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I. INTRODUCTION

1.1 Introduction and Historical Background

Multivariable Systems are a characteristic feature of modern

industrial and production processes. A Multivariable System, as the

name suggests, has several inputs and outputs. The object of design

is to control these interdependent inputs and outputs to-obtain the

desired output from the system.

One design approach is to control the system in such a way that

a change in one input variable affects only one output variable. This

is the problem of decoupling or noninteraction. Early attempts to

solve the decoupling problem by Boksenbom and Hood [1], Freeman [2],

and Kavanagh 13] made use of the transfer function approach. These

methods made arbitrary assumptions and ran into problems of stability

and realizability. There was a need for understanding of system

structure, and establishing a compatibility of the design approach

with computer methods, both of which are dependent on the state

formulation. Morgan J4] formulated the decoupling problem in state

space and a complete solution to the design of noninteractive systems

was provided by combined efforts of Falb and Wolovich 15], Gilbert I6J,

and Wonham and Morse 17]. Morse 18] has recently reviewed the status

of noninteracting systems.

Approaches to the design of interactive Multivariable Systems

were first treated as a logical application of optimal control

theory whereby, with a suitable input, the weighting matrices in a

cost function are used to achieve a satisfactory solution. The work
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of Ellert and Merriam J9] , and Tyler [10] among others is to be noted.

This method has been found wanting because of problems associated

with the solution of the Riccati equation for large systems, the

requirement of full state information, and difficulty of summarizing

in a quadratic performance criterion the desired response character-

istics. No systematic way is known to date for changing the weighting

matrices in the multivariable system design problem. Some recent

efforts at facing this problem have been reported by Murphy and

' Narendra 111], Rediess and Whitaker [12], and others. Notably,

Ferguson and Rekasius [13] have dealt with the problem of incomplete

state measurements.

In an effort to circumvent these difficulties Rosenbrock 114]

suggested modal control as a design tool, which is to say, he pro-

posed changing the eigenvalues of the system matrix to achieve the

desired control objective. Wonham [15] showed that for a controllable

system the eigenvalues of the closed loop system can be assigned

arbitrarily using state feedback. Simon and Hitter 116"! proposed a

theory of modal control.

Much of the work which relates to the concept of modal control

has been termed "pole placement". Disregarding work on decoupling,

pole placement methods for multivariable systems have been treated

in two categories: 1) methods using constant gain feedback

2) methods using dynamic compensators to achieve pole placement.

Retallack and MacParlane [17] have derived a state-feedback

pole-shifting algorithm using the Hsu-Chen theorem [18]. Chidambara

[19] has shown that it is possible to solve the pole assignment

problem with state feedback for a time-invariant linear system of



order (n) having (m) inputs through the solution of the same problem

for a similar system of order (n-m-r) [with r <_ m] having r- [where

r1 _<_ r] number of inputs. Davison {20] has studied the relationship

between controllability, pole assignment and incomplete state feed-

back.

Brasch and Pearson 121] have shown that for a controllable,

observable plant a compensator of order 3 = min(v -l.v.-l) is

sufficient to obtain arbitrary pole placement in the system consisting

of the plant and compensator in cascade feedback configuration. Here

v (v ) is the controllability (observability) index of the plant.

Similar results are obtained by Chen arid Hsu [22] using a transfer

function approach. Ahmari and Vacroux [23] have generalized the

theory of pole assignment to include the case in which a controllable

observer plant is augmented by a compensator of fixed dimensionality.

Although pole locations are an important element in the spec-

ification of satisfactory control, they are by no means sufficient

in themselves. The sensitivity of the system to disturbances and to

parameter changes is also important, as is the effect of transducer

or actuator failure. Overshoot, and the extent of interaction, can

also be significant in some applications. Among these various factors

which affect the design of the control system the problem of the zeros,

i.e. the numerator polynomial roots of the transfer function, is

considered in greater detail in a later chapter.

1.2 Problem Statement

The general problem of designing Multivariable Systems can be

approached from different design objectives such as decoupling, exact

model matching, disturbance rejection and pole placement. The



problem investigated in this study may be described as follows.

Consider the linear time invariant multivariable deterministic

continuous system described by the equation:

x - Ax + Bu (1.1)

2. " Cx (1.2)

The object is to use the output feedback 11 = Kv^ to place the eigen-

values of the closed loop system

x » (A + §KC)x

in a desired location predetermined by the designer. The case of

pole placement with state feedback is considered as a special case

of output feedback where C = I, the identity matrix. In this thesis

the design technique is focused on using constant gain feedback matrices

of unity rank. The method is applied to the design of a complex

system described by the equations (1.1) and (1.2). Further, the

effect of feedback on the zeros of the closed loop system, i.e. on

the roots of the numerator polynomial C Adj (SI-A + B*KC)~ B is

investigated along with the problem of zero-placement.

1.3 Outline of the Thesis

Chapter 2 outlines a design technique to place the poles of the

closed-loop system using output feedback. The method results from an

alternate derivation of Davison's theorem on controllability, observa-

bility, and pole placement using output feedback. Several examples

are given to illustrate all the features of the method.

Chapter 3 considers the question of approximate pole placement

when it is not possible to place all the poles using output feedback.

This problem is approached in two different ways - (i) using the

psuedo-inverse to get an approximate solution to a set of inconsistent



equations, (ii) Using gradient method to obtain a least square

solution to the set of equations.

In Chapter 4 the pole placement design is applied to a complex

system. The system chosen is the Boeing-Vertol CH-46 Helicopter.

The system is open-loop unstable and has eight states, two inputs,

and four outputs. A controller for the Helicopter stabilization

is developed using output feedback.

Chapter 5 summarizes some recent contributions to the problem

of zero-placement and examines the advantages and limitations of

using a unity rank feedback gain matrix for pole zero placement.

Future developments, extensions, and topics for additional

research are presented in Chapter 6.



II. POLE PLACEMENT USING OUTPUT FEEDBACK

2.1 Introduction

The design of linear multivariable control systems using output

feedback has attracted the attention of several authors 117, 20-22,

24, 25]. There are two ways of approaching this problem. The first

method consists of estimating the states of the system using an

observer and using these estimated states in the subsequent design.

In the second approach, either static or dynamic feedback of the

output is used directly in the control problem and this view is

adopted here.

Consider a linear time-invariant multivariable system

x « Ax + Bu (2.1)

£ = Cx (2.2)

where x is an n vector of states, 11 is an m vector of inputs and y_

is a p vector of outputs. It is well-known that the problem of pole

assignment using state feedback is equivalent to the controllability
/> /\

of the pair (A, B) [15]. Here it is shown as a theorem that for a
A A SV f> <*

controllable, observable system [A, B, C] with B and C full rank

max(m|p) poles of the system can be assigned arbitrarily close to

desired locations using constant gain output feedback. This theorem,

though similar to Davison and Chatterjee [26], leads to a design

approach by virtue of the method of derivation. In some cases, more

than max(m,p) poles can be assigned arbitrarily. Also, certain pole

configurations which cannot be attained by Davison's method can be

attained by this method. These advantages are illustrated by means of

6



examples. Assuming the system is output stabilizable, a least

square design technique is outlined to approximate the desired pole

locations when it is riot possible to place all the poles.

2.2 Theorem On Pole-Placement;
/̂

Given the system (2.1 and 2.2) with Rank B = m £_ n and Rank C =

p j< n, then a linear feedback of the outpttt u_ = Ky_, where K is a

(mxp) constant gain matrix, can always be found such that max(m,p)

eigenvalues of the closed loop system are arbitrarily close to pre-

assigned (complex eigenvalues occurring in conjugate pairs) values.

Proof

Let (A-, A~, , A ) and (p, , P9, , p ) be the eigenvalues

of the openr-loop and closed-loop system respectively.

We have

open loop characteristic polynomial = |sI-A|=(s-A1)(s-A2)

(s-Xn) (2.3)

and closed loop characteristic polynomial = |sI-A+BKCJ = (s-p-)

(s-p2)—(s-pn) (2.4)

Then

IsI-A+BKCI
(2.5)

T T
Choosing K = f_ d_ where _f_ is a mxl (column) vector and c[ is a Ixp

(row) vector, and using the identity det[I + MN] = det II 4- NM] , equation

(2.5) becomes

SI-A!
= 1 + TCT (sI-T'-'-AT)'1 T"^ (2.6)

1 + dTC (sI-A)'1 Bf



where C = CT, A * T" AT, B = T". B and T is a nxn nonsingular matrix.

Tor clarity, the theorem is initially proved for the case of

distinct eigenvalues of A and the multiple eigenvalues of A are

considered in the latter half of the proof.

Distinct Eigenvalues

In this case equation (2.6) gives

i "> * * i n a
|sI-A+BKC| r i

|sI-A| iil(8-V (2'7)

The value of a. depends on the closed loop eigenvalues (p,, , p ')•

Trom (2.6) amd (2.7)

T 1 " ai
d C (sI-A)"1 Bf = V

(s-X±) (2.8)

Choosing T as a modal matrix equation (2.8) becomes

T 1 n a
d C (sI-A) Bf = y , ., .

where A = diag. (A.., X2, , X ).

Let £ be the ±t column of C and b_ be the i row of *. Then,

a. = d̂ b.f i = 1, 2, , n. (2.10)
i i—

Case (i)

Let p>m i.e. more outputs than inputs. Choose f. such that

bjp = 6.^0 i = 1,2, , n. This can always be done since b_. f 0,

for controllability.

Hence, dV" = a±/&± i = 1, , n. (2.11)

This gives CTd_ = a. (2.12)

where

a = col fa,/6, , a.n/dn. . a /6 1.



Now, let C be the matrix made of the p independent rows of C and

a the corresponding subset of ou Then

d = C"1 a (2.13)
— p -p

Thus (dt H , ——, d ) can be chosen corresponding to the p desired

pole locations. Once this is done the remaining (n-p) poles are

fixed automatically.

Case (ii)

Let m>p i.e. more inputs than outputs

T i
Choose d. such that d_ £ = y. ̂  0 i = 1, 2, , n.

This can always be done since c. ̂  0, for observability.

Hence, b.£ = a./y ± = 1, , n. (2.14)

This gives Bf -£ (2.15)

where o_ - col Jo-/6-, a_/62, , a /6 ] .

Since the rank of B is m, there are m independent rows of B, B , such

that

B f = a
m— —m

where a is the corresponding subset of a.—m —

f = B"1 a (2.16)
— m —m

Thus (f , f , , f ) can be chosen corresponding to the m desired

pole locations and the remaining (n-m) poles are located automatically.

From case (i) and case (ii) it is evident that at least max (m,p)

poles of the system can be assigned arbitrarily.

Multiple Eigenvalues

Let the eigenvalues of matrix & be ̂  , ̂\0, , A with multi-
1 • •/ 0)

plicity n1, n_, , n respectively. Choose T such that A =

—1*T AT has the Jordan canonical form with w blocks of respective sizes

n' n' ' n and Xi»*?' ' *' the corre8P°ndin8 eigenvalues.
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Now, we have

(s-p )(s-p0) - — (s-p )L i n

CO

where

sI-

n. = n.

(s-A (s~A ) 2 - - - (s-A
' f. ' ' 0)

(2.17)

Equation (2.17) can be rewritten as

n, 1 n w

|sI-A| i=l (s-A-)

The value of a-} (i=l, , n , j =1,

loop poles (PI} p2, —, Pn).

