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ELECTROMOTIVE FORCE MEASUREMENTS ON CELLS INVOLVING

>ALUMINA SOLID ElfCTROLYTE

by Nabendu S. Choudhury*

Lewis Research Center

SUMMARY

Open-circuit electromotive force (emf) measurements have been made to demon-
strate that a two-phase, polycrystalline mixture of /3-alumina and a-alumina could be
used as a solid electrolyte in galvanic cells with reversible electrodes fixing oxygen or
aluminum chemical potentials. These measurements indicate that such a two-phase
solid electrolyte may be used to monitor oxygen chemical potentials as low as that cor-
responding to Al, A12O3 coexistence (10~42 N/m2 « 10~47 atm at 1000 K). The activity
of NagO in /3-alumina in coexistence with a-alumina was also determined by emf meas-
urements.

INTRODUCTION

Normally available polycrystalline /3-alumina (nominal composition Na2O- HAL^O,)
has been shown (refs. 1 to 4) to be really a two-phase mixture of /3-alumina (approxi-
mate composition Na2O- QAloO,) and a-alumina (A^Og with negligible or no doped
sodium oxide). The three-component, two-phase system has three degrees of freedom
(F = C - P + 2); and at a particular temperature and pressure (which is nominally fixed
at 1 atm), this is reduced to only one. Thus the thermodynamic state of the system at
a particular temperature and pressure is completely defined if the chemical potential of
anyone of the components, namely Na, O, or Al, is fixed.

These considerations do not include electronic defects. However, if electronic de-
fects are also considered, the local electroneutrality condition (together with the vari-
ous chemical equilibria between electrons, ions, and neutral species) must also be
taken into account, in effect providing an additional constraint. Moreover, /3-alumina
is known to be a good Na+ ion conductor with negligible or no electronic conduction

* National Research Council - NASA Resident Research Associate.



(refs. 5 and 6), and a-alumina is an excellent insulator. Therefore, the measured open-
circuit electromotive forces (emf's), in an electrochemical cell with 0-alumina solid
electrolyte, do not depart significantly from the thermodynamic emf's (ref. 6). These
results were also confirmed by recent experiments conducted by W. L. Fielder of Lewis.

In all previous investigations (refs. 6, 7) involving open-circuit emf measure-
ments with j3-alumina solid electrolyte, the Na chemical potential has been controlled
at both electrodes. The purpose of the'present investigation is to determine if meaning-
ful open-circuit emf's can be measured with electrodes when O or Al is the fixed chem-
ical potential. (Illustrative electrode reactions are given in the appendix.) If the phase
rule applies as just described, fixing the O or Al chemical potential is equivalent to fix-
ing the Na chemical potential.

EXPERIMENTAL TECHNIQUE

The j3-alumina solid electrolyte disks were prepared in this laboratory from j3-
alumina powder .(<325 mesh) supplied by Aluminum Corporation of America. The pow-
der was pressed into 19. 05xlO~3-meter (3/4-in.) diameter, 3.175xlO~3-meter (1/8-in.)
thick disks at 379.225X106 N/m (55 000 psi) and sintered with j3-alumina powder in dry
air at 1690° C for 1 hour. The resulting material had 60 to 65 percent theoretical den-
sity and was supplied by W. L. Fielder of the Lewis Research Center.

The cell for measuring emf consisted of solid reversible electrodes and a /3-aluniina
solid electrolyte disk. The electrodes were held in contact with the /S-alumina disk by
spring pressure applied through a-alumina tubes, which constituted the cell assembly.
The design was similar to that described by Skelton and Patterson (ref. 8). Platinum
lead wires connected to the electrodes and a platinum/platinum - 13-percent rhodium
thermocouple were insulated from each other by a-alumina insulating tubes. The tip of
the thermocouple was positioned close to the cell. The cell assembly, enclosed in a
closed-end a-alumina furnace tube, formed a gas-tight system. Insulated feed-throughs
were used to provide electrical connections external to the system. The heating system
consisted of a wire-wound (Kanthal) tube furnace with a controller to maintain the cell
temperature to within ±1 K. The a-alumina furnace tube was shielded by a grounded
stainless-steel tube to minimize electrical noise. All electrical connections external
to the furnace were made with shielded cables, with the shields appropriately grounded.

