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Abstract

This report presents the formulation and check out problems for

a computer code DYNAPLAS, which analyzes the large deflection elastic-

plastic dynamic response of stiffened shells of revolution. The for-

mulation for special discretization is by the finite element method

with finite differences being used for the evaluation of the pseudo

forces due to material and geometric nonlinearities. Time integration

is by the Houbolt method. The stiffeners may be due to concentrated

or distributed eccentric rings and spring supports at arbitrary angles

around the circumference of the elements. Check out problems include

the comparison of solutions from DYNAPLAS with experimental and other

computer solutions for rings, conical and cylindrical shells and a

curved panel. A hypothetical submarine including stiffeners and

missile tube is studied under a combination of hydrostatic and dy-

namically applied asymmetrical pressure loadings.
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Nomenclature
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H'

I

[K]

L

[M]

m

= row matrix

= column matrix

= square matrix

= coefficients in Eq. 63

= matrix relating stress to elastic strain

= Young's Modulus

= linear expressions for midsurface strains and rotations

= force unbalance in equation of equilibrium

= slope of uniaxial stress vs. uniaxial plastic strain

= area moment of inertia

= matrix of stiffness coefficients

= meridional length of element

= mass matrix

= number of subincrements used in computing plastic

strain increment

= number of circumferential stiffners per element

= applied external loads

= pseudo forces due to nonlinearities

= generalized coordinates

= radial distance to midsurface of shell

= Kirchhoff stress

= meridional distance

= thickness of shell element and time

= displacements

N

P

Q

q

r

S

S

t

U



viii

V = undeformed volume

v = circumferential displacement

W = potential due to applied and inertia forces

w = displacement normal to shell

z = distance from midsurface of shell

= translation of yield surface

A = increment

E = strain

E = equivalent uniaxial value of strain

e = circumferential angle

x = changes in curvature

p = mass density

a = stress

= slope of undeformed shell

Superscripts and Subscripts

e = elastic contribution

I = initial strain contribution

i = time increment, degree of freedom, dummy summation variable

j = degree of freedom, summation index

L = contribution based on linear theory

NL = contribution due to geometric nonlinearities

o = initial value

P = contribution due to plastic strains

s = meridional direction and springs

e = circumferential direction
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INTRODUCTION

Due primarily to advances in computer technology the analysis of the

large deflection elastic-plastic response of realistic structures is now

within the realm of reality. Several computer codes have already been

developed for this purpose. These inclide finite difference codes by

the groups at M.I.T.,2' 3 Ballistic Research Laboratories,23,24,25 Sandia

Laboratories 8,32 and Lockheed.57'61  Finite element computer codes have

been developed by McNamara and Marcal,36 Wu and Witmer,62 and Stricklin

et. al.49  In general all the codes have certain limitations. The

finite difference codes are generally restricted to unstiffened shells

whereas the finite element codes do not have this restriction but are restricted

to simple structures. There is a need for a code to analyze the large de-

flection elastic-plastic deformation of stiffened shells of revolution.

Basically there are three different formulations which have been

used in the analysis of the nonlinear behavior of structures. The first

formulation treats the effects of nonlinearities as pseudo forces on the

right hand side of the equations of equilibrium. This formulation re-

quires that only pseudo forces be computed but has the disadvantage of

the occurrence of numerical stability problems when certain solution pro-

cedures are employed. The basic equations of equilibrium neglecting

damping, for this method are derived in detail in this report and symbol-

ically may be written as

[M]{q} + [K]{q} = {P} + {Q I + {QNL} (1)
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where

[M] = mass matrix

[K] = stiffness matrix

{q} = generalized displacement

{P} = generalized forces due to applied loads

{QI} = pseudo forces due to initial (plastic) strains

{QNL} = pseudo forces due to geometric nonlinearities

Farhoomand and Wilson16 and McNamara and Marcal36 use the incremental

form of Eq. 1 for their formulation. This is obtained as follows, first

Eq. 1 is written in incremental form:

[M]{Aq} + [K]{aq} = {AP} + {AQ } + {QNL (2)

next the increments of QI and QNL are treated as differentials and eval-

uated by applying the chain rule in terms of the generalized displace-

ments qi.

I aQ I
aqj aqjAQi = Aq =- K~ q Aqj

(3)
NL

AQNL + aQ = -NLaQ L + Aq Kij NL qj
aqj

Using the relations given by Eq. 3, Eq. 2 becomes

[M]{aq} + ([K] + [KI ] + [KNL]){aq} = {AP} + {fo}  (4)

where the unbalance in force {fo I has been added to the right hand side

as was done in Refs. 18 and 36.
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A new and completely different formulation is presented by Wu and

Witmer.62 Starting with the virtual work expression in terms of stress

and increments of strain, Wu and Witmer obtained the equilibrium equa-

tions in the form:

[M]{q} + {P} + [H]{q} = {F} (5)

In Eq. 5, {F} represents the generalized forces due to external loads. The

matrices {P} and [H] depend on the state of stress in the body.

It is difficult to state the relative advantages and disadvantages of

the formulations given by Eqs. 1, 4, and 5, respectively. However for the

asymmetric deflection of shells of revolution where the displacements

in the circumferential direction are represented by Fourier series the

representation given by Eq. 1 is superior. This is due to the coupling

between Fourier terms which appears in [KI], [KNL], and [H] in Eqs. 4 and

5. This coupling, for all practical purposes, eliminates the possibility

of using implicit solution procedures for the formulation given by Eqs. 4

and 5.

Regarding solution procedures it should be noted that there is no solu-

tion procedure which may be designated as "The Solution Procedure" due to

the dependence of solution procedures on the problem under consideration.

The objective here is to discuss several solution procedures in general

and devote special emphasis to the formulation given by Eq. 1 as applied

to shells of revolution.

The central difference solution procedure for the time response has

long been the favorite of researchers using a finite difference formulation

of the spatial derivatives.
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More recently, central differences have been used in conjunction with the

finite element method by Wu and Witmer, 62 Key and Beisinger, 28 and Krieg

and Key.33 The general consensus reached by these researchers is that

the central difference solution procedure should be used in conjunction

with the "lumping" of masses at the nodes. Further, Key and Beisinger

have presented a rational method for lumping the rotary inertia.

Undoubtedly the central difference or some other explicit solution

procedure becomes quite attractive as the band width of the stiffness

matrix becomes reasonably large. It should be pointed out, however, that

the use of conditionally stable procedures is somewhat a contradiction of

the basic philosophy of the finite element method. One of the advantages

of the finite element approach is that the size of the elements may vary

and small elements may be used in regions where the stress gradient is

large. However, the time increment which may be used is determined by

the highest represented frequency of the system which in turn is increased

by using very small elements. Thus, the time increment for numerical sta-

bility may become so small as to be of little practical value when very

small elements are used. This was indeed found to be the case in Ref. 49

for shells of revolution.

There are three implicit solution procedures which have received con-

siderable attention. They are the Houbolt,21 Newmark Beta method,42 and

Wilson6 solution procedures. They are similar in that the matrix which

must be "inverted" is a combination of the mass and stiffness matrix.

For linear problems the Houbolt procedure is unconditionally stable where-

as the Newmark Beta method and Wilson procedures are stable for a certain
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range of parameters.

Bathe and Wilson6 and Nickell43 have presented interesting studies

of the three methods and have shown that the artificial damping is equiva-

lent to conducting an analysis through modal superposition with the higher

modes being suppressed. They also present some interesting figures show-

ing what time increment must be chosen to prevent excessive damping or

phase shifts. Nickell also presents a discussion of the solution of non-

linear problems but no numerical examples are presented.

The authors' experiences with the Houbolt and Newmark Beta procedures

are reported in Ref. 54 but are worthy of a summary herein. A particular

form of the Newmark Beta method, commonly referred to as the method of

Chan, Cox, and Benfield,10 was used to solve many problems in Ref. 54.

It was found that both procedures are no longer unconditionally stable

when geometric nonlinearities are included. However, the Houbolt method

was found to be considerably more stable than the method of Chan, Cox, and

Benfield. In both methods the pseudo forces on the right hand side were

determined based on a linear extrapolation; but it was found that the

method of Chan, Cox, and Benfield becomes unstable even if the pseudo

forces are used as their values at the previous time increment. Another

general conclusion which may be reached from the results presented in

Ref. 54 is that it is extremely risky to draw conclusions about a non-

linear analysis based on a study of the linear problem. The same reason-

ing works in reverse as the method of Chan, Cox, and Benfield is superior

to the Houbolt method for linear problems.
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In the present research the Houbolt solution procedure is used al-

though it is planned to permit an option of either the Houbolt or Newmark

Beta Methods in the future. The Houbolt method was selected for economic

reasons but results presented herein show that the method is quite accurate.

