

The process for generating the successors of a node

(s ,(G ,G .....G .G )) with R attached involves forming difference
i m m-1 1 o

sets (D ] from R and finding operator instances relevant to reducing

these differences (as described in the previous section). For each

operator instance found to be relevant, a new offspring node is created.

This new node is formed with the same world model and goal list as its

parent node, then, the goal of finding a world model in which the rele-

vant operator instance can be applied is added to the new node. This
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is done by creating the appropriate instance of the operator's precon-

ditions and adding the negation of the instantiated preconditions to the

beginning of the new node's goal list.

Since the number of operators relevant to reducing sets of

differences might be rather large in some cases, it is possible that a

given node in the search tree might have a large number of successors.

Even before the successors are generated, though, we can order them

according to the heuristic merit of the operators and difference sets

used to generate them. The process of computing a successor node can

be rather lengthy, and for this reason STRIPS actually computes only

that single next successor judged to be best. STRIPS adds this suc-

cessor node to the search tree, performs a goal-satisfaction test on

it, and then selects another node from the set of nodes which still

have uncomputed successors. STRIPS must therefore associate with each

node the sets of differences and candidate operators it has already

used in creating successors.

STRIPS has a heuristic mechanism to select nodes with uncom-

puted successors to work on next. For this purpose we use an evaluation

function that takes into account such factors as the number and types of

literals in the remaining goal formulas, the number of remaining goals,

and the number and types of literals in the difference sets.

A simple flowchart of the STRIPS executive is shown in Figure

01.

C. An Example

Let us next trace through a simple example contrived to illus-

trate the main features in the operation of STRIPS. Consider the con-

figuration shown in Figure C-2, consisting of two objects B and C and a

robot R at places b, c, and a, respectively. The problem given to STRIPS
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ROBOT

TA-8259-31

FIGURE C-2 CONFIGURATION OF OBJECTS AND ROBOT FOR EXAMPLE PROBLEM

is to achieve a configuration in which object B is at place k and in

which object C is not at place c.

The existentially quantified theorem representing this problem

can be written

(3s)[AT(B,k,s) A~AT(C,c,s)]

If we can find an instance of s (in terms of a composition of operator

applications) that satisfies this theorem, then we will have solved the

problem. The negation of the theorem is

G : ~AT(B,k.s) V AT(C.c.s)
o
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Let us suppose that STRIPS is to compose a solution using the

two operators goto and push. These operators can be described as

follows:

(1) push(u,x,y): Robot pushes object u from place x

to place y.

Precondition formula:

(3u,x,s)[AT(u,x;s) AATR(x,s)]

Negated precondition formula:

~AT(u,x,s) V ~ATR(x,s)

Delete list:

AT(u,x,s)

ATR(x,s)

Add list:

/ *AT(u,y,push (u,

/ *ATR(y,push (u,

*
where s is the state to which the operator is

applied.

(2) goto(x,y)• Robot goes from place x to place y.

Precondition formula:
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(3x,s)ATR(x,s)

Negated precondition formula:

~ATR(x,s)

Delete list:

ATR(x,s)

Add list:

/ *
ATR(y,goto (x,y,s

The initial configuration can be described by the following

world model:

s : ATR(a.s )
o o

AT(B,b,s

AT(C,c,SQ)

In addition, we have a universal formula, true in all world models, that

states if an object is in one place, then it is not in a different place:

F: (Vu,x,y,s)[AT(u,x,s) A (x̂ y) =>~AT(u,y, s)]

The clause forir of this formula is
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F': ^AT(u,x,s) V (x=y)

We assume that F' is adjoined to all world models.

A portion of STRIPS' solution trace relating to the final plan

is given in Figure C-3. The remainder of this section is a commentary on

that trace. STRIPS first constructs the node N , consisting of the list

(s ,(G )). as the root of the problem-solving tree and tests it for a
o o

solution by attempting to find a contradiction for the set s U [G }.

No contradiction is found but some resolvents can be obtained; among

them is the resolvent R of G and F':
1 o

~AT(B,k,s) V (c=y) V ~AT(C,y,s)

Next STRIPS selects a node (N is now the only one available)
o

and begins to generate successors. First it selects a difference set

D from the set of resolvents attached to N . In this case it sets
1 o

D = [R }. Then STRIPS composes a list L of candidate operators for

reducing D . Here L would consist of the single element push.

Next STRIPS attempts to reduce D using clauses on the add

list of push. Again using theorem-proving methods we obtain two re-

*solvents from D and AT(u,y,push (u,x,y,s ):

and

~AT(B,k,push'(C,x,y,s )) V (c=y)

jpush'CBjXjk^s )) V (c=y)

Assuming that these resolutions represent acceptable reductions in the

difference, we extract the state terms of the resolvents to yield
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Begin STRIPS trace

Create negated goal G : ~AT(B,k,s) V AT(C,c,s)
o

Form model s : ATR(a.s )
o ' o

ATCB.b.s )
o

AT(C.c.s )
' o

~AT(u,x,s) V (x=y) V ~-AT(u,y,s)

Form node N : (s .(G ))
o o o

Perform goal satisfaction test on node N

Goal G not satisfied; resolvents formed:
o

R : ~AT(B,k,s) V (c=y) V~AT(C,y,s)

R2: ...

Select node N
o

Compute offspring node of N
o

Create difference D : {R }

Create candidate operators list L : (push)

Test relevancy of push

Relevant instances of push found:

OP : push(C,x,y)

OP : push(B,x,k)
iL _ _

Create negated goal G : ~AT(C,x,s) V ~ATR(x,s)

Create node N : (s ,(G .G ))

Perform goal satisfaction test on node N

Goal G not satisfied; resolvents formed:

R':
*J

»;=

FIGURE C-3 SOLUTION TRACE FOR EXAMPLE PROBLEM
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Select node N

Compute offspring node of N

Create difference D : [n'}

Create candidate operators list L : (goto)

Test relevancy of goto

Relevant instances of goto found

OP : goto(x,c)
O

Create negated goal G : ~ATR(x,s)
£1

Create node N : (s , (G ,G ,G ))
£i O ^ J. O

Perform goal satisfaction test on node N

Goal G satisfied
£i

x = a, s = s
' o

Apply operator goto(a, c)

Create model s : ATR(c,goto ' (a,c,s ))

AT(B,b,goto ' (a ,c ,s ) )

~AT(u,x,s) V (x=y) V ~AT(u,y,s)

Goal G satisfied

x = c, s = goto(a,c,s )

Apply operator push(C, c, y)

ATR(y_,pu

AT(B,b,push'(C,c,y,goto'(a,c,s

ATCC^y^push'CC^c^y^g

~AT(u,x,s) V (x=y) V

ied; resol

R': ÂT(B,k,s) V (c=y)

Create model s : ATR(y_,push' (C,c^y, goto'(a^c^ s )))
2 o

)))
o

)))

Goal G not satisfied; resolvents formed
o

FIGURE C-3 SOLUTION TRACE FOR EXAMPLE PROBLEM (Continued)
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Select node N

Compute offspring node of N

Create difference D : [R'}
o o

Create candidate operators list L • (push)
3

etc.

FIGURE C-3 SOLUTION TRACE FOR EXAMPLE PROBLEM (Concluded)

appropriate instances of the relevant operator. This gives us:

OP : push(C,x,y)

and

OP : push(B,x,k)
£i ~~~""—

For brevity, let us consider just OP and construct G , the

negated version of the precondition formula for OP :

G : ~AT(C.,x.,s) V ~ATR(x,s)

This formula is then used to construct a successor node

Y (V(VG0
})

STRIPS then performs a goal test on N by attempting to find a contra-

diction for s U G .
o 1

Again no contradiction is found, but the following resolvents

are obtained:
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R : ~ATR(c.s ) from G and AT(C.c.s )
3 o 1 ' ' o

and

R : ~AT(C,a,s ) from G and ATR(a.s )
4 o 1 o

Although these clauses represent differences between s and G , we do

not insist that these differences be reduced in s . We would accept a
o

reduction occurring in any w.orld model, so STRIPS rewrites the clauses

as:

R': ~ATR(c,s)

and

R': ~AT(C.a,s)
4

Next STRIPS selects a node for consideration. When it selects

N , it sets the difference set, D , to {R'}.
1 ^ O

The list of operators useful for reducing D consists only of
£1

goto. STRIPS now attempts to perform resolutions between the clauses

on the add list of goto and D . The clause in D resolves with
2 2

ATR(y,goto'(x,y,s )) to yield nil, and answer extraction produces the

instance substituted for the state term, namely

s = goto'(x,c,s )

Thus STRIPS identifies the following instance of goto:

OP : goto(x,c)
o

The associated negated precondition is
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G : ~ATR(x,s)

STRIPS then constructs the successor node

V

and immediately attempts to find a contradiction for s U G . Here a
o 2

contradiction is obtained, and answer extraction yields the state term:

goto'(a,,c,s )

Thus STRIPS applies goto(a,c) to s to yield
o

s ATR(c,goto/(aJ)c,s )

AT(B,b,goto'(a,c,s

AT(C,c,goto'(a,c,s ))

Node N is then changed to

<V(Gl'Go)}

and STRIPS immediately checks for a contradiction for s U G . Again a

contradiction is found; answer extraction produces the following in-

stances for x and s:

x = c

and

s = goto'(a,c,s )
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The clause at the root produces one of the resolvents to be attached to

N . namely

R : ~AT(B,k,s) V (c=y)
o

When STRIPS selects N , it begins generating successors based
£i

on a difference D = [R'}. The operator list for this difference con-
«3 O

sists solely of push, and the relevant instance of push is found to be

OP : push(B,x,k)
4

Its (negated) precondition is

G : ^AT(B.x.s) V ~ATR(x.s)

A successor node to N is then

V

STRIPS finds a contradiction between s and G , and extracts
^ O

s = push'(C,c,b,goto'(a,c,s ))
o

and x = b. Therefore, it applies push(B,b,k) to an instance of s
2

(with y = b) to yield

s : ATR(k;push
/(B,b,k,push'(C,c,b,goto'(a,c,s ))))

O O

AT(B.k,push'(B,b,k,push'(C,c,b,goto'(a,c,s ))))
o

AT(C,b,push/(B,b,k,,push/(C,c,b,goto'(a,c.Is ))))
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Node N is then changed to

_,
3

STRIPS can find a contradiction between s and G [assuming that the
3 o

equality predicate (b = c) can be evaluated to be false] and exits

successfully. The successful plan is embodied in the state term for s .
o

D. Efficient Representation of World Models

A primary design issue in the implementation of a system such

as STRIPS is how to satisfy the storage requirements of a search tree

in which each node may contain a different world model. We would like

to use STRIPS in a robot or quest ion-answering environment where the

initial world model may consist of hundreds of wffs. For such applica-

tions it is infeasible to recopy completely a world model each time a

new model is produced by application of an operator.

We have dealt with this problem in STRIPS by first making the

assumption that most of the wffs in a problem's initial world model will

not be changed by the application of operators. This is certainly true

for the class of robot problems we are currently concerned with. For

these problems most of the wffs in a model describe rooms, walls, doors,

and objects, or specify general properties of the world which are true

in all models. The only wffs that might be changed in this robot environ-

ment are the ones that describe the status of the robot and any objects

which it manipulates.

Given this assumption, we have implemented the following

scheme for handling multiple world models. All the wffs for all world

models are stored in a common memory structure. Associated with each
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wff (i.e., clause) is a visibility flag, and QA3 has been modified to

consider only clauses from the memory structure which are marked visible.

Hence, we can "define" a particular world model for QA3 by marking that

model's clauses visible and all other clauses invisible. When clauses

are entered into the initial world model they are marked visible and

given a variable as a state term. Clauses not changed will remain

visible throughout STRIPS' search for a solution.

Each world model produced by STRIPS is defined by two clause

lists. The first list, DELETIONS, names all those clauses from the

initial world model which are no longer present in the model being de-

fined. The second list, ADDITIONS, names all those clauses in the model

being defined which are not also in the initial model. These lists

represent the changes in the initial model needed to form the model

being defined, and our assumption implies they will contain only a small

number of clauses.

To specify a given world model to QA3, STRIPS marks visible

the clauses on the model's ADDITIONS list and marks invisible the

clauses on the model's DELETIONS list. When the call to QA3 is com-

pleted, the visibility markings of these clauses are returned to their

previous settings.

When an operator is applied to a world model, the DELETIONS

list of the new world model is a copy of the DELETIONS list of the old

model plus any clauses from the initial model which are deleted by the

operator. The ADDITIONS list of the new model consists of the clauses

from the old model's ADDITIONS list as transformed by the operator plus

the clauses from the operator's add list.

To illustrate this implementation design we list below the

way in which the world models described in the example of the previous

section are represented:
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s : ATR(a.s)
o

AT(B,b,s)

AT(C,c,s)

s ' DELETIONS: ATR(a,s)

ADDITIONS: ATR(c, goto' (a, c, s ))

s • DELETIONS: ATR(a,,s)
£t

AT(C,c,s)

ADDITIONS: ATR(y, push' (C, c,y, goto' (a, c , SQ) ) )

s • DELETIONS: ATR(a,,s)
J

AT(C,c,s)

AT(B,b,s)

ADDITIONS: ATR(k,push' (B, b , k,push' (C, c,b, goto' (a, c, s ))))

AT (B, k , push ' (B , b,k, push '(C,c,b, goto ' (a,c,S ))))

IV FUTURE PLANS AND PROBLEMS

The current implementation of STRIPS can be extended in several

directions. These extensions will be the subject of much of our problem-

solving research activities in the immediate future. We shall conclude

this note by briefly mentioning some of these.

We have seen that STRIPS constructs a problem-solving tree whose

nodes represent subproblems. In a problem-solving process of this sort,

there must be a mechanism to decide which subproblem to work on next.
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We have already mentioned some of the factors that might be incorporated

in an evaluation function by which subproblems can be ordered according

to heuristic merit. We expect to devote a good deal of effort to de-

vising and experimenting with various evaluation functions and other

ordering techniques.

Another area for future research concerns synthesis of more complex

procedures than those consisting of simple linear sequences of operators.

Specifically we want to be able to generate procedures involving itera-

tion (or recursion) and conditional branching. In short, we would like

STRIPS to be able to generate computer programs. Several researchers5^9^10

have already considered the problem of automatic program synthesis and

we expect to be able to use some of their ideas in STRIPS.

