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ABSTRACT

This is the final report '"for. .the most recent year of a program of

research in the field of artificial intelligence. The focus of recent

work has been the design, implementation, an4 integration of a completely

new system for the control of a robot that plans, learns, and carries

out tasks autonomously in a real laboratory environment. The report

includes sections that describe the computer implementation of low-level

and intermediate-level actions; routines for automated vision; and the

planning, generalization, and execution mechanisms. Section II of the

report contains a scenario that demonstrates the approximate capabilities

of the current version of the entire robot system.
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• I INTRODUCTION

A. General

This is the final report for the most recent year of a program of

research in the~ f ield^of artificial-Intelligence.- The~work^reported here~

began in October 1970 as a direct continuation of work performed under a

previous contract.1 The work is currently being continued under new

t •support. Therefore this is a report on the recent accomplishments and

status of a continuing research program.

A Semiannual Progress Report2 was prepared in April 1971 that de-

scribes activities during the first six months of this project. This

present report therefore emphasizes more recent work and is designed to

augment and update, rather than replace, the Semiannual Report.

B. Background

For many years our work has been focused on the application of tech-

niques of artificial intelligence to the control of a mobile automaton—

a "robot"—in a realistic laboratory environment. This work reached a

plateau in 1969 with the completion of the first integrated robot system,

consisting of a mobile vehicle, TV camera, and other sensors, and a set

of programs (on an SDS-940 computer) enabling the system to understand,

solve, and physically perform a few simple but significant tasks.

*
References may be found at the end of this report.

Contract DAHC04-72-C-0008 with the Army Research Office and ARPA,



For the past two years we have been developing a new, more powerful

robot system. The robot vehicle itself has remained largely intact.

However, the other significant components of the system are completely

new. The computer has been replaced by a PDP-10/PDP-15 facility, with

considerably more capability than the old SDS-940. The software has been

redesigned from top to bottom. This new design includes a library of

basic action operators; a new general-purpose, problem-solving system;

a new executive for monitoring the progress of the system; special visual

perception routines to be coordinated with the problem-solving process;

a method for generalization learning; and various error detection and

recovery mechanisms.

From late 1969 until early 1971, our principal activities were

assembling the new computer hardware and studying, designing, and imple-

menting major components of the new system's software. The basic organ-

ization of the system was well established and its major components

described in detail in our Semiannual Report last April.3 Since then we

have been fitting together the pieces, filling gaps, and completing the

design, as well as continuing some of the separate research studies that

grow out of robot system work.

C. Report Outline

Section II of this report presents an overview of the new robot

system, and then describes some experiments that will demonstrate the

principal new capabilities. Technical details of the four major system

components that make these experiments feasible are contained in Sections

III, IV, V, and VI. Finally, Section VII lists publications and presen-

tations that were prepared or presented during the project period.



II OVERVIEW AND EXPERIMENTS

A. Overview

The robot system is a hierarchical structure in which we shall

identify five major levels. Although some of these levels are much more

clearly defined than others and some have considerable substructure, the

five levels described below constitute a useful division for this expo-

sition. Also, the effectiveness of the system is largely derived from

the clear specifications for these levels and their interconnections.

The bottom level of the system consists of the robot vehicle and

its connection to the user programs. T,hls connection includes radio and

microwave communication links, a PDP-15 peripheral computer and its soft-

ware, and a communications channel, with its associated software, between

the PDP-15 and the PDP-10. This bottom level may be thought of as defin-

ing the elementary physical capabilities of the system. The vehicle

itself was described in several reports of previous projects,, and the

PDP-15/PDP-10 interface is described in Appendix G to the Semiannual

Report,2

The second level consists of what we call Low-Level Actions,, or

"LLAs." These are the lowest-level robot control programs available to

user programs in the LISP language, our principal programming tool. The

LLAs are programatic handles on the robot's physical capabilities such

as "ROLL" and "TILT." They are described in detail in Section III.

So that it can exhibit interesting behavior, our robot system has

been equipped with a library of Intermediate-Level Actions, or "lLAs."

These third-level elements are preprogrammed packages of LLAs, embedded



in a Markov table framework with various control and error-correction

features. Each ILA represents built-in expertise in some significant

physical capability, such as "PUSH" or "GO TO." The ILAs might be thought

of as instructive abilities of the robot, analogous to such built-in

complex animal abilities as "WALK" or "EAT." Section IV contains a de-

scription of the present set of ILAs, along with the conditions under

which they are applicable and how they each can affect the state of the

world.

The principal sensor of the perceptual system is the TV camera.

Programs for processing picture data have been restricted to a few special

"vision" routines, which are incorporated into the system at either the

ILA or LLA level. The algorithms in these routines are described in

Section V.

Above the ILAs we have the fourth level, which is concerned with

planning the solutions to problems. The basic planning mechanism is

STRIPS, the problem solver described in Appendix C of the Semiannual

Report and in Ref. 3. STRIPS constructs sequences of ILAs needed to

carry out specified tasks. Such a sequence, along with its expected

effects, can be represented by a triangular table called a MACROP ("macro

operation") . Section VI describes how such MACROPs can be generated in

generalized form, thereby enabling an interesting form of learning to

take place.

Finally, the fifth, or top, level of the system is the executive,

the program that actually invokes and monitors executions of the ILAs

specified in a MACROP. The current executive program, called PLANEX,

is briefly described at the end of Section VI. Some additional informa-

tion about the PLANEX design may be found in Ref. 4.



B. Experiments

In this section we shall describe some experiments now being planned

that will illustrate several features of the robot system, which we call,

informally, "Shakey." Specifically these will show how Shakey generates

a plan to perform a task, and how it then uses part of this plan later

as a component of a plan for performing another task. Saving plans for

later use might be regarded as a form of learning. The experiments also

show how the various levels in Shakey's hierarchical control structure

function to enable Skakey to recover gracefully from several kinds of

unexpected failures.

1. Shakey's World and Model

We must first describe the environment in which Shakey operates

and Shakey's model of this environment * -In Figure 1, we show a floor

plan of some rooms and doorways in which our experiments with Shakey

will be conducted. We can place several large boxes and wedge-shaped
*

objects in these rooms; three boxes are depicted in room RCLK of Figure

1. Initially Shakey is in room RUNI. The doorways all have mnemonic

names indicating the rooms they connect; e^g., DMYSPDP connects RMYS and

RPDP.

Shakey1s model of this environment is represented by a set of

formulas or axioms in the first-order predicate calculus. The rooms,

*
The room names are mnemomics for properties of the physical environment:

RHAL = Hallway

RRIL = Rilla's office

RCLK = Room with the clock on the wall

RRAM = Room with ramp to hallway

RPDP = PDP-10 room

RUNI = Unimate room

RMYS = Mystery room, i.e., room with unknown contents.
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doorways, boxes, walls, and other entities occur as terms in formulas

that describe important properties of the environment. The axiom model

representing the environment from planned experiments is listed in Table 1.

The meanings of most of the predicate symbols are obvious.

AT gives coordinate location information referenced to the coordinate

system of Figure 1. DAT gives information about the probable error in

this coordinate information. The RADIUS predicate is used to give rough

size information. THETA and DTHETA give information about Shakey's

heading and probable heading error, respectively. The UNBLOCKED predicate

tells which doorways are unblocked (i.e., free of obstructing objects

such as boxes) . The predicate ROOMSTATUS is used to tell whether the

contents of a room are known or unknown. The model listed in Table 1

indicates that the contents of all rooms are assumed to be known except

for RMYS. By this we mean that Shakey knows that he will never encounter

any new objects except perhaps in RMYS. This knowledge is used to guide

certain picture-taking behavior, as we shall see later. The LANDMARKS

predicate gives the locations of various landmarks such as corners and

doorjambs that Shakey can take pictures of to update its position. The

axioms at the end of the model in Table 1 (beginning with the predicate

WHISKERS) give information about the status of various lower-level motor

and sensing activities, e.g., the status of the catwhisker switches and

camera control settings. These are further explained in Section III-B.

Altogether there are 170 axioms in the model initially, which

makes this model quite large in comparison with those used by any pre-

vious automatic problem-solving systems.

2. Shakey's Action Repertoire

In order to perform the tasks described below, Shakey has

available a repertoire of ILAs. The operation of these ILAs is described



Table 1

AXIOM MODEL

ATCROBOT,7,5)

DATCROBOT, 0.1,0.1)

INROOMCROBOT,RUNI)
ATCBOXO,34,32)

INROOM(BOXO,RCLK)
ATCBOX1,25,22)

INROOMC BOX 1, RCLK)
AT(BOX2,26,27)

INROOM(BOX2,RCLK)

SHAPE(BOXO,BOX)

SHAPECBOX1,BOX)

SHAPE(BOX2,BOX)
RADIUS(BOXO,1.7)

RADIUS(BOX1,1.5)

RADIUS(BOX2,1.5)

DAT(BOXO,0.1)

DAT(BOX1,0.1)

DAT(BOX2,0.1)
THETACROBOT,-90)

DTHETA( ROBOT,!)

PUSHABLE(BOXl)

PUSHABLECBOX2)

UNBLOCKEDC DRAMHAL,RHAL)

UNBLOCKEDC DRAMHAL,RRAM)

UNBLOCKED(DCLKRIL,RRIL)

UNBLOCKEDC DCLKRIL,RCLK)

UNBLOCKEDC DRAMCLK,RCLK)

UNBLOCKED(DRAMCLK,RRAM)

UNBLOCKED(DMYSRAM,RMYS)
UNBLOCKED C DMYS RAM,RRAM)

UNBLOCKEDC DMYSCLK,RCLK)

UNBLOCKEDC DMYSCLK,RMYS)

UNBLOCKEDC OPOPCLK,RCLK)
UNBLOCKEDC DPDPCLK,RPDP)

UNBLOCKEDC DMYSPDP,RPDP)

UNBLOCKEDC DMYSPDP,RMYS)
UNBLOCKEDC DUNIMYS,RMYS)

UNBLOCKEDCDUNIMYS,RUNI)

BOUNDSROOMCFSRAM RRAM SOUTH)

BOUNDSROOMCFERAM RRAM EAST)

BOUNDSROOMCFWRAM RRAM WEST)

BOUNDSROOMCFNCLK RCLK NORTH)

BOUNDSROOMCFSCLK RCLK SOUTH)

BOUNDSROOMCFECLK RCLK EAST)

BOUNDSROOMCFWCLK RCLK WEST)

BOUNDSROOMCFNMYS RMYS NORTH)
BOUNDSROOMCFSMYS RMYS SOUTH)

BOUNDSROOMCFEMYS RMYS EAST)

BOUNDSROOMCFWMYS RMYS TOST)
BOUNDSROOMCFNPDP RPDP NORTH)

BOUNDSROOMCFSPDP RPDP SOUTH)

BOUNDSROOMCFEPDP RPDP EAST)

BOUNDSROOMCFWPDP RPDP WEST)

BOUNDSROOMCFNUNI RUNI NORTH)

BOUNDSROOMCFSUNI RUNI SOUTH)
BOUNDSROOMCFEUNI RUNI EAST)

BOUNDSROOMCFWUNI RUNI WEST)

FACELOCCFNHAL 50.0)
FACELOCCFSHAL 35.5)

FACELOCCFEHAL 18.200000)

FACELOCCFWHAL 11.200000)

FACELOCCFNRIL 49.0)



Table 1 (continued)

FACELOC(FSRIL 35.400000)
FACELOCCFERIL 36.800000)
FACELOC(FWRIL 18.799998)
FACELOC(FNRAM 35.5)
FACELOCXFSRAM 24.0)
FACELOC(FERAM 18.200000)
FACELOC(FWRAM 0.0)
FACELOC(FNCLK 35.0)
FACELOC(FSCLK 15.200000)
FACELOC(FECLK 36.800000)
FACELOCC FWCLK 18.599997)

. FACELOCCFNMYS_23.599997)
FACELOC(FSMYS 7.6000000)
FACELOCCFEMYS 18.200000)
FACELOCCFWMYS 0.0)
FACELOC(FNPDP 14.799998)
FACELOC(FSPDP 8.2000000)
FACELOC(FEPDP 36.800000)
FACELOC(FWPDP 18.600000)
FACELOC(FNUNI 7.1999999)
FACELOC(FSUNI 2.1999998)
FACELOC(FEUNI 17.200000)
FACELOC(FWUNI 0.0)
JOINSROOMS(DRAMHAL RRAM RHAL)
JOINSROOMS(DRAMCLK RRAM RCLK)
JOINSROOMS(DCLKRIL RCLK RRIL)
JOINSROOMS(DRAMHAL RHAL RRAM)
JOINSROOMS(DRAMCLK RCLK RRAM)
JOINSROOMS(DCLKRIL RRILjRCLK)
TYPE(BOX1 OBJECT) •;,
TYPECBOX2 OBJECT) \
TYPE(BOXO OBJECT) .'|

TYPECRHAL ROOM) !