The artificial damping in the Houbolt method permits the use of the econom-

ical formulation given by Eq. 1 and further permits the pseudo force terms

to be extrapolated without appreciable loss in accuracy.

FORMULATION

There are two basic formulations which have been used in nonlinear

analysis by the finite element method. The first is the Lagrangian formu-

lation and the other is the use of an incremental moving coordinate system.

The three formulations discussed in the introduction which includes the one

used herein are of the Lagrangian type. The basic starting point for the

formulation is the equations of equilibrium written in terms of the Kirchhoff

stress17 (Fig. 1).

au.
a [Sjk(ik ak ] + Po Foi ou (6)

where

Sjk = Kirchhoff stress tensor

ai = coordinate in original body

ui = Lagrangian displacement

POFo = body force

ik = Kronecker delta

u = acceleration
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Multiplying Eq. 6 by a virtual displacement 6ui (index summation

noted) and integrating over the undeformed body yields the equations of

equilibrium in the form

f poUi 6ui dV + f LSJ{6E} dV = 6W* (7)

V0  Vo

where

LSJ = 1 x 6 matrix of Kirchhoff stresses

{E} = 6 x 1 matrix of Green or Lagrangian strains

u au + auk auk
ij i +j

aaj + ai  3ai aaj

(8)

au 1 au au
E ui i : jij = aj + 2 aai aaj

6W* = virtual work done in deformed body

Vo = volume of undeformed body

The derivation of Eq. 7 from Eq. 6 follows exactly the same procedure

as for the small deflection case presented by Argyris.l Obtaining the

virtual work in the deformed body, 6W*, requires a physical interpreta-

tion of the Kirchhoff stress tensor as presented in Novozhilov45 and,

in more detail, by Haisler.18

Restricting attention to small strains, the Kirchhoff stress is

the true stress and is related to the elastic component of the Green



8

strains through the matrix [D]

{S} = [D]{ce }  (9)

As small strains are assumed the total strain is the linear super-

position of the various components.

{C} = { e} + {P} + {T} + . (10)

Solving Eq. 10 for the elastic strain, substituting into Eq. 9, and sub-

stituting the result into Eq. 7 yields:

f POUi Sui dV + f (Lf - LE T - ...)[D]{6E} = W* (11)

Vo  Vo

For some problems the potential due to external forces may be a higher

order function of the displacements; but, as usual, the assumption of

a first order function of the displacements is assumed herein.

W* = Lq]{P(t)} (12)

Thus

sW* = LP]{6q} (13)

Taking the variation with respect to generalized coordinate qi

yields the equation of equilibrium:

au.
f p u. -ai dV + f LT-J [D]{c} dV

o aqj q.q V
0 0 (14)

f L i-J [D]fP }dv - f La-i [D]{ET}dv - . . = {P}

Vo V
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It is convenient to write the total strain as

C = EL + ENL (15)

where cL and ENL are the linear and nonlinear contributions, respectively,

to the total strain. Substituting Eq. 15 into Eq. 14 and expanding the

second term on the left hand side, yields

.. au.

f pouj aqi
V0

dV +
a as

' L-q- J [D]{EL}dV + ' L--i- [D] {ENL } dV
Vo  Vo0 0

+ S Laq- - D]i { L }d - f L{LJ[D-{e P} dV

Vo Vo

(16)

- f L~aqJ [D] {cT} dV - ... = P

V i

The first term in Eq. 16 produces the terms of the mass matrix times the

accelerations. The second term gives the contribution to the usual

linear stiffness matrix times the generalized coordinate. The remain-

ing terms may be combined to yield

mij qj + kij qj = Pi

-

Vo

Vo

a NL
I La Li j[DI { L};q

as NL - P TL-imj [D] { - c - (17)
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where

m = p dV (18)
V 0 aqi aqj

as as

0

kij La-J [D] {a} dV (19)

V

It should be noted that the volume integrals extend over the entire re-

gion affected by qi and qj. This integration is, of course, performed

by integrating over each element separately and assembling the results

in the standard manner.

Writing Eq. 17 for each and every degree of freedom yields the com-

plete set of equilibrium equations in matrix form.

[M]{q} + [K]{q} = {P} + {Q*} (20)

where

De NL P T= [D] L} dV - L [D]{NL - - ...} dV (21)

Vo  Vo

The last term on the right side of Eq. 20 is generally called the pseudo

force and is a function of the unknown displacements.

In Eq. 21 the pseudo forces due to material and geometric nonlinearities

are included together instead of separating them into components. The separ-

ate components are given as:

= Q+ QNL (22)Q1Q + Qi
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where

QI = pseudo force due to initial (plastic) strains

QNL = pseudo force due to geometric nonlinearities

Qi
QI f La i [D] [D] + .} dV (23)
i . aqi

0

0NL f[NL
NL  :- [D] {cL} dV- L-i [D] {CNL} dV

V VN

(24)

= L--]L [D] {ENLE} dV - f L i j [D] {E} dV
Vo  Vo

The last form of Eq. 24 is the more efficient from the computational point

of view when only geometric nonlinearities are considered. Furthermore, within

the realm of shell analysis Eq. 24 may be integrated through the thickness

of the shell. The approximate expressions, assuming moderate rotations, for

total strain in the shell with the ring stiffener being a special case is

given by:

{£} = {e} + {ENL} + z{K} (25)

where

{e} are the usual expressions for the linear membrane strains

{K} are the changes in curvature and twist

and z is the distance from the reference surface.
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Substituting Eq. 25 into the second form of Eq. 24 and integrating

through the thickness yields

NL 1Ke -

Q = - t + [D] {NL} dA1aqi ]  q.
A q

0

(26)

DeNL
-t f L-L--j [D] {e + ENL + ZK} dA

Ao i

where t is the thickness and z is the distance from the reference surface

to the centroid of the area under consideration. In the present research

it is assumed that the midsurface of the shell is the reference surface

and thus z for the shell is zero. But, the circumferential stiffeners

may be eccentrically located which gives a non-zero value for z.

The basic governing equations are Eqs. 20, 23, and 26 and these equa-

tions should be discussed. First from Eq. 23 it should be observed that

the pseudo forces due to initial strain are functions of the displacement

and hence vary with time (ENL is a second order function of the displace-

ments). Next it should be observed that the formulation to this point is

valid for any type of shell. Specialization of the formulation to the shell

of revolution and ring stiffeners is presented in a later section.

PLASTICITY RELATIONS

The Von Mises yield condition and isotropic hardening are used in

the present study. However, this section includes a discussion of kine-

matic hardening as well as isotropic hardening. The presentation for
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isotropic hardening follows that given by Marcal.38 All discussions are

for the plane stress case.

Isotropic Hardening

The expression for the equivalent uniaxial stress is given by

2 2 2]1/2 (27)
a = [C + ao - so + 3ase2]1 /2  (27)

where s and e are the meridional and circumferential directions respectively.

Elastic behavior is observed if a is less than the yield stress in uniaxial

tension. The normality condition for the increment of plastic strain is:

{deP} = deP ? aa (28)

where

{de P} = increment of plastic strain

PPdeP = increment of equivalent uniaxial plastic strain.

The hardening rule for the material is simply the relation between

the uniaxial plastic strain increment d P and the uniaxial stress increment.

da = H' deP  (29)

For any type of stress strain curve

E ET
H' E-ET (30)E-ET

Where

ET = tangent modulus

E = Young's modulus
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The other relation needed to complete the formulation is the equation re-

latina the increment of stress to the increment of elastic strain.

{do} = [D]{dee = [D]({d} - {dcP}) (31)

Premultiplying Eq. 31 by LaJ and using Eqs. 28 and 29 yields:

LJ {da} = da = H' d P = La] [D] ({ds} - d {)a-}) (32)

-PSolving Eq. 32 for d P yields:

P  L --j [D] {de}
:a (33)

H' + LJ [D] {}

In the computational procedure the equivalent uniaxial strain given by

Eq. 33 is first computed and then the increments of plastic strain and stress

are computed through Eqs. 28 and 31 respectively. When the equivalent uni-

axial strain computed by Eq. 33 is less than zero unloading occurs and dCP

is set equal to zero.

The treatment of the transition range from elastic to plastic behavior

3264follows the same procedure given by Krieg and Duffey32 and Yamada et.al.64

It was found during the course of preliminary research in this area

that the straight-forward computational procedure presented here can, if

large increments of strain occur, yield stresses which deviate appreciably.

from the assumed stress-strain curve. To avoid this deviation the strain

increment in Eq. 33 is divided into m sub-increments and the procedure
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repeated for each sub-increment. The stresses are updated in each sub-

increment which gives modified values for the direction normal to the

yield surface L[J. The number of sub-increments is determined by com-

puting an equivalent uniaxial strain increment, using the relation for

equivalent uniaxial plastic strain, and dividing by an allowable incre-

ment of strain. Thus the number of sub-increments varies with time and

position on the structure.

