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Abstract. A general Hamiltonian for a rotating moon in the field of the

earth is expanded in terms of parameters orienting the spin angular momentum

relative to the principal axes of the moon and relative to coordinate axes

fixed in the orbit plane. The effects of elastic distortion are included as

modifications of the moment of inertia tensor, where the magnitude of the

distortion is parameterized by the Love number k~. The principal periodic

terms in the longitude of a point on the moon due to variations of the tide

-3 -2caused by the earth are shown to have amplitudes between 3'.'9xlO and I'.'SxlO

-4 -3with a period of an anomalistic month, 3','OxlO and 172x10 with a period of

one-half an anomalistic month and 2'.'4xlO~ and 9V6xlO~ with a period of

one-half of a nodical month. The extremes in the amplitudes correspond to

rigidities of 8x10 cgs and 2x10 cgs respectively, the former rigidity

being comparable to that of the earth. Only the largest amplitude given above

is comparable to that detectable by the projected precision of the laser

ranging to the lunar retroreflectors, and this amplitude corresponds to an

improbably low rigidity for the moon. A detailed derivation of the free

wobble of the lunar spin axis about the axis of maximum moment of inertia is

given, where it is shown that elasticity can alter the period of the free
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-4 -3wobble of 75.3 years by only 3x10 ' to 10 of this- period. Also, the effect

of elasticity on the period of free libration is completely negligible by

many orders of magnitude. If the moon's rigidity is close to that of the

earth there is no effect of elasticity on the rotation which can be measured

with the laser ranging, and therefore no elastic properties of the moon can

be determined from variations in the rotation.
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Order of magnitude estimates of the periodic variations in the rota-

tion rate of the moon due to the changing magnitude of the tide induced by

the earth indicate marginal detectability of these variations by future

laser ranging to the retroreflectors on the lunar surface. It is thus

appropriate to determine more accurately the magnitude of the effects of

. elasticity on lunar rotation to see whether any must be eventually included

in the reduction of the laser ranging data. If such effects are in fact

measurable, perhaps a more important result will be the determination of the

effective elastic properties of the entire moon with possible implications

about thexnature of .the interior.

Three possible effects of elasticity are considered here. The first

is the above mentioned variation in the rotation rate due to tidal changes in

the inertia tensor. In Section 2 the largest term of this variation is

calculated directly from the tidal variation in the moment of inertia about

the spin axis. This serves as a check on the general theory described in

Section 3 from which all the perturbations of the lunar rotation, including

those due to elasticity, can be found to arbitrary order. The amplitudes

of the three largest terms of the angular displacement of a point on the

lunar surface from its mean sidereal position (corresponding to uniform rota-

tion) are determined to Section 4 for effective rigidities corresponding to

those of steel and aluminum.

For the second effect of elasticity to be considered, the theory devel-

oped in Section 3 is used in Section 5 to determine the period of the free

wobble as modified by the presence of the earth and to demonstrate that the

effect of elasticity on the free wobble is negligible. This could be antici-
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pated beforehand from fehe« functional- dependence of the modification of the

wobble period of the Love nuirber k2 (see Munk and MacDonald, I960, for a

discussion of Love numbers) and'the spin rate ty and a comparison with the

modification of the earth's Chandler wobble period.

The period of the free libration in longitude is considered in Section 6,

where any alteration of the period by elasticity is quickly dismissed. Even

a small change in the free libration period is important because of the exis-

tence of forced librations whose periods are very close to the free libra-

tion period (Jeffreys, 1957; Eckhardt, 1970; Williams et al. 1973). A few

percent change in the free period can lead to a change in the amplitude of

the near resonant forced libration of a factor 2 or 3. But no measurable

alteration, even with the amplification, is evident.

Section 7 is a summary of the results where it is pointed out that

only the largest term in the variation of the rotation rate is possibly

of measurable amplitude and that only if the moon has what is perhaps an

unusually low rigidity.

2^ TidallyH_Induced_Variations_in_the_S£in_lRate

If i/> is the angle between the axis of minimum moment of inertia and

the ascending node of the lunar equator on the orbit plane then with suf-

ficient accuracy for the short term effects considered here,

d2il> ^ I d t f i d C m
. 2 ~ C dt dt U;

at

for a tidal variation in the moment of inertia C about the spin axis (spin

angular momentum is conserved). The time variation in C is determined from

the variation in the tidal mass distribution.