From equations (2.6) and (2.18), we get

to
(2.18)

— to) depends on the closed

'l BI - .1 —̂ -r + —

0) (D+ y ai (2.19)

.-1
(sI-A) has the quasi-diagonal form diag [J., J9, , J ] where J.

is an. x n matrix of the form

(s-A..)

(8-A±)

(2.20)
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Let C = 1C1, C2, ---, CW] and B - IB1, B2, —- B"]T where Cj is a

pxn -matrix and B-* is a n -son matrix. Then it can be easily seen that
J J

d^J B J f . I "i = ___ }3 1=1 , , ,i J 1'2) 'w u'/1;

j

Further it can be shown that

C.J.. d1^ + C^ + — + Ĉ B̂ f

c — 12
J ,BJ Jf (2.22)
n~ n —

j = 1, 2, , ' ( I )

cr5 = dTC^Bj f.nj ~ lnr

Where c| is the ith column of Cd and B| is the ith row of

In the matrix form equation (2.22) can be written as
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C1B1 + C2B2 C1 B1

— - + c

n.

C-B"

' 1 2 2 3

n n
0) CO

,n -1 n
0) CO

.n -1
0)

2 n

' I n
CO

f=

Case CO

(2

a

U)

0)
Xn-l

U)
X
n

(2.23)

Let p>m i.e. more outputs than inputs and B.f = 6., i=l, --- , n.1 — 1 J

and J = 1, --- , on For controllability, every row of B corresponding

to the last row of each Jordan block of A is linearly independent [27]



i.e., Br ?* 0, j F 1, 2, — -

Now, we can choose (f,, f„,
i /

13

co, are linearly independent.

, f )such that

.J - 1, , (o C2.24)
j J

Substituting this in equation (2.23) we get

61C1

T 1 1T+ 6̂ c,
. 32

n n

61C1

1Tc: T. n.-l

n n

n n
0) U)

-1

where

Define a quasi-diagonal matrix M,

M = diag [Mn, M_, -

d = a

a «= col {an , a9 a , a.. a , , , a ]' j. z n, J. n0 n
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where M is given by

V

n.

33

nj

we have MC d^ = a (2.25)
co £ n

M is a nxn non<-singular matrix since det M = n (6 ) <£ 0 by (2.24).
n.

Hence, Rank M-n and Rank MC = p. Let C be the p independent rows

T
of MC and let a be the corresponding subset of £. This gives

C d a
-P

or

- P -p
(2.26)

Equation (2.26) is similar to equation (2.13) and the rest of the

proof follows as in the Case (i) of distinct eigenvalues.

Case (11) ' m>p i.e. more inputs than outputs

Let d1^ - 6^ i - 1,2, ,nj, j = 1,2,—, o>

For obervability, every column of C corresponding to the first column

of each Jordan block of A is linearly independent I27J i.e.

Ci / 0> j ~ 1»2,-— w, are linearly independent.
X j j

Now, we can choose (d.. , d_, *•-*•, d ) such that d_ C^ = 6^ f 0,

j = 1, 2, , co (2.27)
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Substituting this in equation (2.23) and defining a quasi-diagonal

matrix N,

N = diagll^, N2, -- , NJ

where N. is given by

n

V1

0 0

It is seen that

NB1 = £•

N is a nxn non-singular matrix since det N
0)

n
.n.

0 by (2.27).

Hence Rank NB»m and let B be the m independent rows of NB and let
m

a be the corresponding subset of _a. This gi/es

B f = a .
m— —m

or, (2.28)

f « B"1a .
— m —m

Equation (2.28) is similar to equation (2.16) and the rest of the

proof follows as in the case (ii) of distinct eigenvalues.

This completes the proof in the case of multiple eigenvalues.

2.3 Special Case of State Feedback

The proof of the Theorem 2.2 provides an easy method to verify

Wonham's theorem on pole placement. With state feedback 11 = Kx, we
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have closed loop characteristic polynomial = | sI-A+BKJ

Equation (2.5) and (2.9) reduce to

detjl + BK (sI-A)-1] (2.29)

and n a ,
diCsI-A)"-LBf_ = I T̂ -} (2.30)

i-1 tS i'

respectively.

From (30), d̂ f. - a± ± = 1, 2, -- --, n (2.31)

Now on the assumption of controllability, b_. ? 0, and choosing _£_
• •*-

such that b_.̂  f 0, we have

(2.32)

Now d. can be chosen to satisfy (2.32). Hence, the poles of the

closed loop system can be placed arbitrarily using state feedback

if the system is controllable.

2.4 Nature of the Design Equation (2.23).

T
In general, the output feedback gain matrix K - fd is obtained

by solving the set of n non-linear simultaneous equations in (m+p)

variables (d-, d_, , d , f., f„, f ). However, in the proof

of the theorem either (d d-, , d ) or (f , f , , f ) are

selected arbitrarily, thereby reducing (2.23) to a set of linear

equations. This assures at least max (m,p) poles can be placed

arbitrarily. In certain cases the non-linear nature of (2.23) can

be exploited to assign more than max (m,p) poles of the closed loop

system, as will be shown.

Complex eigenvalues of the matrix A present an interesting sit-

uation. The Jordan canonical form A - T" AT and the matrices

B = T B. and C = CT will then be complex matrices. However, K will
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be real since the complex columns of T and elements of a occur

in conjugate pairs.

2.5 Examples

Example 1

" 2 - 2

x = 1 l l x + O U l uX +

" 1 0 0 "

0 0 1

0 1 01 3-1

y_ = [0 1 0] x

The system is controllable and has three inputs. Hence, all the poles

can be assigned arbitrarily using output feedback. The open loop

poles are at 1, -2, and 3. Let the closed loop poles be at -1, -3,

and *4.

The modal matrix T and its inverse are given by

-1 11 1

1 1 1

1 -14 1

and T-1 1/30

-15 25 -10

0 2 - 2

15 12

Then the transformed equations become

x

" 1 0 0 "

0 - 2 0

0 0 3

x + 1/30

-15: -10 25 "

0 - 2 2

15 12 3

II 1]
We have, open loop characteristic polynomial = (s-1)(s+2)(s+3) =

3 2
s - 2s - 5s + 6

3 2
and closed loop characteristic polynomial = (s+1) (s+3) (s-t-4) = s + 8s

+ 19s + 12
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Now &rom (2.1 )

s3 + 8s2 + 19s + 12
3 2
s - 2s - 5s + 6

- 1 +
10s + 24s + 6

(s-1)Cs+2)(s-3)

40/6 2/15 168/10
s-1 " s+2 s-3

This gives c^ = -40/6, a

K is given by

T
K = f d =

-2/15, and ct3 - 168/10.

and choosing d = 1, we get the equations

15f 1 + 10f2 - 200

+ 12f2 + 3f3 = 504

f2 - f3 - 2.

Solving these equations gives

22

K 12

10

With this choice of K the closed loop poles are located at -1, -3, and -4,

Example 2;

"1
0

0

0

"l

0

0

2

0

0

1

0

0

0

-3

0

0

1

0"

0

0

-4

o"

1

"V 1

" 1

0

0

1

X

0

1
0

1

0~

•0

1
1
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This example illustrates the advantage of the design suggested

here over Davison's method. The system is controllable and observable

with two unstable poles at 1 and 2. Also, m = 3 and p = 2. According

to Davison's method three poles can be placed arbitrarily. By

Pearson's method, a first order compensator would be needed to place

all the poles. Here it will be shown that by solving the equation

(2.23) in its non-linear form all the four poles of the system can be

placed arbitrarily. We have d £ l^i = a : i = 1,2,3,4.

So,

fldl=ai

f2dl=a2

(fl + f2 + f3 )d2 = V

solving these equations with d- =1, we get

Va3
and

K = fd =

with this choice of K all the closed loop poles can be placed at the

desired location.

If the closed loop poles are desired at -1, -2, -3, and -5, then

a1 = -7.2, a2 = 14, a3 = .0 and c^ = 0.2. This gives ̂  = -7.2, f2 =

14, f - 0, d1 » 1, d, - 1/34.
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and

K =

.7.2

14

0

-7.2/34

14/34

0

Example 3;

0 1 0

x = 00 1 x +

1 0 0

1 0 0

1 1 0

This problem Illustrates the nature of (2.23) when A has complex

open loop poles. The open loop poles are at 1 and - — + 1 j/3/2. If the

modal matrix T and its inverse are chosen to be

1

1

1

1

1 . , /3
~2 + J "T.

1 /3
"2 3 2

1

1 /3
2 J 2

l . 4 / 3
- 2 + 3 2 J

& T"1 =

1
I

1
3

1
3

1
T

i
3 2/3 6

' 1 1
3 2/3 6

, ~

I

1 1
ft

1 i

2/3 6

then A, B, and C are given by

1 0 0

-I'*
A ~ T AT 0 - 2 + j 3 0 R_T, B-T i /5

" 2 " J 2

and
C » CT

' 1 1

1 ,/3
2 + J j

1

1 ./3
2 - J 2
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If the closed loop poles are chosen to be at +j and 1, then we have the

set of equations

' ' (2.32)

-i-[d1+d2] =«2 (2.33)

d + dJ - « (2'34)

where a = 0, a *» - -r- -- 1- and a = - T + -— for the desired
2 2 3 2 273

pole assignment. Equation (2.33) and (2.34) are complex conjugates

and give the same set of equations in (d , d. , f ) . From equation

(2.32) and the real and imaginary parts of (2.33), we get

2d2)f = 0

^ + d2)f « 1.

Solving (2.35) with £ - 1, gives d± <= 2, d2 - -1 and K = 12 -Ij

This choice of K gives the desired pole-placement.

2.6 Remark on Unattainable Poles

Consider a controllable single-input single-output system

• *

x. = Ax + bu

C2.35)

It is well-known that using output feedback the closed loop system

. ^ T T
x = (A+bk £ )x can attain any set of closed loop poles except the

zeros of the system. Davison 120] has tried to generalize this

result to multivariable systems. He has shown that given a linear

. *> * "-
time- invariant controllable system x = Ax + Bu_, v^ •= Cx with Rank
A .

C = £, then £ eigenvalues of the closed loop system can be assigned
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arbitrarily close to I preassigned -values. He observes that there

are certain 'values that the ̂ reassigned 'values may not take on,

which correspond to the zeros of the -various transfer functions

existing in the multivariable system. This observation is shown

to be incorrect by means of a counter-example and an alternate

characterization of the unattainable poles follows.

Consider the system

x =

"l 0

0 2

0 0

"l 0

0 1

o"

0

3

X +

" 1 0 "

0 1

1 1

0 "
X

1 _

u

The system transfer function matrix is

1

HCs) =
s-1 0

2s-5
s-3 (s-2)(s-3)

Let (-P, , -Po) be preassigned eigenvalues. The matrix s (from

equation ( 31 ) of Davison's paper with 6_ = 1) is given

by

6 + 5p1 +

7 + 10p

Davison cannot assign poles if this matrix S becomes singular. Notice

that det S is not identically equal to zero for -p.. = 5/2. Hence

-p = 5/2, which corresponds to a zero of the transfer function, can be

a preassigned eigenvalue. However, there are pairs e.g.
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(PI> P7)» which make s singular and hence cannot be chosen as closed-

loop poles by Davison's method.