The storage requirements for the implementation of isotropic harden-

ing are the three plastic strain arrays, the uniaxial plastic strain array,

and the maximum stress array. The uniaxial plastic strain is needed to

determine H' whereas the maximum stress must be exceeded after unloading

before additional plastic straining occurs.

Kinematic Hardening

The form of kinematic hardening presented here is based on Ziegler's

modification of Prager's hardening rule.65 Much of the derivation of

kinematic hardening follows the same procedure used for isotropic harden-

ing; but is presented here for completeness.

The yield condition for kinematic hardening is given by:

[(as as)2 + (ae )2  (as - aS)( - ie) + 3(as - a21/ (34)

where the a's represent the translation of the yield surface. Yielding

occurs whenever a is greater than the yield stress in uniaxial tension.

The flow rule for kinematic hardening is, as in isotropic hardening,

the normality condition.
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{de } = d;P {Da} (35)

The hardening rule is the one given by Prager

Lda - H'dJ {} = (36)

where H' is again given by Eq. 30.

The stress increment is again determined by the elastic strain incre-

ment through the matrix [D].

{da} = [D]{dEe} = [D]({dE} - I{dP}  (37)

Substituting Eq. 35 into Eq. 36 and taking the transpose of the result-

ing equation yields

-J {d = LaJ{' H' dsP (38)

Also using Eq. 35 in Eq. 37 and premultiplying by La-] yields:

L-J {da} = L [D]({dc} - d {-a}) (39)ao u aa

Solving Eqs. 38 and 39 for de yields:

dp : La D] [D {d(40)
de (40)

LgJ(C H' J + [D]){a}

The diagonal matrix E H' J has been inserted for convenience in computa-

tion. The similarity between Eq. 40 and Eq. 33 should be observed. Using

kinematic hardening Eqs. 40, 35, and 37 form the basic equations; however,
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these equations must be supplemented by an equation which yields the incre-

ments in as, a., and ase. This equation is the primary modification made

by Ziegler and is given by:

{da} = du {a - a) (41)

The term du which must be greater than zero is determined by noting

that the yield surface translates but does not enlarge. Thus:

da = La-J]{da} + La{da} = 2)

Examination of Eq. 34 reveals that

{t} = - {a-} (43)(43)

Substituting Eq. 43 into Eq. 42 and using Eq. 41 yields the desired ex-

pression for du.

aaL ] {da}
d - da (44)

-J1 {Ca - Ca}

Since the stress increment is known from an earlier calculation it is

a simple matter to evaluate du through Eq. 44 and then {da} through Eq. 41.

Thus the computational procedure is complete.

Kinematic hardening requires seven arrays, three strains, three a's,

and the equivalent uniaxial strain for the determination of H'. This is

two more arrays than needed for isotropic hardening. There is no appreci-

able additional computational effort required to use kinematic hardening.
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Comparison of Isotropic and Kinematic Hardening*

Comparing the fundamental equations used for isotropic and kinematic

hardening reveals several differences. For initial loading the expres-

sions for de given by Eqs. 33 and 40 are different. For isotropic harden-

ing the denominator contains H' whereas for kinematic hardening the same

term is [] [ H' ] {}. It should also be noted that a is defined

differently in isotropic and kinematic hardening.

Both isotropic and kinematic hardening have been coded and a compari-

son made of results. One such comparison for the center deflection of an

impulsively loaded plate is shown in Fig. 2. It is observed in Fig. 2

that the results for the initial peak are almost identical for isotropic

and kinematic hardening. However, the "snap-back" deflection is appreci-

ably different with kinematic hardening showing that the plate returns to

the original position. It should be observed that there is appreciable

strain hardening in the results shown in Fig. 2. To explain this behavior

consider the simple one dimensional structure shown in Fig. 3, which is

loaded into the plastic range with appreciable strain hardening and then

released. Isotropic hardening predicts a final deflection which is approx-

imately equal to the deflection when the structure is released. However,

due to the large amount of strain hardening, kinematic hardening predicts

a plastic instability in the reverse direction. This is obviously a con-

tradiction to experimental observation and could lead to misleading results.

It should be noted in Fig. 3 that the value of H' is assumed to depend on

*Appreciation is expressed to Dr. Nicholas Perrone of the Office of Naval

Research for his discussion on this subject.
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the equivalent uniaxial plastic strain only. This could be easily

changed for a one dimensional state of stress but to the authors' know-

ledge has not been developed for the plane stress case.

The net result of this comparison is that neither isotropic nor

kinematic hardening represents the true situation when appreciable strain

hardening occurs. However, it is felt that isotropic hardening will yield

more realistic results for appreciable strain hardening and is used in the

computer code.

SOLUTION PROCEDURE

Equation 20 is solved by the Houbolt solution procedure. The purpose

of this section is to review the Houbolt procedure and to discuss the approx-

imation of the loads vector.

In the Houbolt method the accelerations in Eq. 20 are replaced by a

finite difference approximation of the second derivative. This substitu-

tion allows development of recursion relations which can be used for the

step-by-step calculation of the displacements of the shell and stiffeners.

The accelerations of the nodes of the shell are approximated by the

third order backwards difference expression

1
{n+l} {2qn 1 - 5qn + 4qn- qn 2} (45)

(At)

The accuracy of this representation is of the order (t)2 .

Substituting Eq. 45 into Eq. 20 and simplifying yields

(2[M] + (t) K]){q (At) {Pn+ + Qn+l } + [M]{5qn - 4qn- 1 + qn-2} (46)
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This equation is valid for all time increments but must be modified

for the first step since the values of {q_ 2} and {q_ 1} are not known.

This occurrence is common when solving initial value problems by finite

difference procedures and merely requires that a method be developed to

start the solution. Equation 46 will, however, be used to calculate the

displacements for all time increments except the first.

To start the solution, assume

1(47)
{q}  6t {2q + 3qo - 6q1 + q-2}(47)

and

.. 1
q = {q 2q +q- }  (48)

0qo (At)2 0q 2q _

The initial accelerations are obtained using Eq. 20 evaluated at t = 0

which gives

[M]{qo} = {P} + {Q*} - [K]{qo} (49)

Rearranging Eq. 48 gives

{q_1 } : (At)2 {qo } + {2qo - q (50)

By combining Eqs. 47 and 50 an expression for {q_ 2} is developed

{q 2} = 6(at)2 {qo } + 6at {qo} + 9 {qo} - 8 {ql}  (51)

Substituting Eqs. 50 and 51 into Eq. 46 for the first time increment

(n = 0) and approximating the forces at time, t = 0, provides an expression



in terms of the initial displacements, velocities, and accelerations which

can be solved to obtain {ql}

2  2 2
(6[M] + (at)2 [K]){ql} = (At) {P(o) + Q*(o,q)} + [M]{2(at)2 qo+ 6at qo+6qo}

(52)

This equation is used to determine the displacements at the end of the

first time step. Using Eq. 50, a fictitious matrix of displacements,

{q_ 1} can be determined. The displacements are then available so Eq. 46

can be used for each subsequent time step.

Examination of Eq. 46 shows that the applied and pseudo loads should

be evaluated at time increment n+l in the determination of the displacements

at increment n+l. However {Q*} is a function of the displacements and thus

Eq. 46 is basically a nonlinear set of algebraic equations. In the present

research and as presented in Ref. 54 the problem is linearized by using an

extrapolation procedure. Further, provisions are made for updating the

pseudo force vector every m time increments to save on computer time. It

has been found that if the pseudo loads vector is updated every time incre-

ment then a full linear extrapolation should be used. However, it has also

been found that for some problems updating the pseudo loads vector, {Q*},

every five time increments and using a half order extrapolation yields ac-

curate results. For problems exhibiting a high degree of geometric non-

linearities it is advisable to update the pseudo loads vector every time

increment to avoid numerical instabilities.

The option of updating the pseudo loads vector infrequently is quite

valuable when using the Houbolt solution procedure. If high frequency
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response is desired it is necessary to use a very small time increment due

to inherent damping in the basic Houbolt procedure. However, this need

not cost appreciably in computer run time provided the pseudo forces are

not updated every time increment.

The loads vector {P} is determined based on input loads at arbitrary

times. For intermediate times the loads vector {P} is determined by linear

interpolation.

SHELL OF REVOLUTION

The previous sections have been devoted to structures or shells in

general. The purpose of this section is to specialize the equations to

the shell of revolution and present the fundamental theory used in this

research.

For the linear stiffness matrix the shell of revolution is idealized

as a sequence of curved elements. One such curved element is shown in Fig.

4. The curvature of the element is represented by a second order polynomial

in the meridional distance s.