The magnitude of the tide at a point R on the lunar surface is given by



-5-

AR = tu - - a - P~(cos6">l. 3 e 4
r g

(2)

where R is measured from the lunar center of mass, P~ is the Legendre poly-

nomial, cos6" = R'r/(Rr), r being the position of the earth relative to the

moon, G is the gravitational constant, g is the surface gravity on the moon,

a is the lunar equatorial radius. M is the earth mass and h0 is the Lovee w £.

number defined by (Munk and MacDonald, 1960)

5/2
(3)

for a homogeneous sphere, where y is the coefficient of rigidity and p is

the lunar mean density. The tidal mass per unit area of the lunar surface

Am/AA = pAR and

Am 2 , 2.,.— a sin 6dA
AA e (4)

where 6 is the polar angle measured from the spin axis.

Part of the mass in Am is determined by the fluid Love number (p = 0)

and corresponds to the tide at the mean earth-moon separation. However,

this constant tide vanishes in dC/dt, and h« defined by Equation (3) is

appropriate for the varying tide. Then

dt
d Am 2 . 2...

~T~ TT a sin 6dAdt AA e

'2TT
(5)

— 3h0 rr—
rlr -\") ~ sin eded<}>
at

where M*. is the lunar mass, <{> is the azimuthal spherical polar coordinate

of position on the moon measured from the axis of minimum moment of inertia

A 3 /on the lunar equator. Substitution of M^. = — ira p, dr/dt = nae sin f/ /1-e

with n, a, e, f being respectively the lunar orbital mean motion, semimajor
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axis, eccentricity and true anomally, cos6" = sin0cos<f> and performing the

integration in Equation (5) yields

dt ""I V^-^ensinnt (6)
a

4 4where only the first term in the expansion of (a /r ) sin f in the mean

anomaly (M = nt) has been kept, higher frequency terms being higher order

in e.

Substitution of Equation (6) into Equation (1) , with dt|>/dt and C replaced

2by their mean values n and 0.4 M a respectively, gives

d 4» 3 2 ae © ,_..
—2~ = ~~j n —3~ M~ 2 e Sltlnt (''
dt a

which upon integration yields an amplitude of variation in if> from the

mean (uniform rotation) value of .

3 /„„„..,«-3(3V9xlO~

-(ivexio

with a period of the anomalistic month. The two numerical values correspond

2
respectively to a lunar rigidity like that of steel (y = 8 x 10" dynes/cm )

2and aluminum (y = 2 x 10" dynes/cm ). The rigidity of the earth is slightly

below that of steel (Munk and MacDonald, 1960), so one might expect that

of the moon to fall within the above extremes.

The single term in Lty evaluated above is expected to be the largest

effect of elasticity on the lunar rotation. Information about other terms

in the rotational variations requires a more general theory, which is

described below. This theory is sufficiently general to include rotational

distortions and deviations from principal axis rotations and is used to

investigate the free wobble in Section 5.
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Parts of the following development were used in earlier investigations

of the rotations of the moon, Mercury (Peale, 1969) and Venus (Goldreich and

Peale, 1970). In those applications the Hamiltonian did not include the

effects of non principal axis rotation which are necessary for an investiga-

tion of the free wobble. These effects are added here, and an error in the

definition of variables is also corrected here.

.A complete development of the variational equations and the form of the

Hamiltonian is beyond the scope of this paper. Let it suffice then to out-

line the procedure and then write the final form of the Hamiltonian and varia-

tional equations.

The origin of coordinates is at the center of mass of the rotating body,

and the Hamiltonian is' the sum of the rotational kinetic energy and the poten-

tial energy due to external gravitational fields. The translational kinetic

energy and central terms in the potential energy do not contain the coordi-

nates and momenta associated with the spin and orientation and are therefore

suppressed. Body fixed axes designated by the unit vectors i, j, k are the

principal inertial axes. A second set of axes designated by (I, J, K), are

fixed in the orbit plane of the disturbing body with K being normal to the

orbit plane. The earth-moon orbit precesses on the ecliptic plane so I is

chosen to be along the mean ascending node on the ecliptic of the earth's or-

bit relative to the moon.

