
I
1X-.22-73-135 -

-I.-
IE , , t.

I\ : ; 11.<.

-A NEW ;APPROACH TOTELEMETRY
- -DATA PROCESSING -

(NASA-TM-X-66248) A NEW APPROACH TO
TELEMETRY DATA PROCESSING Ph.D. Thesis
- Maryland Univ. (NASA) 170 p HC $10.50

CSCL 09F

)

N73-24183

Unclas
G3/07 04314 -

'--0- CARLO J. BROGLIO
. .-~. .1 .- ./I - I

.,

MAY _1973

2 -S

F'

GODDARD SPACETLIGHT CENTER
- - .GREENBELT, MARYLANDI'

'

- I

I

/

y*

plyll- P

A NEW APPROACH TO TELEMETRtY IATA PROCESSING

by
Carlo Joseph 3roglio

Dissertation submitted to the Faculty of the Graduato School
of the University of Maryland in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

1973

ACKNOWLEDGEMIENT

The author acknowledges a special debt of gratitude to his advisor, Dr.

James Pugsley, for his numerous helpful suggestions and especially for his

patience in the critical review of this thesis.

IPRECEDING PAGE BLANK NOT FILMED
ii

Title of Thelist A New Approach to telemetry Dati Processing

Carlo Joseph Broglio, Doctor of Philosophy, 19t3

Thesis directed by; Dr. James Ptigsley, Associate Professor

A new approach for a preprocessing system for telemetry data processing

has been developed. The philosophy of this approach is the development of a

preprocessing system to interface with the main processor and relieve it of the

burden of stripping information from a telemetry data stream. To accomplish

this task, a telemetry preprocessing language has been developed, This higher

level language contains statements designed using the jargon of telemetry data

engineers and a set of simple but powerful operators for manipulating telemetry

data. Also, a hardware device for implementing the operation of this laugtage

was designed using a cellular logic module concepts

In the development of the hardware device and the cellular logic module, a

distributed form of eontrol has been implemented. This is accomplished by a

technique of one-to-one intermodule communications and a set of privileged

communication operations. By creating a special state (called the control state),

each module can direct the activities of the system. 13y transferring this control

state from module to module, the control function is dispersed through the sys-

tern.

A compiler for translating the preprocessing language statements into an

operations table for the hardware device was also developed. this complier uses

a simple left to right single pass compilation algorithm. It can do so because the

language is simple and has no operator precedence.

Finally, to complete the system design and verify it, a simulator for the

cellular logic module was written using the APL/360(system, Thlis simulator

ADSTRACTcc

contains data sets which are images of the programs that are loaded into the

various modules of the system. It then emulates the operations of the modules

and produces timing data. The simulator was used to prove that the concepts

and microcode loaded into the modules worked. The timing data gathered by it

was used to form comparisons with a medium speed machine of the operations of

a preprocessing program on the modular device with those on the medium speed

machine. The results of this comparison show that the device compares very

well, being a fraction of two to six slower on arithmetic operations, but two or-

ders of magnitude better on the bit manipulation operations.

LIST OF TABLES

Table Page

2-1 SET-UP SEGMENT RESERVE WORD LIST 14

2-2 CONTROL INSTRUCTION GROUP 16

2-3 DATA HANDLING INSTRUCTIONS 18

2-4 OAO-A2 DIRECT DIGITAL FRAME FORMAT o 22

2-5 DIRECT DIGITAL DATA ELEMENTS 22

2-6 DIRECT DIGITAL DATA PROCESSING PROGRAM 23

2-7 OUTPUT DATA FORMAT 24

2-8 INPUT STRING PRECEDENCE 26

2-9 PARSER DECISION TABLE 26

2-10 FORMAT OUTPUT TABLE 28

2-11 ENCODED MODULATION CODE VALUES 28

2-12 ENCODED TAPE PLAYBACK SPEEDS 28

2-13 OPERATIONS TABLE , 29

3-1 PROGRAM MEMORY LAYOUT 38

3-2 PROGRAM MEMORY WORD STRUCTURE 41

3-3 ALU MODULE FUNCTIONS 44

3-4 ADDER ALGORITHM 46

3-5 SUBTRACTOR ALGORITHM 48

3-6 MULTIPLY ALGORITHM 51

4-1 SIMULATION RESULTS FOR THE ALU FUNCTION . . 74

4-2 SPECIAL FUNCTIONS SIMULATION RESULTS 78

A-1 INSTRUCTION SET 110

v

LIS'I OF1 ILLUSTRI'i''IC)N

Figure

2-1

3-1

3-2

3-3

4-1

A-1

A-2

A-3

A-4

A-5

A-6

A-7

A-8

A-9

A-10

A-11

A-12A

A-12B

A-13

A-14

A-15

A-J]6

A-17

CELL INTERCONNECTION

TYPICAL MASK AND DATA CELL INTERCONM

PROGRAMMED FUNCTIONAL MEMORY UNIT

FUNCTIONAL MEMORY MODULE BLOCK DIA(

NECT:

GRAM

FUNCTIONAL MEMORY CELL

INHIBIT REGISTER

SEARCH CONTROL AND SELECTOR REGISTER CEI

MASK AND DATA CELL

INPUT GATING

OUTPUT GATING

PROGRAM REGISTER (4 Sheets)

ADDRESS REGISTER

COMMUNICATIONS CONTROLS

1/0 DECODER CONTROLS

CLEAR AND INTERNAL MODE CONTROLS . . .

PROPOSED TELEMETRY DATA ACQUISITION SYSTEM

PREPROCESSOR BLOCK DIAGRAM

PROGRAM MEMORY BLOCK DIAGRAM

DIVIDE ALGORITHM

INFORMATION FLOW DIAGRAM OF A FUNCTIONAL
MEMORY MODULE

CLASSIC GATING STRUCTURE

MODIFIED GATING STRUCTURE

CONCEPTUAL FUNCTIONAL MEMORY CELL . . .

. . . .0 89

[ION . . 90

.... 0 92

I 93

.... * 95

. . . .9 97

LL . . 98

, . 101

. 103

.... * 104

. . . . 10(

a . . 116

. . . . 1s8

. .. . 122

.. 124

vi

Page

. . 9

o . 37

*. . 42

. . 53

,. 68

. . 86

. . 87

. . 88

CIAPTER I

INTRODUCTION

The action of telemetering data from spacecraft sensors to ground based

processing equipment introduces a number of unique data manipulation problems

The basic cause of these problems is the need to combat noise in the space-to-

earth communications channel. Another cause of these problems is the use of

spacecraft tape recorders. Since typically a tape cannot be changed while in

flight, a method of recording in one direction and reading in the reverse direc-

tion is used. This, however, also causes the data to be transmitted backwards

compared to non-recorded data.

The data under consideration in this thesis is strictly digital data. By this

is meant, a sensor measurement value is coded into a set of ones and zeroes

called binary digits. These binary digits (bits) are then telemetered to a ground

based receiving station where they are recorded on an analog tape. This analog

tape is transported to a processing facility. However, during the telemetering

process the binary bits were encoded into one of several position-time sequences.

These sequences are designed to combat a particular kind of noise which may be

known or suspected to be present (reference 1). During the telemetering and

recording process, the timing information necessary to reconstruct the sets of

data bits has been losto Hence, to reconstruct this information, special purpose

equipment is required and various special techniques are used (reference 2).

First, the data bits must be reconstructed as accurately as possible. For

this purpose a device known as a bit synchronizer is used. This device produces

a "best estimate" of what the original bits were. It typically employs a maximum

likelihood decision model, At this point in the processing, a stream of data bits

is present. This data stream contains errors and must be regrouped into the

1

2

original sets of data values transmitted. These values are now called data words,

each word being a known number of bits in length. But during the bit synchroni-

zation process, the starting bit position of the first word is lost and, thus, it is

unknown where any data word begins or ends. Thus the technique of creating a

special grouping of data bits into sets called data frames is used. These sets

contain (usually as a prefix) a special known bit pattern called a frame synchro-

nization pattern (FSP). A special device known as a frame synchronizer is used

to "search" the data stream for this pattern. This is done typically by placing

the desired FSP in a data register and shifting the data stream through another

data register. A comparator is placed between the two registers and contains a

preselected error tolerance. When a bit by bit match is obtained between the two

registers that falls within the error tolerance, the pattern is considered found. At

this point it is possible to separate the data bits into the specified data words and

the telemetered data is considered to be recovered. Typically, the data is then

transferred to a general purpose computer and the data processing phase begins.

At this point in the operation, several observations should be made, No

spacecraft currently being flown contains only one sensor. In fact some contain

hundreds of sensors. In the data frame scheme described, not all sensor outputs

need to be in a single data frame because, such a scheme implies a fixed sam-

pling rate. Furthermore, a standard governing the size (in bits) of data words

and data frame (reference 3) exists. Hence, not all sensors can be placed in one

data frame and, quite often, sensor values cannot be placed in single data words

nor even in consecutive data words. Thus, some sensor data values may be dis-

tributed in words throughout the data frame. Other words of the data frame may

contain a sequence of sensor values on consecutive data frames (a process

called subcommutation). When subcommutation is used, a method for determin-

ing the start of the sequence must be present. Usually a data word is used for

this purpose. For example, a word may contain a binary counter which repre-

sents the sequence number of this data frame and identifies what sensor values

are present.

In addition, many spacecraft use a method of parity generation to insure

error detection capabilities. When this is present, the parity for the received

data must be computed and compared with the received parity to determine if an

error has occurred. As a further assurance of how well the system is operating,

the bits contained in the FSP are compared with those expected and a count of the

errors is maintained. This error count is used as a measure of the error level

of the bit stream. Finally, to assist the bit synchronization process in cases

where it is suspected that data values may not change for many bit times, certain

bits of the data stream are complemented.

All of these observations noted here require a set of data processing func-

tions to be implemented. These functions are needed to transform the data

frames into data values that the computer can work with. However, these func-

tions do not contribute directly to the data processing operation. Further, these

functions are awkwardly handled in a large general purpose processor since most

of these machines are designed for data computation and have limited bit manip-

ulation capabilities. The problem is further compounded by the fact that most

higher level programming languages are also designed to do computations and

many are very inefficient at bit manipulation. Efficiency becomes important for

two major factors. First, spacecraft generate a large volume of data; greatly

reducing total run times can be accomplished by saving instructions in highly

repetitive operationso Second, a need often exists to handle the data as it is re-

ceived in real time and hence not much processing time is available. A final ob-

servation is that the data is transferred into the computer over one of its input-

output channels. This means that the data words arc stored consecutively in the

4

computer's internal data words. The size of these two different words is rarely

identical and thus represents an unnatural data set to the computer becausc, data

words are not on computer word boundaries,

Under the current method of telemetry data processing, these problems

are handled by programs coded at the machine language level. Hence, if more

than one type of computer is involved at the frame level of processing, as is

typical, a costly duplication of programming effort is required. Further, any

event which causes a change in the data format (e. g., a failure on the spacecraft

while in orbit or, a design change in a family of spacecraft) requires extensive

reprogramming to accommodate. Several attempts have been made in the past

to generalize some of these functions (references 4, 5, and 6). These ap-

proaches, however, were either too specialized to a specific machine config-

uration or too cumbersome and complex to be used effectively.

The work of this thesis is directed toward the solution of these problems

while overcoming the difficulties of the past approaches. In the context of this

solution, it is assumed that a special-purpose device will be placed between the

frame synchronizer and the host computer's input-output channel. This device

will have the ability to pass the necessary parameters to the frame synchronizer

subsystem to enable it to run. The device will then accept data from the frame

synchronizer, and reformat this data into sensor values which will appear on the

host computer's word boundaries. Finally, the functions of parity checking,

word reversal, bit complementing, data counter continuity checking and FSP

error measurements will also be done in this device, thereby allowing the host

computer to concentrate on data processing.

To overcome the difficulties and costs encountered in programming the

required bit manipulation functions, a special-purpose higher level telemetry

preprocessing language has been designed. This language concentrates on bit

manipulation methods and has only a minimal set of computation instructions.

The statements of this language are derived from telemetry data handling engi-

neer's jargon and hence, programs in this language represent a concise descrip-

tion of the telemetry data frame. Perhaps the biggest advantage of this language

is the ease with which the programmer can accommodate changes in the data

format's structure.

Since the device which implements the language must be able to interface

with a wide variety of host computers on one end and a number of different frame

synchronizers on the other end, a microprogrammed (reference 7) approach was

takeno Another factor influencing this decision was the wide variety of internal

computer formats which must be accounted for, since this device must appear

to be a standard device to the host machine. By appearing as a standard device,

the host machine's operating system can be used with minor changes and hence

the system integration costs are minimized.

Having decided to use: a microprogrammed approach, the operations speci-

fied in the preprocessing language were examined to determine what microcoded

functions were required. It was observed that: a) telemetry words vary in size

1from 6 to 32 bits, b) bit for bit word reversal is a nontrivial function, and

c) selective bit complementation is a special operation compared to all the other

functions required to implement the preprocessor. Upon examining "off the

shelf' microcoded machinery, these operations are not part of the standard

functions offered. Further, many of the word sizes required are not compatible

with the machines' internal data structures; hence, using one of these machines

1. The Standards (reference 3) claim larger word sizes, but in practice they
are never usedo In fact, the hardware currently in use will accommodate a
maximum word size of 32 bitso

6

would represent a transferal of the problemn from the conventional general purt-

pose machine to the microcoded one and, matil- of the past difficulties would

still be present. Thus the operations of the preprocessing system were exam-

ined to find the most uniform approach to the total system design. To accom-

plish this task, a design of an integrated circuit chip, implementing a concept

known as a functional memory (reference 8), was completed. This module de-

sign offers the power of implementing all the required logical functions with a

single chip structure, The interconnection between these chips is accomplished

with another chip structure thereby yielding a system with only two basic parts,

The functional memory module is discussed in detail in Appendix A. The

term functional memory denotes a device used to generate Boolean functionals in

a memory device. Basically, it is a method of arranging a cellular memory ar-

ray such that, each cell of the array can be either an associative memory cell or

a conventional memory cell. Additional gating is provided at the array bound-

aries so that Boolean functions can be generated by using the above two memory

types in combination. The associative nature of the memory is used to "search"

for a set of preprogrammed Boolean expressions in the input data. Then the re-

sults of this search are used as a conventional address to "read" the function

output from specified cells of the array,

In order to implement a system of this type the concept of distributed con-

trol was used. This concept treats each module as an independent processing

station and represents a means of networking these stations.

The concept of distributed control was hinted at in an article by L. J.

Koczela (reference 9). This is basically the replacement of the conventional

single control unit by a transferable abstraction of the control function. This

implies that each functional memory array of the system contains a flip-flop in-

dicating whether or not it has system control. If it has system control, then it

7

is allowed to carry out certain privileged global operations. These operations

primarily deal with the intermodule data communication system. Only a module

in control is allowed to transfer data over the communication bus to other mod-

ules and initiate cycles within those modules. Further, control can be both trans-

ferred and retained by the issuing module, thus allowing independent control se-

quences to be simultaneously initiated. By the use of this concept, the data flow

paths through the various functional elements are directed with the net result

being that the data flow path through the system determines the total processing

function to be performed.

A conventional control approach with one or more modules making up the

-control function could have been implemented, but this approach would represent

a more complex design. With. distributed control, no subsystem needs to know

what functions are being executed at all parts of the machine. It merely needs to

know what the data destination is and where to pass control. This simplifies the

design by necessitating fewer system wide control lines and allowing independent

functions to complete their tasks at the rate which the tasks require.

In summary, this system offers two advantages capable of overcoming the

difficulties of past approaches. These advantages are a higher level telemetry

preprocessing language and a peripheral device to implement that language in

microcode. The language offers to the user the capability of specifying in nearly

English terms, the transformations that he desires to perform on the telemetry

data stream. These terms were derived from the jargon used by the handlers of

telemetered data and hence, should be readily understood by workers in this

area,

The microprogrammed peripheral device has the advantage of separating

the operations to be performed from the main computer. This helps the problem

solution in two ways. First, it simplifies the processing program in the main

8

computer by preparing a data set for it and hence, relieving this processor of

many bookkeeping and manipulation functions which do not contribute to the proc-

essing operation directly. Further, many of these functions are not implemented

in the standard instruction set and thus are inefficient to implement. Secondly,

by being a microcoded device, it is adaptable to most commercially available

computers since the microcode can be changed to suit the host computer and thus

the device becomes installation independent.

The remainder of this thesis will describe the above problem solution in

detail and develop in depth the concepts and techniques used. Chapter II presents

the telemetry preprocessing language. The elements of this language are defined

and explained by use of examples. A compiler for this langtuage which was writ-

ten in APL (references 10 and 11) is also described in this chapter,

Chapter II discusses the design antid microcode sequences of the peripheral

device developed to implement this language. Chapter IV describes an APL simu-

lation of the system and presents a discussion of it. Chapter V presents the re-

sults, conclusions, and recommendations of this work. Appendix A is a detailed

presentation of the functional memory module chip design. Appendix B is a ineta-

language description of the telemetry processing language. Appendix C is a de-

scription and listing of the APL compiler. Finally, Appendix D is a description

and listing of the APL simulation programs.

CHAPTER II

THE TELEMETRY PREPROCESSING LANGUAGE

A. The Problem Environment

In Chapter I, the various parts of a telemetry data acquisition system were

introduced and the interfaces to this research were discussed. These concepts

are shown again here in Figure 2-1. In this figure, the telemetry data is input

to the system on what is called an analog tape. The name "analog" is somewhat

misleading because the recorded signals are digital pulses (i.e., on-off type).

It is called analog because the timing information needed to recover the data is

not recorded on the tape and the techniques used to recover that information are

analog in nature (e.g., a phase-locked loop).

NALOG ANALOG BIT FRAME TELEMETRY DIGITAL
rAP -'wTAPE -*SYC-(SNC-; PREPROCESSING -P OPT

DECK SSYSTEM

- DATA - -

-- CONTROL

Figure 2-1. PROPOSED TELEMETRY DATA ACQUISITION SYSTEM

As is shown in Figure 2-1, the proposed telemetry preprocessing system

has two functions. First, its main task is to reformat the frame synchronized

data into sensor values capable of being processed directly by the digital com-

puter. Second, it is designed to distribute the necessary control parameters to

the acquisition system to allow it to operate. While this capability is designed

into the system, it is not necessary for its operation. Hence, the preprocessing

system can operate in cases where other forms of control are desirable or in

cases where other configurations are necessary (e. g., a digital tape could input

directly to the telemetry preprocessing system in the figure).

9

10

Upon closer examination of thile system of Figure 2-1, the parameters hec-

essary for this systems operation nre ensily determnined. The analog tape deck

needs to know what speed is required to run the analog tape since these Units are

typically designed to run at several speeds. The bit synchronizers are designed,

to run over a broad range of data rates (called bit rates) and also can handle

several forms of modulation codes (called code types). Hence the desired bit

rate and code type are necessary parameters. Finally, the frame sysnchronizers

are typically generalized to handle all the standard types of formats (reference

13). The necessary parameters required to define these formats are the number

of bits in a telemetry data word, the number of telemetry data words in a telem-

etry data frame, and the frame synchronization pattern.

The last three parameters (bits/word, words/frame and FSP) form part of

the input constraints to the telemetry preprocessing system and are used by that

system to locate data values and to perform some of the error measurement

computations briefly discussed in Chapter I. These computations will be de-

scribed in greater detail later.

The other input constraints were also briefly mentioned in Chapter I and

consist primarily of data formatting and translation problems. The data format-

ting problems are: 1) reversed data where the least significant bit of the data

value is transmitted last; this requires a bit for bit reversal of the data value;

2) dispersed data where parts of the data value are found in different telemetry

data words; this requires a bit-by-bit assembly of the data value from several

telemetry data words; and 3) complemented data bits; this requires selected bit

complementation.

The data translation constraints consist primarily of error checking conm-

putations, Data parity checks can be generated by either the spacecraft telem-

ctering system or by the experiment measuring system of the spacecraft TPlhese

checks can be either even or odd parity. If the telemetcring system imposes the

parity, then the parity check must be done on the bits in the order which they

were transmitted. If the experiment system imposes the parity, then the parity

check must be done on the bits after the data value has been assembled.

Counters appearing in the data should be checked for the continuity of the

count. These counters may be either forward counting or backward counting.

The telemetry preprocessing system should be capable of establishing the cor-

rect count value, flagging counts that are received in error, and keeping a rec-

ord of the number of counts that are received in error.

Finally, since the frame synchronization pattern is the primary measure

of the received error rate and is used for data quality assurance purposes, the

telemetry preprocessing system should be capable of performing all the neces-

sary error computations on this pattern. These statistics are collected on a

frame-by-frame basis, as well as in an overall cumulative form. The statis-

tics to be collected are: 1) a bit-by-bit error distribution, 2) a one-to-zero

error distribution, and 3) the total number of errors.

In addition to the input constraints on the preprocessing system, the host

digital computer which receives the data imposes output constraints. Since the

main purpose of the preprocessor system is to free the host computer from those

functions that are not directly related tc the processing of sensor data, care must

be taken to avoid additional non-related processing tasks which would be required

to accommodate the output of the preprocessor. Thus the preprocessor output

must be compatible with the host computer's internal data format. If the pre-

processor were to appear to the host computer as a standard peripheral device,

the programming impact on its operating system to accommodate the preproces-

sor could be minimized. Further, the data storage scheme used by the teleme-

try preprocessing language should be compatible with the data retrieval scheme

ii

12

used by the host computer's data processing program; i. c., an operation sinii-

lar to a COMMON statement fi'or FORTRAN programs should lbe implenmeilcted.

While many of these functions are hardware related and are handled by the pre-

processor hardware design (described in the next Chapter), the data storage al-

locations and contents are described in the telemetry preprocessing language.

Finally, as in any language, certain instructions are provided for pro-

gramming convenience. These are computed branch instructions provided to

alter the execution sequence of instructions, conditional branch instructions pro-

vided to alter the execution sequence dependent upon conditions in the data, and

looping instructions provided to allow repetitive operations to be concisely

stated.

All of the above constraints and conditions described in this introduction

form the context within which the telemetry preprocessing language is Intended

to operate. To facilitate the coding of statements in this language a compiler

was designed and coded in the APL language (references 10 and 11). For sim-

plicity, this compiler assumes that the language statements are to be input oni 80

column cards. Hence, general field delimiters are not used; instead, column

positions and blank columns are used to delimit statement fields. The language

is context dependent; hence, not all statements have the same number of fields.

However, all cases are unique; thus no ambiguities can arise. The output of this

compiler is an operations table which is a coded set of the operational steps that

are required to implement the statement of the language. This table will be de-

scribed later in this chapter.

The compiler contains an extensive set of error messages to assist the

programmer in detecting and correcting syntax errors. It also allows the pro-

grammer to use symbolic addressing and symbolic address computation. Hence,

by the use of descriptive names for the sensor value addresses, it is possible to

have the telemetry preprocessing language program appear to a knowledgeable

reader as a shorthand English description of the telemetry data frame.

B. The Language

This section describes the syntax of the telemetry preprocessing language

along with those compiler functions necessary to implement that syntax. The

elements of the telemetry language consist of all the capital letters, the digits

zero to nine, and the special characters: + - °. () / , . = and blank.

These elements are then grouped to form variables which are used to either index

data values, to form data destination addresses, or to specify the operations to

be performed on the telemetry data. The telemetry language is logically divided

into two segments: the set-up descriptors and the frame descriptors.

The set-up descriptors form a table which contains the parameters required

to configure the frame synchronization data acquisition system discussed in the

introduction. This segment of the language contains statements. Such state-

ments, being the specifications of operations to be performed, consist of three

fields: a location field, an instruction field, and a parameter field. The names

given to these statements derive from the content of their instruction fields. The

segment begins with a FORMAT statement and ends with an END statement. The

location field contains the identifier of the telemetry data frame being described.

The location fields of all other statements in this segment are ignored, The loca-

tion field is considered to be nine elements long and is blank-filled to that size

with the information being left-justified.

The identifier field is 10 elements long and begins in column 10 of the input

card. Table 2-1 contains a list of the parameters identified in this segment.

FSP denotes the right-justified frame synchronization pattern. The pat-

tern which appears in the parameter field of the statement may be an octal number

which is prefixed by the letter "o"l, a binary number which is surrounded by

/3

14

parcntheses, or a combination of the two. Ii any case, the binary equivalent of

this parameter must represent the exact pattern right-justified, In this manner

the compiler can determine the number of bits to use in setting the preprtocessing

system for the required error calculations and also what pattern to send to the

frame synchronizer.

Table 2-1. SET-UP SEGMENT RESERVE WORD LIST

INSTRUCTION

FORMAT
FSP
CODE
BIT RATE
BITS/WORD
WORDS/FRAM
TAPE SPD
END

CODE specifies the telemetry modulation type to be used by the bit syn-

chronizer and is an optional parameter. The legal modulation types are: SPPH,

BIPH, RZ, NRZ, NRZM, NRZL, and NRZCb These codes are described in the

standards (reference 3).

BIT RATE is the telemetry transfer rate at which the bit synchronizer is to

run, and is an optional parameter. The value in the parameter field may be a

decimal, octal, or binary number.

BITS/WORD specifies the number of bits in a telemetered data word. This

parameter is required since the preprocessing system uses it to determine how

to store the telemetry data in its internal structure.

WORDS/FRAM specifies the number of telemetered data words in a telem-

etry frame. This parameter is required so that the preprocessing system can

allocate its internal resources.

TAPE SPD is the speed to be used in reading an analog tape and is an op-

tional parameter. The legal speeds are: 120, 60, 30, 15, 7-1/2, 3-3/4, and

1-7/8 inches per second.

15

All of the necessary parameters must be present when specifying the set-

up description segment; otherwise, an improper format syntax error is encount-

ered.

The frame description segment contains the instructions which form the

main working portion of the language. These instructions form three functional

groups: a control group, a storage allocation group, and a data handling group.

This segment begins with a FRAME statement and ends with an END statement.

The location field of the FRAME statement identifies what data frame is being

described. The name located here must match the name in the location field of

the FORMAT statement defining the set-up table for this telemetry data frame.

All the statements of this segment except the END statement contain a nine

element location field which may be blank. Further, with the exception of the

FRAME statement, these location field variables may be subscripted. When

subscripting is used, the assigned location of the variable is used as a base ad-

dress to which the computed value of the subscript is added to yield a final stor-

age address.

The storage allocation group of instructions contains three fields: a loca-

tion field, a type field, and a parameter field. Since it is being assumed that

there are two independent types of storage in the preprocessing system (a pro-

gram store and a data store), and that the contents of these storages may not be

mixed between program and data, two types of storage allocation instructions are

required.

The storage allocation instruction that specifies addresses in the program

memory is the CONTINUE statement. The location field of this statement con-

tains a symbolic name of an address in the program memory. When this name

is referred to by other statements in the language, its value will be the address

of the statement following the CONTINUE statement in the program.

1(;

The storage allocation instruction that addresses only the data memory is

the DIMENSION statement, This statement uses all three fields of this group.

All variable names which reference the data memory must be dimensioned before

they are used in a statement. The parameter field of this statement denotes how

many consecutive data storage locations are to be assigned to this name.

The control group of instructions contains three fields: a location field, an

instruction field, and a parameter field. This group of instructions deals primar-

ily with bookkeeping, decision making, and order of execution types of operations,

These instructions are used to compute and assign values to index registers to

perform both conditional and unconditional branching operations, and to form

program loops. Inclusion of these types of operations enables programs to be

written in compact form and also allows conditions within the data to alter the

program execution sequence. Table 2-2 lists the instructions included in this

group.

Table 2-2. CONTROL INSTRUCTION GROUP

LOCATION INSTRUCTION PARAMETER

<Name)> = (arithmetic expression>
GO TO <location)
REPEAT F, V = I, E
IF (<logical expression>) TRUE

N EQUATE 0

The first expression in the table is an index definition statement as delim-

ited by the presence of the equal sign. The name to the left of the equal sign is

the symbolic name of the index being defined. The arithmetic expression on the

right may have any number of levels of parentheses, and any legal (to be defined

when the compiler is discussed) combination of adds, subtracts, multiplies,

and divides. The variables appearing on the right may be decimal numbers or the

symbolic names of previously defined variables. This statement may have a

17

location symbol; if it does, the value of the index as computed from the arith-

metic expression will be placed in the data memory location specified by the lo-

cation field.