= a0 + als + a2s2 (53)

where s is the distance along the meridian of the element. The constants

aO, a1, and a2 are determined by requiring the actual shell and the idealized

shell to have the same coordinates and slopes at the nodes. Detailed expres-

sions for the a's are given in Ref. 53.
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Strain Displacement Relations

The strain displacement relations used in this research are based on

the theory presented by Novozhilov.45

+ ^ 1 ^2

= e + ZK + e2 (54)
e e0  2 23

¢se = ese + Zise + e13e23

where ES, ce, and ese are the total strains in the meridional and circum-

ferential directions and the shear strain respectively. It should be noted

that Eqs. 54 are valid for moderate rotations only. The expressions for

the various terms in Eqs. 54 are given by:

es = (au/as) - O'w

ee = (l/r)[(av/ae) + u sin+ + w cos+]

ese = (l/r)(au/ae) - (v/r) sin+ + av/as (55)

el3 = (aw/as) + u0'

e23 = (l/r) (aw/ae) - (v coso)/r

Xs= - ae13/as

Xe = - (l/r) (ae23/ae) - (l/r) sin+ el3  (56)

Xse = - (l/r) (ae13/ae) + (sin+/r) e23 - ae23/as
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Linear Stiffness Matrix

The linear stiffness matrix is obtained based on orthotropic material

and neglecting transverse shear deformations. The strain energy expres-

sion is given in Ref. 49. The displacement functions used in obtaining

the linear stiffness matrix are given by:

= + a2 s+ a3s + a ) cos is

u ( 5 + a6s +  Is (s-L) + 2s (s-L)) cos ie (57)

i i + 2 (s-L) +v (= 7 + acs + s (s-L) + 82 (s-L)) sin ie

Note that the summation convention is being used. L is the meridional

length of the element. It should be noted that only the terms due to

symmetric loads about e = 0 are included. The terms 1,' 82' 83' and B4,

are eliminated by static condensation in the Fourier terms i = 0 and 1

only. These are the only terms in the Fourier expansion which contribute

to rigid body motion and these terms are needed for that purpose. Static

condensation is not used for the higher Fourier terms as experience has

shown that a "too flexible" stiffness matrix may be obtained.

After the assumed displacement functions and strain displacement

relations aresubstituted into the strain energy expression, the element

stiffness matrix for each Fourier term is determined by numerical inte-

gration. Twenty-nine Simpson stations are used to integrate along the

meridian of the shell element.
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Mass Matrix

A consistent mass matrix based on linear displacement functions in

u and v and a cubic displacement function in w is used in this research.

Rotary inertia is included but has not been found to be significant for

problems considered to date.

Nonlinear Terms

In contrast to the highly accurate procedure used in evaluating the linear

stiffness matrix, an extremely simplified procedure is used in evaluating

the effects of both material and geometric nonlinearities. This consists

of using conical frustum elements and finite difference expressions for

the strains, rotations, changes in curvature, and twist and evaluating

the integrals over the length by strip integration. This section presents

the details of this procedure.

Referring to the expressions for the strains, rotations, curvatures,

and twist given by Eqs. 55 and 56 and using the fact that the displacements

are represented as Fourier series in the circumferential angle e the various

terms may be written as:

es = e s s e ee cos ie

ie: ei  sin ie el3 el3 cos is

.(58)
e23 e23 sin ie s s cos ie

Ke = K COS Ks i se sin ie



26

i i i i j i i i
where e , e, e13, e23, K s, and e may at most depend only on

the meridional distance, s, along the element. However,using finite

difference expressions for these terms their values may be computed at

the middle of the element and held constant over the meridional length.

The use of finite difference expressions permits the individual

Fourier components to be written as:

3q'
i

e = aes
aq~

i aeq e i
iJ

i e23 ie2 3  q
iaq

1
aq.3i K·

Ke -q

i
i e iae

a i

a q

i

1 35

ie aK

K

i

(59)

There is no summation on i, which indicates the particular term in the

Fourier expansion. The detailed expressions for the partial derivatives

are given in Appendix A. The partial derivatives in Eq. 59 are independent

of s, 0, and the displacements, but may depend on the Fourier number.

Specializing Eq. 23 to the shell of revolution yields:

QIi = La-j[D]{cP + E + ... } rdedsdz
3 aqj

3

(60)
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where i and j are the Fourier number and degree of freedom respectively.

All terms are assumed to be constant over s, then

f ds = L (61)

Further,the expression is simplified with the following definition

{C} = [D]EP + CT + ...} rL (62)

where r = radial distance to the middle of the element.

Using Eqs. 54, 58, and 59 the expression for the pseudo force may be

written as

aei ai
Qi + 13 cos ie + el3 cos zi) C1

cos i + e sin ie + z aq cos ie) C

(63)

aq

s + eZ aie  sin ie) + cos ide

where there is no summation on i. Ct, C2, and C3 are the three components

of {C} given by Eq. 62.of {C} given by Eq. 62.
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Applying the same logic to Eq. 26 the pseudo forces due to geometric

nonlinearities for the shell may be written as:

N i
Ni = - + cos s EC2 +  sin ie C3] de

3 3

[e, 13 - cos le 1 + e23  sin ie C2  (64)

23 ie13
+ (e13  sin is + e23  cos is) C3] de

i j

where there is no summation on i and

{C} = (t)(r)(L) [D] {ENL}  (65)

{C} = (t)(r)(L) [D] {e + ENLO (66)

Equations 63 and 64 are the basic equations needed to compute the

pseudo forces due to material and geometric nonlinearities. The C's de-

pend on z and e in Eq. 63 and C and C depend on e in Eq. 64. The integral

through the thickness is performed by Simpson's rule in Eq. 63 and it has

been found that 5 to 7 Simpson stations are quite adequate. The integrations

around the circumference in Eqs. 63 and 64 are performed using a modified

Simpson's rule, the modification being that the second order function of e

is weighted with sin ie and/or cos ie to obtain the integrals. Before
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this modified Simpsons rule was incorporated it was found that the number

of stations around the circumference was dictated by the number needed to

integrate cos ie or sin ie and could be quite large.

RING STIFFENERS

The ring stiffeners for any element may be constructed of as many

as three different segments and may vary from element to element. This

permits an exact representation of stiffeners in the form of T or I

sections. However a Z section may be represented only approximately as

the product of inertia terms are neglected.

The mass, stiffness, and strain hardening for the stiffeners may be

different from those of the adjoining shell. The effects of eccentricity are

accounted for in all calculations where the reference surface is taken

to be the mid-surface of the shell. The ring stiffeners are assumed to

be in a state of uniaxial stress in the circumferential direction. Under

this assumption strain energy per element based on linear theory is given

by

L EN ^2 2 ^2
URf [2 + z ee Ke + Ke] rdedzds (67)

where N is the number of stiffeners per element. Integrating Eq. 67

through the thickness yields

uL = (E_)(N )(t) ~ 2 ee
e + ee ee + e I IK rdeds (68)

where i is the distance from the mid-surface of the shell to the centroid

of the stiffeners and I is the area moment of inertia about the mid-surface
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of the shell.

The terms of the stiffness matrix are obtained from Eq. 68 by taking

the second derivative with respect to the generalized degrees of freedom.

2R
KR aUL (69)
ij yqiaqj

In the numerical computation of the contribution of the stiffeners to the

element stiffness matrix the N stiffeners are assumed to be "smeared" over

the meridional length of the element. Integration is performed along the

length using Simpson's rule.

For most practical applications the ring stiffeners are discrete and

"smearing" can lead to appreciable error. This error is avoided by using

a very short element for the discrete stiffeners, thus avoiding any "smear-

ing" error.

The pseudo forces due to initial (plastic) strains are given by Eq.

63 with only C2 being non zero. Thus the pseudo force expression becomes:

Ii = N ff ae e P TQ N [( cos ie + z cos io) E (E + T + ...) rL] dz de
aq. a
J (70)

Equation 70 is evaluated using either strip or Simpson integration over

each segment of the stiffener and a modified Simpson intearation around

the circumference. Note that strip integration has been used over the

meridional length.

The pseudo forces due to geometric nonlinearities are given by Eq.

26 which when specialized to the ring becomes:
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NLi  - (E)(t)(r)(L)(N) [( cos i + cos i) 3] de
-J

(71)

- e23 sin ie (e + e + K de
aq

where z is the distance from the mid-surface of the shell to the centroid

of the complete ring stiffener. There is no summation on i in either

Eqs. 70 or 71.

SPRING SUPPORTS

There are frequently shells of revolution which have intersecting

supports at various locations around the circumference. The missile

tubes and platforms in submarines serve as specific examples of such

supports. In the present research these supports are included as linear

elastic springs and are incorporated into the basic equations as pseudo

forces on the right hand side of the equations of equilibrium. This pro-

cedure is rather straightforward but can lead to numerical instability

problems for overly stiff supports. Further the supports must be in-

cluded so as not to prevent rigid body translation of the complete

system. To accomplish this latter objective the supports are treated as

coupled linear elastic springs.