The cell emf's were monitored with an electrometer (input impedance, 10 ohms)
• - > . : • Q . '

or a digital voltmeter (input impedance, 10 ohms). The temperature was monitored
with a potentiometer in conjunction with a null detector. An electronic cold junction
compensator was used to provide compensation for the cold junction temperature of the
thermocouple.



2 2At the beginning of each run, the system was evacuated to 1.33 N/m (10~ torr),
flushed with helium, and evacuated again. This procedure was repeated several times.
The helium was purified by passing it through copper turnings held at 673 K (400° C) and
a liquid nitrogen cold trap before it entered the system. Subsequent to the flushing and
evacuation procedure the system was filled with helium, and a slow and steady flow of
helium was maintained through the system. The furnace was then brought to the meas-
uring, temperatures. The emf's were recorded after a wait of at least 1/2 hour at each
temperature. The attainment of equilibration was indicated by reproducibility of the
recorded emf's on cycling the cell temperature within the range of measurements.

RESULTS AND DISCUSSION

Electrodes Fixing Oxygen Chemical Potential

Stable and reproducible open-circuit emf's were obtained from the following cells
with electrodes fixing oxygen partial pressures:

Fe, FeO//3-alumina/Ni, NiO I

and

Ni, NiO/j3-alumina/Cu, Cu2O n

Figure 1 illustrates the data obtained from 962 to 1263 K (689° to 990° C) for cell I.
Kiukkola and Wagner's (ref. 9) data for the cell Fe, FeO/CaO, ZrO2/Ni, NiO are indi-
cated in figure 1 as the solid line. The data for cell n are shown in figure 2 along with
Lasker and Rapp's (ref. 10) estimated thermodynamic emf for the cell. It is apparent
that the open-circuit emf's observed with ^-alumina are in good agreement with the pre-
viously measured (with oxygen-ion-conducting solid electrolyte) and calculated thermo-
dynamic emf's. It should be noted that the rate of equilibration at lower temperatures
was progressively sluggish. For example, at 923 K (650° C) cell n attained equilibrium
only after 12 hours. In a few of the runs with Cu, C^O electrodes, a considerable
amount of Cu penetration was visually observed in the /3-aluniina disks.

Another cell - Ti, TiO//3-alumina/Nb, NbO - was also investigated. The starting
electrode mixtures were Ti, TiC^ and Nb, M^Og with excess metals, so that at high
temperatures the electrodes were expected to equilibrate to the desired Ti, TiO and
Nb, NbO coexistence. However, the observed emf's were much lower than the thermo-
dynamic emf's and were not reproducible. The reason may be the failure of the elec-



trodes to equilibrate even at 1273 K (1000° C) - the highest temperature achievable with
the furnace system.

Determination of ̂ 0 Activity in (3-Alumina

Consider the reaction

Na2O + 9A12O3 = Na2O-

Because both j8-alumina and a-alumina coexist in the standard state in the solid electro-
lyte, the standard free-energy change for this reaction is given by RT In aN Q, where

£t
aNa O *s ^e activity of Na^O in ^-alumina in coexistence with a-alumina. This may be

A

determined with a cell of the type M, MX2, NaX/0-alumina/M', M'O provided M, MX2,
and NaX coexist in the standard state. The open- circuit emf for this cell is given by

The Na activities in the left and right sides of the cell are given by

RT In aNa(L) = AG^ - I AG0 (2)

RT In aR) = 1 RT In a + 1 AG - I AG°, (3)