TYPE(RRIL ROOM)

TYPE(RRAM ROOM)

TYPE(RCLK ROOM)

TYPECRMYS ROOM)

TYPE(RPDP ROOM)

TYPECRUNI ROOM)

TYPE(DRAMHAL DOOR)

TYPECDRAMCLK DOOR)

TYPE(DCLKRIL DOOR)

TYPE(DMYSRAM DOOR)

TYPECDMYSCLK DOOR)

TYPEtDMYSPDP DOOR)

TYPE(DPDPCLK DOOR)

TYPE(DUNIMYS DOOR)

BOUNDSROOM(FNHALL RHAL NORTH)

BOUNDSROOMCFSHAL RHAL SOUTH)

BOUNDSROOMCFEHAL RHAL EAST)

BOUNDSROOMCFWHAL RHAL WEST)

BOUNDSROOM(FNRIL RRIL NORTH)

BOUNDSROOMCFSRIL RRIL SOUTH)

BOUNDSROOMCPERIL RRIL EAST)

BOUNDSROOMCFWRIL RRIL WEST)

BOUNDSROOMCFNRAM RRAM NORTH)

JOINSROOMS(DMYSRAM RNYS RRAM)

JOINSROOMSCDMYSCLK RMYS RCLK)

JOINSROOMS(DMYSPDP RMYS RPDP)

JOINSROOMS(DPDPCLK RPDP RCLK)

JOINSROOMSCDUNIMYS RUNI RMYS)

JOINSFACES(DRAMHAL FNRAM FSHAL)

JOINSFACESCDRAMCLK FERAM FWCLK)



Table 1 (continued)

JOINSFACES(DCLKRIL FNCLK FSRIL)

JOINSFACES(DMYSRAM FNMYS FSRAM)
JOINSFACES(DMYSCLK FEMYS FWCLK)

JOINSFACES(DMYSPDP FEMYS FWPDP)
JOINSFACESCDPDPCLK FNPDP FSCLK)

JOINSFACES(DUNIMYS FNUNI FSMYS)
DOORLOCS(DRAMHAL 11.200000 18.200000)
DOORLOCSCDRAMCLK 26.799998 32.0)
DOORLOCSCDCLKRIL 21.700000 24.799998)
DOORLOCS(DMYSRAM 10.0 15.200000)
DOORLOCS(DMYSCLK 16.200000 20.799998)
DOORLOCSCDMYSRDP 9.7000000 14.799998)
DOORLOCSCDPDPCLK 25.799998 30.799998)
DOORLOCS(DUNIMYS 10.799998 16.0)

ROOMSTATUS(RHAL KNOWN)
ROOMSTATUS(RRIL KNOWN)
ROOMSTATUS(RRAM KNOWN)

ROOMSTATUS(RCLK KNOWN)
ROOMSTATUS(RMYS UNKNOWN)
ROOMSTATUS(RPDP KNOWN)

ROOMSTATUS(RUNI KNOWN)
LANDMARKS(RHAL (COORDS (4. 11.200000 35.5 0.)))

LANDMARKS(RRIL
(COORDS (4

(3

(2

(2

(2
(2

LANDMARKS(RRAN

(COORDS (4
(3

(1
(4

(3
(2

(2

(2

JOINSROOMS(DMYSRAM RRAM RMYS)
JOINSROOMS(DMYSCLK RCLK RMYS)
JOINSROOMS(DMYSPDP RPDP RMYS)
JOINSROOMS(DPDPCLK RPDP RCLK)
JOINSROOMS(DUNIMYS RUNI RMYS)
LANDMARKS(RCLK

(COORDS (4

21.700000 35.400000
24.799998 35.400000
18.799998 49.0 4.)

36.800000 49.0 3.)
36.800000 35.400000
18.799998 35.400000

18.200000 26.799998

18.200000 32.0 0.)
11.200000 35.5 2.)

10.0 24.0 -1.)
15.200000 24.0 -1.)
0.0 35.5 4.)
18.200000 24.0 2.)
0.0 24.0 1.)))

-1.)
-1.)

2.)

1.)))

0.)

(3.

(4.

(3.
(4.
(3.

(4.
(3.
(2.

(2.
(2.
(2.

LANDMARKS (RMYS
(COORDS (4.

(1.
(4.

(3.

(4.

24.799998 35.0 -1.)
21.700000 35.0 -1.)

25.799998 15.200000

30.799998 15.200000
18.599997 20.799998
18.599997 16.200000

18.599997 32.0 0.)
18.599997 26.799998

18.599997 35.0 4.)

36.800000 35.0 3.)
36.800000 15.200000
18.599997 15.200000

18.200000 9.7000000

18.200000 14.799998
18.200000 16.200000

18.200000 20.799998

15.200000 23.599997

-1.)

-1.)
0.)
0.)

0.)

2.)
1.)))

4.)

1.)
0.)

0.)

-1.)
(3. 10.0 23.599997 -1.)

10



Table 1 (concluded)

LANDMARKS (RPDP
(COORDS

~~-

LANDMARKS (RUN I

(COORDS

WHISKERS( ROBOT, 0)

IRIS(ROBOT,1)

OVERIDE(ROBOT,0)

RANGE( ROBOT, 30)

TVMODE( ROBOT, 0)

FOCUS (ROBOT, 30)

PAN( ROBOT, 0)

TILT(ROBOT,0)

DPAN(ROBOT,3.12)

DTILT(ROBOT,0.7)

DIRIS( ROBOT, 0)

DFOCUS( ROBOT, 0)

(4.

(3.

(2.

(2.

(2.

(2.

(4.

(3.

(4.

(3.

(2.~

(2.

(4.

(3.

(2.

(2.

(2.

10.

16.

799998

000000

7.

7.

6000000

6000000
-1.)

-1.)
0.0 23.599997 4.)

18.

18.

200000

200000

23

7.

.599997

6000000
3.)

2.)

0.0 7.6000000 1.)))

30.

25.

18.

18.

36".

36.

16.

10.

16.
17.

0.0

799998

799998

200000

600000
800000

800000

000000

799998

14

14

14

9.

14

8.

7.

7.

.799998

.799998

.799998

7000000

"799998

2000000

1999999

1999999

-1.)

-1.)

-1.)

0.)

"3.)

2.)))

-1.)

-1.)
0 7.1999999 3.0)
200000 2.1999998 2.)

2.1999998 1.)))

P I CTURESTAKEN ( ROBOT , 0 )

JUSTBUMPED(ROBOT, NIL)

11



in Section V. The problem-solving system, STRIPS, must be aware of the

properties of the available ILAs. Therefore each ILA is represented for

STRIPS by an operator with specified preconditions and effects. These

operators and their descriptions are given in Table 2 using the add and

delete lists employed by STRIPS.

We shall now describe the planned experiments that will use the

model of Table 1 and the operators shown in Table 2. The description

will be in terms of the expected results of these experiments.

a . Task 1

Starting with the configuration of Figure 1 (represented

by the model in Table 1), Shakey will perform two tasks. Each of these

tasks is stated in English and entered into the system via teletype.

The first task is stated as "USE BOX 2 TO BLOCK DOOR DPDPCLK FROM ROOM

RCLK." This statement is converted by the English language system

ENGROB5 to a goal expressed by a well-formed formula (wff) of the first-

order predicate calculus: BLOCKED(DPDPCLK,RCLK,BOX2). The STRIPS problem-

solving system is then called to compose a sequence of operators whose

execution will create a world model in which this goal wff is.true. In

terms of the operators in Table 2, we can show that the following se-

quence would solve this problem:

GOTO2(DUNIMYS),GOTHRUDR(DUNIMYS,RUNI,RMYS),

GOTO2(DMYSCLK),

GOTHRUDR(DMYSCLK,RMYS,RCLK),

BLOCK(DPDPCLK,RCLK,BOX2)

Rather than generating this specific solution, STRIPS

generates a generalized plan that involves going from an arbitrary initial

room through an intermediate room, and into a third room and then blocking

a doorway in the third room. The rooms, doorways, and blocking object

12



Table 2

STRIPS OPERATORS

BLOCK(DX,RX,EX)

Preconditions:

INROOM(ROBOT,RX) A INROOM(BX,RX)
A PUSHABLE(BX) A UNBLOCKED(DX,RX)

A (3RY)JOINSROOMS(DX,RX,,RY)

Delete List:

AT(ROBOt,$l,$2)

AT(BX,$1,$2)

UNBLOCKED(DX,RX)

NEXTTO(ROBOT,$1)

NEXTTO(BX,$1)

NEXTTOC$1,BX)

Add List:

*BLOCKEDCDX,KX,BX)

NEXTTO(ROBOT,BX)

Blocks door DX with an object BX by pushing BX to a place in room RX directly in

front of door DX.

UNBLOCK(DX,RX,BX)

Precondi tions:

BLOCKED(DX,RX,BX) A INROOM(ROBOT,RX) A PUSHABLE(BX)

Delete List:

AT(ROBOT,$1,$2)

BLOCKED(DX,RX,BX)

AT(BX,$1,$2)

NEXTTOC ROBOT,$1)
NEXTTO(BX,$1)

KEXTTO($1,BX)

Add List;

*UNBLOCKEDCDX,RX)

NEXTTOCROBOT,BX)

Unblocks door DX by pushing object BX away from its place in room RX directly in
front of door DX.

GOTHRUDR ( DX , RX , RY) "

Preconditions;

NEXTTOCROBOT,DX) A INROOM(ROBOT,RX)

A JOINSROOMS(DX,RX,RY) A UNBLOCKED(DX,RX)

A UNBLOCKED(DX,RY)

Delete List:

AT(ROBOT,$1,$2)

NEXTTOCROBOT,$1)

INROOM( ROBOT, $1)
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Table 2 (continued)

Add List:

*INROOM(ROBOT,RY)
NEXTOX ROBOT, DX)

Takes Shakey through door DX from room RX into room RY.