The general equations for the forces and moments due to the spring

supports are given by:

{Fs} = [KF] {q} (72)

3 x 1 3 x 3 3 x 1



and

{M} = [KM] {el3
23

where q are the deflections at the center of the element in cylindrical

coordinates. ql, q2, and q3 are the axial circumferential and radial dis-

placements respectively. el3 and e23 are rotations about the circumfer-

ential and meridional directions respectively.

As a simple example consider a single support on a circumferential

ring as shown in Fig. 5. The support as shown acts in the qi direction

only and the forces are given by:

F' K

F' I

F' 0

where q2 and q~ are in the other

Next the q's are related to

Using Eq. 75 to transform

[KF] becomes

0

0

0

the

0

0

0

two

the

0 qj

0 qI

orthogonal directions.

q's through the transformation

coses sines 8

0 0 q2

0 0 q3

displacements and forces F', the matrix

32

(73)

(74)

(75)
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0 O 0 K 0 0 0 cose s  sine s

[KF]= coses  O O 0 0 0 0 0 0

sine s  0 0 0 0 0 0 0 0

(76)

Carrying out the indicated matrix multiplication in Eq. 76 yields:

0 0 0

[KF] = K 0 cos2es cosesine5  (77)

O cosesines  sin2es

The matrix of coefficients given by Eq. 77 restricts motion in the qi'

direction but permits the entire system to translate in the horizontal

direction. It should be noted that this objective could not be accom-

plished without permitting a complete matrix of spring constants.

An interesting application of the spring support idea is to repre-

sent an incomplete clamped circular ring or cylindrical panel. The spring

constants in these cases should be very large - - ideally infinity. How-

ever in practice these spring constants may be selected by assuming that

the supports are short stubby beams as compared with the actual structure.

It has been found that the spring constants may be made quite large with-

out introducing numerical stability problems. Specific examples are given

in the section on application.
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COMPUTATIONAL PROCEDURE

The purpose of this section is to present, in some detail, the com-

putational procedure used to compute the pseudo forces due to geometric

and material nonlinearities. This should not be interpreted to imply

that the other portions of the numerical process are unimportant. How-

ever, the details of much of the procedure for computing mass and stiff-

ness matrices are the same as were presented in earlier works.49'53

In an earlier computer code called DYNASOR for the geometric non-

linear analysis of shells of revolution the integrals around the

circumference were evaluated exactly. To perform this task several three

and four dimensional arrays were needed where each dimension was the num-

ber of Fourier terms used in the expansion. Further, these arrays were

used in three and four nested DO loops within the program. The net result

of the formulation used in DYNASOR was that storage requirements and com-

puter run times restricted the number of Fourier terms that could be used.

During the course of the present research, it was found that numerical

integration around the circumference is a very efficient computational pro-

cedure both from the viewpoint of computer time required and storage al-

locations. The importance of the modified Simpson's rule cannot be over-

emphasized. The present code called DYNAPLAS is considerably more effici-

ent especially when a large number of Fourier terms is being used. Con-

sidering the fact that DYNASOR required shorter computer run times than

comparable computer codes, the present code, DYNAPLAS, should be capable
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of solving large scale problems in realistic computer run times.

The pseudo forces are computed in one rather long (1400 statement)

subroutine called QPRIME. The-long length is due to the large number

of statements inside a DO loop over the number of modified Simpson sta-

tions around the circumference. This also explains why a reduction in

the number of stations around the circumference through the use of a

modified Simpson's integration saves appreciably on computer run times.

The key to an efficient computational procedure is the computation

of the partial derivatives given in Eq. 59 and tabulated in Appendix A.

While the term partial derivatives is used here they could equally well be

called coefficients or any similar terminology as they do not depend

on the displacements. At times the term partial derivatives leads one

to believe that the Eqs. 59 are only approximate whereas they are exact

regardless of the magnitude of the generalized displacements. The second

step in the computational procedure is to compute linear strains, rotations,

changes in curvature, and twist for each Fourier term as given by Eq. 59.

With these preliminary calculations out of the way a DO loop over the num-

ber of integration stations around the circumference is entered. For each

modified Simpson station the following calculations are performed.

A. Compute the strains, rotations, curvature, and twist in accordance

with Eq. 58.

B. If stations have not yielded before, check for yielding. This cal-

culation involves calculating the stress in accordance with Eqs. 9

and 10 and the evaluation of a from Eq. 27.

C. For each Simpson station through the thickness compute the increment
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of plastic strain. This involves Eqs. 28, 30, 31, and 33. Further,

this section involves some rather complex logic to transverse the

region from elastic to elastic-plastic behavior and checks for un-

loading and reloading.

D. Compute the pseudo forces due to initial strains using Eq. 63.

E. Compute the pseudo forces due to geometric nonlinearities using Eq. 64.
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COMPUTER PROGRAMS

The computational algorithm presented here has been coded into two

FORTRAN programs called SAMMSOR III and DYNAPLAS. These two codes are

essentially an extension of two SOR codes, SAMMSOR II and DYNASOR II,

which have been operational since 1970. The extensions include elastic-

plastic material behavior, ring stiffeners, and the effects of other

internal and/or external stiffening members in addition to the large

deflection capability of DYNASOR II.

As in the SOR series of codes the dynamic analysis is conducted

by first executing the SAMMSOR III code to obtain an output tape con-

taining the stiffness and mass matrices for the particular geometry

being studied. DYNAPLAS is then executed to solve the dynamic equa-

tions for a specific set of initial conditions, boundary conditions

and loading history. A subsequent analysis of the same problem with,

for example, a different loading history requires only the execution

of DYNAPLAS.

The SAMMSOR III code utilizes a highly refined curved shell of

revolution element in addition to beam type ring stiffeners. The shell

element utilizes cubic displacement functions for the normal and in-

plane displacements and, through static condensation, a basic eight

degree of freedom stiffness matrix is generated. A mesh generating

routine is included which allows the user to input the geometry of

complicated shells of revolution with only a minimum of input informa-

tion. The ring stiffeners are assumed to have zero products of inertia
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but may be eccentrically located and may be formed by as many as three

rectangular flange members.

In addition to the stiffness and mass matrices generated by

SAMMSOR III, DYNAPLAS requires the uniaxial stress-strain data for the

shell and stiffeners, the boundary conditions, the initial displacement

and velocity conditions, and the applied load as a function of time.

In addition, a number of other control constants are required; for ex-

ample the specific Fourier terms to be utilized in the analysis, the

time increment, the number of integration stations to be utilized in

numerically integrating over the volume, print parameters, etc. The

applied load history may be described by specifying either a pressure

distribution over the element or the Fourier coefficients of the distri-

bution at discrete time intervals with a linear variation being assumed

between the specified times. For a particular element, the pressure

distribution is assumed to be constant in the meridional direction and

vary as a step function in the circumferential direction. In addition,

the code is capable of accepting concentrated ring loads at each node.

The uniaxial stress-strain data is described by inputting a piecewise

linear curve with as many as five stress-strain data points. The ma-

terial characteristics may vary from element to element. The code may

of course be run with plasticity and/or geometric nonlinear effects

omitted.

The computer code has a restart provision permitting the program to

be restarted at a particular time increment once the program has been
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run up to that time. Restart information is placed on tape periodically

during the execution of DYNAPLAS. If subsequent analysis of the output

by the user indicates that, for example, a smaller time increment is

needed or the nonlinear forces need to be updated more often, the pro-

gram can be automatically cycled to any time increment for which restart

information is stored on tape and then the analysis restarted with new

input parameters (smaller time increment, etc).

The program output consists of all input control words, input loads,

generalized forces, stiffness and mass matrices, and the resultant dis-

placements, stresses and strains through the thickness and around the

circumference. Various print parameters allow the user to select as

much or as little of the above output as he desires.

In order to make the program more flexible variable or dynamic

dimensioning has been used on forty-four main arrays in DYNAPLAS. A

blank common block is dimensioned for a certain number of storage loca-

tions in the main program and is used as a dynamic storage area. The

forty-four arrays are then implicitly equivalenced to various portions

of the blank common by the subroutine call list. These variables are

variable dimensioned in all subroutines for the number of elements,

harmonics, etc. A subroutine is called from the main program which scans

the input files to determine the necessary storage requirements based

on the number of elements, harmonics, etc. If the required number of

storage locations is less than what the blank common is dimensioned, then

execution of the data set begins. This subroutine also determines (based
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on the input data) the beginning point of each of the forty-four arrays

relative to the first location of the blank common. This feature allows

the user to set the size of the blank common based on (a) available core

size and (b) program size required to solve a problem. The values of

the various input parameters (such as number of elements, Fourier terms,

integration stations, etc.) may be input in any combination as long as

the dynamic storage area is not exceeded.

These programs have been written in standard FORTRAN IV language.