Our implementation of STRIPS is designed to facilitate the defini-

tion of new operators by the user. Thus the problem-solving power of

STRIPS can gradually increase as its store of operators grows.

An idea that may prove useful in robot applications concerns de-

fining and using operators to which there correspond no execution rou-

tines. That is, STRIPS may be allowed to generate a plan containing

one or more operators that are fictitious. This technique essentially

permits STRIPS to assume that certain subproblems have solutions without

actually knowing how these solutions are to be achieved in terms of

existing robot routines. When the robot system attempts to execute a

fictitious operator, the subproblem it represents must first be solved

(perhaps by STRIPS). (In human problem solving, this strategy is em-

ployed when we say: "l won't worry about that [sub] problem until I

get to it.")

We are also interested in getting STRIPS to define new operators

for itself based on previous problem solutions. One reasonable possi-

bility is that after a problem represented by (S ,(G )) is solved,
o o '
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STRIPS could automatically generate a fictitious operator to represent

the solution. It would be important to try to" generalize any constants

appearing in G ; these would then be represented by parameters in the
o

fictitious operator. The structure of the actual solution would also

have to be examined in order to extract a precondition formula, delete

list, and add list for the fictitious operator.

A more ambitious undertaking would be an attempt to synthesize

automatically a robot execution routine corresponding to the new '

operator. Of course, this routine would be composed from a sequence

of the existing routines corresponding to the individual existing

operators used in the problem solution. The major difficulty concerns

generalizing constants to parameters so that the new routine is general

enough to merit saving. Hewitt11 discusses a related problem that he

calls "procedural abstraction." He suggests that from a few instances

of a procedure, a general version can sometimes be synthesized. We ex-

pect that our generalization problem will be aided by an analysis of

the structure of the preconditions and effects of the individual

operators used in the problem solution.
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Appendix D

A LANGUAGE FOR WRITING PROBLEM-SOLVING PROGRAMS

ABSTRACT

This appendix describes a language for constructing problem-solving

programs. The language can manipulate several data structures, in-

cluding ordered and unordered sets. Pattern matching facilities may

be used in various ways, including the binding of variables. Implicit

backtracking facilitates the compact representation of search procedures.

Expressions are treated analogously to atoms in LISP. A "context" de-

vice is used to implement variable bindings, to effect conditional

proofs, and to solve the "frame" problem in robot planning.

I BACKGROUND

In order to design a deductive problem-solving program, we are

constructing a new formal language that can express complex inferential

mechanisms concisely. This language, called the QA4 language, is being

used to build a proposed intelligent system, called the QA4 system, that

will be able to organize and use a large body of specialized knowledge.

The selection of three specific applications--automatic program synthesis,

automaton planning, and theorem proving—permits a concentration of effort

within a framework of generality. All three applications, however, share

a common basis that encompasses natural language dialogue, question

answering, and inference, as well as many other areas of Artificial

Intelligence.
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There is strong motivation for the development of a new language

for problem-solving programs. Earlier systems have been constrained

by fixed inference mechanisms, built-in strategies, awkward languages

for problem statement, and rigid overall structure. They relied on one

or two rules of inference that could not be changed. To modify a

strategy required a complete reprogramming of the system. It was some-

times harder to express a program-synthesis problem in a language the

system could understand than it was to write the program yourself.

Systems were limited to the use of a single paradigm that might be

applicable to some types of problems and inappropriate for others.

Theorem-proving strategies have used syntactic properties of the ex-

pressions being manipulated, but have been unable to use semantic

knowledge or pragmatic, intuitive information. They have been unable

to employ the sort of pattern recognition the human problem solver re-

lies on so heavily.

The basic approach of the QA4 project is to develop natural, in-

tuitive representations of specific problems and their solutions. The

specification for a computer program, for example, is a blend of pro-

cedural and declarative information that includes explicit instructions,

intuitive advice, and semantic definitions. A QA4 interpreter will

execute programs in the transparent but precise language we have chosen

for these representations; and the interpreter, together with an initial

collection of QA4 "bootstrapping" programs, will constitute the basic

QA4 system. The system will attempt to assimilate new advice and facts

and attempt to solve problems with continually increasing agility.

The project has revolved around the construction and reworking of

hand simulations of a proposed final QA4 system. Each simulation in-

cludes a problem statement, relevant definitions and advice, and a

protocol for the solution. These simulations have provided a focus
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for the language development and prompted explorations into theoretical

foundations of the problem areas.1 Table D-l summarizes the scope of

the simulations and indicates the problem areas attacked.

Table D-l

PROBLEM AREAS

Program Synthesis

• Generate recursive and iterative programs from declarative

axiomatic specifications (problems taken from a LISP primer).

• Generate an iterative program from a recursive procedural

definition (see Fibonacci example in Ref. 2).

• Verify the correctness of programs with respect to input/output

relations. These relations may be defined in terms of

executable programs, as well as in terms of declarative axioms.

Automaton Planning

• Generate plans for simple robot problems.

Theorem Proving

• Prove simple algebraic identities over the integers.

• Derive simple algebraic laws from Peano's axioms.

• Prove properties of axiomatically defined groups.

• Accommodate general rules of inference, applicable to any

logical system.

The QA4 language is derived from more conventional programming

languages and mathematical languages, and yet differs from both in many

ways. The basic data structures include sets, sets with repeated ele-

ments ("bags"), ordered bags ("tuples"), and lambda expressions. Data

*
References are listed at the end of this appendix.
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may also be represented implicitly; for example, the set of even integers,

although infinite, may still be described and manipulated in the system.

Every expression in the language may have a variety of properties asso-

ciated with it. This feature serves as the basis for describing the

role of each expression and thus directing the processes that operate

on the expression. Program control is often directed by matching pat-

terns against expressions. Sometimes, for example, the syntactic form

of a problem suggests the use of a certain strategy. Ambiguous patterns

lead to nondeterministic programs and the need for automatic back-

tracking.3 Other control features include parallel search and iteration

through sets. Space does not permit a full presentation of our current,

preliminary version of the QA4 syntax. Table D-2 lists some features

of the language.

The system changes continuously as it is used. The programmer types

commands in the form of QA4 expressions to a top-level function. The

commands may input or modify expressions or properties of expressions;

define, modify, or execute programs; or perform debugging tasks.

The input system of QA4 is a parser that transforms QA4 infix ex-

pressions into internal prefix format. The parser uses the input trans-

later BIP,4 and has the advantage of being readily modified. Similarly,

an output function takes the internal expression form and produces a

corresponding infix output stream. Thus the user always communicates

with QA4 in an infix mathematical-style notation.

The QA4 interpreter is a function resembling LISP EVAL.5 It accepts

QA4 expressions and, with the aid of an extensive library of primitive

functions, executes them.- Unlike LISP programs, QA4 expressions may

succeed or fail and do not necessarily have values. The interpreter

performs its task in small steps, and may, between any two steps, re-

direct its attention to other parallel processes or search programs.
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Table D-2

SOME LANGUAGE FEATURES

Data Manipulation

• Arithmetic and Boolean operations

• Set, bag, and tuple operations

• Expression decomposition and construction

Pattern Matching

• Actual argument decomposition

• Data base queries

• Monitoring expression properties

• Invoking of strategies and inference rules

Control

• Standard serial and conditional statements

(prog's, labels, go's, and if's)

• Iterative forms for sets, bags, and tuples

• Automatic backtracking

• Strategy controlled parallel interpretation

II DATA CONTROL STRUCTURES

Every operator in QA4 has a single operand. The data type of each

primitive operator has been chosen to eliminate a proliferation of

rules governing algebraic properties, such as associativity, commuta-

tivity, and transitivity. The Boolean connective "and," for example,

has a set as its operand. The finix expression A & B & C is translated

into the internal representation AND^A, B, C] (where braces denote the

data type ''set''). Since sets are independent of the order of their

elements, this representation makes the statement of the commutativity

law unnecessary.
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Bags in QA4 are unordered tuples or, equivalently, sets with re-

peated elements. They play an important role in the definition of

arithmetic operators, such as addition. The operand of PLUS cannot be

a set, because the set [l, 1} is equal to {l}, but we would not want

PLUS{1, 1} to equal PLUS{l}. .Instead, the infix expression X + Y + Z

becomes PLUS[X, Y, Z] internally, where [X, Y, Z] is a bag. Bags are

evaluated by first evaluating their members. The resulting values are

collected together into a bag, elements being duplicated when appro-

priate. Thus, if X, Y, and Z all had value 1, our expression would

equal PLUS[1, 1, 1], and its value would be 3.

Some expressions, infinite sets, for example, cannot always be ex-

plicitly evaluated. Finite sets may also be inconvenient to evaluate:

A program may wish to search the Cartesian product of two sets, even

when the entire set is too large to generate. The interpreter can per-

form the search by indexing through the original two sets. In cases

such as this expressions are said to have implicit values.

QA4 has iterative, parallel, and backtracking control structures.

The iterative statement forms of the language operate over sets, bags,

and tuples. The order of iteration may be controlled by relations.

During theorem proving experiments, for example, pairs of logical ex-

pressions are analyzed in an order specified both in terms of syntactic

properties, such as length, and of pragmatic properties, such as fre-

quency of use. Parallel structures, in the form of coroutines and WHEN

statements, are used in the construction of problem solving strategies.

For example, in order to prove a theorem of the form A V B, we may wish

to establish two processes, one to prove A and the other to prove B. If

either terminates successfully, the proof is complete. Nondeterministic

programs give rise to backtracking. If a point of indeterminacy occurs,

a choice determined by a prespecified strategy is made. If the program
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later fails, control is reestablished at the choice point, and a dif-

ferent selection is made.

Without explaining all the notations we use, we illustrate the

power of the QA4 language with a program that sorts bags:

SORT = CASES

U t ], < >,

X X-B T MIN(X,B>, X-SORT(B));

When this function is applied to a bag, say B', it first checks to see

whether B is empty ([ ]); if so, it returns the empty tuple (( )). If

the bag is not empty, it finds an element X of B' such that X is less

than or equal to all the elements of B, the bag remaining when X is de-

leted from B'. Then it sorts B (recursively) and adjoins X to the front

of the resulting tuple. Thus the bound variables of a lambda expression

may be patterns, and variable binding must then be done by pattern

matching. The search for a pattern match may be directed by an associated

strategy.

Ill EXPRESSIONS

The data base for QA4 programs is made up of QA4 expressions. An

expression is represented internally by a list of properties, one of

which is the syntactic component that uniquely distinguishes it from all

other QA4 expressions. This list stores arbitrary properties, and each

property is, in turn, a QA4 expression. These properties fall into three

categories: syntactic, semantic, and pragmatic. Table D-3 is a brief

example of an expression. Table D-4 lists commonly used properties
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Table D-3

A SAMPLE EXPRESSION

Syntactic component

Value

Length

Result when the function

F is applied to the expression

, 4)

27

Table D-4

EXPRESSION PROPERTIES

Syntactic

• The form

The logical type (e.g., a function mapping numbers into truth
values)

The data type (e.g., a set of 3-tuples)

Frequently used information (e .g. , the length)

Semantic

The value

An implicit value (e.g., a coroutine6 that generates the value)

A set of expressions equal to this one

Constraints (e.g., a range or interval for the value)

Pragmatic

Historical information

Intuitive evaluation advice

Success/failure indicators
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Expression manipulation is accomplished by decomposition and con-

struction. In QA4 decomposition means naming parts or components of an

expression. The naming is done by the pattern matcher. Patterns may

occur at many points in the language: in formal arguments of functions,

in assignment statements, and in conditional tests. Table D-5 illustrates

some of the more useful facets of the pattern matching notation. Trans-

formation of expressions is done through a complete set of constructors,7

such as: add an element to a set, add onto tuples, or construct a lambda

expression.

Table D-5

SOME PATTERN MATCHER FEATURES

Transparent template notation

Matching of internal or external

notation

Fragment variables

Type constraints on variables

Predicate constraints

"Occurs in" matching

(X,4,3> matches (5,4,3)
with X = 5

(X,4) matches (tuple 3 4)
with X = 3

(2, * Y) matches (2,3,4,5)

with Y = (3,4,5)

X/integer matches 3
with X = 3

(X T X s 4,5,6) does not

match (2,5,6)

•• + •• matches A * 2 + B

Given the syntactic component for an expression, a fundamental

operation is to retrieve the entire expression so as to find the proper-

ties already assigned or known about it. In this way, LISP's atom

property feature is extended to expressions in general. When an expres-

sion is stored, whether the expression has been stored before is deter-

mined. If it has been, the old expression is returned; if not, the new

expression is retained by the system.
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The storage mechanism is a discrimination net. Each node of the

net consists of a feature selector and a set of labeled branches. A

syntactic component is retrieved by applying the topmost selector,

choosing a branch based on the outcome of the selector, and repeating

the process until either a terminal node is reached or there is no

appropriate branch. When conflicts occur at a terminal node, a new

selector is automatically generated and installed at the new node. The

next time the same syntactic component is retrieved, the expression that

has just been added will be returned. The net also serves as a pruning

device for the pattern matcher.

If two QA4 expressions are identical except for the names of their

bound variables, they have the same internal representation. Thus bound

variables are not used as discrimination features. Moreover, in order

to store sets and bags in the net, an index is assigned to each element

of a set or bag expression the first time the expression is stored. If

the same set is then stored a second time (perhaps with some elements

permuted), the elements are first ordered by their index numbers and

then discriminated upon syntactically. If a user types in the set

[A, B, C], the elements might be assigned indices A«-l, B*-2, C«-3. If

the set [C, B, A] is entered, it is sorted into {A, B, C] and then

found to occur already. The storage and retrieval functions also main-

tain extensive statistics concerning the number of references made to

each expression for use in future optimization.

Variable bindings are implemented in the QA4 interpreter with a

"context" mechanism—a method of storing all the changeable properties

of expressions which simplifies backtracking and executing parallel

processes. The same facilities, moreover, are made available to users

and are especially useful in programs dealing with conditional proofs

or robot planning programs confronted with the "frame" problem.8
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IV CONCLUSION

Certain structures and mechanisms have found repeated application

in deductive problem solvers. It is our goal to give these concepts

concise notations. We expect this effort to have several desirable

consequences'

• Existing problem-solving techniques should become more

easily representable and modifiable.