GOT02(X)

Preconditions:

(3RX) [INROOMCROBOT,RX) A INROOM(X,RX)]
V (3RX,RY) [INROOM(ROBOT,RX)

A JOINSROOMS(X,RX,RY) A UNBLOCKED ( X, RX )]

Delete List:

AT(ROBOT,$1,$2)

NEXTTO(ROBOT,$1)

Add List:

*NEXTTO(ROBOT,X)

Takes Shakey from any point in a room to a location next to any object or doorway, X,

in the same-room. (Shakey will navigate around obstacles that might be in the way of

a direct path.)

PUSH(OB,X,Y)

Preconditions:

(3RX) [INROOM(ROBOT,RX) A

INROOM(OB,RX) A LOCINROOM(X,Y,RX) ]

A PUSHABLE(OB)

Delete List:

AT(ROBOT,$1,$2)

NEXTTO(ROBOT,$1)
AT(OB,$1,$2)
NEXTTO(OB,$1)

NEXTTO($1,OB)

Add List:

*AT(OB,X,Y)

NEXTTO(ROBOT,OB)

Pushes object OB from one point in a room to a coordinate location (X,Y) in the same room.

(Shakey must initially be in the same room as OB and (X,Y), but will push OB around obstacles

that might be in the way of a direct path.)

NAVTO(X,Y)

Preconditions :

(3RX) [INROOM(ROBOT,RX)
A LOCINROOM(X,Y,RX)]
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Table 2 (concluded)

Delete List:

AT(ROBOT,$1,$2)
NEXTTO(ROBOT,$1)

Add List: . .

*AT(ROBOT,X,Y)

Takes Shakey from any point in a room to the coordinate location (X,Y) in the same room.
(Shakey will navigate around obstacles that might be in the way of a direct path.)

POINT(DIRECTION)

Preconditions:

none

Delete List:

THETA(ROBOT,$1)

Add List:

*THETA(ROBOT,DIRECTION)

Turns Shakey so that its heading is DIRECTION.

PUSH3(OB,X)

Precondi tions:

PUSHABLE(OB) A 3(RX)fINROOM(ROBOT,RX) A INROOM(OB,RX)
A [INROOM(X,RX) V 3(RY)JOINSROOMS(X, RX,RY)]}

Delete List:

AT(ROBOT,$1,$2)
NEXTTO(ROBOT,$1)
AT(OB,$1,$2)
NEXTTO(OB,$1)
NEXTTO($1,OB)

Add List:

*NEXTTO(OB,X)
NEXTTO(ROBOT,OB)

Pushes object OB from one point in a room to a location next to any object or doorway X
in the same room. (Shakey will push OB around obstacles that might be in the way of a
direct path.)

Note: An asterisk(*) in front of an add-list clause indicates that this clause is one of

the "primary effects" of the operator.
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in this generalized plan are represented by parameters. The generalized

plan is thus a subroutine whose arguments are the parameters. These

arguments are bound to specific constants only when the plan is executed.

The value of the generalized subroutine is that it can be stored away

(or "learned") and then used again in other situations perhaps as part

of a plan for a more complex task. The way in which STRIPS produces

these generalized plans is discussed in Section VI.

The task in question elicits the following generalized

plan from STRIPS:

GOT02(PAR6),GOTHRUDR(PAR6,PAR7,PARS)

GOT02(PAR4),GOTHRUDR(PAR4,PAR5,PAR2),

BLOCK(PAR1,PAR2,PAR3)

This plan is stored away as the macro operator:

MACROPKPARS,PAR1,PAR2,PAR4,PARS,PAR?,PAR6) . .

STRIPS creates a triangle table representation of MACROP1.

This table compactly stores information vital to monitoring the execution

of MACROP1 and information needed to use MACROP1 (or parts of it) as a

component of a future plan. We show this triangle table representation
* . . •

of MACROP1 in Table 3 and refer the reader to Section VI for a discus-

sion of triangle tables and their uses.

After the creation of the triangle table representation

of MACROP1, STRIPS prepares a version of it that will solve the given

task, namely, to "Use BOX2 to block door DPDCLK from room RCLK." This

version is obtained from MACROP1 by replacing those parameters standing
'

*
Note: For all triangle tables, an asterisk (*) before a clause indi-

cates that this clause was used to prove the preconditions of the opera-

tor named at the right of the row in which the clause appears.
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for constants in the goal wff by those constants. That is, in this case,

we replace PAR1 by DPDPCLK, PAR2 by RCLK, and PAR3 by BOX2 throughout

the MACROP1 triangle table. This instantiated table is then given to

PLANEX for execution.

PLANEX is a program that supervises the execution of

those ILAs corresponding to the operators in the plan. For a discussion

of the operation of PLANEX, see the last part of Section VI, and Ref. 4.

PLANEX takes as input a partially instantiated MACROP in triangle table

form. (This MACROP may have some parameters remaining after those oc-

curring in the goal wff have been instantiated.) The PLANEX algorithm

looks for a specific, fully instantiated subsequence of the operators

in the MACROP that can be executed in the present situation to achieve

the goal. The ILA corresponding to the first operator is then executed.

In the case of the task we are considering the first ILA to be executed

is GOTO2(DUNIMYS), which causes the robot to go to the door named DUNIMYS,

The PLANEX algorithm then determines that the next ILA

to be executed should be GOTHRUDR(DUNIMYS,RUNI,RMYS). Execution of this

ILA begins by calling the vision routine CLEARPATH, which takes a TV

picture through the doorway to determine whether the path in RMYS is

clear (since the contents of RMYS are unknown). The path is in fact

clear, so Shakey proceeds through the doorway.

Next PLANEX calls for the execution of GOT02(DMYSCLK).

Since the contents of RMYS are unknown to Shakey, GOTO calls CLEARPATH

again. To illustrate how Shakey can deal with unforeseen difficulties,

we now place a box directly in Shakey's path in front of the door

DMYSCLK. As Figure 1 and Table 1 show, Shakey does not know of the
<̂'

existence of this box. CLEARPATH determines that the path is blocked

and notes the approximate location of the blocking object. Since Shakey

expects that it might encounter unknown objects in room RMYS, GOTO next
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calls a vision routine called OBLOC. This routine calculates the size

and exact location of the object, gives it a name, BOX3, and adds this

information to the model. (It also assumes, perhaps optimistically,

that the new box is pushable.) OBLOC also notes that BOX3 is blocking

door DMYSCLK, so it adds the wff BLOCKED(DMYSCLK,RMYS,BOX3) to the model.

Since the conditions for continuing the execution of GOTO(DMYSCLK) are

no longer satisfied, control returns to PLANEX. Our interest in this

experiment-is to show how Shakey-can-gracefully recover from such an,

unexpected failure of its plan.

PLANEX, as usual, attempts to find a fully instantiated

version of the parameterized MACROP1 that can be executed in the present

situation to achieve the goal. In this.case, PLANEX finds another in-

stantiation of MACROP1 that works. The operators in this instantiation

are:

GOT02(DMYSPDP),GOTHRUDR(DMYSPDP,RMYS,RPDP) ,

GOTO2(DPDPCLK),

GOTHRUDRCDPDPCLK,RPDP,RCLK)

BLOCK(DPDPCLK,RCLK,BOX2).

Here we see one of the advantages of constructing param-

eterized plans. To perform the original task, we first constructed a

parameterized plan having an instance that solves the problem. Later in

the task execution we find that after an unexpected difficulty, another

instance of the same parameterized plan can be used to achieve the goal.

We expect that this method of error recovery will be quite valuable in

robot problems. (If PLANEX could find no applicable instance of MACROP1

that would achieve the goal, then STRIPS would be asked to produce

another plan and MACROP.)

After finding this new instance of MACROP1, PLANEX calls

for the execution of the first operator GOT02(DMYSPDP) . Shakey thus

moves to door DMYSPDP. PLANEX next calls for going through the door,
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and the process continues until finally Shakey enters room RCLK. Then

PLANEX calls for the execution of BLOCK(DPDPCLK,RCLK,BOX2). Running this

ILA calls for going to BOX2 and pushing it around BOX1 and then to door

DPDPCLK (A "two-leg" push). The local planning needed to accomplish this

push operation is done entirely within the PUSH ILA called by BLOCK.

With this operation complete, Shakey has accomplished the first task, in

spite of the unforeseen difficulty. We also note that MACROP1 has been

filed away and can be used as an operator in future problem solving.

b. Task 2

The state of things in Shakey's world is now as shown in

Figure 2. We now test Shakey's ability to learn by giving it a task

that can be solved by using part of MACROP1. The statement of the task

given to the system, in English, is "UNBLOCK DOOR DYMSCLK FROM ROOM RMYS."

That is, we want Shakey to move away the object (BOX3) that it discovered

to be blocking DMYSCLK.

Again, the English statement is converted into a predicate

calculus wff:

UNBLOCKED(DMYSCLK,RMYS).

STRIPS now attempts to find a sequence of operators that will make the

wff true, but now it has MACROP1 available in its operator repertoire

(in addition to the operators corresponding to ILAs). STRIPS first de-

cides that it should try to apply the operator UNBLOCK(DMYSCLK,RMYS,

BOX3) . To do so, Shakey must be in room RMYS, so STRIPS looks for opera-

tors that will achieve INROOM(ROBOT,RMYS).

STRIPS determines that an instance of the GOTHRUDR operator

will work, but so also will subsequences of MACROP1. One subsequence

consists of the first two operators in MACROP1 and the other consists of

the first four. (For a discussion of how STRIPS makes selections of
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MACROP subsequences, see Section VI.) Since an instance of a sequence

of the first four operators in MACROP1 is both applicable in Shakey's

present situation and achieves the condition INROOM(ROBOT,RMYS)} STRIPS

is quickly able to settle on this instance and produce a plan for Task

2. Let us denote by MACROPl' the subsequence of MACROP1 selected by

STRIPS. MACROPl' still contains free parameters that are left to be

bound at execution time. Its definition in terms of the operators com-

prising it is:

MACROPl7 (PAR2,PAR4,PAR5,PAR7,PAR6)

GOT02(PAR6)

GOTHRUDRCPAR6,PART,PARS)

GOT02(PAR4)

GOTHRUDRCPAR4}PAR5,PAR2)

The complete generalized plan for the second task is:

- MACROPl' (PAR2,PAR4,PAR5,PAR7,PAR6)

UNBLOCK(PAR1,PAR2,PAR3)

This generalized plan is given the name MACROP2 and is

saved for possible later use. The triangle table representation of

MACROP2 is shown in Table 4.

After creating the general version of MACROP2, STRIPS

prepares a version of it for PLANEX by instantiating it with those con-

stants appearing in the task description. Namely, DMYSCLK is substituted

for PAR1 and RMYS for PAR2. It then gives this partially instantiated

version to PLANEX to be executed. PLANEX finds that the following in-

stantiation of the plan will achieve the goal:

MACROPl' (RMYS,DMYSRAM,RRAM,RCLK,DRAMCLK)

UNBLOCK(DMYSCLK,RMYS,BOX3)
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Next, PLANEX calls for execution of MACROP1'. This execution is accom-

plished by PLANEX itself. The ability to handle "nested" triangle tables

is one of the features of our system. PLANEX discovers that the first

ILA to be executed in MACROP1' is GOTO(DRAMCLK) . In a similar manner.,

PLANEX ultimately executes the entire string of ILAs in MACROPl' and then

the UNBLOCK ILA to accomplish the second task.

