N73-24835 NASA TM X-62,259

NASA TECHNICAL MEMORANDUM

CASE FILE COPY

ORTHO- AND CLINOPYROXENE COMPOSITIONS IN ORDINARY CHONDRITES AND RELATED BLANDER MODEL CALCULATION PROCEDURES

T. E. Bunch and E. Olsen

Ames Research Center Moffett Field, Calif. 94035

and

NASA TM X-62,259

Field Museum of Natural History Chicago, Ill. 60605

ORTHO- AND CLINOPYROXENE COMPOSITIONS

IN ORDINARY CHONDRITES AND RELATED BLANDER MODEL

CALCULATION PROCEDURES

T. E. Bunch Space Sciences Division Ames Research Center, NASA Moffett Field, Ca. 94035

and

E. Olsen Department of Geology Field Museum of Natural History Chicago, Ill. 60605

1. Abstract

This report consists essentially of ortho- and clinopyroxene analyses that were used as a basis for a previous publication entitled "Restudy of the Pyroxene-Pyroxene Equilibration Temperatures for Ordinary Chondrite Meteorites" by Bunch and Olsen (1973). In addition, detailed procedures for calculation of the Ca effect on Fe^{2+} -Mg ion exchange equilibria in pyroxenes, using the Blander model (Blander, 1972), are presented.

2. Analytical Methods

We employed standard microprobe techniques for the analyses (15 kV, 0.03 μ A, and 40 sec counting time). However, to ensure the most accurate data possible, we ran duplicate analyses on three grains each of opx and cpx (a few specimens contain less than three cpx grains) together with two different raw data correction methods as checks on analytical precision and correction procedures. Only those analytical summations of between 99.20 and 100.80 wt. %, and cation summations between 3.980 and 4.020 (based on 6 oxygens) were used. In addition, those clinopyroxenes with an FeO variation (among three grains) of >10% of the amounts present and >5% variation for MgO were discarded. Similarly, specimens showing variations of >15% for FeO and >8% MgO for orthopyroxene were also discarded.

-1-

3. Ortho- and Clinopyroxene Analyses

Analyses, structural formulae, and end-member compositions of most opx and cpx used in the initial study are given in Tables 1-6. In addition, data for pyroxenes in disequilibrated or nonequilibrated chondritic meteorites are given in Tables 7 and 8.

4. Additional Analytical Results

5.

The amount of CaO in clinopyroxene (cpx) vs. CaO in orthopyroxene (opx) shows a dependence on classification (Fig. 1), with H-group cpx having the highest CaO content and LL-group cpx the lowest. On the other hand, opx shows an inverse relationship with LL-group opx having the highest CaO and H-group opx the lowest; the analytical scatter is quite large for opx, causing overlap among LL and L data points. Davis and Boyd (1966) have indicated that CaO in both pyroxenes is a function of temperature, although we have shown previously (Bunch and Olsen, 1973) and will show below, that all ordinary chondrites equilibrated at the same temperature, regardless of CaO content.

There has been some disagreement in the literature as to the actual existence of LL-group chondrites since Keil and Fredriksson (1964) proposed this classification. They demonstrated a distinct grouping of H, L, and LL chondrites using many compositional parameters. Ratios of Fe/(Fe + Mg) in olivine vs. Fe/(Fe + Mg) in cpx, for example, show a clear separation of the three groups. Similarly, mole percent Fe in cpx vs. mole percent Fe in opx analyzed in this work shows a clear separation of H, L, and LL pyroxenes (Fig. 2) and supports the argument for an LL-group of ordinary chondrites. <u>Blander Model Calculations for Ca Effect on Clino-Orthopyroxene Equilibria</u> Blander (1972) has placed serious doubt on the validity of the pyroxenepyroxene geothermometer if the strong preference of Ca²⁺ ions for M(2)

-2-

sites in cpx is considered. According to Blander, this strong preference of Ca for M(2) sites blocks these sites in cpx and the Fe²⁺-Mg exchange equilibria is thus highly sensitive to Wo content. This effect on thermodynamic properties is calculated by three equilibria, which are partly dependent on three ΔG° values; two are known and the third (ΔG_{13}°) is unknown, the best estimate of this value by Blander being -425 cal/mole. Now, to calculate the Ca effect on our H, L, and LL pyroxene equilibria, <u>i.e.</u>, to calculate a curve to pass through the H, L, and LL group (Fe/Mg)^{Cpx}/(Fe/Mg)^{opx} with the appropriate Wo content using Blander's equations and constants, a temperature of ~1500° C is required, which probably indicates that Blander's estimate of ΔG_{13}° is wrong. By assuming an equilibration temperature for the H-group to be 800° C and then using Blander's equations, the calculations can be run in reverse to compute $\Delta G_{1\pi}^{\circ}$, which calculates to be +330 cal/mole.

After the necessary F-numbers (site fractions) are calculated for each of the three Wo contents, a set of calculated X_{Fe}^{cpx} values are obtained for each Wo value.

Next, we obtain

$$\frac{x_{Fe}^{cpx}}{x_{Mg}^{opx}} = \frac{x_{Fe}^{opx}}{1 - x_{Fe}^{opx}}$$

and then

$$\frac{x_{Fe}^{cpx}}{x_{Mg}^{opx}} = \frac{x_{Fe}^{cpx}}{1 - x_{Fe}^{cpx} - x_{Ca}^{cpx}} = \frac{x_{Fe}^{cpx}}{1 - x_{Fe}^{cpx} - Wo}$$

We now have values for the coexisting pyroxenes in terms of the ratios Kretz (1963) used, and these are plotted to construct curves that pass through our original group average (Fe/Mg^{opx})/(Fe/Mg^{cpx}) points, which

-3-

means that the spread of observed points is completely accounted for by differences in Wo content and all chondrite groups equilibrated at the same temperature.

The following is the detailed procedure we followed for calculating the Ca effect on Fe-Mg exchange equilibria for H-, L-, and LL-group chondrite pyroxenes:

> To Blander's reaction (11), p. 791, there is a ΔG_{12}° To Blander's reaction (12), p. 792, there is a ΔG_{13}° To Blander's reaction (13), p. 792, there is a ΔG_{34}° Good estimates are given for ΔG_{12}° and ΔG_{34}° ;

 $\Delta G_{12}^{\circ} = 3600 \text{ cal/mole}, \ \Delta G_{34}^{\circ} = 7500 \text{ cal/mole}.$

 ΔG_{13}° was a rough guess at -425 cal/mole. By using this value in the equation, a temperature of 1500° C would be necessary to pass a curve through the H-group point in Fig. 3. Since this temperature is above the liquidus, it follows that the ΔG_{13}° value is in error, as we stated above. Therefore, we assumed an equilibrium temperature of 800° C, which allowed an estimate of +300 cal/mole to be made.