The GO TO, REPEAT, and IF instructions must have null location fields.

The names in the GO TO and IF instructions must appear as a location expression

of a CONTINUE statement. The GO TO instruction is an unconditioned branch to

the specified location. The IF instruction is a conditional branch instruction. If

the logical expression (to be defined) is true, then, the branch to the specified

location is executed; otherwise, execution continues with the next instruction.

The REPEAT instruction is used to perform a looping operation. The loop

index (V) is specified by name. The initial value of the index is the value of the

first simple arithmetic expression (I). The final value which will cause the loop

to be exited is the value of the second simple arithmetic expression (E). The

REPEAT instruction is used to repeat the next F instruction in the program. The

way in which the loop operates is as follows: the loop index is incremented by

one and compared to the final loop value for the equality condition every time the

end of the loop is reached. When equality occurs, the loop is exited at the next

instruction beyond the end of the loop.

Two important restrictions must be remembered. First, if the variable is

not a decimal number, it must be the name of a previously defined index. Second,

the loop index may be altered within the loop, but care must be taken to insure that

equality will result at the end of loop test.

The EQUATE statement must have a name in the location field. This name

must match the name of a frame identifier. This statement is used to define a

frame which is simply the reverse of another defined frame; a condition common-

ly prevalent when spacecraft recorders are used.

1.

The index definition instruction may have a location sylnboi; if it does,

the value of the index as computed by the dcfinitioni of that index wilt be placed

in the specified data memory location.

A note on the card formats for these instructions, the GO TO and REPEAT

instructions have arguments which must begin in column 20. All others begin in

column 10 and continue until a blank is encountered.

Logical expressions are formed by a set of arithmetic expressions whose

values are either zero or oneb and variables whose values are either zero or one

connected by the logical relators: EQUAL, NOT EQUAL, LESS THAN, LESS THAN

OR EQUAL TO, GREATER THAN, GREATER THAN OR EQUAL TO, AND, OR,

and NOT. One impbttant rule of operation must be remembered the order of eval-

uation is left to right with no precedence among the operators. However, note that

in both arithmetic and logical expressions, any level of parenthesis is allowed and

here the evaluation sequence may be altered. Also, in logical operations, the una-

ry operator NOT means complement the operand to its right. If that operand is a

variable, the value of that variable will be complemented prior to comparison.

The data handling instructions form the main working section of the lan-

guage. They are used to extract sensor data values from the telemetry data

words and to perform all of the data manipulation functions that are requireda

These instructions contain two fields: a location field and an operation field.

The location field contains a pointer to the data memory address where the as-

sembled data value is to be stored, The instructions of this group are listed in

Table 2-3.

Table 2-3, DATA HANDLING INSTRUCTIONS
i.

LOCATION INSTRUCTION

SYNC, M (A, B, C)
<location name>, M (A, X, C)
WORD, M (A, B, C)
SUB, M, K, 0 (A, 3, C)

19

In this table, M is a modifier operation which may be L (to indicate that

the word has its least significant bit first and, an end for end bit reversal must

be done) and/or one of the following: PET, PEA, POT, POA, or blank. The

modifiers PET, PEA, POT, and POA specify that the associated data value is to

be checked for a parity error. The parity bit to be used for comparison is the

bit specified by the word control section of the instruction containing one of these

modifiers. The type of check to be performed is specified by E for even parity

or O for odd parity. The time that the check is to be performed is specified by

either T for before manipulation or A for after manipulation. The result of the

parity check is to set the sign bit of the specified data memory word to 1, if a

parity error is detected and, to 0, if not.

The data value to be checked is specified by those instructions that are

linked to the one containing the parity check modifier. Instructions may be

linked by either plus or minus signs. The linkage symbols are fully distinguished

from their arithmetic counterparts by their location in the instruction stream.

The plus linkage implies that the bits specified by the instruction immedi-

ately following will be appended to the right of the bits already extracted. The

minus linkage implies that the complement of those bits will be appended. In

this manner a new data value is formed from the input bit stream.

The bits to be manipulated in the above manner are specified by the param-

eter set (A, B, C). A is the telemetry word number to be processed. This

parameter can be a number, a variable, or a simple two variable arithmetic

operation. B is the number of the starting bit within the telemetry word. C is

the number of bits to take from the telemetry word. Taken together these param-

eters define a new information word derived from the original stream.

SYNC is the instruction used to indicate the location of the frame sync pat-

tern (FSP) in the telemetry data frame. The-SYNC instruction doesn't place the

framine sync code in thlie data memory; Instead, It retrieves the fratnmeo Sylc ode

from the format table word and comipares It with the data value bit by bit, It

then replaces this data value in the data memory by a set of words tepregentingi

1) the total number of errors in the frame sync pattern, 2) the number of pattern

ones in error, and 3) the t"exclusive or" of the pattern and the received frame

synchronization code, In addition to this, it keeps a cumulative set of registers

containing the statistics of items 1 and 2 above.

In the location name operation, the name must be a defined data memory

address. Hence the parameter set will operate on the data memory locatiotins

specified by name, whereas in the other data handling the operations are per-

formed on the input data set.

The WORD instruction is used to extract sensor data values from the te-

iemetry data words.

SUB is the instruction used to indicate the presence of a subcommutation

counter and initiates the accumulating of statistics and the smoothing of this

counter; i. e. , error flagging and a continuity check.

The SUB instruction and the SYNC instruction are the only two instructiotis

which involve more than one data frame in their execution. The SUB instruction

is designed to determine whether or hot the sequence of values received for a

data counter is correct. It also gathers error statistics concerning the condi-

tion of the data counter. In order to perform these functions, this instruction

must determine what the expected count value should be. This is done by search-

ing for three consecutive received counts. The count mode (K) of the instruction

specifies whether to look for forward (F) or backward (B) counting. Further,

the counter modulus (O) in the instruction specifies the range of the data counter.

This instruction forms a value for entry into the data memory in the same

way as the word instruction, but with two exceptions. While searching for three

21

consecutive count values to establish the counting sequence, the sign bit of the

stored data word is set. Then, once a sequence has been established, the cx-

pected count value will replace any count value received in error, with the sign

bit being set to denote the replacement of the received data. A count sequence,

once established, may be broken by the reception of three consecutive counts

received in error.

This instruction maintains a set of error counters throughout the process-

ing operation. These error counters are read out to the host machine upon re-

quest and represent: 1) the number of times a new sequence had to be estab-

lished, 2) the number of counts in the search state, 3) the number of erroneous

counts received while in a sequence, 4) the total number of counts received while

in a sequence, and 5) the number of attempts made to establish a sequence.

Comments in the language, when punched on an 80 column card, can be

entered either with an asterisk (*) in column 1 or after a blank at the end of a

language statement. Comments may appear anywhere within the telemetry lan-

guage. A final note on card formats is that, if the linked data handling instruc-

tions or an index definition statement forms a character string too long to fit on

one card, an asterisk (*) in column 80 signifies that the entire next card is a con-

tinuation card. As many continuation cards as needed may be used. However,

on a continuation card an * in column 1 does not signify a comment card. In

this case, the * is interpreted as an operator.

As an example of the use of this language, consider the direct digital frame

format of the OAO-A2 spacecraft (reference 14).

As is shown in Table 2-4, the set-up table indicates that the modulation

code is NRZC. The 64 words of the telemetry frame are each 32 bits long and

and are transmitted to the ground at a rate of 50, 000 bits per second. Notice

that in the FSP specification the "o" preceding the numbers indicates that the

22

octal number system is to be ised. tiowevoi'i the "(e)" ener the end inidiates a

switch to the binary system. Tihe resutitng lit string is the FSP right-justl fied;

i.e., 11100010010000111011010001110110.

Table 2-4. OAO-A2 DIRECT DIGITAL FRAME FORMAT

LOCATION INSTRUCTION PARAMETER

DD FORMAT
FSP 07044166435(10)
CODE NRZC
BIT RATE 50000
BITS/WORD 32
WORDS/FRAM 64
END

Table 2-5 indicates a further breakdown of the bit stream into 8-bit ele-

ments, where the first 4 elements are tho FSP, the 5th element is the TV line

number, and the 6th to 256th are the TV intensity elements, Further, notice

that the data is least significant bit first and, in the ease of the intensity ele-

ments, every odd number bit is complemented. Preparing this information for

use in a general purpose computer requires a lengthy and complex program,

However, as Table 2-6 shows, the telemetry preprocessing language makes it

rather simple to describe'the reconstruction of this data.

Table 2-5. DIRECT DIGITAL DATA ELEMENTS

BIT
ELEMENT 1357ELEMENT i 2 3 4 5 6 7 8

1 111000i0

2 01000011

3 10110100

4 011110110

yoYly 2y3y4y5y 6Y7
6-256 i 2n 3 i 4h5 i6p

where:, y7y6y5Y4y3Y2Yy1y0 is at binary TV line humbet.
nx = i complemented.

i i 4 13 i2 II I0 Is a binary intenttly value,

p is the even parity :is tftwmilltted bit,

C

23

Table 2-6. DIRECT DIGITAL DATA PROCESSING PROGRAM

LOCATION INSTRUCTION PARAMETER

DD

STAT

LINE

ELMT

STAT

LINE

ELMT(1)

ELMT(2)

ELMT(3)

ELMT(I)

ELMT(I+1)

ELMT(I+2)

ELMT(I+3)

FRAME

DIMENSION

DIMENSION

DIMENSION

SYNC (1)

WORD, L(2,1,8)

WORD, PET(2,16,1) + WORD(2,15,1) -
WORD(2,14,1) + WORD(2,13,1) -
WORD(2,12,1) + WORD(2,11,1) -
WORD(2,10,1) + WORD(2,9,1)

WORD, PET(2,24,1) + WORD(2,23,1) -
WORD(2,22,1) + WORD(2,21,1) -
WORD(2,20,1) + WORD(2,19,1) -
WORD(2,18,1) + WORD(2,17,1)

WORD, PET(2,32,1) + WORD(2,31,1) -
WORD(2,30,1) + WORD(2,29,1) -
WORD(2;28,1) + WORD(2,27,1) -
WORD(2,26,1) + WORD(2,25,1)

I=4

REPEAT

WORD, PET(X,8,1) +WORD(X,7,1) -
WORD(X,6,1) + WORD(X,5,1) -
WORD(X,4,1) + WORD(X,3,1) -
WORD(X,2,1) + WORD(X,1,1)

WORD, PET(X,16,1) +WORD(X,15,1) -
WORD(X,14,1) + WORD(X,13,1) -
WORD(X,12,1) + WORD(X,11,1) -
WORD(X, 10,1) + WORD(X,9,1).

WORD, PET(X,24,1) +WORD(X,23,1) -
WORD(X,22,1) + WORD(X,21,1) -
WORD(X,20,1) + WORD(X,19,1) -
WORD(X,18,1) + WORD(X,17,1)

WORD, PET(X,32,1) + WORD(X,31,1) -
WORD(X,30,1) + WORD(X,29,1) -
WORD(X,28,1) + WORD(X,27,1) -
WORD(X,26,1) + WORD(X,25,1)

I=I+4

HALT

END

3

1

251

5,X=3,64

"'I 24

Notice that the SYNC instruction refers to word 1. This causes the sys-

tem to refer to the DD format BITS/WORD statement and take the first 32 bits of

the bit stream. The system then compares these bits with those of the FSP state-

ment and gathers its statistics.

Notice the statement LINE. This statement causes bits 1 to 8 of telemetry

word 2 to be reversed and placed in a location (line) reserved for the TV line

number.

Next, the intensity elements are dealt with. The first word instruction

indicates that this is the even parity bit as transmitted and causes a parity check

on this element. The rest of the WORD instructions in the statement cause the

uncomplemented intensity element to be found in the appropriate element arrtiay

location in most sigltficant bit first integer format.

Note that the repeat loop and the index counter are used to save the pro-

grammer from the burden of specifying every element. This program would

cause an array to be formed which, when output, would have the data storage al-

locations shown in Table 2-7.

Table 2-7. OtJPUT DATA FORMAT

WORD NUMBER CONTENT

The first 3 words generated result from the SYNC instruction, The rest

are a result of the WORD instructions.

In summary, the telemetry preprocessing language described and illus-

trated above is proposed as a more natural means of manipulating telemetry

1 Frame Sync Error pattern

2 Number of FSP errors in this frame

3 Number of FSP ones in error

4 TV line number in integer form

5-256 Parity error bit and 7-bit intensity
values 1-251

data streams. This is because the information content of these data streams is

described by using the telemetry format specification to extract the data. A

further benefit is that the code generated in this manner inherently contains the

internal bookkeeping required to extract the data and, thus, is a much simpler

code. Hence, it is easier to debug, maintain, and modify as opposed to either

machine language coding or FORTRAN coding.

C. The Compiler

The telemetry preprocessing language compiler is a set of subroutines

written in the APL language which converts a program input data stream into an

operations table to be described.

The APL language was chosen for its availability, interpretive implementa-

tion, and its powerful set of operators. These features considerably shortened

the development and debug times in designing and implementing the compiler and

allowed compiler concepts to be explored without excessive concern for internal

bookkeeping chores.

Because of the simple nature of the telemetry language, a simple left to

right single pass compilation algorithm was able to be used. This algorithm is

described in reference 17.

The main body of the compiler is driven by a reserve word list (reference

16) consisting of the instruction set and operators. This list drives the compiler

to the appropriate subroutine, which parses the particular instruction being ex-

amined. Most of these routines are context sensitive (reference 15) since most

of the instructions have a rigid format.

The most interesting of these routines is the arithmetic and logical parser.

This routine is driven by two tables and is used to form a reverse Polish string

(reference 12) of these expressions. The first of these tables (Table 2-8) is the

Input String Precedence Table. This table represents an exhaustive listing of the

26

allowed order of elements in the input string. If an error is detected here, an

error message is generated and the entire expression is discarded.

Table 2-8. INPUT STRING PRECEDENCE

HEAD OF INPUT

SYMBOL CLASS

SYMBOL relation logical NOT. arithmetic variable ()

CLASS 1 2 3 4 5 6 7

last relation 1 x x x +/- x
input logical 2 x x x x

. NOT. 3 x x x x

arith- 4 x x x x x
metic

variable 5 x x x

6 x x +1-

7 x x

x = not allowed
+/- = plus or minus only

relation = . NE.,. EQ.,. LE. ,. GE.,. LT.,. GT.
logical =. AND.,. OR.

arithmetic = +, -, .

Table 2-9, the Parser Decision Table, is used by this routine to assign

weight to the elements at both the top of the storage (TOS) string and the head

of the input string (HIS).

Table 2-9. PARSER DECISION TABLE

SYMBOL TOS HIS

logical/relator 2 1

. NOT. 4 3

arithmetic 6 5

variable 8 7

0 9

0

27

Elements are then transferred to the output reverse Polish string accord-

ing to the simple algorithm:

HIS>TOS means HIS moved to TOS and drop HIS.
HIS = TOS means drop both HIS and TOS.
HIS<TOS means TOS moved to output and dropped.

This relatively simple system adequately parses all of the logical and

arithmetic expressions found in this language.

The compiler is structured into two major divisions: the format parser

and the frame parser. Both of these divisions accept card images as input and

produce the above mentioned outputs. They scan the input character stream for

illegal conditions and produce error messages when such conditions are found.

The format parser is entered upon recognition of a FORMAT statement.

At this time the location field is placed in the format identifier table. During

this process, it is checked for multiple entries. If a case of multiple identifiers

is encountered, an error message is generated and the generated format table is

discarded. Also in the error case, the input data stream is read and ignored

until the END statement signifying the end of the format definition is found. The

format identifier table is used to set up a linkage between the format table and

the frame operations table.

The format parser reads and decodes the statements of the format seg-

ment. The output generated by the parser is the format table. This table is

checked for multiple entries. If a multiple entry occurs, an error message is

generated and the latest parameter replaces the old one. When an END state-

ment is found, the output format table is checked for the presence of all neces-

sary parameters. The necessary parameters are: BITS/WORD, WORDS/FRAM,

and FSP. If any one of these is missing, an improper format specification mes-

sage is generated and the format table is discarded. If all the parameters are

prcscnt, then the error messages (if any) arc output and the format table as

28

shown in Table 2-10 is oultput. The word number column of the table refers to

the nine words which comprise a format table.

Table 2-10. FORMAT OUTPUT TABLE

WORD NUMBER CONTENT

1 Identifier
2 Number of bits in the FSP
3 Number of bits in a telemetry word
4 Number of telemetry words in a frame
5 Right most 16 bits of the FSP in octal
6 Left most 16 bits of the FSP in octal
7 Encoded telemetry modulation code
8 Telemetry bit rate
9 Encoded tape playback speed

The codes for the two encoded words are listed in tables 2-11 and 2-12.

The last 3 words of the format output table are optional parameters. If they are

absent, a zero is inserted or, in the case of the codes, a seven.

Table 2-11. ENCODED MODULATION CODE VALUES

INPUT ENCODED VALUE

SPPH 0
BIPH 1
RZ 2
NRZM 3
NRZL 4
NRZ 5
NRZC 6

Table 2-12. ENCODED TAPE PLAYBACK SPEEDS

INPUT ENCODED VALUE

120 1
60 2
30 3
15 4

71/2 5
33/4 6
17/8 7

The frame parser scans the input program statements and produces an

operations table of the format shown in Table 2-13. The parser is entered upon

recognition of a FRAME statement. During this process, the location field is

checked for multiple entries. If such a case is found, an error message is gen-

erated and this entire segment of the program is disregarded.

The operation table being produced as output from the frame parser and

the format table produced as output from the format parser represent the total

output of the compiler. This output is a coded set of operations representing the

input statements. The codes used are explained in Table 2-13. The form of this

output is suitable for execution by a telemetry preprocessing system. It may be

produced as a magnetic tape, a card deck, or directly inserted into the preproc-

essor depending on the configuration of the installation.

Table 2=13. OPERATIONS TABLE

LOC V1 OP V2I L A V1 OP V2 R V1 OP V2 V1 OP V2
XXX BXXX 0 BXXX X X XXX BXXX 01 BXXX XXXX BXXX 0 BXXX BXXX 0 BXXX

xxx is the numerical value defined as:

- A symbol address if no prefix is present

- A value as specified by the prefix

B is the prefix encoded as:

- 1 means the value is a number

- 2 means the value is a data address

- 3 means the value is a program address

o is a type 1 operation code meaning:

- 1 means add

- 2 means subtract

- 3 means multiply

- 4 means divide

01 is a type 2 operation code meaning:

- 1 means add

- 2 means subtract

- 3 means multiply

30

Table 2-13. OPERATIONS TABLE (Cont)

- 4 means divide

- 5 means equal

- 6 means not equal

- 7 means less than or equal to

- 8 means greater than or equal to

- 9 means less than

- 10 means greater than

- 11 means or

- 12 means and

13 means not

I is the instruction operation code:

- 0 means HALT

- 1 means GO TO

2 means REPEAT

- 3 means IF

- 4 means equation

- 5 means location expression

- 6 means SYNC

- 7 means SUB

- 8 means WORD

L is the linkage flag defined by:

- 0 means no linkage

i 1 means + linkage to the next instruction

- 2 means - linkage to the next instruction

31

Table 2-13. OPERATIONS TABLE (Cont)

A is an address field used as:

instruction meaning

GO TO branch address

REPEAT loop index address

IF branch address

equation address of index being defined

location expression address of old location symbol

R is either the result of an arithmetic expression or a modifier code
as:

Code Modifier

0 end of modifiers

1 PET

2 POT

3 PEA

4 POA

5 L

6 F

7 B

CHAPTER III

TIHE TELEMETRY PREPRlOCESSING SYSTEM

This chapter contains a functional description of a machine designed to

process the statements of the telemetry preprocessing language described in

Chapter II. The design of the machine is a natural development based upon the

format of the language, as will be demonstrated when the system block diagram

is derived in a later section, However, the method used to implement this de-

sign is a new and powerful approach to system implementation. This method,

known as a functional memory, will be described in this chapter, A hardware

design of a functional memory device is presented in Appendix A.

The present chapter has nine sections. The first section describes the

functional memory device. Next the telemetry preprocessing system block dia-

gram is derived. SectionS three to eight describe the six subsystems derived in

the block diagram, Finally, section nine presents a summary of this approach,

discussing the advantages and disadvantages of the functidonal memory module

and the telemetry preprocessing system.

A. The Functional Memory Module

The telemetry preprocessing language described in Chapter II will be used

to define a hardware system. In using the language to guide the hardware design,

many approaches could be taken. The main consideration in choosing an approach

is that the system should have a minimum impact on its operating environment,

As was pointed out in Chapter 1, this environment is highly variable in that it

depends on what host computer is chosen and on What telemetry data acquisition

system is being used. To accommodate this variability with minimum impact,

a microprogrammed approach shows the most promise. Further, when consid-

ering the various microprogrammed approaches available and matching them

32

with the requirements of the preprocessing system, the most promising method

is a cellular logic array° This method offers the required flexibility to accom-

modate the various environments envisioned for the preprocessing system, while

simultaneously taking advantage of the lower implementation costs that large scale

integration offers.

The hardware technique chosen to implement this cellular logic array

method consists of a basic building block called a functional memory module.

The term functional memory denotes a device used to generate Boolean functions

in a memory system. In this device, a cellular memory array is arranged so that

each cell of the array can be either an associative memory cell or a conventional

memory cell. In order to generate Boolean functions, the value of the input var-

iables is gated into the memory array. The cells of the array are prepro-

grammed with the value of the variables required for each term of the function.

During this phase of the operation (called a search), the value of the input vari-

ables is "associated" with the value of the terms and, for every match that is

found, a register latch is set. Then the contents of this register are used as a

driving signal to read all the addresses of the memory that were selected. The

data at these locations is preprogrammed to represent the bit pattern of the func-

tion's output when the corresponding input variables are present. In this way a

Boolean function can be created by programming a memory device rather than by

wiring a combination of logic devices as is normally done.

The module that was designed in this work has 16 associative functional

words of the type described above, each of which is 20 bits wide. Hence, func-

tions with 16 or less terms and with a total number of input and output bits less

than or equal to 20 can be implemented in a single module. As is explained in

detail in Appendix A, the terms selected during a search phase can be logically

combined prior to setting the register latch. Further by appropriate programtning,

34

use can be made of "don't care terms", 'and carry terms (from one word to the

next) can be generated to reduce the Boolean functions. Thus by using a com-

bination of the above operations, functions with more than 16 terms can be read-

ily reduced to fit in the memory module.

The module is 27 bits wide and contains G4 conventional addresses. The

upper 7 bits are not used for function generation, but are operation codes for the

45 microinstructions implemented in the module. These microinstructions are

used to clear the various registers of the module, shift data, selectively miove

data from the mibdule to several other modules, connect other modules to this

one, transfer control to another module, and other housekeeping futictionsi.

This inodule is designed to be suitable for construction using large scale

integrated circuit technology. In order to implement this design on ai single chip,

a constraint must be imposed on the number of input-output pins available,

Hence, the number of signals used for comnmunications is restricted. To over-

come this restriction during the generation of the various required functions , two

powerful techniques were employed.

The first is the method of connecting functional memory modules to the

communications bus for the purpose of cooperating in function execution. Since

it is the intent of this method of design that most functions be implemented on a

small number of modules, an instruction 18is provided which is capable of forming

a connection between 16 modules and the one sending the command at one time.

However, this method only leaves three bits available for addressing purposes

because of the pin constraint on the modules. Thus,' a maximum of 128 modules

are available for function generation.

The second technique is the distribution of the control function. A module

whose control flip-flop is set is in the control state. In this state, the module is

able to control the five communication buses. Hence, it may start instruction

35

sequences in other modules, initiate functional cycles, transfer data, etc. The

most important thing it can do is transfer this control state to all other modules

connected to the bus and simultaneously retain control or relinquish it. In this

manner, many independent control sequences may be established.

These independent control sequences group the modules under their direc-

tion into disjoint sets. When the results of several independent operations have

to be merged into a common sequence, the designer who is coding the control

sequences must carefully avoid conflicting operations (e.g., separate data

transfers to a common destination). Further, when several control sequences

are being reduced to one control sequence, only one of the original control states

is allowed to be transferred to the new sequence. The others must be terminated

by transferring their control state to an empty bus.

B. The Preprocessor Block Diagram

It will be shown how the device described in the previous section can be

used to implement a telemetry preprocessing system. This example will dem-

onstrate a very effective usage of LSI technology, since a single chip design is

used to implement all the functions of the system.

The language described in Chapter II, particularly as shown in Table 2-13,

will now be used as a guide to derive the major subsystems which make up the

telemetry preprocessor.

The heading of the operation table (Table 2-13 of Chapter II) is repeated

here for convenience.

LOC VI OP V2I LA VI OP V2 R V1i OP V2 VI OP V2

This heading identifies the various operation fields that an instruction of the

telemetry preprocessing language contains. Upon examination of these fields,

desirable simultaneous operations are noted. Obviously, the instruction must

be decoded. Further, the four fields under the headings V1i OP V2 can be

36

evaluated separately at the same time. While this requirement is not strictly

necessary, it does serve to reduce the instruction execution time and further it

represents a natural environment of the language. Consequently, it will be

shown that the combination of direct and indirect implications of this table will

lead to a block diagram of the desired preprocessing system.

The direct implications considered thus far show the need for an instruc-

tion decoder and foi an arithmetic unit consisting of four arithmetic and logical

units (ALU's). Another direct implication of the table is contained in the R field.

As was described in Chapter II, this field contains several parameters which

require that specialized functions be performed (e.g., parity checking, error

statistics, etc.) Hehce, a special functiohns unit to implement all those functions

which are not inherently handled by an ALU is a characteristic of the language.

The design concepts that are indirectly implied by the table are the con-

cepts of communications and storage. Obviously, an instruction decoder implies

the existence of an instruction stream. This in turn implies that the system con-

tains a program memory. Further, since the instructions are designed to oper-

ate upon telemetry data, a data storage is required. Fundamentally, these

storage systems could be combined. However, there is no need for instructions

to be intermixed with data. Furthermore, the flow paths of these two types of

information are considerably different in that, instructions must direct the sys-

tem's activities, while data undergoes transformations initiated by the system.

Hence, it becomes a simpler concept to treat them as independent functions6

Further, when the data becomes transformed as a result of the processing pro-

gram, the storage requirements tend to increase. To keep system costs in line

while satisfying this increased requirement, a core storage to hold the processed

data is indicated.

37

Finally, in the area of communications, a method of getting information

into and out of the system must be provided. This is accomplished by including

a set of input/output routines to interface to the outside world. These six sub-

systems that have been identified lead to the block diagram of Figure 3-1.

FRAME PROGRAM ALU
SYNC MEMORY FUNCTIONS

INPUT
OUTPUT

FUNCTIONS-

HOST INSTRUCTION SPECIAL
COMPUTER DECODER FUNCTIONS

DATA AND CORE STORAGE

Figure 3-1. PREPROCESSOR BLOCK DIAGRAM

The arrows in this figure represent the various ways that information

flows within the system. The input-output functions are responsible for per-

forming the necessary "handshaking" functions with the external equipment,

tranforming data word sizes into the internal word size structure, and storing

data in the appropriate locations in storage. Data and commands must flow be-

tween the host computer and the preprocessor system. These commands refer

to the various control functions that are necessary to: load the program memory,

start a preprocessor program, read error statistics, or initiate a frame syn-

chronizer set-up function. Thus, two-way flow is needed between the preproc-

essor and the external equipment.

The instruction decoder is responsible for decoding the program instruc-

tions; initiating data transfers between the ALU functions and the special func-

tions; starting the required control sequences of those special functions needed

38

in the instruction execution scquuence; receiving the external cominiminds from the

host computer and initiating their execution anid storing and retrieving the error

statistics in the core storage.

During the execution of a repeat loop, this unit maintains the loop index,

counter, keeps track of the number of instructions in the loop, handles the

branch to the head of the loop, and tests for loop exit conditions. Duting SYNC

and SUB instructions this unit directs the gathering of statistics and all other 'e-

quired tests. Finally, upon completion of the processing of a data frame, the

unit transfers control to the output routines so that the data may be transferred

to the host computer.

The program memory is used to hold the data formatting programs. It is a

1,000 location memory system where each location is 7 words of 20 bits each.

These 7 words hold the information described in Table 2-13 of Chapter Iit, the

fields are packed according to the format of Table 3-1.