When these experiments are actually conducted, it is

probable that the system may decide to exercise another one of our error-

recovery capabilities. Recall that the model contains information about

the probable error in Shakey's location stored in the predicate DAT.

Model-maintenance programs automatically increase the estimate of error

after every robot motion. During execution of ILAs such as GOT02, this

probable error is checked to see whether it is still less than some

specific tolerable error. Whenever the error estimate exceeds the toler-

ance, a visual program called LANDMARK is called. LANDMARK takes a pic-

ture of some nearby feature (such as a doorjamb), calculates from this

picture the robot's actual location, and enters this updated location

into the model. It also resets the DAT predicate to the error estimate

appropriate after having just taken a picture.

Several features of the system are illustrated in these

experiments. Most important of these are the ability to learn generalized

plans and the ability to recover from various types of failures. The

system of ILAs is designed'to be robust in the sense that each ILA does

what it can locally to correct any errors. When the appropriate recovery

procedures are beyond a specific ILA's knowledge and abilities, there

are several higher levels where recovery can occur, namely, at higher

level ILAs, in PLANEX, or in STRIPS.
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Ill LOW-LEVEL ACTIONS

A. Introduction

The low-level actions, or "LLAs", define the interface between major

robot software packages a.nd thejbottom, hardware-oriented, level of the

system. The intermediate-level actions (ILAs)}. to be described in Sec-

tion IV, control the operation of these LLAs. The LLAs, in turn, communi-

cate with the PDP-15 computer and the robot vehicle according to the

protocol described in Appendix G, "Robot Communication between the PDP-15

and the PDP-10," of the Semiannual Report.3 Initial specifications for

these programs appeared as Appendix B, "Bottom level PDP-10 Software for

the SRI Robot," of the 1970 Final Report.1

In this section we shall describe the upper face of the LLAs, i.e.,

the face presented to higher-level programs.

Since the robot moves very slowly, we have taken great pains to permit

the user to view the robot as behaving asynchronously to as great an

extent as appropriate. Thus the user must take cognizance of this asyn-

chrony by confirming the completion or "settling" of any robot activity

before doing anything that assumes that activity to have been successful.

This low-level software package provides the necessary interlocking in

the following manner. Communications between the user and the robot are

separated into two unidirectional channels: orders from the user to the

robot are handled by calls on LLAs (i.e., the functions in this package);

the current state of the robot's world is reflected in the robot's world

model. Now, the functions by which the user can access these particular

entries in the robot's world model have special provisions to ensure that

an activity has settled before granting access to any part of the model
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which that activity might affect. For example, one might move the robot

to a given location by first turning it to face the target spot and then

rolling it straight forward by the required distance. One could con-

ceivably confirm the initial turn (by interrogating the proper part of

the model) before rolling ahead. The model-access function will then

delay until the turn has settled before reporting the bearing of the robot.

On the other hand, the user will not be delayed for completion of the

roll until he interrogates the position of the robot. Thus we have syn-

chronization (between the user and the robot) whenever we need it but not

otherwise.

This sort of synchronization is effected in another circumstance

having to do with interlocks between activities. In particular, each

activity has associated with it certain conflicting activities. (For

example, one cannot take a TV picture while the robot's head is panning.)

A set of initiation functions automatically take cognizance of all pos-

sible conflicts: each ensures that all potentially conflicting activi-

ties are settled before initiating its own activity. For the purpose of

programming actual use of the robot, however, one should note that settling

of an activity does not necessarily mean its successful completion. For

example, a roll can terminate by the robot unexpectedly bumping into

some obstacle—this will "settle" the roll, but the robot cannot be

assumed to have attained its destination.

B. Measurement and Control

Before proceeding further, we shall define the precise robot capa-

bilities that the LLAs control. Shakey can move about the floor by turning

his body and by rolling straight forward or backward, and he can pan and

tilt his head. He can take pictures and rangeflnder readings, and he can

adjust the focus and iris states of the TV camera's lens. Finally, he

can set some global parameters both for taking TV pictures and for rolling
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or turning. These ten activities will be more fully explained below.

First we shall describe the measurement conventions in Shakey's environment,

The robot rolls about in a right-handed Cartesian coordinate system.

Distances are measured in feet. The world is partioned into .rooms by

doors and walls. The walls lie parallel to Cartesian axes, and any door

is completely contained in a wall. This coordinate system is constant

in the sense that all robot motion is relative to it and that other things

generally move with respect to it only when the robot pushes them.

Angles are measured in degrees, and we will call the principal value

of an angle that value between -180° and +180°. The bearing of the robot

is a horizontal angle referred to the positive direction of the global

y-axis; thus the robot is parallel to the x-axis in the negative sense

when its bearing is 90°. The pan angle of the robot's head is a hori-

zontal angle referred to the robot's bearing, and the tilt angle of the

robot's head is a vertical angle measured from the horizontal plane.

Thus when the robot has its pan angle at zero and the tilt angle at -45°,

the rangefinder and TV camera are pointed at the floor right before its

very wheels.

We turn now to optical values. The iris of the TV camera is set

in exposure value units (EVs), which have a logarithmic relation to f-

numbers: increasing the EV number by one doubles the amount of light

arriving at the inner regions of the TV camera. Focus values and range-

finder readings are distances in feet from the intersection of the axes

about which the robot's head tilts and pans. That point in turn is about

4 feet 1-1/2 inches above the floor and 9 inches forward of the axis

about which the robot turns, when the robot is standing (or sitting or

whatever it does) on a level flat floor.

Having covered the numeric quantities in the robot's world, we have

but a few other items to discuss. Perhaps the simplest of these to
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describe is a TV picture: it resides on a disk file in FORTRAN binary

format. Now TV pictures are digitized in square arrays of picture ele-

ments; the size of the array is constant, but one can select two coarse-

nesses: 120 or 240 picture elements on a side. One can, however, alter

the configuration of the array for the sake of special stereo optics.

These two options are combined into one number called the tvmode, as

follows:

"tvmode: 0 means 120 x 120 nonstereo

"tvmode" 1 means 120 X 120 stereo

"tvmode" 2 means 240 X 240 nonstereo

"tvmode" 3 means 240 X 240 stereo.

To explain the last two quantities of this section, we must first

explain the two main tactile sensors of the robot and how they interact

with the roll and turn activities. The tactile sensors are seven cat-

whiskers and a pushbar; each catwhisker can signal engagement with an

obstacle, and the pushbar can signal each of two levels of pressure:

mere engagement and hard contact. All nine of these conditions are re-

flected in a quantity called the whiskerword; to a first approximation

each of these conditions has its own bit in the whiskerword,.whose format

is shown in the following table:

Bit No. Octal Code • Meaning of "l"

21
23

25

26
28

29

30

33
35

040000
010000

002000
001000

000200

000100

000040

000004

000001

Pushbar is engaged and ready to push.

Left front whisker is engaged.

Front horizontal whisker is engaged.
Right front whisker is. engaged.

Right rear whisker is engaged.

Encountered immovable object and backed off.

Rear whisker is engaged.

Left rear whisker is engaged.
Front vertical whisker is engaged.

The robot has a couple of motor reflexes pertinent to this disucssion:

it will stop moving whenever the pushbar becomes disengaged, and it will
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not move while a catwhisker is engaged. However, these two reflexes can

be overriden selectively; the corresponding orders are sent to the PDP-

15 by means of the override activity and the override code word, which

has the following significance:

Code Word Pushbar Catwhisker

0

.1
2

3

Enabled

Enabled
Overriden

Overriden

Enabled

Overriden
Enabled

Overriden

C. The LLA Portion of Shakey's Model

We will now enumerate and define the 17 predicates by which the

robot's lowest-level state is represented in the axiomatic world model

They are:

Atom in axiomatic model

(AT ROBOT xfeet yfeet)

(DAT ROBOT dxfeet dyfeet)

(THETA ROBOT degreesleftofy)

(DTHETA ROBOT dthetadegrees)
(WHISKERS ROBOT whiskerword)

(OVRID ROBOT overrides)

(TILT ROBOT degreesup)

(DTILT ROBOT ddegreesup)

(PAN ROBOT degreesleft)
(DPAN ROBOT ddegreesleft)

(IRIS ROBOT evs)
(DIRIS ROBOT devs)

(FOCUS ROBOT feet)

(DFOCUS ROBOT dfeet)

(RANGE ROBOT feet)

(TVMODE ROBOT tvmode)

(PICTURESTAKEN ROBOT tpicturestaken)

Affected by

ROLL

ROLL

TURN

TURN

ROLL, TURNL
OVRID
TILT

TILT

PAN
PAN

IRIS
IRIS

FOCUS

FOCUS

RANGE

TVMODE

SHOOT

The two predicates AT and THETA give the position and bearing of

the robot itself in the global coordinate system; the statistical uncer-

tainties are given by the predicates DAT and DTHETA, which are separated
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from AT and THETA to facilitate planning. The state of the whiskerword

is updated whenever, a ROLL or TURN settles, and the OVRID predicate re-

flects the state of the overrides in the robot.

The TILT and PAN predicates refer to the direction the robot's head

is pointed. DTILT and DPAN give corresponding error estimates. All

three angles (tilt angle, pan angle, and heading THETA) are stored as

their principal values. RANGE gives the value resulting from the most

recent rangefinder reading. the PICTURESTAKEN predicate, which we will

describe more fully in our discussion of the SHOOT activities, gives the

approximate number of pictures taken to date. The meanings of the rest

of the predicates should be clear from the previous discussion.

D. The LLAs

The predicates are the means by which the robot tells the user about

its state; the LLAs provide the means by which the user tells the robot

to alter its state. One should understand that this clean division is

largely just formal; in practice an interrogation of a predicate is in-

tercepted by a function that ensures settling of any relevant robot ac-

tivities before proceeding to the actual access. Also, the initiation

of an action does not guarantee its completion; actions may terminate

for a variety of reasons, such as engagement of limit switches or mal-

functions in the telemetry link. The state of the system after an action

may be determined by investigating the model.

The following functions initiate fundamental low-level activities

(whenever numeric parameters are used, negative numbers are permissible

and mean motion in the direction opposite to that indicated):

(TILT degreesup) tilts the robot's head upward by "degreesup"

degrees. The motion can be prematurely terminated by a limit

switch.
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(PAN degreesleft) pans the robot's head by "degreesleft"

degrees to the left or far enough to activate a limit switch.

(FOCUS feetout) the TV camera is initially focused on a plane

removed by some focal distance from the center of the head's

gimbals; this function increases that distance by "feetout"

feet. Of course the range of focal distances is limited by

limit switches .

(IRIS evs) opens the robot's iris (on the TV camera) by "evs"

EVs. Thus if "evs" has the value 1, this form will double the

amount of light getting into the TV camera. There are limits

for this activity too.

(OVRID overrides) sets the overrides as specified by the

"overrides" code word.

(TVMODE tvmode) sets the TV mode as specified by the "tvmode"

code word.

(RANGE) reads the robot's rangefinder; this automatically

includes turning on the rangefinder and waiting for it to warm

up.