Combining equations (1) to (3) yields

RT to aNa20 = -2EF + 2 AGNaX - AGSlX2
 + AGM'0

Ni, NiF2, NaF//3-alumina/Cu, Cu2O m

was the one investigated in the present study. That Ni, NiF2, and NaF coexist in the
standard state at least to 1033 K (760° C) was confirmed by measuring the open- circuit
emf of the cell

Co,CoF2,NaF//3-alumina/Ni,NiF2,NaF IV



The observed emf's of cell IV between 763 and 1037 K (490° and 764° C) were in good
agreement (fig. 3) with those measured by Skelton and Patterson (ref. 8) with the cell
Co, CoF2/CaF2/Ni,NiF2. The solid line in figure 3 represents the least-square best
fit of Skelton and Patterson's (ref. 8) data. It should be noted that NaF and NiFg form
an eutectic at around 1063 K (790° C) (ref. 11) and this limits the use of the Ni,NiF2,
NaF electrode to below this temperature.

Reproducible emf's were obtained for the cell Ni,NiF2,NaF//3-alumina/Cu, Cu2O
between 849 and 998 K (576° and 725° C). The emf data for cell m are given in table I
and also illustrated in figure 4.

The least-square best fit of the data between 850 and 1000 K is given by

E(m)mV = (646. 5-0.190 T)±l (5)

where T is in K.
Above 998 K (725° C) the emf's were low and irreproducible, presumably because

of excessive evaporation of NaF affecting the Cu, Cu2O electrode.
The standard free energies of formation of NiF2 and NaF can be obtained from pub-

lications of Skelton and Patterson (ref. 8) and Steinmetz and Roth (ref. 12). The
AG0. Q and AG?, Q values can be obtained from JANAF tables (ref. 13). Using these

2 2
values, we can calculate the activity of Na2O in j3-alumina from equations (4) and (5).
For example, at 1000 K, RT In a^ Q = -322. ITxlO3 J/mole (-77. 0 kcal/mole); at

900 K, RT In a^ Q = -325. SlxlO3 J/mole (-77. 8 kcal/moie); at 800 K, RT In a^ Q =
o 2 2

-329.28x10° J/mole (-78.7 kcal/mole). The corresponding aNa Q values at 1000, 900,

and 800 K are 10"16'83, 10"18'89, andlO"21'50, respectively.

Electrodes Fixing Aluminum Chemical Potential

Metallic aluminum was used as the anode fixing the aluminum chemical potential in
the following cells

Al/)3-alumina/AlF3, NiF?, Ni V

and

Al/j3-alumina/NaF, NiF2, Ni VI

Emf measurements with compacted aluminum powder electrodes were not successful.



However, reasonably stable emf's were obtained with Al electrodes in the form of a foil
(1. 6x10 m (1/16 in. ) thick). These cells had relatively short lives. It was further
observed that the cell life could be prolonged by operating it under vacuum instead of in
flowing helium. It is believed that rapid oxidation of aluminum at elevated temperatures
is the cause of poor cell lives. However, under vacuum the cells lasted for 8 to
12 hours, during which the open-circuit emf data could be recorded.

The open-circuit emf of cell V is given by Ey = -(1/3F)RT In aA1, where aA1 is
the activity of aluminum at the cathode. Therefore, the emf Ey is also given by

E = -J-/AG - - A G ^ ^ (6)V

Skelton and Patterson (ref. 8) have measured the open- circuit emf of the cell Al, AlFo/
CaF2/Ni,NiF2, which is also given by equation (6). The data for cell V are plotted in
figure 5, which also shows the least-square best fit line of Skelton and Patterson's
(ref. 8) data. The agreement seems to be satisfactory at temperatures above 817 K
(540° C). At temperatures below 817 K (540° C) the observed open-circuit emf's of
cell V fall significantly below those observed by Skelton and Patterson (ref. 8). The
reason for this may be sluggish electrode equilibration and/or departure from the pro-
posed equilibrium of a-alumina and /3-alumina in the electrolyte.

