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I. INTRODUCTION

1.1 Introduction and Historical Background

Multivariable Systems are a characteristic feature of modern
industrial and production processes. A Multivariable System, as the
name suggests, has several inputs and outputs. The object,of design
is to control these interdependent inputs and outputs to- obtain the
desired output from the system.

Oné design approach is to con;rol the system in such a way that
a change in one input variable affects only one output variable. .This
is the problem of decoupling or noninteraction. Early attempts to
solve the decoupling problem by Bokeenbom and Hood [1], Freeman [2],
and Kavénagh [3] made use of the transfer function approach. These
methods made arbitrary assumptions and ran into problems of stability
and realizability. There was a need for understanding of system
structure, and establishiﬂg a compatibility of the design approach
with computer methods, both of which are dependent on the state
formulation. Moréan [4] formulated the decoupling ﬁroblem in state
space and a complete solution to the design of noninteractive systems
was provided by combined effoits of Falb and Wolovich [5], Gilbert [6],
and Wonham aﬁd Morse [7]. Morse [8] has recently reviewed the status
of noninteracting systems.

Approaches to the design of interactive Multivariable Systems
were first treated as a logical application of optimal control
theory whereby, with a suitable input, the weighting matrices in a

cost function are used to achleve a satisfactory solution. The work
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of Ellert and-Merriam 9], and Tyler [10] among others is to be noted.

This method has been found wanting because of problems associated
with the solution éf the Riccéti equation for large systems, the
requirement of full state information, and difficulty of summarizing
in a quadratic performance criterion the desired response character—
istics. No systematic way is known to date for changing the weighting
matrices in the multivariable system design problem. Some recent
efforts at facing this problem have been repofted by Murphy and
" Narendra [11], Rediess and Whitaker [12],.and others. Notably,
Ferguson and Rekaéius [13] have dealt with the problem of incomplete
state measurements.

In an effort to circumvent these difficulties Rosgnbrock I114]
suggested'modal control as.a design tool, which is to say, he pro-
‘posed changing the eigenvalues of the éystem matrix to achieve the
' désired control objective. Wonham [15] showed that for a controllable
system theveigenvalues of the closed 160p system can be assigned
arbitrarily using state feedback. Simon gnd Mitter [161 proposed a
theory of modal control.

_ Much of the work which relatés to the concept of modal control
has been termed "pole placement'", Disregarding work on decoupling,
pole placement methods for multivariable systems have been treatéd
in two categories: 1) methods using constant gain feedback
2) methods using dynamic compensators to achieve pole placement.

Retallack and MacFarlane [17] have derived a state-feedback
pole-shifting algorithm using the Hsu-Chen theorem 118]. Chidambara
[19] has shown that it is possible to solve the polé assignment

problem with state feedback for a time-invariant linear system of
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order (n) having (m) inputs through the solution of fhe same probleﬁ
for a similar system of order (n-m-r) [with r < m] having r, [where
T < r] number of inputs. Davison [20] has studied the relationship
between controllability, pole assignment and incomplete state feed-
back,

Brasch and Pearsoﬁ I121] have shown that for a controllable,
observable plant a compensatbr of order B = min(vc-l,vo—l) is
sufficieﬁt to obtain arbitrary pole placement in the system consisting
of the plant and compensator in cascade feedback configuration. Here
vc(vo) is the coﬁtrollability (observability) index of the plant.
Sﬁmilar results are obtained by Chen a@d Hsu [22] using a transfer
function approach. Ahmari and'Vacroux [23] have generalized the
" theory of pole assignment to include the case in whiéh a controllable
observef plant is augmented by a compensator of fixed dimensionality.

Although pole locations are an important element in the spec-
ification of satisfactory control, they are by no means sufficienﬁ
in themselves. The sensitivity of the system to distmrbances and to
parameter changes is also important, as ié the effect of transducer
of actuator failure. Overshoot, and the extent of interactionm,can
also be significant in some applications. Among these various factors
which affect the design of the control system the problem of the zeros,
i.e. the numerator polynomial roots of the transfer function, is
considered in gréater detail in a later chaptér.