• A large store of special-purpose knowledge could be

embodied in a program.

• Systems would be more likely to rely on strategies than

on blind search if such strategies were easily expressed

and incorporated.

We have found the QA4 language a suitable vehicle for our own work in

program synthesis, robot planning, and theorem proving.
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Appendix E

FAILURE TESTS AND GOALS IN PLANS

I INTRODUCTION

This appendix describes a proposal for the form that plans for the

Stanford Research Institute mobile automaton might take and the rules

an interpreter might use to execute these plans. We are particularly

concerned here with adding tests to a plan that allow the executor to

determine whether execution of a plan is succeeding and that specify

what is to be done when a failure occurs.

We proceed by developing a syntax and semantics for plans in the

i *
context of STRIPS (STanford Research Institute Problem Solver), the

program that acts as a planner for the automaton system. Subsequently,

we present an algorithm that STRIPS can use to create the tests for the

executor to use.

We assume that the reader has some familiarity with the capabilities

of our robot vehicle and our means of modeling both the robot's external

environment and its action routines (or operators). See Refs. 1 and 2

for this background material.

II SYNTAX AND SEMANTICS OF A STRIPS PLAN

The role of the planner in our system is to determine what the

robot should do to solve a given task. We may consider the output of

*
References are listed at the end of this appendix.

153



the planner to be a program each of whose steps is an operator to be

executed or a test to be made on the world model. One simple form that

a plan might have is the following:

BEGIN

DO operator ,

GOAL preconditions for operator ;

DO operator ,

^
GOAL preconditions for operator ;

GOAL preconditions for operator ;
k

DO operator ,
K

GOAL task statement

END.

The executor of the plan will call the operator routines contained in

the DO statements and will employ a theorem prover such as QA3.53;4

(a resolution-based deductive system) to determine whether the predi-

cates contained in the GOAL statements are true in the world model at

each step.

The GOAL statements in a plan provide a means of testing whether^

execution of the plan is proceeding successfully. We^assign to the

planner the responsibility of generating the information needed for

these tests. In the form for a plan given above this information is

merely the GOAL statements that determine whether the next operator in

the plan can be applied, and a final GOAL statement to determine whether

the task has been completed.

We would like the planner to provide statements in the plan that

will allow the executor to determine as soon as possible when execution

of the plan is failing. For example, if the success of some operator
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in a plan depends on a box Bl being at some location LA and a side

effect of execution of some earlier operator in the plan is the de-

termination that Bl is not located at LA, then we would like the plan

to contain statements that would allow the executor to realize that the

new location of Bl is going to cause an eventual failure. Execution

of the plan could then be discontinued without incurring the costs of

doing the operations that precede the point in the plan where the actual

failure would occur.

To see how STRIPS provides this type of information in its plans,

we first note that it employs a means-ends analysis search strategy

similar to that of GPS5 to grow a search tree whose nodes specify world

models and some of whose arcs represent planned operator applications.

The means-ends analysis strategy directs search by creating subgoals

and determining relevant operators. The theorem prover, QA3.5, is used

to ask questions about world models, such as whether a goal is true in

a model or whether an operator's preconditions are true in a model. A

complete description of STRIPS can be found in Ref. 1.

STRIPS can create a plan when there is a path through its search

tree of the following form:

operator operator operator

where S is the initial world model, each S is the world model that

would be produced by applying operator to model S } and S is the

model in which the task statement is satisfied. The operators on this

path define the DO statements for the plan; each operator's precondi-

tions and the task statement define the plaVs GOAL statements.

STRIPS forms additional tests for the plan by extracting informa-

tion from the proofs produced by QA3.5. For the search-tree path we
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are considering, QA3.5 will have been used to prove that the task state-

ment is true in S , and that the preconditions for each operator are
k i

true in S . For each of these proofs, STRIPS determines which axioms

from the world model were used. Any of these axioms from a given model

that were not added to the model as one of the effects of the previous

operator in the plan must also have been in the model before that operator

was executed. This implies that STRIPS can add a test to the plan be-

fore the DO statement for that operator that will prevent the DO state-

ment' s execution if one of these axioms is missing from the model. This

process can be iterated backwards through the plan so that tests can be

inserted before each DO statement indicating what axioms the remainder

of the plan assumes exist in the model at that point. Figure E-l shows

an example plan into which test indicators have been inserted.

To include these new tests in the plan, we first surround each DO

statement and the preceding preconditions GOAL statement by a labeled

BEGIN statement and an END statement to form ALGOL-like blocks as follows:

BEGIN

B1:BEGIN
GOAL preconditions for operator ,

DO operator

END;

B2:BEGIN

GOAL preconditions for operator ;

DO operator

END;

B :BEGIN
k
GOAL preconditions for operator ;

DO operator
k

END;

GOAL task statement

END
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BEGIN

END

(Test for Al)

(Test for A2 and A4)

(Test for A6)

(Test for A7 and A3)

GOAL preconditions for op ,

DO op

(Test for Al)

(Test for A6)

(Test for A7 and A3)

GOAL preconditions for op ,

DO op2

(Test for Al and A12)
(Test for A7 and A3)
GOAL preconditions for op ,

DO op

(Proof used axioms A8 and A5)

(Adds axiom A9)

(Test for Al and A12)

GOAL

DO op

GOAL preconditions for op ;

GOAL task statement

(Proof used axioms A9, A2, and A4)

(Adds axioms A12 and A10)

(Proof used axioms A10 and A6)

(Adds axiom All)

(Proof used axioms All, A7, and A3)
(Adds axioms A10 and A13)

(Proof used axioms Al, A12, and A13)

FIGURE E-1 ABSTRACT PLAN INDICATING POSSIBLE TESTS

Each new test in the plan is represented by a FAILTEST statement

having the following form-

FAILTEST A A A A ... A A FOR B ,B ....,B
12 n j' J+1' ' m

where each A is an axiom used by QA3.5 in a proof and each B is the

label of a BEGIN statement in the plan. When the executor encounters

a FAILTEST statement it attempts to determine whether the conjunction

of axioms is true in the current state. If the proof attempt succeeds,
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then execution continues with the next statement in the plan; if the

proof attempt fails, then those blocks which begin with the labels

listed in the right side of the FAILTEST statement are deleted from the

plan before execution continues.

When deletions occur during the execution of a FAILTEST statement,

the plan is no longer complete and its execution will almost certainly

fail to satisfy some GOAL statement remaining in the plan. When the

executor encounters an unsatisfied GOAL statement, it can recall the

planner to create a plan that will achieve the unsatisfied goal. If

the planner successfully produces such a plan, then the new plan can be

executed to "get back onto the track" of the original plan. If the

planner fails and the goal is.the task-statement goal, then the system

cannot accomplish the task. If the planner fails with any other goal,

then the executor may still be able to retain some of the original plan
*

by continuing execution at the next block.

To determine which blocks should be listed in a FAILTEST statement,

the planner assumes that if some axiom that it intends to be true at

some point in a plan is not true at that point when the plan is being

executed, then any proof in which that axiom participated is invalid.

This assumption implies that the FAILTEST statement at that point in

the pl-an can indicate deletion of "any block whose only function in the

plan is to add axioms used in the invalidated proofs.

Figure E-2 shows an instantiation of the example plan from Figure E-l

in the form that STRIPS would produce it. The task for the instantiated

plan is to push the three boxes BOX1, BOX2, and BOX3 to the same location.

*
At this point execution of the plan is in deep trouble, and in most

cases FAILTEST statements will be encountered that will cause deletion

of the remainder of the plan.
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BEGIN

B1:BEGIN
FAILTEST AT(BOX1,LA) FOR B1,B2,B3,B4;

FAILTEST AT(BOX2,LB)ASAMEROOM(LB,LA) FOR Bl,

IF AT(ROBOT,LD)ASAMEROOM(LD,LB) THEN DO GO(LD,LB)

ELSE GOAL AT ( ROBOT .,LB)

END;
B2:BEGIN ,

FAILTEST AT(BOX1,LA) FOR B2,B3,B4;
IF AT(ROBOT,LB)AAT(BOX2,LB)ASAMEROOM(LB,LA) THEN DO PUSH(BOX2,LB,LA)

ELSE GOAL AT(ROBOT.,LA)AAT(BOX2, LA)

END;
B3:BEGIN

FAILTEST AT(BOX1,LA)AAT(BOX2,LA) FOR B3,B4;
FAILTEST AT(BOX3,LC)ASAMEROOM(LC,LA) FOR B3,
IF AT(ROBOT,LA)ASAMEROOM(LA,LC) THEN DO GO(LA,LC)

ELSE GOAL AT(ROBOT,LC)
END,

B4:BEGIN

FAILTEST AT(BOX1,LA)AAT(BOX2,LA) FOR B4;

IF AT(ROBOT,LC)AAT(BOX3,LC)ASAMEROOM(LC,,LA) THEN DO PUSH(BOX3,LC,LA)

ELSE GOAL AT(BOX3,LA)

END;
GOAL (Ex)(AT(BOX1,x)AAT(BOX2,x)AAT(BOX3,x))

END

FIGURE E-2 PLAN FOR THE THREE BOXES PROBLEM

The GO(x,y) operator used in the plan moves the robot from location x to

location y where x and y are constrained to be in the same room. The

PUSH(b;x,y) operator in the plan causes the robot to push an object b

from location x to location y, where both the robot and the object are

assumed to begin at location x.

Note that in the Figure E-2 plan each pair of statements

GOAL preconditions for op
i

DO op

has been replaced by an IF statement. STRIPS produces these IF state-

ments in the following form:
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IF preconditions for op THEN DO op
i i

ELSE GOAL relevant results of op ,

where the relevant results of an operator are those axioms added by the

operator that were used during the creation of the plan in the proof of

some subsequent operator's preconditions or the task-statement goal.

Hence the IF statement indicates to the executor that if the operator

can be applied then it should be, otherwise a new plan should be found

and executed that will produce the same results that the operator was to

achieve. For example, in the Figure E-2 plan if the robot is not initially

at location LD, then GO(LD,LB) will not be applied; instead a new plan

will be created to move the robot to location LB, since that was the de-

sired result of applying GO(LD,LB). Also, consider the case where the

robot is at LD initially so that GO(LD,LB) is applied; if GO(LD,LB)

fails to move the robot to LB, then the preconditions for PUSH(BOX2,LB,LA)

will not be satisfied in block B2 and a new plan will be created to

achieve the desired results of pushing BOX2 to LA.

Note also in Figure E-2 the implications of the assumption that a

single missing axiom invalidates any proofs in which the axiom partici-

pated. This assumption causes the first FAILTEST statement in the plan

to indicate deletion of the entire plan if BOX1 is not at location LA.

One might-argue that when a partrcular axiom is not true as expected an

attempt should be made to generate and execute a plan that would make

the axiom true so that the original plan could still be used. That

strategy can easily lead to nonoptimal plans. For example, if BOX1 is

not initially at LA during execution of the plan for the three boxes

problem, then this strategy would dictate that a new plan be constructed

and executed to move BOX1 to LA; once this was accomplished, the original

plan could be executed. This solution of the problem would require

moving all three boxes to a new location; the strategy proposed here of
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deleting the entire original plan would cause creation and execution of

a new plan involving the movement of two boxes to the third. Hence,

this strategy prefers to expend greater replanning effort so that the

resulting plan will require less execution effort.

Finally, note that some of the tests indicated in the Figure E-l

plan have disappeared in the Figure E-2 plan. The deleted tests were de-

termined by STRIPS to be redundant. For example, a FAILTEST statement

could have been inserted in block Bl to assure that BOX3 was at location

LC; but since failure of that test would cause only block B3 to be de-

leted from the plan, the test need not be made in any of the blocks pre-

ceding block B3.

Ill THE STRIPS ALGORITHM FOR ADDING TESTS TO A PLAN

In this section we present and illustrate an algorithm for creating

the FAILTEST statements and IF statements for a STRIPS plan. The input

to the algorithm is a plan consisting of a sequence of blocks followed

by a GOAL statement containing the task statement. Each block in the

input plan has the following form:

Bi:BEGIN

GOAL preconditions for operator ,

DO operator
i

END

The algorithm also knows which axioms were used to prove each operator's

preconditions and the task statement while the plan was being created by

STRIPS. Finally, the algorithm knows from the operator descriptions the

axioms added to the world model by each operator in the plan.

The algorithm is as follows:

1. For each GOAL statement in the plan do the following

procedure:
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1.1 Create an axiom list, AXL, consisting of the

axioms used by QA3.5 in the goal's proof

during the creation of the plan.

1.2 Proceed backwards through the plan from the

GOAL statement to the initial BEGIN and exe-

cute the following procedure at each DO

statement encountered:

1.2.1 Determine whether the DO state-

ment' s operator added to the

model any of the axioms on the

list, AXL. If it did not, then

take no action at this DO state-

ment. If it did, then continue

at the next step.

1.2.2 Delete from AXL those axioms

added to the model by the

operator and store at the DO

statement a list of the deleted

axioms.

1.2.3 Mark the block in which the DO

statement occurs as being rele-

vant to the goal under con-

sideration by storing at the

block the goal and a copy of

the list, AXL.

2. For each GOAL statement in the plan, do the following

procedure:

2.1 Create a null goal list, GL.

2.2 Create a null block list, BL.

2.3 Proceed backwards through the plan from the

GOAL statement to the initial BEGIN and exe-

cute the following procedure at each block

encountered:
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2.3.1 Determine whether the block is

marked as being relevant to the
goal under consideration. If

it is then continue at the next
step. If it is not, then con-

tinue at step 2.3.3.

2.3.2 Set AXL to be the list of axioms

stored at the block with the
goal under consideration.

2.3.3 Determine whether the block is

marked relevant to any goal that
is either not on the list GL or

is not the goal under considera-
tion. If it is, then take no
further action at this block.
If it is not, then continue at
the next step.

2.3.4 If there is a GOAL statement in

the block under consideration,

then add the goal to the list GL.

2.3.5 Add the block under consideration

to the list BL.

2.3.6 Insert a FAILTEST statement at the
beginning of the block under con-

sideration to test for the conjunc-
tion of the axioms on AXL and to
delete the blocks on list BL.

3. For each block on the plan, do the following procedure:

3.1 Form a wff, RELRESULTS, by conjoining all the axioms
stored at the block's operator (in step 1.2.2 of the

algorithm).