Open- circuit emf data for cell VI are given in table n and plotted in figure 6. The
least-square best fit of the data from 836 to 929 K (563° to 656° C) is given by

E(VI)mV = (1414 - 0. 023 T)±3 (7)

The departure of the observed emf at 817 K (540° C) from the linear relation is similar
to that observed with cell V and can be accounted for in the same way.

Equations (5) and (7) can be combined to obtain the open- circuit emf between
Al, AlgOg, and Cu, CugO electrodes. Attempts to directly measure the open-circuit emf
of such a cell below the melting point of aluminum (933 K (660° C)) were not successful.
The reason for this is presumably the inability of the Cu, CXuO electrode to achieve
equilibration in a relatively short time (8 to 12 hr) at these temperatures. Though not
pursued in the present investigation, such measurements may be feasible at higher tem-
peratures with different cell geometries. For example, the /3-alumina solid electrolyte
may be in the form of a flat-bottomed cup with molten aluminum inside and the Cu, Q^O
electrode contacting the outer flat surface of the electrolyte.

The free energy of formation of Al^O, was calculated from equations (5) and (7) and
the AG (ref. 13) values. This is given by equation (8) for the limited temperature

range of 833 to 933 K (560° to 660° C).

6



AGA1 O = -(1693-7±2- 5)xl03 + 339 T joules/mole
£* O

(8)
= -(404. 8±0.6) + 0.081 T kcal/mole

Figure 7 compares the AG Q values, according to equation (8) with those given in.
2 3

JANAF tables (ref. 13). The agreement seems to be quite satisfactory in view of the
scatter in the data of cell VI and the different methods of estimation.

Reaction Between Sodium and Alumina

Consider the reaction

6Na + A12O3 = 3Na2O + 2A1 (9)

The standard free- energy change for this reaction is given by

(3 AGNa20 - AGAl2oJ
\ & 6 O/

It has been discussed in the section Determination of Na2O Activity in j3-Alumina
that the standard free-energy change of the reaction

Na2O + 9A12O3 = Na2O • 9A12O3 (10)

is given by RT In aN o, where aN Q is the activity of Na2O in /3-alumina in coexist-
& £

ence with ot-alumina.
When equations (9) and (10) are combined, the free-energy change for the reaction

6Na + 28A12O3 = 3(Na2O • 9Al2Og) * 2A1 (11)

is given by

AG° = 3 AG^^ - AG° l203 + 3RT In a^ ^ (12)

When we use the data from JANAF tables (ref. 13) for AG and AG andQ Q
O



the RT In a^ Q value of -322. 17xl03 J/mole (-77. 0 kcal/mole) (see p. 5), the esti-

mated AG° for reaction (11) at 1000 K is -446. 85xl03 J (-106. 8 kcal). The value of
AG° at 573 K is -540.99xl03 J (-129.3 kcal). The negative value of the AG° indicates
that polycrystalline two-phase /3-alumina (i.e. , mixture of a-alumina and /3-alumina) in
equilibrium with Na is able to liberate free aluminum at the interface. Miles and Wynn
Jones (ref . 14) observed that /3-alumina in contact with Na at 573 K did not initially show
any electronic conductivity. However, after some time there was significant electronic
conduction. This electronic conduction was metallic in nature. They concluded that
this was the result of Na metal penetration in the /3-alumina. In view of the negative
AG° value of reaction (eq. 11), it may be possible that there was formation of metallic
aluminum in the /3-alumina membrane (instead of Na penetration), giving rise to the
electronic conduction.