The (i> j> k) system can be oriented with respect to the (I, J, K) by the

ordinary Euler angles (<)>,9,̂ )-.' The angular velocities S , S , S can be

expressed in terms of the Euler angles (Goldstein, 1950) and generalized momen-

ta pj), PQ, p,,, conjugate to <j>, 0, fy can be used to express the kinetic energy
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part of H with the resulting variational equations being canonical.

The set of variables (<J> , 6, 1(1, p , p0, p ) is not convenient for expres-

sing the Hamiltonian or for interpreting the variations. The following series

of transformations is therefore effected:

( < f > , 6. \b, p,, p., p.) -*• (a, n, K'a, J'a, k'a, j*a) •*•m y m « • « M M ' M * » ' « ^ W

(a, n, K*a, ft, k«a , co) ,

where a = aa is the total spin angular momentum, a being a unit vector, n is

the angle between Kxa and kxa and is thus a measure of the rotation about the

spin axis. The variables fi and oo are defined by

-J*a 1*5
cosfi = - sinfi = -

/1-K- a2 /1-K'a2

cos = "' ~ - sin = ~ -
/l-k*a2 /1-k'a2

fi is thus the angle between Kxa and I and co is the angle between kxa and i.

The above choice of variables conveniently orients the angular momentum

relative to space and body axes.and describes the rotation. The variational

equations in terms of the final set of variables are

cla = _9H
dt ~ 8n

jn aw K-a a k-a „Q(( on on on.
d t 3 a a 3 K * a a 8 k » a

" _ -^. Q .
dt ~ a 30 o 3n

fi 1 8H
dt a 3K-a

dk-a . k-a
_ _1 on dH

dt a Deo a 3n
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-
dt ~ a 3k-a

The development of the potential part of the Hamiltonian follows that of

Kaula (1961). The terms in the expansion used by Kaula are each expanded

to second order in /1-k-â  such that the variational equations are correct

at least to first order in this quantity. This is sufficient accuracy, since

all sizable solar system bodies are expected to be rotating nearly about a

principal axis (k-a ~ 1) , driven there by energy dissipation. The develop-

ment of the kinetic energy part of the Hamiltonian follows that of Peale

(1969) except now the allowed distortion of the elastic body introduces incre-

ments in the components of the inertia tensor which are determined by rota-

tional and tidal distortions. As such, these distortions will depend on the

variables used in Equations (10) , but this functional dependence of the distor-

tions is considered only after the differentiations have been performed on the

right hand sides of Equations (10). The Hamiltonian is

H = -| a • [l]~1a - u-a + V (11)i ~ ~

where [I] is the inverse of the inertia tensor, y is the precessional angu-

lar velocity of the orbit plane and V is the potential.

]j = -y[siniJ + cos ig] (13)

where i is the inclination of the lunar orbit to the ecliptic.

Substitution of Equation (12) and (13) into Equation (11) , use of Equa

tions (9) and expansion of the terms in V gives the final general form of H

expressed in the variables of Equation (10).
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H = I22I33 " T23 + ^^ [V22

(1-k-a2)

- 2/1-k-a2 sis n u )

+ ya -sin i /1-K-a2 cos fi + cos \ K-a

M oo /a \*

- ,L (T).
^ £ a oo

Z r* «

u ^,

m=0 p=0 q=-°

k^CS-a) +[_ x.mp .

._x.inp

+ /1-k-a2 B. (K-a)~ ~ Jimp ~ ~ Jim

(l-k-a2)C (K-a)Jimp

cos v nJimpq

sin v

£-m even

Jl-m even

il-m odd

+ SJim

Jl-m odd

Jl-m even

+ S,

-m odd

H-m even

sin viimpq

-COS V

Jl-m evenn

1,-m odd J

2,-m even-

Jl-m odd

-m even-

+ S
Jim

Jl-m odd

Jl-m odd

even

-cos(v +2n)
Jl-m



.
Jimp (K'§)

cos(vJlmpq-2n)

sin(vJlmpq-2n)

fc-m even

+ S
Jim

£-m odd

sia-(vfl -2n)Jlmpq

cos(v. -2n)Jlmpq

fc-m even-i

Jl-m odd -

(14) can't.

where I. . are the components of the inertia tensor, |l| is the determinant

of the inertia tensor, G, M_, JL, a, a e have been defined previously, C0 ,w y e x.m

p are the ordinary harmonic coefficients in the expansion of the lunar

gravitational field defined by

SL+2
p(r',e',<j>')r' P̂ cose'W sin*1 de'd^'dr' (15)