The programs are operational on the IBM 360/65 computer at Texas A&M

University and the CDC 6600 computer at Sandia Laboratories. As usual,

the IBM version of the programs requires double precision arithmetic

in critical areas. Utilizing mixed mode arithmetic, SAMMSOR III re-

quires approximately 180,000 bytes of storage (fifty elements). DYNAPLAS

requires approximately 160,000 bytes of storage plus the dynamic storage

area. A fifty element idealization utilizing ten Fourier terms requires

approximately 200,000 bytes of dynamic storage area (IBM 360/65).

Considering the complexity of the computer program it is highly

efficient. For example the solution to the ring presented in Figure 2

required less than 20 seconds of IBM 360/65 computer time. The analysis

of the circular plate presented in Figure 9 required about 3 minutes of

IBM 360/65 time. The solution to the asymmetrically loaded truncated

cone shown in Figure 11 using thirty elements and ten Fourier terms

required 30 minutes of CDC 6600 computer time (updating the nonlinear

forces at each time increment). If the nonlinear forces are updated
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every three time increments, the solution may be obtained in only 10

minutes of CDC 6600 computer time.

The SAMMSOR III code has been operational for several years and

its validity demonstrated on many test cases. The DYNAPLAS code has

been in operation for about one year at Texas A&M University and

Sandia Laboratories. Based on the test cases reported herein, good

agreement has been noted between DYNAPLAS and numerical results ob-

tained using other computer codes. Considering the assumptions in the

plasticity theory, reasonable agreement has been achieved between

DYNAPLAS and experimental results.

Copies of the users manuals* and computer code are available to

qualified users upon request. Requests should be addressed to Dr. Walter

E. Haisler, Aerospace Engineering Dept., Texas A&M University, College

Station, Texas 77843.

*1. Haisler, W.E., Stricklin, J.A., and Von Riesemann, W.A., "DYNAPLAS -
A Finite Element Program for the Dynamic, Elastic-Plastic, Large
Deflection Analysis of Stiffened Shells of Revolution," SLA-73-0127,
Sandia Laboratories, Albuquerque, New Mexico (Also Rpt. 72-27, Aero-
space Engineering Department, Texas A&M University), January 1973.

2. Haisler,W.E., Stricklin, J.A., and Von Riesemann, W.A., "SAMMSOR
III - A Finite Element Program to Determine Stiffness and Mass
Matrices of Ring-Stiffened Shells of Revolution", SLA-73-0126,
Sandia Laboratories, Albuquerque, New Mexico (Also Rpt. 72-26,
Aerospace Engineering Department, Texas A&M University, College
Station, Texas), January 1973.
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Check Out Problems

The purpose of this section is to present the solutions to a sub-

stantial number of problems. The problems vary from a simple symmetri-

cally deformed ring to the response of a hypothetical but complex sub-

marine. The solutions show the versatility of DYNAPLAS as well as its

limitations.

Static Solution for Spherical Cap

A doubly curved shell element is used in the computation of the

linear stiffness matrix, but, conical frustum elements are used in

the calculation of the effects due to nonlinearities including the

stress resultants. As past experience53 has shown that the use of

only conical frustum elements gives a residual bending moment, it was

deemed necessary to check the accuracy of using conical frustum ele-

ments for the computation of the stress resultants.

The problem chosen to check the accuracy of the computation of

the stress resultants was the static solution for a linearly elastic

spherical cap under an internal pressure as shown in Fig. 6. The cap

has a radius of 100", a thickness of .5", a Young's modulus of 10 x 106

psi, and a Poisson's ratio of 0.2. The static solution was obtained by

using a large time increment in the solution procedure. The large time

increment introduces a considerable amount of artificial damping in the

basic Houbolt solution procedure and thus yields a static solution

after a relatively few time steps. This same procedure is used on
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the submarine problem, presented later, to obtain the solution under

a hydrostatic pressure before the transient load is applied.

The results shown in Fig. 6 are for 10 and 30 equally spaced ele-

ments in DYNAPLAS and the converged solution. It is noted that the 30

element idealization is in excellent agreement with the converged solu-

tion. Further there is no residual bending moment for either the

coarse or fine element breakdown. The conclusion drawn from this

study is that the stress resultants may be accurately computed based

on conical frustum elements.

Finally it should be explained why conical frustum elements are

used for nonlinear terms. The answer is simply that the use of

finite difference expressions to compute the strains using curved

elements shows straining under rigid body motion.

Symmetrically Impulsively Loaded Ring

The first example of an elastic-plastic dynamic response is a

plane strain ring subjected to a symmetrical impulse loading giving

an initial velocity of 4911.7 in/sec. The ring had a 10" radius, a

thickness of .1", and a density of .1 lb/in3 The yield stress was

taken to be 42,400 psi and the problem was studied for various amounts

of strain hardening. The results for the radial deflection vs. time

are shown in Fig. 7 along with results given by Duffey and Krieg1 4

and computer results obtained from the computer code UNIVALVE. 32

Results are presented for three different values of the strain

hardening parameter, X = ET/E. It is noted that all three solutions
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are in excellent agreement. A problem similar to this one was solved

where the impulsive load was applied as a high intensity pressure over

a short duration of time. The results were found to agree with those

obtained using an initial velocity based on same impulse.

Free Ring Under Half-Cosine Impulsive Load

The first example solution for asymmetrical loading is a free-

free plane strain ring under a half-cosine impulsive loading. The

aluminum ring had a radius of 11", a thickness of .15", and a density

of .09997 lb/in3. The stress-strain curve was assumed to have a yield

stress of 30,000 psi, a secondary modulus of 5 x 106 psi to a total strain

of .009 in/in, and perfectly plastic thereafter. The solution through DYNA-

PLAS was obtained using 5 Fourier terms and a time increment of 0.5 V

sec. The results for the deflection at e=0 vs. time are presented

in Fig. 8 along with results from the computer codes SPECTRE8 and

UNIVALVE.32 Results from DYNAPLAS are given for updating the pseudo

forces every time increment in conjunction with an extrapolation

factor of 1.0 and updating every 5 time increments with an extrapola-

tion factor of .5. It is noted that the two solutions agree quite

well with each other as well as with the results from SPECTRE and UNIVALVE.

This problem was used to check various provisions in the computer

code. The problem was solved as a ring, a shell (with slight modifi-

cation to computer code) and as three flanges, two of which were

eccentrically located. The problem was also solved as a ring with
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the reference surface at the inner edge of the ring. The solutions

for all these cases agreed quite well with each other.

Figure 9 presents the plastic strain at the outer surface and

e = 0 vs. time for 3, 5, and 9 modified Simpson's stations around

the circumference. It is noted that reasonably good results are

obtained with only 3 modified Simpson's stations. The deflections

agreed quite well with the results presented in Fig. 8 for all three

cases.

Clamped Ring Under Impulsive Loading

Wu and Witmer62'63 have conducted extensive studies of the highly

nonlinear dynamic response of rings and reported experimental results

based on earlier tests. One of the rings which they studied is shown

in Fig. 10. The ring had a radius of 2.935 in., a thickness of .123

in, and a density of .25 x 10-3 lb-sec2/in4. The yield stress was

42,800 psi and the secondary modulus was 78,700 psi. The ring sub-

tended an angle of 3150 and the boundaries were clamped. An impulse

giving an initial velocity of 4862 in/sec was applied over a 1200

segment.

The theoretical solution by DYNAPLAS was obtained using 5, 10,

and 15 Fourier terms. Time increments used were 5 p sec for the 5

and 10 term analysis and 2 v sec for the 15 term analysis. It should

be noted that the deflections are very large with the outer edge of

the ring almost reaching the origin of the original circle. The 15

Fourier term solution shows excellent agreement with the experimental
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results.

The clamped boundary condition was obtained by including springs

at the supports. In an earlier run, one of the spring constants was

arbitrarily set equal to 15 x 106 lb/in. It was found that this very

large spring constant introduced a "flip-flop" response in the solu-

tion near the support. The portion of the ring very near the spring

would be loading plastically in one direction at one time increment

and be loading plastically in the opposite direction at the very next

time increment. As this provision is unrealistic and not accounted

for in DYNAPLAS, the stress deviated from the assumed stress-strain

curve. However, the solution procedure did not diverge. To avoid

this difficulty a physically reasonable support system was assumed

to be represented by the bending of a strip with the same cross-

section as the ring but only .5" long. This led to spring constants

of 50,000 lb/in for the deflection springs and 25,000 in-lb/rad. for

the rotational spring. The deflections and rotations at the boundary

were so small as to be insignificant for all computer runs using

these spring constants. The important point to be noted is that

physically realistic spring constants must be used.

The case for 10 Fourier terms was first studied using 11 modi-

fied Simpson stations to integrate around the circumference. This

led to a monotonically divergent solution at approximately 1000 p

sec. The problem was corrected by increasing the number of modified

Simpson stations to 17. This is the only problem where this type of

difficulty occurred but as a result it was concluded that a "safe"
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number of Fourier stations is approximately twice the highest

Fourier number being used. Undoubtly most problems may be solved

using considerably fewer stations and thus saving appreciably on

computer run times.