Since

 $\Delta G^{\circ} = -RT \ \ell n \ K$

then for 800° C

$$\Delta G_{12}^{\circ} = 3600, K_{12} = 0.1847;$$

 $\Delta G_{13}^{\circ} = 330, K_{13} = 0.8562;$

and

$$\Delta G_{34}^{\circ} = 7500, K_{34} = 0.02966$$

To obtain Blander's F-numbers and to calculate distribution curves, we arbitrarily chose a set of F-numbers (which are convenient, independent

-4-

variables in terms of the equation). We chose the F's to be 0.04, 0.12, and 0.20 in Table 9. For the H-group, Wo = 0.46 and the temperature is arbitrarily set at 800° C; all other variables are now fixed.

Example: for $F_1 = 0.04$; from Blander's equation (15a) (p. 792) we can calculate F_2 since

$$F_2 = \frac{F_1}{K_{12} + (1 - K_{12})}$$

where

 $F_1 = 0.04$

 $K_{12} = 0.1847$

Similarly, for $F_1 = 0.12$ and $F_1 = 0.20$, using the same K_{12} each time. The F_2 's are given in Table 9. Now, $X_{Fe}^{opx} = \frac{F_1 + F_2}{2}$ (Blander's equation 16). From the chosen F_1 and calculated F_2 , we get each X_{Fe}^{opx} as given in Table 9.

From Blander's equation (15b), we see that F_3 is a function of F_1 and K_{13} , which = 0.8562. Thus, we calculate that F_3 's associated with each chosen F_1 . These are listed in Table 9.

From Blander's equation (15c), we see that F_4 is a function of F_3 , which we know is 0.02966. Thus, we obtain the F_4 's associated with the original F_1 's and the associated F_2 's and F_3 's.

Now, from Blander's equation (17), we see that

$$x_{Fe}^{cpx} = \frac{F_3}{2} + (\frac{1}{2} - W_o) F_4.$$

Since we have the calculated F_3 's and F_4 's, then for our chosen W_0 content, 0.46, we get a set of calculated X_{Fe}^{cpx} .

Now, we obtain

which is

$$\frac{x_{Fe}^{opx}}{1 - x_{Fe}^{opx}}$$

and

 $\frac{x_{Fe}^{cpx}}{x_{Mg}^{cpx}}$

which is

$$\frac{x_{Fe}^{cpx}}{1 - x_{Fe}^{cpx} - x_{Ca}^{cpx}} = \frac{x_{Fe}^{cpx}}{1 - x_{Fe}^{cpx} - W_{o}} = \frac{x_{Fe}^{cpx}}{1 - x_{Fe}^{cpx} - 0.46}$$

We now have values for the coexisting pyroxenes in terms of the ratios Kretz used, and these are ready for plotting. The next step is to repeat the entire process for the same F_1 's (0.04, 0.12, 0.20) for each different Wo content (L = 0.45 and LL = 0.44). All K's remain the same. A summary of values is given in Table 9. Data points from these calculations are plotted in Fig. 3 and curves are drawn through these points, which pass through the group averages for H, L, and LL pyroxenes. This means, of course, that the spread in the observed points is completely accounted for by the difference in Wo content--they represent the same temperature. The value of 800° C is not significant, since it was chosen to calculate a reasonable ΔG_{13}° value. Any arbitrarily chosen temperature and resulting ΔG^{\bullet}_{13} value would produce curves that plot in exactly the same place. Until we know an experimentally or empirically determined temperature, with well-determined ratios XFe/XMg for each pyroxene and very accurate Wo contents, the pyroxene-pyroxene geothermometry is useful only as an indicator of relative temperatures.

References

- Blander, M.: Thermodynamic properties of orthopyroxenes and clinopyroxenes based on the ideal two-site model. <u>Geochim</u>. <u>Cosmochim</u>. <u>Acta</u> <u>36</u>, 787-799 (1972).
- Bunch, T. E., Olsen, E.: Restudy of pyroxene-pyroxene equilibration temperatures for ordinary chondrite meteorites. Submitted to Contr. Mineral and Petrol.
- Davis, B. T. C., Boyd, F. R.: The join Mg₂Si₂O₆-CaMgSi₂O₆ at 30 kb pressure and its application to pyroxenes from kimberlites. J. <u>Geophys</u>. <u>Res</u>. <u>71</u>, 3567-3576 (1966).
- Keil, K., Fredriksson, K.: The iron, magnesium, and calcium distribution in coexisting olivine and rhombia pyroxenes of chondrites. <u>J. Geophys. Res.</u> <u>69</u>, 3487-3515 (1964).
- Kretz, R.: Distribution of magnesium and iron between orthopyroxene and calcic pyroxene in natural mineral assemblages. J. <u>Geol. 71</u>, 773-785 (1963).