1.2 ‘Problem Statement

The general problem of designing‘Multivariablé Systems can be

approached‘from different design objectives such as decoupling, exact

model matching, disturbance rejection and pole placement. The



problem investigated in this study may be described as follows.
Consider the linear time invariant multivariable deterministic
continuous system described by the equation:

% = Ax + Bu (1.1)

-~

Cx (1.2)

M
n

The object is to use the output feedback u = Ky to place the eigen-
values of the closed loop system |

% = (Z + BkC)x
in a desired location predetermined by the designer. The case of
pole placement with state feedback is considered as a special case
of output feedback where ¢ = I, the identity matrix. In this thesis
the design techniqﬁe is focused on using constant gain feedback'matrices
of unit& rank., The method is applied to the design of a complex
system“described by the equations (1.1) aﬁd (1.2). Further, tﬁe
effect of feedback on the zeros of the closed loop system, i.e. on
the Toots of the numerator polynomial ¢ Adj (SI-A + ﬁKé)—lB is

investigated along with the problem of zero-placement.

1.3 Outline of the Thesis

Chapter 2 outlines é design technique to place the poles of the
closed~-1loop system-usiné output feedback. The method results from an
alternate derivation of Davison's theorem on controllability, oﬁserva-
bility, and pole placement using output feedback. Several examples
are given to illustrate all the features of the method.

Chapter 3 considers the question of approximate pole placement
‘when it is not possible to place all the poles using output feedback.
This problem is approached:in two different ways - (i) using the

psuedo-inverse to get an approximate solution to a set of inconsistent
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equations. (ii) Using gradient method to obtain a least square
solution to the sét of equgtions.'

In Chapter 4 the pole placement design is applied to a complex
system. The system chosen is the Boeing-Vertol CH-46 Helicopter.
The system is open-loop unstable and has eigﬁt states, two inputs,
and four outputs. A controller for the Helicopter stabilization
is developed using output feedback.

Chapter 5 summarizes some recent contributions”to the problem
of‘zerp—placement and examines the advantages and limitations of
using a unity rank feedback gain matrix for pole zero placement.

Future developments, extensions, and toﬁics for additional

research are presented in Chapter 6.



II, POLE PLACEMENT USING OUTPUT PEEDBACK

2.1 Introduction

The design of linear multivariable control systems using outbut
feedback has attracted the attention of several authors [17, 20-22,
24, 25]. There afe two ways of apprqaching,this problem.v The first-
- method consists of estimating the states of the system usiﬁg an
observer‘and using these estimated states in the subsquent aesign.
In the:second approach, either sfatié or dynamic feédback,of fhe
output:is used directly in the control_prdbleﬁ and this view is
adopted here.

| Cbnsi&éx a linear time-invariant multivariable system
% =Ax+Bu = 2.1)

= Cx | ‘ (2.2)

<

where x is an n vector of states, u is an m vector of inputs and y
is a p vector of outputs. It is well-known that the problem of pole
assignment using state feedback is equivalent_to thevcontrollability
of the pair (A, E) [15]. Here it is shown as a theorem that for a
controllable, observable system [;, ﬁ, é] with ﬁ and 6 full raﬁk
ﬁax(m.p) poles of the system can be assigned afbitrarily closé to
desired locations using constant. gain outpﬁt feedback. This theorem,
though similar to Davison and Chatterjee [26), leads to a design
approach by virtue of the method of derivation. In some cases, more
than max(m,p) poles can be assigned.arbitrarily. Also, certain pole
configuratioﬁs which cannot be attained by Davison's method can be

‘attained by this method. These advantages are 1llustrated by méans of

6



examples. Assuming the system is output stabilizable, a least
square design technique is outlined to approximate the desired pole

locations when it is rnot possible to place all the poles.