An alternate explanation for the set 6f eigenvalues which the

closed-loop system cannot attain is given below.

We have, from (2.13)

d - C"1a
~ P -P •

cpi> P2> —

P2' —

where i|>. (p,, ——p ), i 1, p are functions of p1, — p .
1' n

substituting this value of d^ in the remaining (n-p) equations

T i,
d_ £̂ 1_f = a± i = p+1, , n

we obtain the functional relation between closed-loop poles as

P2, — Pn) » P

(2.36)

For any given set of p closed-loop poles (p, , p?> — -, p ), the location

of the remaining (n-p) poles (p , , , --- , p ) will be determined byPTX n

the (n-p) equations (2.36). However, the values of (p̂ .-,, --- P )
PTJ. n

may become indeterminate for certain configurations of

(p-̂  P2, --- P ), in which case, the p poles (PI, p2> — , Pp) of

the closed loop system must be reassigned.

Consider the system
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0 1 0

0 0 1

-6 -11 -6

x +

0

0

1

u

0 1 0

0 0 1

The system can be transformed into the form

'-1

0

0

0

-2

0

0 ."

0

-3 .

x +

1/2"

-1

1/2

u

-1 -2 -3

1 4 9

The open-loop poles of the system are at -1, -2, and -3. The

system transfer function matrix is given by

G(s)« 1
(s-H) (s+2) (s+3)

s

2
L s

Let the closed loop poles be denoted by -p-ji -P2>

7 7The C.L.C.P. is given by s + £s + ms + n where

Jl- (p- +

= P1P2 + P2P3 + P3P1

n =

T i,
"D
,

we have d c"D_,f = a . , i •» 1.2.3.— -- 1— i '
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Choosing f - 1, this reduces to

where a - y(£-m + n -1)

n - 8)

n - 27)

From (2.13)

1.
2

-2m + 3n + 4

-2 + n + 6

This value of c[ should satisfy the equation (2.36). Hence, the

closed loop poles should satisfy the relation

i.e. 3/2 (-2m + 3n + 4) - 9/2 (-2fc + n 4- 6)= 9£-3m -I- n -27

or (n-6) = (P1P2
P3 ~ 6) = °-

According to the theorem two poles can be assigned arbitrarily close

to desired values. Let us assign the poles -p^ and -p2< This

results in

However, if either -p.. or -p,- is choosen to be equal to zero then -p.,

Tbecomes infinite and K = f d *= d_ becomes infinite.
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Seraji I28J has shown that in the single input (output) multiple

output (input) case the unattainable poles correspond to zeros which

are common to all the transfer functions of the open loop system.



III. APPROXIMATE POLE PLACEMENT

3.1 Introduction

In Chapter 2 it was shown that for a controllable, observable
. - /» />

system x = Ax 4- Bu, y_ * Cx with m inputs and p output at least

max(m,p) poles can be assigned arbitrarily close to desired

locations using constant gain output feedback. The choice of

max(m,p) poles automatically fixes the location of the remaining

{n-max(m,p)] poles of the system. Let us call these poles the

"dependent poles", £, where 1=1 P̂ ^̂  Pn_r Pj • In

some cases, by taking advantage of the non-linear nature of

equation (2.23) more than max(m,p) poles can be arbitrarily assigned

and this reduces the number of dependent poles. However, nothing

can be said a priori about the location of these dependent poles.

The problem of the dependent poles can be handled in two different

ways. The first method, due to Brasch and Pearson 121], uses a

dynamic compensator and in the second method a constant gain feed-

back controller is realized which positions all the poles approximately.

3.2 Pole Placement Using Dynamic Compensator

Brasch and Pearson [21] have considered the problem of design-

ing a compensator to obtain arbitrary pole placement in the system

consisting of the plant and compensator in cascade. The design uses

only those state variables which can be measured.

Consider the controllable and observable system defined by

equations (2.1) and (2.2). Let E be the co-ordinate space and {IJ}

27
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denote the subspace of E spanned by the column vectors of B. If E

is cyclic, then there exists an n vector b e {B} such that (A,b) is

controllable. It can be shown that the matrix A+fiKC can be made

cyclic using output feedback. From this it follows that any multi-

input multi-output linear time-invariant system may be made control-

lable (observable) from a single input (output) using only output

feedback. This result is useful in arriving at the following

theorem.

Let v (VQ) be the controllability (observability) index of

the plant. Define B = min (v -l,v -1). Let

nxn

A 0

0 0 (3.1)

represent the plant dynamics plus a additional integrators. It is

assumed that every state in the compensator can be directly measured

and directly controlled. Thus

(3.2)

" B 0 "

° \
"I

C 0

0 I

where I is an £x£ identity matrix. Let A£= be a

set of arbitrary numbers subject only to the condition that complex

numbers occur in conjugate pairs.

Theorem (Brasch and Pearson)

Let (A,B,C) be controllable observable system and let A,,, Bg,

C be as defined in £3.1) and (3.2) where P«= min (v̂ -l ,vQ-i) . Given

any set Af , there exists a matrix K such that the eigenvalues of
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Ag -f B KG are precisely the elements of the set A .

Thus a compensator of order 3 is sufficient to place all the

poles of the plant and the compensator in cascade. It should be

pointed out that the order of the compensator is not necessarily

minimum. Similar results have been obtained by Chen and Hsu 122]

using a transfer function approach.

3.3 Approximate Pole Placement Using Psuedoinverse

The problem of pole placement is reduced to the problem of

solving the n non-linear equations in (m+p) variables (d1, d~, ...,

d , f1, f „, ...f ) and we can place max(m,p) poles. When max (m,p)<n,

we want to place the n poles approximately by finding a least

square error solution to the n equations.

TConsider the linear case and let p>m. Write M = C and

recall that C has full rank. From (2.12)

Md = o_ (3.3)

Since p<n, the system of equations is inconsistent and there is

no solution vector jd which satisfies (3.3). Now, the question to

be answered is, "does there exist a vector d_ so that equation (3.3)

is approximately satisfied for a suitable definition of approximate?"

We can write (3.3) as

Md - a = £(d_) (3.4)

Since there is no vector d_ such that £(d_) =0, it is desirable to

find a d* which produces a "smaller" e_(d) than any other vector d_.

d* is the best approximate solution (BAS) to the system of equations

(3.4).
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Definition;

Best Approximate Solution:

The vector d* is defined to be the best approximate solution

(BAS) to the system of equations (M is an nxp)

Md - £ = £(d)

if and only if

(i) for all d_, IMd - o]TlMd - < * ] > _ {Md* - o_]T[Md* - a]

(ii) and for those d_ j d* such that IMd - oJT[Md - a] = IMd*- o]T

IMd* - a] the relation c^d > d*Td*. holds.

The definition essentially states that d* minimizes the

sum of squares of deviations; and if there is a set <& of vectors

such that each member in the set gives the minimum sum of squares

of deviations, then the vector d* in $ is chosen as BAS if for

Tall other vectors in * the sum of the squares d_ d^ is larger than

T
d* d*,

The following theorem by Penrose {29] shows that the BAS

exists and the generalized inverse of the coefficient matrix can

be used to find it.

Theorem;

The best approximate solution to the system of equations Md • a_

is given uniquely by

d* = M^a (3.5)

+ T —L Twhere M = (M M) M is the generalized inverse of M.

Proof;

We have to show that for d* = M o^

lMd_ - £]TlMd <- a] >_ IMd* - u]r;[Md* - aj

for all d and for those vectors such that the equality holds,
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we have T > d*Td* if d ? d*.

Now,

[Md - a]T[Md - a]

= [Md - MMf£ + MMf£ - £]T[Md - MMT£ + MMf£ - a]

- Mf£) + (MM1" - i)aJT [M(d_ - Mfa_) + (MMf - I)a

= [M(d_ - Mf£)]T[M(d_ - Mf£)] H-KMM1^ - I)£]T [ (MMf -I)£]

>_ [(MMf -I)£]T[(MMf - I)£]

= £T [MMf - I]T[MMt - I] £

The inequality

[Md - £]T (Md - a] >_ ̂ [(MM1" -I)T (MMf - I)] £

holds for all £.

If d* = Mf£, then

[Md - £]T {Md - £] 1 [MMf£ - £]T [MMf£ - a]

= [Md* - £]T [Md* - £] for all d_.

The equality holds if and only if [M(d_ - Mf£)]T [M(d_ - Mf£)] = 0

i.e. iff Md = MM̂ .

Next we have to show that, for the set of <d's for which Md_ = MM £

the inequality

T t T t T
d_ d_ _> (M £) (M £) = £*~d*.

For all £,

[Mf£ -I- (I-MfM)£]T [Mf£ + (I - MfM)d_]

= (Mf£)T (Mf£) + [(I - MtM)d]T[(l - MfM)d] (3.6)

substituting Md = MM Â or equivently M & for M Md_ equation (3.6)

becomes T t ,T , t x , ,, Mt ^ ,, *; ^d d_ = (M a) CM a) + C£ - M cO (£ - M £;

= d*Td* + Cd - Mfa)T Cd - M1a)
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This Implies that jdTd_ > d^d if d f d*.

Hence the BAS always exists and is unique.

Least Square Solution;

The vector d* is defined to be a least square solution (LSS)

of the system Md - ot = e_(d) Cwhere M is an nxp matrix of rank .

p<n) if and only if for all d_ the following relationship holds:

[Md - o]T iMd - £] >_ [Md* - o]T [Md* - a] (3.7)

Remark;

A LSS must satisfy equation (3.7). A BAS in addition to (3.7)

T T
must satisfy the condition d_ d_ > d_* d_*. Thus there may be several

least square solutions to a linear system while the best approximate

solution is unique. Thus the approximate pole placement can be done

either by obtaining the BAS or LSS d_*. Then the output feedback
•p

gains are given by K = f(d*) .

3.3.1 Computation of the Generalized Inverse

There are several methods available for the computation of the

generalized inverse [30, 31]. Peters and Wilkinson [32j have

developed them from a uniform standpoint. In addition, the methods

are shown to be natural extensions of the several methods available

to find the inverse of a matrix.

If the mxn matrix M is of rank r then it can be factorized in

the form

M - LN

where L is an mxr matrix and N is an rxn matrix and both are of

rank r. The matrix

Z = N^NN1)"1 O^LrV (3.8)
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is the psuedoinyerse of M. It is easy to see that it is independent

of the particular LN factorization chosen and this can be verified

by replacing L by LY and N by YN, where Y is any non-singular

rxr matrix.

Most algorithms to invert a nxn matrix are based on factoriza-

tions M = LN of M where L and N are easily Invertible non-singular

matrices - e.g. L and N could be upper and lower triangular matrices

and unitary (orthogonal) matrices. Each well-known method for

inverting a matrix has an analogous method for computing the

psuedoinverse.

When solving linear equations it is more economical to work

directly with the factors L and N by solving

Lg_ = ja, M = £

rather than computing N L explicitly. Similarly, when solving

the least squares problem it is uneconomical to compute the

psuedoinverse directly. Hence we compute jd indirectly as follows.