Kernouve 3	55.9 0.09 0.18 0.10.8 10.8 0.57 31.3 0.55 99.49		1.984 0.005 0.005 0.003 0.321 0.321 1.655 1.655 1.655 4.009	16.1 82.9 1.0
Кетпоиче 2	55.9 0.09 0.17 0.57 0.57 31.3 0.55 99.38		1.985 0.004 0.005 0.003 0.017 1.656 0.017 1.656 0.021 4.008	15.9 83.0 1.1
Кетпоиче 1	55.8 0.07 0.10 0.10 0.10 10.9 0.51 0.57 99.54		1.980 0.003 0.005 0.003 0.323 0.323 0.017 1.660 0.021 4.013	16.1 82.8 1.10
Sape 5 usəbsrið	55.8 0.11 0.19 0.19 11.2 0.51 0.51 0.80 99.80		1.979 0.005 0.005 0.002 0.332 0.015 1.644 1.644 0.030	16.6 81.9 1.50
Cape Giradeau 2	55.9 0.09 0.17 0.11 11.7 0.52 31.2 31.2 0.82 100.51		1.974 0.004 0.005 0.003 0.346 0.016 1.642 0.016 4.019	17.1 81.4 1.5
Cape I usəbsrið	56.4 0.03 0.13 0.18 0.08 11.4 0.53 31.4 0.49 100.46		1.985 0.001 0.003 0.002 0.336 0.016 1.648 0.019 4.010	16.8 82.3 0.90
č isbej	56.2 0.15 0.12 0.12 11.2 0.47 30.7 99.71		1.991 0.006 0.005 0.332 0.332 0.014 1.621 0.025 3.999	16.8 81.9 1.3
ζ τεbэጋ	56.1 0.15 0.20 0.09 11.2 11.2 30.85 0.39 99.44		1.992 0.006 0.005 0.0333 0.333 0.014 1.632 0.015 3.999	16.8 82.5 0.70
Cedar 1	56.15 0.14 0.20 0.11 11.2 0.47 30.5 90.68 99.45	OF 6(0)	1.994 0.006 0.005 0.333 0.333 0.014 1.615 0.014 3.997	16.9 81.8 1.3
č sňetsuð	55.8 0.17 0.22 0.10 11.5 0.50 30.8 90.69	N BASIS	1.969 0.007 0.006 0.003 0.346 0.015 1.649 0.027 4.021	17.1 81.6 1.3
S snarena 2	56.1 0.16 0.21 0.21 11.2 0.52 30.8 0.62 99.71	OXYGEN O	2.000 0.007 0.006 0.006 0.336 0.336 0.016 1.647 0.024 4.020	16.7 82.1 1.2
і вйэтвид	56.1 0.16 0.20 0.12 0.12 10.9 0.50 0.79 0.79 99.37		2.000 0.007 0.005 0.003 0.328 0.032 1.640 0.030 4.009	16.4 82.1 1.5
Estacado 3	55.0 0.06 0.16 0.16 11.2 11.2 31.7 0.49 0.49 99.23		1.964 0.003 0.004 0.001 0.335 0.017 1.687 0.019 4.030	16.4 82.7 0.90
Estacado 2	55.8 0.09 0.11 0.11 10.7 0.55 31.3 0.67 99.40		1.982 0.004 0.005 0.003 0.318 0.318 0.017 1.657 0.026 4.010	15.9 82.8 1.3
Estacado l	55.7 0.08 0.10 0.10 11.2 0.56 31.3 0.42 99.54		1.979 0.003 0.005 0.005 0.333 0.333 0.017 1.658 0.017 4.015	16.6 82.6 0.80
Oakley 3	56.3 0.15 0.20 0.13 0.13 11.6 0.36 30.1 0.58 99.42		2.001 0.006 0.005 0.003 0.345 0.345 0.011 1.595 3.989 3.989	17.6 81.3 1.1
0skley 2	56.2 0.17 0.21 0.21 0.21 0.21 0.50 30.1 0.67 99.55		1.997 0.007 0.006 0.003 0.345 0.345 0.015 1.594 1.594 3.992	17.5 81.2 1.3
Озкісу і	55.3 0.20 0.20 0.20 12.3 0.48 30.35 0.43 99.35		1.966 0.008 0.005 0.002 0.015 1.609 1.609 4.023	18,0 81.0 1.0
	Si02 AL2 ⁰³ T102 Cr2 ⁰³ Fe0 Mn0 Mg0 Ca0 Total	8	Nose a c c c c c c c c c c c c c c c c c c	Fs En Wo

Table 1. H6 Orthopyroxenes

Modoc 3	55.4 0.13 0.21 0.21 13.7 0.45 0.64 90.23	1.991 0.006 0.006	0.003 0.414 0.014 1.541 0.025 4.000	20.9 77.8 1.3
S SoboM	55.6 0.13 0.20 0.08 13.6 0.44 28.8 0.54 99.39	1.989 0.006 0.005	0.014 0.014 1.553 0.021 4.002	20.7 78.2 1.1
I SoboM	55.5 0.14 0.17 0.09 13.8 13.8 0.46 0.46 0.64 99.40	1.995 0.006	0.002 0.415 0.014 1.532 0.025 3.996	21.0 77.7 1.3
8 miədrəburd	54.6 0.17 0.17 0.08 13.8 0.47 0.47 29.5 0.61 99.32	1.970 0.004 0.005	0.002 0.417 0.014 1.587 0.024 4.022	20.5 78.3 1.2
2 тіэлтэрит8	54.8 0.12 0.21 0.10 13.3 0.48 29.55 99.29	1.973 0.005 0.006	0.003 0.401 0.015 1.586 0.028 4.017	19.9 78.7 1.4
I miədrəburd	54.8 0.12 0.21 0.11 13.3 0.48 29.5 29.5 99.13	1.976 0.005	0.003 0.401 0.015 1.586 0.024 4.014	20.0 78.9 1.1
Bath Furnace 3	55.5 0.14 0.21 0.18 14.2 0.46 0.77 99.66	1.996 0.006 0.006	0.005 0.427 0.014 1.511 0.030 3.994	21.7 76.8 1.5
ջ ուլsո.(չ	55.9 0.16 0.23 0.12 13.9 0.49 28.0 28.0 99.44	1.996 0.007 0.006	0.003 0.423 0.015 1.517 0.025 3.993	21.5 77.2 1.3
z nysnay	56.3 0.16 0.20 0.11 14.0 0.47 28.4 28.4 0.87 100.51	0F 6(0) 2.003 0.007	0.003 0.417 0.014 1.506 0.033 3.987	21.3 77.0 1.7
I nysnxy	55.7 0.17 0.21 0.21 14.1 14.1 0.47 28.4 0.68 99.83	N BASIS 1.997 0.007 0.006	0.003 0.423 0.014 1.518 0.026 3.993	21.5 77.2 1.3
8 nəsladgnal	55.6 0.14 0.20 0.10 14.0 0.45 28.6 0.55 99.64	0XYGEN (1.996 0.006	0.003 0.420 0.014 1.530 0.021 3.995	21.3 77.6 1.1
S nəsladgnal	55.7 0.15 0.22 0.09 13.9 0.44 28.6 0.59 99.69	1.997 0.006 0.006	0.002 0.417 0.013 1.528 0.023 3.993	21.2 77.7 1.1
l nəsladgnal	56.2 0.15 0.21 0.21 14.1 0.45 28.75 28.75 28.75 0.56 100.51	1.999 0.006 0.006	0.002 0.419 0.014 1.524 0.021 3.991	21.3 77.6 1.1
ς νίιο)	56.7 0.06 0.17 0.17 13.2 13.2 0.51 29.0 29.0 29.0 100.31	2.011 0.003 0.005	0.002 0.392 0.015 1.533 0.023 3.982	20.1 78.7 1.2
ζο ΊϷϒ 2	56.5 0.05 0.14 0.07 13.5 0.48 28.8 28.8 28.8 28.8 20.70 0.70	2.009 0.002 0.004	0.002 0.401 0.015 1.526 0.027 3.985	20.5 78.1 1.4
ι γάιοጋ	56.1 0.02 0.17 0.17 13.5 0.49 29.3 29.3 29.3 100.26	1.997 0.001 0.005	0.002 0.402 0.015 1.554 0.023 3.998	20.3 78.5 1.2
S 250M	55.9 0.15 0.21 0.11 13.7 13.7 0.46 28.9 28.9 0.82 100.25	1.993 0.006 0.006	0.003 0.409 0.014 1.536 0.031 3.997	20.7 77.7 1.6
s sooM	55.4 0.18 0.21 0.19 14.0 0.45 28.7 28.7 0.79 99.92	1.986 0.008 0.006	0.005 0.420 0.014 1.534 0.030 4.002	21.2 77.3 1.5
	Si02 Ai203 Ti02 Fe0 Mm0 Mg0 Ca0 Total	Si Al	:55€€%3 ⊘	Fs En Wo