2.2 Theoreﬁ On Pole-Placement:

Given the system (2.1 and 2.2) with Rank ﬁ =m 5z n and Rank ¢ =
p < n, then a linear feedback of the output u = Ky, where K is a
(mxp) constant gain matrix, can always be found such that max(m,p)
.eigenvalues of the closéd.loop syétem are arBitrarily close to pré_
assigned (complex eigenﬁalues occurring in conjugate pairs) values.
‘Proof |
tétv(kl, Aps == An) and (pl, Pos F——, pn)’ be.the'eigenvalues
of the'openrloop and closed-loop system respectively. |
We have. . | |
open looﬁ charactériétic polynomial =IISI—A|=(S—11)(S—A2)———
(s=2) (2.3)

and closed loop characteristic pplynomial = |sI—A+BKCl = (s-pl)

(8=p,) == {z=p ) (2.4)
Then
sI-ABKC|  _ 4.0 (1 + BKC (sI-A)"1]. @3

ISI—K|
Choosing K =£_§?'where f is a mxl (column) vector and g? is a 1xp
(row) vector, énd ﬁéing the identity det[I + MN] =rdet Ii + NM], equation
(2.5) becomes

Is I-A+BKC|

: =1+d% (-7t Be
|sI—A|» ’

1+ d'cr (st-r1am) ™t 17iee (2.6)

1+ d°c (s1-A)"" BE.



2 =12
1AT, B=T ;B and T is a mxn nonsingular matrix.

n . -
where C = CT, A= T
For clarity, the theorem is initially proved for the case of
distinct eigenvalues of K-and the multiple eigenvalues of A are

considered in the latter half of the proof.

Distinct Eigenvalues

In this case equation (2.6) gives

| sT-A+BKC| Ty
n =1+ ] =55
| s1-A] =1 (72 2.7)

The vélué of ui dépends on the closed.loOp eigenvalues (pl,———, ph).

Prom (2.6) amd (2.7)

o (s-m7L Bt = 3 (S_i_x . 2.8)
i=1 i '
Choosing T as a modal matrix equation (2.8) becomes
- n a
T =1 i
¢ (sI-M)7 Bf = ) o5
4 jop (82 (2.9)
where A = diag. v(Al’ Aé,_--—, An).
Let E} be the ith column of C and Ei be the ith zow of #. Then,
R JF ¢ . | 2.10)
ai—g.ghi.g i=1, 2, -——, n. (2.

case ()

Let p>m i.e. more outputs than inputs;v Choose fi such thét
Eig =&y #0 1i=1,2,-—-, n.. This can alﬁays be done since b, #0,
for controllability.
Hence, -g_g_ = ai/di o i =.1,'—-—, n. - : (2.11)
This gives C'd = o = | (2.12)

where

[ =.col [allél, az/éz, - ah/én]. |



-9
Now, let Cp be the matrix made of the p indepéndent rows of CT and
Ep the corresponding subset of g,' Then

-1 '(2.13)

d=C "  «a
- P —P _
Thus (dl, d2, —, dp) can be chosen corresponding to the p desired
pole locations. Once this is done the remaining (n-p) poles are
fixed automatically.
Case (4i)
Let m>p i.e. more inputs than outputs
L Choose d, such that g?g} = yi'#’O i=1, 2, -, n.
This can always be done since ¢ # 0, for observability.
Hence, Eii = ai/yi i=1, -—-, n. | . (2.14)
This gives Bf = o ’ ‘ - : (2.15)

1

where - a = col Ial/él, az/dz, -— an/Gh]i
Since the rank of B is m, there are m independent rows of B, Bm’ such
that

Bf=o"

m— -m

where o is the corresponding subset of «.

f=B1a ' P (2.16)
= " m-m
Thus_(fl, f2’ ———,.fm) can be chosen corresponding to the m desired

pole locations and the remaining (n-m) poles are located automatically.
From case (i) and case (ii) it is evident that at least max (m,p)

poles of the system can be assigned arbitrarily.

Multiple Eigenvalues

Let the eigenvalues of matrix 2 be.ﬂl"WZ’ -4-, Aw with multi-

plicity Ny Ny, ===, 0 _reépectively,v Choose T such that A =

T—lﬁT has the Jordan canonical form with w blocks of respective sizes

Ny, Ny, ==, ?w and Al’AZ’ — AQ the corresponding elgenvalues.
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Now, we have

|s1-fidkd| . (87Py2(s=p,) == (s-p )