From (3.5) and (3.8) we have

T T -1 T -1 T T T T -1 T
NX(NN ) (LI/) A L = N1 (L LNN ) V

and d = NT (NN1)""1 (LL1)"1 LT a (3.9)

If we compute d^ given by (3.9) with

w = L1 ,̂ (LTLNNT)v = w, d_ = NTv

T Tthen the solution of (L LNN );v = y_ requires only some factorization

of the matrix pre-multiplying v^ not its explicit inverse.

When solving squations some pivoting strategy is -us-ually employed

to achieve greater numerical stability. This has the effect that we

determine a factorization of a matrix M, rather than M itself, where
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M is obtained from M by suitably permuting its rows and/or columns.

The factorization results in matrices

M = PMP = LN or M =

~-l -1 -L -1 T -1 T
M « CP,KP ) = P "TIP = P M P1 2 2 1 2 1

where P.. and ?„ are permutation matrices. Hence, the inverses

derived via L and N merely give the required matrix with its rows

and columns permuted. We can derive a similar result for the

psuedoinverse using equation (3.8). Therefore, row and column

interchanges can be freely used in factoring the matrix M to find

its psuedoinverse.

All the three common methods - (i) methods related to Gaussian

elimination, (ii) Householder and Givens method [33], (iii) modified

Gram-Schmidt factorization - of finding the inverse of a matrix

can be extended to find the psuedoinverse. The Householder and

Givens method is slightly better than Gauss elimination methods

regarding numerical stability. However, Householder's method and

Given's method require two times and four times more work respectively.

The modified version of Gram-Schmidt factorization gives better

results than Householder's method.

The most difficult practical problem associated with the

computation of the psuedoinverse is the determination of the rank.

Round-off errors are involved in the factorization and a decision

has to be made as to when the 'remaining' elements can be regarded

as zero during the course of the reduction. Golub and Kahan [29]

have described an effective algorithm for determining the rank of

a matrix. The requirement that the residual vector e_(d) should be



35

a minimum while d^ itself should be minimal often conflict to some

extent.

3.4 Approximate Pole Placement by Minimizing Least Square Error
Criterion:

It has been shown that pole placement is reduced to the problem

of solving n non-linear equations in (rn-Hp) variables. The nonlinear

equations can be reduced to linear equations by choosing d_ or f_

arbitrarily. When the number of poles that can be placed is less

than n, the psuedoinverse can be used to position all the poles

approximately. However, a larger class of feedback matrices can

be obtained by solving the n non-linear equations

dVV1! = a± 1 = 1,2, --- , n

in (m+p) variables (d.̂  d2> --- , d , f±, f 2 , --- , O .

It should be recalled that a. is a function of the closed

loop poles (p , p., --- , p ). By minimizing a least square

error criterion of the form

1=1
subject to the constraints £(£) jl 0 an approximate set of desired

closed loop poles can be realized. The weighting coefficients q

can be used to control the error between a pole in the desired

set and its corresponding pole in the approximate set. The

constraint equations

q^, PZ, — , Pn) 10 i-- 1,2, — » *

depends on the individual problem. The minimization procedure can

be easily carried out using one of the standard static optimization
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techniques like the conjugate gradient method.

3.5 Example

Consider the controllable and observable system

1 0 0 0

0 2 0 0
x =

0 0 - 3 0

0 0 0 - 4

X +

"l

0

1

1

o"

1

0

1

1 1 0 0

0 0 1 1

This system has two inputs and two outputs. As a result only two

poles can be placed arbitrarily close to desired locations. Here

all the poles will be positioned approximately using the two methods

suggested in this section.

We have i = 1,2,3,4.

T Twhere d = [d, , dn] and f » [f. , f0] . The non-linear equations
— JL / — L f.

are. given by

dlfl

dlf2

d2fl

V
Let the desired closed loop poles be at -p,, -P«» -P- and - P / « The

open loop poles are at l,2j-3, and -4. Then,

4 3 2closed loop characterictic polynomial = s + £._s + Us + J... s -f I

where
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«, - pp. + p p + pp. + p p + p p + p p
^ J- ̂  £• 3 O 4 *fr J- J- O ^ ^

0 P1P2P3P4
4 3 2and open loop characteristic polynomial - s + 4s - 7s - 22s + 24.

The values of a. are given by

a4 = ~ 16£2 ~

1)/20

H- 16) /30

-f- 81) /20

+ 256) /3°

Let the design requirements be such that the closed loop poles

are at• "-1, -2, -3, and -5 resulting in p.. = 1, = 2, p = 3, and

p, - 5. Corresponding to these pole locations a^ = -7.2, ou = 14,

a. = 0, and a, = 0.2. Equations (3.11) can be rewritten as

d.,̂  - Sj_ (3.12.1)

dx = a2 (3.12.2)

d2 = S3 (3.12.3)

d2 = a4 (3.12.4)

where c^ » a1/f1, ^ = «2/f2, «3 = ^/^ and "4 = c

In a matrix form (3.12) becomes

" 1 0"

1 0

0 1

. 0 1 __

di
d2

Sl

52

S3

S4

(3.13)
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Since C3.13) is inconsistent, the Best approximate solution to (3.13)

is given by

d* = Mfa = (MTM)""1MTa_.

Thus

d*
("1

0

=

1 0 0"

O i l

'2 0"

0 2

-1

"1 0 "

1 0

0 1

0 1

-1

1 1 0 0

0 0 1 1

"l 1 0 0"
a

. 0 0 1 1 . "

and

0 0

o o

d* \

-7.2 14
f, £2

d* * \ (a3 + S4) - j I 5(fJ+£ii)

Notice that the d* and dj obtained by using the pseudoinverse is

the same value one would pick intuitively for d.. and d_ 'to satisfy

(3.13) approximately, d- has to satisfy the equations (3.12.1) and

(3.12.2) and the best one could do is to pick d.. « j- (a + a ).
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Similarly, d = j (a + a ). Then output feedback gain matrix K is

given by

K = fd* »

fldf

f2d*

with r = f1/f2,

and

A-BKC=

-3.6 + 7i

7 - 3.6

BKC=

1 0 '

0 1

1 0

1 1

7r-3.6

7-3 6/r

7/r-3.6

3.41Cl+l/r)

4.6-7r

3.6/r-7

3.6-7/r

"-3.6 + 7r

7-3. 6/r

7r-3.6

7-3. 6/r

7/T-3..6

3.4(l+l/r)

3.6-7r

-5+3. 6/r

-7/r+3.6

-3.4(l+l/r) -3.4(l+l/r)

r/10(1+r)

I/10(1+r)

r/10(1+r)

1/10(1+r)

r/10(l+r)

1/10

-r/10(l+r)

-1/10(1+r)

-3-r/10(l+r)

-1/10

f)

1 1 0 0

0 0 1 1

r/10(1+r)

1/10(1+r)

1/10

-1/10 (1+r)

-41/10

The closed loop poles of the system are the eigenvalues of A-BKC

and these are tabulated for different values of r in Table 1.
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r

-0.8

-0.5

-0.44

-0.3

1.0

Gains

-9.2 . -0.4

11.5 0.5

-7.1 -0.1

14.2 0.2
r

-6.7 -0.078

15.2 0.170

-5.7 -0.042

19.0 0.141

3.4 0.05

3.4 0.05

Closed Loop Poles

0.36 + j 3.19

-2.60, -4.12

-3.31 + j 1.5

-4.45, -4.024

-4.35, - 4.35

-3.80, -0.0012

-10.3, -3.31

-4.23, 0.521

-5.84, -3.76

-2.87, 1.53

TABLE 1 Approximate Pole Placement
Using Psuedoinverse

The closed loop poles are functions of r=f .. /f _ . The desired

closed loop poles are at -1, -2, -3, and -5. The open loop system

has two unstable poles at 1 and 2. For r in the range -0.4 to -0.5

the system can be stabilized with the closed loop poles and feedback

gains as shown in Table 1.

The problem is reconsidered by minimizing the least square

error criterion. Let the design requirements be such that

P ~ 1, P- ~ 2, P-^. 3 'and P, ̂ _ 5.0. This can be met by minimizing

the performance index of the form

subject to the constraints



- 1 <

P2 -

and

P3 >. 3

P5 >. 5.

e and £„ are small positive numbers. Redefine the performance index

to include the constraints as

where K-, K , K , K, are constants and the functions IL , U?, U and

U. are defined below.
4

1 Otherwise

U2 =
1 Otherwise

0 P3 1 3

1 Otherwise

1 Otherwise

4 was minimized using the conjugate gradient technique and the

values of the K matrix and the corresponding closed loop pole



42

locations for different initial values and different weighting

coefficients 1C, K_, K , K, are shown in ̂ Table 2. e and e were

chosen to be 0.05.

Conditions of the Run K Pole Position

Initial values: P,=6, P?=8,

P3=l,

-9.0 -0.195

16.8 0.365
= 5',

1.0343, -2.015

3.0702, -6.2226

K4=10

Initial values: P,=6, p?=8 -8.5 0.067

P3=l,

V1
, K=io, K=i,

16.05 -0.125

-0.97, -1.9858

-3.8041, -5.0143

Initial values: P,=l, P2=1.0,

P3=3.1, PA=5.1,
-7.8

15.0

-0.036

0.070

-0.0907, -2.05

-3,3142, -4.9951
, f2=i; K̂ I, K2=i, K3=i,

V1
TABLE 2

Approximate Pole Placement Using Gradient Method

The example shows that the solution of the non linear

equations by minimizing a least square error criterion provides

a more desirable approximate pole configuration than the one

obtained by using the psuedoinverse. This is because the psuedo-

inverse method is equivalent to minimizing a cost function of the

form
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Id,, ~ <* (p » p , p , p , r)]
J

with ho penalty on the error between the desired poles -Pld

-p«,, -P/d and the actual pole positions at -P,, "Po* ~
p^» anc^

This penalty is included in the method using optimization and

hence ve get a closer pole configuration |to the desired set of

poles.



IV. APPLICATION OF POLE PLACEMENT THEORY TO
HELICOPTER STABILIZATION SYSTEMS

In this chapter the results of Chapters II and III are used to

design a controller for a complex dynamical system using output

feedback. The system selected for study is the Boeing-Vertol CH-46

tandem rotor helicopter. The output feedback gains are obtained by a

least square solution of the nonlinear equations to achieve a

satisfactory set of poles for the closed loop system.
\

4.1 Boeing-Vertol CH-46 Helicopter

The dynamics of the helicopter are characterized by linear

pertubation equations written about steady flight conditions. Further,

it is assumed that the dynamics could be separated into the standard

aircraft longitudinal and lateral directional modes thereby reducing

the equation to two independent sets. Although not always a valid

assumption for helicopters, it is believed a valid assumption for

the CH-46 due to the hinged rotor blades. The equations for the

longitudinal dynamics under level flight at 110 Kilometers/hr. is

given by Gray, Rempter and Stevenson 134 ]. The helicopter instability

is most pronounced at this flight condition. In 134], the feedback

gains were obtained by minimizing a quadratic performance index and

then a suboptimal system was obtained by (i) feeding back the avail-

able states and (ii) estimating the unavilable states by using filters.

The outputs of the system are pitch attitude (6) , rate of

descent (V ), pitch attitude rate (6), and forward velocity (V ).
z x

The attitude rate (.6) is provided by a rate gyro, attitude by an

44
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inertial sensing unit and it is assumed that the rate of descent (V )
z

and forward velocity (V ) is of a quality suitable for use in the
Jt

flight control system. There are two control inputs to the system.