Table 2. L6 Orthopyroxenes

č mishziznī	54.9 0.13 0.13 0.09 15.9 0.64 0.64 99.22	1.998 0.006 0.002 0.002 0.484 0.484 0.015 1.459 0.015 3.993	24.6 74.1 1.3
S miəheien3	55.1 0.16 0.21 0.21 15.6 0.21 0.46 0.71 99.35	1.999 0.007 0.006 0.003 0.473 0.473 0.014 1.460 1.460 0.028 3.990	24.1 74.5 1.4
ί miəńzizn∃	55.5 0.15 0.10 0.10 15.5 0.48 27.5 27.5 100.12	1.997 0.006 0.006 0.003 0.015 0.015 1.475 0.015 1.475 3.993	23.7 75.0 1.3
5 тоолдляМ	55.2 0.17 0.19 0.12 16.4 0.41 26.9 100.14	1.994 0.007 0.005 0.003 0.495 0.495 0.495 1.448 1.448 1.448 3.997	25.1 73.4 1.5
2 moondineM	55.1 0.15 0.21 0.21 16.7 16.7 0.41 26.8 0.77 100.25	1.992 0.006 0.006 0.003 0.505 0.505 0.013 1.444 1.444 1.444 3.998	25.5 73.0 1.5
i moondnsM	54.9 0.15 0.21 0.21 16.4 16.4 0.42 0.84 0.84 99.73	1.993 0.006 0.006 0.003 0.498 0.498 0.013 1.445 0.013 3.997	25.2 73.1 1.7
C EVERNE 3	55.5 0.07 0.18 0.18 0.12 0.46 0.46 0.99 100.82	1.994 0.003 0.005 0.003 0.003 0.014 1.446 1.446 1.446 3.998	25.1 73.0 1.9
с бибјјо	55.3 0.10 0.18 0.12 16.3 0.45 0.45 27.1 1.02 100.57 0F 6(0)	1.991 0.004 0.005 0.003 0.491 0.014 1.454 1.454 4.001	24.7 73.3 2.0
I EWEIIO	55.7 55.7 0.09 0.18 0.16 16.2 0.47 27.2 0.82 100.82	1.997 0.004 0.005 0.004 0.486 0.014 1.453 0.032 3.994	24.6 73.8 1.6
e sen	55.3 55.3 0.16 0.20 0.11 16.4 0.42 0.42 0.42 0.91 100.25 0XYGEN 0	1.996 0.007 0.005 0.003 0.495 0.013 1.439 0.035 3.994	25.1 73.1 1.8
S SBN	55.1 0.16 0.23 0.10 16.5 0.43 26.6 0.77 99.89	1.997 0.007 0.006 0.003 0.500 0.013 1.437 0.013 3.992	25.4 73.1 1.5
I SRN	55.35 0.16 0.20 0.20 0.09 17.1 0.44 0.44 0.44 101.00	1.989 0.007 0.005 0.002 0.013 1.446 0.013 1.446 0.025 4.002	25.9 72.8 1.3
č sisemrudū	54.4 0.25 0.34 0.34 15.0 0.47 27.7 27.7 99.33	1.976 0.011 0.008 0.008 0.456 0.015 1.500 1.500 0.035 4.007	22.9 75.4 1.7
C sissmrudd	55.5 0.25 0.28 0.34 15.0 0.47 28.0 28.0 100.74	1.984 0.011 0.008 0.008 0.448 0.014 1.492 0.035 3.999	22.7 75.5 1.8
Гарутіпth 3 Гаке	55.4 0.15 0.21 0.15 15.7 15.7 26.7 26.7 1.32 100.05	2.000 0.006 0.006 0.004 0.474 0.473 1.436 0.051 3.990	24.2 73.2 2.6
Гаке Гаке	54.9 0.23 0.21 0.13 16.7 0.42 26.8 26.8 0.89 100.28	1.986 0.010 0.003 0.003 0.003 0.003 1.445 1.445 1.445 0.085 4.002	25.5 72.8 1.7
	Si02 Ti02 Cr203 Fe0 Mg0 Ca0 Tota1	Nc % F 7 7 8 % S	Fs En Wo