3.2 Replace the statements

GOAL preconditions for op ,
i

DO operator
i
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in the block by the statement

IF preconditions for op THEN DO operator

ELSE GOAL RELRESULTS

We will illustrate the operation of this algorithm with the fol-

lowing input plan:

BEGIN

Bl:BEGIN

DO op
END

B2:BEGIN

GOAL preconditions for op ,

DO op
END,

B3:BEGIN

DO op
END,

B4-BEGIN
DO op

END;

B5-BEGIN

GOAL preconditions for op ;

DO op
END;

GOAL task statement;

(Adds axioms A7 and A10)

(Proof used axioms A5 and A7)

(Adds axioms A4 and All)

(Adds axioms Al and A12)

(Adds axioms A2, A6, and A13)

(Proof used axioms Al, A6, and A8)

(Adds axioms A3 and A14)

(Proof used axioms A2, A3, A4, and A9)

END

The parenthesized comments in the plan indicate the axioms that

are added'by each operator^ (as" give'n in the operator descriptions) and

the axioms used to prove each of the goals during creation of the plan.

Operators op , op , and op are assumed to have no preconditions.
~L O r̂

The algorithm begins by executing the step 1 procedure for each GOAL

statement in the plan. Consider first the GOAL statement in block B2.

We shall refer to the goal in this statement as G2. In step 1.1 AXL will

be created as the list (A5,A7). Next the procedure of step 1.2 is exe-

cuted for the DO statement in block Bl. Op added axiom A7 to the model,
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and A7 is an element of AXL. Hence, in step 1.2.2 list AXL becomes (A5)

and the list (A7) is stored at the DO statement. In step 1.2.3 block Bl

is marked relevant to goal G2 by storing the pair (G2,(A5)) at the block.

This completes the step 1 processing for goal G2.

For the goal in block B5, which we shall refer to as G5, the list

AXL is created as (Al A6 A8). The first DO statement encountered is in

block B4, at step 1.2.2 AXL becomes (Al A8) and the list (A6) is stored

at the DO statement. In step 1.2.3 the pair (G5;(A1 A8)) is stored at

block B4. For the DO statement in block B3, AXL becomes (A8), the list

(Al) is stored at the DO statement, and the pair (G5;(A8)) is stored at

block B3. Since neither of the DO statements in blocks B2 and Bl add

axiom A8 to the model, no further action is taken for goal G5.

For the task-statement goal, which we shall refer to as Gt, the list

AXL is created as (A2 A3 A4 A9). The first DO statement encountered is

in block B5; it causes AXL to become (A2 A4 A9), the list (A3) to be

added to it, and the pair (Gt;(A2 A4 A9)) to be stored at block B5. For

the DO statement in block B4, AXL becomes (A4 A9), the list (A2) is added

to the statement, and the pair (Gt,(A9)) is stored at the block B2.

Since the DO statement in block Bl does not add axiom A9, no further

action is taken for goal Gt.

This completes the step 1 processing and leaves the plan in the

following form:

BEGIN

B1:BEGIN (G2;(A5))
DO op ; (Adds axioms A7 and A10) (A7)

END;

B2:BEGIN (Gt,(A9))
GOAL preconditions for op . (Proof used axioms A5 and A7)

DO op (Adds axioms A4 and All) (A4)

END;
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B3:BEGIN (G5;(A8))

DO op (Adds axioms Al and A12) (Al)

END;
B4-BEGIN (G5;(A1 A8))(Gt,(A4 A9))

DO op (Adds axioms A2, A6, and A13) (A6) (A2)

END;
B5:BEGIN (Gt;(A2 A4 A9))

GOAL preconditions for op ; (Proof used axioms Al, A6, and A8)

GO op (Adds axioms A3 and A14) (A3)

END;
GOAL task statement; (Proof used axioms A2, A3, A4, and A9)

END

Step 2 of the algorithm makes a second pass through the plan by

again considering each GOAL statement. For goal G2, the step 2.3 process

is executed once at block Bl. At step 2.3.1 we determine that block Bl

is marked relevant to G2. At step 2.3.2, AXL becomes (A5). The block

passes the test at step 2.3.3, no action is taken at step 2.3.4, and

list BL becomes (Bl) at step 2.3.5. At step 2.3.6 the following state-

ment is added to block Bl:

FAILTEST A5 FOR Bl

No further action is taken for goal G2.

For goal G5, B4 is the first block considered in the step 2.3

process. Since B4 is marked as being relevant to G5, step 2.3.2 is

executed and sets AXL to-be (Al A8). Since block B4 is marked relevant

to Gt and Gt is not an element of list GL, no further action is taken

for block B4. For block B3, AXL becomes (A8) in step 2.3.2, BL becomes

(B3) in step 2.3.5, and the following statement is added to block B3

in step 2.3.5:

FAILTEST A8 FOR B3

Since blocks B2 and Bl are not marked relevant to G5, no further action

is taken for G5.
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For goal Gt, block B5 is marked relevant and therefore AXL is set

to be (A2 A4 A9). The test is passed at step 2.3.3, list GL is set to

be (G5) at step 2.3.4, list BL is set to be (B5) at step 2.3.5, and the

following statement is added to block B5 at step 2.3.6:

FAILTEST A2AA4AA9 FOR B5

At block B4, AXL becomes (A4 A9), the test in step 2.3.3 is passed

since G5 is on list GL, BL becomes (B4 B5), and the following statement

is added to B4:

FAILTEST A4AA9 FOR B4,B5

At block B3, the test in step 2.3.1 causes step 2.3.2 to be skipped, BL

becomes (B3 B4 B5), and the following statement is added:

FAILTEST A4AA9 FOR B3,B4,B5

At block B2, AXL becomes (A9), GL becomes (G2 G5), BL becomes

(B2 B3 B4 B5), and the following statement is added:

FAILTEST A9 FOR B2,B3,B4,B5

At block Bl, the test in step 2.3.1 causes step 2.3.2 to be skipped, BL

becomes (Bl B2 B3 B4 B5), and the following statement is added:

FAILTEST A9 FOR B1,B2,B3,B4,B5

No further action is taken for goal Gt.

The algorithm's final pass through the plan occurs in step 3. At

that time IF statements are added to blocks B2 and B5. Note that in

blocks Bl, B3, and B4 the operators have no preconditions, so that the

IF statements for those blocks collapse into DO statements and leave the

blocks unchanged.

This completes the algorithm and produces the following plan:
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BEGIN

B1:BEGIN (G2;(A5))

FAILTEST A9 FOR B1,B2,B3,B4,B5,
FAILTEST A5 FOR Bl;
DO op (Op, adds axioms A7 and A10)

(RELRESULTS for op is (A7))

(Gt;(A9))

END;

B2.-BEGIN
FAILTEST A9.FOR B2,B3,B4,B5;

IF preconditions for op THEN (Preconditions proof used axioms A5

DO op2 ELSE GOAL A4 and A7)

END; (°P2 adds axioms A4 and All)
(RELRESULTS for op2 is (A4))

(G5,(A8))B3-BEGIN

FAILTEST A4AA9 FOR B3,B4,B5;

FAILTEST A8 FOR B3;

DO op3
END;

B4:BEGIN

FAILTEST A4AA9 FOR B4,B5,
DO op4

END;

B5:BEGIN

FAILTEST A2AA4AA9 FOR B5;

IF preconditions for op_ THEN (Preconditions proof used axioms Al,

DO op5 ELSE GOAL A3 A6, and A8)

END; (Op5 adds axioms A3 and A14)

(RELRESULTS for op5 is (A3))
GOAL task statement; (Proof of task statement used axioms

A2, A3, A4, and A9)
END

(Op3 adds axioms Al and A12)

(RELRESULTS for op3 is (Al))

(Op4 adds axioms A2, A6, and A13)

(RELRESULTS for op is (A2 A6))
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Appendix F

ISUPPOSEW--A COMPUTER PROGRAM THAT FINDS REGIONS

IN THE PLAN MODEL OF A VISUAL SCENE

ABSTRACT

This appendix describes the nature and structure of the computer

program ISUPPOSEW and some of its results. ISUPPOSEW is designed to

enable a robot to make conjectures, on the basis of its visual informa-

tion, about elements of its environment that it cannot see. The process

of conjecture employed is analogous to that which a human employs in

similar circumstances.

I INTRODUCTION

Suppose you visit someone's house and your visit is confined to

one room--say, the living room. After you have returned home, it may

be interesting to conjecture, on the basis of your memory of the visual

information acquired from seeing only one room, where the other rooms

of the house are located. Similarly, we often guess the locations of

elevators or exits in places such as department stores or halls. As a

matter of fact, the results remain as conjectures unless one finally

confirms the locations by seeing for oneself. A person tries to reduce

the problem by conjecturing as reasonably as possible with the help of

his empirical knowledge.

The computer program described in this appendix provides a means

for conjecturing how the environment of a robot is constructed of
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regions by taking into account the unseen elements of the plan model of

the scene that the robot now has as its model of the environment.

Let us first consider some applications. Suppose that you command

a robot located in a large room to do a job that requires some informa-

tion that the robot does not yet have. For example, you might give the

command, "Turn in the corridor to the right and go into the third room,"

but the robot does not know where the corridor is. If, however, he can

guess the most likely location of the corridor through his already-

known information, he goes there, confirms its location, and solves the

problem. If he finds that his first conjecture is wrong, he moves to

the second possible point and looks for the corridor.

We can consider another example. Suppose a robot asks the recep-

tionist at the entrance of the university building, "Where is Professor

K's office?" The receptionist may answer, "Turn to the right at the

corner, and go straight on. You'll see a big office behind a smaller

office in front." The robot must find the large room with a small

office in front. When he finds an office that fits the description,

he conjectures that he has solved the problem.

This type of conjecture will not be done by only one means. The

exit of the building to the outside will be more easily conjectured by

sound, wind, or ligh-t, but the vrsual model may a'lso be "important for

that purpose.

Buildings usually consist of comparatively regular structures of

a particular type. That is, very few homes are built with round rooms.

A theater, however, may be circular, with the corridor surrounding the

hall, hence, when a person is in a theater, he applies different con-

jectures with the knowledge that he is now in a theater. This process

must be something like a global conjecture based on an elementary one
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by adding a different strategy and different information to the basic

conjecture method.

Now, the author thought that it would be valuable to try to con-

struct the more complete environmental model of a robot from the visual

scene by following as closely as possible the process that a person

does in making such conjectures.

The estimation of the results is related so much to the purpose of

action and accumulation of empirical knowledge that simple programming

is difficult. Regretfully, this program conjectures only by following

several elementary rules given to the program beforehand and does not

include any estimation of its procedure and results. For this reason

the author named the program ISUPPOSEW—"w" means "DOUBLE," for the

program and for the author. In addition, since the program technique

of the author is very rudimentary, algorithms are elementary and need

to be improved. Although the program requires a rather long running

time, example data examined are rather more complicated than actual

data, for the author expects that this type of conjecture must be limited

to several local areas of the model.

II HEURISTICS

As described in the Introduction, this program does not follow any

theorem or axiom, nor does it have any estimation function to monitor

the procedure of conjecture. It follows only the human way to conjec-

ture as naturally as possible. Consequently, there may be some people

who doubt the results. For these people, several rules that the program

follows are given below.

First of all, the basic terminology—EPOINT, VIEWZONE, and VIEWLINE—

is explained. Figure F-l shows a part of the plan model of visual scenes.
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FIGURE F-1 PART OF THE PLAN MODEL OF VISUAL SCENES

Triangles constructed by three points including RB such as A(RB PI P2)

and A(RB P3 P4) are called VIEWZONEs, where RB signifies the location

point of a robot. The lines constructing those triangles such as RBP1,

RBP2, and P1P2 are called VIEWLINEs. Lines such as P1P2 are elements

of models at the same time. Points such as P2, P3, P4, and P5 that are

edges of only one element of a model are called EPOINTs.

The rules of the program are given as follows:

Rule 1—The elements of a model are thought to be related to

each other by right angles or parallelism. - -

Rule 2—The conjecture procedure is applied only to all

EPOINTs.

Rule 3—Conjecture elements of a model must not be drawn in

VIEWZONEs, except in the special case of Rule 4(a).

Rule 4—There are three kinds of conjectures applied to

EPOINTs:
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(a) When two lines that contain the opposite EPOINTs

are colinear with each other, these two EPOINTs

are connected.

(b) The line that contains an EPOINT can be extended

as long as the extended line segment does not vio-

late Rule 3.

(c) In the case where Rule 4(b) cannot be applied be-

cause an EPOINT is in contact with a VIEWZONE,

the line that contains the EPOINT is turned with

a right angle to the direction in which the ex-

tended line does not cross the VIEWZONE and is

extended in the same way as in Rule 4(b).

Rule 5—The extended or turned and extended line from an

EPOINT is connected to the line that crosses the former one

or may cross it if extended at the closest point to the

EPOINT on the former one.

Rule 6--The conjecture procedure is repeated until no new

conjectured line is created with regard to all'EPOINTs.

Rule 7—The region surrounded by a single closing curve is

thought to be a structural region of a model.

ISUPPOSEW is an algorithm that carries those rules into effect. A

brief explanation about rules is added below.

In application of Rule 4(a), we can consider four cases shown in

Figure F-2. Figures F-2(b) and (d) indicate cases where there are

several VIEWZONEs between opposite EPOINTs with lines colinear to each

other. If a strict definition such as "GATE" or "DOORWAY" is preferred,

Rule 4(a) may have to be applied only to cases (a) and (b), but because

177



A
\

(a)

A
/

/
1

/ I
?

/ 1/ ^

' /

/ \

/ \
i \

\

\

¥

_I
^^^^^^^W

(b)

FIGURE F-2 CASES FOR APPLICATION OF RULE 4(a)

of inconvenience described later in ISUPPOSEW, Rule 4(a) is applied to

all four cases. However, in a_case such as_(d), .since EPOINTs should

be considered to be connected to line L, ISUPPOSEW treats those paired

EPOINTs as NGATE (a structure that is not like a gate) and considers

application of Rule 4(b) to them simultaneously.