Table 3-1. PROGRAM MEMORY LAYOUT

PROGRAM WORD CONTENt
...... B . . . ' b r"'r '

1 LOC, Vi

2 V2, OP, 1, L

3 Ai

4 VI, V2

5 Vi, V2

6 Vi, V2

7OP Op OP, OP OP

The operators of word 7 go with the variables of words 4, 5, and 6, re-

pectively; these three sets represent the three parameter fields of Table 2-13.

The data storage and core memory subsystems are used to store the

telemetered data. The data storage subsystem Is a two dimensional array which

39

holds the incoming data stream. This data is stored, one telemetry data word

per location. It is from here that the system extracts telemetry words and parts

thereof for formatting purposes. This is accomplished by the addressing algor-

ithm. In this algorithm, if x is the telemetry word number desired and if n is

the number of bits to take from the word, then the system simply takes n bits from

location x of data storage and right justifies them.

The core memory is used to store the formatted data array with every word

assumed to be in integer format and the most significant bit being to the left.

Further, in parity checking decisions, the sign bit is on (negative) if a parity er-

ror was detected. This array becomes an image of the desired data array in the

main computer's memory.

The ALU functions each form an implementation of a central processing

unit. The operations implemented in these elements are: +, -, *, *, .NE.,

.EQ., . LE., . LT., . GE., . GT., . AND., . OR., and. NOT.. These elements

are primarily used for address computations to locate the telemetry word, the

number of bits to extract from that word, and to locate the core memory address

into which the data is to be stored. In the case of an IF instruction, ALU 2 per-

forms the programmed operations on the data and makes a true-false decision.

The special functions unit handles all of the required special functions.

These are: word reversal, parity checks, forward or backward counter checks,

and counter modulus determination. This unit consists primarily of the logic

functions required to do these tasks. It is activated by the control unit and places

the results of its calculations into the assembly register for later transferal to

the core memory.

C. The Input-output Routines

The input-output routines are designed to perform the necessary "hand-

shaking" functions with the host computer and handle the translation processes

40

necessary to convert the data from the computer's word size structure to the

devicc's and vice-versa. The input routines have the responsibility to determine

whether the incoming data is to be a program memory load, a data storage load,

or a start system command and take the necessary action. During a program

memory load, the input routines translate the data from the computer's internal

word size to that of the program memory. They also determine what program

memory address the data are to be loaded into and keep track of ensuing ad-

dresses.,

During a data storage load, the input routines translate the data from the

host computer'ls interral format to a serial bit stream and keep track of where

the telemetry data word is to be placed in data storage. During the operation,

each telemetry data word is placed in a separate data storage word. During a

start command, the input routines determine the starting address of the data

formatting program and initiate the instruction decoder Unit to start execution

from that address

The output routines are responsible for interrupting the computer upon

completion of a data formatting program, identifying the data type, translating

the data from the core memory word size to the computer word size and shipping

it out, and translating the program memory into the computer's format and trans-

ferring it upon request. During a readout of the program memory, the output

routines receive a request, a starting address, and an ending address from the

input routines. These specified addresses are then translated and read out. The

parameters required for this translation (i. e, , from the preprocessor word size

to the computer's word size) are placed into the microcode of the interface be-

tween the preprocessor and the host machine when the device is installed.

41.

D. The Program Memory

The program memory consists of 128 functional memory modules which

are structured into 1,000 locations of program memory. Each location of pro-

gram memory is 7 words wide. Table 3-2 lists the content and destination of

the program locations resident in the program memory.

Table 3-2. PROGRAM MEMORY WORD STRUCTURE

WORD CONTENTS BIT WIDTH BIT LOCATION DESTINATION

I Base Add. 10 1-10 ALU1
V1 10 11-20 ALU1

2 V2 .10 1-10 ALU1
OP 4 11-14 ALU1
I 4 15-18 Decoder
L 2 19-20 Decoder

3 A 10 1-10 Decoder
R 10 11-20 Decoder

4 V1 10 1-10 ALU2
V2 10 11-20 ALU2

5 V1 10 1-10 ALU3
V2 10 11-20 ALU3

6 V1 10 1-10 ALU4
V2 10 11-20 ALU4

7 OP 4 1-4 ALU2
OP 4 5-8 ALU3
OP 4 9-12 ALU4

As can be seen from the table, the data for the four ALU subsystems is

packed into modules 1, 2, 4, 5, 6, and 7. This data is automatically sent to

these subsystems every time an instruction is read from the memory.

This device operates on a basic read-execute cycle. After a typical in-

struction is read from the program memory, it is decoded. Further, the four

fields of type V1-OP-V2 are simultaneously acted upon by the four ALU func-

tions. ALU1 is computing an address for data storage in the core memory.

The other three ALU's are computing where the required data bits in data

storage arc. Once this is done, those bits are extracted from the data storage

and the special functions unit performs the requiLed functions on thelse bits as

specified by the instruction. Then the newly formed data word is sent to the

core storage and control returns to the program memory for the reading of the

next instruction.

Control is passed from the program memory to the instruction decoder

after every instruction read, From there, control goes to the control gequetlee

required to execute the instruction, There are two such sequences which require

access to the program memory. The first is a temporary storage request. In

this request, an address is sent to the memory and control is passed to either

the read or write data routine.

The second type of request is a read next instruction cycle. In this cycle,

as address is passed to the read program routine and control is passed to it.

This address has three sections to it: a 6-bit data address for the interior mod-

ule address, a 4-bit module number to pick 1 of the 16 modules addressable at

any level, and a level humber, The address may be one that is loaded lnto the

program memory subsystem as the result of a branching operation, or it may be

the next successive address present as a result of the previous operation. How-

ever, in the case of a temporary storage request, the address is always directly

supplied.

Figure 3-2. PROGRAM MEMORY BLOCK DIAGRAM

,23

43

The block diagram of the program memory subsystem is shown in Figure

3-2. The address derivation shown thcre is basically a 10-bit counter whose

functional program resides in subcontrol module 1. The address is maintained

and updated in subcontrollers 1 and 2. It is sent to the ID decoder where it is

translated intQ a connect command which is loaded into all the subcontroller

memories. This command, along with the send address command which the

main control module has loaded into the subcontroller memories, specifies what

instruction is to be read from the program memory.

Control is then passed to all subcontrollers which, in turn, send the ad-

dress and a conventional read cycle to the proper data modules. The data mod-

ules then receive control to transfer the program word back to the controllers.

Finally, the controllers send the data fields to the proper destination and pass

control to the instruction decoder. In this manner, the read next instruction

cycle ends with the address of the next instruction stored in the address register.

In a temporary storage request, the control module receives an address

which is sent to the temporary storage module. Control is then sent to either

the read or write routine. In a write request, the data is sent to the storage

module and a conventional write is issued. In a read request, control is sent to

the storage module after a conventional read cycle has been executed by that

module. Then this module returns the data to the requesting module. Finally,

control is passed back to the requesting module.

E. The ALU Functions

The ALU functions are implemented by using 25 functional memory mod-

uleso The functions contained in these modules are found in Table 3-3.

Each function that this subsystem performs is done through a control se-

quence. In this sequence, the control function is passed from module to module

in a programmed order. The variables and operators are sent to modules 9-12

44

and control is initially passed to module 10. Module 9 receives variable 1, ex-

cept in the case of a divide where it rcceivcs variable 2. Module 1i norlually

receives variable 2. in a divide, modules il and 12 receive the 32-bit dividend.

All other operations are assumed to contain 16-bit operands. The number rep-

resentation is.assumed to be signed binary with 16 bits of significance and bit 17

being the sign bit.

Table 3-3. ALU MODULE FUNCTIONS

MODULE FUNCTION

1-4 4-bit multiplier table

5-8 Adder table whose input is 3 (4-bit) numbers and 2 carries
and whose output is a 4-bit result with 2 carries

9 Communications module which receives variable 1 and
holds the result of the computations

10 Communications module which receives the operator and
holds the remainder in a divide and the lower 16 bits
of the product result

11-12 Communications modules which receive variable 2

13 Counter for the divide algorithm and logical functions

14-18 Comparator modules

10-22 Subtractor modules

23-24 Carry propagator modules

25 Instruction decoder module

Note all of these modules contain portions of the control sequence
microcode.

Module 9 normally returns the result of the operation except in the multiply

and divide cases. In the multiply, the product is held in modules 9 and 10. In

the divide, module 9 holds the quotient and the remainder is discarded. This is

because fractional addresses have no meaning and extensive data proccssihg is

not intended to be performed in this unit.

45

There are 7 control sequences in the ALU subsystem: the input sequence,

the add sequence, the subtract sequence, the compare sexlucnce, the logical se-

quence, the multiply sequence, and the divide sequence. These sequences de-

fine all the various functions required by the ALU subsystem.

The input sequence does all the necessary preparatory steps involved in

function execution. It begins in module 10 at the point to which initial control is

transferred. First the operator is transferred to the decoder; then all the data

registers of the subsystem are initiated.

Next, control is transferred to modules 9 and 11 where the input variables

are sent to all the data registers that may require them. Control is now passed

to the decoder which in turn passes it to the appropriate control sequence. This

is done by the decoder module acting as an associative memory. Each 4-bit

operator is an address of the start of its control sequence. That address is

loaded into the memory address register and the transfer control instruction lo-

cated there is executed.

The add sequence uses four 4-bit adders to add three 16-bit variables to-

gether. The adder adds three variables rather than two because the multiplier

to be described later uses this feature. The algorithm is shown in Table 3-4.

This process takes four cycles. First, the 4 adders are cycled. Then,

the indicated data transfers take place and the 4 adders are cycled again. The

data is now transferred to the carry propagators where the final 2 cycles are

performed and the data is sent to module 9 for output.

4 6

Table 3-4. ADDEIt ALGO.ITHIM

CYCLE At)DER CA1IflY PTOP. OtttOtiT

1 2 3 4 1 2

14 H13 H12 H11
1 H24 H23 H22 H21

H3 4 H33 H32 H31

C14H4 C13H3 C12H2 C11H1

C14 C13 C12 CllH
2 0 H4 H3 H2

H4 1 C2 3 H3 1 C2 2 H2 1 C2 1 H1 0

3 H41C 2 3 3 1 C2 2H2 1 C21 H1 0

Ht4 i C41HS5H52
H42 44. 4241

H4 3

Answer is H4 3 H5 1 H52 H1 0 H1

Each of the 4 adders accepts as input 2 carry bits and three 4-bit hexa-

decimal digits. The output iS 2 carry bits and a hexadecimal sum digit. In Ap-

pendix A, the search controls of the functional memory module are explained.

There it is explained how the interword carries are formed and propagated.

Hence, the output equations for the 6 sum bits are

H1 = A1 ® B1 0 cl ® cI
If2 =A 2 () B2 ® 2 (CI2 ® C12 ® C14

H3 = A3 () B3.® C3 () C22 () C22 ® 026

It 4 =A 4 0 B4 0 C4 (C32 0 C32 ® C36

CO1 =C42 ®() C44 (C46

CO2 = C52

Where:

(means "exclusive or"

47.

CIx means input carry x

Cj2 means the "any 2" carry from word j

Cj4 means the "any 4" carry from word j

Cj6 means the "any 6" carry from word j

Ai, Bi, Ci means the ith bit of input A, B, and C, respectively

COi means output carry i

Hi means bit i of the output sum
i

The carry propagator accepts as input a hexadecimal digit followed by a

2-bit carry followed by another hexadecimal digit followed by a single bit carry.

This unit outputs a carry bit and 2 hexadecimal digits. The programmed equa-

tions are

Hll =A 1 C)ll

12= A2 0 C12

H13 A3 (0 C22

H14 =A4 (® C32

21 B1 0 CI21 0 C42

22 B2 (C022 052

H23 B3 () C62

H24 = B4 () C72

CO= C82

The subtractor sequence uses four 4-bit subtractor modules to perform

the subtraction between two 16-bit variables. The algorithm used is shown in

Table 3-5. The process takes three cycles to complete. First, the 4 subtrac-

tors are cycled. Then, the indicated transfers take place and the carry propa-

gators are used in the final 2 cycles to obtain the result.

48

Tablec 3-5. SUtBTRACTOIR ALGORITHIIM

CYCLE ST BTRACTOR CARRlY PROPAGATOR

1 2 3 4 1 2

14 13 12 Hll
1H H H HH24 22 22 21

CHi C2H2 C3H3 C4H4

2 CiHiC2 H2C 3 H3 C4

: C10H10 C20 20H30

3 C0 1C10 10 20

CoH11

Answer is CoH11H2 0H3 0 H4

Each of the 4 subtractors accepts as input 2 hexadecimal digits and a catry

bit. They in turn output a hexadecimal result, an output carry bit, and a sign

bit. The equations that are programmed into the functional memory are

H1= A ® B1 (®) CI

H2 = A2 () ®B2 C 1 2

3= A3 ® 3 () C22

H4 = A4) B4 Q C3 2

CO = C420 42

S = C42

Where:

S means the sign bit

Bi means the complement of bit 13Bi

The compare sequence uses 5 modules to perform the required comparison

operations of EQ, NE, LT, LE, GT, and GE. Each of the first 4 modules does

a comparison of four 4-bit variables. The results of these comparisons are then

combined in the 5th module to form the result of two 16-bit variable comparisons.

49

All of the above mentioned comparisons are formed and the desired one is sent

to the output.

To do this, the decoder transfers control to module 12 which loads the data

into the comparator modules and cycles them. The appropriate address of the

output routine in module 18 is loaded and the corresponding input mask in mod-

ule 9 is loaded. Control is then passed to module 14 where the results of the

compare are sent to module 18. Similarly, control is then passed to modules

15-17 for the other results to be sent to module i8. Module 17 cycles module

18 and then passes control to it. Module 18 will then transfer the appropriate

result to module 9 and pass control to the output routine.

The equations loaded into modules 14-17 are

E = A4A3A2A3B4B3B2B 1

G= (A4 B4 +A3 B3) -' (A2 B4 + (A2 B2 +A1 B1) -

(A4B4+ A3B3+ A2B2)

L = (A4 B4+ A3 B3) ' (A4 B4)+ (A2B2+ A 1B 1) -

(A4 B4 +A3 B3 +A2 B2)

Where .1 means "and not" and the other symbols are as before.

The equations loaded into module 18 are

GT = Gi+E1G2+EiE2G3+EiE2E3G4

LT= Li+E1 L2 +EiE2 L3 +E1 E2 34

EQ = E1 E2 E3 E4

GE = GT+EQ

LE = LT+EQ

NE = GT+LT

The logical sequence performs the binary logical functions of AND, OR,

and NOT. This is done by decoding the operator and setting up the input mask

of module 9. Then the data is sent to module 13 and a functional cycle is

50

perfornmed. Control is then passed to module 1i for dati tra nsferrLd to module 9,

Control then goes to the output ioutnlhe.

The program loaded in module 13 Is

AND = AB13

OR = A+13

NOT = A

The multiply sequence algorithm will now be described. The decoder

passes control to module 11. This module sends the first hexadecimal digit of

the multiplier to the multiplier modules and cycles them. Then control is passed

to modules 1-4 where the results of the first cycle are passed to the adders and

they are cycled. Control then returns to module t11 which sends the next hexa-

decimal digit to the Multipliers and cycles them4 Control now goes to module 9

where the most significant hex result digit of the previous cycle Is sent to the

adders. Control then passes through the adder modules where the data is trans-

ferred to the appropriate position for the next add, and the result digits are sent

to the output module.

Control now goes to the multiplier for data transferral to the adders and

the adders are cycled. Control is then returned to module 11, This Sequence is

then repeated three more times with a zero being entered in the multipliers on the

last time through them. Control then goes through the adders as if a normal add

sequence were taking place and the result is transferred to the output modules.

The multiply units input two 4-bit operands and through a set of 3oolcanh functions

produce an 8-bit product. In this way, this unit can multiply two in-bit vatiables

by performing hexadecimal arlthmetic operations, the total proces had I steps.

Each number is considered as comprised of 4 hexadecimal digits. burlhg the

first 4 steps each hex digit of the multiplier is multiplied by a hex digit of the

multiplicand,

51

During steps 2 to 5, the partial products are formed by the adders. These

adders can add 3 hex digits simultaneously. Finally during steps 6 and 7 the

final carry ripple is performed. Table 3-6 summarizes this discussion.

Table 3=6° MULTIPLY ALGORITHM

STEP MULTIPLY OPERATION ADD OPERATION CARRY OPERATION

H 11Hi2H13H14

H2 4

C41C42C43C 44

R41R42R43R44

HllH12H13H14 C4 2 C4 3 C4 4

H2 3 R4 1 R4 2 R4 3

2 C C CC PP P31 32 33 34, P41 42 P43

._ ._ R31R32R33R34

H 11H12H13H14 C41 P41 P42

2 2 32 C33 C34 C43

3 C OOCC R R R R3 C21C22C23C24 31 32 33 34

R21R22R23R24 P31 P32 P33 P34

H 1 1 H1 2 H13 H14 C31 P 31 P32

H21 C2 2 23 C24 P33

4 00C C C .t R R R
C11C12C13C14 21 22 R23 24

R11R12R13R14 P21 P22 P23 P24

O P P21 21 22

C12 C13 C14 P23

5 R11 R12 13 R14

Pl1 P12 P13 P14

6Gand 7PPand 7 llPllP12P13

are carry adj.

52

Table 3-6. MULTIPLY ALGOIITIIM (Cont)

STEP MULTIPLY OPERATION ADD OPEIATirON CARRY OPEIIATiON

Answer= CP PP PP PAnswer = C11 11 12 13 14 24 34 44

Multiplier = HllH12H13H14

Multiplicand = H2 1 H2 2 H2 3 H24

Where

Hij is a 4-bit hex digit

Hij *Hkj=CkjRkj, Ckj and Rkj are hex digits

Ckj Is the kith hex carry digit

Rkj is the kith hex result digit

Pt is the ljth partial product

The equations loaded into the multiplier moduLles are

it1 A 1 31

2 -A 2 B !) A1B2

R3- A 3B1 () A2 2 (A1 13 (3C 22

A4 A4
b

1) A3 B2 0 A2 ~ AiB 4 C32 C34

tc1 A4 ®2 A313 ® A2B4 C42 44 ® C4B

C2 -A 4 B3 A3 B134 (C52) C Q4 C5 6

03 A4 B1 4) C82 ® C84

4 72

The divide sequence implements a shift and gubtract algorithm (Figure 3-i).

The decoder passes control to module iO. This module sets up the control se-

quence addresses and transfers control to module 1i. Module ii perforisb a

shift of the lower half of the numerator one position left and piasses conttrol to

module 12 to coTmplte the shift. Control then goes to module i3 where the divide

shift count Is incretmented and set to module 18. Control then goes to the com-

parator modulles which transfer their results to module 12, Module 13 Iheni

initiates a subtract if the compare is greater thlanl elears the remnaindCer if ejual;

or checks the shift count for an exit condition, If ino e.xit condition exists, control

goes to module 9 for a quotient shift and back to module 10 to start the sequence

over. If an exit condition is presents control goes to module 10. There the exit

routine transfers the data to the output routines and these routines take conttol.

Shift the numerator and 1 bit left into the Clear quotient,
least significant bit of the remainder; remainder, and
shifting the remainder also 1 bit left - shift count
Compare the remainder with the denom-
inator .

Equal; clear the Less than Greater than; subtract the denominta-
remainder and set continue tor from the remainder placing the
the least signifi- difference in the remainder and set
cant quotient bit LSQB to 1
(LSQB) to i

shift count and compare It to 32

Figure 3-3. DIVIDE ALGO1RITHM

Thus it is seen that through the use of these control sequences, which are

programmed on the modulets elementary operation set and through the concept of

distributed control, 25 functional memory modules are formed into a conventional

ALU. The device being described here contains 4 of these ALU'ts.

F. The Data Storage and Core Memory System

The data storage and core memory subsystem holds the data while it is

being processed. The core memory holds the output data and the data storage

holds the input data. This input data is stored such that there is one telemetry

54

word per module address. A series of loader routines in the data storage sys-

tem accomplishes this unpacking operation. The data is sent here from the input

routines. The loader routines use the bits-per-word count to control a shifting

operation which forms a telemetry data word. This word is then sent to the

storage system where its storage address is computed and it is stored.

During program execution, the data storage system is used to form new

words from parts of other words. To do this, the system is supplied with the

telemetry word number, the starting bit within that word, and the number of bits

to take. The telemetry word number is converted to an address from which the

data is fetched. The starting bit is used to load the input decoders of the holding

register so that the word being formed will be right justified in that register.

The number of bits to take is converted into an input mask for the holding register.

The data is transferred to this register where the new unit of information is held.

The above conversions and load routines are accomplished by an associa-

tive table look-up and takes 25 functional memory modules to Implement. The

data storage system is similar to the program memory system and takes 17 func-

tion memory modules to Implement.

The core memory is a 2,000-word array of 32-bit words. The length of the

memory (2, 000 words) is derived from a telemetry standard (reference 13) which

limits the size of telemetry data frames to 8192 bits.

Since telemetry words average about 8 bits in length and allowlng for status

data where selected bits have meaning by themselves, a memory of 2,000 words

will be able to hold all the output data. The word length of 32 bits is also chosen

because of the same standard, since this is the maximum size any word may take.

This memory is supplied with data, an address and a read or write command.

The address is computed by the ALU subsystem and transferred to the address

55

register. The read or write command is sent to this subsystem by the request-

ing subsystem.

Data is transferred in and out of the memory by an assembly register sub-

system. This subsystem assembles the data words from the data holding regis-

ter into 32-bit words and transfers them into the memory. Conversely, this

register receives data from the memory for transferal to the output routines.

In addition, a second holding register is provided to transfer data from the mem-

ory to the assembly register to form new information words from those already

stored in memory.

The data flow path is from the holding register to the special functions

unit. From there it is sent to the assembly register subsystem. This subsys-

tem receives the number of bits to be inserted in the data word and those data

bits. It must keep track of where these bits are to be placed within the core

memory word. That is done by an associative table look-up which loads the input

decoders of the assembly register so that the data will be entered into the proper

bit positions.

There are 2 cases to consider in this assembly operation; the case where

the number of bits to insert is 20 bits or less and the case of 21 to 32 bits. The

6-bit quantity representing the number of bits to insert is sent to a decoder where

it is decoded into 2 numbers, such that the first number is 20 or less, and the

second is the remainder. The first number is then used as an address to a table

of input masks where each mask contains as many ones as the value of the ad-

dress.

Control is then passed to the module which holds the current start bit value

for the assembly register. This value is used as an address to a table of input

decoder masks. These masks provide the assembly register module and the in-

put mask shifter modules with input paths for the next 20 bit locations.

56

The main control sequence then passes to the module holding the Input

mask vnhle. This module then transfers the input mask to the input mask shifter

modules, thereby, properly aligning the input mask bits with the data positions to

be filled. Control'then passes to the shifter modules which load the input mask of

the assembly register.

Meanwhile, the current start bit value and the first number of the decoded

number of bits to take value are sent to an adder, and control is sent there also,

The adder sends the sum to a decoder identical to that described above and passes

control to it. This decoder determines whether the remainder is zero or hot, It

the remainder is zero, this means that no module change in the assembly register

has occurred and hence, the ID commands of the subsystem do not have to be up-

dated. If this number iS hot zero, then the ID commands arte updated to the next

module of the assembly register.

At this point, the appropriate updated current start bit value is sent to Its

module and control passes to data holder tiumber one for data transferal, tCoi-

trol then returns to the initial decoder Where the remainder of the decoded tium-

ber of bits to take Is checked for a value of ero, Itf its value id tero, the opei',

ation is done and control passes back to the contrtol subsystem. It thd Vatlue Id

non'-zero, the above proeess is repeated again except that conttrol paset to datat

holder number 2 at the end of the sequeniee, Then, data holder module 2 teiis-

fers the data and passes control to the control subsystem,

t. The Spuetlal FiuetiOnS Utinit

The special futnetions Unit Implements the funetion oft parity cheek (odd ot

even), word i'overmni, syic statistics, and tub statistics. these funutionn tlie

performed by routing the datt get through a setrie of mnodules, the bltietilit otf

what modules to use is controlled by which functions are asked for in the ndtitrt-

tion. 'TPhe parity cheek function has data presented to it from two dttt huoldint

57

modules. The data from data holder one is sent to the parity generator module

and this module is cycled. Control then passes to the parity controller which

places the result of the first cycle in bit 20 of the parity generator. The data

from holder 2 is then transferred there, the generator is cycled, and the result

is placed in bit 2 of the module.

Control then passes to main control which determines if an odd or even

parity check is to be performed. If an even parity check is required, the parity

generator is loaded with a 1 in bit 1 and another cycle is performed. If an odd

parity check is desired, no further action is needed. Now the parity bit from the

data and the one generated are sent to a 2-bit comparator function and the result

of this function is placed in bit 32 of the assembly register. In this manner, it is

assured that the result of the parity check will be placed in the sign bit of the

host computer by the output routines. Control now passes to main control for

the next operation.

The word reversal function receives data from the 2 data holders and also

receives the number of bits to take as a parameter. The data is first placed in 4

reversal modules. From here the word is reversed and placed as if it were a

32-bit word left justified in 2 temporary holding registers. The number of bits

to take is then used as an address to 12 modules. These modules load the 5 input

decoder words and the mask register of the data holding registers in such a way

that, when the data is transferred to these modules, it will be left justified. Con-

trol is then sent to the temporary holding modules for data transferal to the hold-

ing registers. Control now passes to main control for the next task.

The frame sync statistics function stores in ,memory the result of a com-

parison of the data with the pattern, computes a total number of errors count and

maintains a set of overall error counters for each bit position and the total over-

all error count.

5A

The frame sytic pattern is sent along with tile d:lti to eight 41-it cornlparti-

tors where the error positions nre set. These results arc then sent. to the bit-

by-bit counter controls. Here, the first bit is sent to the counter control, where

the counter is advanced if the bit is set, or not advanced if the bit is reset. The

first bit is also sent to the data memory where the address from ALU 1 has been

sent. This addtess is also sent to a counter where it is advanced and sent back to

the memory address register. The bit counter is then advanced and compared to

the number of bits in the pattern. If hot equal, the whole process iS repeated for

the next bit of the pattern.

When equality occurs, the total nitunber of errors is sent to memory and to

an adder where a running total is kept. tCohtrol is then passed to main control

for the next task. When the host machine requests the statistics, the 32 error

counters and the total error counter are transmitted to it and reset,

The sub statistics function keeps track of counters in the data. These

counters are assumed to be binary, changing by only 1 count per cycle and over-

flowing to a value of 0 at the end of the sequence. This function keeps track of

dropouts, errors in the count both on a bit-by-bit basis and as a total, and also

handles the modulus rollover to 0. In order to keep track of dropouts, this func-

tion must first establish the count. This is done by looking for 3 successive

counts in a row. Once this occurs, the system maintains a counter for the count

value. To determine a dropout, 3 successive miscomparisons must occur, The

system then begins to look for a new count sequence.

The statistics gathered are: the number of dropouts, the number of counts

in the search state, the number of counts in the lock state, the number of uhiSUC--

cessful searches, and the total humber of errors. An unsuccessful steatrch is one

in which 5 counts have passed without a count reference being established,

59

To accomplish this function, control is passed to the state module of the

subsystem. This module determines whether a count reference has been estab-

lished or not. In order to establish a count reference, the first 3 counts received

are sent to a set of counters with their associated comparators. There the counts

are updated and compared with the next count received. If 3 successive counts

are found then the reference is established. However, if after 5 counts have

been received, no reference is found, then an unsuccessful attempt is tabulated

and the process is repeated. Once a count reference has been established, this

reference is sent to the main count module. This module sends data to the com-

parator with the reference count.

If an error is detected, it is counted and the system enters a new state to

test for a loss of count reference. If 3 errors are detected in a row, a dropout

counter is incremented and the system is set to establish a new counter reference.

The statistics gathered by this function are maintained in their respective

counters until the host machine requests them. Then they are shipped out and

cleared.

Ho The Instruction Decoder Unit

The instruction decoder and main control unit direct the activities of the

entire telemetry preprocessor system. This functional subsystem is composed

of 2 basic parts: the read next instruction sequence and the instruction execution

sequence.

During the read next instruction sequence, the continue indicator is checked

first to determine if the previous instruction set is complete. This indicator is

set by the linkage flag described in Chapter II. If the flag is set, the next instruc-

tion is read from the program memory. If the flag is not set, the repeat indica-

tor is checked next. This indicator is set by a repeat instruction. If the indicator

is not set, the next instruction is read from the program memory.