(SHOOT) puts a TV picture onto the disk file "TV.DAT". The

picture is taken according to the current TV mode. Assuming

correct operation of hardware and software, a subsequent

examination of the PICTURESTAKEN atom (in the world model)

will yield a positive integer giving the number of current

pictures in a series (1,2.3,...) begun when the robot system

was loaded or initialized. In the event of an unrecovered system

malfunction (e.g., transmission error), the value stored with

PICTURESTAKEN will be the negative of the serial number of the

last successfully taken picture.
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(ROLL feet) tells the robot to roll forward by "feet" feet.

This activity has three normal ways of prematurely terminating:

the robot can come into contact with an obstacle, engaging a

catwhisker; it can lose contact with an object it is pushing,

disengaging the pushbar; or it can encounter an immovable object,

causing the pushbar to come on hard. The first two conditions

cause the robot to stop by reflex actions that can be overridden;

the last causes the robot to attempt to free itself using more

complex evasive actions in a reflex that cannot be overridden.

When the robot encounters an immovable object, it will not only

stop, but it will back away from it by some distance, currently

a constant 6 inches. (Of course, the information in the model

will be correctly maintained.) The whiskerword in the model is

updated at the end of a ROLL or TURN; it contains the description

of the current state if the catwhiskers and pushbar are returned

from the robot, but it has another bit for immovable objects—

this bit showing the history of an event rather than showing a

current state. This bit is set only when the whiskerword is

updated the first time after hard contact.

(TURN degreesleft) tells the robot to turn to the left by

"degreesleft" degrees. Otherwise the above description of

the ROLL activity applies excepting only the way immovable

objects are evaded. In this case, the robot turns back; currently

it turns back to its initial heading.

The functions discussed so far that initiate motions have been in-

cremental in form if not in essence. However, even this level of robot

software has a memory of the various aspects of the robot's position in

the axiomatic model so dutifully maintained by the settling functions.

Capitalizing on this circumstance, we have also provided some functions

to initiate motions to a given goal (rather than by a given amount).
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Although these functions are formally and conceptually outside the lowest

LISP level of robot software, they have sufficiently simple internal

structure that it is convenient to describe them here rather than in the

next (ILA) section. With one exception we expect their meanings to be

self-evident. These additional initiation functions are:

(TILTO degreesup)

(PANTO degreesleft)

(FOCUSTO feet)

(IRISTO evs)

(ROLLTO xfeet yfeet)

(TURNTO degreeslefttofy).

The exception is ROLLTO: it must first turn the robot to point toward

its goal, so it must do (and does) more than simple calling the corre-

sponding incremental function with the-difference between the desired

and current position.

E. Summary

Table 5 is a summary of Shakey's low-level activities. Figure 3

sketches how these activities fit into the overall system control

structure.
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INTERMEDIATE-LEVEL ACTIONS
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FIGURE 3 CONTROL STRUCTURE OF LOW-LEVEL ACTIVITIES
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IV INTERMEDIATE-LEVEL ACTIONS

A. Introduction

The Intermediate-Level Actions (ILAs) are the action routines as-

sociated with the STRIPS operators described in Table 2. Here we dis-

tinguish "action routines" from "operators" on the following basis:

operators are used by STRIPS for planning, and the corresponding action

routines are invoked by PLANEX (or any other suitable executive) to actually

move the robot. The ILAs are written in a language we call Markov be-

cause of its resemblance to Markov algorithms.5 There is a large body

of auxiliary LISP functions that accompanies the ILAs, but we will con-

fine the present discussion to a brief'description of the Markov language

and a brief exposition of the current ILAs and the intraroom navigation

algorithm.

B. The Markov Language

The central part of the Markov language is the Markov table, speci-

fying actions to be performed and the criteria for determining their se-

quence. The format of a Markov table is an ordered collection of rows

of identical format. Each row starts with a label, which is followed by

a predicate, a sequence of actions to be performed, and finally the

label of some other line in the table. This last item (which we have been

calling the "go-to") can optionally specify that execution of the table

could cease, causing the calling routine's execution to resume in the

conventional subroutine fashion. The characteristic execution pattern

is a sequential scan through the table's rows, testing the predicates

one by one until a row is found whose predicate is true. Then the scan
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terminates and the actions (if any) in that row are performed, and the

go-to is followed; it will either indicate completion of the execution

of the table, or it will name a line in the table at which the scan is

to recommence. When the Markov table is first entered, the scan begins

with the first line in the table. Execution may be terminated in three

ways: it can be completed explicitly, by reaching a special go-to; the

sequential scan can get to the bottom of the table without having found

a line with a true predicate; and finally, an action can be fruitless,

which will cause a loop suppressor to terminate execution of the table.

In all three cases, there is only one form of return from a Markov table,

and the calling routine (or Table) is expected to test for the desired

results. (This seemed much simpler than trying to make the individual

action routines guess what its caller had in mind.)

The actions called for in an ILA may be LLAs, other ILAs, or arbi-

trary programs (usually coded in LISP) . Since the Markov interpreter

is itself a LISP program, any ILA can call itself recursively.

The "go-to" part of a Markov table line is interpreted after comple-

tion of the action part. In its simplest case, the "go-to" consists of

the label of a line at which to continue the search for a true predicate.

If several lines have the given label, one of the lines is arbitrarily

chosen; if no lines have it or if it is NIL, execution is terminated.

(NIL is our conventional explicit return.) The other case involves

"loop suppression" and will be discussed below.

A Markov table is generally a sequence of actions that would trans-
Y

form an initial state into a final "goal" state via a linear sequence of

intermediate states. Whether an action is applicable to a particular

state can usually be tested by a relatively simple predicate—the one

heading the table line with the action. Since actions in the real world

frequently fail to achieve their desired results, the Markov interpreter

determines which action to execute by testing the state predicates one
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by one, starting from the goal predicate (on the top line) and working

backward (i.e., down the table) until a true predicate is found. Markov

operators typically follow the execution of any component action by start-

ing again with the goal predicate. In its simplest form, each line of

a Markov table would contain one of the state predicates and the operator

to be applied to that state; its "go-to" would specify the first line,

which contained the goal predicate and an explicit return. Falling off

the end of a Markov table thus corresponds either =to a drastic failure

of one of the component actions or to an inappropriate application of the

Markov operator. Of course, persistent failure of a component action to

achieve its desired effect, i.e., to produce a state satisfying a predi-

cate higher in the table, would cause indefinite looping in such a Markov

table. To circumvent this possibility without requiring specific con-

sideration in each Markov table, we introduced "loop suppression" into

the Markov interpreter. Whenever the predicate of a line is found to be

true, a counter is incremented and checked against a limit before the

line's action is executed; if the counter becomes greater than the limit,

then interpretation of the table is terminated without execution of the

action. Thus if the limit for a line is three (this is the current de-

fault value) then the action(s) on that line will be executed a maximum

of three times; if the line's predicate^ is found true a fourth time, the

table will return to the operator that invoked it. Of course, one can

specify a limit for a table line rather than accepting the default value.

There is an alternative form for the "go-to" just for this purpose:

rather than being just a label, it can be a t'wo-element list. In this

case, the first element is the label, and the second element is the loop-

suppression limit for that line; it is evaluated only once, at the time

of the first loop-suppression check for that line.
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Table 6 illustrates the Markov language by presenting the actual

code for the lowest-level ILA that pushes an object. Here, line 10 does

some initialization; the action [i.e., the (SETQ XYTARG...)] is always

performed because its predicate T is always true. Then line 20's predi-

cate checks whether the pushing operation is finished by means of its

(NEARENOUGH OB XYTARG TOL) predicate; if this is the case, then no actions

(i.e., NIL) are performed, and control jumps to the label CLEANUP for

some post-processing before exit. Line 25's predicate similarly determines

whether the object's position is known closely enough to continue the

pushing operation. (This may not be the case either initially or as the

result of the object dropping off the pushbar during a push.) Line 30

causes the table to exit (via CLEANUP) if the object is past its target.

Line 40's predicate is true if the robot has just pushed the object into

a wall, and finally, line 50's predicate is true if the robot has proper

contact with the object. Line 10 and the lines starting with the label

CLEANUP are representative of a more usual programming language, with

the normal execution being sequential. Lines 20 through 50, however,

have the characteristic execution pattern of the ILAs: a loop testing

for the main goal and various subgoals and error conditions and recycling

after any action is performed. This particular ILA is designed to be

especially simple because it is intended to be embedded in several more

layers of ILA before STRIPS becomes concerned with their robustness.

Even STRIPS-visible ILAs are called by PLANEX from its execution tables,

so it is perfectly acceptable for this lowest-level pushing operator to

fail as readily as it does.

' N ''""

C. The Actions

The following are brief descriptions of the present ILAs. The

control relations among the ILAs and between them and the rest of the

system are shown in Figure 4.
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MACROPS AND PLANEX

UNBLOCK GOTO 2 GOTHRUDR

PUSH1 ROLLBUMP POINT ROLL2 BUMBLETHRU

.LOW-LEVEL ACTIVITIES
TA-8973-9

FIGURE 4 CONTROL STRUCTURE OF THE INTERMEDIATE LEVEL

ILAs that affect the state of the world have responsibility for

making corresponding changes to Shakey's axiom model of the current world,

Such changes are mentioned below wherever relevant; "$" will be used to

denote unspecified or changing values in the model.

GOTHRUDR(DOOR FROMRM TORM) moves the robot from room FROMRM

to room TORM via door DOOR. It assumes only that the robot

is in FROMRM; it uses NAVTO to get to the door and BUMBLETHRU

to go through it.

42



BLOCK(DX RX BX) pushes box BX within room RX to a position

blocking door DX. This routine directly replaces the axiom

(UNBLOCKED DX RX) by (BLOCKED DX RX BX) in the model.

UNBLOCK(DX RX BX) pushes box BX within room RX to a position

in which it does not block door DX; it directly replaces the

axiom (BLOCKED DX RX BX) by UNBLOCKED DX RX). This routine

prefers to push the box to the far side of the door_(as viewed

from the initial position of the robot), but it will also

consider the other push.

GOTO2XX) moves the robot into the vicinity of X if X is a

door; it directly updates the (NEXTTO ROBOT $) axiom. A

contemplated extension of GOT02 is to permit X to be an object.

PUSHKDIST OB TOL) is the lowest-level push; as such, it main-

tains OB's position and deletes the (NEXTTO OB $) and (NEXTTO $ OB)

axioms from the model . It pushes OB forward by DIST feet

(within TOL feet); it assumes that the front horizontal

catwhisker is on when it is entered, and it exits under any

of the following conditions:

(1) It is unnecessary to push OB forward, i.e.:

(a) OB is within TOL of the implied goal point; or

(b) OB is past the goal point in the current heading.

(2) The pushbar comes on hard.

(3) The front horizontal catwhisker is off.

In any of these cases, the robot backs up 2 feet in an attempt

to free its catwhiskers for normal navigation. The last

argument TOL is optional and is defaulted to 1 foot if not

supplied.

43



ROLL2(DIST TOL) is the lowest-level free-floor roll; as such

it deletes the (NEXTTO ROBOT $) axiom from the model. It moves

the robot forward by DIST feet (within TOL feet); if it engages

a front catwhisker it asserts the (JUSTBUMPED ROBOT T) axiom and

backs away in an attempt to free the catwhisker. TOL is an

optional parameter defaulted to 1 foot if not supplied; DIST

may be negative.