Consider the configuration of Figure F-3. With regard to points

P2, P5, P7, Rule 4(b) can also be applied, but as is seen in the case

of P5, infinite extension of the line is not allowable. The same thing

may be considered also with regard to P2 or P7. P8 is the point to

which Rule 4(c) is applied. The extension of the line must be done
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FIGURE F-3 CASE FOR APPLICATION OF RULE 4(b)

after turning to the right at the point, P8, and the line is connected

to the extended line of P7. At PI and P4, any conjecture is impossible.

When only those points are left, the algorithm terminates.

Figure F-4(a) illustrates Rule 6. Rule 4(a) is thought to be

applied to PI, but unless P2 and P3 are connected, the extended line

from PI will cross a VIEWZONE. The sequence of consideration of EPOINTs

is optional, and so we must withhold any conjecture about PI until

PI

/ ^
\

A |

/

I

LI

/

^L3 P4

L2

P2

(a) (b)
TA-710531-10

FIGURE F-4 DIAGRAM ILLUSTRATING RULES 5 AND 6
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consideration on P2 or P3 is completed. This suggests that the conjec-

ture process must be repeated.

When line L3 is extended from P4 in Figure F-4(b), it must terminate

at the crossing point of the extended line of LI, rather than at that of

L2. That is what Rule 5 explains; and this makes the program rather

conservative.

Ill PROGRAM

A. Structure

This program can be divided into two parts: Part I consists

of functions EX2IN, CONJECT 1, and CONJECT 2, Part II consists of func-

tions EX2IN* and RGNFND. Part I is the program that creates a new model

of scenes by drawing possible conjectured lines in a given data model by

following the rules, Part II is the program that separates a created

model into several closed regions. Each part of the program is explained

below.

B. EX2IN

Since the author dealt with only hand-written experimental

data, a program to transform input data into internal format is needed.

EX2IN is the program that transforms the input data shown in Figure F-5

and Table F-l into the internal format shown in Table F-2.

The input data must have an assumed boundary region that

covers all the territory of an original model. It is a square region

surrounded by four straight lines L, T, R, and B, that connect points

POO, POY, PXY, and PXO, where POO is not necessarily the origin, the

origin is allowed anywhere.
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L2

L1

-4P3

L3

»P5

PXY

+ PXO

TA-710531-11

FIGURE F-5 EXAMPLE INPUT DATA

The first line of the input format clarifies the location of

a robot (RB signifies ROBOT). The values of X-Y coordinates of RB are

put in parentheses next to RB. Then the arbitrary names of lines that

are the elements of a model including assumed boundary lines are listed

in optional sequence, followed by a list of end points of each line and

their X-Y coordinate values after each name of a line.

The original data are named VIEW, and all the lines and points

except RB are put into the property lists of VIEW with identifier LINES

and POINTS. Each line has one property list identified by ORT, where

the list of both end points of the line are propped. Each point has

property lists identified by XCOR, YCOR, TYPE, NLNS, NPTS, and NVZNS,

but RB has only the properties XCOR and YCOR. XCOR and YCOR are values

of X-coordinates and Y-coordinates of each point, respectively. TYPE

indicates the type of points such as E for EPOINT and C for corner. NLNS

is the abbreviation of neighbor lines; the list of lines diverging from
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Table F-l

EXAMPLE INPUT DATA

( (RB (15.0 13.0))

LI (P2 (21.0 21.0) P3 (21.0 12.0))

L2 (PI ( 5.0 6.0) P5 (18.0 6.0))

L3 (P8 (18.0 12.5) P5 (18.0 6.0))

L4 (P4 ( 9.0 18.0) P6 (18.0 18.0))

L5 (P4 ( 9.0 18.0) P7 ( 9.0 12.0))

L6 (PI ( 5.0 6.0) P9 ( 5.0 11.3))

L (POCK 0.0 0.0) POY( 0.0 99.0))

T (POY( O.,0 99.0) PXY(99.0 99.0))

R (PXY(99.0 99.0) PXO(99.0 0.0))

B (PXO(99.0 0.0) P00( 0.0 0.0))
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Table F-2

INTERNAL FORMAT

VIEW—POINTS--(PI P2 ... P9 POO PXO PXY POY)

LINES—(LI L2 . . . L6 L T R B)

RB—XCOR—15.0

YCOR—13.0

PI—XCOR—5.0

YCOR—6.0

TYPE—C

NLNS--(L2 L6)

NPTS— (P5 P9)

NVZNS—((RB P9 P1)(RB PI P5))

POY—XCOR—0.0

YCOR--99.0

TYPE—C

NLNS—(L T)

NPTS—(POO PXY)

NVZNS—(NIL NIL)

L1--ORT—(P2 P3)

B— ORT— (POO PXO)
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the point is put into NLNS. NPTS means neighbor points, and it identi-

fies the list of points connected to the point by NLNS. Finally, NVZNS

signifies neighbor viewzones. One point in a model always has one view-

line that is attached by two viewzones on both sides. The list of those

viewzones is put under the identifier NVZNS. In the case of P2 in

Figure F-l, NVZNS has the list, ((RB PI P2), (RB P3 P4)). EX2IN computes

NVZNS of each point at its final stage, using the already transformed

internal format.

ISUPPOSEW outputs EX2INED when the transformation is completed.

C. CONJECT 1

This is the program that applied Rule 4(a) to the model. Be-

fore entering CONJECT 1, ISUPPOSEW prepares the data list named ELIST,

which is a list of all points whose types are E. CONJECT 1 creates all

the possible pairs of EPOINTs and judges whether or not the pairs meet

Rule 4(a). If such a pair is found, the new line that connects both

points is created in such a manner that the function GENSYM names the

line, the paired points are put into the property list of the new line

(identified by ORT), and the new line is APPENDed to the list MODEL,

which was prepared beforehand. The list MODEL is constructed in the

form-of the-list-of lines and their end points, though coordinate values

of points and the list of RB are not listed.

The implementation of Rule 4(a) is done by the function named

GLISTF. First of all, both points of a pair must have NLNS colinear to

each other, and the pair connected in the original data—namely, elements

of a model—or the pair that includes other colinear lines between them

is deleted. Then whether or not both points have one common NVZNS is

checked. If so, they are the pairs shown in Figures F-2(a) and (c).
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Next, to distinguish case (b) from case (d), the function checks whether

or not the connecting line of points crosses more than one viewline.

CONJECT 1 deletes the EPOINTs that meet Rule 4(a) from the

ELIST and puts the left ones into the new list, E*LIST, but the EPOINTs

considered to be NGATE are still left in E*LIST for further consideration.

ISUPPOSEW outputs the new current model created by CONJECT 1.

D. CONJECT 2

CONJECT 2 is one program that applies Rules 4(a) and (b) ,

Rule 5, and Rule 6 to the EPOINTs listed in E*LIST. The algorithm is

shown in Figure F-6. According to Rule 5, the repeated conjecture is

required for the EPOINTs from which adequate conjecture is not extracted

through each path. Consequently, E**LIST is set for those points, and

the same process is repeated until the contents of both E*LIST and

E**LIST become the same—namely, no more conjecture can be extracted.

The following are brief explanations of each stage of the

algorithm.

1. Setting Candidate Lines

As is shown in Figure F-7, we prepare three lines, LX,

LY1, and LY2, starting from P and terminating at crossing points of

border lines. Each of these lines is at a right angle to the next one.

That procedure is done by three functions: CANDLX creates the list of

three lines, LX, LXB1, and LXB2, computing the crossing point, XNP1, of

the extended line, LX, with one of border lines, L, T, R, or B; the

function CANDLY1 does the same computation with regard to the imaginary

line, LR, which is the assumed line of L shifted to the right in a right

angle against L with the center, P; and the function CANDLY2 does the
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SET CONTENTS OF E'UST

SET CONTENTS OF E*"LIST
TO E'LIST

PICKUP P FROM LIST

CREATE CANDIDATE
LINES OF P SET E"LIST NIL

CUTNVZNS.
LX OF P?

CUTNVZNS. ^^ Yes
LYI OF P?

No ̂  CUTNVZNS
LY2 OF P?

PUT P INTO E"LIST

TA-71O531-12

FIGURE F-6 ALGORITHM OF CONJECT 2

same with regard to the assumed line, LL, the shifted line of L to the

left. Three sets of lines (LX, LXB1, LXB2), (LY, LY1B1, LY1B2), and

(LY2, LY2B1, LY2B2) are prepared. The internal format of those lines

and newly created points such as XNP1, XNP2, XNP3, PR, and PL are tem-

porarily made with property lists of ORT for lines and XCOR and YCOR

for points for convenience of computation.
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POY

POO*

PXY

*PXO

TA-710531-13

FIGURE F-7 EXPLANATORY DIAGRAM FOR CONJECT 2

2. Determining Whether a Candidate Line Crosses NVZNS

The function CUTNVZNS determines whether a candidate line

crosses NVZNS. One of three lines, LX, LY1, and LY2, that does not

cross NVZNS of P is chosen. The priority is given to LX first and then

either to LY1 or to LY2. In the case of P5 in Figure F-3, LX crosses

the NVZNS of P5, but it is possible to extend the line as far as the

crossing point. Therefore, the criterion of CUTNVZNS is whether or not

the extended line crosses only one VIEWLINE of NVZNS.

One extended line chosen from LX, LY1, and LY2 is called

a candidate line of P and its set, i.e., (LX, LXB1, LXB2), is bound to

CDLNS, and each element of the CDLNS is called CDLN, CDLN1, and CDLN2,

respectively.
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3. PROCESSK

This is a program to apply Rule 5, namely, to modify the

current model, using the result of the judgment of whether the proposed

CDLNS must be used as new elements of the model or whether they must be

modified. The algorithm is shown in Figure F-8. First of all, the list

LNS, which consists of all lines picked up from the current MODEL, is

prepared. Then, picking up each line from the list, the program judges

the relationship between the line and CDLN. This judgment is carried

on by the following four functions.

OVERLAP! [Figure F-9(a)]—This function judges whether or

not CDLN overlaps the line L. The definition of OVERLAP here is either

that both ends of L are inside CDLN or that only one of them is inside.

Both lines must be colinear with each other. If so, the new line whose

new end is the closer NPTS of L to P is bound to CDLN, and CDLN1 and

CDLN2 are bound to NIL.

XNL* [Figure F-9(b)] — If the line L crosses the CDLN,

the crossing point is calculated, and the new set of CDLN, CDLN1, and

CDLN2 is created instead of the old ones, as is shown in Figure F-9(b).

XN2L [Figure F-9(c)]—This function is a little compli-

cated. When the extended line of L crosses the current CDLN, unless the

extended segment crosses or overlaps any other line or crosses any VIEW-

LINE on its way to the assumed crossing point of CDLN, new CDLN and CDLN1

are created, and CDLN2 is set to be NIL, as is shown in Figure F-9(c).

COVER [Figure F-9(d)3—This is also for a very special

case. The value of this function becomes T in the reverse case of

OVERLAPL, namely, when the CDLN is overlapped by L because the already

created line, L, in the current model connecting P to the other, exists.

This situation sometimes occurs for EPOINTs such as the part of NGATE
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SET ALL THE LINES
OF MODEL INTO LNS

DOES NEW
CDLN1 OVERLAP

ANY OTHER
LINES'

DOES CDLN1
XNL ANY OTHER

LINES?

TA-710531-14

FIGURE F-8 ALGORITHM OF PROCESSK
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CDLN1

CDLN2

NEW CDLNl
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1

NEW CDLNl
.̂  T?
P CDLN |

1

NEW CDLN2i

1

L 'CDLNl

I

4

ICDLN2
I

(b) XNL*

INEW
ICDLNI

NEW CDLN 1
_0n.-̂ -̂ _-T̂ ?
P CDLN

(c) XN2L

'CDLN1

CDLN2

NEW CDLN1 CDLN
-CDLN1

L

NEW CDLN

TA-710531-15
NEW CDLN2

(d) COVER

FIGURE F-9 FUNCTIONS FOR JUDGING THE RELATIONSHIP BETWEEN A LINE AND CDLNs

judged by CONJECT 1 or the point -already chosen rn the current model as

the opposite part against the crossing point of the CDLNl when XN2L

worked through the process of conjecture on the other EPOINT before. So,

as is shown in Figure F-7(d), the new set of CDLNs is the shifted one as

the point P' is conjectured by XNL*, for convenience of computation.

After the above judgments have been made, the new set of -

candidate lines, CDLNs, is formed, or it may be the same as the original

one. Then, it is checked as to whether or not the CDLN crosses any VIEW-

LINE in the model. This seems ridiculous, but it must be checked after
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all the above conjectures or simultaneously, because otherwise, it makes

the above conjectures insignificant. Consider P in Figure F-10. Per-

haps, if EPOINT PI has not been conjectured yet, P will be connected to

the line L only with the above four conjectures.

TA-710531-16

FIGURE F-10 DIAGRAM ILLUSTRATING THE NECESSITY
OF CHECKING WHETHER CDLN CROSSES
ANY VIEW/LINE

All through the process, all new elements of CDLNs and

their created crossing points, if any, are named by the function GENSYM

but at this stage no internal format for them is made.

When any CDLN is negated and we find that the questionable

point is not to be conjectured on the current MODEL, the point is put

into E**LIST and prepared for the second path of CONJECT 2.

ISSUPOSEW outputs the newly created MODEL after CONJECT 2

is completed.

E. EX2IN*

As for the list MODEL, created by CONJECT 1 and CONJECT 2,

only ORT of new lines and values of X-Y coordinates of new points are
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put in their property lists in internal format. Consequently, EX2IN*,

almost the same function as EX2IN, works on MODEL to make properties

NPTS, NLNS, and TYPE of points.

EX2IN* results in the new internal format such that the old

points have properties XCOR, YCOR, new NPTS, new NLNS, and NVZNS, the

new points have properties XCOR, YCOR, NPTS, and NLNS, all the lines

have their ORT, and the point RB remains the same. The property lists

of VIEW, LINES, and POINTS are left as they were, although the elements

of LINES must have different properties from the old ones. (The author

has not yet developed a function to modify LINES.)

The new property of points, NPTS, is different from the old

one in a way. EX2IN* has the function called FOOP, which lists the

neighbor points of a certain point in the manner of traversing clock-

wise, as shown in Figure F-ll. The algorithm is shown in Figure F-12.