- ‘ n i)
lsl—ﬁl (8~2.) 1 (8-2,) 2eee(s-) )nw 2.17)
S T T2 T e
: W
 wher¢ z oy =n
i=1
Equation (2.17) can be rewritten as
A+BKE o] al | Ty o¥
Lot=Bl oy y7 2 ] 2.18)
| sI-A| i=1 (s-2))" i=1 (s-1 )" ’
 The value of ag (i¥l, —_— nj,  j=1, ~— w)'depends on the closed
loop poles (py, Py, === P ). o
From equations (2.6) and (2.18), we get
n, 'al n, "
Q?C(SI—A)—l Bf = ) —~—3;—I-'+ A (2.19)
1=1 (s-2y) i=1 (S'“m)i

(sI-A)"l has the quasi-diagonal form diag [Jl, JZ’ - Jw] where.Ji

is a ni x n, matrix of the form

i

1 1 S 1
. . n
(2 (s’ (e
1 g -1
0 —_— — —_—
: o | o ' (2.20)
. 1 1
(s-2) (s-1,)°
0 0 — L
(s=1,)
i
! J
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1 2 :
Let C = Ict, %, -, "] and B = B, B®, —— B“]T where ¢J is a

pxnj matrix and Bj is a njxm matrix. Then it can be easily seen that

n
T d; ode o T O
4CIBE = 21 —— j=1,2,~—,0 (2.21)
' (Sflj)

Further it can be shown that
ol =d [chj +clBd + - 4+ cJ BJ ]_f_

% 2 2

vaj a'rede) + 43 8l - C(2.22)

j=1,2, ——,uw

Where Ci is the ith éolmnn of CJ and. BJi is the ith row of BJ.

In the matrix form equation (2.22) can be written as
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B . 7
clel +clel 4 e oo s ct gt ol
11 272 n, n 1
11
1.1 1.1 1 1
ClBZ + CZB3 + - - - + Cn _an a2
1 1
1By 1 * OB, -1
1 1 n-
1B, =
1 it
wow W, w W w' w _
dT ClBl + C2B2 + - f - ‘+ Cn Bn - al (2.23)
- ww =
woLW W, W w w w
Cle + C2B3 + - -+ Cn _1an az
W w
Can -1 + C2Bn *n -1
w w
W w w
Can an
w w
L J
Case (1)
Let p>m i.e. more outputs than inputs and Big = 61, i=l,———, nj
and § = 1, -~ w. For controllability, every row of B corresponding

to the last row of each Jordan block of A is linearly independent [27]
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i.e,, Bi # 0,3~1, 2, -~ w, are linearly independent.

Now, we can choose (fl, £,, -, fm)such that

1. 43 _
ang = cnj $0, j=1, —, w (2.24)

Substituting this in equation (2.23) we get

r T T T -
4 ostel 4 slch - - - ot ¢l
171 272 n, n
171
T T T
1.1 1.1 11
62C1 +6302 +--_+,6n -Cn -1
- 11
T'.
6 O
—1 ————————————————
d=¢o
s¥c? T + - == - == 3 CwT
11 n n
. w 3y
69 Ty oo oo oo + &% c‘*’T—l
271 .
W w
w wT
GnC
w,nw “
c101 1 2 ’ w
where a = co; [al, ay === anl » O -——.anz, — =, anw ]

Define a quasi-diagonal matrix M, .

A .
M = diag [Ml, MZ’ -, Mm ]
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where Mj is given by
- J . J : . j -
61 62_ T Gn
]
M, = |& s ol
J .3 n 0
J
di 0--~-=- 0
k|
. o
we have MC'd = o (2.25)
M is a nxn non-singular matrix since det M = II (Gn ) + # 0 by (2.24).
i=1 i .

Hence, ‘Rank M~n and Rank MCT = p. Let Cp be the p independent rows

of MCT and let be the corresponding subset of a. This gives

[+
—p

cd=o
P P
or -1
d=2C o (2.26)
- PP

Equation (2.26) is similar to equation (2.13) and the rest of the

proof follows as in the Case (i) of distinct eigenvalues.

- Case (11) : mp i.e. more inputs than outputs

Let d'cy = o) 4= 1,2,—n, j=1,2,--, 0

5
fqr obervability, every‘column of C corresponding to the first column
of each Jordsn block of A is linearly independent [27] i.e. |
Ci #0, j=1,2,~—~ w, are linearly independent.