If the repeat Indicator is set; the instruction countit, is incrementied and

compared with the number of instructions to i-epeat. If the coniparison Is equal,

the number of times through the loop counter is incremented and compared with

the final loop count and, the number of instructions to repeat counter is reset to

zero. If the counter is not equal to the number of instructions to repeat, the next

instruction is read from the program memory.

If the loop count is hot equal to its final valuej the next instruction is read

from the loop base address which was set by the repeat instruction. If it is

equal, the repeat indicator is reset and the next instruction In sequence is read.

The instruction execution sequences perform all the necessary data manip-

ulation that the instructions require. The halt instruction stops all modules,

clears all the data registers, and transfers control to the output routines, The

GO TO instruction sets the program memory address register to the address in

its address field. It also stores this address in the data memory if an address

is specified in the location field,

The REPEAT instruction sets the repeat indicator, places the address of

the next instruction in the base loop address register, stores the loop index ad-

dress, the number of instructions to repeat and the final loop count in their re-

spective registers, and initiates the instruction counter.

The IF instruction will perform the indicated operations until a link code of

0 is found. Then if the result is 0, it will read the next instruction. Otherwise,

the branch address will be stored in the program memory address register. If

the location field points to a data memory address, the result of the aritthmetictle

expression will be placed there,

In atn index expression, the indicated operations are performed until a link

code of 0 is found. Then the result will be placed in the indicated index location

and in the data memory If required.

(10

61

The SYNC instruction places the frame sync pattern in the sync function

register, initiates a data retrieval operation, and then transfers control to the

sync function.

The WORD instruction initiates a data retrieval operation and passes con-

trol to whatever special functions are required.

The SUB instruction initiates a data retrieval operation, performs what-

ever operations are required, and initiates the sub function.

Finally, a location expression will generate the necessary data memory

addresses, perform the required operations, and place the new data set in the

indicated data memory address.

The control functions also handle the special communications required be-

tween the host machine and the preprocessor. These functions are: load the pro-

gram memory, load the data into the data buffer, read the program memory,

read the sync statistics, read the sub statistics, and begin execution. The 6

commands are received and decoded by the control unit and the required action

is initiated by this unit. Finally, upon completion of the processing of a telem-

etry data frame as indicated by a HALT instruction, the control generates an in-

terrupt to the host machine.

I. Summary

This chapter has described in detail the internal organization of the telem-

etry preprocessing system. It has been shown how a number of functional mem-

ory modules could be programmed to implement such a system. This system has

advantages and disadvantages which will be described next.

The telemetry preprocessing system described in this report has several

advantages over the current method of operation. The langu'ge described here

offers a natural method of describing telemetry preprocessing operations. It is

natural in the sense that the statements of this language represent a description

(2

of the telemetry data frtime in nearly the samie termnis one would use to explain the

operations to another person, This niakes the lmaligulge easy to lenin rind allows

programs written in this language to serve as a description of the required oper-

ation. Because of this, preprocessing programs are easier to design and debug

since improper operations would result in an improper description of the data

frame, and this can be readily recognized~ Further, it is often the case that the

programmer who produced the processing program is not available at a later

time when a modification is heeded. Because of the nature of this language, such

a modification task is easier for another programmer to do since the operations

are not obscured by bookkeeping functions.

The telemetry preprocessing system separates those functions which are

necessary but do not directly contribute to the data processing phase from the

main computer. This allows the main computer to concentrate on the comniputla-

tion phase of the processing operation, a task for which it is well suited. Fur-

ther, this implies that the computer resources can be applied directly to result-

producing tasks and hence, a more cost effective use of these resources is at-

tained.

The telemetry preprocessing system provides a computation-ready data

set to the main computer, thereby simplifying the computation program. Since

all the problems associated with the telemetry aspects of the data have been cor-

rected outside the main computer, the processing programs can be designied to

operate on the sensor data transformations without the need for cotnplcX data

location and bit manipulation subroutines. This will simplify the processing

program and thereby make it less costly to produce and eastier to modify,

Becaluse the telemetry preprocessing language Is used to silecify the dttta

manipulation programs and is implemented on a device outside the mait europua

tar, the need for machine level coding to solve these probletls Is temloved,

63

Thus, the duplication of effort in this phase of the processing, where several

computing systems are often involved, is also removed (i.e., the telemetry pre-

processing language solution is transferable among computer systems). Further,

since the input to the computers is a computation-ready data set, the processing

program can be written in a higher level language such as FORTRAN. This al-

lows a speedier solution to the processing problem.

The preprocessing system is more efficient in preparing the data for proc-

essing than a general purpose computer because the special functions unit is de-

signed specifically to handle this type of problem. Hence, the same job can be

done in a more timely fashion. Thus, the computer time required to do the pre-

processing is freed for other uses.

The preprocessing system is designed to interface an existing configuration

as though it were a standard device. This allows it to be integrated into a com-

puting system with minimum changes to the system in both software and hard-

ware. This eliminates the need for costly hardware interfacing and costly soft-

ware modification.

While the system presented here has many advantages, it is not a "cure all"

approach. Some problems still remain. The development of a new and special-

ized language creates the problem of a lack of general familiarity with that lan-

guage. Thus a training program would be required to educate the programming

staff in its usage. There is the additional expense of placing another computing

system in the data processing configuration. This expense goes beyond the initial

costs since the preprocessing system represents more components in the system

which may fail.

The system would not be ready for immediate usage without a large prod

gram modification cost since the functions it performs are deeply rooted in the

current processing programs. It would have to be gradually phased in as new

64

projects arise. Further, in a family of spacecraft where the main data manip-

ulation programs arc fairly well fixed, it would not be cost effective to use the

preproccssing system. These problems indicate that its short range benefits

would be small.

Since the preprocessing system is not a multiprocessing one, it cannot

handle multiple data streams in parallel. This would require several preproc-

essor systems (one for each data stream). This adds a good deal of complexity

to the processing system and further increases its cost.

The addition of another system to the data processing configuration mnakes

the operation of the system more complex. This will necessitate either the pres-

ence of another operations person or special training for the current operations

staff. Further, since the preprocessor has no ability to compile its own code,

the compilation must be on another computing system and the compiled code then

tried on the preprocessor. This makes the debugging operation cumbersome and

lengthy.

The functional memory module developed in this research has several dis-

advantages which require further study to overcome. When using the module as a

conventional memory device, the read, write, and address functions are slow

and cumbersome to use. This is because the data must be entered through the

data register; this requires an input data mask and proper input and output de-

coder values, This could be remedied by providing a direct memory load path.

The input and output decoders are clumsily loaded, in that it takes 5 instructions

to perform a full load of either register. Perhaps some form of an encoded load

for these registers could be employed.

The number of bits available for functional operations make it difficult to

implement large functions. This could be remedied by increasing the number of

bits in a memory word. Htowever, a trade-off between the number of pins on the

65

chip and the reliability and cost factors must be carefully considered. Arbitrary

shifting of data is a difficult process since the input and output decoders must be

loaded to attain the desired shift pattern. An improvement here might be to dir-

ectly implement a shifting function in the module. Reloading of the module can-

not be done by another module. Thus, some form of external load is required.

This could be improved by including a move instruction between modules. Hence,

pieces of code could be transferred between modules and entire functional se-

quences could be altered on the fly. Conditional branching and testing operations

in the microcode are difficult and slow. Inclusion of these types of instructions

in the microcode set would remedy this.

Even with the disadvantages described above, systems composed of func-

tional memory modules offer several major advantages over current methods.

First, these modules can be used to implement any Boolean function; hence, the

hardware can be tailored to fit the problem being solved by including as many

special functions as needed. In this manner, higher level programs can be dir-

ectly implemented as has been shown. Further, such a system would have only

2 basic building blocks and could be fabricated with no knowledge of the intended

use. A system of this nature is completely changeable after the intended appli-

cation becomes obsolete and thus, such a system is always useful for new appli-

cations. This feature is present because the functions and microcoded control

sequences are stored in an alterable control storage rather than a read only mem-

ory. Hence, the useful lifetime of these modules is greatly extended.

This type of system can interface to any other system in a natural way.

Thus system integration costs are minimized. The structure of a machine de-

signed with this type of system is changeable during a problem solution. Hence

the system is adaptable to a changing problem environment. Also, many parallel

66

operations can be activAitdc(l; hence, the system can employ whatever computing

power is required.

The mechanism that makes parallel operations feasible in this kind of sys-

tem is the concept of distributed control. In this way independent functions can

can be carried out independently. The data flow path through the system is what

determines the processing operations that the data undergoes. This eliminates

the need for massive control functions usually needed to direct the entire opera-

tion. Further, by localizing control to specific functional operations and only

controlling the direction of data flow, a great deal of freedom to carry out many

different parallel operations is gained.

The functional memory module approach to the system implementation

allows relative freedom from internal architectures and can accommodate a wide

variety of internal data structures. By using this approach to systems designs

the data processing system can be tuned to the problem's structure and the solu-

tion can, in effect, be hardware implemented as is demonstrated by the imple-

mentation of the telemetry language described in this chapter. This implementa-

tion allows the telemetry preprocessing system to be integrated into a wide variety

of data processing system configurations with minimal impact on the total (hard-

ware and software) system design. This makes the telemetry language installa-

tion independent and allows telemetry preprocessing programs to be transferred

from system to system.

CHAPTER IV

THE TELEMETRY PREPROCESSOR SIMULATION -
DESCRIPTION AND RESULTS

The system described in Chapter III is complex enough so that the concepts

and algorithms presented there need to be verified. When dealing with a concept

of machine design that is almost totally dependent upon program code, the de-

bugging and verification of that code becomes almost as important as the concept.

Further, since Chapter III is presenting a new design of a system building block,

it is imperative that the feasibility of this design be established and that proof of

its correct operation be provided. Finally, some comparative timing data be-

tween the new approach and current methods should be provided.

To accomplish this task, a simulation program of a functional memory

module was written in APL (references 10 and 11). The APL system was chosen

for three reasons: its interactive nature, its availability, and its powerful data

structure operations. The interactive nature of the system greatly shortened

development time. Also another important factor in shortening development time

was the ease in forming the required data structures and the simple but powerful

matrix operations that the language provides. However, because of the way in

which the language is implemented, the simulation had to be constrained to work-

ing on a single functional memory module at a time, since the working memory

size available is only 32,000 bytes of 8 bits each. Thus, the data for the pre-

processing system was stored on the disk storage provided with the APL system

with each record representing an image of a particular module.

Figure 4-1 shows the functional memory module that was simulated. This

module is described in detail in Appendix A; thus, only those features necessary

to clarify the discussion of the simulation will be presented here. The memory

array shown in Figure 4-1 is composed of 64 words which are 27 bits each.

67

68

However, 20 of these bits are used to perform functional operations and a func-

tional operation requires 4 words to implement. This array, therefore, is sim-

ulated by a three-dimensional data structure whose dimensions are 16 by 27 by 4.

In this manner, the 16 possible distinct functional operations which require 4

words each can be easily implemented.

This memory is used to store the microinstructions which control the data

flow paths and operations of the system. Thus, the microprograms must be ex-

cluded from functional operations. This is done by the inhibit register which is

simulated by indexing only those locations of the first dimension of the memory

array which are to be included in the functional operation.

DATA

Figure 4-1o INFORMATION FLOW DIAGRAM OF A
FUNCTIONAL MEMORY MODULE

The data register contains the inputs to the function being implemented in

the memory array, as well as the outputs of that function. To separate these

69

values, the mask register is used in gating information into and out of the mem-

ory array. This is accomplished by the logical product of these two registers for

gating information into the memory array, and the logical product of the data reg-

ister and the complement of the mask register for gating information out of the

memory array into the data register.

Once information has been gated into the memory for a functional operation,

the logical product between the true information and the true select bit of all the

selected locations must be formed. Also, the logical product of the false infor-

mation and the false select bit must be generated. This is done by forming a

matrix logical product between the true information and the 3rd element of di-

mension 3 and between the false information and the 4th element of dimension 3.

These 2 logical products are then "ORed" together to form the functional output

of each input data value and its corresponding set of functional terms.

At this point in the operation, the information can be gated onto 1 of 4 term

lines. This is done by using the first 2 elements of dimension 3 to form an index

to a term matrix. The elements of the rows of this matrix are then "ORed" to-

gether and complemented to form the required Boolean expressions. As is ex-

plained in Appendix A, these terms are now combined in various ways to form

carry terms and to set the corresponding cell of the selector register. These

operations are simulated by performing logical matrix operations which are part

of the APL operator set.

The last step in the simulation of a functional cycle is to use the selector

register to compute the indices of the first dimension of the memory array which

are to be used in reading the function's output. Then the cycle type controls are

decoded to determine if this is to be a "read true" only cycle, a "read false"

only cycle, or a read "exclusive or" cycle. The appropriate information bits are

70

formed and the logical product between these bits and the comhplement of the

mask register is performed to enter the functions output into the data register.

In this manner, all of the functional operations that a module can perform are

directly simulated.

As was mentioned above, the module contains a microinstruction oper-

ation set. There are 43 instructions in this set. These instructions are grouped

into 3 groups: the load group, the clear group, and the communications group.

The first 2 groups load or clear the various registers of the module, The third

group handles all the communication and control functions of the module, The

load and clear type instructions are simulated directly on instruction by in-

struction basis. the other instructions set the various control states In the

module or generate communication requests as required.

The instructions are decoded by using this operation code as an index to

matrix of program labels pointing to the individual instruction subroutines.

These routines perform all the tasks required of the instructions as described

in Appendix A. The most interesting task performed is the communication

request. In the simulation, 5 types of communication bus requests are defined

for the bus simulation routine. The first of these requests is the connect re-

quest, where the requesting module is connecting its output to one or more

other modules. This is done by generating a list of module numbers which will

be read from the disc in sequence whenever a communication is issued.

The second is a drop connect request which occurs when the requesting

module is placed in a stop condition as dictated by bit 21 of the microinstruc-

tion set, This is implemented by emptying the list of connected modules, 2

In the APL system, an empty data structure is permissible. This structure
is a vector with no elements,

71

The next request is a normal transfer rlequest. In this request, any in-

struction (except a connect request, a selector transferal or a control trans-

feral) may be sent to all connected modules. This is done by reading into the

work space, each module in the connect list, in sequence, and executing the

instruction present in the bus register. After execution, the modules are re-

turned to the disk file. Hence, the disk file contains a current image of the

system being simulated.

A selector transferal request is the only two-way communication in the

system. This instruction is intended to be used for functions whose total num-

ber of inputs and outputs exceeds 20. In this case, the expressions to be gen-

erated by the input values may be located in one module and the function's out-

put in another. The operation then will be to do a functional search on the input

module. Then the output module will send for and receive the selector register.

The output module then can execute a functional read to complete the function.

This is simulated by reading the input module from the disk and transferring

its selector back to the output module.

The final request is a transfer control request. Since the simulator is

not designed for parallel operations, this request will create a job queue if a

multiple control transfer is encountered. The form of this queue is a matrix

whose number of rows equals the number of modules connected. The columns

are comprised of the current state of the system (i.e., the destination module

of the request, the requesting module number, and the instruction being trans-

ferred). If the requesting module is not in the stop condition, the simulator

72

will continue to rcad and execute instructions fromnt that mnoduhle until either a

stop is reached or another control transferal is reached, in which ease, it will

be placed at the bottom of the queue. Then the task at the top of the queue will

be removed from the queue and that control path will be executed until one of

the above two conditions is met. In this manner, the job queue wilt eventually

empty when the system returns to a single control path.

At this point, the reasons for a simulation have been presented and the

simulator has been described with the exception of the measurements it gathers.

The parameters measured by the simulation are: the number of microinstruc-

tions read, the number of bus connects issued, and the number of bus transfer

requests issued. these parameters were chosen because they represent all of

the different timing sequences that are found in the system and hence by making

various assumptions about the length of these sequences, representative timing

data regarding system operations can be computed.

Not all of the 6 subsystems described in Chapter III were simulated.

This was primarily because of the large amount of processing time that is re-

quired to run the simulation: The central processor time required for the

IBM 360/95 computer varied from 22 seconds for a compare which is the fast-

est operation to about 30 minutes for a divide. This made it impractical to

simulate the entire system. Further, certain subsystems are simple enough

so that a simulation is not necessary. The instruction decoder simply ad-

dresses a set of nmicroroutines which in turn activate control sequence in the

other subsystems. Thus if the control sequences are simulated, there is no

need to simulate the decoder, lence it was not simulated. The program storage

73

and data storage subsystems are used as a conventional memory. Since the

conventional memory features are checked in simulating other functions, there

was no need to simulate these subsystems.

The functions that were simulated were the data input routines, the ALU

functions, the data assembly registers, and the special functions unit. Because

of the similarity between formatting the input data for storage in the data store

and formatting the output data for transmission to the host computer, there was

no need to simulate the output routines. The results of these simulations will

be presented next.

The ALU functions that were simulated represent the programs that

would be required in the 25 functional memory modules which make 1 ALU

subsystem. These include all the functional tables and microroutines needed

to implement the unit as described in Chapter III.

Table 4-1 shows some typical results of a simulation. The 2 columns under

the subtract function arise because of the need to complement the answer when

the sign of the answer goes negative. This is a requirement because the num-

ber representation of this system is signed magnitude in which all magnitudes

are positive binary integers. The 2 columns under the divide function repre-

sent the minimum and maximum length sequences required to implement the

shift, compare, subtract algorithm discussed in Chapter 3. Lastly, the two

columns under the compare function arise because of the parameters. When

the signs are different, there is no need to generate a full comparison between

the numbers.

74

Table 4-i. StMULATION RESULTS FOR THiE ALU tFUNCTION

FUNCTION ADD SUBr - MULTI- DIVIDE LOGI- COM-
TRACT PLY' CAL PARE

Functional cycles 8 9 13 44 129 385 1 1 10

Instruction reads 166 175 235 541 2396 9052 74 102 137

Bus connects 40 40 53 146 648 2151 18 22 29

Bus transfers 72 74 97 261 935 3911 31 43 60

To assign a time value to these operations, assume that emitter coupled

logic (reference 19) is used to implement the circuit design described in Appen-

dix A; then a functional cycle typically takes about 100 nanoseconds, a read

typically takes about 20 nanoseconds, a bus connect typically takes about 10

nanoseconds, and a bus transfer typically takes about 20 nanoseconds. Then

an add of 2 16-bit numbers would take 5.96 microseconds, a subtract would

vary between 6.28 and 8.47 microseconds, a multiply would take 21.9 micro-

seconds, a divide would vary between 86 and 319.27 microseconds, a logical

operation would take 2.38 microseconds, and a comparison would vary be-

tween 2.22 and 4. 15 microseconds. These timing values compare with a

medium speed conventional machine with a slow divide. Different assumptions

about the operation times (particularly the functional cycle) would yield dif-

ferent results.

The input routines were simulated by executing the microcode of the

ten modules that make up this subsystem, This subsystem assumes that 12

bits of data are received. It contains as a parameter, the number of bits in a

telemetry data word. The received bits are then shifted into a 32-bit shift

registers 1 hit at a time. After each shift, a bits per word counter and an

input bit counter are updated. These counts are then checked for exit con-

ditions. If the end of word is detected, the contents of the shift register are

transferred to the data storage memory. If the end of input is detected, a re-

quest for the next 12 bits is issued.

75

The measurement parameters for these routines are presented for a

6-bit word and a 32-bit word. For the 6-bit word, the values are: 281 in-

structions executed, 56 connects, 116 transfers, and 14 functional cycles.

The values for the 32-bit word are: 1089 instructions executed, 271 connects,

479 transfers, and 67 functional cycles. Thus the data storage time required to

format and insert these words into the memory varies from 9.3 microseconds

for a 6-bit word to 38.2 microseconds for a 32-bit word. These times translate

to a data transfer rate slightly under a megabit.

The data assembly register subsystem is a 22 module subsystem whose

parameters are the number of bits per word and the number of bits to take.

This latter parameter is sent here from the ALU subsystem. The assembly

subsystem contains a 32-bit. data holding register and a 32-bit assembly reg-

ister. The rest of the system is concerned with keeping track of the current

bit position for data insertion into the assembly register and with shifting the

input data to that bit position. This is done by a table look-up of the proper

assembly input mask and the proper data holder output decoder values. The

address for the table look-up is the value of the current bit position. This value

is kept current by adding the number of bits to take to the old current value to

obtain the new current value.

There are two operations in the subsystem: assemble and dump. An

assembly has 155 instructions executed, 41 connect, 87 bus transfers, and

2 functional cycles, while a dump consists of 55 instructions, 11 bus connects,

and 35 bus transfers. These figures translate to times of 5 microseconds and

1.7 microseconds, respectively.

(76

The special functions sul)system is a complex unit containilng 123

modules. It implements the functions of data retrieval, parity checkS, data

reversal, sync word error statistics accumulation, and subcom counter error

statistics accumulation. The data retrieval section contains 16 modules. It

receives as parameters from the ALU functions the current word number, the

starting bit within the word, and the number of bits to take. It uses the current

word number of derive the address in data storage of the data word. The other

2 parameters are used to load the input decoder and mask, so that when the

data bits are received from the memory they will be right justified in the

32-bit data holding register.

The parity check section contains 5 modules. It receives the data and a

request to check for either even or odd parity. The check is performed with a

functional cycle and the error bits are sent to the data assembly register. The

reversai section has as a parameter, the number of bits to take, This param-

eter is used as an address for a look-up table of input masks and output decoder

values. These values are loaded into the 32-bit reverse data holding register.

These values insure that when the data is sent back to the data holding register,

it will be right justified. The subsystem contains 8 modules,

The frame sync word error statistics collection subsystem contains 50

modules. Of these 32 are used to hold the bit by bit error distribution counters,

In addition, the subsystem accumulates the total error count and the one-to-

zero error count. It also outputs these statistics on a frame by frame basis.

This subsystem has as parameters the number of bits in the pattern and the

pattern. The data containing the received pattern is sent to this subsystem

where it is compared 4 bits at a time with the true pattern and the errors are

totalled.

77

The subframe counter error statistics collection subsystem contains

44 modules. It receives as paranmcters, the number of bits in the counter,

the counter modulus and the counter mode (forward or backward). The system

keeps track of the current count and the status of that count. The count status

is in a searching mode until 2 consecutive counts are detected. It then enters

the count verify state. The system will return to the search state if the next

count is not in sequence, or will go to the locked on state if it is. It will re-

main in the lock state until 3 consecutive non-sequential counts are detected.

The statistics gathered by this subsystem are: the number of dropouts (i. e.,

the number of transitions from lock to search), the number of counts received

while in the search state, the number of counts received while in the lock state,

the number of non-sequential counts received while in the lock state, and the

number of unsuccessful search tries. For this last statistic, a successful

search is defined as the ability to attain lock within 5 counts. This statistic

gives an indication of cyclical type errors. The subsystem accomplishes this

task by maintaining a set of counters for the various states.

Table 4-2 shows the results of the special functions unit simulation.

These results show the individual timing for each function on a per word

basis. Thus, for example, if the sync pattern had to be parity checked and

reversed, the entire operation would take 13.2 microseconds including the

time required for data retrieval.

In conclusion, this chapter has presented a description of the program

written to simulate the telemetry preprocessing system. This program was

useful in verifying the correct operation of the system and in proving the

feasibility of using functional memory modules to implement such a system.

Further, the timing results gathered by this program were presented without

comparison to other implementation methods. This comparison will be the topic

of the next chapter, which will present the results and conclusion of this work.

Tabie 4-2. SPECtAL FUNCTIONS SItMttiLAtION tEltSULtS

.1A NBUE:R NUM1BERI NUMBER OFN EXItE-~NUMBERA
UNTO OF orFg O 3i UN C- CUTIONFUNCTtONt4 OF OF BUS OF BUS V NC C)

INSTRUC- CONNECTS TRANSFERS TIONAL TIME
TIONS CYCLES (tUSEC)

,,, ' , .,.i, i,, .

Data Retrieval 160 40 90 0 9
Parity 28 6 14 2 1

Reversal 32 16 48 0 2.5

Sync 230 50 80 4 6, 7

Sub 63 16 35 4 2.5

C

.I

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions

The main effort of this research was to develop a higher level language

capable of performing the necessary bit manipulation operations to prepare te-

lemetry data for computer processing. This effort was greatly assisted by the

usage of the APL programming system. This system made it possible to easily

explore various compiling methods and various language operations. Further,

because of its interpretive nature, the development time for this project was

greatly reduced. Another factor in reducing this development time is APL's

simple but powerful vector operators. They made it possible to perform complex

operations without the need for complicated bookkeeping algorithms.

The telemetry preprocessing language developed also has a set of simple

but powerful operators. It provides a means for describing complex bit manipu-

lation problems in a concise fashion without the need for lengthly housekeeping

algorithms. By using this language, the development times for producing telem-

etry data processing programs can be shortened because the data is ready for

ingestion into a well known processing algorithm (depending on what sensor is

involved). Hence the programmer can begin to work directly on the problem

solution instead of spending a great deal of time designing data structures and

tracing bit paths from the telemetry data to this data structure set.

As was shown in Chapter III, the language described in Chapter II was used

as a guide for specifying a telemetry preprocessing system. This system was

designed as a peripheral device to a host computer. This method was chosen

so that the total system is capable of being installed at the various installations

79

80

which process telemetered data. In this mnanner, the difficulties of past attempts

are overcome.

Although the original goal of this investigation was to produce a system

which would enhance the art of telemetry data processing; the most significant

result was produced along the way. The original goals have been fulfilled with

the design and specification of the telemetry preprocessor system and the telem-

etry preprocessing language. But it is the extension of the concept of a functional

memory (reference 8) into the functional memory module that represents the real

contribution of this work.

The concept of implementing Boolean fiunctions in a cellular memory array

'for the purpose of designing flexible control units for microprogramming appli-

cations has been extended into a systems building block. A device has been

designed which is ideally suited for LSI implementation since it has a high ratio

of gates to input pins and a highly repetitive structure, Further, since within

this device can be stored not only the functional programs required to implement

Boolean functions but also the microcode which directs the flow of information

between modules, this device attains the greatest possible flexibility of any ISI

chip structure. A set of chips of this nature are capable of implementing any

Boolean function,

The work performed in this investigation demonstrated that 435 of these

chips could be interconnected to form a telemetry preprocessing system , The

major portions of this system were simulated and the results of that simulation

effort were presented inChapter IV. Following is a comparative study of this

simulated data with that of an optimized process on the CDC 3200 computert.

81

In comparing the time to perform various operations of the preprocessing

system to that of a medium speed machine such as the CDC 3200, it is found that

the preprocessor arithmetic operations are somewhat slower (e. g., an add takes

6 microseconds on the preprocessor while only 2 on the CDC machine). The logi-

cal operations also are slower by a factor of 2 to 4 but the special functions are

much faster. A reversal of a 32-bit data word for example would take 260 micro-

seconds on the CDC while only 2.5 on the preprocessor. Similarily the other

special functions show a factor of 100 speed improvement. To further illustrate

the significance of this fact, the processing time for the entire OAO-A2 direct

digital data frame presented in Chapter II was computed for both systems. The

CDC machine using an optimal algorithm takes 36,640 milliseconds to do these

operations while the preprocessor takes only 20,184 milliseconds, a factor of

45% improvement. These functional memory modules, however, are more complex

than the 3200 because they are designed for flexibility. One measure of complex-

ity that supports this fact is a physical comparison of the systems. The 3200

computer contains 250,000 gates while the functional memory modules that make

up the telemetry preprocessor contain 5,220,000 gates. However, because of

the difference in logic technology between these 2 systems, the 3200 contains

9400 logic cards while the telemetry preprocessor system contains only 9 logic

boards.

Another aspect of the functional memory concept that contributes to its

usefulness as a system building block is the manner in which the control function

is handled. Each module contains a state indicator which can make it a control

module. As a control module, it can direct the activities of other modules. This

makes it possible for many control sequences to be activated in a system con-

structed with these modules. Thus independent functions can be executed inde-

pendently.

In summary, the nmanjor contribittiori of this research wIves the development

of an advanced hardware device for Use its a system building block, This device

is a four-state cellular logic module known as a functional memory module and is

suitable for LSI implementation. The fact that this device is a building block was

demonstrated by showing how 435 of these modules could be used to implement a

telemetry preprocessing system which was designed by using the higher level

language discussed above as a guide. This system is more complex, hardware-

wise, when compared to a Control Data 3200 computer. However, it compares

favorably timewise when a benchmark program is executed. The 3200 computer

was chosen for comparison because it is currently being used in this function at

the Goddard Space Flight Center.