FIGURE F-11 EXPLANATORY DIAGRAM FOR FUNCTION FOOP

F. RGNFND

The function RGNFND works on the list of all points of the

model to find out the closed region in the model.
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K2

IS THE
SECOND POINT OF

L NIL'

PUT K2 ON THE
BOTTOM OF L-

NOTE 'COMP is T when angle <K1PK2 is less than or equal to be ff
with regard to the direction shown by an arrow

TA-710531-18

FIGURE F-12 ALGORITHM OF FOOP
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Whenever one closed region is found, the name of the region is

given by GENSYM and put into the property list of MODEL identified by

REGIONS. Each created region has the property list of all lines and the

list of all points that define that region listed in the order that we

can see the region on the left as we follow the contour. ISUPPOSEW

outputs the lists of all regions and its points as shown in the results

(see Figures F-13 to F-17).

The RGNFND program is still incomplete, it has not yet been

developed so" that it can delete the region outside the border lines and

unite two regions created by outer and inner boundaries when one large

region holds the small one.

IV RESULTS

The examined data and their results are shown in Figures F-13 to

F-17. Figure F-16 shows the whole output of ISUPPOSEW.

Some questionable points of the program should be considered.

A. Necessity of NGATE and Singularity of Solution

Even in the case of Figure F-2(d), CONJECT 1 connects both

EPOINTs in pairs. Strictly speaking, they may not have to be connected..

However, the author gave the program the characteristic that it make as

many closed regions as possible. See Figure F-18. If CONJECT 1 is de-

fined strictly, the region R2 in Figure F-18(a) and the region R6 in

Figure F-18(b) may be left as open regions, for the lines L and L' are

not created in some circumstances, whether they are created depends on

the sequence of EPOINTs that CONJECT 1 is given. Case (a) may be thought

to be natural without R2, whereas in case (b) the preference is to close

the region R6. The present CONJECT 1 closes both regions, unfortunately,
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P5

+

5 10
+

15

RESULTS [G0026 (G0016 POO PXO PXY G0003 P11 P10

G0006 PS G0012 P6 P5))

(G0025 (G0019 POY G0016 P5 P6 G0012 P8

P7 P4 P3 P2 P1»

(G0024 (G0019 P1 P2 P3 P4 P7 P8 P9 P8

G0006 P10 P11 G0003))

(G0023 (G0019 G0003 PXY PXD POO G0016
POY)) ]

TA-710531-19

FIGURE F-13 DATA 1 RESULTS

195



15

P2

10

P10

+
5

+
10

+
15

RESULTS UG0154 (G0101 PXY PXO POO POYI)
(G0153 (G0122 P8 P9 P10 P11 P12 G0113 P14

P13 P7 P6)l
(G0152 (G0146 P20 P19 P18 P15 P14 G0104 P16

P17 G0101 POY POO PXO PXY G0101 P17
P16 G0104 PI4 G0113 P12 P11 P10 P9
P8 G0122 P4 P3 P2 P1I)

(G0151 (G0146 P1 P2 P3 P4 G0122 P6 P5 P21»
(G0150 (G0146 P21 P5 P6 P7 P13 P14 P15 P18

P19 P20))l

TA-710831-20

FIGURE F-14 DATA 2 RESULTS
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15 +

10 +

P10

P20

10

+

15

+

20

RESULTS (MAPCAR (FUNCTION RGNLIST) (RGNFND (GET VIEW <5POINTS$
(IG0101 (POY POO PXO PXY)) (G0100 (POY PXY PXO POO))
(G0099 (G0009 P1 8 P17 G0003)) (G0098 (G0016 P17 P16 P15I)
(G0097 (G0062 P5 P4 P2 P1 P 20 P19 G0009 G0003 P17 G0016 G0043
P10 P9 P8 P7)) (G0096 (G0074 P13 P14 P3 P2 P4 P5 P6» (G0095
(G0074 P6P5 G0062 P7 PS P9 P11 P12)) (G0094 (G0074P12 P11 P9
P10 G0043 G0016 P15 P16P17 P18 G0009 P19 P20 P1 P2 P3 P14 P130)

TA-710531-21

FIGURE F-15 DATA 3 RESULTS
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P30 P29 P26
P25

P34

P14 P16

RESULTS MDSKIN DATA4$

•(I SUPPOSEW DATA4$

EX2INEO

MODEL

(B (PXO POO) R (PXY PXO) T (POY PXY) L (POO POY) L23 (P33 P34)

L22 (P32 P33) L21 (P31 P32) L20 (P29 P30) L19 (P28 P29) L18 (P27

P28) L17 (P25 P26) L16 (P24 P25) L15 (P22 P23) L14 (P20 P21) L13

(P19 P20) L12 (P17 P18) L11 (P16 P17) L10 (P14 P15) L2 (P9 P14)

L1 (P34 P9»

CONJECT1

(8 (PXO POO) R (PXY PXO) T (POY PXY) L (POO POY) L23 (P33 P34)

L22 (P32 P33) L21 (P31 P32) L20 (P29 P30) L19 (P28 P29) L18 (P27 P28)

L17 (P25 P26) L16 (P24 P25) L15 (P22 P23) L14 (P20 P21) L13 (P19 P20)

L12 (P17 P18) L11 (P16 P17) L10 (P14 P15) L2 (P9 P14) LI (P34 P9)

GO001 (P31 P21) G0002 (P27 P23) GOOO3 (P24 P18) GOO04 (P19 P15)

CONJECT2

(B (PXO POO) R (PXY PXO) T (POY PXY) L (POO POY) L23 (P33 P34)

L22 (P32 P33) L21 (P31 P32) L20 (P29 P30) L19 (P28 P29) L18 (P27 P28)

L17 (P25 P26) L16 (P24 P25) L15 (P22 P23) L14 (P20 P21) L13 (P19 P20)

L12 (P17 P18) L11 (P16P17) L10 (P14 P15) L2 (P9 P14) L1 (P34 P9)

G0001 (P31 P21) GOO02 (P27 P23) GOOO4 (P19 P15) G0006 (P30 GOODS)

GOO07 (G0005 P33) GO020 (P26 P29) G0031 (P24 G0030) G0040 (P22

G0030) G0060 (G0058 P20) G0061 (G0058 G0030) G0059 (PI8 G0058)

G0071 (P16 P14))

EX2INED'

REGIONS

(IG0078 (POY POO PXO PXY)) (GO077 (POY PXY PXO POO)) (G0076

(P9 P14 P15 P19 P20 P21 P31 P32 P33 P34)) (G0075 (GO030 P24 P25

P26 P29 P28 P27 P23 P22I) (G0074 (G0058 G003O P22 P23 P27 P28 P29

P30 GOODS P33 P32 P31 P21 P2OI) (GOO73 (G0058 P20 P19 PI 5 P14 P16

P17 P18)) (GOO72 (G0058 P18 P17 P16 P14 P9 P34 P33 GOODS P30 P29

P26P25 P24 G0030)))
TA-710531-22

FIGURE F-16 DATA 4 RESULTS
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67

RESULTS [(G0070 (POY POO PXO PXY) )
(G0069 (POY PXY PXO POO))
(G0068 (G0023 P10 P9 P8))
(G0067 (G008 P2 PI P12 P11 G001 G0014 P7 P6

G0038))
(G0066 (G0060 G0038 P6 P7 G0014 G0023 P8 P9

P10 G0023 G0014 G0001 P11 P12 P1 P2
G0008 G0038 G0060 P3 P4 P5))

(G0065 (G0060 P3 P4 P5))l
TA-710531-23

FIGURE F-17 DATA 5 RESULTS

and deletes the trouble of singularity of the result of the kind caused

by the proposed sequence of EPOINTs.

If we examine the result of DATA 3, we see that the regions 98

and 99 were created, but the situation is very similar to the case in

Figure F-18(a). That is, these regions have no evidence such as VIEW-

ZONES inside them. Regions 98 and 99 are also created on account of

the sequence of EPOINTs given to CONJECT 2. That type of difference of

solution is not excluded from the program. ISUPPOSEW cannot guarantee

the singularity of solutions of this kind in the present stage. The
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FIGURE F-18 EXPLANATORY DIAGRAM FOR CLOSING REGIONS

program that defines the relationship between regions must be added to.

Then inconvenient regions may be deleted from the results or may be

merged by the other (as they are most likely to be), but it must be

another problem concerned with the global conjecture.

B. The Problem of Overlap of Lines

The algorithm of CONJECT 2 has the problem of overlap of

created lines. ISUPPOSEW always replaces the, old line in the current

model by the newest line. It does conjecture procedures evenly on all

the EPOINTs listed in E*LIST at first, without deleting any that happen

to be considered to be connected as the result of the conjecture of

other points. The case (b) in Figure F-18 has three points, PI, P2,

and P3, to be dealt with by CONJECT 2. Assume the sequence given in

(.,. PI ... P2 ... P3 ...). When CONJECT 2 works on PI, the set of

lines such that the extended line of PI crosses I/ is created in the

model, CONJECT 2 is applied to P2, and the result becomes the same.
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ISUPPOSEW replaces the old set in the model with the new result. This

is the way that ISUPPOSEW avoids the overlap problem, but it drives the

program to meaningless calculations.

C. Questionable Conjecture, Impossible Conjecture,

and Necessity of CONJECT 3

The basic concept of ISUPPOSEW includes the idea that an

EPOINT like P9 in DATA 1 seldom exists, which has no opposite EPOINT

to which it can be connected, in the building of the average kind. This

gives the basic reason to case (a) in Figure F-19 that the line must be

\
\
\
\
\

/ / \
/ ,/ /

PM

L ^.

\
j \

\

1 v
PN

TA-710531-25

(b)

\
\

(a)

FIGURE F-19 DIAGRAM FOR QUESTIONABLE CONJECTURE

extended in the direction shown by an arrow, for if that point is one

part of the doorway, it must be connected to the opposite one by CONJECT

1. The problem occurs when such opposites cannot be found because of

obstacles. Such a case occurs in rather complicated data, as is shown

in Figure F-19(b). Both points PK and PL must cross NVZNS to make

closed regions, because the opposite EPOINTs of them may be somewhere

behind LO. This is one point at which the author fears that CONJECT 3

is necessary.
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We can consider more impossible conjectures. P3 in DATA 1 is

one of them. ISUPPOSEW has treated only EPOINTs. Consequently, although

they are in almost the same situation, conjecture on P5 in DATA 1 is

different from other points such as Pll and P10 in DATA 1.

Suppose the line LO in Figure F-19(b) is connected to the

other by CONJECT 1. There is left no possibility that the conjectured

line L is drawn. Then point PM has no chance to be connected to any

other point. Furthermore, who can guarantee that line L is right? The

best answer may be that the line L connects to LO on the central point

of LO. Now, it is impossible for ISUPPOSEW to make the above conjec-

tures, and the author thinks it is the limit of ISUPPOSEW and that of

human beings at the same time so long as we consider only the plan model

of a visual scene.
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ROBOT COMMUNICATIONS BETWEEN THE PDP-15 AND THE PDP-10

by

B. Michael Wilber
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Appendix G

ROBOT COMMUNICATIONS BETWEEN THE PDP-15 AND THE PDF-10

I INTRODUCTION

There are an inconceivable number of links in the chain from a

person typing English sentences on a Teletype to Shakey shaking, tweeting,

and occasionally moving from place to place. One of those links is a

package of subroutines through which the LISP part communicates with the

robot program in the PDP-15, via the POP-10 monitor, the infamous inter-

computer interface, and a set of PDP-10 communication routines on the

PDP-15. In this document, we will characterize the robot vehicle as it

is seen from LISP via this subroutine package; when we refer to the PDP-

15, it should be understood that we refer to the robot program within the

PDP-15.

This appendix is one of three documents describing the robot from

more or less the same point of view; the others are John Munson's

Technical Note 351 and a forthcoming description of the robot as seen

from the next level up.3 Technical Note 35 describes the overall design

considerations of this software and was written before any of the soft-

ware. Here we describe the implementation of the "lower end" (as pre-

viously detailed) of that software, as well as characterizing the

1"Bottom-Level PDP-10 Software for the SRI Robot," August 1970.

2Further details on the workings of the PDP-15 can be gleaned from

Ed Pollack's memos of 11 February 1971 and 18 March 1971 (two memos)
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concomitant hardware as viewed through the software. Ihe third document

will complete the description by telling how to use the robot from the

viewpoint central to Technical Note 35. The last two documents, telling

how to use the robot, go into considerable detail superfluous to Technical

Note 35; areas of contradiction of Technical Note 35, however, represent

implementation-motivated changes in the design.

We will characterize the robot as having two levels of protocol.

The "PDP-15 protocol" is concerned with messages between LISP and the ,

robot (or at least the PDP-15), while the "PDP-10 protocol" treats the

ways of inducing the PDP-10 subroutine package to handle those messages.

The PDP-10 protocol is by far the simpler, so we shall consider it

first. A conversation with the robot program in the PDP-15 is initiated

or terminated by a call to INIT15 or REL15, respectively, about these

two nothing more need be said. During a conversation, messages are sent

to the PDP-15 by calls on START15; these messages typically start activi-

ties aboard the robot. Status reports are elicited from the PDP-15 by

calls on READ15. Finally, the subroutine package provides a fifth entry

point called STOP15, which sends a "stop" message; it is a specialized

entry to START15 and thus needs little further special consideration.

Before further exploring the peculiarities of START15 and READ15,

we will touch upon the PDP-15 protocol—the content of the messages

transmitted between PDP-10 LISP and the PDP-15 robot program. Munson's

Technical Note 35 introduces the concept of an "activity" as one of ten

motor or sensory actions that the PDP-15 can be asked or told about. In

communication with the PDP-15, these activities are designed by code

numbers called "activity codes." There are certain other kinds of mes-

sages sent between the two computers (e.g., '"stop" above) which artifi-

cially fit into the protocol by the use of dummy "activity" codes. We
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will however, try to restrict our use of the word "activity" to Munson's

sense and use "action" to denote this more general sense.

In order to further isolate the PDP-10 protocol from the PDP-15

messages, we have stylized the PDP-15 messages into two formats--one

for the orders sent to the PDP-15 ,(via START15), and another for the

status reports elicited from the PDP-15 (via READ15). Each of these

routines, of course, needs an activity code to identify the action under

consideration. The (START15) orders also contain an additional optionally

used parameter giving—for example—a distance to turn. The (READ15)

status reports contain a value called the "activity status value" (ASV)

and two additional values (which may or may not be used). The ASV sum-

marizes the status of the action in a fairly uniform way, while the

additional values give additional information in a manner peculiar to

the particular action under consideration.