Possible Use of Two-Phase Polycrystalline p-Alumina in

Solid Electrolyte Oxygen Pressure Gages

The fact that /3-alumina behaves as a solid electrolyte at the extremely low oxygen
42 2 47partial pressure of Al, ALjOg coexistence (PQ « 10 N/m « 10 atm at 1000 K)

Z
suggests that it may be used to monitor very low oxygen chemical potentials. The com-
monly known oxygen-ion-conducting solid electrolyte P^ gages are limited by the onset\Jt)

^?2 2 ^7of electronic conduction to oxygen partial pressures of around 10 N/m (10 atm)
at 1000 K (ref. 15). Although the upper Pn limit in this investigation corresponded to

U2
Cu, CuqO equilibrium, it is probable that /3-alumina may be used as a solid electrolyte
at higher oxygen partial pressures without significant hole conduction. The low-
temperature limit for sufficiently fast equilibration in /3-alumina for use as an oxygen
monitor seems to be around 823 K (550° C). This temperature is lower than the oper-
ating temperatures of known oxygen-ion-conducting solid electrolytes, in which the
limiting factor is poor ionic conductivity. Beta-alumina being a much better conductor,
by some three orders of magnitude, suggests the possibility of reducing the operating
temperature below 823 K (550° C) with better material and cell design. Thus P~ gages

°2
constructed with /3-alumina solid electrolyte may offer the advantages of lower operating



temperature and wider response (especially at extremely low PQ ) and may find appli-
Lt

cations in semiconductor and metallurgical industries.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, March 28, 1973,
503-25.



APPENDIX - ILLUSTRATIVE ELECTRODE REACTORS

In order to derive the thermodynamic relations for the various couples studied in
this work, we combined appropriate anodes and cathodes and following the relevant
equations:

(1) M,MO coexistence electrode as anode

Na2O • 9A12O3 = Na2O

Na2O = 2Na + - O
2

M + - O9 = MO
2 2

Na = Na+ + e

(2) M',M'O coexistence electrode as cathode

Na+ + e = Na

M'O = M' + - O
2

2Na + - O2 = Na2O

Na2O + 9A12O3 = Na2O •

(3) Al electrode as anode

Na2O • 9Al2Og = Na2O

Na2O = 2Na + -
2

2A1 + - O2 = A12O3
£t

Na = Na+ + e

10



(4) AlFo,NiF2,Ni coexistence electrode as cathode

NiF2 = Ni + F2

2A1 + - F2 = AlFg
£t

A12O3 = 2A1 + - O2
£t

Na+ + e = Na

2Na + - O2 = Na2O
it

Na2O + 9Al2Og = Na2O

(5) NaF,MF2, M as cathode

Na+ + e = Na

MF2 = M

Na + - F = NaF

(6) NaF,M'F2,Mf as anode

NaF = Na + - F

M' + F2 = M'F2

Na = Na+ + e

11



REFERENCES

1. Harata, Mituo: Lattice Constants of Non-stoichiometric Beta-Alumina. Mat. Res.
Bull., vol. 6, no. 6, 1971, pp. 461-464.

2. DeVries, R. C.; and Roth, W. L.: Critical Evaluation of the Literature Data on
Beta Alumina and Related Phases: I, Phase Equilibria and Characterization of
Beta Alumina Phases. J. Am. Ceram. Soc., vol. 52, no. 7, July 1969, pp. 364-
369.

3. LeCars, Yves; Thery, Jeanine; and Collongues, Robert: Sur la Non-stoechiometrie
et la Stabilite des Alumines /3 et /3. " Comp. Rendus Acad. Sci., Paris, Series C,
vol. 274, no. 1, Jan. 3, 1972, pp. 4-7.

4. Weber, N.; and Venero, A.: Revision of the Phase Diagram NaAlOn-AL, On. Paper
5-J1-70 presented at the 72nd Annual Meeting of Am. Ceram. Soc., May 1970.

5. Yao, Yung-Fang Yu; and Kummer, J. T.: Ion Exchange Properties of and Rates of
Ionic Diffusion in Beta Alumina. J. Inorg. Nucl. Chem., vol. 29, no. 9, 1967,
pp. 2453-2475.