B. Recommendations For Future Research

During the course of this research, some interesting related problems

have been posed. The functional memory module offers a powerful tool for

implementing digital machinery. However, several questions in this area need

to be considered first. How fast can arithmetic operations be implemented using

devices like these? Can large high speed computing systems be implemented

using these modules as their only building blocks? What is the feasibility of

making these modules a standard building block for digital systems? Several

improvements to the module which offer partial answers to these questions aret

inclusion of a general shift register, increasing the size of the memory, inhelu-

sion of a move instruction to move the microcode from one module to another

and the inclusion of conditional test and branch microoperations, the impact

of each of these changes should be evaluated from the viewpoint of the above

questions to determine if enhanced capability is being p)rovided to the module

or not,

83

The functional memory approach to building systems offers the possibility

for implementing dynamically alterable machine structures. Such a structure

raises a number of questions. How can such a machine be controlled? How

can a data processing problem take advantage of an adaptable machine? How

can machine failures and programming errors be diagnosed? One method of

controlling such a machine would be to construct part of the machine such that

it contains unalterable code required by the operating system. The compilers

that would allow the user to make up his own instructions could be designed.

Hence the system could be tuned to match the problem being solved. Then as

the processing progressed a machine status vector could be periodically updated

to provide a history of what is happending in the machine so that errors can be

detected. Thus the items that require investigation are what the unalterable code

should be, what information belongs in the machine state vector, and what method

of description should be presented to a compiler to allow the user to make up

his own instructions.

APPENDIX A

INTRODUCTION

The telemetry preprocessing system described in this thesis must be capay

ble of handling word sizes that range from 6- to 32-bits, be able to reverse these

words end for end, be able to selectively complement bits in these words, per-

form error measurements on the words and collect statistics, and interface to a

wide variety of computing and data recovery machinery, While a classical hard-

wired approach could be implemented to accomplish this task, a number of spe-

cial cases would arise which would lead to a costly and overly complex approach

e.g., a separate hardware interface for each type of computer would be required,

Microprogramming techniques (reference 18) offer solutions to these problems{

however, implementations of incroprogramming systems have a fixed set of

hardware registers and a limited number of interconnections capable of being

program controlled. Consequently, using these machines still represents a

transferal of the coding problems from machine language code to microcode.

Many of the inefficiencies of the problem solution still remain,

Thus a decision was made to design a system with a minimal humber of

building blocks to reduce costs, and with enough variability to cover all aspects

of the problem, The first constraint dictated the use of large scale integration

(LSI) technology. The second constraint implies a microprogram approach but

with an unspecified number of hardware registers so that the machine could be

coded to fit the requirements of the problems.

As a result of the decision to use LSI technology, two assumptions were

made! (1) no functional process would be hardwired into the machine and (2) the

number of lines interfacing the module to the rest of the machine would be forty

or less. The first assumption Was made to provide the machine with the gteatest

85

possible freedom from architectural constraints. The second assumption con-

cerns the practical aspects of using LSI since (a) backplane wiring problems

must be considered and (b) the majority of failures and the largest costs of LSI

chips are associated with the number of pins on the chip. The device that fits

these characteristics best is known as a functional memory module.

The term functional memory connotes a device used to generate Boolean

expressions in a memory device. Basically, it is a method of arranging a cellu-

lar memory array such that each cell of the array can be either an associative

cell or a conventional memory cell. Additional gating is provided at the array

boundaries so that Boolean functions can be generated by using the above two

memory types in combination. The associative nature of the memory is used to

"search" for a set of preprogrammed Boolean expressions in the input data.

Then the results of this search are used as a conventional address to "read" the

function output from specified cells of the array.

The format of this presentation of the design features of a functional mem-

ory module will start with two Boolean functions. These functions will be imple-

mented with AND-OR logic and then successive partitions of that implementation

will be employed to demonstrate the transformations required in going from con-

ventional logic to functional logic. Also, in this manner, the important charac-

teristics of a functional memory concept are best illustrated because the reader

can be led from familiar concepts to the newer less familiar ones.

A. Functional Memory - A General Description

The basic concept in constructing a functional memory is De Morgan's law

which states that the Boolean expression ABC may be represented as (A + B + C).

The overbar means NOT and + means OR.) To implement this law a cellular

memory array is constructed. This array has a two phase cycle consisting of

search and read. Further, this operation is associative in nature, in that only

those terms which satisfy the search criteria contribute to the read phase,

Consider, as an example, two Bootean functions of three literals (variables)

each:

fI A + B C

f2 =A B C

f=A+BC

f=ABC

Classically these functions could be implemented with the following §ti'dutured

set of gatingi

A

C

A - NOT

AND

fI

55e-I

Figure A-1. CLASSIC GATING STIRUCTURE

87

Now applying De Morgan's law on a term-by-term basis, the equivalent

functions and implementations could be built.
I

fl = A + (B + C)

f2= (A + B + C)

INPUTS OR'ING I NOT' ING I

~II

OR' ING

fI

f2
I I

Figure A-2. MODIFIED GATING STRUCTURE

A

B

I
C NOT .

I
I
I

I

I

I

I

I

I

I

I

I

I

C O

In this Implemneitfttion, notice the 4 divisions of logic which restlt. The

inputs are selected either in true or false form and thel a sequence of OR-NOT-

OR is performed to obtain the required function, Thilts is the form of a functional

memory implementation. Consider a memory array where each cell is com-

prised of a true flip-flop and a complement flip-flop. Then the selection of inputs

(true or false) can be done by setting the appropriate flip-flop and allowing the

true and false forms of the true or false bit line to drive a pair of AND gates as

is shown in Figure A-3.

TRUE Bit FALSE BIT
LINE (TBL) LINE (FBL)

-RUE F(FALSE FF
(TFF) AND ('FF)AN

.~AND

TERM
LINE
(TL)

552-3

Figure A-3. CONCEPTUAL FUNCTIONAL MEMORY CELL

These AND gates are then tied together on the term line which effectively

accomplishes the first ORing operation. By placing an inverter at the end of this

term line, the NOTing operation is accomplished, Recalling that we are describ-

ing a two phase memory operation; the output of this inverter is the input to a

register of latches called selectorsb What has been described to this point is

the "search phase'd of a functional memory which accomplishes the input, Iirst

Ofting, and NOTing operations, This operation consists of "secar;hthg" fott which

terms are present rlhnd "selecting* those terms for the"re:adig" eyerle, Thus

S9

referring to Figure A-2, the inverters of thile NOTing step each represent a term

line (or conventional word line) of the functional memory array.

During the reading operation the roles of the term lines and the bit lines

are reversed. As shown in Figure A-4 the selected term lines are selectively

gated onto the-bit lines by placing data related to the desired function output in the

true and false flip-flop.

TL

- f-TL

TBL FBL

552-4

Figure A-4. CELL INTERCONNECTION

Hence, the second ORing operation is accomplished through the connection of the

outputs of these AND gates to the true and false bit lines. Consequently, either

bit line is capable of carrying the entire function output or a portion of it. At the

end of the bit lines, the function may be obtained by gating either the true bit line

or the false bit line into a data register.

Several things should be mentioned at this point. First, the cells of the

memory involved in the search phase and in the read phase are obviously not

the same, although they could be if the cells were reloaded but this would be

AN TF FFAN

90

lnefficlcnt. Itehee sonme i enails of seplralilig the se-arch variables from the

read variables must be Included This is accoutnpllshcd l' mn-ans of a data mask

register as is shown In Figuire A-S. This register is connected between the

data register and the memory array. The true side of the mask register will

allow data to enter the array for search purposes. The false side of the mask

then allows data to be gated out of the array into the data register during the read

phase.

FBL TBL

DATA

Figure A-5, TYPICAL MASk AND DATA CELL INTtRCoNNECeTION

Second, since each cell of the array contains two flip-flops, there are two

other states of these cells which can be used during the search phase, 3.y setting

91

both the true and false flip-flops to zero, it is seen that this particular variable

has no effect on the term line since a true state will be generated no matter what

the condition of the input data, hence this is called the "don't care state." Fur-

ther, by setting both of these flip-flops to one, it is seen that as long as this

variable is allowed to partake in the search phase this term line cannot be se-

lected because of the inverter and thus this state is called the "inhibit state."

Finally, it seems that some use could be made of the true and false bit

lines during the reading phase. Indeed, by placing an exclusive OR function be-

tween these bit lines prior to setting the data register, a very powerful operation

in terms of shortening the length of these arrays is obtained.

Now let us examine what our two example functions would look like using

a functional memory. Referrihg to Figure A-6, the data register is at the bot-

tom and the inputs are labeled. This figure represents the function exactly as in

Figure A-2. The top word of the memory is the A input to function 1. The next

word is the B C input. The last word represents function 2. Notice the mask

which separates the inputs from the outputs. Also notice the manner in which

the ORing operations are accomplished.

This is the basic concept of a functional memory, most of which was de-

scribed in a paper by P. L. Gardner (reference 8). Next, the concept of the

functional memory module will be described. This module contains several ex-

tensions of the above described concept°

B. The Functional Memory Module - A Systems Building Block

In designing the concepts of a functional memory into a practical system,

the block diagram of Figure A-7 evolved. The memory array, selector register,

and mask and data registers represent the essence of the concept as previously

described. However, in order to take advantage of the conventional memory

READ

Figure A-6. PROGRAMMED FUNCTIONAL MEMORY UNIT

93

aspects of this device, the memory control, address register, and read control

sections were necessary.

Figure A-7. FUNCTIONAL MEMORY MODULE BLOCK DIAGRAM

Since applications typically involve more than one module and since data outputs

from one module are not normally aligned with data inputs to another module, the

input and output gating sections are necessary. Further, this process of trans-

ferring data between modules requires control so the program register is used

to decode and control data flow type instructions. These instructions are typi-

cally stored in the same module as the functional table; and, thus, some means

of excluding them from the search phase must be provided. This is done in the

inhibit register. Finally, it was found that part of the read functions, as described

above, should be carried out during the seareh pha,4se and so tihe searbh controls

are provided. These sectlions will now be deserlbcd in detail.

Examining various applications of the memory array as pictured in Figure

A-6, it was found that inefficient use was being made of memory words. In many

cases, several terms could have been formed in one word if only the means were

available. Furthermore, iterative processes such as carry propagation could be

handled more efficiently if greater flexibility in combining and creating term line

expressions were provided.

C. The Memory Cell

Figure A-8 shows a typical cell of the 16 x 27 functional memory array.

-In addition to the true and false flip-flops (TFF and FFF), two control flip-flops

(CFF1 and CFF2) have been added. These flip-flops are used as search control

parameters to gate the incoming Boolean variable to one of four term lines TL1-

TL4. This is done through gates D1-4 and 0-3. As can be seen, either the true

bit line (TBL), through gate 01, or the false bit line (FBL), through gate 02, may

be placed on any one of the four term lines. This allows one to generate four

terms to be combined during the search cycle as will be seen when the search

controls are discussed.

During the read phase of the functional memory cycle, the word line be-

comes active if this word cell is selected. Then through gates Ii-Rf4, one to

four terms of the output are gated onto bit lines BL1, BL2, BL3, and B13L4

simultaneously. These terms will later be shown as inputs to an exclusive OR

network when the read controls are discussed.

The CLOCK, used concurrently with LDi-4 and their complementi reptte-

sents the load memory controls. This CLOCK line is activated by the tippetr four

bits of the memory address, while the lower two bits gencrate LD1-4. Hence,

it takes four memory accesses to load a word of memory l'or funcliontl memoty

LC~
__-- L L__~

!~~- -*

I . -

VTLI "TLZ TL_3 'TL4.

Figure A-8. FUNCTIONAL MEMORY CELL

tDO

usage, Cotnvtrsely, when the module is being Uisetl convehtionadilv olch word

linet- acesses four words of memory Tihe lower two bits of the address are then

used to gate the appropriate bit line into the program register,

D. The Inhibit Register

The inhibit register (shown in Figure A-9 is a 16-bit register. Por each

bit of this register that is Set, the corresponding term lines are activated, This

effectively inhibits this functional word from taking part in the functional search

cycle since the inverter (which will be discussed in the search controls) output

is held inactive,

E. The Search Control and Selector Register

In the search control (shown in Figure A-10), the 4 term lines are termi-

nated in inverters. The outputs of these inverters (together with the terms 021,

C41, and C61) then form the inputs to a combinatorial network. The purpose of

this network is to form the terms C20 (meaning any two inputs active), C40 (any

four inputs active), and C60 (any six inputs active). These terms then become

the C2I, C41,I and C6I inputs of the next word above this one in the memory array.

They are used primarily to generate a carry propagation term during the search

phase of the functional memory cycle. The network of Figure A-9 implements

the following logical equations.

C201= TL1 (TL2 +TL3 + TL4) + TL2 (TL3 + TL4) +TL3TL4 + C2I (TL1 +

TL2 + TL3) + C4I

C40 = TL1- TL2TL3TL4 + C2ITL2TL3TL4 + C4ITL1 (TL2 +TL3 + TL4) +

(C4I + C2ITL1) [TL3TL4 + TL2 (TL3 +'TL4)] + C6 (TL1 +-TL2 +

TL3 + TL4)

C60 = CGITL1 [TL3TLA 4- TL2 (TL3 + TL4)] + C6ITL2TL3TL4 +

C4ITL1TL2TL3TL4

The manner in which the 7 inputs (TL1-TIA, C21, C41, and CGi) tire com-

bined to become inputs to the selector cell is controlled by the flip-flops EOOPFi

Figure A-9. INHIBIT REGISTER

Too

cooFigure A-0 . SEARCH CONTROL. AND SELECTOR REGISTER CETLT

L.~. tCC g D.~w 1 0

Fiur,-t ERHCNRLA] SEECO REISTER CELL

to%O:
-,0

99

and EOCFF2). If gate D1 is active, then C2T is gnted into the exclusive OR, the

ORl, and the AND networks. If gate D2 is active then C2T and C4T arc both sent

into these networks. Finally, if gate D3 is active all 7 inputs are sent into the

networks.

The selector cell (SEL) may be set by 1 of 3 gating networks. This is con-

trolled by the flip-flops SCFF1 and SCFF2. When gate S1 is active, then the

exclusive OR of term lines 1 through 4 and any combination of C2I, C41, and C6I

as discussed above becomes the input. Similarily, gates S2 and S3 select the OR

input or the AND input respectively. In this manner, a good deal of power is

added to the functional memory search cycle in that combinations of terms both

from this word and prior words are allowed to select the outputs of this word.

This type of operation becomes very valuable in implementing iterative type

functions.

The 4 control flip-flops which direct the setting of the SEL flip-flop also

form the 21st cell of the functional memory array. These flip-flops are loaded

by signals LD121, LD221, LD321, and LD421. When this data is presented to

the cell and the proper clock signal (CLD1, CLK2, CLK3, or CLK4) is activated,

the selected flip-flop is loaded. Hence, with a sequence of four loads, the cell

is loaded. The clock signals are controlled by the address system described

later. These signals are activated by the LMI signal. During a conventional read

operation, the data from this cell is read out on lines BL121, BL221, BL321, and

BL421. These lines are controlled by the word line WL.

Line WL is part of the addressing scheme of the memory array and is acti-

vated by the selector flip-flop (SEL). If SEL is set and the control section acti-

vates the READ line, then line WL will read this entire word of the memory.

The contents of SEL may be read by activating line RSEL. Flip-flop SEL is set

during a functional cycle in the manner described above, provided that a READ is

100

not in progress and an address load (LSELT) Is not being done. The address

load is the other way that EEL can be loaded. The decoded value of the Aolddress

is input on line SD iand the load signal LSELT is Sent to gate the data into Lt,

F. Read Controls and Mask and Data Cells

The read controls and the mask and data registers (shown in Figure A-ii)

will be described next, Referring to Figure A-8, the interconnections between

the read control and the memory array appear on the left side of Figure A-ii.

Recalling that LD1-LD4 and LD1-LD4 represent data to be loaded into the mem-

ory, it is seen that Al-A4 control which flip-flop is to be loaded. Ai-A4 are

derived by decoding the 2 least significant bits of the address register as will be

shown in Figure A-14. The data inputs OR gate (DIO) is present because these

data can be loaded either from the data register or from the program register,

Input load memory program (LMP) represents data sent from the program reg-

istero Input LM is used to load the memory from the data register. However,

in this mode, only the lower 20 bits can be loaded,

During a search operation the input SCH will allow the true (TBL) and false

bit lines (FBL) to be driven by the respective set and reset sides of the data cell

only if the mask cell is set. In this manner, the functional inputs are gated into

the memory array.

During a read operation of a functional cycle, the 4 inputs from the mem-

ory array (BL1, BL2, BL3, and BL4) are gated into the exclusive Olt network.

At this time, A1-A4 will not be active and, thus, the reading OR gate (RO) will

accept data from 1 of 3 sources depending upon what type of functional read cycle

is called for. In a read exclusive OR cycle (ADEO), the exclusive ORtt output is

used; in a read true only cycle (RDTO), the true bit line (TBL) is used; and in a

read false only (RFO) cycle, the false bit line (FBL) is used.

Figure A-11. MASK AND DATA CELL °

i0o

?in6m the reidinig Ofl gilte, the dt, tinteirs the retdilig AMI b'e (11A),

trom there, during a ftnctlonal cycle (FUN), if the mask bit Is reset, the data

will be gated into the data register to form an output of the B3ooleah functlor pro-

grammed into the memory array.

During a conventional read cycle, one of the address lines A1-A4 will be

active in conjunction with the conventional signal, CONV. This will cause the

appropriate bit line to be sent throulgh the other reading OR gate (ROi) anrid out

through the memory data out (MDO) line to the program registers

The mask and data registers are loaded from the program register by

gating this register to the data-in and mask-in lines (IDAT), respectively, and

activating either the load data line (LDAT) or the load mask (LMASK) line.

Finally data can be read from the data register by activating the read data

line (RDR). This will send data to the output decoders to be transmitted onto the

bus line.

G. Input-output Gating Section

A typical cell of input and output gating subsystems is shown in Figures

A-12A and A-12B, respectively. The input decoder accepts data from the inter-

nal bus system (B1'-B20') and gates it to the selected cells of the data register

(DATA-IN), if the input mask register (IMSK) is set. This is done by decoding

the outputs of the five decoder flip-flops (IDl-ID5) to form 20 enable terms which

select which bit of the input is to enter this data cell.

The input decoder is loaded from the program register by 1 of the 2 load

instructions. The interconnections between the decoder cells and the program

register cells are shown in the chart on the figure. The input mask is loaded by

placing its input on IDAT and enabling signal LIM.

The output decoder is loaded the same way as the input decoder and per-

forms a similar operation with the data. In this case, the data hit leaving the

Figure A-12A. INPUT GATING

Figure A-12B. OUTPUT GATING I

105

data register is gated to 1 of the 20 internul bus lines by thei decoded value of

flip-flops OD1-ODS.

By the use of these decoders, the contents of any cell of the data register

can be sent out on any line of the externrial communications bus and1 conversely,

any line of this bus can enter any cell of the data register, These operations are

very important for allowing the outputs of one function to become the inputs of

the next one.

These 3 registers can be selectively cleared by activating the ODC, IDtC,

or IMKC lines. The input and output decoders are loaded four cells at a time in

a sequence of five loading operations. What is shown in figure A-12A is a table

indicating how these cells are loaded.

I, The Program Register

The main communications register of the module (shouwn in Figure A-13) is

the program register. The upper 6 bits of this 27-bit register form an encoded

instruction set. Bits 22 and 23 are input to decoder number 1 whose output forms

the encoded control type selector. There are 3 types of instructions: a decoder

output of 1 selects the load group (Ti)1 2 selects the send-receive group (T2),

and 3 selects the clear group (T3).

Bits 24-27 are applied to decoder number 2 whose outputs, when cotnbined

with the outputs of decoder 1, form the instruction set listed in Table A-i,

The load group loads the specified register from the program register,

The input and output decoder are 5-bit quantities which are loaded 4 cells at a

time from the lower 20 bits of the program register; in 5 words all 20 celti are

loaded. The address register is a 6-bit quantity loaded from bits 15-20 ot the

program register. The 20-bit date register is loaded from the lower 20 bilt of

the program register as are the D and I m.nks,. The 10-bit Inhibit reglstet Is

loaded from the lower 16 bits of the prograti register.

Figure A-I3. PROGRAM REGSI-ER (Sheet I of 4)

I

Figure A-13. PROGRAM REGISTER (Sheet 2 of 4)

.. -..

fls s

Figure A-13. PROGRAM REGISTER (Sheet 3 of 4)

Figure A-13. PROGRAM REGISTER (Sheet 4 of 4) °

110

Tablec A-1. INSTRUtCTION SET

CODE LOAD GROUP (t) SNb- EIE CLVAR GIROtP (T3)GR1OUP (T2)

P0 Input Decoder WI Address Memory

P1 Input Decoder W2 D mask Input decoder

P2 Input Decoder W3 Data X Output decoder

P3 Input Decoder W4 Data I D mask

P4 Input Decoder WS I mask I mask

P5 Output Decoder W1 Inhibit Inhibit

P6 Output Decoder W2 Selector Address

P7 Output Decoder W3 Cycle Data

P8 Output Decoder W4 Input-output decoder Load memory from data

P9 Output Decoder W5 Clear Load selector

P10 Address Load address from data Send ID

P11 Data Transfer control

P12 D mask Get out bus 1

P13 I mask Get out bus 2

P14 Inhibit Get out bus 3

P15 Memory Get out bus 4

A load memory command, when received by a module which is not in con-

trol, will load an address from bits 15-20 and will set the module flip-flop. The

module will then gate each load of the program register into successive memory

locations until the bus line is dropped. (Note the control state will be described

later.)

The clear group, when decoded from the program register, clears the

specified registers. However, the last 3 instructions in the group are not clear

commands, The load memory from data command contains an address in bits

15-20. This address is gated into the address register and the data register is

gated into the lower 20 cells of that memory word leaving the upper 7 bits un-

changed. Since this instruction affects the address register, it is normally

ill

accompanied by a stop command which is bit 21 set, The outputt of progrim t eg-

ister bit 21 is ANDed with RUN to form STOP. This will reset the ltIN flip-flop

which will inhibit the address register from stepping.

The load selector command will gate the lower 16 bits of the program reg-

ister (signal LSEL) into the selector register (signals SELIG to SELl), This

command can be used to preset the selector register prior to doing a functional

read. Since the selector is also used in the addressing system this command

must contain a stop.

The send ID command alerts the bus system to connect other modules to

this one. It can only be issued by a module that has control. In this command,

bit 20 signals the end of an ID sequence, bits 17-19 specify which 16-bit sector

is being addressed, and bits 1-16 represent a 16-bit sector specifying which of

16 modules is to be connected. In this mnanner, up to 128 modules can be simul-

taneously connected to a single module, After this command is executed, all data

transferred over the bus will be sent to all connected modules. To change the

connect configuration, simply send another ID command since this command se-

quence operates ih a clear-connect mode.

The send-receive group is very dependent upon the control flip-flop. If the

module has control then it is a transmitter and all the other modules connected

to it are receivers. Whien one of these commands is received, it is decoded and

the indicated action is taken. All of the transfers except the data transfers are

from the program register to the program register.

The receive address command causes signal LDA to be activated which

gates bits 20 through 15 to the address register through gates AD1-ADJ. The

receive D register command activates signal G5 which gates program register

bits 1 through 20 out of the gates IDAT1-IDAT20, it also activates the load

mask (LMASK) line to gate these bits into the data mask.

112

The data X nid dtArt I coninrsnds aive UseEd to sendl dtin betwecEni miodules,

Votr these commands, the upper 6 bits of tihe proglman register ire Sehtby sig-

nal XMPCtJP along with the 20 datat bits sent byt nnt Fror the recelvihg module

the program register bits are decoded and a LbAT signal is generated to plate

the data in the data register going through the Input decoder and illnput mitik,

In the tranmitting module a data I command will also cause si tJAAt ag

nal. This will teed the data bits back into the data register through the itput de-

coder, In this manner a shifting operatloti itan be performtied,

The receive inhibit and I itsk retgister commimad opetrate it the same

manher as the receive 1 mnask register command, except Iln these cases the load

signals activated at LI and LIM, respectively,

The traniSmt selector command is used when a function has too many inputs

and outputs to fit within one module, In this etse the modutle tcontaining the Inputs

does a functional search and then transmits the resulting selector to the module

containing the outputs which then does a read cycle, The manner in which this is

accomplished is that control will reside with the outputs module, This inodule

will send a search cycle command to the Input module and then it will send the

transmit selector conmmand and wait, The input mnodule will complete the search

cycle and then decode the program register, This will activate a read selector

(RSEL) which will gate the selector register into the lower 1 bits of the program

register, Then a transmit program register (SMPO) is issued to send the selec-

tor back to the output module. When the output mtodule receives this information,

it the generates a load selector (LSEL) signal to gate the lower 10 bits of the

program register into the selector. It then generates a functlonal (tFUN) read

(IDEO), AtTO, or R0FO according to its configuration. After the read cyle iS

completed the hext instruction is read from the address in the address register.

113

The receive cycle command specifies the cycle type and the reiid type to

be executed. The decoded command will activate either a functional operation

(FUN), or a conventional operation (CONV). Program register bits 18 and 19

specify the read types as:

CONV FUN

Bit 18 Bit 19 Type Bit 18 Bit 19 Type

0 0 run 1 0 Read false only

1 0 read 0 1 Read true only

0 1 write 1 1 Read exclusive OR

Program register bits 16 and 17 specify the cycle type as:

Bit 16 Bit 17 Type

0 0 Conventional

1 0 Search only

0 1 Read only

1 1 Search-read

Bit 20 specifies whether or not the transmitting module is to cycle (SLF2). The

module will then execute a cycle.

The receive input-output decoder command will load either the input or

output decoder as specified by bit 20 (I/O) in groups of 3 cells at a time (as spec-

ified by bits 16-18) from the program register bits 1-15. In this command, bit

19 specifies whether the transmitting module is also to load its own decoders or

not (LDWN). The cells to be loaded are specified as:

Bit 16 Bit 17 Bit 18 Cells Signal

1 0 0 1, 2, 3 GL1

0 1 0 4, 5, 6 GL2

1 1 0 7, 8, 9 GL3

0 0 1 10, 11, 12 GL4

1 0 1 13, 14,15 GL1

0 1 1 16, 17, 18 GL2

1 1 1 19, 20 GL3

11-i

In the receive clear command, the lower $ bits of the program register

specify which registers are to be cleared. This is specified byl

13it Register Signal

1 All MC2

2 Input decoder IDC2

3 Output decoder ODC2

4 Data mask MSKC2

5 Input mask IMKC2

d Inhibit IHC2

7 Address ADC2

8 Data DC2

9 Clear your own SFC

In this command, the transmitting module can also clear its oWn registers

by setting bit 9.

The load address from data command is not a transmitted eommaihd, It is

used to transfer a computed address from the data register bits i5-20 to the

address register. Bit 20 specifies whether a 4- or 6-bit address is to be loaded

(DAD6).

The transfer control command is used to transfer control to another niod-

ule and clear the bus system. Bits 15-20 are the address to which control 18is to

be transferred. Bit i3 specifies whether or not the address is to be loaded

(NLAC). Bit 14 specifies whether or not control is to be retained by the trans-

mitting module (SPTC). This is used to split the control into 2 or more lnde-

pendent operations to be done simultaneously A control sequence may be ter-

minated by transmitting control to a bus line which has no modules connected to

It with bit 14 reset since this action will reset the control flip-flop,

115

Bits 1 and 2 specify the cycle type, 3 and 4 specify the re:d type, and 5

specifies self-cycle in the same manner as bits 16-20 did in thec tr:ansmit cycle

command.

The last 4 get-bus commands are used to access 1 of the 4 major bus sys-

tems for the purpose of transferring data and control to the various functional

areas in the system. A functional area is a set of up to 128 modules connected

to a minor bus system as discussed in the above presentation. These modules

are programmed into distinct functions such as CPU's, fast Fourier transform,

etc. Hence, data can be separately sent to these functional areas and they can

be simultaneously activated. In this manner, the system can become as parallel

as the problem being solved dictates.