Table 3. LL6 Orthopyroxenes

Kernouve 3	53.6 0.49 0.47 0.67 0.65 16.8 16.8 16.8 16.8 0.51 0.51 99.49		1.976 0.021 0.013 0.017 0.134 0.017 0.923 0.880 0.923 0.923 0.923 0.923	6.9 47.6 45.5
ζ έτπουνε 2	54.0 0.52 0.52 0.64 0.64 0.30 17.1 22.5 0.49 0.49 99.71		1.979 0.023 0.013 0.017 0.113 0.017 0.113 0.034 0.934 0.9384 0.035	5.8 48.4 45.8
Cape Ciradeau J	54.4 0.46 0.51 0.65 4.80 0.52 17.2 21.9 0.50 100.64		1.980 0.020 0.014 0.017 0.146 0.007 0.933 0.854 0.035	7.6 48.2 44.2
саре Сареаи 2	54.4 0.51 0.53 0.68 0.68 4.80 0.25 17.1 22.2 0.49 0.49 100.93		1.976 0.022 0.014 0.018 0.146 0.008 0.926 0.864 0.035	7.5 47.8 44.6
Cape Giradeau l	54.4 0.51 0.43 0.69 0.69 4.70 0.25 117.5 21.7 0.60 100.78		1.977 0.022 0.012 0.018 0.018 0.143 0.088 0.948 0.845 0.082 4.013	7.4 49.0 43.6
Cedar 3	54.4 0.46 0.47 0.62 4.23 16.3 16.3 0.46 0.46 99.28		2.001 0.020 0.013 0.015 0.130 0.130 0.07 0.871 0.871 0.033 3.985	6.9 47.1 46.0
S 16b9J	54.8 0.41 0.52 3.60 0.20 16.2 16.2 0.41 0.41 99.37		2.009 0.018 0.013 0.013 0.110 0.110 0.110 0.110 0.885 0.885 0.885 0.296	5.8 46.8 47.4
I rsbəD	54.4 0.48 0.43 0.55 3.56 0.21 16.4 0.44 99.27	0F 6(0)	1.997 0.021 0.012 0.012 0.110 0.899 0.899 0.31	5.7 47.2 47.1
č sfersuð	54.0 0.39 0.48 0.62 4.16 0.24 0.24 0.46 0.46 0.46	N BASIS	1.975 0.017 0.013 0.013 0.015 0.127 0.027 0.927 0.033 4.012	6.5 47.5 46.0
2 вйэтвид	54.0 0.47 0.48 0.61 3.65 3.65 16.9 16.9 0.42 0.42 99.45	OXYGEN C	1.984 0.020 0.013 0.015 0.112 0.016 0.025 0.925 0.893 0.030 4.000	5.8 47.9 46.3
I sñersuð	53.8 0.39 0.51 0.57 0.57 0.57 16.9 16.9 0.41 0.41 0.41 99.56		1.978 0.017 0.014 0.015 0.015 0.015 0.025 0.926 0.926 0.926	5.9 47.5 46.5
E obesete3	54.1 0.70 0.46 0.53 0.53 3.83 3.83 3.83 16.4 0.48 0.48 0.48 0.48		1.991 0.030 0.013 0.014 0.118 0.018 0.008 0.883 0.034 3.991	6.2 47.3 46.5
Estacado 2	54.0 0.50 0.45 0.54 0.54 0.54 0.54 16.85 0.29 0.48 0.48		1.986 0.022 0.012 0.014 0.014 0.0924 0.894 0.894 0.034	5.5 48.0 46.5
Estacado l	54.5 0.58 0.57 0.57 0.57 3.44 16.7 16.7 22.6 0.55 99.70		1.993 0.025 0.014 0.015 0.105 0.009 0.009 0.885 0.039 3.993	5.5 47.9 46.6
0akley 3	54.6 0.46 0.45 0.55 3.69 0.53 17.8 21.3 0.42 0.42 99.52		1.993 0.020 0.013 0.014 0.113 0.007 0.833 0.833 0.030 3.992	5.9 50.6 43.5
0akley 2	54.65 0.64 0.47 0.56 0.56 3.75 0.24 16.8 16.8 16.8 16.8 100.26		1.989 0.028 0.013 0.013 0.114 0.114 0.017 0.032 0.032 3.993	6.0 47.7 46.3
0akley 1	54.4 0.44 0.45 0.56 0.56 0.52 16.8 16.8 0.45 0.45 0.45		1.994 0.013 0.015 0.015 0.118 0.017 0.078 0.876 0.876 0.323 3.992	6.2 48.0 45.9
	Si02 Alc ⁰³ Ti02 Cr203 Fe0 Mm0 Mg0 Mg0 Ng0 Na20 Na20 Total		NS S S S S S S S S S S S S S S S S S S	Fs En Wo