BUMBLETHRU(FROMRM DOOR TORM) moves the robot from room FROMRM

to room TORM through door DOOR. It assumes that the robot is

initially in FROMRM and in front of DOOR. It heads for the

corresponding position in TORM and uses the catwhiskers (if

necessary) to help it negotiate the door. It updates the

(INROOM ROBOT $) and (NEXTTO ROBOT $) axioms in the model, and

it is the most basic door-negotiating routine in the system.

It uses the vision routine CLEARFATH before entering an unknown

room.

PUSH(OBJECT GOAL TOL) is the highest-level ILA for pushing a

box. Its three arguments are the name of an object, the goal

coordinates to be pushed to, and the allowable tolerance. The

tolerance argument may be omitted, in which case its value de-

faults to 2.0 feet.

The only precondition for PUSH is that Shakey and the OBJECT

are in the same room. The routine calls FINDPATH (described

below) to plan a path to GOAL from the current object location.

PUSH will fail if any of the following conditions are true:

(1) OBJECT is not in a pushable location.

(2) No path of width W [W = MAX(WIDTH(OBJECT),WIDTH(ROBOT))]

can be found from the current position of OBJECT to

GOAL.
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(3) No path can be found from the current position of the

robot to the "pushplace" of OBJECT, i.e., Shakey

cannot get behind OBJECT.

PUSH2(OBJECT GOAL TOL) is a straight-line push, invoked by

PUSH to move OBJECT along successive legs of the planned path.

PUSH2 attends to updating the positions of ROBOT and OBJECT.

If the uncertainties in position exceed TOL, PICLOC updates the

position of ROBOT or OBLOC the position of OBJECT (PICLOC and

OBLOC are described in Section V).

A PUSH2 is accomplished in three basic stages:

(1) The robot navigates to the "pushplace" of OBJECT.

(2) The robot rolls forward and makes contact with the

object with a front catwhisker, by using ROLLBUMP.

(3) PUSH1 is called, which turns on the overrides and

causes the robot to roll forward the required

distance.

NAVTO(GOAL TOL) will maneuver the robot to within.TOL feet of

the point GOAL. Like the PUSH ILA, it uses FINDPATH to plan

the journey to GOAL. NAVTO will fail if no path is found; if

a path exists, it uses POINT AND GOT01 for each leg of the

journey.

POINT(THETA TOL) attempts to turn the robot to within TOL

degrees of bearing THETA. If necessary, the vision routine

PICTHETA (Section V) will be used to determine the bearing

of the robot. A catwhisker engaged during the turn will cause

the robot to turn back to its original bearing and then

attempt to locate the object with PICBUMPED (Section V) .
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GOTO1(GOAL TOL) moves the robot forward in a straight line

to within TOL feet of GOAL. It will use ROLL2 to actually

move the robot, or it will use vision under the following

conditions:

(1) If the robot's location is uncertain (>TOL), it

will update its position using PICLOC.

(2) If moving in an unknown room, it will use CLEARPATH.

(3) If the result of CLEARPATH is BLOCKED, it will use

PICDETECTOB (Section V) to enter information about

the.obstacle in the model.

(4) If the robot unexpectedly engages a catwhisker while

rolling, PICBUMPED will locate the object and update

the model.

ROLLBUMP(DIST TOL OBJECT) moves the robot forward DIST feet

to engage a front catwhisker on the object OBJECT. It updates

the (NEXTTO ROBOT $) predicate(s) in the model. If an object

is not encountered within TOL feet of DIST, ROLLBUMP fails.

D. The Pathfinding Algorithm

FINDPATH(ROB G JOURN) is the routine to plan an intraroom path from

ROB to G. The arguments ROB and G are each a list of X, Y coordinate

pairs. JOURN is the type of journey to be undertaken, either ROLL or

PUSH. If JOURN is ROLL, the function returns a path along which the

robot can navigate from ROB to G. If JOURN is PUSH, the returned value

is a path by which the robot can move a box at ROB to point G. In this

case global variables PUSHOBNAME (name of the box) and OBRAD (radius of

the box) are set, so that in computing a pushing path the box radius and

the ability of the robot to get behind the box are taken into account.
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The returned value from FINDPATH is a list of subgoal points to be

arrived at in order: (X Y )(X Y ) . . .(X Y )G) . If a direct-line path
11 22 n-1 n-1

exists from ROB to G, the value of FINDPATH is just (G); if no path

exists, the value is NIL.

The pathfinding algorithm is a breadth-first search of the tree of

predecessors to G. At each node of the tree, FINDPATH tests for a

direct-line path between ROB and the current node, say PN. If it exists,

the path from PN to G is returned. Otherwise, the tree is grown one

level deeper from PN by computing predecessors to that point. If no

predecessors exist, the path from PN to G is removed from the tree, thus

reducing the search space.

The predecessors to node PN are defined as the intersections of the

tangent lines from ON and ROB around the obstructing object in the

straightline path connecting them. Thus, each point has at most two

predecessors. Figure 5 illustrates one possible configuration that would

generate the tree in Figure 6.

Before a computed predecessor is added to the tree, it is tested to

determine whether it is within the room or within the region of another

obstacle. If either condition is true (as for P0 in Figure 5), a shorter

path (P5 P4) is computed using the tangents that generated P0. If either

of these points is unacceptable under the criterion just described, the

entire search in that direction is abandoned, and the next node (in this

case P3) is considered. A predecessor that is acceptable under this

criterion is added to the tree if a straightline path exists between it

and its parent node. Otherwise, predecessors are sought recursively to

find a path from the parent node to its computed predecessor.

The searching in FINDPATH terminates, then, when either a path has

been found or when the search tree is reduced to NIL. Thus, the path

that is chosen (assuming at least one exists) is the first one found,
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FIGURE 6 SEARCH TREE FOR CONFIGURATION OF FIGURE 5

48



that .is, the one with the smallest number of legs in the journey. This

criterion was chosen over a minimum-distance criterion to reduce the

amount of subsequent thinking and execution time for the robot.

49



V VISION ROUTINES

A.- Introduction

The current robot executive program never calls for a general visual

scene analysisr Instead, under appropriate circumstances various of the

intermediate-level actions (ILAs) call specific vision routines to answer

certain specific questions. These specialized vision programs perform

three basic tasks: locating and orienting the robot, detecting the

presence of objects, and locating objects.

A summary of the six vision routines currently used by the ILAs is

given in Section V-C. Some of these, such as PICLOC and CLEARPATH, have

been described in detail in previous reports (Refs. 1 and 2, respectively)

Most of the other routines make use of LOBLOC, which uses vision to lo-

cate accurately an object whose position is only roughly known.

The following section describes the operation of this routine in

some detail.

B. Object Location

Given the approximate floor location of an object, OBLOCF takes a

television picture of the object, analyzes the picture to find the exact

coordinates, and enters this information in the robot's world model.

This specialized task can be done more rapidly and with less chance for

error by a special program than by performing a complete scene analysis

and then extracting the desired answer from the resulting description.

However, certain preconditions must be satisfied for LOBLOC to function

properly. These are as follows:
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(1) The approximate location must be sufficiently accurate

and the object must be sufficiently small and unoccluded

that at least two, and preferably three, lower corners

of the object are in view.

(2) The object and the robot must be in the same room.

(3) The location of the robot with respect to the walls

must be known to within approximately one foot.

The first action that LOBLOC performs is to pan and tilt the tele-

vision camera so that the nominal floor position images in the center of

the picture. The resulting picture is taken at 60-line resolution to

speed subsequent region analysis operations. However, before region

analysis is begun, the program accesses the model to compute the image

of the wall-floor boundary. Everything in the picture above this boundary

is erased, thereby eliminating baseboards, door jambs, and other possible

sources of confusion.

The resulting picture is then subjected to region analysis. That

is, it is partitioned into elementary regions, and these regions are

merged using the phagocyte and weakness heuristics.7 The following re-

gions are automatically deleted from the resulting region list:

(1) The region above the wall-floor boundary.

(2) All regions smaller than some threshold Q. (Currently

9=4 cells.)

The next major step is to identify the floor region. This is done

by scoring each region.' The features or properties that enter into this

score are the area A, the ratio R of perimeter-squared to area, the

average brightness B, and the lowest coordinate Z of the external contour.

Letting A be the largest area, R the largest ratio, B the& max & ' max ' max
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highest brightness, and Z . the smallest coordinate, we compute the7 mm • '

scoring function by

2
The region for which D is minimum is declared to be the floor.

The next major step is to inspect the n neighbors of the floor to

find the ones that are most likely to be the faces of the object in ques

tion. Special tests are made to treat the simple cases where n happens

to be 0, 1, or 2. In general, for each region neighboring the floor we

compute its area A and a quantity X which is a simple measure of the

horizontal displacement of the region from the center of the picture.

These features are combined in a scoring function:

2
and the region for which D is minimum is declared to be one face of the

object. The same criterion is used to select the other visible face

from the neighbors of both the floor and the first face.

The major problem remaining is to identify the vertices where the

corners of the object meet the floor. This is done by processing the

common boundary between the face regions and the floor region. After

simple straight-line connections are made between endpoints of any gaps,

this common boundary consists of a chain of points along the lower edge

of the object. The lowest point on this chain is taken to be the central

vertex, and the corners on either side are found by the method of itera-

tive end-point fits.8 Once these three image points are determined, the

support hypothesis is used to locate the corresponding points on the

floor. The resulting coordinates can then be entered in the model under
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the name of a new object if the status of the room is unknown, or under

the name of the nearest object if the status is known.

C. ILA Vision Routines

The following is a summary of the intermediate-level routines related

to Shakey's visual system:

CLEARPATH (X Y) decides whether the path from (AT ROBOT $*)

to (X Y) is clear. In analyzing pictures, it inspects only

the image of the path to be traversed, and it uses the range

finder to detect large, close objects. The value returned is

either CLEAR, UNKNOWN, or (BLOCKED XO YO), where (XO YO)

roughly locates an obstacle.

OBLOC (OB) uses the model information about the location of

object OB and the routine OBLOCF to update (AT OB $*) and

(DAT OB $*).

PICBUMPED (X Y) is called when a bump occurrs at (X Y). If

Shakey is in a room of known status, PICBUMPED calls PICLOC;

otherwise it calls PICDETECTOB (X Y) .

PICDETECTOB (X Y) uses LOBLOC to locate the object near (X Y).

If Shakey is in a room of known status, and if OB is the

nearest object, (AT OB $*) and (DAT OB$*) are updated;

otherwise a new object is entered in the model.

PICLOC uses the landmark routine1 to update (AT ROBOT $*),

(DAT ROBOT $*), (THETA ROBOT $), and (DTHETA ROBOT $).

PICTHETA updates (THETA ROBOT $) and (DTHETA ROBOT $).

Intended to be used before a long, straight-line journey,

PICTHETA currently calls PICLOC.
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VI PLANNING, GENERALIZATION, AND EXECUTION

A. Introduction

The basic problem-solving system used by Shakey is STRIPS, a system

that makes use of a combination of heuristic search and formal^ deductive

techniques, and that has been well described in previous reports.3 How-

ever, STRIPS in its original form is limited to constructing a plan for

solving a specific problem. In this section we describe new:

(1) Procedures for constructing "generalized" plans that are

applicable to a large family of problems (in addition to

the specific problem that motivated the planning process).

(2) Methods for storing, selecting, and monitoring the use of

generalized plans while a task is actually being carried

out.

The recently developed methods for storing and using generalized

plans allow us:

(1) To store a generalized plan as a sequence of, say, n

parameterized operators.