Now, we can choose (dl’ d2, —— dp) sgéh that g?ci = 6i # 0,

=1, 2, ——, . : 2.27)
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Substituting this in equation (2.23) éndfdefining a quasi-diagonal
matrix N,

4 .. ‘ ‘
N = dlagINl, N2, —_ Nw]

where Nj is given by

[ 3 S B
61 62 T 6n
3
0 1 631_1
3
j

It is séen that
NBf = a.
. R : h w LN,
‘N is a nxn non-singular matrix since det N = I (Gi)J # 0 by (2.27).
. i=1 .

Hence Rank NB~m and let Bm be the m independent rows of NB and let

L% be the corresponding subset of a. This gives

B f=aqa .
m— -1
or - S (2.28)
f= B-la .
= m —m

Equation (2.28) is similar.to equation (2.16) and the rest of the
proof follows as in the case (ii) of distinct eigenvalues.

This éompletés the proof in the casefof'multiple‘eigenvalues.

2.3 Special Case of State Feedbéck
The proof of the Theorem 2.2 provides an easy method to verify

Wonham's theorem on pole. placement. With state feedback u = Kx, we
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have closed loop characteristic polynomial = |sI-A+BK|.

Equation (2.5) and (2.9) reduce to

LsL-BBK] | goeqr 4 B (s1-m7l (2.29)
| sI-A| : '
and n o, :
Q?CSI—A)—lﬂi = ) (six ) (2.30)
T =1 i
respectively.
From (30), d;b.f =0, i=1, 2, -==,'n ‘ . (2.31)

~ Now on the assumption of controllability, Ei # 0, and choosing .g

such that b,f # 0, we have
d; = a,/b.f i=1,2, -, n O (2.32)

Now d,; can be chosen to satisfy (2.32). Hence, the poles of the
closed loop system can be placed arbitrarily using state feedback

if the system is controllable.

2.4. Nature of the Design Equation (2.23).

T
In general, the output feedback gain matrix K = fd is obtained
by solving the set’ of n non;linear simultaneous equations in (mip)
i o
variables'(dl,*dz, —— dp, fl, f
of the theorem either (dl’ d

2’

-—— fm).' However, in the proof
—_— dp) or (fl’ f2, —_— fn) are

29
selected arbitrarily, thereby reducing (2.23)-to a set of linmear
eﬁuations. Thisiassures at least max (m,p) poles éan be placed
arbitrarily, In certain cases the non-linear nature of (2.23) can
be expioited to assign more than max (m,p) poles of the closed loop
sys§em, as will be shown.A

Complex eigenvalues of'tﬁe matrix,& present an 1hteresting sit~
- uvation.  The Jordan canonical form A = T—l&T and tﬁe matrices_

B = T—lﬁv and C = CT will then be complex matrices. However, K will
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be real since the complex columns of T™! and elements of o occur
in conjﬁgate pairs.

2.5 Examples

Example 1
2 -2 3 1 0 O
x=1{1 1 1| x + 0 0 1u
1 3 -1 | 0 1 O

The systém is contrbllable and has three inputs. Hence, all the poles
can be assigned arbitrarily using output feedback. The open loop
~ poles ére at 1, -2, and 3. Let the closed loop poles be at -1, -3,
and «4, | |
The modal matrix T and its inverse are given by

-1 11 1 | -15 25 -10

1

T=|1 1 1| and T =1/30 0 2 =2

1 -14 1 15 3 12

Then the transformed equations become

x= |0 -2 0| x+1/30 0 -2 2| u
o 0 3 15 12 3

We have, open loop characteristic polynomial = (s-1)(s+2)(s+3) =

s3 - 282 - 585+ 6

3

and closed loop characteristic polynomial = (s+1) (s+3) (st+4) = s~ + 832

+ 19s + 12
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Now. £rom (2.7 )

s; + 8$2 +h195_+ 12 + 1082 + 245 + 6

3 .2 =1
8- « 28 ~-55+ 6 (s-1) (s+2) (s~3)
_ 1. A40/6 _2/15 168/10.
s-1 s+2 5-3
This gives o, = -40/6, @, = -2/15, and ay = 168/10.
K is given by f1
T—
K= fd = f2 d
£,

and choosing d = 1, we get the equations

15f1 +‘10f2 - 25f3 = 200

15fl + 12f, + 3f, = 504

2 3

fz - f3 = 2.
Solving.these equations gilves
22
K=| 12 | .
10

With this choice of K the closed loop_poles are located at ~1, -3, and —4;