Table 4. H6 Clinopyroxenes

б зоboM	54.4 0.47 0.69 0.69 0.22 115.7 211.5 99.21	2.008 0.019 0.013 0.013 0.015 0.016 0.016 0.016 0.067 0.851 0.035 3.978	8.7 46.0 45.3
1 робом	54.6 0.46 0.46 0.66 5.2 215.6 0.49 0.49 0.49	2.006 0.020 0.013 0.017 0.017 0.017 0.017 0.017 0.017 0.864 0.856 0.035 3.980	8.6 45.9 45.5
8ruderheim 3	54.2 0.45 0.45 0.65 5.5 5.5 16.1 216.1 216.3 99.39	1.999 0.020 0.013 0.017 0.170 0.170 0.170 0.885 0.885 0.885 0.885 0.368 3.988	8.9 46.7 44.4
2 miədrəburð	54.3 0.43 0.43 0.59 0.22 16.1 22.0 99.22 99.22	1.998 0.019 0.012 0.0145 0.0145 0.0145 0.0888 0.888 0.872 0.032 3.989	7.6 46.6 45.8
l miədrəburð	54.3 0.46 0.44 0.65 5.3 16.3 21.8 0.52 0.52 100.02	1.992 0.020 0.012 0.017 0.017 0.016 0.016 0.085 0.085 0.037 3.996	8.5 46.7 44.8
Bath Bath	53.8 0.45 0.45 0.53 5.7 5.7 16.4 21.6 0.53 99.62	1.985 0.020 0.011 0.014 0.176 0.006 0.902 0.854 0.384 4.006	9.1 46.7 44.2
Ваth Furnace l	54.0 0.35 0.37 0.11 5.9 16.4 21.6 99.20	1.994 0.015 0.010 0.018 0.183 0.183 0.183 0.012 0.859 0.859 0.006 3.990	9.4 46.5 44.1
č nesisdanaj	54.2 0.47 0.48 0.48 0.61 4.9 0.20 16.2 21.7 0.60 99.36 99.36	1.997 0.020 0.013 0.016 0.151 0.016 0.857 0.043 3.993	8.0 46.9 45.1
2 пэгівнульі	54.0 0.50 0.45 0.45 0.61 4.95 0.61 16.4 21.6 90.33 99.33	$\begin{array}{c} 1.991\\ 0.022\\ 0.013\\ 0.016\\ 0.153\\ 0.016\\ 0.153\\ 0.066\\ 0.902\\ 0.854\\ 0.044\\ 4.000\end{array}$	8.0 47.3 44.7
Г пэгівйдльі	53.9 0.45 0.43 0.43 0.62 4.8 0.20 16.2 21.8 98.97 98.97 0XYGEN C	1.995 0.020 0.012 0.016 0.149 0.006 0.894 0.864 0.864 0.061 3.996	7.8 46.9 45.3
z nysnky	53.8 0.43 0.43 0.62 5.5 0.65 16.6 21.4 99.54 99.54	$\begin{array}{c} 1.985\\ 0.019\\ 0.012\\ 0.016\\ 0.170\\ 0.008\\ 0.913\\ 0.846\\ 0.037\\ 4.004\end{array}$	8.8 47.3 43.9
I nysnky	53.9 0.45 0.45 0.62 5.2 16.6 21.6 0.51 99.60	1.985 0.020 0.013 0.015 0.016 0.016 0.008 0.911 0.852 0.035 4.002	8.3 47.4 44.3
ς γόιος	54.8 0.34 0.38 0.53 0.53 16.5 22.0 0.43 99.90	2.005 0.015 0.011 0.011 0.014 0.144 0.07 0.900 0.862 0.351 3.986	7.5 47.2 45.3
ς νίδο 2	54.6 0.48 0.44 0.63 0.63 1.22 16.5 22.2 22.2 22.2 1.11 100.88	1.986 0.021 0.012 0.012 0.113 0.0143 0.0143 0.078 0.865 0.865 0.078 4.023	7.5 47.0 45.5
τ χοίδο	54.9 0.34 0.55 0.55 0.55 5.1 16.4 16.4 0.40 0.40 100.91	$\begin{array}{c} 1.995\\ 0.015\\ 0.011\\ 0.011\\ 0.014\\ 0.155\\ 0.057\\ 0.889\\ 0.889\\ 0.889\\ 0.028\\ 3.994\end{array}$	8.0 46.2 45.8
č sooM	54.0 0.50 0.47 0.47 0.64 5.20 16.15 22.1 22.1 90.58 99.85	1.986 0.022 0.013 0.017 0.017 0.017 0.017 0.886 0.871 0.041 4.002	8.3 46.2 45.5
	Si02 A1203 Cr203 Fe0 Mn0 Mg0 Mg0 Na20 Total	Na sa f f f f a sa	Fs En Wo

Table 5. L6 Clinopyroxenes

5 mishzizn∃	53.4 0.40 0.47 0.66 7.2 0.24	16.2 21.25 0.43 100.25	1.972 0.017 0.013 0.017 0.022 0.0892 0.841 0.841 0.031 4.013	45.6 43.0
2 miəfiziznā	53.45 0.33 0.39 0.56 6.6 0.22	16.3 21.2 0.38 99.43	1.983 0.014 0.015 0.015 0.015 0.205 0.015 0.843 0.027 4.010	46.3 43.2
l miədzizn3	53.05 0.35 0.46 0.57 6.3 0.21	16.0 21.8 0.40 99.14	1.976 0.015 0.013 0.015 0.196 0.196 0.889 0.889 0.870 0.029 4.010	45.5 44.5
∑ moondnsM	54.2 0.42 0.42 0.65 6.6 0.20	15.2 21.0 0.44 99.13	2.011 2.018 0.018 0.017 0.017 0.017 0.0841 0.841 0.835 0.032 3.976	44.7 44.4
2 moondnaM	54.2 0.40 0.42 0.63 6.5 0.21	15.2 21.0 0.48 99.04	2.012 0.018 0.015 0.016 0.016 0.202 0.077 0.835 0.035 3.977 10.7	44.8 44.5
5 вивээ0	53.3 0.43 0.45 0.65 6.4 0.34	16.4 20.8 0.47 99.24	1.978 0.019 0.017 0.017 0.019 0.019 0.011 0.011 0.033 4.010	46.9 42.8
2 бивээ0	53.5 0.43 0.46 0.68 6.4 0.25	16.3 21.1 0.48 99.60 0F 6(0)	$\begin{array}{c} 1.980\\ 0.019\\ 0.013\\ 0.018\\ 0.018\\ 0.098\\ 0.837\\ 0.034\\ 4.010\\ 10.2\\ 10.2 \end{array}$	46.5 43.2
I EWEJJO	53.6 0.45 0.46 0.66 7.1 0.25	16.3 21.2 0.49 100.51 0F BASIS	1.973 0.012 0.017 0.219 0.219 0.834 0.835 0.083 4.014	45.9 42.9
Z SRN	53.6 0.46 0.45 0.62 0.20	15.4 21.5 0.55 99.38 OXYGEN (1.991 0.020 0.015 0.016 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.205 0.016 0.017 0.016 0.017 0.016 0.006 0.0000 0.0000 0.000000	44.6 44.7
I SRN	54.1 0.47 0.46 0.60 6.5 0.21	15.5 21.5 0.56 99.90	1.996 0.020 0.013 0.016 0.201 0.201 0.852 0.852 0.850 0.040 3.994	44.8 44.7
C sisemrudO	54.7 0.43 0.42 0.44 5.6 0.28	15.9 21.1 0.30 99.17	2.016 0.019 0.012 0.012 0.012 0.017 0.017 0.017 0.033 3.968 3.968 3.968 9.2	46.5 44.3
S sisemrudd	53.8 0.40 0.44 0.55 6.1 0.24	16.4 21.6 0.43 99.96	1.982 0.017 0.018 0.018 0.018 0.018 0.018 0.085 1.008 0.031 0.031 9.7	46.4 43.9
I ธโธยตรมป	53.9 0.42 0.58 5.4 0.22	16.2 21.7 0.44 99.29	1.992 0.018 0.015 0.015 0.015 0.015 0.015 0.893 0.853 0.853 0.853 3.995 8.7	46.5 44.8
Гарутіпth 2 Гаке	53.8 0.42 0.63 6.4 0.22	16.0 21.7 0.52 100.15	1.982 0.013 0.013 0.016 0.0197 0.077 0.857 0.857 0.037 10.2	45.5 44.3
Lake Lake	53.3 0.44 0.45 0.59 7.15 0.20	15.7 21.5 0.47 99.80	1.977 0.019 0.015 0.016 0.222 0.036 0.855 0.855 0.034 4.010	44.6 44.0
	SiO2 A12O3 TiO2 Cr2O3 FeO MnO	MgO CaO Na ₂ O Total	r Maagerstar	En Wo