6. Hsueh, Limin; and Bennion, Douglas N.: EMF Measurements of Sodium Activity in
Sodium Amalgam with Beta-Alumina. J. Electrochem. Soc., vol. 118, no. 7,
July 1971, pp. 1128-1130.

7. Gupta, NirmalK.; and Tischer, RagnarP.: Thermodynamic and Physical Proper-
ties of Molten Sodium Polysulfides from Open-Circuit Voltage Measurements. J.
Electrochem. Soc., vol. 119, no. 8, Aug. 1972, pp. 1033-1037.

8. Skelton, W. H.; and Patterson, J. W.: Free Energy Determinations by Solid Gal-
vanic Cell Measurements for Selected Metal, Metal Fluoride Reactions. J. Less-
Common Metals, vol. 31, no. 1, pp. 47-60, 1973.

9. Kiukkola, Kalevi; and Wagner, Carl: Measurements on Galvanic Cells Involving
Solid Electrolytes. J. Electrochem. Soc., vol. 104, no. 6, June 1957, pp. 379-
387.

10. Lasker, M. F.; and Rapp, Robert A.: Mixed Conduction in Thoria and Thoria-
Yttria Solutions. Z. Physik. Chem/N. F., vol. 49, no. 3-5, 1966, pp. 198-221.

11. Levin, E. M.; Robbins, C. R.; and McMurdie, H. R.: Phase Diagram for Ceram-
ists. Am. Ceram. Soc., Columbus, Ohio, 1964.

12. Steinmetz, E.; and Roth, H.: Die freien Bildungsenthalpien von Chloriden und
und Fluoriden. J. Less Common Metals, vol. 16, 1968, pp. 295-342.

12



13. Anon.: JANAF Thermochemical Tables. Dow Chemical Company, Thermal Re-
search Laboratory, Midland, Mich. Last supplements - June 30, 1971.

14. Miles, L, J.; and Wynn Jones, I.: Sodium Transport through 0-Al2O3 Membranes.
Proc. Brit. Ceram. Soc., no. 19, 1971, pp. 179-191.

15. Patterson, J. W.: Conduction Domains in Solid Electrolytes. J. Electrochem.
Soc., vol. 118, no. 7, July 1971, pp. 1033-1039.

13



TABLE I. - ELECTROMOTIVE

FORCE OF CELL m

i, NiF2, NaF/(3-alumina/Cu, Cug

Temperature

K

849
879
904
906
930
932
952
978
979
998

°C

576
606
631
633
657
659
679
705
706
725

Electromotive force,
emf,
mV

484
480
475
474
469
470
465
460
461
456

TABLE II. - ELECTROMOTIVE

FORCE OF CELL VI

[Al//3-alumina/NaF, NiF2, Ni.]

Temperature

K

813
836
861
871
885
889
905
909
918
919
929

°C

540
563
588
598
612
616
632
636
645
646
656

Electromotive force,
emf,
mV

1383
1393
1397
1394
1396
1394
1392
1391
1390
1396
1394

2o

290r—

280

270

260

2
"S 250

240

230
800 900

Kiukkola and Wagner (ref. 9)

1000 1100 1200
Temperature, K

1300 1400

500 600 700 800 900
Temperature, °C

1000 1100

Figure 1. - Open-circuit electromotive force against tem-
perature for cell I: Fe, FeO/p-alumina/Ni, NiO.
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s^— Lasker and Rapp's estimate (ref. 10)

800

500

900 1000 1100
Temperature, K

1200 1300

600 700 800 900
Temperature, °C

1000

Figure 2. -Open-circuit electromotive force
against temperature for cell II: Ni, NiO/
(5-alumina/Cu, Cu02.
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of information concerning its activities and the results thereof."

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS
TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons. Also includes conference
proceedings with either limited or unlimited
distribution.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include final reports of major-
projects, monographs, data compilations,
handbooks, sourcebooks, and special
bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and
Technology Surveys.
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Washington, D.C. 20546