In the solution using 15 Fourier terms, 27 modified Simpson

stations around the circumference an'd 7 Simpson stations were used

through the thickness. The pseudo forces were updated every time

increment resulting in a computer run time of 8 minutes (CDC 6600).

The results from DYNAPLAS for the total strain at the line of

symmetry and on the outer surface are given in Fig. 11.

It is noted that the maximum strain reaches a value of 8.5%.

The angle of rotation as a function of the angle around the circum-

ference at 1000 p sec is shown in Fig. 12. It is noted that the

maximum rotation is .6 radians at 1000 u sec and probably approaches

1 radian at 2000 V sec. The rotations were obtained from the solu-

tion using 10 Fourier terms.

Cylindrical Shell Under Impulsive Load

The final deflection of a clamped cylindrical shell under a

half-cosine impulsive loading is given in Fig. 13. The length of

the cylinder was 6 inches and was idealized using 10 finite elements

along half the length and 5 Fourier terms. The final deflection was

obtained by running DYNAPLAS with a small time increment until all

elements began unloading. The time increment was then increased

and the solution restarted. This large time increment damped out the
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motion quite rapidly. Shown in Fig. 13 are results from DYNAPLAS,

SHORE,57 and experimental results. 35  Reasonable agreement among

the results is noted but it should be pointed out that the final

deflection shape is not a good measurement of the accuracy of a

computer code.

Circular Plate Under Impulsive Load

The next problem is the analysis of a circular plate shown in

Fig. 14 and 15. The experimental results were taken from Ref. 15.

In the experimental procedure the plate was supported by two massive

rings 2" in thickness and connected with 12 1/2 inch bolts at a radius

of 4 inches. The edge of the rings was 3" from the center. It was

observed after the experiment that some slippage did occur at the

inner edge of the ring. To represent the boundary conditions in the

theoretical analysis it was assumed that the circular plate was

clamped at the bolt circle and on rollers for the portion inside

the bolt circle covered by the ring. These boundary conditions are

duplicated in the sketch in Figs. 14 and 15.

In the analysis using DYNAPLAS eleven finite elements were used.

Nine were equally spaced over the inner portion of the ring and two

elements were used to represent the portion of the ring under the

rollers. A time increment of 1 V sec was used in DYNAPLAS. The

stress-strain curve was represented by an initial elastic modulus

of 107 psi to a strain of .00424 in/in, then a secondary modulus of

3.29 x 106 psi to a total strain of .00449 in/in, and perfectly
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plastic behavior thereafter.

Experimental and theoretical results for the deflection at the

center of the plate are shown in Fig. 14. It is observed that there

is good agreement through the initial peak deflection and over part

of the unloading curve. However the experimental results deviate

from theoretical results at later time increments.

The experimental and theoretical values for the meridional

strain on the top of the plate at a distance of 2.125 inches from

the center are shown in Fig. 15. Considering the closeness of this

point to the edge of the supporting ring the agreement between theory

and experiment is considered to be acceptable. Further if the strains

were plotted to a scale necessary to represent the strain at the center

of the plate very little difference in the experimental and theoretical

points would be observed.

Truncated Cone Under Half-Cosine Impulse

The next problem studied was the large deflection elastic-plastic

dynamic response of a truncated cone under a half cosine impulsively

applied pressure. The truncated cone had a upper radius of 7.95",

a lower radius of 10.23", a thickness of .5430" and a density of

1.88 x 10- 4 lb sec2/in4. Additional details are given on Fiqs. 16,

17, and 18. The material was assumed to have a yield stress of

30,000 psi and to be elastic-perfectly plastic.

Results are presented for the deflections (Fig. 16) and strains

(Figs. 17 and 18) as obtained from DYNAPLAS, REPSIL,24 '52 and SHORE.57
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Considering the fact that the three computer codes are completely in-

dependent the agreement of displacements and strains presented in

Figs. 16, 17, and 18 is considered to be outstanding and serves as

a check on the accuracy of all three codes. However, based on the

shown displacements, it is clear that the degree of geometric non-

linearity is not severe.

In DYNAPLAS, the conical frustum shell was idealized as 30

equally spaced finite elements and 10 Fourier terms were used. Seven

Simpson stations were used through the thickness and a 2 V sec time

step was used. Two runs were made varying the frequency of updating

the pseudo forces and the number of modified Simpson stations around

the circumference. Results were the same for both cases. In the

first 13 Simpson stations were used and the pseudo forces were up-

dated every three time increments with an extrapolation factor of

1.0. The computer run time was 10 minutes on the CDC 6600. In the

second run 17 Simpson stations were used and the pseudo forces were

updated every time increment. The computer run time was 30 minutes

on the CDC 6600. Storage requirements were 88,000 words for the

second case.

The SHORE code was run using 30 and 18 equally spaced increments

along the meridian and around the circumference respectively. The

computer run time was 22-1/2 minutes on the UNIVAC 1108 which is com-

parable to the case one run for DYNAPLAS.
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Cylinder Under Moving Pressure Load

To illustrate the capabilities of DYNAPLAS to treat a complex

moving pressure load, a clamped cylinder previously solved through

REPSIL was chosen. The shell had a length of 5.958", a diameter of

5.958", a thickness of .042", and a density of .1 lb/in3. Young's

modulus and Poisson's ratio were 10.5 x 106 psi and .3 respectively.

The yield stress was chosen to be 44,000 psi and the material was

taken to be elastic-perfectly plastic.

The pressure loading is given by

p(re,t) =

0 for t < reU

Po re 2re -< < t<U +  T
T- (U + T-t) cos D for

D< re< 4-

0 for t > U + TU

0 for 7- < Ire <4 2lBIZ
where

D = diameter = 5.958"

U = velocity of pressure front = 24,800 in/sec.

T = duration of triangular pulse = 8.28743 x 10-6 sec.

Po = peak pressure at crown line = 28,000 psi.

The wave front velocity requires 200 P sec to travel to e = 4/2. The

short duration of the pressure pulse yields a very high intensity pressure
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extending over a very small angle of the shell.

In DYNAPLAS the shell was idealized as 10 equally spaced ele-

ments over 1/2 of the meridional length. The Fourier coefficients

for the pressure loading were input every 4 p sec with the computer

code using linear interpolation at intermediate times. A time in-

crement of 1 v sec was used with the pseudo forces being updated

every time increment.

The first run was conducted using 5 Simpson stations through

the thickness and revealed a shortcoming of the DYNAPLAS computer

code. The rotations at the nodes diverged with the value at one

node increasing in the positive direction and the adjacent node

diverging in the negative direction. After considerable deliberation

it was concluded that the difficulty was caused by the extreme thin-

ness of the shell (.042"). The elastic stiffness matrix simply has

no resistance to rapid changes in angles. It was decided that for

extremely thin shells it should be permissible to use effectively

membrane theory to evaluate the effects of nonlinearities. This

consists of using strip integrations through the thickness based

on one point at the midsurface of the shell.

Three separate runs were conducted using DYNAPLAS. The first two

were with 15 Fourier terms, 27 modified Simpson stations around the

circumference but with and without the rotational degree of restraint

at the fixed end. If membrane theory is adequate the rotational de-

gree of restraint should not be important which was in fact found to
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be the case. The 20 Fourier term analysis was conducted as the

Fourier coefficients for the pressure load were converging very

slowly. However, it should be recognized that the stiffnesses of

the higher Fourier terms are quite large and thus a convergent series

for the pressure loads is not necessary. For 15 Fourier terms and

27 stations around the circumference'the computer run time was 53

minutes on the IBM 360/65. This is equivalent to approximately 13

minutes on the CDC 6600.

The results for the radial deflection and the meridional strain

at the middle of the shell and at e = 0 are shown in Figs. 19 and

20 along with the results from REPSIL.24  Needless to say the agree-

ment is rather poor. More interesting is that DYNAPLAS predicts

lower deflections but higher strains than predicted by REPSIL. To

check the consistency of strains and deflections an elementary

analysis was conducted. The deflection shape was assumed to be

represented by

(1 -cos -T) (78)

where 6 is the deflection at the center. The average value of the

strain was then computed by evaluating the deformed length, substract-

ing it from the undeformed length, and dividing by the undeformed

length. The results based on the deflections obtained from DYNAPLAS

are shown in Fig. 20. A check of the strains computed by DYNAPLAS

reveal that the value of 20% is very close to the average value at

the maximum load. Using the value of 2.5" for the maximum deflection



54

as obtained by REPSIL in Eq. 78 yields an average strain of 34%.