(sJJlmJ M a£ (£+m)I

the integration being over the entire volume of the moon. G (e) are expan-

sions in the eccentricity and F. (K*a) are functions which are both defined
Jimp ~ ~

and tabulated by Kaula (1966) with (K-a) replacing cos i . A ,

D. , E. are
Jimp Jimp

1 = 2 . Finally

^ ,

D. , E. are defined in terms of the F. , and are given in Table I forJimp Jimp Jimp °

v. = (Jl-2p)(Tr-m-Y) + (Jl-2p+q)M + m(ir-n-o))Jcmpq

is equivalent to Kaula's definition (1964) of this angle, but the variables

except for the mean anomaly M, are not those used in that work. We have

used the orbit plane as a reference whereas Kaula has used the instantaneous

equator plane. In addition, non-rincipal axis rotation forces us to use

the vector a parallel to the spin angular momentum for body orientation

rather than the principal axis coincident with the spin vector. This intro-

duces n and a) into v. , where in the limit of principal axis rotation
Jlmpq

(k*a = 1) n + w = tj; locates the axis of minimum moment of inertia from the

node of the equator on the orbit plane. The angle y locates the pericenter of

the earth's apparent orbit about the moon relative to the X axis, which is
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along the orbit node on the ecliptic.

In the moment of inertia tensor, the products of inertia come from

tidal and rotational distortion of an elastic moon and are therefore small

compared to the diagonal terms. The diagonal terms have small increments

as well due to elastic distortions. This suggests that we write the diagonal

terms

II]L = A + AA

I22 = B + AB (16)

I33 = C + AC

where A, B, C are the principal moments of inertia in the order of increas-

ing magnitude and AA, AB, AC are the contributions from elastic distortion

of the same order as the products of inertia. The determinant |l| can then

be expanded in the equations (after partial derivatives of H are taken) and

only first order terms in AI../I.. and I../I., kept. This simplifies the

equations of motion considerably and sufficient accuracy is ensured by the

sinallness of the increments. It will also be noticed that elastic distortion

introduces a time varying increment into the harmonic coefficients C. and
x>m

S . However, since these coefficients are themselves very small and are

preceded by another small coefficient, the effect of the small elastic varia-

tions in Cn and Sn are' second order or higher in small quantities and can
x/m Jem

be ignored. Elastic distortion has its major influence in the kinetic energy

terms except perhaps when the secular effects of dissipation are considered.

The increments in the moment of inertia tensor are evaluated by compar-

ing the potential from the elastic redistribution of mass with the terms in

the expansion of the moon's gravitational field depending on the second moments

of the mass distribution. Both the rotational and tidal distortions are
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caused by harmonic disturbing potentials' of the second d'egree (e.g., see

Munk and MacDonald, 1960). For rotation, the disturbing potential per unit

mass is

2 2 2 2
V̂  = ̂|-P2(cose') --̂ j- (17)

where S is the spin angular velocity, R is the position of the field point

relative to the lunar center of mass and cos6f = R*S/(RS). The central

term in Equation (17) can be absorbed by the central term of the general

lunar field and will not be considered further. The tide raising potential

is given by .

- GM R2

VJ = —y- P2(cos6") (18)
r

where cos8" = R*r/(Rr). Love (1944) has shown that the increment in the poten-

tial at the surface of a spherical body distorted by a spherical harmonic

potential is proportional to that distorting potential and falls off exterior

—(n+1^
to. the body as r where n is the degree of the disturbing potential.

The external potentials due to the lunar mass redistributed by rotation and

tides are thus

IT _ *• c I J f v » d \ ^ — R <5 I f1Q"\Vp z r^ I ~ kji 2.) t K b I ^.-Ly/
K. J .̂J

V --k ^iVI- k2 r3 R5 2 2 - - (20)

r R

where k2 is the Love number defined by

k 3/2
2 ! + li _!L- '

2 pga

for a homogeneous sphere. If R, S, r are written in terms of their components

in Equations (19) and (20) and compared with a similar development of the
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second order term in thevlun-ar gra-vitat'ionai- field, the two representations

of the field are equivalent and the trace of the inertia tensor invariant

before and after distortion only if the increments in the tensor components

are given by

,
K2ae

AI,

2.