I. The Address Register

The address register shown in Figure A-14 is a 6-bit counter capable of

being loaded either from the program register (ADl-AD6) or from the data reg-

ister (ADD1-ADD6). The data register can load either a full 6-bit address (line

DAD6 active) or a 4-bit address leaving the lower 2 bits zero since all loading

operations are part of a clear (CLR) load sequence (CLK).

Once loaded, the LSELA signal gates the address into 2 decoders. The

output of decoder 2 (SD0O-SD15) is gated into the selector register. The output of

decoder 1 is sent to the read control A1l-A4. In this manner, when the module

is used conventionally, full addressing of all cells is achieved.

After reading the selected address, a step signal (STPD) is issued. This

causes the address register to count up by one and, thus, prepares the module to

read the next word of memory. If the current instruction contains a STOP, this

will be the next address read when a run is issued, unless the address register

is reloaded.

Figure A-I4. ADDRESS REGISTER

1L

117

J. The Memory Control

The memory control section generates all the necessary control sequences

for the module. Since a large number of signals are generated, this section is

presented in several parts. Many of the signals generated here are used in exe-

cuting the various microinstructions of the module. Figure A-15 shows the com-

munications controls, Figure A-16 shows the I/O decoder controls, and Figure

A-17 shows the clear controls and the internal module controls.

The communications controls (Figure A-15) generate all the necessary

control signals for the transmission and reception of module-to module data.

The send/receive group of commands are detected by signal T2. This group is

activated if the memory is not being loaded at this time (LMPG)o Under this

group (refer to column 2 of Table A-1), the load address instruction is detected

by signal P0. If at this time the module is in control (CONT), then the instruc-

tion is to be transmitted and the transmit program register (XMPG) signal is

activated. All the other instructions of this group act in the same manner when

the module is in control. If the module is not in control, this implies that the

load address instruction has been received. In this case, the signal P0 is gated

with the appropriate timing control (T) to form the load address signal (LDA).

When a load data mask instruction (Pl)is received (CONT), it generates a

load mask signal (LMASK) and a send mask data signal (G5). Signal G5 is used

to gate data from the program register onto the internal bus which connects to

all the other registers of the module. Thus, by activating this signal along with

the proper load signal, data is transferred from the program register to the reg-

ister to be loaded. Thus, the reception of a load input mask instruction (P4) and

load inhibit (P5) generate signal G5 and the respective load signals LIM and LI.

The above signals arc also generated when the load group is detected (T1i')

and the appropriate load instructions are decoded: P12 for the data mask, P13

Figure A-15. COMMUNICATIONS CONTROLS;

119

for the input mask, and P14 for the inhibit register. Further, under this group,

a load data instruction (P11) generates a G5 and the load data register signal

LDAT.

The LDAT signal is also generated by the send/receive group data X in-

struction (P2) and data I instruction (P3). The difference between these two

instructions is that the data I instruction, in addition to transmitting the data

to another module with the XMPG signal, can read the data register (RDR) and

load it (LDAT) without regard to the control state. The data X instruction can

only read data (RDR) if the module is in control and can only load data (LDAT) if

the module is not in control.

The send/receive clear (P9), cycle (P7), and load I/O decoder (P8) in-

structions generate gating signals (TMC1 for clear, TMCYC1 for cycle, and

TIMIOD1 for I/O decoder) for the program register. These signals are present

because a module may act upon itself in these cases as well as transmit action to

another module. These signals gate the various fields of the above named in-

structions from the program register into the control unit. In the clear instruc-

tion, if the module is not in control, TMC is generated. If the module is in con-

trol, SFC is gated from the program register to produce signal SMC. As will be

seen when the clear controls are discussed, either signal, TMC or SMC, can

activate the clear signals. In the cycle instruction, if the module is not in con-

trol, TMCYC is generated. If the module is in control, SLF2 is gated from the

program register to produce SCYC. Either signal, TMCYC or SCYC, can acti-

vate the cycle controls as will be seen in the internal control section. In the I/O

decoder instruction, if the module is not in control, a load instruction has been

received and TMIOD is activated. If this instruction is being sent and signal

LDWN is gated back from the program register, then LODDC is generated to

load the decoders. C

120

The send/receive selector Iistruction1 (P1(6) itS the hIote eolipltx ftinstnL1ti1l

and is used in eases where a function Is too laige to fit in ono mod0ule. Tie Itn-

struction is designed to be used after a functional-search-only cyele. tt 1I sent

to the module which just completed the search. It reads the selector froit that

module and sends it back to the requesting module. This module then loads its

own selector and does a functional read, thereby, completing the functioial Oycle.

this instruction, when received by a module not in control, generates a read

selector signal (RSEL). Then, after the selector has been read at time T, a

transmit register (XMPG) is generated.

For the module in control, there is a slight problem, since when this in-

struction is first read, it must generate a XMPG, but when it is received back it

must generate a load selector (LSELT). This problem is solved by the flip-flop

SCFF. When the instruction is first read, this flip-flop is reset and a XTAPCI Is

generated. After a time delay to allow the transmission to take place, SCIV is

set. Then, when the data is received from the search module, a load selector

(LSELT) is generated and SCFF is reset, Also a functional read cycle is initiated

(FMRDC) o

In the load group (T1), the load address instruction (P10) is gated to gen-

erate an LDA signal. The load memory instruction (P15) also generates an LDA

signal if the module is not in control. This instruction also sets the load memory

flip-flop. This flip-flop inhibits any instructions from being decoded and allows

an external signal EST to gate data into the memory via signal LMPGT. This

signal will gate the program register into the memory and step the address.

There are two instructions which allow data to be placed in module registers.

the load memory from data (P8 and T3) generates an LDA signal to load the de-

sired address and an LM signal to gate the data register into the lower twenty

121

cclls of tlhe memory word. The load address froni the d(ita insiruction (T2 and

P10) generates signal LA which gates bits 15 to 20 of the data register into the

address register.

The transfer control instruction (T2 and P11) is used to generate control

sequences. This instruction generates signal TC1 to gate the instruction fields

from the program register to the control unit. If the module is in control, sig-

nal TC is generated to clear the control flip-flop. If the module is not in control

and an address load is requested (NLA), then an LDA will be generated.

The instruction set allows for 5 communications bus systems to be imple-

mented. These instructions are: send ID (T3 and P10), get bus 1 (T2 and P12),

get bus 2 (T2 and P13), get bus 3 (T2 and P14, and get bus 4 (T2 and P15).

These instructions generate a transmit program register (XMPG). This data is

decoded by the various bus systems and decoded in order to form a data path be-

tween a module in control and several other modules.

The input/output decoder controls (Figure A-16) generate the signals which

are used to load the input and output decoders. Those from the load group T1

(load input decoder words P0O-P4 and load output decoder words P5-P9) and one

instruction from send/receive group T2 (load input-output decoder P8) form the

inputs to this section.

In the send-receive group, if this module is not in control (CONT), signal

TMIOD is generated and, if it is in control and a self load is requested, the

LODDC is generated. Then, as can be seen in Figure A-13 (the program regis-

ter), these signals cause I/O and IDW1-3 to be sent to the control unit. As can

be seen in Figure A-16, these signals are used to enable the decoders and gate

out the proper load signals. Since the decoders have 20 5-bit wide cells and

since the program register has 20 bits available for communications, 2 signals

(GL1 and G6) are required to gate the data from the program register to the

ioD

Ea
Figure -1S6. I/O DECODER CONTROL

123

decoder. This is because, in transmission of the decoder values from one mod-

ule to another, the upper 5 bits are needed to contain other information. Hence,

depending on which instruction is issued, the decoders are loaded either 3 or 4

cells at a time. Hence, G6 is required to gate the 4-cell case and GL1 is used to

gate the 3-cell case.

The LIDW (load input decoder word) and LODW (load output decoder word)

signals control this process. The signal names are coded to indicate what cells

they load. The codes are:

Signal Cells Loaded

W14 1 to 4

W13 1 to 3

W46 4 to 6

W58 5 to 8

W79 7 to 9

W912 9 to 12

W1012 10 to 12

W1316 13 to 16

W1315 13 to 15

W1618 16 to 18

W1720 17 to 20

W1920 19 to 20

Figure A-17 shows the clear controls. These controls can be activated by

the clear group. The first 8 instructions of this group will clear the memory

(P0), input decoder (P1), output decoder (P2), data mask (P3), input mask (P4),

inhibit register (P5), address register (P6), and data register (P7), if the module

is not being loaded. The memory clear is used as a master clear instruction.

Another way to activate these controls by a module not in control is to apply a

transmit clear instruction (TMC). Further, a module in control and sending a

TMC instruction can also activate these controls by requesting a self clear (SMC).

These last 2 methods of clearing the register specify what register to clear by

Figure A-IT. CLA AN INTERNAL MODE CONTROLS'

e c. ,c
* Ccu~L96

125

using bits 1 through 8 of the program register, which arc ga:ted into the controls

as signals MC2, IDC2, ODC2, MSKC2, IMKC2, IHC2, ADC2, and DC2, rcspec-

tively.

As mentioned previously, there are 2 types of cycles that this module can

perform, a functional cycle and conventional one. There are 2 instructions that

can activate a cycle, the transfer control instruction (TC) and the cycle instruc-

tion (TMCYC), and each of these can activate a self cycle (SLF1 and SCYC). A

cycle instruction has 2 types of fields, the cycle type and the read type. The

cycle type can be a conventional cycle (decoded value 0), a functional-search-

only (decoded value 1), a functional-read-only (decoded value 2), or a full func-

tional cycle (decoded value 3). In a full functional cycle, three timing values are

required. At time TIA, a funotional search is performed. Then at time TIB, a

functional read is performed. At time TIC, several actions occur. The con-

ventional signal is set to enable the module to read microinstructions. Also, if

a transfer of control instruction is present, the control and run states are set.

The conventional signal is also set by the conventional cycle type.

There are several types of reading operations that the module can perform.

During a functional read, the read can be done using the true-bit-line-only

(RDTO), the false-bit-line-only (RDFO), or as the exclusive OR of the two

(RDEO). These signals can be selected by decoding the read type where 1 means

read true only, 2 means read exclusive OR, and 3 means read false only. Fur-

ther, a transmit selector can also activate these read types by using the program

register bits 18, 19, and 20 for RDTO, RDFO and RDEO, respectively.

During a conventional cycle, reading type 1 writes the contents of the data

register into a specified memory address (WT). Reading tybe 2 will read the

lower 20 bits of a specified memory location (RD) into the data register. Read-

ing type 0 is a normal cycle instruction and will set the RUN flip-flop which will

126'

start tile module reading and excucting microcodc. This IlUN flip-flop cah be

rcsct either by a stop bit or by o master clcar.

The control flip-flop can be set by a receive control instruction (TC1) or

by a retain control signal (SPTC). It is reset if control is being transferred (TC)

and not retained (SPTC).

The external pin assignments for this module are:

Pin Function

1-27 I/O

28 Connect (CON)

29 External data request (EXt)

30 Data received reply (RCD)

31 Module busy

32 General bus request

33 Bus 1 request

34 Bus 2 request

35 Bus 3 request

36 Bus 4 request

37 Power

38 Ground

The connect signal (CON) is used to connect a module to the requesting bus

system. Once connected, a busy signal is sent to the other bus systems, inhibit-

ing any further connect requests. The external data request (EXT) is used to gate

data from the bus into the program register. The data received reply (]RCD) is

used to acknowledge the receipt of data. The five bus requests are used by a

module in control to gain access to a communications bus.

The bus systems are used to connect modules together and to coordinate

replies from the connected modules to the control module. In this manneir the

replies from the connected modules to a data transmission arc grouped together to

form a single reply to the transmitting module. Hence, timing conflicts are re-

solved within the bus system.

APPENDIX B

This appendix describes, in a formal manner, the telemetry preprocessing

language developed in this thesis. The language (reference 12) by which the te-

lemetry preprocessing language is being described is termed a metalanguage and

is uniquely distinguishable from the preprocessing language. To formalize the

definitions in the metalanguage, each definition is given the form of a statement

or construct, which is analogous to a formula. However, to accomplish some

unique features of such a specification, the operators define a mode of construc-

tion, or concatenation. In this text we shall employ the following symbols in the

metalanguage:

< x > the variable name x

:: = can be formed from

I or

z z is to be repeated at least i times but not more than j times.

When i is omitted, its value is assumed to be 1, and when j is

absent, its value is assumed to be infinity.

The format of a metalanguage construct will be as follows. The variable

named in the corner braces may be formed from the variables named or specified

on the right. This definition specifically avoids any reference to concatenation on

the right-hand side of the construct, since not all constructs contain the operation

of concatenation, and where desired, the concatenation operator is specified. In

fact, concatenation is implied by the juxtaposition of names or objects in the

construct. Thus the metalanguage construct A< x >; is intended to symbolize

the linear concatenation of the object A, the variable named x, and a semicolon.

Another example of this concept is the following metalanguage statement:

<object>:: = <part 1> I A'<part 2 >

127

128

This statement reads as follows: "thc variable object ean be formed from

the variable part 1 or from A and apostrophe and the variable part 2 in that order

of occurrence ."

Throughout the text, variables will be defined in their order of occurrence

in the definition statement; ie. In the above example, part 1 would be defined

first followed by part 2 Then, any new variables created in these definitions

would be defined in their order of occurrence. This ordering of definitions will

be followed unless written text intervenes.

The definition of the telemetry language begins with the definition of the

character set used in the language.

< elemetent>i t i < letter 5 1 < digit > I < special character >

< letter>tt -AIBiCIDIEIltIGIHIIJIKILIMINlOIPIQIRISITtIlViWiXiYlZ

< digit>t i =<binary digit> I <octal digit> I <decimal digit>

<special character>t: =<arithmetic operator> / I (I) 1, 1.1 =

I < blank >

<binary digit>t t = 01i

<octal digit>t I = 011121314151617

<decimal digit>;: = 0111i213141516171819

<arithmetic operator>:: = <additive arithmetic operator >{*

<blank>; ; = <the absence of <letter> I < digit> I <special character >>

< additive arithtnetic operator>: = + I -

Thus, it is seen that the elements of the telemetry language consist of all

the capital letters, the digits 0 to 9, and the listed special characters Further,

the binary digits 0 and 1i anid the octal digits 0 to 7 have been defined separately

from the decimal digits and can now be used to define other variables. The

arithmetic operators have also been separately defined within the special

129

character set, and the additive arithmetic operators have been further separated

from them.

Having defined the basic elements of the language, these elements may be

used to form variables in the telemetry language in the following way:

<variable>:: = <name> I <decimal number>
n<9

<name>:: = f <letter> I <name> <letter> I <name> <digit>f
9 -n o{ <blank >
9 - n

<decimal number>: = <digit> I <decimal number > <digit>}
-1

A variable in the telemetry language can be either a name or a decimal

number; but, as is shown, limits exist on the size of either. A decimal number

must range from 0 to 9999, and a name may not have more than 9 allowable

elements in it. Note that a name when not blank must begin with a letter but

may then contain a sequence of letters and digits; e.g. L101A, B47, ABLE, etc.

The general structure of the telemetry language is:

<telemetry language>:: = <valid expression > FINIS

< valid expression>:: = < format definition> I < frame definition >

<format definition>:: =< format identifier> <format specifiers> END

<frame definition>:: = <frame identifier> <instructions> END

Hence, the language has two major divisions: the format definition and

the frame definition. Each of these divisions terminates with the word END and

the language specification terminates with the word FINIS. Before the word

FINIS is encountered, however, every format identifier must be matched by an

equivalent frame identifier; otherwise, an improper specification has occurred.

Now the elements of the format definition will be described.

<format identifier>:: = < name > FORMAT

130

3
< fokhmat peeifleki > t i = { < neceessary formtnat specifier> }

{ <optional format specifiet> }
0

< neceesaty format specificr> t = <sync code> I <word size>

< frame size 5>

< optional format specifier > i = <bit rate > I < modulation code> |

<, tape speed >

< sync code> , i M FSP <number >

< word size > t i= 3ITS/WORD < number >

< frame size> i s =WORDS/FRAM <t number >

< bit rate > : I BiT RATE < number >

< modulation code > i = CODE < code type >

< tape speed > = TAPE SPEED < speed factOr >

< number > :: = < decimal number > I < octal number > I

< binary number > I < binary number > < octal number > I

< octal number > < binary number >

<code type> i: = SPPHI1BIPHIRZINRZINRZMINRZLINRZC

<speed factor> :: = 120160130115171/2133/4117/8

<octal number>:: = 0 < octal digit > I <octal number > <octal digit>

<binary number> : = (<binary digit> I <binary number >

<binary digit >)

All of the necessary format specifiers must be present in the format

specification; otherwise, the format specification is invalid. The only param-

eter representation restriction is that the binary equivalent of the FSP param-

eter must be the exact frame sync code including all leading zeroes,

131

The frame definition division of the telemetry language will be described

next. Recalling the syntax of the frame definition:

< frame definition > :: = < frame identifier > < instructions> END

<frame identifier> :: = < name> FRAME

<instructions> :: = < specifier> I <control instruction> I <data

handling instruction >

All instructions are prefixed with a 9-element location field which is de-

fined as:

< location symbol > : = < simple location symbol > I < indexed location

symbol >

< simple location symbol> :: = <name> I <blank>

<indexed location symbol>:: = < name> (<simple arithmetic

expression >)

<simple arithmetic expression> :: = < variable> I <variable>

< arithmetic operator > < variable>

Recalling the definition of name, it is seen that there is a restriction on

the location field; if the location symbol is less than nine elements, it must be

left justified in a blank field.

A specifier is defined as:

<specifier> : = CONTINUE IDIMENSION <decimal number >

At this point, it should be noted that an assumption is being made concern-

ing the memory space of the telemetry language. The assumption is that this

memory space consists of two distinct and completely independent sections: the

program memory and the data memory.

The only location symbol capable of addressing the program memory is the

location field of a CONTINUE statement or those names which match the location

132

symbol of a CONTINUE statement° All other location symbols address the data

memory.

Furthermore, all data memory references must be sized with a DIMEN-

SION statement. As examples, consider the address of PL1 of the program

memory and the array ELMT of the data memory. Address PL1 is defined by:

PLI CONTINUE

Since instructions are sequentially addressed as they appear in the frame

definition division of the telemetry language, the above instruction will fiave the

effect of assigning to the symbol PL1 the next available address in the program

memory.

Array ELMT is defined by:

ELMT blIMENSION 200

Since DIMENSION statements are similarily processed for the data

memory, this statement will have the effect of assigning the next available 200

addresses of the data memory to the array ELMT.

Control instructions are those instructions used to alter the sequence in

which instructions are executed, specify parameters, or form similar frame

definitions. These instructions are defined by:

<control instruction> : .= <go to expression> I < repeat

expression> I < equate expression > I < index expression > I <if

expression >

< go to expression> : = GO TO < name>

<repeat expression> :: = REPEAT <variable> , <name> =

<simple arithmetic expression> , <simple arithmetic expression>

<equate expression> : = EQUATE <name>

<index expression> :: = <name> =<arithmetic expression>

<if expression> :: = IF (< logical expression>) <name>

133

Thc GO TO, lIE PIEAT, and IF insLLtructions must have null location fields.

The UnaM.'; in the GO TO anrd ll ' in':Lrulctiops mnust app)ear as a location cxprcs-

sion of a CONI'NUE .sLtatement. The GO TO instruction is an uncon1ditional

branch tl the skpeifiud location. The IF instruction is a conditional branch in-

strUt0ion. If the logfical cxpression (to be defined) is true, then the branch to

the specificd location is executed; otherwise execution continucs with the next

instruction.

The REPEAT instruction is used to perform a looping operation. The loop

index is specified by name. The initial value of the index is the value of the first

simple arithmetic expression. The final value which will cause the loop to be

exited is the value of the second simple arithmetic expression. The length of

the loop is specified by the value of the variable. Two important' restrictions

must be remembered: 1) If the variable is not a decimal number, it must be

the name of a previously defined index. 2) The loop index may be altered within

the loop but care must be taken to insure that equality will result at the end of

loop test.

The EQUATE statement imust have a name in the location field. This name

must match the name of a frame identifier. This statement is used to define a

frame which is simply the reverse of another defined frame; a condition com-

monly prevalent when spacecraft recorders are used.

The index definition instruction may have a location symbol. If it does,

the value of the index as computed by the definition of that index will be placed in

the specified data memory location.

134

Now the arithmetic and logical expressions will be defined,

< arithmetic expression> 5 = < signed variable > I < signed vartible >

< arithmetic operator > I <arithmetic expression >

<variable> I <arithmetic expression> <arithmetic

operator> I (< arithmetic expression >) <arithmnetlc

operator> <variable> I <arithmetic expression> (<ailithmetit

expression>) I (arithmetic expression>)

<signed variable> : < = additive arithmetic operator >

< variable > I < variable >

< logical expression> :: = < simple logical expression > I < logical

expression> < logical operator> < simple logical expression >

<simple logical expression> : ti < logical operand > < logical

operator > < logical operdhd >

<logicaloperator> : = <logical relator>

<logical operand> i: ,:< unary operator: 4 operand>

<logical relator> s t =AND{OR lLEILTIE Q { :EIG E }Gt

<unary operator> t Not. I <blank>

<operand> t = <variable> I <arithmetic expression> I < logical

expression >

Notice that in both arithmetic and logical expressions, any level of pa-

rentheses are allowed, However, one important rule of operation must be

remembered, the order of evaluation is left to right with no precedence among

the operators. Also in logical operations, the unary operator NOT means

compliment the operand to its right. If that operand is a variable, the Value of

that variable wilt be complimented prior to comparison.

135

In using the logical relator AND, if the two operands arc of unequal bit

length, leading zerocs will be added to the shorter of the two to make them

equal and then the operation will be done.

The data handling instructions will be described next.

<data handling instruction> : <location name operation> I

< word instruction> I < sync instruction > I < sub instruction >

<location name operation>:: = <name> <parameter set> I <location

name operation > < linkage>

<word instruction > :: = WORD <parameter set > I <word

instruction> <linkage >

<sync instruction>:: =SYNC <parameter set> I <sync

instruction> <linkage>

<sub instruction> - SUB, <count mode >, <variable> <parameter

set> I <sub instruction> <linkage>

<parameter set>:: = <modifiers> I <modifiers > (<word

control >) I (< word control>)

<linkage> :: = <additive arithmetic operation>

<count mode >:: = BIF

< modifiers >:: = < modifier > I < modifiers >, <modifier >

<word control>::= <simple arithmetic expression> I <simple

arithmetic expression>,< simple arithmetic expression >,

<simple arithmetic expression>

<modifier> :: = LIPETIPEAIPOTIPOA

In the location name operation, the name must be a defined data memory

address. Hence, the parameter set will operate on the data memory locations

specified by name; whereas in the other data handling, the operations are per-

formed on the input data set.

13f

In all of these instructions, the location field specifies a data memory

address in which the defincd data value will be placed. The combinatioh of the

parameter set and the linkage define the data value. The linkage symbols are

fully distinguished from their arithmetic counterparts by their location in the

instruction stream as shown in the above syntax,

The plus linkage implies that the bits specified by the instruction imme-

diately following will be appended to the right of the bits already extracted. The

minus linkage implies that the compliment of those bits will be appended. In

this manner a new data value is formed from the input bit stream.

the bits to be manipulated in the above manner are specified by the param-

eter set, the word control specifies the bit locations and the modifier L speci-

fies their end for end reversal. If the Word control is a single parameter, the

value of that parameter specifies the word of the designated bit stream to be

manipulated. If the word control is a three parameter set, the first parameter

speeifies the word, the second specifies the starting bit, and the third the

number of bits to take from that word. It is these bits which will then be mani-C

pulated.

Words and word sizes of the input data stream are specified in the asso-

ciated format division of the telemetry language.

The modifiers PET, PEA, POT, and POA specify that the associated data

value is to be checked for a parity error. The parity bit to be used for com-

parison is the bit specified by the word control section of the instruction con-

taining one of these modifiers. The data value to be checked is specified by

those instructions that are linked to this instruction4 The type of check to be

perfortnmed is specified by E for even parity or 0 for odd parity, The time that

the check is to be performed is specified by T for before manipulation or A for

after manipulation. The result of the parity check is to set the Sign bit of the

137

specified data memory word to 1 if a parity error is detected and to 0 if not.

The location name operation and the word instruction operate as described above.

The other two instructions perform special operations. The sub instruction is

designed to check a data counter. In this instruction, the count mode specifics

forward or backward counting and the variable is the counter modulus. In addi-

tion to forming the data value as described above, the sign bit of this data word is

altered. This bit has a value of 1 until the three previous values of this data

word represent continuous counts. It then remains 0 until three consecutive

counts occur out of sequence, at which time a new counting sequence will be

searched for.

The sync instruction does not place the frame sync code in the data mem-

ory, instead it retrieves the frame sync code from the format word and com-

pares it with the data value bit by bit. It then replaces this data value in the

data memory by a set of words representing: 1) the total number of errors in

the frame sync pattern, 2) the number of pattern ONEs in error, and 3) the log-

ical product of the pattern and the received frame sync code.

Comments in the language, when punched on an 80 column card, can be

entered either with an asterisk (*) in column 1 or after a blank at the end of a

language statement. Comments may appear anywhere within the telemetry

language. The syntax of comment statements is:

<comment> :: = * <textual stream> I <blank> <textual stream>

<textual stream> = <element> I <textual stream> <element>

A final note on card formats, if the linked data handling instructions or an

index definition statement forms a character string too long to fit on one card,

an asterisk (*) in column 80 signifies that the entire next card is a continuation

card. As mantly cothtinutliboh cards ts ctAedd ntay be used, IlIowever, o a Con-

titiuation card tian * in tcoluthn 1 dtoes not signify a commentt catrd, In this case

the * is interpreted as an operator,

APPENDIX C

This appendix describes the APL programs and subroutines which com-

prise the compiler of the telemetry preprocessing language. In order to read

and understand this appendix, the reader must have a working knowledge of the

APL programming language (references 10 and 11).

This compiler is divided into two major segments, the frame segment and

the format segment, as was described in Chapter 2. Compilation begins with the

execution of the routine COMPILE. This routine initializes all of the tables re-

quired during compilation and reads the first statement of the language. The

routine can recognize four statements. If the statement read is an EQUATE

statement, the necessary linkages between the new and old frame identifiers are

formed. If the statement read is a FINIS statement, the routine is exited with all

of the tables properly loaded. If the statement read is a FRAME statement, the

frame parser is entered. If the statement read is a FORMAT statement, the

FORMAT parser is entered. Any other statement read by this routine generates

an error message.

The FORMAT subroutine checks the name of the format identifier with the

format table to insure that there are no multiple entries. If there are, an error

message is generated and the subroutine is exited. Otherwise, the statements of

the format section are read and the format table is filled.

The FRAMES subroutine checks the name of the frame identifier with the

frame table to insure that there are no multiple entries. If there are, an error

message is generated and the routine is exited. Otherwise, statements of the

frame section are read and the operations table is formed.

The routine INPUT reads statements of the preprocessing language, ignores

comment cards, and deals with continuation cards.

139

i40

T'he routine CDAD) eomputes the address of atill symbols for both the pro-

gtam and data memory and assigns indices to those symbols which refeot to intdex

counters. Those assigned values ate placed In the operations table ationg with a

codc designating the type of variable represented.

The routine DECODIt transforms the frame sync pattern into a bit string

with the pattern right justified, It also determines how many bits a-e in the pat-

tern arid loads this value into the format table.

The routine ERRORI generates all of the error messages that the compller

produces.

The routine ENTR places variable names into the symbol table, checks for

multiple definitions, and generates appropriate error messages when required.

the routine LFORM parses simple arithmetic expressions,

The routine LIDEL recognizes and stores numbers, detects simple arith-

metic expressions, and sehds them to the routine LFORM,

the routine MEMP provides a compiled listing of the program. It lists all

symbols used together with their addresses and provides a formatted output of

the operations table,

The routine OPRA parses expression of the form M(A, B1, C). guch ex-

pressions are found in the specifier protion of the data handling instructions.

the routine OtERl lists all the compilation errors that the routine

ERROR stores in the error table.

the routine PARSE translates the arithmetic and logical expressions of the

preprocessing language into Polish string format and places these operators into

the operations table.

The routine R ESCD mianages the internal temporary storage locations,

assigns them as required, and reclaims them for reassignment,

141

The routine TRANS translates the three number systems of the telemetry

preprocessing system (decimal, octal, and binary) into the decimal number sys-

tem and places them in their assigned storage locations.