Table 6. LL6 Clinopyroxenes

d osznisi¶	54.7 0.16 0.20 0.21 11.1 11.1 0.47 32.9 0.39 0.39 100.03	1.939 0.007 0.005 0.005 0.014 1.739 0.015 4.051 1.739 0.015 83.5 0.70
2 ossnisl9	54.9 0.18 0.08 0.08 11.2 0.47 32.3 0.46 99.77	1.951 0.008 0.005 0.005 0.333 0.014 1.711 1.711 0.018 83.0 0.90
4 oseniel9	54.8 0.17 0.18 0.08 11.0 0.46 32.3 0.40 99.39	1.952 0.007 0.005 0.002 0.015 0.015 4.038 4.038 83.3 0.80
S sznevil0	54.9 0.11 0.18 0.09 16.4 0.45 26.1 0.87 99.10	2.006 0.005 0.005 0.002 0.014 1.421 0.014 3.987 3.987 3.987 1.7 1.7
I sznevilO	55.9 0.16 0.21 0.21 0.12 15.9 0.45 0.45 0.59 99.83	2.016 0.007 0.006 0.003 0.014 0.014 1.425 0.014 3.973 3.973 1.2
ζ τυονε)	55.7 0.13 0.22 0.11 11.7 0.11 0.50 31.3 0.71 0.71	1.969 0.005 0.005 0.003 0.346 0.015 0.037 0.027 4.021 1.7.1 81.6 1.3
Втеатегу 2	55.5 0.17 0.22 0.22 0.09 11.6 0.49 31.0 0.73 99.80	1.972 0.007 0.006 0.005 0.345 0.015 1.642 0.028 0.028 4.017 1.1 1.4
č эп иота .tM	55.5 0.0 0.14 0.15 11.6 0.48 0.48 0.74 99.81	1.973 0.0 0.00 0.001 0.345 0.015 1.658 0.028 4.023 1.4 1.4
C 9nword .tM	56.2 0.05 0.09 0.12 11.6 0.47 31.5 0.67 0.67 100.70	1.980 0.002 0.002 0.013 0.341 0.014 1.652 0.012 4.018 81.8 81.8
l snword .fM	55.9 0.02 0.08 0.11 11.1 0.50 31.2 0.73 99.64	6(0) 1.984 0.001 0.003 0.329 0.329 0.035 0.329 0.028 1.6588 1.6588 1.6588 1.6588 1.6588 1.6588 1.6588 1.6588 1.
8 slodruja	56.7 0.18 0.14 0.13 14.2 0.42 28.9 0.31 0.31 100.98	SIS OF 2.005 0.008 0.003 0.003 0.013 1.523 0.013 3.986 3.986 21.5 77.9 0.60
S slodruį8	56.5 0.05 0.10 0.13 14.4 0.44 28.9 0.22 0.22 100.74	N ON BA 2.005 0.003 0.003 0.427 0.013 1.528 0.013 3.990 3.990 3.990 0.008 0.40
ί ϶ίοστυία	56.6 0.06 0.10 0.12 14.4 0.44 28.9 0.27 0.27 100.89	OXYGE 2.005 0.003 0.003 0.013 0.013 1.526 0.013 3.989 3.989 21.7 77.8 0.50
Leedey 2	54.8 0.22 0.20 0.09 14.8 0.43 0.59 0.59 99.03	1.989 0.009 0.006 0.013 0.013 1.503 0.013 4.000 1.15 1.1
reedey l	55.6 0.13 0.18 0.08 13.85 0.44 0.44 0.49 0.49	2.000 0.005 0.005 0.012 0.014 1.528 0.013 3.991 3.991 1.0
Jelica 3	54.6 0.17 0.19 0.19 0.09 16.2 0.43 0.43 0.63 99.31	1.989 0.007 0.005 0.013 1.466 0.013 4.002 4.002 1.2
Jelica 2	54.8 0.15 0.18 0.10 0.10 16.3 0.43 0.43 0.78 99.84	1.987 0.006 0.005 0.494 0.013 1.464 4.005 4.005 1.5 1.5
l spilel	54.9 0.22 0.23 0.13 15.2 0.44 0.44 0.67 99.49	1.987 0.009 0.006 0.005 0.460 0.014 1.494 4.001 4.001 1.3 1.3
5 мвл2	54.6 0.29 0.09 0.55 0.55 12.8 0.49 1.94 1.94 99.26	1.972 0.012 0.012 0.014 0.387 0.015 1.534 1.535 1.535 4.012 19.4 76.9 3.7
2 мвяг	55.8 0.28 0.09 0.41 12.15 0.43 0.43 29.7 1.21 1.21 1.21 100.07	1.984 0.012 0.012 0.012 0.013 1.574 4.003 4.003 79.4 2.4
I WBAS	55.1 0.56 0.17 0.49 0.49 12.4 1.98 1.99.65	1.976 0.024 0.013 0.013 0.013 0.013 1.523 0.076 4.002 4.002 3.9
	102 1102 1102 1100 1100 1100 1100 1100	站设时在他们做这个。