11 3G \ 3 S.2/ r5

k a 5 k a 5 (22)
T = 2 e -1 <; _ 2 e „ 1 i ̂Zij 3G ij r5 Vi

rj . i * j '

We.can separate out that part of the rotational increment which appropriate

to the fluid Love number by assuming principal axis rotation (S = S = 0,

S_ = S). These we shall include in the permanent moments A, B, C and write

lr a kfl / 7 \

=
 K2ae 2 K2ae 2 [ i _ I . I _ A

J • OO J C fl\ J 1 O Of A j *•
H J w 1 J W 1 1 J £• i

r V r± /

- k a 5 - k a 5 / 2 \ (23)

2 e 2 2 2 e 2 / 1 r V
^33 = 3G 1 "*" ^2^ 5 ^®r3 I ^ ~ T 2~ )

r \ ^o /

where AI.. (i ̂  j) remains unchanged. The tidal increments will also have a

component appropriate to the fluid Love number. However, since these involve

the coordinates of the earth, the tidal terms can be expanded in terms of the

variables and functions used in the Hamiltonian and it is a simple matter to

remove the constant terms from these expansions such that the appropriate k-

for the remaining terms is that defined by Equation (21). The above develop-

ment can be applied in a straightforward manner to the effects of elasticity

on the lunar rotation.

For our purposes here, it is sufficient to assume principal axis rotation

and to ignore the effects of the precessing coordinate system, since these can
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be added at any time. Principal axis rotation eliminates the rotational

increments in the inertia tensor, and since we have neglected second order

effects, we need consider only the kinetic energy term of the Hamiltonian.

Both Ti and u) are undefined when k = a, but their sum locates the axis of

minimum moment of inertia from the node. Hence, we wish to determine

W i-, d
 f j. -v i • T3H j. ! /••• i N 3H 1 ....-rf = lim — (n+u>) = lira — + - (1-k/a) ... . (24)dt . i dt ,, _N da a d(K.'a)k*a-*l (k*a->l)L ~ - J

where 8H/8(K*a) = 0 since only the kinetic energy terms are involved. The

limit is taken after the differentiations of H. From Equations (14 and (24)

1 1 - 1 2 ' • (25)

Using Equation (16) and keeping only the first order terms in the expansion

of both the numerator and denominator, we find

dt — "• (26)

where AC is here the tidal increment. The angular part of AC(tide) is the

same as that in the coefficient of C?f) in the general potential of the moon.

Hence, we can lift the coefficient of C20 from Equation (14) and write

(27)

cos I(2-2p)(n-ftfy) + (2-2p+q)M - e.[(2-2 -20pq

where e n is a phase lag due to dissipation (Kaula, 1964) and is included

here only for completeness. If we combine terms of the same frequency and

use Cassini's laws to set ft = TT, we have
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L 2@- 5
_2C a

x
dt C 3 _2 3 ae

2F200 So-1 COSC2^+M]

+ 2F200 G200 ™S^+W
+ 2F200 G201 COSI2Y+3M] (28)

+ 2F200 G202 "S[2^M]

+2F201G212 COS[2M]

+2F201G211 C O S MJ '

The last two terms depend on orbital position relative to the perigee and

are hence related to the changing magnitude of the tide. The first four

terms depend on position of the moon relative to the node and are related

2to the latitude of the tidal maximum. With F = -3(l-K-a )/8, F =

= 1 - | e2, G^ - f e2, Gm = |e , K-a = cos(6°Al'),

e = 0.0549, integration of Equation (28) yields the following amplitudes

in Aty for the three largest terms:

Amplitude Period

3Y9xlO~
» f Anomalistic month

l'.'6xlO

-4

half of anomalistic month
3'.'OxlO~ )

l'.'2xlO~3 )

, / nodical month
9'.'6xlo"̂

The values in each pair correspond respectively to lunar rigidities like that

of steel and aluminum. The term with the period of the anomalistic month is
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just that determined in Section 2', and* i-ts amplitude agrees with the one

determined there.