The routines just described comprise the compiler for the telemetry pre-

processing language. The APL program listings for these routines follow.

142

VCOrf1,rL~:[[P] V
V CfHPTI,; L t. PI C-t.TAD iDUAD :PRAD t ,L ,tFRPTIoPT;oP

2 0t[i 1i;.A flD-1./.AI ;+0,(PRAD+I-),epPI'D+TT L+ 1 j p' t
[21 FP,-A..fi"-AM+PT-FIVhrfID*'OT+FRP2'+}"PT+ I 0
t31 LOtOP- 0.o+!4 C4-INPtUT
t[] . % OXp(C4194C) ,LC((9.-pLOC)D t '),LOC4- (OC e r)/IhOc-9+c
r51 A-+(A/'FfRA1'=5+07'),(^/'FT(IS'=5+0P),^/'IOUATYI';=+0P
ifi -.(OP0)/OP.L- Lit, 2.,3,L4)x(^/*4A FORMAS"'9:6 OP) ,A
r7] +L7,opA4- 'NO A L:rAL S',TATMT.7,',7 .. lTPYt
t8 L1: 1T+FORMA T, OT
t9'1 *.LO, (tALWAD-ITAD+1) ,PTOPT+I4ADFOP'
tio] r, 2:OT+ (Co+FRAMS),OS
[i -*LO, (UMAi)+4-pOT) 0, (RPTAD <-17f , FRP.) (MPMAP4i+x/IC) ,P P4-PRAD FP
[t2] L4:'OP-' t C'(Cv' t)/C
[t3] '~(t'Ex t 0 ~ ~'t C), (+I26) P C+('l+Cl' ')+C
[.llt I;OC-(Ct I=)I C
tL51 4L4 P 6s W0.4 i i+Ptftl)) yj PlnA. t t 1 09 -p WC~p ,Loc
[ti] +t4L 't Lo+/(1i+pPIP)X,PFtD A t 9 pC4-((9-pOC)p)(+Ct)4C
t[7] tP'it.+(i 0 +pPIT)pc,,PiD
tl8] OT-+(tt.,(1+pPID)OP,i4pO),0T
Ilii +.LO,(i!;A~-,pOT'),(FHPT2-IMAD 4PRPT) P-'PPtLoc],PP
[201 L4X: L0pot1otERUQA-TE NOT VAtLID
t21] L3:-+(L3+1),(p2ID+FIrpCrC),(FRPTf+FRP![C]9IfADn) F'P+.FP[CFP]
t221 PT+PT,02t[OPTt+/(il+p .L)~t'BL^,= 9 1 pPit [1t !I+i7l
t23] PTP1Tsot[FRP+iFRP_~[2],-FBPT[~]
[2*$] .t Oxo (F}P* ~P),+(FRPAT45+~FtPT),.(A~P4.AMP,FP[1] 9),O A~{~Mc ,FID[I1$ j

t25] *(MOx:tOi+= PltF),(L3+i) ,pYPD+-PIDtli+%"I+%FpPID|]
t[26] O(((pPT)117),i7)pPT
[27] (((pAtf)~9),9)pd,!M
t281 ((pAIIP),)pA.MP

V

VFO0PRlA tt ni

til LXtO=2/(tilpT),TBL^o 9 i pLOC
t2] .+9,poERROR 2
t3 LitT/L--(i 0 pTBL)oLOO6,'fL

t[5 ' +(i g+±26),(1P' -bp) . jOORP+pIA t O
tS F3tPO +1 +:t2t), (t p.-(~ I *C)/C+-1iO+19%C) ,OP4-lOUgC+k'Pl~tT?
[9] A_*i++/(t pI~$T)~,,IN$~^,=((~oIN£.',),I o(((i~ptN$)-pOP)o' ') OP
[~] '~(F1,Fg~F3,Fg,fS,RS,P7,F8)[d]
I9] Plt tPOoEHROR 1
t[i0 P2't4PO2At(i] =i) ,FPExtTM[,pt31=
tlHt F2AI-~FO,(oDECODE)t(FSP3to3,TEMP[3]+t

tl1 ~,*(PA2 2 V[]-.1 .P~' tE t ~M[]--"

143

[1t] t I+TJ.4.+/('.7)xCOpD,,S^A.= 4. 1 pC"((4,-C)p' '),C
[15] PA i:-P(3??x tD)::0),FO (TEIl[4I1),oI I pF9'J'I;[71-(7,0,1,2,3,4 ,5,5)[4)
[.16] i'3B:'~.FO, p'flfOR 2
[17J ,'3.,!':+F-3A, (E,''[] 2.1),Of7tRROR? 4
[C 171: - (F'4A ::V[3]::),r'PLt, 'xFPr S] =1
r[19 l 4A:.+FPO, (5tRP[5-1l),pFTBL[87P-TRANS

[20] Jti:-+FPA, (EV[r3].1),p'RRO1? 5
C.21] F5:+ (F5hxAt,,[t417=l) ,'SP[xiTEHP[1]-.1
[22 1 FP5A1: -,0O, (0p FL [81] 2'.RA .S), .7';IP [] -i
[23] F S:'6FS/,,(6} [~.~7<-6),6t;:RROR r
[24:1 r6:+(-i.'Axlt'Y[s5]=) 1,FrSAxTEw.r[:2]l
[25] C6A -.F O, (Ti.?fT[2 t -1) P PTF L[4]<(3 5)A S
[26] 6':-.I , ; ,(Eit 5] -1) ,P7JRROR 7
[27 71 :7''(F7Ax 6"[i , 7 TEx :t Th, f,'P[6]--1
[2 87 [?I~D,+I(')i+ 7xTS PS^A,=r 4 1 OC((-o-i -PC ' ')C
[2 9 - 7 7A:- F7iB x i1O),- FO,(E'Ef !F[6]+l),Op;"?.RL97..(O, 0I,2,3,4,5,6 7)[~

[301],7[; :-PoFr0, I'1?OR 2
[31.] P2',:-*F7A,(If'V[:6]-I),pERROR 8
[323 F;8:F 8 A: x t 3: f /3 + ?,~fP
[33] -,(F9xt 0;p V),O, (prEi?'OR 9),pTBL4-2'BL[t(1+pTRl)-l;l
[34] 7 A, :-(F9x l O-p V), 0, pPFOR!ID-FTPP. L, (8p 0),]'ORMfID
[3 5 F : O. pO ZEl T ERR

V

VFRAM ES[LI] V
V ITBL+-FRA;L'S;A;V;D;Di;D2;Pi;PTS;OT;P3;P2;C;PSY;DSY;ISY

[l] -,(L2xlO=+/(tipPFID)x,FID^.= 9 1 pLOC),(A+V4-tO),lD*-D140
[21 -'OUT, pEPOR 10
[3) L2:PID-((1 O0)+pFID)pLOC,,FID
[4] SYTP. 1 1 p' '
[5] SYTB4- 1 9 p '
[6 -"LOxll+(ITBL-tO),IOxI+pSYPO+ 1 1 pO
[7] LO:-*OUTxitl=v/((500+pITBL) >X22),A/' E7D' =3+94C+.TNPUT
[8) -*(L7xl1=^/' '=LOC),(tOxpLOC+4-9+C),IOxpLOCA4-40+C
[9] -*LOOxtO=v/('CONTINUE'=8+9+C),('DIM7FNSIOfN'=9+9+C),tOxp,P3+'1'1
[10) P3-' 0t

[11)] LOO:-L7A,LOC+LFOR1f P3,LOC+(LOC•' ')/LOC
[12] OUT: '(OUT+2)xtO=pV
[13] 0,p OUTERR
[14] ITBL+-CDAD ITBL'-(((pITBL)+17),17)pITRL
[15) .0,p MEMP
[16] L7:LOC+4pO
[17] L7A:C+9-C
[183 -.GOTOINSxAI/'GO TO'=5+C
[19] -REPINSx^A/'RFPFAT'=6+C
[203 -,COlNTXtA/'CONTINUE' =8+C
[21) 'DFMxIA/'DIMENSION'=9+C
[22] C+((Ct' ')-1)+C

141

t 4 >, Tr7x, i A UzA tS I F+ C
[23] "- 3 X i A TP 3t + C
[2 5:] -4-1 7/ i x t t - 1, D [~I 0' C
t2 6 L0o0ot +Ut3I)h'Sx At^/iSUl * =3+C
[271 4+SYYtSxtA/tSY/C '4+C
t2 8 -1[l lt f 1' Jx /*l' IORD t - +4 C
[29 *t.r,7/12 xi v/ (t c 1) * (t l)), (+ 1), t - (Dl 0+C
.301 1;7A,-4-L0x2=pERlOR? 15
(311 L7iA2: :L7A3xi O:opC
[32] P:t1+I'lfl;D.,T, '2',DI+((DI[14'D'4Ctt(,+-t])-i)'C
t33] 'T"l-LIT1L, ',PI2OPA C+(p91)+C
[34] I=O:-,,(LOxtO=p-C)6L7?A3ttOev/(l+C=t-*),l6C:=t+t
t[35] +LOOOt(oC~'14C) ,ITBI;[(oIZBL)'-i]+(l~t1xC1=* +')+2xCt1J=t - '
[36] 7Al:P'I%'°"+j4.'DEL tO*(t : oC(Cttct})C),(tglt)-l)%C
t 3 /1 OT--PARSE C

38] -T.LO,RESCD LOc, 4
t[39] .If,,It$Nl+4t (rl ~oC)xc--) *)~C'+3~Ct4f01 +-fFixt (9<p1)VO'- C+.(0-i+pj)l)4. C
t t 1 PTO[~-1 + LIT'P);]O t 0 , D

t42] +I; l ixt('* ,I*C)V(+ /C--'(t)*+/C =*)I
t43] O-AI,-PAiS C
t44 4LO 0,' RESCD LOVt
[45 IP :+LODpERROP 15
[t461 GOTOINStA44.(.1[4,(2t2+ OR,. 0t

G(D2
t)/D24_((±to+C)) +i0c)),7po0

t[7? 4,I 7lTBL+Z',"BlL oClO(20000+4D2t[.])o
t1f8 3 tLr:j-,I L i/B/lp 0
t4 9 1 CO?7I ' -TlO. I-TL+IqiTE LOC, 9e2 P
[503 DEM:+DE!llxt[~<oPi+(P ' ')/IP4-(Ct i ')+C+<0+C

[t] +LO ,oIST~+ITBLtOC,iO, 0,(tPlsI+LDE ' o~ PJ. .) ,lopo
[521 PB I. t.:-LOraURROR 1i
t53] REPIHS/1p+*='=-,--C(Ct0 *)+.4.ioc
(643 S tL7A3x4liv/(2dp36)P(D2'4),'c)P2opt+0fo)/t~l
[55] Dl'~-PAt{'SEt'tl-pC+(t~t ',t')~,g) ((Ot §, t)-i)+
[S56 D2+l +£ID~;L '*,(t'.I..'.C-~(C~'"*)4C),((C~-*-)"~.)+C
t653 Pl4-PAlS- tpC4Ct W *C)~C),((Ct* *)-i)+C
t5 3 4' (lttPi) xPi , , 0 6 i

t~P 4+3%Pit t , (at a),P~T24,Pi+(3%(iipoP1)xlOO C I+ ~%

[62F] -~,O,I"T~,.iTBLLOC~9-,,t)D2,jPID~,OT',30
[6 3]FDFNs: t ICt.J ft; (1:34-) ~, (b244.),^ P2+.0
[64 SY'I)IBSt-ICI{H-.t,(tP34*-G) (tD2~4) P2+O
t65 3 sUBMrNSIf iIC?4N, (P3+), (D2+-3),P24-0o
[66 3 IClN t -tO,lITlO,-IrtTBL, LOC,P3 ,0 P2, Di4-OPRA C*-D2+C

145

VIll7pII7'[rfl v
V V- -.l NPU Ti; TyT.

[1 30p ' 12 3it 5r, 789* '
[2 1 v-,-
[3] *lx rE31='*'
t[J~.] I'+V, (~0-o I)o' '
t[5] +O~xlt F[80]~'*'
[6] -'+-I 4v F
[71 80p ' 12 3456789*'
[8] W+fwJ

[10] V *V, 1P/
[11] +6x t' *' =-I+ W
[12] V+V, '

V

VCDAp[[lv
V B-CDAD A;I;k;D

[] -~L1,p(po'AD- I 1 pO),(pDAP+- 1 1 pDMfAD),(I<-I),pPSY+-DSY+ I 9 pe
[2] Ll:+LOxO0poK+-(K;eO)/IK-(tlfpA)x(lo=,A[;5])
[] D+(D),/D.-AE'I1];
r[,.J A -(((!1tpA) 1).,,4(1+PA))Op(,fil[,'[1 1] -1 s;])., A [K[1]-. t(t1 tpA) -K[t1]J;
[5:1] DSY+(1 0 +pf)DSY)p(,sYTBE(I+pSYTB)-DE1];]),,PSY
[61 DAD+(I 0 +opAD)p(D,4D.[1;]+P[3]-lOOOO),DAD
[71 *L1,SYPO[(l+pSYPO)-lP[1l]; 3-I
[8] LO:+L2xiO=pK.+(.K'O)/.K'(%lfoA)x(9=,A[;5])
[9] PSY-:-(1 0 +OpPSY)p(, r[(-vB-(AFtK;]);),PY
[1Q] PAD+(1 0 +pPAD)p(PRAD+I+l'),9,PAl
[111] SYPO[(IlpSYPO)-Ilt,A[1+K;];1]+-2
[1.2] .44(I pA)I tK
[13] .LO,,A.-(((1+pA)-I),(I+pA))p(,A[i(It'K)-I;]),,AE(ItK)+iA;]
[14] L2:ISY+*.SYTB[(D¢O)/DD-(tl+pSYPO)x,O<SvPO;]
[15] L3:D4-A[I;],K.-+2
[16] +L4xiO=D[l]
[17] d+(1tpSYTB)-Dr1]
[18] A[I;1]+-50000+DAD[1+(+/(tl+pDSY)x,DSY^.= 9 1 p,SYTB[A;]);]
[19] L4:+(L5x%20=LD[K]'-1000),I+126
[20] +(L4xl 18eK+K+l)
[21] +-(L3xt (1+1tpA)I<-I+Tl) ,O,pB+A
[22] L5:-+(LGxI -2=PTS),L7xi-l=PTS+-SYPO[(l+pSYPO)-D[Ki-20000;]
[23] A-(lfpSYTB)-D[K]-20000
[24] -(L4+1),A[I;K]+20000++/(It1pISY)x,ISY^.= 9 1 p,SYTR[A ;]
[25] L6 :A+(lt+pSYTB)-D[K]-20000
[26] -(L4+1),A[I;K]+LO000+PAD[+/(l1+pPSY)x,PSY^.= 9 1 p,SYTB[A;];]
[27] L7:A+(ltpSYTB)-D[K]-20000
[28] 4(L4+1),A[l';K]+-50000+DAD[1++/(l1+pDSY)x,DSYA.= 9 1 p,SYTB[A;];]

V

146

V I,,CODI,1- r] V
V Y+.fEO)?,;f l

[1]J Y4-t3
1121 I, O:-:.(PI'llxIV/CrI (Bt),(OCT,.xiC1Ti'OIt)I,C'lxtCtJ.]c t Oi234tJ?7
[31 RHlI?.0? (,,,o:?7R 2t),t,'Er2 5 ,1- 0 0 0
[41 OCT:-).CRI?x t OpC- 14. '
[5] OCT-l:' ERP!~lcICrI I '23~IS67 t

[6] +(oxlox C +0C)-r,lIpPSP-+FP, 0 11I+ 2 2 2 T(O1. 234567' tCt1l)-Ii
t7] B3N1Nt+--RRxi t'^/(J}+3-1+D1)-(-(C4'iC) t I) O) +C) E ' 0 1 i

L8] +(LOxtO'pC+D4C)~L.I ,qP+F.SP,-tlt
t1 L:FSP4-((32-FTB 2]-.*pFSP)P O) FSP
1110] i"_'BJL[]-6-+/~i.O*(p7())-tpB*(UO)T.). r2J6+,SP
L 11] B+(GO 8) T2J. lb ~./;'S1
L i2 3 -(IRA xt 32<FTBLt[2), ,PTrL[S.T..+/Bx lO . (OB)"tpB

V

VEIrmonRL [11 v
V ZR;,ROR Z;Y

tl 3 4(Elt , R2 ,1 .3 , K 4 b PS * ,1+'6 , s'7 , PS, F9k ,kl r,t i li ,14,X,Ii2 3 P t i P1r 6; t1 7 XIt
[21 E12s-O pY OP, iS NOT A L".'.A.L OP COPEn
t3] E2: -P OpY+-'ILFECrAL ARGUM!?U P FOR ,0P
[43 E3.-+EOopY+4-0VA1tIIi'G MOPPRE TYAN 1 PSP IVls,
[5I Eu'4:-EOpY4*WAPi7IG tMORE THAP I CO1 , 178T"
t 6 3 E5: +E0,pY+ UWARNlllG M"ORE THAN I BIT RAPTE' .tNST
[73 E6'.:E0TY+-WARNI.G 4ORE TTHA1 1. IRT.'S/PO0RD I7STi8
t 81 ,7'4-E0 Y-4-'t-ARNIP!G tMORE THAN 1 WORDS'/FRAP INS! t

[9] EIRV:4EO,Y-i.1TWARNI'NG !OHE THANi TPP SPEED I71S'*
ti0] E9:'E0,iY'-+'FOR!AT ,T,[t11],' IS NOT PROPP.RIr,Y DP.I.tNPD
[it] IrlO: EOpY*Y+,OC IiS MULTIPLY PPFIPPDt

[19.I E1R:+E0,Y4.Y i?7tJX ERROR IN LOCATION ',tOcA,* Itm,,rEAtw P}M."FRP
[i3.] E12:+EO4 Y INDEX ERROR IN LOCATION iLOCA,* NUMBER I, 9gg
[1i4] E13:A4+3I0T YET DPEFImEDi
1151 4+E0Ooy~tNDEX ERROR IN LOtACATION iLOCA~* IPNDX tji,~,
[16] Elt-iEi'Y- DEFNPTIOP ERPOR IN tLOCA,' PARFNS PONP MATC!t
[ti7 Ei5t4-0O,,Y+LOCA, i EXPIRESSYON IS ILLEGtAL
[t1] E162:+E0,Y-ttO
ti9] E17:'+EO,'+IV i LOCAbtEXTRA PAR[NS SURROUND t,p3
5203 Eot-4O,(V4-VpY),(pA4..AY)Opz+'oIO

V

VErNTR5t13V
V b+ENTR X;: V3

[i] -LOtOD4-+/(tlJ.+pSYTB)x~iYTRAB^.= 9 i pl+X
t21 SYTP4-((1 O)+pSTP)p(i+X),,SYPP
t31 SYTAt-U1 0)4PSY2'i)p(±+X)jS1'R
[41] P4-(loSYTB)-1
t,5] S$PO-((i O)+05YP'O)op,*SYPO
[6 *(E ~iR t 92 s.i4X) 0(IDAJ@ t i t+X) Xo

147

r7. DAJ:','O,rSYTP[t ;] '2'
[8 nL .O:-~.Fli'I~:i(^SYTP.D;]=nI-+X)^'I'--I~X
[9J +Oxp,D*.(IfroSYTf)../7
[0L] RR:-Oxp(D-0),pER;ROR o10
[11.)3 iER1:+Oxp.(D+O),(pl7?]OR 13),pV3+1+X

V

V, FO0 t,,'. [1 I'l V
V Q:-LO', f X;Y

[1) +A1lhxli=' (eX
r[2] .Oxp-+(ELR,11X(ltx)((g-pl4X)p '),l+X*-(X7-' t)/X), 0 0 0

V

[3:1 A I Q+?.1. I-(I) ,(-p 14-Y)' ')1 Y'<(X I)Y-((X I('-)X
L Y<-4PA I .",~ (X I I ')-)+X

[6l -*Oxp(,I*-,!P3+Y[113](I.Y[3),Y[2] ,Y-(3+(1=PY)x1OOOOOY,1)+3+A
v

VLIDEL[[IV
V QW-LI.I),l X

[!] -kAlulxl-v/!l:' t . 23.ti56789' tX
[2] +Oxop dO-20000+1-+LYORM X
[31 A11 :4"]. 4l<r:'.-l+X
[Li] -0xp, 0-10000-10J(' 0123+456789' lX)-1
[5) L'R:+0,(Q4-lOOO),pEiRROR 12

V

VilE.'?Ij [1lV
V Y+f PEMP; SS

[1] Yo-12
[2 1 ' PROGR.AM

I

[31
[4)
IS]
t G 3
[6]

[8)
[93
[1o]
[11]
[12]
[13]
[14]
t15]

[16]
[171]
[1 8
[19]
[20]

V

SS+-' V1 OP V2 V1 OP
' ADD LOC V1 OP V2 I L A V1 OP
('12 345 ')$(((l+pITBL),1)ptl+pITBL),ITBL
-LOxi l=1tpDSY
'DATA SYMBOLS'
DSY
'DATA ADDRESSES'
(((I+pDSY)-I),l)pDAD[Itl +pDSY;1]

LO :-L1 x l=ltpPSY
' PROGRAM SYMBOLS'
PSY
' PROGRAII ADDRESSES'
(((I+pPSY)-I) 1)pPAD[-1 I+pPSY;1]

Li :+Oxi 1=1+1+PISY
'INDEX SYMBOLS'
ISY
'INDEX NUMBERS'
((ltp.rSY).)p t l+pISY

V2'
V2 R '.SS

VOPAM [n] v
V (04-OPRAPv XYtYtIS

i] 0 4,-Itora, (K4-0), 0xPS4-pX
[21 L0o:At.l-lxti+X0t t

[3] -~(~lr~xtV/(O=pX) (* tlX=t+*),j(ltX=t't*)) (£Ox11+Z=tt*(),~
[tDi.] .OxpERWIO 15

[5] -~((LOjol)x~7<i3),rLOO~P2*->LIDE 'OtY
t6] L10:-O pC4'(S-pX)4-C
[7J Li : Y4'-((Yt. 1l Y'X I (, + "]) -i) ,+i'X
t]/ A+(3 1 034'((3-pY)p '),Y,X.+-(pY)4X
[9] -FJLO2)xitO=L++/(i7)x,(7 3 p'PE'POT2PEAPOA L F B)^A.-

203]4-LOO,(hK'K+l) O. Or]+O4- 14'LX4I 'K*4-"
l11] L0.+-((L00+l)xt0=')tcX),L,2xll-- , t(XI t t) t)tX+i~X
[123 -'LOAxxl =A^/'ALL'=3+X
t[13] Q[3]+P A?S:((KX' ')-1)P X
[1ti43 -LO,(T((Xt')'A)) K(Q[]+OO10000),(Q23)
[ti5] LoA: -2LoO, (oZ[$)t2],d142
[16] L2:Y'+(t-l=pX~-(Zt')i),[X)((tX~tt)-i)'[)X
[17] -~(LOO+l)xi2~p(Kt:O)/K~.Y='tot
ti8] K-(t "I.p Y-(t'-() . Y),((Y.' t)-l)+y

[19 L9-+AtSAE K
t20] ~+(IwpL)x:+L, 0
[2t] Q[t 2 3]+3+L[],([L[3]),L[2.]L+((i~pL)x(3%10000,~,~))+_
t22] K4+(I 1 -pyt-(Y , t) Y),((Yl' ')-y) +

[233 L+4PARSER K
[2]) K4-PAPSF Y
t25] .'-+(l1pL)x3+L,,0o
[26) Q[5 6 73+L[1II(IL[3])Lt.2] L-((lpL)x3+lOOOOL,~)+A
t27] A*+('[pK)x3K,0,0o
[283 -LOO,Q[8 9 10-3+K[it,(ilKt33),K[21,K+((I=pK)x3+10000,ki1)+A

VOUTER R[]V
V 4Y+OUTERI? IJ

til .4-pV
t2] Li:J+V[i]
t3l V*i-4V
tIt J+A
t 5 A*JA
[6]1 *t ix t 0 4-_r- i
t7] A
[8] Y.-'j0 t

V
VPARSEE rly

V Y.-PARS', .tS; STKgnTKV; T.rC¢ .rSV p! t~
1]1 ~OxtO-o(y~.to),(bi ,+.IrS,,a)t) ,($ F3_LJ c 6) kS T t +r Pv t~-O

[2] #!-(Nxt))iS)+(Nx~(~=..r,q)+(Nx;~- to,qx)'tiXt§=.rP' +#*°~¢+

1]'19

[4] 1,00 :--Ox-l: (,fr,-(pr¢)+.T),(1+lJ, N-1 r), rp W-(l+N)+T,
r] -+Lrx ' l[pr
rio] -l.ur)x'l (lY.'C=5)VL C = ?(
[7] xY-/,TEJ/L 2t1 2 3'I
[r]i +,LSx =o(pt'!rS!-7) ,(LIC+),r/+l t0

[11 -IE'?lxIv//r.C. 1 2 3 4
[1211 -;Lsxl2=o(tITS~t~o),(LIC+7),rlw-lo

[1"3] FT?:-~Oxo7t,'?P,?R 1.5
rlq,:l],2:-).L2AxJ.:1v/LiC= 1 6
[5 .~l,'R?2xil=v/L..rc: 2 3 4
[161 X4--+/(xI)x;':'+-*,
[171 -,L5xi2=p(t!SV+rT-5),(Lr.C-4),fU-+rO
[1818 L2A:+E.R2x l'I/¢ +-'
[19] -LSxi3=o(X~-!OOOO),(.HIS4!-7),Lr(+5
[201 ER2: :+OxpERORO 15
[211 L3:-+ER3xilv/LYC: 5 7
[.22] -.L5xtl3:(Xvf-G), (TISV+.g),(L~rE'~G)),t.7+i
r237 ER3:+OxpERROI.r 15
[241] li: -FO.x I-ln (p T.~-(p ') +IS), (V;'-1 +:1-p rtI), p ?'<-(1 t+?7) + T,

[25]1 X--lx4++/(i9)x,(q 2 ptFO?7LEGFT, r,'G'0PArirnItA)^.=(2 1)p2+tT
r25] 4 F(1lxll>I I>)+(2xv/ 11 12 =lY)+3xl3=lX:
[271 -'4RL4xtl=((v/,¢: 1 2)^V/L.r= 1 2 3 4 6)v(T.=3)Av/TrC= 1 4 5
[28:1 -Lxz:r(f;1.-O) (h'TSV1-+/(lxU=1 2),.xFT:,),Lr.L'.+-
[2q] ER 4 :+OxpEli?r0 14
r30l 1S:L ri(5,Axt ,rSV> I tSt/Y) ,LSPx ti 1rST,<I + P'VT
r31] . -(- Ox l o 1 f =,), (Lt~O)xtO r,),Oxt O1o(S'V,-.) ,,qmV-+.. rx' t: X t

[321 O-'0 x ERYC'.? 14
[33 L5A :A4+(STJ<V+ ((o xP.S!:1O)+HJSV<1)x<I rtSV Prqsv+l) ,pr"T,)) ,LA 5-1
[3'] .- (LOxt1:P), LOOx ti osIS),(Oxt oI(S~*-Y,¥,7r~),A_
[35 1 L5R: -L5, (STKV-1 +STfV), (ST(-I +S'K)),.Y+Y,1 t+S"'K

V

VRESCD[n]V
V DD-RESCD OPCD;P1;L;V1;OP;YV2;R;I

[1] P1+(OmP1P)/P1+(z pOT)xf_'<O
[21 -(Llx O=oP1P),LO,PDT-1 +I- 1I00
[3] LC:.*L2xi13=ioTrp11i]]
[41 A-(I+-1+I), R-30000++I
r[5 -oOxO =(Vl+OT[P1]ril-2 1),(v2+O.'"r[l[171o),(OP+-T7rPlr1),A
[6]1 -Ox "I=p(Pl-1PlP-2) ,O.T+((Plir]-3)tO?) ,R,Pl[174om

150

tt7 th3 v'TIPt' OtP¢.h, 1 P'F,,I,OP,V2,~R,~r)

..i t((/ l) -l)D/, (VI4-.tVi-30000), 1t'2-2-r X 1 0o)r
o.0 t o:r)6

Lt I40* n!:p(II4I2h OP-N- pr"S irii-0.l', op4a
[1 --L I t- , -t O.p (l0t.' - 4),[r 3.] -1]), -(., (Pi . r) +. P r'
~13] .. ~L. (Pj+-i$Pl u1), .n+((P1F1]-2)+Om) ,R,pl[1]~,,

I. 4t til. TPbre -YTP I, stn!rt 0rs onP~oi(ptftr))*i jfp

V P'A #:r; t1.; t
[1] _~D~,C~.t((Crti]:)')vC[1]ell)^~v\ll=(ll ',O12345~,?~q,)tl+C
12] .4+tj,,O t(Cit]~'O)^-'V/9(R+) tA IC
[33 *~(t!'.#, t(C[I1] tf')^'V/3=e 01ItijC),i

~.1 'Of,(Xn) ,pERarnoR? 2

t] i a- ,Zli+0 +tlt C.-(Cl')C).It] O¢~t*oix.~l(() +#)tC4t~C)-i

APPENDIX D

This appendix describes the APL routines written to simulate the telemetry

preprocessing language and presents listings of those routines.