There are two additional facets of READ15 that will bear passing

mention. For completeness, we should mention that READ15 sends the

activity code to the PDP-15 in the request for a status report, so it

is not entirely passive with respect to the PDP-15 robot program. Far

more important is the observation that some of the actions do not

directly affect the vehicle, but are instead handled completely by the

PDP-15 robot program. For these actions there is no corresponding

status report; in fact, we do not consider the case of READ15 being

given one of the corresponding activity codes.
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II THE PDF-10 PROTOCOL

A. The LISP Functions in the PDP-10 Protocol

We will now specify the precise LISP constructs used in the

PDP-10 protocol. The reader may be interested to note that this is a

LISP adaptation of the FORTRAN-orlented protocol.1

1. Establishing the Connection: (INIT15)

This must be done when the program is started or re-

started. Thus it must be done whenever the PDP-10 monitor detects an

error and stops the program. Spurious execution of this form should do

no harm.

2. Breaking the Connection: (RELL5)

This is the complement of (INIT15).

3. Sending an Order: (START15 actcode param)

Execution of this form will send an order to the PDP-15

robot program; the order will contain the values of "actcode" and "param.'

The PDP-15 will then usually start the action represented by "actcode,"

with "param" specifying, say, a distance to turn; details- are further

specified by the PDP-15 protocol.

4. Reading the Status of an Activity: (READ15 actcode)

This is a pseudo-function in that it returns values via

global variables as well as communicating with the PDP-15. It sends a

1Cf. Ann Robinson's memo of 26 June 1970.
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request for a status report to the PDP-15 and then reads the resulting

report from the PDP-15, the request contains the value "actcode." The

activity status value is returned as the value of both the function and

the LISP atom ACTASV, while the first and second additional activity

status values are returned as the values of the LISP atoms ACTV1 and

ACTV2, respectively. (These three values replace the values current

when the READ15 function is entered at the same level of binding. Thus

the effect is the same as if the atoms had been SETQ-ed to the values in

the calling function.) Further details are given by the PDP-15 protocol.

5. Stopping an Activity: (STOP15 actcode)

A "stop" order is sent to the PDP-15, the order contains

the value "actcode." While this is not a separate activity1 in the

PDP-10 protocol, it is a separate action in the PDP-15 protocol, to

which the reader is referred for further details.

B. How to Use the LISP Functions in the PDP-10 Protocol

1. The Connection—INIT15 and REL15

Before a conversation between LISP and the PDP-15 robot

program can take place, a connection must be established by INIT15. This

connection is broken by REL15 and also by the monitor or the LISP system

on a large number of monitor commands, such as RUN, SAVE, START, etc.,

and must subsequently be reestablished.

Ideally, one will break the connection with REL15, but

the monitor's (and LISP's) predilection to do this automatically as a

by-product of many frequently used operations reduces REL15 to near-

vestigial status.

1 In the sense of Technical Note 35.
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2. Using the PDP-15 Protocol—START15, READ15, STOP15

A conversation, as specified in the PDP-15 protocol, is

carried out by means of the START15, READ15, and STOP15 functions. As

previously mentioned, these functions can only be used after an INIT15,

any further restrictions on their use is the domain of the PDP-15

protocol.

Ill PDP-15 PROTOCOL

A. The PDP-15 Actions in the PDP-15 Protocol

There are twelve actions that the PDP-15 can be commanded to

perform, eight of these actions are just the PDP-15 ends of Technical

Note 35 activities, while the others serve other purposes. All twelve

actions are detailed below. Eight of these actions directly cause the

PDP-15 to send orders to the robot and receive responses from the robot,

while the others affect various aspects of the operations of the eight

robot actions. We will now briefly describe the PDP-15 actions, but we

defer details to our summary. Many of the actions executed by the robot

can terminate abnormally; we defer discussion of that point to a suc-

ceeding section.

1. Stop

The indicated activity is stopped. The activity must be

tilt, pan, iris, focus, roll, or turn. The activity status value for

the stopped activity is set to 7, and the rest of the report will cor-

rectly reflect its terminal status.

2. Tilt

The robot's head tilts by the indicated amount.
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3. Pan

The robot's head pans (relative to its body) by the indi-

cated amount.

4. Turn

The entire robot turns by the indicated amount. Note that

roll and turn conflict in their use of the wheels.

5. Roll

The entire robot rolls forward or backward by the indi-

cated amount. Note that roll and turn conflict in their use of the

wheels.

6. Override

The catwhiskers and pushbar are overridden according to

a code word supplied by the most recent override order. This override

is effective on rolls and turns.

7. Range

This is a complex action, which we will describe in terms

of its components. Upon receipt of the START15-order, the rangefinder

is turned on and allowed to start warming up. When the rangefinder

finishes warming up, the PDF-15 reads the value from the rangefinder

into its own memory. At this time, the PDP-15 starts timing an interval

after which, barring another START15-order from the PDP-10, it will

automatically turn off the rangefinder. If another START15-order comes

from the PDP-10 during this interval, the PDP-15 reads the then-current

rangefinder value into its memory and resets the interval to turn off
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the rangefinder. Thus a sufficiently rapid succession of rangefinder

STARTlS-orders will keep the rangefinder turned on. READ15 will always

report the value resulting from the START15 rather than directly reading

the rangefinder, so READ15's will normally be paired to STARTlS-orders.

8. Emergencyfinished

This "action" cannot be the subject of a STARTlS-order

but supplies a means by which the PDF-15 can supply (via READ15) infor-

mation to the PDP-10 regarding its "emergency" recovery status. Further

details are given below.

9. Tvpoweron

This is a complex action quite similar to range in that

it entails a warmup phase and a "kept-on" phase that is reinitialized

on subsequent STARTlS-orders. This action, however, does not directly

read a TV picture, owing to problems in handling the enormous volume of

data that would result therefrom.

10. Iris

The TV camera's iris setting is changed by the indicated

amount.

11. Focus

The TV camera's focus setting is changed by the indicated

amount.
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12. Initialize

The PDP-15 resets itself to its initial state. Note that

this involves turning off the overrides. No orders are sent to the

robot because no on-board initialization is necessary. Note that any

on-board actions can thus be in progress. The PDP-15 will not become

confused about this. This action is used in system initialization and

also in certain error recoveries (see below).

B. How to Use the PDP-15 Protocol

1. Establishing and Terminating Rapport

When first establishing contact with the PDP-15, it is

advisable, though by no means necessary, to send it an initialize order.

Then the PDP-15 and the robot will be in a more-or-less well-known state.

No means is provided by which the contact can be broken because there is

no need for such an action.

2. Normal Operations

Any PDP-15 action except emergencyfinished can be the

subject of a START15-order whenever there is no conflict with an in-

progress action, this is not quite true in the case of emergency re-

coveries, as we will discuss below. Emergencyfinished can never be

START15-ed. The conflicts are as follows.

(1) Override and initialize are completely

executed in the PDP-15 and thus are

never in progress.

(2) Stop sends orders to the robot but

works by affecting other actions and

is thus never in progress itself.
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(3) Each of the remaining eight START15-able

actions conflicts with itself while it

is in progress.

(4) Roll and turn conflict with each other

while they are in progress.

Any of the eight on-board actions—as well as emergency-

finished (i.e., any action but stop, override, or initialize)—can be

reported by READ15 at any time. The range of values that can be taken

by the activity status variable changes from action to action, but there

are five standard values with roughly the same meaning for each of the

actions. They are•

-1. The action is in progress. For range

and tvpoweron, this means that the on-

board equipment is warming up.

0: The action has completed normally.

6: The action did not complete in the time

the PDP-15 allowed it. The PDP-15 then

took other measures to terminate the

action.

7: This action was specified in a stop

order.

8- An "emergency" was noted by the robot,

the PDP-15, or by the telemetry inter-

face between them. Recovery from this

condition is further discussed below.

Other conditions can give rise to values from 1 to 5 as individually

noted in the summary below.
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3. Coping with an 'Emergency

Under certain drastic conditions (e.g., transmission

error or low robot power) the PDP-15 may report an activity status of

8. Owing to the gravity of this condition, the PDP-15 will not com-

pletely reset itself until it has received acknowledgment that the PDP-10

has noticed. For example, the PDP-10 cannot presume correct execution

of recent orders or even nonexecution of nonorders. The PDP-15 will

attempt to reset the states of the robot, as well as some of its internal

tables, but will not complete the job until receipt of an initialize

order from the PDP-10.

In addition, we must consider timing. The PDP-15 takes

several seconds in its attempts to reset the state of the robot. It

tells the PDP-10 about the progress of this recovery by means of a

special activity code--and the associated activity status variable.

This special activity is the "emergencyfinished" action. Its activity

status variable is set to 8 (just as all the others) when the PDP-15

perceives an emergency, but it is automatically set to zero when the

PDP-15 and the robot have again established communications.

Thus there are two things the PDP-10 must do upon per-

ceiving a PDP-15 "emergency" (i.e., activity status variable = 8). It

must send an initialize order, and it must wait until the emergency-

finished activity status value goes to 0. These can be done in either

order, but both must be done. It should be noted that successful com-

pletion of this part of the protocol does not guarantee absence of the

offending condition, e.g., low power on board the robot.

C. Abnormal Terminations on Board the Robot

We have discussed PDP-15 conditions under which actions can

terminate abnormally (e.g., timeout, emergency). There remain, however,
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conditions on board the robot that can also abnormally terminate actions—

for example, bumping into an unexpected obstacle. Whenever a stepping

motor is thus abnormally stopped, the residual count is accurately re-

ported in the corresponding status report. These conditions are dis-

cussed below.

1. Tilt, Pan, Iris, Focus

These four motions are restricted to definite ranges by

limit switches. Whenever the indicated count would cause motion past a

limit switch, then motion is stopped at the limit switch and the status

report reflects this state.

2. Roll and Turn

There are four principal ways in which a roll or turn

can terminate abnormally, these are denoted by distinct values of the

READ15 activity status variable. First, the robot can engage a cat-

whisker and stop because of that. Secondly, the pushbar can come free

(because an object the robot is pushing has slipped off), causing the

PDP-15 to stop the robot. Also, the robot can encounter an immobile

obstacle while pushing (or preparing to push). (This case will be

treated more fully below.) _These three circumstances all involve the

robot stopping; however, the status reports also distinguish a fourth

case in which the robot covers the entire distance ordered by the PDP-10,

in spite of the catwhiskers being engaged sometime during or before the

roll. This could happen because the catwhiskers are overridden or be-

cause the catwhiskers became free either before the robot had finished

decelerating to a stop or before the roll started.1

1 See Ed Pollack's memo of 18 March 1971, "Robot Emergencies," Note that

his "pushbar emergency" is just the "hard contact" referred to herein.
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When the robot encounters an immobile obstacle it backs

away: if it was rolling, it backs up to free itself, if it was turning

(unlikely, but still a distinct possibility), it turns back to its

original heading. This is a reflex in the PDP-15 because of the way

the hard-contact pushbar switch is connected to the PDP-15. That is,

the PDP-15 can sense the event of making hard contact but not the state

of being in hard contact. Consistent with our philosophy of removing

all possible computational burden from the PDP-15, we adopted this solu-

tion, rather than have the PDP-15 ensure that a subsequent roll or turn

be in a direction appropriate to releasing the hard contact. At any

rate, the status report of a roll or turn correctly reflects the ter-

minal status of the activity.

IV SUMMARY

A. Introduction

A LISP program communicates with the robot through the PDP-10

monitor and various programs in the PDP-15. We break the protocol into

two pieces, which we call the PDP-10 protocol and the PDP-15 protocol.

We can think of the PDP-15 protocol as treating the messages to and

from the robot, while we can view the PDP-10 protocol as treating the

way a LISP program gets the PDP-10 monitor to handle these messages.

Thus in this discussion, the robot is viewed as part of the implementa-

tion of the PDP-15 protocol. In previous sections we have emphasized

the meanings of messages at the expense of their precise forms, now we

will focus on precise formats and allude to the meanings only in passing.
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B. PDF-10 Protocol

1. The Connection

(a) Execution of the form

(•INIT15)

will establish a channel to the robot

program.

(b) Whenever the form

(REL15)

is executed, the channel is disestab-

lished. In practice there should be

little need to execute this form.

2. The Messages

(a) LISP can send an order by executing

(START15 actcode param) _,

where the order contains actcode and

param and is subject to the rules of

the PDF-15 protocol.

(b) Whenever a LISP function is curious

about the state of a PDF-15 action,

it need only execute
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(READ15 actcode) ,

where actcode specifies the action

according to the PDP-15 protocol. The

activity status value is returned as

the value of the function and of the

atom ACTASV, while the first and second

additional values are returned as the

values of ACTV1 and ACTV2; respectively.

(c) A LISP function can stop some actions

by executing

(STOP15 actcode) ,

which in the PDP-15 protocol is equivalent

to

(START15 stopcode actcode) ,

with "stopcode" being the activity code

for the "stop" action of the PDP-15

protocol.

C. PDP-15 Protocol

1. Formats of Parameters, Results, and Other Diverse Quantities

We frequently include in PDP-15 messages various numeric

and coded values. We will briefly digress to explain the formats of the

code words for the catwhiskers and the overrides as well as the peculiar

formats for stepping motor counts and residual counts.
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a. Catwhiskers

The states of the catwhiskers and pushbar (after a

roll or turn) are encoded into a word called the "whisker word." The

pushbar and each catwhisker is associated with a unique bit position in

the whisker word, and the value of any given bit is 1 when (and only

when) the associated catwhisker is in contact with something (presumably

a box, wall, another robot, etc.). All unused bits in the whisker word

contain zeroes, so the entire word is zero when the robot is in an empty

area. The following table gives the correspondence between whiskers and

bits, of course, the pushbar bit reflects the "ready to push" switch,

not the "immovable object" switch.