5._ Free_Wobb le

The wobble of the lunar spin axis about the axis of maximum moment is

determined by the last two of Equations (10). In addition to the contribu-

tions to d(k«a) /d t and dw/dt by the kinetic energy terms, those terms from

the potential part of H which are constant or depend only on u must also be

retained. All other terms in the variation of co and k-a will have phases

and amplitudes determined by the forcing term and therefore do not contribute

to the "free" wobble. Let us first select the terms which must be retained

in the potential part of H.

From Equation (14) a general term has arguments

V
£mpq

V0 + n (29)
Ampq -

2n

But from Cassini's laws ft = TT and n + w«^ = M+^ where ty is the
o o

value of i|) at perigee. For completely damped librations, ij/ = y completes

the law of stable synchronous rotation. These conditions can be applied only

after the partial differentiation of H in the equations of motion, but can

be used beforehand to select those terms which will depend only on oj. Elimi-

nating n, fl and ijj from the arguments by Cassini's laws leaves

(Jl-2p-m)y + U-2p+q-m)M + imr

(«,-2p-mfl)y + (2,-2p+q-m+l)M + mir + u>

(J,-2p-m+2)y + (Jl-2p+q-m+2)M + irnr + 2o>
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corresponding to the five arguments in (29). The only permitted arguments

for H = 2 which are constant or depend only on to are

2010

2200

•*• constant

-»• constant

2100

V2020 + 2n

V2000 " 2n

Selecting only these arguments from the Hamiltonian, the variations of

to and k'§ assume the forms

( -k -a

dt = 2" |~~A~"

aa

& $ 2
T^e

23
BC

COSO)

E220G200C22)

a(l-2k-a2) X13 .
r-^-T ~AC SinW (30)

C202G220C20 + D200G200°20

- sr221G210C22

12
cos2oj + ak-a .„ sin2u

- ~ AB

ik-a Pi I I
~ = -ak*a /1-k-a2 —— cosuo ^TT sinu
dt L AC BC J

a( l -k-a) - - cos2o)— - AB (31)

I/i M\ _ I
B\ ' BJ A
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2GMA 2..£ _ /I _1j. •*-. t \ lr« r» r» _L tr> n _ L T \ n \r> 1, - -,11 ̂ .; — O/,)
3a a

(31) cont'd.

In Equations (30) and (31) the terms involving C_.. , S« and S»? have been

omitted since they involve products of inertia which are only induced by

elastic deformation and are preceded by a small factor. Also the AI. .

will involve only the rotational deformation since the tidal increments

involve terms which contain oj only in the sum r\ + u which is transformed

to M + ijj by Cassini's laws. Hence, there is no way to isolate a term depend-

ing only on u in the AI. . due to tides and the tidal distortion terms in the

wobble classify as forced terms. For the rotational increments it is

sufficient for first order accuracy to write

' •• si " T (32)

2
and to set I = A = B = C = 0 . 4 M a in the denominators of Equations (32).

Substitution of the above form for S^ into Equations (22) (minus the tidal

contributions) and use of Equations (9) gives

~- £(i-a)2 » £(l-k«a2)sin2u)I ~ ~ — ~
A B 2 2 2
~r ~ £(j 'a) s 5(l-k*a )cos to

X w ** *™ "**

= C(l-k'a2)sin2u>/2 (33)

X13-LJ _ _ / _ • .N / , . . _ N _ ../, , . . _ V k.a sinu

I23
r— = ? ( j « a ) ( k * a ) = -£/l-k*a2 k*a cos to
I - ~ ~ ~ ~ ~

•where
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< - i .
•

with a = Ify being used in Equation (34).

Using the expressions in Equations (33) in Equations (30) and (31) we

arrive at the expressions

~ = TK. + K0 cos2tJ]k'adt L 1 2 J~ ~

) .
dt - -K2 '(l-k-aZ)sin2u

where

- JL fB-A 2(C"A)

l ~ 2A L B ~ C

i E201G210C20 + E220G200C22
«a J (36)]

aO^Al
2 2 AB 3aa

I 221 210 22 202 220 200 200 201

2GM M
, _ _a (B-A) _ » > 2 T p _ , p

*-i ~ o *T> ' o d« I °OOT "11 rv'-'oo ~ v>(-'onovj
2 2 AB 3 °e r22l"210"22 ' v"202"220aa

In equations (36) , £/A = £/B = ?/C was assumed for first order accuracy.