There are two differences in DYNAPLAS and REPSIL which may account

for the differences in results for this highly nonlinear problem. First

DYNAPLAS permits moderate rotations whereas REPSIL permits arbitrarily

large rotations. Second REPSIL takes the pressure as acting normal to

the deformed surface of the shell where DYNAPLAS uses the reference

surface of the undeformed shell. This second point may be quite im-

portant for this problem. Underwood has agreed to study this problem

and his results should be available before the results are published

in the open literature.

Conical Frustum Under Half-Cosine Impulse

Since it was necessary to use partial membrane theory on the

previous problem it was deemed necessary to show that the difficulty

is caused by the thinness of the shell and not because of highly

nonlinear behavior. For this purpose the previously studied conical

frustum shell was again analyzed with the initial impulse being in-

creased by a factor of 2.5. Results for deflections and strains are

shown in Figs. 21, 22, and 23. Examination of the output data reveals

deflections over 1/2 of the average radius of the shell and strains as

great as 40%. Seven Simpson stations were used through the thickness

and a detailed study of the data revealed no oscillations in the ro-

tations at the nodes.
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Hypothetical Submarine

To illustrate the application of DYNAPLAS to a problem which

involves a shell, stiffeners and springs, a structure with a vague

resemblance to a submarine was chosen. Three difference types of

response are of interest. The first is due to a hydrostatic pressure

followed by a high intensity transient load. The final stage of re-

sponse is the overall vibration of the vehicle over a substantial

period of time.

Except for the fluid-structure interaction, the total response is

comparable to what might be encountered by a complex structural system,

such as a submarine vehicle, subjected to hydrostatic pressures and

shock environments. The application would prove extremely useful in

the design and isolation of internal equipment subjected to shock

loadings of such severity as to cause gross plastic deformation (but

not complete failure) of the submarine hull.

In this example, the vehicle is 360" in length, 60" in diameter

and has an intersecting vertical tube 12" in diameter. The material

properties are typical of steel and are given in detail in the User's

Manual for DYNAPLAS. The purpose of the present presentation is to

present an overall view of the analysis procedure including some typical

curves.

Ideally, the analysis would consist of inputting the detailed

geometry of the complete vehicle and conducting the analysis. However

this would require excessive computer run time and more storage than

is available on most computers. For this reason the portion of the
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vehicle around the tube was selected as the region of primary interest.

The vehicle was idealized as shown in Fig. 24 with the element breakdown

shown in Fig. 25. Six elements were used for the hemispherical nose and

rather large elements were used for the stiffened cylinder except around

the tube where 19 rather closely spaced elements were used as shown in

Fig. 25b. It was assumed that the vehicle is symmetric about the center-

line. A total of 45 finite elements were used in the idealization.

Details of the geometry including the stiffeners are shown in Fig. 24.

The spring constants for the tube were determined based on elemen-

tary beam theory. These included both deflection and rotational springs.

The detailed values for the spring constants are given in the User's

Manual.

The hydrostatic solution for a uniform pressure of 500 psi was

obtained by applying a linearly increasing pressure to a time of 20,000

psec and holding it constant at 500 psi to 50,000 psec. A time step of

1000 psec was used in the solution procedure. A slow application of

the pressure was necessary as it was found that a step loading caused

numerical instabilities when large time steps were used. These in-

stabilities are believed to be due to the presence of the tube. Also

it was necessary to apply a radial restraint at the apex to eliminate

rigid body motion. It was found that the deflection increased linearly

to 20,000 psec and remained constant thereafter. A check of the results

shows a membrane solution for the hemispherical nose but variations of

the stress near the stiffeners and the tube as would be expected. Five

Fourier terms were used in the solution.
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Next the boundary condition was removed and a high intensity

pressure with a decay time of 40 psec was applied to the shell in

addition to the hydrostatic pressure. The pressure was assumed to

vary as a half cosine around the circumference and to decrease as it

approached the end of the vehicle. For this part of the analysis the

program was restarted with a time step of 2 psec and allowed to run

for 120 psec.

For the transient response it was assumed that the only region

where plasticity and geometric nonlinearities were important was the

area around the missile tube. A very high yield stress was used for

the other elements and stiffeners and only a single modified Simpson

station was used around the circumference.

To account for the overall response of the vehicle the code was

restarted at 50,120 psec with a time increment of 5 psec and run to

50,320 psec. Next it was restarted with a time step of 15 psec and run

to 51,400 psec. In a separate restart at 50,320 psec a time step of

50 psec was used and the analysis was conducted to 55,000 psec.

Results for the meridional strain near the tube are shown in

Fig. 26. The distinct phases of the response to each of the different

loads can be observed. First the hydrostatic value is reached and then

a rapid increase occurs when the transient load is applied. The slight

dip in the value of the strain when the transient load is applied is

unexplained. The rest of the response is the vibration of the modes of

the vehicle,

Two fundamental modes of vibration of the overall vehicle were
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observed. The first is a lateral vibration similar to a free-free

beam. This is depicted in Fig. 27 as the response of Fourier coefficient

No. 1. The actual results showed appreciable lateral translation of the

vehicle.

The other response which was easily observed is the response of

the shell in a ring mode of vibration. An elementary calculation re-

vealed that this mode has a period of 10,000 usec. The computations

were not carried out to where this mode reaches its peak.

The purpose of this problem was to demonstrate that DYNAPLAS is

capable of solving such complex problems and not to report a detailed

analysis due to the assumptions in structure and loads. However it is

concluded from this study that DYNAPLAS may be used for such analyses.

Cylindrical Panel

A cylindrical panel under an impulsively applied load was studied

to determine if such problems can be solved by representing the bound-

aries by spring supports. The panel circumscribed an angle of only

60°. Analyses were conducted using 5, 10, 15, and 20 Fourier terms.

Results agree with experimental and other theoretical results up

to near the peak deflection but DYNAPLAS results show considerable more

"snap-back." A check of results shows that there are appreciable de-

flections in the shell beyond the spring supports. The conclusion

reached from this study is that DYNAPLAS may be used for the initial

response of panels but may not be used to study complete panel behavior

unless the panel circumscribes almost 3600 as was the case for the

clamped ring under impulsive loading.
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Users Hints

Recent convergence studies have shown that most results given

in this report were not obtained in the most efficient manner. The

following guidelines should save appreciably on computer run time.

1. For moderately nonlinear problems the psuedo forces should

be updated every two or three time increments and an extrapolation

factor of 1.0 should be used. For problems involving a high degree of

geometric nonlinearities the psuedo forces must be updated every time

cycle.

2. The number of modified Simpson's stations around the circum-

ference may be less than the number of Fourier terms used.

3. Three to five Simpson's stations through the thickness should

be adequate for most problems.
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Extensions in Progress

DYNAPLAS is currently being extended to provide the following:

1. Variable thickness in the circumferential direction.

2. Strain rate effects.

3. Temperature effects including the variations of material

properties with temperature.

4. Improved plasticity relations including orthotropic plasticity.
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Statement of Policy

The primary objective of this research is to develop a computer

code which will be useful to the engineering community. Consistent

with this objective the authors welcome comments from the users and

are willing to assist the users within reason. This is especially

true of users associated with the Navy, AEC, and NASA who have sup-

ported and continue to support this research and the many users of

SNASOR II and DYNASOR II who have helped, through their comments,

to make these better computer codes.
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APPENDIX A
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aql s

e13 _ cos f

aq3  s

Be13 Be1 3

aq5 aql

ae13 ae13

aq7 aq3

°se - sin - -
aq2 r s

ae + 1
se _ sinr + 1

aq6  r s

aes - ael 3
aql aq3

ae s

aq5
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aKS _ 1

aq4  S

s 1
aq 8  s

DKse _ cos + 2 sin 9 ae23
aq2rs r aq2

aKse _ cos + 2 sin f ae23
q6 rs r aq6

The following partial derivatives are a function of the harmonic number i.

23 i sin
2r

ae23 i cos

aq' 2r

i i
ae23 ae23

aq' aq'

i i

ae23s ae23aql aq 3

i i

ae ae23
es 3-



i
ae,
e =

aql2

ae

aq6
iaK,

aql

i

aea

aq2

i
r

KSe 2i 13 2 sin f 23
aq r ql r aq

2ql

iaese

aq5

ae23

2q; I7
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aei
aese -
aq7

i
ae23

aq'

iae23

2ql

ae23

aq2

e23

ae 2 3

aq5
23

aq2
ae 23

aq7

i

aKe

aq2

2Ki
aK9

aq3

34aK 0a5

sin f ael 3
r aql

sin ae 13
r aq3

sin ae 13
r aq5

sin p ae13
r aq7

i
r

i
r

i
r

i
r

i
r
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se 2i13 2 sin ~ 23
aq3 r aq3 r aql

i
ase 2i ae13  2 sin ae23
aq1 r aq5 r aq

i
se = 2i e13 2 sin e23

aq7 7 r aq7

All other partial derivatives are equal to zero.