The rotor blade angle of attack on both rotors can be varied together

to vary lift (collective input) or varied in opposition to produce a

pitching moment (differential collective input). Electro-hydraulic

servo actuators accept electrical signals and drive the rotor blades

in the appropriate manner. Both the actuator and the rotor blades

exhibit dynamics when excited.

The helicopter, including the rotors and the actuators, has

twelve states. These are the four outputs and the eight unavailable

states of the actuators and rotors. In this report the actuator

dynamics are ignored resulting in a system with eight states, two

inputs and four outputs. The linearized equations of motion together

with the rotor and actuator dynamics are given below.

u wAV = — + — tan 6m m
u

AV + (tan 6n) AV_ - -^ tan 6n - -^ AV,.0 m 0 m

X_
m A9-

AV =-(tan ejAVz O x

X X
— Wn - — TI ' + g cos 6_m 0 m 0 e 0

A6
m 6 + —e m

— + — tan 6 J AVm m 0 ] x
tan 6n - -m 0 m AV

cose. — W. - — U. + g sin 6m 0 m 0 0 A6 —=• 6 + —
m e m
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(M M ] (M M
Ae = [-£ cos e > ̂  sin el AV - Ut sin e - ̂  cos ex yy yy J l yy yy

AV

M ( M M

i* >* - r "o - Is 'yy l yy yy "y yy yy

where at 110 kilometer s/hr. ;

QO = 4.75 deg, m * 416.0 slugs, I =76000.0 slug ft, u_ = 100.6

ft2/sec., WQ - 8.4 ft/sec., g = 32.2 ft/sec
2.

5i - nofi ft/sec2 Zu_ noo ft/sec2

m " --036 ft/sec F~ --022 ft/sec

i =.089 1̂ -̂ -S. -.802 *t/Bec2.-.
m ft/sec m ft /sec

J3--.850 f^8ec2 ^L'- -1.814 ft/.8ec2

m r ad. sec m rad/sec

2
.142 in.

A = .803
in. m

-Ji B _ no?
 rad/sec Jj* - 014 rad/sec2

V ft/«ec- V" ft/sec

, ,lt460 rad/sec
2 \ ra

rad/sec • .— , « .450 --
yy

.
yy
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Servo Actuator Dynamics

3 + 2£. o) .3 + u>23 = o>26
c A A c Ac A cc

9 + 2£.o) A a + OK 3 = 626
e A A e A e A ec

Rotor Dynamics

6 + (yfi/8) 6 + ft6 = f i 9
e v? ' ' e e e

where

?. = .60 y = 10.0
A

ID = 15.0 rad/sec fl = 28.0 rad/sec
A

The equations can be rewritten as

AV = 0.02109 AV + 0.02352 AV + 0.69686 A6 - 29.6417 A6
X X Z

+ 0.1879 6 + 0.09406 6 .
e c

AV « -0.090393 AV - 0.802275 AV - 1.87830 A6 - 80.98 A6
Z X Z

+ 0.5524 6 - 8.5172 6 .
e c

A0 •> - 0.0058169 AV + 0.014531 AV - 1.46 A6 + 1.4672 A9
x z

+ 0.450 6 + 0.068 6 .
e c

6 =_ 35 6 - 784 6 + 784 3c c c c

6 =_ 35 6 - 784 6 + 784 3
e e e e

Expressing these in the matrix form, the helicopter + rotor dynamics

are described by the state equations

* « '
x = Ax + B u_

/>

2. = ̂
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A7 A6 A.6 6 6 6 6 ]
:x z e e c c

y = [AY AV A6 A6J
^- x z

and the matrices A, B and C are given by

" 0

-0

-0

.0210

.0903

0

.0058

0

0

0

0

0.025

-0.802

0

-0.0145

0

0

0

0

-29.64

-80.98

0

1.4672

0

0

0

0

0.6968

-1.878

1

-1.460

0

0

0

0

.1879

.5524

0

.45

0

-784

0

0

0

0

0

0

1

-35

0

0

-.0941

-8.517

0

0.068

0

0

0

-784

0

0

0

0

0

0

1

-35_

" 0

0

0

0

0

784

0

0

0

0

0

0

0

0

0

784

/\

and C =

" 1 0 0 0

0 1 0 0 /-~-\
( )

0 0 1 0 ^ — ̂

0 0 0 1

The eigenvalues of the system computed by using Tfancis1 135] method

are -2.3585084, 0.50432908, -0.19350035 ± j 0.35283477 and -17.5 ±

J 21.857493 (double roots).
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4.2 Helicopter Stabilization Using Output Feedback

The open loop of the CH-46 helicopter system has a pole,

0.50432908, in the right half s-plane and is. unstable. The major

part of the design is to stabilize the closed loop system. Let the

desired closed loop poles be at -0.1, -0.2 + j 0.4, -0.2 - j 0.4,

- 2.5, -P5 + j Pg, -p5 - J + j pg and - j pg with

PO P/:» P-T> Po > 15.0. The open loop poles and the desired closed
J D J o

loop poles are shown in Fig (.1 ) •

The first step in the design is to reduce the given system
n * "• . . - . . . . _ _ . . .

x = Ax + BXJ, v_ = Cx to its diagonal or Jordan canonical form depending
/>

on the eigenvalues of A. The transformation matrix T is made up of

eigenvectors and generalized eigenvectors. An algorithm to compute

T and the Jordan canonical form T AT is given in Appendix A. The

Computation of the eigenvectors and the generalized eigenvectors depend

on the accuracy with which the eigenvalues of A are computed.

Francis algorithm is suggested for computing the eigenvalues.

The eigenvectors corresponding to the distinct rccts are

-0.0956 + j 0.6460

1.0000 + j 0.0000

-0.0074 + j 0.0035

-0.0027 + j 0.0019

0.0000 + j 0.0000

0.0000 + j 0.0000

0.0000 + j 0.0000

0.0000 + J 0.0000

respectively. Each of the double roots has two eigenvectors associated

with it. These are

" 0.25710"

1.00000

0.02003

-0.04724

0.00000

0.00000

0.00000

0.00000
>

' 1.00000

0.91564

-0.01571

-0.00792

0.00000

0.00000

0.00000

0.00000
>



50

CS|

in
•

o

iri
CN

X o o X

01
rH
- O"
p.
p.
o
o

,—1

c
0)
p.
o

Sx!

0)
rH
O
P<

0>
rH

•9
~Q

P.
Oo
rH

g
P.
O

*

0)
H

CO
CU

S^X

CU
rH
O
p.
p.
o
o

rrt

CU
CO
o
o

0

o
4J

co C
CU O

i-H iH
O 00
P. CU

P.
O T3
0 01

rH Td - : ~ —~ — - —
n)

•a jd
CU CO
CO
o cu
CJ 4-1 !

cu a
M -H (
o

^
»3"

vO

. rH JL
1- P3

U

M-4
O

B
O

•H
4-1
to

'V 3
M
•H

< "fi
rH 0

3
 n, °CU

M CU
3 H
60 O

CU

P.
O
O
•H
H
CU
X



51

-0.00488

-0.01348

-0.00015

-0.00979

1.00000

-17.5000

0.00000

0.00000

+ J 0.0045

+ j 0.0164

+ j 0.0005

+ j 0.0133

+ j 0.0000

+ j 21.8574

+ j 0.00000

+ j 0.00000

and

0.00205 + j 0.00244

0.18777 + j 0.24599

-0.000028 + j 0.00008

-0.001432 + j 0.0021821

0.000000 + j 0.0000000

0.000000 + j 0.0000000

1.000000 + j 0.0000000

-17.5000 + j 21.8574

since the multiple eigenvalues have as many eigenvectors as their

multiplicity, the Jordan canonical form for this matrix is diagonal

and is given by

A = diag 1-2.3585 0.5043 -0.1935 + j 0.3528 -0.1935 - j 0.3528

-17.5 + j 21.8574 -17.5 +.J 21.8574 -17.5 - j 21.8574

-17.5 - J 21.8574]

^f, 1 A A

The B = T B and C = CT matrices are given by

-6.629

-10.215

8.286 + j 10.54

8.286 - j 10.54

- j 17.93

0.0

j 17.93

0.0

-2.1981

0.5197

-3.55 - j 0.565

-3.55 + j 0.565

0.0

- j 17.93

0.0

j 17.93

and
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0.2751 .1.0 -0.0956 - j 0.646 -0.0956 + j 0.646 !
I

1.0 0.9156 1 + j 0: 1 + j 0 ; -.

0.02003 -0.0157 -0.0074 - j 0.0035 -0.0074 + j 0.00351

]0.0472 -0.0079 -0.0027 - j o.OOig -0.0027 -f j 0.0019;

The open loop characteristic polynomial is

(s+2.358)(s-0.504)(s-K).193 - j 0.352) (s-HO. 193 + j 0.352)

(s+ 17.54 - j 21. 85)2 (s+17.54 + j 21. 85)2

= s8 + 72.24s7 + 2949.57s6 + 61117.75s5 + 736774.84s4 + 1360083.54s3

-r99'841.~81s2---108957vl-7s ---118392735 — ---------------------- .- ----------

Let the desired closed loop poles be at -Pi, ~Po> ~p^ + ^ PA»

"P3 " ̂  P4' ~P5 + ^P6' ~P5 " ̂  P6' ~P7 + ^ P8 and "P7 "" ̂  P8* The

requirements are

|p-0.2|<.

P5,P6,P7,P8 > 15.0

where e ,e ,e ,e, are small positive numbers.

The closed loop characteristic polynomial

= (s+p]L)(s+p2)(s+p - j p̂ )(s+p3 + j p^)

(s+p - j p )(s+p- + j pa)/ o . / o

* s8 + Jt_s7 + Jl,s6 + + i.s1 + H,.
I D 1 U

where

(32

£5



53

*4-

*3-

and

alV

aobo

P7)

a2 = p5
2 . 2

'?* +*P5P7__. ._ .. .._

2 (P7 (P5 + P6)+ P5 (P7

2

b3 * Pl + P2'+'2p3

b2 - PlP2 + 2P3 (P]

bl "" 2plP2P3 + ̂ Pl

b0 - PlP2 (p
2 + P2)

Let fC\)
C.L.C.P. - O.L.C.P.

Q.L.C.P.

4 o.
y i

1 2

+ _^_ + ̂ l

P2} pj>

2
X6

(s-A6)

The coefficients in the partial fraction expansion can be evaluated

by

i - 1,2,3,4

f(A) 5,6

i - 5,6
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and they are found to be

a - C7.3720 E-09)*, + (1.4617 E-08)*, + (2.8984 E-08)£cJL / o 5

+ C5.7470 E-08)*4 + U.1395 E-07)^ + (2.2595 E-07)^2

+ (4.4802 E-07)^ + (8.8836 E-07)£Q + (1.4064 E-09),.

a. = (5.895 E-05H, - (2.4995 E-05)£, + (1.0598 E-05)i,c/ / • o • 5

- (4.4935 E-06H4 + (1.9052 E-06H3 - (8.0782 E-07H2

+ (3.4251 E-07)^ - (1.4522 E-07)£Q - 1.3901 E-04.

a, = (-1.8675 E-09 - 1.4048 E-09)£, +(-8.2945 E-10 + 5.7478 E-09) A,
J 7 o

+ (1.3514 E-08 - 5.0609 E-09)£5 + (-2.7176 E-08 - 2.3399 E-08)^

+ (-1.8511 E-08 + 8.7174 E-08).A3 + (2.1206 E-07 - 6.3834 E-08)£2

+ (-3.9248 E-07 - 3.8577 E-07)^ + (-3.7156 E-07 + 1.3161 E-06)£Q

+ (7.3906 E-10 - 1.7790 E-09)

a£ = a^ (c0111?!631 conjugate of a ) .

al = (1.2734 E+OOH_ + (1.9839 E-02)£, + (4.7370 E-04) A-
.) / o .)