The expressions for K2 and Ki differ only by the factor k-a multiplying some

o
of the terms. However, d(k-a)/dt contains l-k« a as a factor so it is consis

tent with the first order accuracy to set k-a = 1 in K' in which case K0 =~ ~

Equations (35) are more easily solved in terms of the variables (i*a),

( j -a) which are related to k«a and w by Equations (9). This transformation

(with K2 = Kp yields

d( '̂a) = (K.+K9)(J-a)(k.a)dt 1 2 i - ~ -
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(K1-K2)(i-a)(k-a)

(37)
cont'd.

which are just a form of Euler's equations for force free rigid body motion,

For small deviations from principal axis rotation (i-a, j«a « 1, k*a «•1),

the solution is immediate with

i'a = A1cos(/(K.+K0)(K1-K.)t + <!>,)1 1 2 1 2 1
(38)

j-a = - j r - Aj.sln/CK^) (K^) t +

giving the expected elliptical motion of a about k. The shape of the ellipse

and the wobble frequency follow from the values of K.. and K« which are obtained

with

09)

where K-a = cos(6°41'). All of the G functions in K.. and K0 differ from 1 only~ ~ i 2.
2

by terms of order e so will not be listed explicitly. Placing numerical

values into Equations (39) and expressing moment of inertia differences in

C— Bterms of a' , B1 , y' (correct to first order) where a' = — r-,3' = (C-A)/B,
A

y' = (B-A)/C, we find



-22-

(40)

where the second terms on the right hand sides of Equations (40) explicitly

demonstrate the influence of the earth (with n = 4») . The effect of elasti-

city is contained in the parameter £. That elasticity has essentially no

effect on the wobble is seen by comparing the value of t, with a', 6', y'«

With

a1 = 3.97xlO~4

6' = 6.27xl(T4

_4 CA1)
Yf = 2.30x10

£ = 1.5xlO~7 to 6xio~7

4
we see that ? influences the motion by only a few parts in 10 to a part in

10 and is likely to be comparable to or smaller than some of the neglected

contributions to the free wobble from & = 3 terms in the potential.

This lack of influence of elasticity could have been anticipated by the

functional dependence of C and a knowledge of the change in the period of

the Earth's Chandler wobble by elasticity. The ratio of £/8' is the important

parameter as seen from Equations (40) .

W o

F-~r-2 <42)
6 B "0

2

where n is the orbital angular velocity of a satellite near the surface of

the moon (or earth). The ratio in Equation (42) is about 0.35 for the earth

with ijj/n = 1.5/24 and k? = 0.3, and one observes about this fractional in-

crease in the period of the Chandler wobble over that for a rigid earth. For

-4 -3
the moon this ratio is seen from Equations (41) to be 2.5x10 to 1X10
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The parameter C depends on the Love" number an'd* on th'e square of the rotation

period. The former quantity drops for the moon by an order of magnitude from

that of the earth and the latter drops by three orders of magnitude. These

two effects combine to reduce the influence of elasticity on the lunar wobble

by a comparable factor from the influence on the Chandler wobble.

Finally with K +K2 = -3.98xlO~% and K^-K^ = -2.48xlO~
3iJv the ratio of

the major and minor axes of the elliptical path of a relative to k is 2.57

with the long axis perpendicular to the axis of minimum moment of inertia.

The wobble period is 75.3 years, which had been obtained earlier (Sekeguchi,

1970). This period would be increased by a factor of 2 if the earth were

removed.

6^ __ Free_Libration

The existence of a forced libration whose frequency is very near the

3 year period of the free libration motivates a check on possible alternations

of the free libration period. However, we can quickly dismiss the effects

of elasticity on this period. The major effect will be the tidal distortion,

but the variations in the rotation rate discussed in Sections 2 and 4 are

.high frequency and will not disturb the libration. We are thus left only

with the tidal torque arising from a dissipation caused phase lag. In the

limit of small tides the net torque on a librating moon is just the sum of

that on the permanent lunar bulge and the tidal torque. The latter is given

approximately by

where Q is the specific dissipation function (MacDonald, 1964). The torque

on the permanent deformation is determined from the £mpq = 2200 term in the
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Hamiltonian with 2(ij; -y) = 26 being the libration angle. With

we have Cij; = C( fy ) = C(ip -y) since y ~ 0, or

a 2a Q

If we make Q inversely proportional to frequency, then

1, ™ (B_^
(45)