Example 2:
1 : 0 ] "1 .0 07
é - |0 2 x + 0 1 © u
0O 0 -3 0O 0 1
0 0 0 <=4 1 1 1
L i L i
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This example illustrates the advantage of the design suggested
here over Davison's metbbd. The systém is controllable and observable
with two unstable poles at' 1 and 2. Also, m = 3 énd p = 2. Aﬁcording
to Davison's method three poles can be placed arbitrarily. By

: Pgarson’s method, a first order compensatorvwould be needed to place
-j all the poles. Here it will be shown that by solving the eqﬁation
(2.23) in its non-linear form all the four poles of'the_systeﬁ can be
placed arbitrarily. We have e’ £ = o, 1=1,2,3,. |
so, |

fld1 = o,

f2d1 = az

= QO

£3d, = o4

(£, + £,

solving these equations with d1 = 1, we get

+ f3 )d2:= a4.

o, -0 a,(o, + a,)
4 73 3'71 2
d, =——— , £, =a,, f, =0, and f, = —W———
2 al +a2 1 1’ 2 2 3 a4 u3
o . .‘
i (a4 - a3)/(al +_a2)
' o, a,(a, - a,)/ (o, + 0a,)
. 2 o 28 T %300 T %
a3(al + az)/(a4 - a3) L oq J

with this choice of K all the closed loop poles.can be placed at the

desired location.

If the closed loop poles are desired at -1, —2,'—3, and -5, then

@ = -7.2, a2'= 14, g = 0 and a, = 0.2. This gives f1 = «7,2, f2 =

14, £, =0, d

3 =1, d, = 1/34.

1



and
: 7.2
K = 14
0
Exaﬁgle 3:
o 1
x=10 0
1 0
L
_ 1 0
L 1 1
L

20

~7.2/34
14/34
0
0 0
1 §;+ 1 |u
0 0
0
x
0

This problem illustrates the nature of (2.23) when A has complex

open loop poles. The open 160p poies:are at 1 and - %:t 1 J@/Z; If the

modal matrix T and its inverse are chosen to be

1 1
1, .73
T 'l —'2-+J—'§-‘
Rl A

-5 +

1 /3

- — - P

2 2

73

L)

then A, B, and C are given by

[ 1
A=Tr =| 0 --%
0
L
and n »l
C=Cr =
: 2

0

. B

50

Wl Wi

Wk

1
3
& 3
1
..-6- _j
1
1_.73
2 2
1 /3
7+t i3
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If the closed loop poles are chosen to be at +j and 1, then we have the

set of equations

%{dl +24,]f =0 | o (2.32)
H-d + a0 -3 L [d, +4,] = @, O (2.33)
- 2/3 '
Lig val+s e +a)na 2.3
: 2/3 3 ‘

where a; = 0, a, = - l-— —Jf- and q3 = - + N for the desired
S 23 S 273

pole assignment. Equation (2.33) and (2.34) are complex conjugates

N =

and giﬁe‘the same set of equations in (dl, d2’ f). TFrom equation

(2.32) and the real and imaginary parts of (2.33), we get

(.d1 + 2d‘2)f = 0 |
(di - d2)f = 3 ‘ (2.35)
(d; + d,)f = 1.

17209

This choice of K gives the desired pole—plécement.

Solving (2.35) with £ = 1, gives d = -1 and K = [2 ~1].

2.6 Remark on'Unattainable_Poleé

Consider a controllable single-input single~output system

X =

+ bu

bR

y=cx
It is well-known that using output feedback the closed loop system
g'= (Afhg?si)g_can attain any set of clOséd loop poles except the
zeros of the system. Davison [20] has tried to generaiize this
resﬁlt to multivariable éystems. He has shbﬁn that given a linear
‘time-invariant controllable system‘g.= A§_+ ﬁg) y= az_wigh Rank

C = ¢, then £ eigenvalues of the closed loop system can be aséigned
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arbitrarily close to £ preassigned values. He observés that there
are certain values that the preassigned values may not ;ake on,

‘ which,éorrespond to the zeros of thé &arious transfer functions
existing in the multivariable system. This oﬁservation is shown
.to be incorrect by meéns'of a ;ounter—exampléiand an alternate 
characterization of the unattainable poles follows.