(-2.4398 E-05)£4 + (2.1340 E-07)£3 + (7.0130 E-

+ (-5.2240 E-09)^ + (2.1875 E+01).

cy= (-1.0465 E-01 - 6.0017 E-OOH? + (6.6289 E-02 + 4.2573 E-(

+ (1.0390 E-02 - 1.1351 E-02)£5 + (-5.4839 E-04 - 3.6287 E-05)£4

+ (1.1229 E-05 + 1.6098 E-05H3 + (1.9817 E-07 - 6.7241 E-07)£2

+ (-2.3170 E-08 + 9.4842 E-09H, + (7.8160 E-10 + 4.3427 E-10)£n1 0

+ (3.1423 E-02 - 1.2372 E-02)

1 2 1 2•a, and a, aje complex conjugates of a and a respectively.
o 'o • . -> j

The 8 non-linear equations are

T, -. -L i /• .

aT

d_T c^f -. a*
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0 - a2

0 • a*o

Also notice that (ccb.. + c,b,) and (ĉ b., + c0b0) should be—5—5 — o— o — 7 — 7 — o— o

complex conjugates.

The nonlinear equations are solved by minimizing the cost

function " ..... _..--.

Jl =

Real a3)
2 + q4 (Im 2? £,£.<£ - ̂  <*3)

2 + q5(Real d
1

)f - Real a_) + q, (Im d (c ,.]>• + c,.b,)f - Im a )
— J O — ~~J~~J —D—O — ->

Subject to

Real a2 «= 0

2
Im ex = 0

and p , p , p , p > 15.0. q., 1=1,2, 6 are the weighting coefficients,

This equivalent to minimizing the cost function.

J - Jx + ̂  (p^ - 2.5)
2 ̂  + K2 (PZ - O.I)

2 U2 + K3'(p - 0.2)
2

+ K4 (PA - 0.4)
2 + K5 (p5 - 15)

2 U5 + Kg (Pg - 15)
2U6

+ ̂  (p? - 15)
2 U? + K& (Pg -

+ q7(Real a
2)2 + qg (Im u

2)2
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where

- 1 if |p ^ 2.5\ > 0.1

= 0 otherwise

U2 = 1 if |p2 - O.l| > 0.01

= 0 otherwise

1 if |p3 - 0.2| > 0.01

0 "otherwise ~ ~

UA •> 1 if |p4 - 0.4| > 0.02

= 0 otherwise

U± f I if p± - 15 < 0 i » 5,6,7,8

=0 otherwise

q7, q and K , i •» 1,2, 8 are the weighting

coeffients

The results of the optimization using the conjugate gradient

method with different set of weighting coefficients are shown in

Table 3 .
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Weighting
Coefficients

Gain Matrix Closed Loop
Poles

q

10.0

0.154 -0.407 0.207 0.169

1.281 -3.15 1.605 1.309

-2.45, -0.093

-0.181 + j 0.418

-20.74 + j 18.9

(double pole)

ql>q2'~""q8=0<01

K1'K2'~~~K8=100

0.165 -0.407 0.207 0.169

1.281 ' -3.15 1.605 1.309

-2.45, -0.0896

-0.187 + j 0.399

-20.77 + j 18.18

(double pole)

0.135 -.316 0.296 0.217 -2.50 -0.116

1.425 -3.35 3.13 2.3

-0.180 + J 0.442

-19.91 + j 17.51

(double pole

TABLE 3,

Closed Loop Poles and Feedback

Gains For The Helicopter
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4.3 Discussion

This chapter has demonstrated that approximate pole placement

can be achieved in complex systems using output feedback. It is

assumed that the systems are output stabilizable. The different

weighting coefficients give rise to sets of acceptable pole

configurations and the corresponding output feedback gains.



V. ZEROS IN MULTIVARIABLE
SYSTEMS

5.1 Introduction

The previous chapters have focussed on the design of multivariaBle

systems with the location of the closed loop poles as the design criterion.

Although, pole locations are an important element in the specification

of satisf actjory__control, _they_are_ byijip means__suf f icient in .themselves ..

The dynamic response of the system also depends on the zeros of the

system. This chapter reviews the different types of zeros in multi-

variable systems and their significance to multivariable system design.

Further, the advantages and limitations of using a unity rank feedback

matrix to provide a total design which includes both poles and zeros

are examined.

5.2 Zeros of the Numerator Polynomial

The zero problem is well defined and clearly understood .in the single-

input single-output (SISO) case. The zeros are the roots of the numerator

polynomial of the transfer function and affect the transient behaviour

of the system. The zeros of the SISO system are invariant under state

feedback. Brockett [36] has shown that the zeros are the poles of the

inverse system. Loscutoff, Schenz and Beyer {37J have shown that the

zeros of any system with either a single input or a single output are

invariant under any feedback policy, i.e. either state or output feed-

back.

Two types of zeros are defined in the literature on multivariable

systems - (i) the roots of the numerator polynomials of the transfer

59
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function matrix. These will be referred to as zeros in subsequent dis-

cussion, (ii) the roots of the numerator polynomials of the Smith

McMillan canonical form of the transfer function matrix. These will be

referred to as McMillan Zeros in subsequent discussion.

There are certain difficulties in extending the known results

about the zeros in SISO systems to multivariable systems. There may

be a large number of zeros, as many as mp(n-l) in an n order system

with m inputs and p outputs, in a multivariable system. Furthermore,

the movement of the zeros in the s-plane with feedback cannot be as

readily predictedas the movement of the poles of the system. In

the multivariable case the eigenvalues of the inverse system to not

correspond to the zeros of the particular transfer function G(s), but

rather they correspond to the zeros of JG(s)| which, it will be seen,

bears a relation to the McMillan Zeros. Simon and Mitter 138] have

generalized the results on 136] to that for a special class of systems

the poles of which can be moved arbitrarily using state feedback while

the zeros are invariant. This class of systems called "systems with

disjoint control" have distinct eigenvalues and are completely control-

lable. Further, each actuating vector influences a different set of

eigenvalues. The conditions which guarantee zero invariance are very

restrictive, and the general problem of identifying invariant zeros

remains unsolved. Chen £39] has attempted to place certain zeros

and poles by using a sequential design approach that takes advantage of

the invariance of zeros under single input feedback. However, his

design is limited to placing zeros in only one component of the transfer

function matrix, and seems to have exploited the possibilities of using

zero invariance in the designing technique.
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It is apparent that most of the preBlems regarding zero placement

are due to two inherent facts - (i) considering the number of zeros

in the system, exact zero placement would be too demanding for the

design freedom available, (ii) There is no readily available method

of predicting zero movements with feedback as compared to the movement

of poles with feedback 140]. (iii) Even if zeros can be placed at

will the problem remains of where indeed they should be placed. Hence

some simplifications of the problem statement is necessary and some

of these are considered in Section 5.4.

5.3 McMillan Zeros of a System

Let G(s) = C(sI-A) B be the (pxm) transfer function matrix of

the system. Then, G(s) can be expressed as

G(s) = P(s)M(s)Q(s) (5.1)

where

(a) P(s) and Q(s) are pxp and mxm polynomial matrices, respectively,

which have constant, nonzero determinants, i.e. P(s) and Q(s) are

unimodular.

(b) M(s) is a pxm Smith-McMillan canonical matrix 141] of G(s)

MCs) = ek(s)

o

o

o
C5.2)



62

satisfying the conditions (i) e.(s) and ̂ .(s) are relatively prime

monic polynomials for i«l,2,— - k. k denotes the rank of G(s) . (ii)

each e Cs) is a factor of e. , 1 Cs) and each iK (s) is a factor of

iKCs) for i *» l,2,w,k-l. The factors r.(s) «= e (s)/ijj (s),

i » 1,2,-wk are referred to as the invariant factors of G(s) 1 43] .

The McMillan zeros of the system are the roots of e, (s) = 0.

The roots of ̂ . (s) = 0 give all the poles of the system. Although,

the McMillan zeros have certain system significant properties they

do not have any direct "relation' to "the " zeros'. ~pf ""the : ~system~as

discussed in 5.2.

Given G(s) , the Smith-McMillan form can be obtained in the

following manner. Let d(s) be the monic least common denominator of the

elements of G, and write G = N(s)/d(s). Now, the polynomial matrix

N(s) can be brought to Smith form by the transformation

L(s)N(s)R(s) = s(s) (5-3)

where L(s) and R(s) are unimodular matrices. Recall that in the

Smith form of N(s),

s(s)

o

O

O

(5.4)

the polynomial e.(s) is the greatest common divisor of all minors of

order i of the matrix S(s). In the rational matrix S(s)/d(s), there
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may be. common factors Between numerator and denominator in the elements

on the leading diagonal. On cancelling these common factors, we get

the Smith-McMillan form of GCs). This procedure is illustrated in

Example 5.3.1.

5.3.1 Example;

Let

.G(s).=

(s+lV

<s+l) (s+2)

(s+1)(s+2)

s+3

(s+2)'

Then, d(s) = Cs+1)2(s+2)2

NCs) R

(s+2)'

(s+1) (s+2)

(s+1)(s+2)

(s+ir(s+3)

S(s) =

0 (s+1)2 (s+2)3

and the Smith-McMillan form

1

MCs)
Cs+l)2Cs+2)2

0 Cs+2)
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(s+l)2(s+2)2.Thus, ̂ (s) m 1, e2Cs) « Cs+2) , ̂Cs) «= 1 and if

The system has poles at s«= -1 and s= -2 , a zero at 8= -3 and a

McMillan zero at s= -2.

5.3.2 Effect of Feedback on the McMillan Zeros

Consider the system

x * Ax + Bu, y - Cx (5.5)

with n states, m number of inputs and outputs and (A,B) controllable.

The transfer function matrix G(s) = C(sI-A)~ B has the McMillan form

Diagie1(s)/̂ 1(s) --- em(s)/i|>m(s)] . If feedback is applied to the

system according to the rule

•u « v-y_ (5.6)

let the closed loop transfer function matrix be

H(s) - JI + GCs)]"1 G(s)
-T&

with McMillan f orm Diag Ie (s)/ij;f (s) --- e (s)/̂ 1 (s)] .
j . j . m m

Rosenbrock {42J has shown that C can be chosen such that

x = Ax + Bu

Figure 2 System In Rosenbrock's Pole-Zero Allocation Problem

Ci) e.(s) in the McMillan form of G(s) are arbitrary monic polynomials

satisfying the necessary conditions.
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Ca) e. divides e. -

Cb) <5Cen) + 6(e0) + —- + Ce ) < n-m1 2 m —

where <5(e.) is the degree of the polynomial e Cs)

Cii) !/>' Cs) in the McMillan form of HCs) are arbitrary monic

polynomials satisfying the necessary conditions

Ca) *V divides i|»' .
i I'-l

Cb) 60|)J l,' --- ,|»') = n.
J. £. m

5.3.3 Role of McMillan Zeros in Multivariable Systems

The McMillan Zeros are the roots of the polynomial e, (s) . The

polynomial e, Cs) plays an important role in certain aspects of
K.

multivariable system design, and in some respects are similar to

that of the numerator polynomial in SISO systems. In the SISO

case, ekCs) is a scalar multiple of the numerator polynomial.