(2) To use as a single operator in a subsequent planning

process many of the legal subsequences among the 2-1

subsequences of the original sequence of n operators.

(3) To identify for monitoring purposes exactly those

effects of a selected subsequence that are necessary

for the success of the new plan.
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As a rough illustration of the use of these capabilities, suppose

that we already have a generalized plan for closing a door and turning

off a light. We are now given the task of just turning off some particu-

lar light. The methods to be described will extract from the original

plan the appropriate subsequence of operators needed to turn off the

light. Suppose now that the subsequence of operators, or subplan, for

turning off the light also has the effect of leaving the robot pointing

in a specified direction. If this effect is a legitimate side-effect—

that is, if the successful execution of the plan does not require the

robot to be pointing in a specified direction—then the methods described

will identify this fact and the final robot orientation will not be

monitored during plan execution. Hence, the plan execution mechanism will

not reject as "unsuccessful" an execution that has failed only in a de-

tail irrelevant to the task at hand.

The processes for storing a generalized plan begin with the creation

by STRIPS of a generalized plan, or macro operator--that is, a sequence

of n operators whose arguments are parameters. During the creation of

this plan, STRIPS performed proofs demonstrating that each operator was

in fact applicable at the time it was used. We assume throughout this

section the availability of both the STRIPS plan and certain information

about the structure of the proofs performed by STRIPS to generate the

plan. We also assume the availability of descriptions of each operator

used in the plan. An operator description consists of three things:

a precondition formula, which must be provable from a model if the opera-

tor is to be applied to that model; an add-list, specifying clauses

added to the model; and a delete function (represented as a list of

literals), which maps a set of clauses into a subset of itself that re-

mains true after the operator has been applied.
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B. Storage of a Generalized Plan

We store a generalized plan in the form of a triangular table as

shown in Figure 7. The columns of the table, with the exception of

PC.1

— .- —

2 1

PC 3 A~(A, 2 )

PC4A~(A1,2,3>

OP,
1

A,1

D2(A1>

W*1>

°P2

A2

1

D3(A2)

WV

OP3

A3

•W

OP4

A4

0 1 2 3 4

TA-8973-12

FIGURE 7 TYPICAL MACROP

column 0, are labeled with the names of the operators of the plan, in

this example OP..,...,OP . For each column i, i = 1,...,4, we place in

the top cell the add-list A. of operator OP. . Going down the ±t column,

we place in consecutive cells the portion of A. that survives the appli-

cation of subsequent operators. This is indicated by the delete function

D., i = 2, 3, 4, that maps an add-list into the subset of itself remaining

true after the application of OP.. (The delete function D of OP is
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applied to the model in which MACROP is applied, and not to any of the

add-lists.) Thus, cell (21) contains D (A.), which is the portion of
£ J.

A still true after OP is applied. Cell (3,1) contains D (D (A )) =
J. £ O ^ L

D D (A ) , which is the subset of A that survives the application of
*J £i 1 J-

both OP and OP .
2t o

We can now interpret the content of the i row of the table, ex-
"t~Vi

eluding the first column. Since each cell in the i row (excluding the

first) contains statements added by one of the first i operators and

not deleted by any of the first i operators, we see that the union of

the cells in the i row (excluding the first cell) specifies the add-

list obtained by applying in sequence OP , ...,OP. . We denote by

A the add-list achieved by the first i operators applied in se-
l, •-,!

quence. The union of the cells in the bottom row of a triangle table

specifies the add-list of the complete macro operator.

Let us now consider the first column of the triangle table, which

we have so far ignored. Loosely, the statements in row i of column zero

are involved with the precondition formula PC. , of OP . To be more
i+l

specific, cell (i,0) contains clauses needed to prove PC. , but not con-

tained in A . . We will call the set of clauses (axioms) used to
1, . . . , 1

prove a formula the support of that formula. The clauses in cell (i,0)

are therefore the portion of the support of PC. that was true in the

toinitial state. (In Figure 7, we have used the notion PC A^vA
' i l,...,i

indicate the contents of cell (1,0).) The remaining part of the support

of PC. is supplied by applying in sequence OP ,...,OP_ . The i row of

the table, then, contains the complete support of the precondition of

OP. It is convenient to flag the clauses in row i that are the support

of PC. and hereafter speak of marked clauses; by construction, ob-

viously, all clauses in column zero are marked.
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C. Planning with Generalized Plans

1. General Approach

In the preceding section, we prescribed the construction of

triangle tables for storing generalized plans. Now let us consider how

a generalized plan will be used by STRIPS during a subsequent planning

process.

The first thing to emphasi-ze is that the i row of a triangle

table (excluding its first cell) represents the add-list A .; an
l, . . .,1

n-row table presents STRIPS with n alternative add-lists, any one of

which can be used to reduce a difference encountered by STRIPS during its

normal planning process. STRIPS selects a particular add-list in the

usual fashion by testing the relevance of that add-list with respect to

the difference currently being considered. Suppose for a moment that

STRIPS selects the i add-list A ., ± < n. Since this add-list is
I, . . ., i

achieved by applying in sequence OP ,...,OP., we will obviously not be

interested in the application of OP. . ..,OP , and will therefore not

be interested in establishing any of the preconditions PC. ,, . . . .PC .
i+l n

Now in general, some steps of a plan are needed only to establish pre-

conditions for subsequent steps. If we lose interest in the tail of a

plan—that is, in the last (n - i) operators—then we may be able to

achieve some economies by omitting those operators among the first i

whose sole purpose is to establish preconditions for the tail. Concep-

tually, then, we can think of a single triangle table as representing a

family of generalized operators. Upon the selection by STRIPS of a

relevant add-list, we must extract from this family an economical param-

eterized operator achieving the add-list. STRIPS must then be provided

with a complete description—precondition wff, add-list, and delete

function—of the extracted operator so that it can be used during the

planning process.
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In the following paragraphs, we will explain by means of an

example an algorithm for accomplishing this task of operator extraction.

2. The Operator Extraction Algorithm

Consider the illustrative triangle table shown in Figure 8.

Each of the numbers within cells represents a single clause. The circled

clauses are "marked" in the sense described earlier; that is, they are

used to prove the precondition of the operator whose name appears on the

0

©

©

©

0

vy

MoJ

OP,

11, 12

13

11,12

M1\ 12

12

12

OP2

14, 15
16

15, 16

©

16

16

17, 18
19,20

17, 18
19,20

17, 18

,,©

17

OP4

21,22
23

21,22

21,22

21

OP5

©

24

24

°P6

OP?

26

TA-8973-13

FIGURE 8 MACROP WITH MARKED CLAUSES
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same row. A summary of the structure of this plan is shown below, where

"l" refers to the initial state and "p" to the final state:

Precondition Support Precondition Support
Operator Supplied BY Supplied To

OP

OPr

OP,

OP.

OP.

OP,

OP

I

I

I ~ "

I, OP,

OP.

OP.

OP.

Suppose now that STRIPS selects A as the desired add-
l, . . .,6

list and, in particular, selects clause 16 and clause 25 as the particu-

lar members of the add-list that are relevant to reducing the difference

of immediate interest. These clauses have been marked on the table with

a dot. The operator extraction algorithm proceeds by examing the table

to determine what effects of individual operators are not needed to pro-

duce clauses 16 and 25. First, OP is obviously not needed; we can

therefore remove all circle marks from row 6, since those marks indicate

the support of PC . We now inspect the columns, beginning with column

6 and going from right to left, to find the first column with no marks

of either kind. Column 4 is the first such column. The absence of

marked clauses in column 4 means that the clauses added by OP are not

needed to reduce the difference and are not required to prove the pre-

condition of any subsequent operator; hence we delete OP from the plan

and unmark all ..clauses in row 3. Continuing our right-to-left scan

of the columns, we note the column 3 contains no marked clauses. (Recall
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that we have already unmarked clause 18.) We therefore delete OP from
*5

the plan and unmark all clauses in row 2. Continuing the scan, we note

that column 1 contains no marked entries (we have already unmarked clause

11), and therefore delete OP and the marked entries in row 0.

The result of the table-editing process just described is shown

in Figure 9. (The question mark in cell (2,1) will be explained momen-

tarily.) A summary of the structure of this plan is shown below:

OP.

OP,

©
0

°P

16

OP

24

OP

25

0 1 2 3

TA-8973-14

F I G U R E 9 MACROP AFTER EDITING

Precondition Support Precondition Support
Operator

OP
2

Supplied By

I

Supplied To

OP5, F

OP,

I, OPc
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We have thus reduced the seven-step generalized plan we started with to

a compact three-step plan that specifically produces an add-list contain-

ing the relevant clauses.

Now that an operator achieving a desired add-list has been

extracted, we must provide STRIPS with its description. The precondition

wff is obvious; it consists of the conjunction of all clauses in column

0. The computation of the add-list and delete function of the new opera-

tor is a little more complicated. First, notice in Figure 8 that clauses

14, 15, and 16 are added by OP . Clause 14 is evidently deleted by OP
4& O

since it does not appear in cell (3.2) The extracted plan, however, does

not include OP , and we cannot tell whether .clause 14 would survive the
«j

application of OP or OP in the extracted plan—hence the question mark
O O

in Figure 9. Furthermore, cell (3,1) may contain more clauses than shown

This example illustrates the necessity of computing a new add-list and

delete function for the extracted operator .

The computation of a new add-list and delete function for a

macro operator is based on the add-lists and delete functions of the

component operators. Suppose the macro operator of Figure 9 is applied

to some state S (in which we assume that clauses 3, 7, 8. and 9 are
i .

true). Since STRIPS does deletions before additions, we can write the

resulting state S as:

= V VW + V + V + A6

where we have used "+" to mean set union. Now it is not difficult to

show that delete functions distribute over set union, that is, to show

for any sets A and B and any delete function D that

D(A + B) = D(A) + D(B)
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Hence, we can write the final state S as:

Sf = VWV + D6D5(A2> + VV + A6

Since this has the form Sf = D(S.) + A, we see that the delete function

of the macro operator is the composed function

D6D5D2 '

and that its add-llst is

D6D5(A2) + VV + A6

It is interesting to note that this add-list is precisely the

last row of the triangle table constructed as described in the previous

section, for the plan OP , OP , OP . In general, we can say that the
^ O o

add-list of a macro operator is given by the last row of its triangle

table representation, and that its delete function is given by the com-

position of the component delete functions.

3. Refinements

In the previous paragraphs, we outlined an algorithm for ex-

tracting from a generalized plan a subsequence of operators that add

particular clauses to a model. We would now like to describe two refine-

ments: one needed to avoid certain inconsistencies that could otherwise

occur, and one for achieving further economies when more than one level

of triangle tables are involved.

a . Add-list refinement

Consider a simple generalized plan consisting of two con-

secutive PUSH operators, each of which pushes a (parameterized) object

64



to a (parameterized) place. The triangle table for this plan might be

as shown in Figure 10, where for simplicity we have assumed that the PUSH

PUSH (OB1.P1)

AT(OB1,P1)

AT(OB1,P1)

PUSH (OB2.P2)

AT (OB2, P2)

TA-8973-15

FIGURE 10 GENERALIZED PLAIS) FOR TWO-PUSH MACROP

operator has no precondition and hence column 0 is empty. Because the

clause AT(OB1,P1) appears in cell (2,1), we know that this clause was

not deleted by the second PUSH operator. Suppose now that STRIPS selects

row 2 as an add-list. By instantiating OBI and OB2 to the same object

name, and instantiating PI and P2 to distinct locations, we evidently

have a plan for achieving a state in which the same object: is simultane-

ously at two different places'. The source of this embarrassment lies in

the delete mechanism used by STRIPS, which we now examine in some detail.