The routine BUS directs and controls all data flow operations and control

sequences within the simulation system. Control sequences can take up to eight

ID commands in succession. This allows a total of 128 modules to be connected

to the bus at one time. The BUS routine computes the record numbers of the

module storage file on the disc system.

Prior to executing any functional sequences, the locations CONST, CNSQ,

JQP, and CUMDND must be initialized to zero. CONST is the bus system con-

nect indicator. CNSQ is the connect sequence control flag. JQP is a job queue

pointer. CUMDND is the current working module number.

The entry to the connect sequence is controlled by the first branch instruc-

tion of the routine. Label L1 is the code to execute the initial connect sequence.

It is entered if 1) a send ID command is issued by a module in control and

2) either the bus system is not connected and the connect sequence is just start-

ing (CNSQ = 0) or a new connect sequence is being initiated by a connected module

(CNSQ = 1).

Label L1A is the follow-on connect sequence and is entered if 1) a send ID

command is issued by a module in control and 2) the module is already connected.

This can arise because of successive send ID commands in a connect sequence.

The sequence labeled L2 is entered if 1) a transfer of data is requested,

2) the module is in control, and 3) the module is connected. This sequence is

exited if no modules are connected. This would be the case when the send ID

command is being used to clear the connects to the bus system.

151

162

Otherwise, a control vector of connected module numbers is set up, the

modules are tead in one at a time, and the data is transferred. Then, the up-

dated tiodules are written otto the disc, the original module is restored, and the

sequence is exited.

The sequence to drop a connect is labeled L3 and is entered if 1) it is te-

quested and 2) the module is connected. This sequence simply drops the connect

and exits,

The sequence to transfer a selector is labeled L5 and is entered if 1) it is

requested, 2) the module is connected, and 3) the requesting miodule has control.

the sequence checks to insure that only one module id connected. If there are

mnore than one, it exits. the sequence then saves the current module parameters,

reads the new module parameters, executes the instruction, retrieves the siele-

tor, restores the cutrrent tmodule, updates the selector, and exited

The control transferal sequence is labeled L4 and is entered if 1) it is re-

quested and 2) the requesting module is connected. this Sequence will create a

job queue if a multiple control transfer il encountered. the form of this queue

Is a matrix whose humber of rows equatls the number of modules connrected, the

columns are comniposed of the current state of the System, i. e., the destination

module of the transfer, the task to be performed, the request originator, the bus

coninect statust the connect sequene status, and the request type. this matrix

then becomeS a task table of jobs to be done. As long as there are entries in this

table, every request using the bus system is stacked and the job entry of this

table is the task performed. In this manner, the Sequence of events is kept cur-

rent.

Sequence L4 will drop the contect to the bus System and exit if no moduleS

are connected, If a sitngle module is connected, the current module status will

be stored if it is in the stop state. Otherwise, execution will continue until the

153

stop state occurs and then it will be stored. The new module will then be read

in and control will be transferred to it.

The routine CON emulates the control portion of a module. It initiates

functional cycles, keeps track of the address of the current microinstruction,

directs the reading of microinstructions, and controls the external communica-

tions to the module.

The routine FMSH emulates the search portion of a functional cycle.

The routine FMRD emulates the read portion of a functional cycle.

The routine INPUT is used to load the functional memory modules. It ac-

cepts octal data as input, converts it to binary, and stores it in the appropriate

word of the memory array.

The routine INST decodes and emulates the operations of the forty-three

microinstructions of the functional memory module.

The routine LIST is used to provide a formatted output of the contents from

the functional memory module's memory array and from various registers.

The routine MCON is the initial entry point to the simulator. It initializes

the various parameters of the simulator and receiver as input, the initial point

of control, and the type of cycle to be run at the start of the simulation. It also

prints out the results at the end of the simulation.

The routine PICK takes the top entry from the job queue matrix task table

and initializes that task.

The routine PLACE adds tasks to the job queue.

The routine READ retrieves an image of a module from the disc system.

The routine WRITE places an image of a module on the disc system.

The routines that have just been described comprise the APL simulator of

the telemetry preprocessing system. The APL program listings for these rou-

tines follow.

1i4

vnutts[fliv
V ?U$S lX~.t XOtX1

t 1] 4-I+COP
t2] +(Ls*xt(tEYTm)^(notVL' ~.I)^Anp!Cetfp.ll-t-i),jo rt.FflB6
t[3] +(L3xt(XM=3)A^lNC9Ct[r i]]=I) ,eJOAx (i=JP)^tx't4

t[0 G L 2x 1(EXT=i)^(C OIT=i)^COhCTtt(:OMt1]]i Jt= i
[7] 4L4xt(EXP-4)^COICT[EnCr 1]]=i
t[81 40.,TOP+.-V/(21Pt2i+61)= 35 39
[9] 9J l:M Rl+(PflUO)/tfPlI+(t)x *i6 +J1 +tCnf
[0) i I)II-(i6,>: 2j. 3 + I 7 7COM) 4.rRI
[1il +O,(CNSQ+BCOp[21]),COncCTt.r1I]].i
t2] LiA:M Rfb.?N-<-MDRN, (I i6x 341 7 4PCOM) +(X Xd)/XO+ X(i I6l B + I4COM
[13] -J 0, cNSQ+l COp[2i I

'I .l] t I+OxtO-pXti+,MP?#

tisJ WRI'FE
[i6) ,2AziP,A; Xitilj
til1 cOn
tal 8JCOtJCptpCOti]1]+i
tiql opEr Xli. r I
t201 4L2Axi)Yp.,X1 4.-X1
t21JP PAn o
t221 wO
t23J 3 t] 3 o Qo ,(Crt~..i) ,)C rt c ~ III1 +o
[24] LS:40Ai itOp MPRN
[253 I',RIp, O
[26] tAtP HtPR)V
[27] COP
t 283 coiCm"t co)[t 1 ' J+I
[29 ? PAD 0
[30] 40,P itgOHat
t3i)] L4. .+Jtp(1,nRn e)v(oNTl~=it)vI . ,,P14O

t33] to(JQBtJ Plit),O tO bp0 vdtN
t 341 LJ1R,1t t cuPDaO
t:391 J RAD AHMON
[361 P4,- I i4 p 0cfl

t 303 J sm
130 4tA44wtiPUP
t4ol MUPR,2IAbh
t41 DAVA

; 41 J 90Qt 4#1A X t JO~s
t441 RbNP

446 1 crno .

155

[t71 pI'Q~ .((()JT1'1i) ,1)pm)?RA), ((pflnlRT), if)o
[~l. 8] -. 0 ,.rQlP~-I
[q19 JQA :PL .ACl

[5()] jw :f!t ? Y 97] CilcN I!Co
r S l: PICK
r[521 REAP CUMIMNO

53 - 4(,lA x rEX'Tq4) ,LO

[SJ,~] LqAtz:-o *Olt((/.'S(?+l) ,COIICT[BF1]'"-O
[55] URTTh; CUJ!!?)AO[j 5 J li.,? 1 T i: t, vJ l f Oj)

[56 I6 ,AD !DR7N7
r [57] 1fM,216.15.1SCO,'f
t 8 i IA T A[58] PA9"A

E 5 9] +0, CU!m1DO-I,;PR I
[60 .rA4Li4: -(LA I5xt V:-:l), (LA46Xt V=2), (LA47x V=3) ,P'UN4-l =0
rs1] ,LA, S:-*O,SE£,h-PI, UtV
[62] Lr,,AtG4:F!UfEP SI'L
[G3] -:,-
[64 LA 4 7: PMRD Sr L,-F(S Sl. TlV

V

VcO!itrliv
V CO ?;FX, 7;V

[1] EX:P'-:=:IBCO.!,
[2) .+LTxiLPG=I
[31 P[21]+0=1
[4)] 11.5T
[5] .(PCxIUNI=-l)(CRPxll:2.LR),(Cf7~'"xs2:2.LPI) ,POP

[6 LP:.[l+2 IA)D t[il];; l -I+2±ArJ P5 611]+P

[7] -- 0,, A PP-.14 +(7o 2)l+2.A!'P
[81 CRD:dA'TA~-M[1 +2. ADPr[4]; o ;l+2.AD 2P[5 6A]
[9 1 .,o (SToP -1 =) ,." 0 1 0
[10]1 CW7T:M[l+21AP11P4ILl;i20;l+2J.LAt[5 6]]-:1D='AgA
[11 .I ,SO~I:I,~ O' 0

[12) FC:PUA'-I1-0
[13) -*(EOPxl V=O) (FClxi V),(FC2xtV=2),FC3x3I 3T*-2±LCT
[14) FCJ :-'EOP,SEL*'FfS WT
[15) FC2:FMRD SEL
[1 5 -REOP
[17) FCI3:FMRD SEL.<-FIS1 WV
[18] EOP: -EOPxi OE 0 XT
[19] -EOP2xt(1:STOP)ACOPCt[PCOL[1]]:I1
[20] -+EOP0xil =STOP^A-FYN
[21] -~(FCxiFUN=l)

[223 P+-fE[1+21AnD[]41;;l+2ArD[5 6]]
[231 ADD-l=1l+(7p2)Tl+2iADP
[24 CYRDCT4-CYRPCT+i
[25] INST
[26)] -EOP

Ior6

r27] AP0PO:-*oCON "4-. =0
[20] /';'P :Itthg r;Xtf'

r ?~i ' 1) 1 715 J I, 4- 'X s[23?])] .rCt,' t'. tl -t- KT t",'- 2
[301 / CNfl-JCl+/,,'XP=2
t 31 1 4 J."'rlp 1 F X '1'4-n
[331 :or] nsP, P

V PIMP S['19 RHtIP
tl F'ol r S iRII J

rU I Plt<-,;r,0±2
['] R,. 2 > t 0 -) 10
[?] 4-L."~tA 0 : S/t¢1r~ o

[q4 -~.L .i. - 2 1R.'
[] L ,I :-t~r,.2, RfI2O =

t] fi 2 1R,, I .-R/!t [.]

[9 I L ?: IA 2'A4 -(PA A. -nA TA A^MASK) vAPM' A~!A ,4SY
[10 FC.¥ CT+PCYCT+ 1

V

VPMS17U[nI]V
V sItrLF!tl WSt ' .Tt S ?r..r t C.4: C t Ct: r; ,: o A; F'O

tl {-t,4 pe 0t] TLr- 14 2' 4 J.
[2t TI, + l16 .tiO q)0
[3] 1 E,9F,/+1. r p 0 :lI
tk] C.3 -1+2L 2 3 i ?tM.t tV2oln 1 21
tC5 A6-+hr [t P20 4]^((p A t!)p o) ptHASgY^,"AlA
t6] C4-(H[.l[Vl i20t 3A^((p4t') ,20)pMASK^PATA)v4
t 7] .t+J'l
t8J LI!rI I.' 0 r T :II. 4C4YI*J Jt

tlOl J+il
till lt I xit i+P t*)>2'-'.+i
ti2J TL -V/t1 J PLI
tidl TL[VV I44LT2 UV I
t 4 1 C2+c4.~C6O.

ti6j Lo:O+v4 lt[tt/'1[1]
[17] A+nArt011[T. t; I[

Pti 04 oV / (i I) - + I.t, r ~tlt I IJ
4l t wI+2i14[T~tcttl 1 2l

t201 t, tL2
[l] t 21(*O, t (04 eAJC2)(v /A4"+l-AA2
t221 +L2,(O*OvC2vC4),(A.A^C2AC4),0*4v/(I 3)+/0,2
t23J 4t2 O(04-OVC2vC4vC),(A*AAC2^C4^C6)',F,04v/(l 3):+/jn0~e4 C40c8
t241 3~-t+lstlvrtf 41

1 57

[r 251 ,3 +:-.

[271 .f,e.L,fm,q£' [.;Fr1]].O
[2r] -;.4 , Sn,,?,[r!1'i. T I 1-A/
[279] L :4 PI-G. +//2,(,(.+ * 'I!;[t."[' -T
[301 C4. .2. I/ C?, C4,t I, ' 'LrIA TJ ;]1),(4•+/C2, C,6,'T[u I'[I |).'),

[31] C:., +l l]fT
[32 C.(. - r, [2]

V

[3~] (;6+ '2 +](.r '

[34] .:.'Lo() 1 (l+s(ojreVl))>T.Y+7-f

V.T.PIPtt.,'? P. I
V .T!,: PUTi A; V

Irl P--(lipO),(((p2)TA),n,l= 0 1 1 1 1 1

[2] ~Kq
[3 I'. <-1
[ER I Rxt^? / (. 9- 4- Y[ql) I ') 1 2 3 4 5 f) 7

r 5 , COMil5, ,(3p2)T(01 2314567 t t V)-1
C 6]I Coli
[7] -tSPlxIO= pV<-9+V
[r6 / ,71 =A CD
[91 ' !<-1 :?
[1 0] 4 FXT-.LPG<-0
[11] F?:T 'CRS: 9 C.rAIS. 1OsT 0 Tn 7........ ry A g, ..

[12 -ERt7 1
V

VYA s ,['J."7VJ-//2T[[i]V
V ,'A' T

[11 trxT+-O
[2] C!*-.(16LO0),LID Ii,JnY2,LID I3,LTDPIfLTPS l,fl.! OI,LOn2,hO2,tLIL 0n4

[3 C::f*-CI,LODS5,LPA, LDtAT,fLPfSK,LJ,1!, I,LPC, SA, ,AnSTnY ,YPT,,STM

[41 C?'IfCM,SIJ!,SSEL,SC7,S'?tDCD),SCL, LA ,7 C,(?,C ,Pn2,GP ,?4 3,YC

[5] C!.'-Cm ,iDC,OD)C,!;SKC,IyC KC,!fCADC,DC
[6] CM<- 4 16 pC!f,LM, LSEL,TPIP, SpLO0
[7) -4Cl[l+21P[22 23]1;1+21P[24 25 26 27])
[8] LO:-*0,(STOP+-1=1),CtCT+I=0
[9) L.Tl)1:-IDL,,V+ 1 2 3 4
[10) LI2D2:*.TPL,V+- 5 6 7 8
[11) LID3:*+IPL,V- 9 10 11 12
[12] LID4:-IDL,V. 13 14 15 16
[13) LIDS:-IDL,V*- 17 18 19 20
[14] IT)L:-OUT,,IDCD[;V]+I=1 4 5 pPIt2o]
[15] LODI1:-,OPL,V- 1 2 3.4
[161 LOP2:'OPL,V- 5 6 7 8
[17) LOP3:-'ODL,V- 9 10 11 12

1. 8

[J.nI tP)f:-;'4O¾,,V4- 1,3 l i1 120
1'q ln, O/)bv:-~nt~P!Vs 17 1 10 $q ;.
[20 01)oi,:- rotit,OPCI. |]r vi,4-l1= t 5 r'P i.0o
[21) N.? , :-)O T, AD +lr)-11i t+t r]
[22] rYlA-f~OUr.IMYA.,-,Pr .20]

2 231 LIM,,,T-1otT,,PsA A.oPrl;4. t 201
[21 3 r .T/t:-+OUT,-!tASK'.Pr o 1
t2'5] LI:--O UT, W V.-(VmO)/WV ,+(it6)x'"[tiG]
[26] ;TiPG; .- OU'Tx t COPT I
t 277 LP .n,- i
r 28] .O,A i).(-Pr 11i i+i6 1
t291 IfC:-OtUIT DCTJr4- 5 20t pOri
t30] oJDC:+OUJT¾,OC~) 20o p0oti1
[31] j J](; -i.T~.)1(F tl tA S ?+94.000 t)f
t 3,2] Irf} C X i-*.UTj,IIt.'sK.-20p 0=:1
3 3 lil U1;C., -0OtR , 9 A ; pIF)

t3tJ] lCI 4OUTt)A 1TA .2 0 p 0
t:36] t. It E t .l-o:J.
[37] Ot'CDPIDPCP- 5 20 pO-1
r 38 j tAS lKnA TA 4-IrfAS2-20 p 0=i

t 394 TI')-t 16

r.42i LGBAjj4: p~40U'(X+2)POH-
1150) SA:-'.'PxtCOJAnT 41AM 0An~ 1o4N

[t0] AD4D+ p=tC
[C,1] +Otr?
[42] tLM:ADD.~.P[t1a+t6]
[235) .+o'r',-4)+2J.Aln t4.]t2oti+2xJ.A.tn[5 O] . -tTAT

t 4] T!-:ID: .-,-OUT (;:;,r 2), 5CO!!~-5, I
[t60] G ,J -:+OttO', (tXT-,-2) ,PPC?0.xD , P

[47] l2: . .Ol;?i(' (EC?'O'-2), P.CO!.(2),P

[t 9 2) *:-OUT, (EXT+-2),BCOt-+4 P
[507 SA :+L9AxiCONT.O

[52] SD. . +LMISk'x I COI T- pO
t53] -0 OV T, (E XT4- i), PCO;. 5, P
t54] DX:-'DX+1+2xtCONT:O
[55] BCOM-5,(OxDATA),P[2O+t?]
[563 -OUT, (XYT4i),BCOit +(Veo)/V]~-(O Vg2o)xmi-c2£D.t)/DA,,A
[57J A+-P[((V=o)xt20)+V -(,'V<20). V+2.l'CD]
[587 '+OUT,TAT A A -(+nA-~ATA^....rM.AS,'K)v IMA,.kA(Vti O)^AA
[59] DI:DI++2X t CONT=-0
[60] EX lT-i+OX1+COf *-5 j(OxDATA) ,Pr20+t 7]
[61] BCO`1i+(V0O)/VI+(oV-((Vf20)x20Tr+.oDncn)/P.A'A
[62] -.(DX+3) P' -1.=tSCOM

15.9

[I. E3] S!.f;? : ->rI;x 1 CflONT=O
I E; I 3 l'fl (rEXi' t-), * PC0I7+ 5, r'

[G6 1 -I nlr7, (I;:/Y'*I) ,,COL-*S,P[CF7 1 i;: , r : x -- !ST+ +:, c -1

r[8 -f !UT, (c-(-pr,) ,(o) fi +tll I),,TOP-O=O
[I e1 0 ,CO.:,(', (lfr,0-1) ,PrlG. I11I
l, r/O I n? ufs 5I'7o] Jru, .5
[71] SlI~' .(;SEL¢O) /,qEL+?[%16]i)xxl
[72 1 -9OU','s(FI;JN. 1::1), C' -1 = 1 0
I 7 '3 1 I'C) +^^+112> IC).'[73] 1 OSCY:-SCY+I+-2'tCOT?,P=O
[174] 0. O::(EXT~-.1),flCOff+5,P
[75] -4Ot. TxlP['20]1O
[7C] '. .-]-x[:. 8 1 '
[77] YC+;P-['16 17]
[7I12 -O8'I,(FUN(+...O =2±CT),STO:-1=1t(Oxt(STOP=l:n)^O=2£C?) ,,TnP
[79] SDC: :-SlSC+ x 1 ^Cop T=O

80] txp(XYl' -),BCOM-+5,P
[81] I ,OUTXtPE[19=0
[82] V+-(V_20)/V4- 1 2 3 +3x(2.LPE16 17 18])-1
[83] -*Slx iP[20] 1
[8 ;] -OUT,,IDCD[;V*-1i=(5.(pV))pPl5xpT;]
[85] .S1:'OUlT,,ODOI'C[) T!1V]=(5,(YV))pP[5xpol
[8 6 SCL:-~SCL+1 +2x 1CO?0'= O
[87] +iOxp(EXT+-1),CO!M-5,P
[88] -,OfT:,I:P[932=o
[89] 4';'.,'Cx I P[E I =1
[_07 (T,,V,. O)/ (1 ((O=P 6J)x V),(P r i]) x 1 6
[51] O I D nCD'. .*- = DC,, X -Pr 31]
[92 J Ii)CD)-l =1iD('Dx-P[2]
[93] IMA SR+1 =JMAS,'x-P[5]
(94 J MAS.,J-1 =MIASKxx-P[4]
[95] DA TA-1 =DATA x-P[]
[S6] *OUT,ADPD-1=AnDx-P[7]
[97] TC:->TCi1+4xiCONT=O
[98) -*tOxp(EXT4-4),BCO?.'-55,P
[99] CONT-T-P[142
[loo] ..oUz>,t?[5]=o
[101] - PZI1

[102] -tOxl+(CONT+I=I),STOP+4--O
[103] AlDD.-(P[14+1 6]A-P[13])vAPnA^Pr13]
[104]TC1 :CT-PC[1 2]
[105] FU'v--O=2±CT
[1063 .OUT,RT-P[3 4]
[107]LAD:A-DATA[rl4+16]
[108) .OUT,ADD4-1=((DATA[16+4],O,O)xPr2O=l)v(P[20]=O)xA

t1 09]OUYtSTOP-+STOPVP[.i]
tli 10 41 -xt 5>(x21.)-(7Ptfl~tU
t[51] C(4PU4-'I
[112 C'Il+X21

V

VtCON N r[lI v
V PfCOPI'IX;

[: 1] COC P CNpSQ- +J0P4-CUl!NO4-FCYCT+CYZDCT -BST+fCN+Or
t 2 CPU-1 2 i
t3) VJ4t1lfODULnI tF, ItL NUWIBR OP Y INjITAL CoprPROLr
[41 Y'-(3p2)'ri
t51] f -',SXTElE' BIT MODtULR CODP'
[0J X~" 1 'l
[7] 'READ CUi!tDIIO+(1ix2iY)+(X¢O)/X<-(t16)xl6pX
t B 1+9 Ani)R17SS OP START'
t19 Y+(6p2)T'r

tIi X-(2 2)Tt0
t [i2 + M'R~yALE TYpp,'
ti] X-Xv 2 2 t[.
t 4] CM--.5S - X, t po) n]+i n, I ye 1'
[i~,] L~tCON
[t I . (L2x SUTOP=0), (Lix JOP=I)
t?7] ONUIER OP PUNTYOtiYAL CYCt,LES * PCYr,
t i IIU R U P R E l ?AD CYCtrES IC.YRPCT
Eit9 *7IVU7PR OP 93,tI .TRAtSF,? ,,
t20] NtlUMBER OF BlUI COA1'RCT1'S ; lCP
t 40
[221 Litt~tUS 6
[23) 4r,2

V

VPtiCro/tillv
V PICK

til A (MVP}PAJBQt I iI), (BCO0M+JBQt 1+ t 28) CU!fDNO+J4rPQt S30i1
t~j i tOxp(CONCT4'JB4l t30+iS]),CNSO+JB.[li 36])PEX T -JBO[?-3 7 t t O
e s , x t i :op
t4l JRPQ+JBQPt{I +JfplQt I
tsl -t
t61 LiI4J +QP+O

VPLAC~tfli
V PLA C t XO

[t 1 4-V C0oPl CUtWO0 ,, COCW q, CX
t23 XO4-((pU .MDN),i)pMtbTy),((Op,AbRP),3)pA
t tt @B+ (yo$ + 0 tpo#)+ I p0) jI I 4ON) pf 9typo 6 f x

1.61

V]?MPA [i []]v
V I?,'AVD X;Y

[r] QI7 8 9'G..,536(3 1)+-, 20 20 TX
r[2 Y-l:20,lp0
C(3:1 Q(I Y[I] xy
t a1 x p CO(! i'rT-Y[72 P(DA PA .YI- 72+l20]), (.TI, Z+Y[9 + t20]) S'"OP4Yt rs3:
[5.' -~tf)z:[(M:lt<-y[6+et16]),(,"pL4-Yl'22+~l~,]))b(A~.Dg+y[. n416]),P4-Yv rq+lt27]

[7: .i .OX-:o (rlT'([:iV¢O) /,tWTP.-v tf,),* tL , -, (,,r;S) /,%,Fl9.i]x i16
[8] " .u0xp(.Y'-1OO+Y),,Ol)CD* 5 20 pLOO+Y
[9] -#t0Xr,(Y;.00oo4.Y)..TJ7p-. 5 20 plOO)+Y
[10] -:0,(Y..n),,,t- 0r, 27 t rY

V

V WI? .Z 'Z7 [F] V
vrl7.--l C. .ir r vV W'RlITE A'; .V*N'7

[2] +(2+126) xitl=p , 0, V
3 IT;NY[3) I ',v/.J 4 =

['] APD.-l =1/PD
[S -'(2+:,'6)xtlp=,OSIEL
[6 Y[SEL]i
[71 A,-,.AS K,SmOP,(,O,~CD),(,IpCD),,)
[81 Y-'LPGF'UICTRTI ,YMADDPCOt ?,. .I'ASKA,A
[r] 0[7 8 9.-1,(o a)+, 20 20 TX
[10o1 QY

V-

p

REFERENCES

W. , B. Davenport and W, L, Root, "RIahdom Signals aind Noise, I
(New Yorki McGraw-Hill, 1958)

2. Harry L. Stiltz, "Aerospace Telemetry, " (Englewood Cliffs, NeW Jerseyt
Prentice-Hall, 1961)

3. Telemetry Working Group and Inter-Range Instrumentation Group, Range
Commanders Council, "Telemetry Standards, " (IRIG Document 106-71,
1971)

4. The Telemetry Working Group and Inter-Range Instrumentation Croup,
"IRIG Standard Language for Describing Telemetry Data: Vehicle
Independent Data Base," (IRIG Document XXX-69, May 6, 1969)

8, Ronald D. Cardwell, "Comet Design File," (NASA Document X-565-67-i79,
April 1967)

6. Si W. Hinkal, "TOPS Internal Reference Specification," (NASA/GSFC;
Data Processing Branch, Information Processing Division, 1969)

7. M. V. Wilkes, "The Growth of Interest in Microprogramming - A litera-
turo Survey," (Computing Surveys, Vol. 1, pp. 139-148, Sept. 1969)

8. Peter L. Gardner, "Functional Memory and Its Microprogramming
Implications," (IEEE Trans. on Computers, Vol. C-20, pp. 764-775,
JUly 1971)

9. L. J. Koezela, "The Distributed Processor Organization," (New York*
Academic Press, "Advances in Computers," 1968)

10. A. D, Iralkoff and K, E, Iverson, "APL/360. tUsers Manual, " (Ithica,
New York: IBM, 1968)

11, Sandra Pakin, "APL/360 Referende Manual," (Chicago; Science Rtesearch
Associates; Inc, 1970)

12, John A. N. Lee, "The Anatomy of a Compiler, "(New Yoiki Reitihold
Book Corporation, 1967) Chapter 2, pp. 23-36

13. "Aerospace Data Systems Standards, " (NASA/GSFCt Data Systems Re-
quirements Committee, NASA Document X-560-63-2, pp. 1..1i to
I-3.9, Jan, 27 i966)

14. Frances V, Shepherd, et, ai, "Data Processhig Plaii for OAO-A2j ,"
(NASA Docurmei X-03-.t8-427, Novethber 1968)

16. F. R, A. Hopgood, "Compiling Technlques," (New York; MacDotitild/
Elsevietr Computer Monographs, i9609)

163

16. Peter Wegner, "Programming Languages, Information Structures, and
Machine Organization," (New York: McGraw-Hill Book Company,
1968)

17. William M. McKeeman, et. al., "A Compiler Generator," (Englewood
Cliffs, New Jersey: Prentice-Hall, 1970)

18. Samir S. Ilusson, "Microprogramming: Principles and Practices,"
(Eaglewood, New Jersey: Prentice-Hall Inc., 1970)

19. Motorola Inc., "MECL Integrated Circuits Data Book," November 1972.