A system x «= Ax + Bu, .y_""Cx 4- Dia is defined by some authors

to be minimum phase if all the roots of the polynomial e, Cs) are

in the left half-plane. Moore and Silverman 143] have shown that

a stable psuedoinverse of GCs) exists if and only if CA,B,C,D) is,

according to the above definition, minimum phase. For a system

with an equal number of inputs and outputs C=k)

Minimum phase properties of a system arise in connection with

the linear regulator problem. Consider the minimal system

xCt) = AxCt) + BuCt)

yCt) = CxCt) , xCtQ) = XQ

with quadratic cost function
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I/Ct) Q v_Ct) + uT(t) pRuCt)] dt

b

where Q and R are positive definite matrices and p is a scalar.

In designing a control system, it is -usually necessary to make a

tradeoff between achieving better performance and using smaller

control forces. By increasing the amplitudes of the control variables

it is possible to achieve smaller deviations of the controlled

variable from its desired trajectory. Systems with unlimited accuracy

are those for which the performance index can be reduced to zero

Ci.e. the deviation is instantaneously reduced to zero) if the

amplitudes of the inputs are allowed to be arbitrarily large.

Let uj*(p,t) denote the control which minimizes the cost

function and let v^* (p,t) be the output of the system. Kwakernaak

and Sivan 144] define a system to be of unlimited accuracy if and

only if

limit
0

0

..Tv* Cp,t) Q £* (p,t) dt = 0

for all Xf.. They have shown that the necessary and sufficient

condition for achieving unlimited accuracy is that (i) the number

of inputs be at least as large as the number of controlled variables,

and (ii) the system should be minimum phase.

At present it is not known to what extent the McMillan zeros

would be useful in developing algorithms to design multivariable

systems. Apart from J42-44J very little has been done about using

McMillan zeros in system design. The McMillan zeros appear to have

no bearing upon design for conventional pole zero placement. This
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is a potential area for future research..

5.4 Design Freedom Using Unity Rank Feedback For Pole Zero
Placement

So far, unity rank feedback has been used to place the poles

of the closed loop system. Consider the system defined by the

equations C2.1) and (2.2). Here, they are repeated for convenience.

x m Ax. + Bu (5.6)

Z= Cx (5.7)

Let the state feedback

u = _KX = ~fdTx (5.8)

be used to place the closed loop poles. From (2.32). for pole

placement with state feedback we have to satisfy the equation

— n (5-9)
d_ is chosen to satisfy (5.9) and we are free to choose f_ to satisfy

some other design requirement in addition to pole placement. The

feedback gain matrix K is given by

K=fd

' V
f2

t
•

fm

{dn d_
1 2.

m

-1-
b f

(5.10)
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ct.f1 m

a fnn 1
'b f

a f
n m

b f

Notice that we can normalize f^ by writing

f = f , • f— 1 — n

where [I f2/f;L - ---- ' Now'

K - fd - f * f.b.f1—1—n
fnb f

 J

1—n—n

n
b f—n—n

Thus normalizing does not affect K.

The ±^ element of K has the form

IKJ.

bj2f2

(5.11)

This shows that we are free to choose the quantities
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Thus, there are (m̂ l) degrees of freedom left after pole placement.

This freedom in choosing K can be used to (a) restrict magnitude

of feedback gains (b) design for acceptable steady state behavior

Cc) zeremplacement.

5.4.1 Example:

This example illustrates the freedom in design using unity rank

feedback. The simplified model of a d.c. to a.c. rotary converter

:ribed bj

•
X

f- the

-4

-2

state

-2 "

-4

equatic

x +

jn

" -4

-k

0 "

-2
u

1 0

0 1.

The transfer function matrix G(s) = C(sI-A)~iB is given by

-4

(5.12)

(s+6)

-4
s+6

(s+6)(s+2)

2(8+4)
(s+6)(x+2)

The system has two poles at S= -6 and S= 12 and a zero at S= -4.

State feedback is used to place the closed loop poles at -5 and -1.

There is one degree (m«=2 in this case) of freedom left after placing

the poles.

Choosing
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1 1

-1 1

system C5.12) can be transformed into

-2 0

0 -6

0 1

-4 -1 u

1 1

-4 -1

The C.L.C.P. s s2 + 6s + 5 and the O.L.C.P. » s2 -f 8s -f 12. Also

C.L.C.P. 1 m -(2s +7) _ -3/4 -5/4
O.L.C.P. (s+6)(s+2) "(8+2) (s+6) '

Hence, a, = - 3/4 and a2 = - 5/4

From (5.9),

Now, BK = Bfd

1 1 ——1 * O

10 • a./b,f = 5/4 (4fn + f 9 ) .
^ ^ "~~ .̂"~ X ^

0 1 "

-4 -1

"f-1

fo2

Id, d,]

- f2d2

-3/4

3 4fl * f2

4 4f1 + f,

- 5/4
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The closed loop transfer function matrix H(s) = C(sI-A + BK) B is

equal to

HCs)
s + 6s + 5

-4ts-a+5/4 14/4+a-b

-4 Cs+a+5/4 ) -2 Cs+3+a+b.

where

a = 5/4 and b = 3/4

1,

The zeros of the system are at

s= a-5/4, s*= -a-5/4, and s= -3- ±<

Notice, that although we can choose f. and f independently the zero

location is affected only by the ratio f-/f_. Due to this only one

zero can be placed.

Let us position the zero corresponding to first input and

first output at -2.

i.e. a - 5/4 - -2

4 *4f1+f2
-1] - -2.

This gives - 2/3. Choosing f = 1 gives = -2/3

-3/4, d • -3/4 and K

_3
4

With this value of K the closed loop poles are at -1 and -5 and one
i

of the zeros at -2.

Next, the system is re-designed for approximate pole-zero place

ment and diagonal dominance at steady state using state feedback.
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Let the closed loop poles Be at *4> and ^P_ and the zeros be at -£-,

T-5 and •*•£ . a an& a g^g functions of PI and P2 and are equal to

and

This results in

P -

+ P-8) -

(sl>A+BK) =

s+2+a,

and

(sI-A+BK)
-1 I

A

respectively.

(s+6+a0)

s+6+ a,,

a2f2
4fl + f2

s+2+a.

Where A= s + (P, + P2> s +

The closed loop transfer function matrix

H(s) 0.
A

-2ls+4+ (.

where
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The pples of the system are at t-p.. , *-p2 and the zeros at - £

1 al
~ ̂ H +

, 2

1
+ »2A), ^2 " -C2 + ax - ct2Jl) and -?3 = -(4 + ~ H + ~) ,

*- yCw, + a)J . Let the desired closed loop poles and zeros be at

goj resPectively« Thus, we have to

satisfy the equations

dl

d
2

P2-8) + <PI P2-12)]

a2 = "4 I6(P1 + P2 ~ 8) ~

2+

Let 54 = 4 - (o2A + a.L) + (a2 - â l) and a3 = 4^ + f2- For diagonal

dominance with pole zero placement we have to satisfy (5.13) subject

to the constraint £^5- _> 552̂ ,. This can be done by minimizing the

cost function

J - Kd 1-a 1)
2 + Vd2a3+ a2)2 + K3

t K
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U , U_? r~rr- U- axe. functions similar to those defined in Chapter III.

The results of the minimization are shown in Table 4.

Table 4 shows that there is a degradation in performance as more

and more requirements are placed on the design. This is to be expected

because of the limited amount of design freedom. Thus the (m̂ -l)

degrees of freedom can be used to satisfy other design requirements

in addition to placing poles of the system.



CHAPTER VI. CONCLUDING REMARKS

6.1 Conclusions

A new method Is proposed for designing multivariable systems.

The design is primarily based on an alternate derivation of Davison's

theorem on pole placement and the solution of the nonlinear equations

for the feedback gains by the least square error method. Output feed-

back is used to control a complex dynamical system. The freedom in —

design, after allocating poles, is used to place zeros and/or satisfy

other design objectives. Throughout, the design is carried out using

unity rank feedback gain matrices. This has a number of consequences.

On the one hand it results in algorithms which are computationally

attractive. However, this is done at a considerable sacrifice in

terms of the design freedom available. For a system with m inputs

and p outputs we can choose only (m+p) variables instead of mp

variables.

6.2 Areas for Further Investigation

There are several natural extensions and areas for further

investigation which follow from the work reported here. Some of

these are (i) study of pole-zero placement using feedback gains

of rank greater than one (ii) use of dunamic compensator for pole

zero placement and (iii) pole and McMillan Zero placement using

feedback.

The design procedure can be logically extended to feedback

matrices of higher rank than one. The procedure is illustrated for

a third order system.

76
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Consider the system
• •> i
.X » Ax + Bu

1 - Cx (6.1)

where A is a 3x3 matrix and has distinct eigenvalues \ , A t and X .

The system (6.1) can be transformed into

x = Ax + Bu

j_ = Cx (6.2)

by a similarity transformation.

The O.L.C.P. = |sI-A| = A= (s-X ) (s-X ) (s-X ) , and the C.L.C.P. =
±. £ j

| si- A + BKC| . Let m be the ij*" element of matrix M where

M f* BKC. Also, m. . = b.Kc^ where b . = i row of B and c is theij i —3 —i

j column of C. The C.L.C.P. can be expressed as
m A mo9.

A m-»-i-A
I si - A + BKCl - A + !T, + -~— + f '1 ' sI-A sI-X sl~^3

. A n . A

(sI-X2)(sI-A3) ̂  (sI-A3)

(6.3)

where n is the co-factor of mfi« If K has rank one then equation

(6.3) reduces to

- A

| si- A + BKC| = A + _̂.x- y + ĉ .x . + ~~ (6.4)
1 2 3

Notice that if K = fdT, m. = b.KC = b. fdTci = d̂ b.f.— » H _^ —i j_

Now

C.L.C.P. - O.L.C.P. ^ y "j
O.L'.C.P. .*•, ̂s-̂ .) (6.5)

i^l i
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From C6.3),

I si- A + BKCl- A n

i=l

3 mii

i=l

n n

(x1-x2)(x1~A3)

n

(x2-x3)

nl n2

M

(X3-X1)(x3-x2)

(6.6)

Ccnnparing C6.5) and C6.6), for pole placement we have to satisfy

the n equations
n n.

. 2_ . "3 I M|
(V-*,> XW (VX-L J J_ £ -L

n.
m22 +

M

(6.7)
n

33
M " a

in mp variables. It is Interesting to note that for K <= fd ,

(i) nlf n2, n3, |M| = 0
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(ii) mi:L = dc* i - 1,2,3

and (6.7) reduces to (2.10).