Consider the system

-

1 0 of 1 0
x= (0 2 0 x+ [0 1| u
0 0 3 1 1
1 0 o
r= | X
o 1 1

The ayStem transfer function matrix is
. 1 | ,
s-1 : 0
H(S) = . .
1 - 28=-5
s-3 (8=2) (s-3)

Let («pl, -pz) be preassigned eigenvalues. The matrix s (from
equation ( 31 ) of Davison's paper with 62 = 1) is given

2 2
7 + lOpl + 3pl | 7+ 1Qp2 + 392
A-Davison cannot assign poles 1f this matrix S becomes singular. Notice
that det S is not identically equal to zero for -0y = 5/2., Hence

V;pi =-5/2, which correspoﬁds to a zero of the transfer’function, can be

a preassigned eilgenvalue. Howéver, there are pairs (pl,pz), e.g.
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(pl, pz), which'maké 8 singuiar énd hence.caqnot Be chosén as closed-
106p poles by Davison's method. ..

~ An alternate éxplanatién for the Sef Of'éigénvaluesawhich the
closed-loop system cannot attain is givenvbelow. |

We have, from (2.13)

d = C—la
= PP

[ ——n Y1
¥y (Pys Pys ===p_)

.

~ where wi (pl, —--pn), i=1, -~-p are functions pf Pys —-f;h.
Substituting this value of g iﬁ the remainingf(nép) equations
'g? cib f=a, A~. i = ptl,-—-, n -

we obtain the functional relation betWéen ciose&—loqp pdles as

q)i (pl’ p2’ - pn) = ¢i(pl’ pz’ - pn) - 1= P+1, ==-n.

’ (2.36)
For any given set:0£‘p closedFloop poles (pi’.QZ’ — pp), the location
p+L’
the (n~p) equations (2.36). However, the values of (p

of the remaining (n-p) poles. (p -, pn) will be determined by

P"‘l, - pn)
may becoﬁe indeterminate for certain configurations of 4

(pl, Pys === pp), in which §ase, the p poles (g5 Pys == pp) of
the closed loop system must be reassigned.

Consider the system
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M

i
| — ]
o o
o m
= o
—

M

™

y =

The open-loop poles of the sysﬁem are at -1, -2, and -3. The
system transfer function matrix is'given by

'bl | 8
(s+1) (s+2) (8+3) S2

G(s)=

Let the closed loop poles be denoted by —pl, épz,_and ~Pqe

3

The C.L.C.P. is given by s +-232 +ms +n where

n

t= (o) + 0y + p3)
™= ppPyt eyt egey

= plp2°3'



25

Choosing f = 1, this reduces to

-d1 + d2 = 2a1

—2dl + 4d2 = -a,
—3d1 + 9d2 = 2a3
1
where o, = E{ﬂﬁm +n ~-1)

- (42-2m + n - 8)

a, =
0, = = (92-3m + n - 27)
3 2 *
From (2,13)
d
iﬂ 1 =C;12p
d2 _
<2m + 3n + 4
e .1
2 _ :
-2 +n+6

This value of g_shou1d satisfy the equation (2.36). Hence, the
closed loop poles should satisfy the relation

-3d1 + 9d2 = 2a3.

i.e, 3/2 (-2m + 3n + 4) - 9/2 (-22 + n + 6)= 92-3m + n -27
or - (n-6) = (olpzp3 - 6).= 0.
According to the theorem two poles can be assigned arbitrarily close
to desired values. Let us assign the poles =P, and ~py: This
results in
—03 = -6/9102 = "6(("01) ('p2)°
~ However, if either ?pl or Py is choosen to be equal to zero then =P 4

becomes infinite and K = f?g = d;becomes infinite.
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Seraji [28] has shown that in the single input (output) multiple
- output (input) case the unattainable poles correspond to zeros which

are common to all the transfer functions of the open loop system.