Ca xo o

where Q is the value of Q at a reference angular velocity 6 . With the

. 2
coefficients of 5 and 6 being u> and 2£ respectively, the libration frequency

is just /to 2-^2 = u [l-^2/(2(Jd
2)]. For F... a 3 and G... Z 1, we have that

O O O £.i\J 2\}\J

-^j * 10~21 (46)
0)o

does not affect the period. A value of Q = 100 with 6 corresponding to a
o o

3 year period was used in evaluating £. That the only effect of tides is

the ordinary torque due to a phase lag of the lunar response is verified by

evaluating da/dt from Equations (10) and selecting those terms in AI. . with

arguments which are integer multiples of (ij; -y). All terms with these argu-

ments cancel exactly to first order except for the effects of phase lags con-

sidered above.

7. Discussion

The results of the previous sections imply that the only possibly

important perturbations of the lunar rotation due to elasticity are the perio-

dic fluctuations in the spin angular velocity. Even these are so small that

their measurement cannot be expected in the forseeable future. The ultimate

range accuracy of the laser radar to the moon now anticipated -is on the order

of a few centimeters. (P. Bender private communication, 1972) which is
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comparable to the linear displacement on the lunar equator corresponding to

O'.'Ol shift in longitude. The results of Section 4 show that the amplitude

of the longitude variation from the mean is comparable to this value only

for the low rigidity limit. Since siesmic wave velocities on the moon are

comparable to those in the earth's upper mantle (Toksb'z, et_al. , 1972) and

the density of the mantle and moon are comparable, one infers comparable

rigidities of the moon and earth. Since the smaller amplitude of Equation

(8) is thus more likely appropriate to the moon, measurement of the effects

of elasticity on rotation must await the development of the next generation

of instrumentation perhaps requiring placement on the moon itself.

On the brighter side these results indicate that elasticity can most

probably be safely neglected in the reduction of the laser ranging data.

ACKNOWLEDGMENTS

The author thanks Dr. Peter Bender,for encouraging this work and

for many illuminating discussions. Part of this research was supported by

the Planetology Program Office of Space Science, NASA, under grant NCR

05-010-062.



-26-

Refer.ences

Eckhardt, D. H. : 1970, "Lunar Libration Tables", >foon 1, 264.

Goldreich, P., and S. J. Peale: 1970, "The Obliquity of Venus", Astron. J.

21, 273.

Goldstein, H.: 1950, Classical Mechanics, Addison-Wesley Publishing Co.,

Reading, Mass.

Jeffreys, H.: 1957, "The Moon's Libration in Longitude", Monthly Notices Roy.

Astron. Soc. 117, 475.

Kaula, W. M. : 1961, "Analysis of Gravitational and Geodetic Aspects of

Geodetic Utilization of Satellites", Geophys. J. 5, 104.

Kaula, W. M.: 1964, "Tidal Friction by Solid Dissipation and the Resulting

Orbital Evolution", Rev. Geophys. 2, 661.

Kaula, W. M.: 1966, Theory of Satellite Geodesy, Blaisdell Publishing Co.,

Waltham, Mass.

Love, A. E. H.: 1944, A Treatise on the Mathematical Theory of Elasticity,

Dover Publications, New York, (Cambridge University Press, 1927).

MacDonald, G. J.F.: 1964, "Tidal Friction", Rev. Geophys. 2, 467.

Munk, W. H., and MacDonald, G. J. F.: 1960, The. Rotation of the Earth,

Cambridge University Press, Cambridge.,, England.

Peale, S. J.: 1969, "Generalized Cassini's Laws", Astron. J. 74, 483.

Sekiguchi, N.: 1970, "On the Possible Amplitudes of the Moon's Free Libration",

Moon, 2, 78.

Toksb'z, M. N. , Press, F. , Anderson, K. Dainty, A., Latham, G. , Erving, M. ,

Dorman, J., Lammlein, D., Sutton, G., Duennebier, F., and Nakamura, Y.:

1972, "Lunar Crust: Structure and Composition", Science 176, 1012.

Williams. J. G., Bender, P. L., Eckhardt, D. H. , Kaula, W. M., and Slade,

M. A.: 1973, "Lunar Physical Librations and Laser Ranging'1, Moon,

This issue.



-27-

TABLE I

Inclination Functions
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