This is not intended to be a complete treatment of the pole

placement problem using output feedback matrix gains of rank greater

than one. It is introduced to show that the techniques discussed

in the previous chapters can be easily modified to take advantage

of the increased design freedom afforded by K of rank greater than

unity. A comparison between equations (6.7) and (2.10) shows the

increased amount of computation and complexity.

Brasch and Pearson [21] have used a dynamic compensator

to place all the poles of the system using output feedback. The

feedback gains are not unique and this design freedom can be used

to place zeros or satisfy other systems requirements.

It has been pointed out in Chapter 5 that the McMillian Zeros

have certain important properties related to the behavior of the

multivariable system. Apart from Rosenbrock's [42] work very

little has been done about using McMillan Zeros in system design.

One important problem is to find the conditions under which a

feedback gain matrix K exists such that

(i) given the system x = Ax + Bu, y_ = Cx with transfer

function matrix G(s).

(ii) a feedback law 11 = v + Ky_
_j^

the closed loop transfer function matrix H(s) = G(s) (I + G(s))

has a desired McMillan form.

The solution to some of these problems should provide more

effective ways of designing multivariable systems.



APPENDIX A

AN ALGORITHM FOR CALCULATION OF THE
JORDAN CANONICAL FORM OF A MATRIX

Introduction

It ±s well-known that any matrix may be brought into the

Jordan canonical form by a similarity transformation £45], There

are several methods available,to^compute the eigenvectors of a

matrix when the eigenvalues are distinct [46-47]. Some of these

could be used to compute the eigenvectors for matrices with

multiple roots. In Varah's method 148] multiple eigenvalues are

handled by perturbing the multiple eigenvalue to produce distinct

eigenvalues. Eberlin and Boothroyd [49] also compute eigenvectors

for multiple eigenvalues. However, none of these methods generate

the basis vectors necessary to transform the given matrix into it's

Jordan canonical form. Chen [27] has suggested a procedure for

computing the Jordan canonical form. Here, a simple and efficient

algorithm, based on the notion of a generalized eigenvector, and

using Gauss elimination techniques is given to compute the Jordan

form of an nxn matrix.

BACKGROUND

Given the nxn matrix A, we want to find the matrix T such that

T*" AT is a Jordan matrix J. Let (;u , A-* • , \ ) be the eigen-

values of A with multiplicity (n., n~, , n ) respectively. The

number of eigenvectors associated with the eigenvalue >. is given

80
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by a. = n-Rank (A-A I). The Jordan matrix, J, has the form

J = diag U J , J I J , J , j ;
'11' "12 la.: "21' "22!

J. •

,, 0, — ,.ml' m2' ' ma

2V:

m
(A.I)

with

ik

• o

o
i = 1,2, ,m

k = 1,2, , ai

(A-2)

Let g., be the dimension of the block J ., and define

i-i a
"I I with °10 (A-3)

Let the generalized eigenvectors and the eigenvector corresponding

j.o JL, 4.0 _i and ^to J.. be tik —a v+1'

respectively. The transformation matrix T is made up of the n

columns (t t_ --- , t , t ..... t^ , . . . , t^
1 L -u ^i-i -* -o

..., t , ..., t . The similarity transformation satisfies— a, —ala, ma1 -m

the relation

i.e.

AT = TJ (A-4)

Then, the eigenvectors of A satisfy the relation

(A-ArI)_t£ =£ I.' ra (A-5)
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Given an eigenvector of A the corresponding generalized eigenvectors

satisfy the recursive relationship

k = 1, 2 ctk. (A-6)

The solution of equations (A-5) and (A-6) yields the transformation

matrix T.

Computation of the Eigenvectors

Let A = (A - A I). We can choose non-singular matrices P and

0 such that P AO = U , where, U has the formxr r xr r' ' r

Ull A12
U =

1 TL rows
r

Here IL. is an (n-a )x(n-a ) upper triangular matrix with \U-.-, \ f 0

and AI? is an (n-a )xcx matrix. Given (A- A I) , P , Q and "U can

be obtained by Gauss elimination with full pivot.uig [50] . The a

eigenvectors corresponding to the eigenvalue A are obtained by

solving the equation

using a back substitution scheme employing a ' independent selections

of the last a components of j: . Full pivoting guarantees that this
r x

will result in a linearly independent solutions which become the a

independent eigenvectors corresponding to 'X . Substitution of

these eigenvectors in equation (A-6) yields the set of generalized

eigenvectors.
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Algorithm;

1. Find the eigenvalues of A. Label them A , A , ..., A .

2. Solve the equation U t, = £ for all eigenvectors correspondingr Jt

to A using independent selection of undetermined constants. The

solution involves undefined variables v , w , ... . Generate an

independent set of eigenvectors for A by setting each undefined

variable in turn equal to 1 while holding all other variables

equal to 0. Denote the eigenvectors by t , t , ..., t
rl r2 rar

3. For each eigenvector t , i = 1,2,..., a form P Q t and

solve
U t = P Q tr—o -1 rxr—a .

ri ri

for generalized eigenvector corresponding to eigenvector t with
ri

the undetermined constants taking values given to them while

evaluating t
ri

4. Repeat step 3 by forming P Q t: _, and solve Û t̂  _2 =

5. Continue to generate generalized eigenvectors as in step 4 until

the equation Ut . = P Q t . . becomes inconsistent i.e. when

a non-zero quantity appears on the right hand side corresponding

to zero rows of U . This gives the basis vectors corresponding to

the eigenvalue A .

6. Repeat step 2 thru 5 for r = 1, 2, ..., m. to obtain all the

basis vectors and hence the matrix T.

7. Obtain the Jordan canonical form from J = T" AT. Note that J

need not be calculated directly since the block structure of (A-2)
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is determined by the number of generalized eigenvectors that are

generated for each eigenvector.

Computational Discussion;

The computation of the eigenvectors and the generalized

eigenvectors depend on the accuracy with which the eigenvalues

of A are computed. Francis' {35] algorithm is suggested for

computing the eigenvalues. When the eigenvalues are approximate

the calculation of the eigenvector can be refined as suggested

by Wilkinson 151].

The algorithm suggested in this paper results in a large

reduction in the amount of computation necessary to obtain the

Jordan canonical form. The number of computations necessary for

an n order system with m distinct eigenvalues is shown in Table

A-l.

A similar analysis of Chen's algorithm 127] shows that the

5 4number of computations are of the order OGr n ). Thus the

algorithm suggested here results in at least a fivefold saving

in the number of computations. The method does not require the

evaluation of the rank of matrices of powers of (A-A I) as in

Chen's method.
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TABLE A-l

STEP

P1(A-AiI)Q

Total elimination
for m eigenvalues

Back substitution

Total for n
back substitution

To construct a
right hand side

Total R.H.S.

Total

NUMBER OF COMPUTATIONS

n - 1 , n 1 - 1
-1 i2 + I i = i (n3-n)

m(n3-n)/3

~ n-1 2
r . n — n

~ i=l = "^

3 2
n -n

— 2

n 2
r . n -n
I i - — y-

3 2
/ 2 \ /n n — nn(n -n)/2 = -̂

mn mn 3 2 _,nH-l 3N— r -5- + n -n «= 0(— r~ n )
J J J
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Examples;

The algorithm is applied to find the eigenvectors and the Jordan

canonical form of two different matrices.

A. Fourth order matrix;

6 -3 41

4 2 4 0

4 - 2 3 1

4 2 3 1

This matrix is taken from Eberlin ~and Bobthroyd J49J. The

eigenvalues of the matrix are 5.23606797749979 (double root) and

0.763932022500210 (double root).

The eigenvector and the generalized eigenvector associated with

the double root 5.23606797749979 are

0.4270509831

1.0000000000

0.3819660113

1.1458980340

and

0.5868810394

1.0000000000

0.4721359550

1.0901699410 respectively.

Tor the double root 0.763932022500210 the corresponding vectors

are given by

r -0.3726779962

0.1273220038

0.3333333333

1.0000000000

and

0.2197175016

0.4182146692

-0.3171224407

1.0000000000

Notice that the two eigenvectors and the two generalized eigenvectors

are all independent unlike in [49]. The Jordan canonical form can

be readily written as
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5.2360

0

0

0

5.2360

0 0.7639

0 0

0

0

1

0.7639

The execution time was 1.57 sees with a WATFIV (Univ. of Waterloo -

Fast Fortran) compiler.

B. System.Matrix of Boeing Helicopter

The following 8x8 matrix arises in the design of the helicopter

stabilization system used in Chapter IV.

" .021

-.0903

0

-.0058

0

0

0

0

.025

-.802

0

.0145

0

0

0

0

-29.64

-80.98

0

1.4672

0

0

0

0

.6968

-1.878

1

•̂1.460

0

0

0

0

.1879

.5524

0

.45

0

-784

0

0

0

0

0

0

1

-35

0

0

-.0941

-8.517

0

.068

0

0

0

-784

0 "

0

0

0

0

0

1

-35_

The eigenvalues of the system computed by using Francis1 method are

0.50432908, -2,3585084, -0.19350035 + j 0.35283477 and -17.5 + j

21.857493 (double root). The eigenvectors corresponding to the

distinct root are
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1.0000000000

0.9167473189

-0.0157197678

-0.0079269851

0.0000000000

0.0000000000

0.0000000000

0.0000000000

0.2528902161

1.0000000000

0.0200347219

-0.0472520599

0.0000000000

0.0000000000

0.0000000000

0.0000000000

-0.0949009676 + j

1.0000000000 + j

-0.0074706563 + j

0.0026856551 + j

0.0000000000 + J

0.0000000000 + j

0.0000000000 + j

0.0000000000 + j

0.6460398691

0.0000000000

0.0035914411

0.0019501968

0.0000000000

0.0000000000

0.0000000000

0.0000000000

respectively. Each of the double roots has two eigenvectors

associated with it. ' These are

-0.0000183498 + j

-0.0001564383 + j

0.0000193897 + j

-0.0001545381 + j

-0.0223214285 + j

1.0000000000 + j

0.0000000000 + j

0.0000000000 + j

0.0002379966

0,0007421192

0.0000084539

0.0005715717

0.0278794553

0.0000000000

0.0000000000

0.0000000000

and

0.0000224177 + j

0.0026667158 + j

0.0000031152 + j

-0.0000288496 + j

0.0000000000 + j

0.0000000000 + j

-0.0223214285 + j

1.0000000000 + j

0.0001119734

0.0107258554

0.0000011743

0.0000886422

0.0000000000

0.0000000000

0.0278794553

0.0000000000

Since the multiple eigenvalues have as many eigenvectors as their

multiplicity, the Jordan canonical form for this matrix is diagonal

and is given by

diag 1.50432908, -2.3585084, -0.19350035 + j 0.35283477,

-0.19350035 - j 0.35283477, -17.5 + j 21.857493, -17.5 +

J 21.857493, -17.5 - J 21.857493, -17.5 - j 21.857493]

The execution time using a WATFIV compiler was 8.69 sees.
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Flowchart and Computer Program;

These are given In I52J.

Conclusion;

A method has been outlined to find the basis vectors to

transform a given hxn matrix to its Jordan canonical form. The

method is simple and efficient. It does not require the evaluation

of the rank of matrices of powers of (A-A.I) as in Chen's method

I27J. There is at least a fivefold reduction in the number of

computations. Two examples are given to illustrate this method.
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