Table 7. Non- or disequilibrated orthopyroxenes

Plainsco 3	53.5 0.58 0.64 0.64 1.7 4.7 15.8 0.21 0.54 99.16	1.982 0.017 0.017 0.147 0.872 0.872 0.901 0.039	7.7 45.4 46.9
2 ossnisl9	53.65 0.53 0.55 0.45 0.56 4.05 16.1 16.1 22.9 0.55 99.01	1.985 0.013 0.015 0.015 0.015 0.015 0.027 0.0880 0.007 0.988 0.040	6.5 46.2 · /
l osenislq	53.6 0.49 0.58 0.58 4.60 0.51 16.4 16.7 22.7 22.7 99.55	1.977 0.021 0.013 0.015 0.142 0.007 0.097 0.037 4.010	7.3 46.4 46.2
S sznevilO	53.8 0.79 0.75 1.30 5.85 5.85 5.85 5.85 5.85 1.3 21.3 0.39 99.72	1.985 0.034 0.034 0.181 0.0842 0.842 0.842 0.842 0.842 0.842 0.842 0.842 0.842	9.7 45.1 45.2
I sznevilO	53.1 1.4 0.80 0.95 5.6 0.20 15.5 21.6 0.54 99.69	1.960 0.061 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.035 3.994	9.2 45.4 45.4
ζ τυονε)	53.9 0.52 0.55 0.95 5.9 5.9 16.6 21.4 21.4 99.13	1.967 0.014 0.017 0.184 0.017 0.085 0.853 0.353	9.4 47.0 43.6
I TUOVEJ	53.6 0.54 0.54 0.62 5.8 5.8 16.4 21.3 21.3 99.46	$\begin{array}{c} 1.981\\ 0.014\\ 0.016\\ 0.179\\ 0.008\\ 0.844\\ 0.844\\ 0.034\\ 0.034\end{array}$	9.3 46.9 43.8
Веалету 3	54.8 0.47 0.49 0.68 4.1 16.7 21.6 21.6 90.55 99.59	2.004 0.018 0.018 0.018 0.125 0.018 0.846 0.846 0.037 3.982	6.7 48.3 45.0
Ж. Втоwne 3	51.7 6.2 6.2 1.13 1.13 4.0 4.0 15.6 20.75 20.75 101.58	1.856 0.262 0.032 0.032 0.029 0.120 0.335 0.798 3.993	6.9 47.6 45.5
Мс. Втоwne 2	53.5 1.78 0.54 0.96 3.89 3.89 3.89 0.27 16.7 21.9 0.57 0.57	6(0) 1.953 0.077 0.015 0.015 0.119 0.119 0.119 0.250 0.857 0.857 0.857 0.857	6.3 48.2 45.5
Мс. Втоwne l	51.6 5.6 1.31 1.10 3.97 3.97 3.97 3.97 3.97 3.97 3.026 15.5 20.8 0.80 0.80	ASIS OF 1.845 0.278 0.035 0.035 0.035 0.028 0.119 0.119 0.283 0.283 0.797 0.757 3.995	6.8 47.6 45.6
8 siurbole 3	54.4 1.48 0.34 0.69 5.8 17.7 18.3 99.66	EN ON BA 1.986 0.064 0.018 0.018 0.018 0.018 0.018 0.018 0.0716 0.0716 0.0716 0.0716 0.0716 0.0716	9.5 51.9 38.6
I slodruį8	53.2 2.71 2.71 0.42 9.1 1.13 9.1 13.05 13.3 0.51 90.51 90.74	0XYG 1.946 0.017 0.012 0.012 0.029 0.012 1.038 1.038 1.038 3.988 3.988	15.1 56.5 28.4
геедеу З	54.8 0.44 0.51 0.19 15.5 22.65 99.30	2.015 0.019 0.013 0.1132 0.1132 0.1132 0.013 0.855 0.855 0.035 3.974	7.1 45.3 47.6
геедеу 2	55.00 0.43 0.54 0.54 0.54 15.8 15.8 15.8 99.62 99.62	2.015 0.019 0.012 0.114 0.132 0.132 0.132 0.132 0.132 0.035 3.976	7.0 46.0 47.0
Jelica 3	54.6 0.35 0.36 0.59 0.59 6.7 6.7 15.2 21.1 21.1 21.1 99.51	2.017 0.016 0.016 0.016 0.207 0.837 0.837 0.837 0.837 0.023	11.0 44.5 44.5
S soilel	55.0 0.47 0.41 0.60 0.60 0.20 16.5 21.6 21.6 0.45 0.45	2.002 0.020 0.011 0.016 0.016 0.016 0.845 0.845 0.845 3.985 3.985	8.5 47.1 44.4
I soilel	55.4 0.440 0.59 0.55 0.55 0.20 16.45 21.3 21.3 0.50 0.50	2.012 0.011 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.032 0.032 0.032 3.978	8.5 47.4 44.1
5 мвяг	53.4 0.97 0.27 0.23 7.3 7.3 17.9 17.9 18.15 99.63	1.968 0.042 0.008 0.024 0.024 0.024 0.010 0.225 0.010 0.010 0.010 0.010 0.010 0.017 4.002	11.7 51.1 37.2
S WRAR	53.4 1.28 1.28 1.09 1.09 1.73 17.7 17.7 17.7 17.7 99.75	1.965 0.056 0.009 0.028 0.225 0.225 0.010 0.010 0.010 0.010 0.059 4.001	11.8 51.4 36.8
I WBAR	53.1 1.16 0.33 1.01 1.01 8.4 0.32 17.6 18.2 18.2 10.47	1.952 0.050 0.026 0.026 0.258 0.258 0.010 0.010 0.010 0.717 4.013	13.3 49.7 37.0
	Si02 A%203 Ti02 Cr203 Fe0 Mn0 Mn0 Mn0 Mn0 Na20 Tota1	Ng Comes Citas	Fs En Wo

Table 8. Non- or disequilibrated clinopyroxenes

.

		Table 9.	Calculated valu	ies for ioni	ic distributic	ns in	
		ortho-	and clinopyroxer	ies for T =	1073° K (800°	C)	
Fl	F_2	X ^{opx}	с Ц	F4	X ^{cpx} Y _{Fe}	x ^{cpx} Fe	X ^{cpx} Y _{Fe}
·	1	Ð			(Wo = 0.46)	(Wo = 0.45)	(Wo = 0.44)
0.04	0.1841	0.1120	0.0464	0.6213	0.0480	0.0543	0.0605
.12	.4247	.2724	1374	.8430	.1024	.1108	.1193
.20	.5751	.3876	5 .2260	.9078	.1493	.1584	.1675

$\chi_{Fe}^{Cpx} / \chi_{Mg}^{Cpx}$ (Wo = 0.44)	0.121 .271 .427
$\begin{array}{l} \chi^{cpx} / \chi^{cpx}_{Mg} \\ Wo = 0.45 \end{array}$	0.110 .252 .404
$\chi_{Fe}^{Cpx} / \chi_{Mg}^{Cpx}$ (Wo = 0.46)	0.098 .234 .382
X ^{opx} /X ^{opx} KFe/XMg	0.126 .374 .633

Fig. 1. Weight percent CaO in cpx vs. opx. Crosses indicate average

CaO for each group.

Fig. 2. Mole percent Fe in cpx vs. opx that illustrate clustering of pyroxenes for each group.

Fig. 3. Linear plot of average compositions for H, L, and LL pyroxenes and a construction curve for each group average Wo content calculated from the Blander model for an assumed temperature of 800° C.