The delete function of an arbitrary STRIPS operator is

specified by a delete-list consisting of a set of literals. If the

operator is applied to a state S, then STRIPS deletes from S every clause

containing a literal unifying (without regard to sign) with any member

of the delete-list. If a potential unification involves parameters, as

it often does, then the unification can be made only if it does not con-

tradict any existing bindings of the parameters to constants. To
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continue our example, suppose the second push operator is applied to the

parameterized state S:

AT(OB1, PI)

AT(OB2, P3) .

The delete-list of the second push operator, we assume, contains the

single literal AT(OB2, $)} where "$" unifies with anything. If there

were no existing bindings of parameters to constants, then both clauses

in S would be deleted. From Figure 10, to the contrary, we see that

AT(OB1, PI) was not deleted; hence, it must have been the case that OBI

and OB2 represented distinct objects in the unparameterized problem for

which the plan was originally created. If in a subsequent attempt to

use this plan we set OBI = OB2, then we are violating the constraint

responsible for the occurrence of AT(OB1, PI) in the final state.

Accordingly, we replace the entry in cell (2,1) of Figure 10 by the new

entry:

(OBI £ OB2) z> AT(OB1,P1)

By this means we indicate that row 2, and cell (2,1) in particular,

produces the literal AT(OB1, PI) only under the condition that OBI and

OB2 are not instantiated to the same constant.

The previous example illustrates how a literal can be

allowed to survive the application of a delete function only under some

condition on the bindings of its arguments. We introduced this notion

in the context of maintaining the validity of a triangle table, but it

is more broadly applicable within the general framework of STRIPS. Al-

though it is an enlargement on our main theme of storing and using

generalized plans, let us briefly consider how the notion of conditional

survival of a literal can be exploited.
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During the planning process, STRIPS frequently permits a

delete function to delete true clauses from a state description. To

overcome this tendency toward excessive deletions, we make use of the

notion of conditional survival as defined by the following algorithm.

Let L(P1) be a literal in a parameterized state descript-

tlon, and suppose that the deletion of the clause containing this literal

depends on binding parameter PI to another parameter P2. Then:

If PI or P2 has no constant binding then replace

L(P1) by PI ̂  P2 => L(P1) . (In "standard" STRIPS

this clause would simply be deleted.)

If PI and P2 both represent the same constant in

the original problem, then delete the clause con-

taining L(P1) . (This is what STRIPS does as a

standard operation.) In the appropriate cell

of the triangle table, place PI ^ P2 r> L(P1) .

(This generalizes the triangle table beyond the

planning states used by STRIPS.) If PI and P2

represent distinct constants in the original

problem, then replace L(P1) by PI •£ P2 rs L(P1) .

(This is the case illustrated by our previous

example.)

We should note that the inclusion in a table of such

clauses as, say, PI ^ P2 ID L(P1) leads to certain complications. Suppose,

in a subsequent problem, that STRIPS uses such a clause in the proof of

some precondition. Often, the proof will produce the unit clause PI =

P2. In this case, we consider the proof completed by assuming PI ^ P2

(providing the assumption contradicts no existing bindings). However,

we must record this assumption by placing PI ^ P2 in column 0 of the

table being constructed; it is, after all, now a hypothesis of the
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theorem. Moreover, all subsequent proofs in the new plan must not vio-

late this hypothesis. As a bookkeeping procedure, we can conjoin the

assumption (viz., PI ̂  P2) to each new precondition that STRIPS attempts

to prove; this has the effect of preventing violations of our assumption.

b. Relaxing Preconditions in Nested Tables

Consider .the situation shown in Figures ll(a) and (b),

where we have shown a macro operator MOP whose i operator is itself

the macro operator OP. . As always, cell (i, i) of MOP contains the

complete add-list of OP., while the marked entries of Row (i - 1) con-

stitute the support of the proof of the preconditions of OP.. During

the planning process, suppose STRIPS selects from one of the rows of

MOP certain clauses it would like to add to the current state of the

world. Suppose further that some, but not all, of the clauses in cell

(i.i) of Figure ll(a) are marked. We can therefore mark in Figure ll(b)

those clauses in A that are needed, and exercise the operator extraction
i '

algorithm on table OP.. As we saw earlier, this will at times result

in the deletion of some of the clauses from PC.. Suppose, then, that

some of the clauses of PC. are in fact deleted by the operator extraction

algorithm. This raises the possibility of deleting some of the clauses

in the support of PC. since they now need to support only a weaker

theorem. If the support of PC. can be weakened—that is, if some of the

clauses in row (i - 1) can be unmarked—than in general we may be able

to delete more steps from MOP and/or obtain weaker, more easily established,

preconditions for MOP.

In order for this scheme of precondition relaxation to

be feasible, we need an economical solution to the following abstractly

stated problem: Given that a set of clauses C , ...,C implies a theorem

T n...OT , which C 's can be deleted from the premises if a selected
1 m i
subset of the T.'s are deleted from the theorem? Fortunately, it is
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FIGURE 11 MOP: A NESTED MACROP
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possible to solve this problem by appropriately labeling literals during

the refutation proof of the theorem. We will not elaborate here on the

details of this bookkeeping procedure. In terms of the example of

Figures ll(a) and (b) the important point is that the bookkeeping need

be done only once, namely, when PC. is shown to be a consequence of its

support. Thereafter, it is a straightforward matter to compute, without

recourse to theorem proving, the appropriate relaxation of the support

of PC given a relaxation of PC itself.
± i

The ability to relax preconditions leads to an obvious

refinement of the operator extraction algorithm described earlier.

Previously we unmarked clauses only when a component operator was de-

leted from a macro operator, in which case the entire support of the pre-

condition of that operator was unmarked. Now we can also unmark a

subset of the support of a component operator still retained in the macro

operator. Finally we remark that although Figure 11 shows only two

levels of tables, the procedure for relaxing preconditions can be imple-

mented recursively; hence; nested tables to arbitrary depth can be

readily processed.

D. Monitoring the Execution of Plans

In this section we outline an algorithm for using triangle tables

to monitor the real-world execution of generalized plans. An important

feature of. the algorithm i-s that it monitors only those effects of opera-

tors, and only those aspects of the world, relevant to the problem so-

lution. Additionally, the algorithm embodies a modest replanning capacity

in the form of an ability to reinstantiate parameters of operators.

The plan execution algorithm rests on the observation that a tri-

angle table contains complete information about the internal structure

of .the plan it represents. More specifically, a triangle table specifies
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exactly what each operator accomplishes in 'terms of providing support

for the preconditions of subsequent operators or the goal statement.

Equivalently, a triangle table also specifies the conditions that must
*

obtain in order for a component operator to be applicable. The plan

execution algorithm to be described uses this information in a straight-

forward manner.

Important information about the internal structure of a plan is

embodied in the kernels of a triangle table. The i kernel of a tri-

angle table for an n-step plan is the largest rectangular subarray con-

taining cells (n,0) and cell (i-l,i-l). In Figure 7, by way of an

example, we have outlined the second kernel of MACROP. The importance

of the i kernel stems from the fact that it contains the support of

the preconditions for the tail of the plan—that is, for the operator

th
sequence OP.,...,OP . This should be 61ear, since row J of the i

kernel contains that portion of the support of PC . that must already

be true when OP. is executed. To continue with the example of Figure

7, cells (2,0) and (2,1) contain those axioms in PC_ that are presumably
O

true before OP is executed. If any of these axioms are false, then

even perfect execution of OP will not result in a state in which OP_
2 o

is applicable. Roughly speaking, then, a reasonable plan execution

algorithm should find the highest indexed kernel with all true entries

and execute the corresponding component operator.

Such an algorithm would reflect the heuristic that it is best to

execute the "legal" operator least removed from the goal.

*
Strictly speaking, a triangle table specifies the support for the par-

ticular proof of a precondition found by STRIPS. In general, there are

many possible supports for a given precondition, but we would not ex-

pect a plan execution algorithm to be cognizant of them.
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An important refinement of the rough execution algorithm outlined

above can be obtained by noting that the ith kernel contains in general

not only those clauses supporting proofs of preconditions but many addi-

tional clauses as well. These additional clauses are irrelevant to the

problem at hand, and we would certainly want our execution- algorithm to

ignore them. The identification of relevant clauses is easily accomplished

using the operator extraction algorithm previously described. The final

row of the table representing a plan to be executed contains the support

of the goal formula, and the supporting clauses are marked as before.

The operator extraction algorithm then produces a new operator for

achieving those clauses. (We dispense with the computation of precondi-

tion formula, add-list, and delete function.) Typically, but not neces-

sarily, all the component operators will be retained. More importantly,

only some of the table entries will be marked, and these are the only

portions of the kernels that need be monitored.

The task of finding an efficient algorithm for finding the "highest

true kernel"—that is, the highest indexed kernel with all marked clauses

true—is of some interest in itself. Our algorithm for finding the

highest true kernel involves a cell-by-cell scan of the triangle table.

Each cell examined is evaluated as either True (i.e., all the marked

clauses are true in the current model) or False. The interest of the

algorithm stems from the order in which cells are examined. Let us call

a kernel "potentially true" at some stage in the scan if all evaluated

cells of the kernel are true. The scan algorithm can then be succinctly

stated as:

Among all unevaluated cells in the highest-indexed potentially

true kernel, evaluate the left-most. .Break "left-most ties"

arbitrarily.
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The reader can verify that, roughly speaking, this table-scanning rule

results in a left-to-right, bottom-to-top scan of the table. However,

the table is never scanned to the right of any cell already evaluated

as false. An equivalent statement of the algorithm is "Among all un-

evaluated cells, evaluate the cell common to the largest number of po-

tentially true kernels. Break ties arbitrarily." We conjecture that

this scanning algorithm is optimal in the sense that it evaluates, on

the average, fewer cells than~any other scan guaranteed always to fi'nH

the highest true kernel. A proof of this conjecture has not been found.

The plan execution algorithm described above is embodied in a com-

puter program named PLANEX.3 When PLANEX is called to execute a table,

it executes the component operator associated with the highest true

kernel. Typically, but not necessarily, this will be OP . When OP

completes its action, PLANEX rescans the table to find the highest

currently true kernel. Typically, but not necessarily, this will be

Kernel 2, in which case OP is executed, and so forth, until the goal
ĵ

kernel is reached. We emphasize, however, that after each operator exe-

cution PLANEX may either call an earlier operator (perhaps to rectify

an error) or skip to a later operator (perhaps a stroke of luck rendered

some operators unecessary). Furthermore, many arguments of predicates

in the table are parameters; PLANEX is free to instantiate these param-

eters in order to find a true instance of the predicate. Thus, PLANEX

is really searching for the highest-indexed kernel an instance of which

is satisfied by the current state of the world. This ability of PLANEX

to instantiate—and reinstantiate—arguments provides a modest replanning

capacity. If the turn of world events produces a situation in which a

solution has the same form as a tail of the original plan, PLANEX will

find it. If no tail of the plan is applicable, then no kernel will be

true, and PLANEX returns control to STRIPS to replan.
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