Bit No. Octal Code Meaning of "l"

21 040000 Pushbar is engaged

23 010000 Left front whisker is engaged

25 002000 Front horizontal whisker is engaged

26 001000 Right front whisker is engaged

28 000200 Right rear whisker is engaged

30 000040 Rear whisker is engaged

33 000004 Left rear whisker is engaged

_ 35 000001 -Front vertical whisker is engaged

b. Overrides

The inhibition of rolling or turning due to the

pushbar becoming free or a catwhisker being engaged is overridden as

shown by this table.
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Code Word Pushbar Catwhisker

0 Enabled Enabled

1 Enabled Overridden

2 Overridden Enabled

3 Overridden Overridden

c. Stepping Motor Counts

In the robot, motor counts are expressed in sign-

magnitude notation of various formats tailored to the individual activi-

ties. Because we have removed all possible computational burdens from

the PDP-15, this variability of format is carried up to the interface

between START15 and READ15 on the one hand and the lower-level LISP

functions on the other. We can characterize one of these sign-magnitudes

by two field widths: the width of the entire number and the width of the

significant part of the magnitude. Thus a 12-bit wide number of 11 sig-

nificant bits has no bits ignored, while a 12-bit wide number of 7 signi-

ficant bits has 4 bits (to be ignored) between the sign bit and the most

significant magnitude bit.

d. Residual Counts

Those actions involving a stepping-motor count all

return a residual motor count at the end of the action. (We expect that

on a normal completion, the residual count will be zero.) The residual

counts are treated nonuniformly for the following reasons.

The robot has two distinct ways of handling residual

motor counts: in the cases of a tilt, pan, iris, or focus action running

into a limit switch and stopping because of the limit switch, the sign

bit is inverted; in all other cases, the sign bit is correct. Fortunately,
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these four actions can never overshoot their targets, and thus the

residual's sign bit is dispensable. (Of course, these four actions

could be aborted by the stop action or a PDP-15 emergency so the sign

bit is not even necessarily reversed.) On the other hand, the vehicle

can build up considerable momentum while rolling (e.g., down a ramp) or

even turning, causing it to overshoot and then back up to the target.

Of course, there is nothing preventing, for example, the pushbar coming

free on the overshoot, and so the robot could be on either side of the

target when it finally stops rolling (or turning). Then it is very

important to preserve the sign bit associated with the residual count

of a roll or turn.

The way residual counts are returned (via READ15),

then, is this: For the roll and turn activities, the residual count is

the correct signed residual count, while the other activities return

the magnitude of the residual count.

2. Formats of the Messages

The formats of the messages themselves are presented in

abbreviated fashion in Table G-l.
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Appendix H

FORTRAN DISPLAY PACKAGE

by

John Bender
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Appendix H

FORTRAN DISPLAY PACKAGE

This appendix is a follow-up to the User Display Software Memo of

October 1970, with corrections and specifics for using the display from

FORTRAN.

The current implementation is a minidisplay package that gives the

user the basic routines needed to display a figure. No light pen

facility has been implemented. A satisfactory handle for indicating

the location of a light pen hit within a user's sublist has not been

worked out. The ability to save, retrieve, and manipulate a complete

frame is not possible, and may not be a desirable low-level FORTRAN

facility. See the attached pages for a rewritten edition of pages 4, 5,

and 6 of the October memo.

The format of a sublist has been simplified and is as follows-

X position

Y position

e

e

X position

Y position

e is either an incre-

mental vector, an X

position, or a Y

position

— plus end of list

The left half of all sublist words is ignored. All sublists must con-

tain at least one end of list.

The operating procedure for using the display is as follows:

(1) Reserve the PDP-15 for your use, using the signup sheet.
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(2) Turn on the power to the Adage display.

(3) Put the newest version of the bootstrap program in the

PDF-15 papertape reader.

(4) Put 07600 in the address switches.

(5) Press the following PDP-15 console buttons in order

(located in upper left-hand corner):

STOP

RESET

READIN.

(6) Log in on the PDP-10 and get on your disk areas,

DISMON.BIN and DIS10.MAC, from user area [20,26].

(7) Type the underlined:

.R T015J

FILE TO GO TO 15*1

DISMON.BINj

TC

(8) Along with your FORTRAN program, load the file DIS10.MAC.

The display is now yours.

(9) When finished with the display, turn off its power and

hit the STOP switch on the PDP-15.
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To: AI Group , October 1970

From: Systems Programming

Subject: User Display Software

The following memo is divided into three parts:

Part I is a description of the way the display works at the lowest

level. It is provided for information only; it is not expected that

LISP or FORTRAN programmers will use this information directly.

Part II is a description of the display commands that are accessible

from FORTRAN or MACRO.

Part III is a discussion of a display user system (the user being

a LISP robot programmer) that we envision as the final working system.

We urge everyone to read this and offer criticisms. We do not wish

to omit any obvious functions and would like to accommodate all users if

possible.

LJC/kls
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In the PDP-10 a display list is defined as a list of two-word

packets that describe sublists, where a sublist is a list of PDP-10

words that are the coordinates of a point on the user's screen. The

user's screen is a two-dimensional 10" X 10" area. For the purposes of

this description, any point outside this area is not visible. The X

and Y coordinates have the origin at the center of the screen.

The structure of a display list is as follows:

first

packet

location

length
control

word

X

position

e

e or e '

Y

position

e'

e or e'

(see below for

description of e)

X
position

Y
position

\end of list must be set
The move bit is set if the vector is to be displayed at the inten-

sity specified in the Y portion of the position word.

The preceding description of a display list did not include any

mention of the various modes available to the user. The available modes

are: point, dashed, and line. The line mode is normally used to describe

a figure in a frame.

The control word contains the bits that indicate in which mode a

sublist is to be displayed. The entire sublist must be displayed in the

same mode. There exist two submodes for line: absolute vector and in-

cremental vector.
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The control word bit definition is as follows:

<
°*

e is an element that is either a description of an incremental

vector or the X portion of an absolute vector. e is either an incre-

mental vector or the Y portion of an absolute vector. Note that a sub-

list must start with an absolute vector. This requirement ensures that

the position of the display beam is well defined before the display

enters the incremental mode. Also, the sublist must end with the dis-

play in absolute vector mode, because only in the absolute mode is it

possible to have the end of list bit. End of list bit set defines the

end of a sublist.

An absolute vector has the following form:

e = X

j change to incremental if set

intensify bit

end of list bit must be off

e' = Y [intensity |

effectively 4 bits or 16 levels

In incremental mode,

e and e' = X increment | Y increment [ j |

t change to absolute if set
intensify bit
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The only functions available to user programs are: light pen enable,

line mode, point mode, and dashed mode. The user cannot disable, on, end

of list enable, absolute vector automatic, or display clock. The user

cannot enable, stop" enable, or manual. Scope enable may be indirectly

effected by the blink function. If the display is to be capable of

blinking a sublist, this function will have to be performed in the PDP-15.
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PART II, Revised 2/1/71

User Display Software Memo, 10/70

The MACRO subroutine calls that are available to the user are-

CREFRM(framename)

ADDSL(name,length,mode)

DELSL(name)

Create frame, where frame name is a

block of storage in which the display

list packets will be stored, or are

stored if first entry is nonzero.

Add sublist; name is the address of

a sublist, length is the absolute

number of contiguous PDF-10 words
used in the sublist, and mode is one

of the following:

1 line

2 dashed line

3 point

4 blink line

5 blink dashed line

6 blink point

Delete sublist, deletes the entry

and moves up the bottom of the list.

REPSL(oldname,newname,length,mode) Replace sublist.

MODE(name,mode)

LPON(name)
LPOFF(name)

SET INT(name,value)

DISPLA

New mode, changes the mode of an

existing sublist.

Light pen on/off, enables or dis-

ables the light pen for this sublist.

Set intensity; changes intensity in

an existing sublist. The values can

be from 0 to 15

Display; will display the list at a

refresh rate of 40 frames a second,

using all entries in the array re-

ferred to by CREFRM.

233



HIT Hit , queries the PDP-15 if a light
pen hit has occurred since the last

time it was interrogated and returns

a sublist reference and an index

into the sublist; 0 otherwise. This

is not presently implemented.

STOP Stop, turns off the scope. This

does not have to be done before

changing what is currently appearing

on the display.

A copy of the current display is kept by the user. The only infor-

mation that he can get back from the display is light pen hit information.

Some routines that can help a user in building up a sublist are:

INCVEC(1ocation,Xincrement,Yincrement,action)

Incremental vector puts the X and Y increment

values in the specified location. Action has

values of:

0 Don't change vector mode, don't intensify

1 Change vector mode, don't intensify

2 Don't change vector mode, intensify

3 Change vector mode, intensify.

Changing vector mode only affects vectors that

follow the vector in which it occurs.

ABSVEC(location,Xposition,Yposition,action)

Absolute vector puts X position and action

value.in left half of location, and puts Y

position and implied intensity in right half.

The action values are the same as for incre-

mental plus end of list action:
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4 End of list

5 End of list and intensify.

INTENS(value)

Implied intensity in constructing a sublist

intensity is an implied parameter and is

needed by ABSVEC.

GETINT

Get implied intensity returns the value of

the assumed intensity if no intensity value

is ever defined and an assumed value of 10
10

is used. This is a FORTRAN function.
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PART III

A. Introduction

This proposed display system is plagiarized from the BBN 940 LISP

system. That system, however, seemed to be designed around the BBN's

displays. Ours, we hope, is somewhat display-independent. Since our

display is quite primitive, this doesn't hurt.

The system centers around an internal LISP representation for struc-

tured pictures. Simple objects such as lines, quadratic curves, and

character strings are combined, translated, rotated, scaled, etc. by

combining them into lists together with key words and necessary

parameters. Currently, the system is designed to handle only two-

dimensional coordinates, but we hope everything will be easily extended

to homogeneous coordinates. Our system is unsuited for displays of

large numbers of unstructured points, say, a display of unprocessed TV

pictures. But for interactive systems displaying line drawings, such

as plots or pictures of rooms, the system offers flexibility of data

structure with a minimum of space and computation.

B. Noninteractive Picture Display

To display a picture the user must first construct the internal

representation. The proposed primitive figures are:

(1) (DVECTOR X Y X Y ) represents a vector from (X ,Y )

to (X̂ Ŷ

(2) (DPLOT A) (where A is a list of Y values, say

A = (Y ,Y ,...,Y )) represents a plot of the elements
l ^ n

of A at unit intervals along the X-axis
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(3) (DPLOT AT) similarly represents a plot where A is

interpreted as X values

(4) (DCIRCLE X Y RDT) represents a circle with origin

(X,Y) of radius R; approximated by cords spanning

an angle of DT

(5) (DTREE E) represents a tree-like display of the

s-expr E

(6) Character strings; that will be discussed later.

To define a unit interval the display is thought of as a coordinate

system with the origin in the middle and extending one unit on each axis.

All numbers may, in normal list fashion, be fixed or floating.

A figure is either a primitive figure or modified figure. The

following list of modifications always apply to both kinds:

1. (TRANSLATE: F X Y) represents F translated by X Y

2a. (SCALE: F S) represents F scaled by S in both axes

2b. (SCALE: F X Y) represents F scaled by X in the X-axis

and Y in the Y-axis

2c. (ISCALE: F S) represents F scaled by 1/S in both axes

2d. (ISCALE: F X Y) represents F scaled by 1/X in the

X-axis and 1/Y in the Y-axis

3a. (MOVE: F A A A A ) represents the transforma-
11 1 ̂ ^ 1 &£

tion of F by the obvious matrix

3b. (MOVE: F R) represents F rotated by R radians

4. (INTENSITY: F I) represents F displayed in intensity I
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5. (DASH: F), (SOLID: F) (BLINKING: F) represents F

displayed point in the appropriate mode

6.' Finally, the list (F F ... F ) represents the com-
1 2 n \

bination of the figures in the list.

Before we discuss the process of displaying an internal representa-

tion, let's consider an example. Suppose we have a list A = (Y Y ... Y )
1 2 n

of values we want to plot. We would like everything to fit on display

and fill the screen. We also want to start plotting along the X-axis

at the origin. If DY is the maximum difference in Y values, then

(TRANSLATE:

(ISCALE:

(DPLOT A)

N

DY)

1 0)

is a possible representation. The LISP code to generate the figure

might simply be

(SETQ F (LIST (QUOTE TRANSLATE:)

(LIST (QUOTE ISCALE:)

(LIST (QUOTE DPLOT) A) .

(LENGTH A)
(MAXDIF A))

0 1))

To convert an internal representation to a bit-string in the style

of the display the user might execute

(SETQ G (DISPLAY F A))
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where F is a figure, A is the array in which the bits will go, and G is

a variable that will be used to store all sorts of good information about

A for later reference. G is thought of as a piece of glass and may be

shown at any time. The command (SHOW G) does just that. (KILL G) re-

moves G from the display. It is recommended that these pieces of glass

not be used as small picture parts but rather as major overlays. For

example, they might be a coordinate grid, a light button panel, an un-

smoothed picture, a smoothed picture, etc. It is planned that there

will also be a mechanism for modifying a piece of glass, but the specifi-

cations of such modification requests will be closely linked to final

implementation procedures.

The primitive figures for character strings are close to the LISP

print functions:

DPRIN1, DPRINC, and DTERPRI

They will be interpreted as the appropriate strings with character height

and width being some standard proportion of the display screen size.

DTERPRI will cause teletype-like lines to appear. The extra function

(DSPACES N) inserts N blanks. All the standard figure modifiers will

also work on character strings, permitting vertical printing and various

sizes.

C. Interactive Features

Since we are not yet sure just which selection devices will ulti-

mately be used, this proposal discusses everything in terms of the light

pen. Two facilities are offered for interactive graphics: the ability

to specify which figures may be selected and functions which will wait in

the PDP-10 until certain selections have been made through the PDP-15.
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When a figure F modified by the list (ITEM: F), is processed by

DISPLAY special information is included in the bit buffer for the PDP-15

and notes are kept on the piece of glass in the PDP-10. Later, if the

figure is shown and the function (PENSELECT) is executed, the value will

be a pointer to the ITEM list in the internal representation of the

figure selected by the user.

This system is a compromise, and due to the cost of interaction be-

tween the machines it appears especially suited for light button panels,

selection of one from a few relatively disjoint figures, for drawing

with only a few lines. But since this is the anticipated kind of usage

the system should be adequate.

For drawing, two more interactive functions are needed:

(1) TRACE--which tracks the pen and returns as a value a

coordinate

(2) RUBBERBAND—which tracks to the first select, and

rubberbands until the second. It's value is the list

of the two selected coordinates.
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