III. APPROXIMATE POLE PLACEMENT

3.1 Introduction | |

In Chapter 2 it was shown that for a controilable, observable
_system g_= Ag + ﬁg, y= ag with m inputs and p output at least
max(m,p) poles can be assigned arbit;arily close to desired
locations using constant gain output feedback. The choice of
‘max(m,p) poles automatically fixes the location of the remaining
[n—max(m,p)] poles of the system. Let us call these poles the

"dependent poles', B, where B=[p In

_ max(m,p)%l’ RIS pn]'
some cases, by taking advéntage of the non-linear nature of"
equation (2.23) more than.max(m,p) poles can be arbitrarily assigned
and this reducés the number of dependent poles. However, nothing
can be said a priori about the locatién of these dependent poles.
The problem of the dependent poles can be handled in fwo different
ways. The first_méthod,,due to Brasch and Pearson [21], uses a

dynamic compensator and in the second method a constant gain feed-

back controller is realized which positions all the poles approximately.

3.2 Pole Placement Using Dynamic Compensator

Brasch and Pearson [21] have considered the problem of design-
ing a compensator to obtain arbitrary pole placement in the system
consgisting of the plant and compensator in cascade, The design uses
only those state variables which can be measured.

Consider the controllable.and observable system dcfined by

equations (2.1) and (2.2). Let E be the co-ordinate space and {B}

27
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-denote the subspace of E spanned by the column vectors of B. If E
is cyclic, then there exists an n vector b ¢ {B} such that (A,b) is
controllable. It can be shown that the matrix A+EKC can be made
cyclic using output feedback. From this it follows that any multi-
input multi-output linear time-invariant system may be made control-
lable (cbservable) from a single input (output) using only output
feedback. This result is useful in arriving at the following
theorem.

Let vc(vo) be the controllability (observability) index of

the plant. Define B = min (vc—l,vo-i). Let
nxn
A O
270 o | R
LxL.

represent the plant dynamics plué % additional integrators., It is
assumed that every state in the compensator can be directly measured

and directly controlled. Thus

B, = ’ ¢ (3.2)

‘Where I, is an fxf identity matrix. Let A = {Xl, Az,———kn+2} be a
set of arbitrary numbers subject only to the condition that complex

numbers occur in conjugate pairs.

Theorem (Brasch and Pearson)

Let (A,B,C) be controllable observable system and let Ay, BB’

CB be as defined in (3.1) and (3.2) where = min (Vc—l yo—l). Given

any set AB’ there exists a matrix K such that the eigenvalues of
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AB + BBKCB are precisely the eleménts of the set AB.
Thus a compensator of order B is sufficient to place all the

poles of the plant and the compensator in cascade. It should be

pointed out that the order of the compensator is not necessarily

minimum. Similar results have been obtained by Chen and Hsu [22]

using a transfer function approach.

3.3 Approximate Pole Placement Using Psuedoinverse

The problem of pole placement is reduced to the problem of
solviné the n non-linear equations in (m¥p) variables (dl’ dz,‘...,
dp, fl’ f2,

we want to place the n poles approximately by finding a least

...fm) and we can place max(m,p) poles. When max (m,p)<n,

square error soiution to the n equations.
Consider the iinéar-case and let p>m. Wfite M = CT énd
recall that C' has full rank. From (2.12)
Md = o (3.3)
Since p<n, the system of equations is inconsistenf. and there is
no solution vector g_wﬁich satisfies (3.3)., Now, the question to
be answered is, "does there exist a.vector‘g so that equation (3.3)
is apprdximately satisfied for a suitable définition of approximate?"
We can write (3.3) as
Md - o = e(d) | (3.4)
Since there is no vector d such that gﬂQ} = (0, it is desirable to
find a d* which produces a '"smaller" e(d) than any other vector d.
d* is the best approximate solution (BAS) to the system of equations

(3.4).
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Definition:
Best Approximate Solution:

The vector d* is defined to be the Eest approximate solution
(BAS) to the system of equations (M is an nxp)

Md - o =e(d)

if and only if
(1) for all d, [Md - o]"[Md - a] > [Md* - a]T[Md* - o]
(i1) and for those d # d* such that [Md - a1’ IMd - a] = [Ma*- a]”

 [Md* - o] the relation d'd > d*'d*. holds.

The definition essentially states that d* minimizes the
sum of squares of deviations; and if there is a set ¢ of vectors
such thét each member in the set gives the minimum sum §f squares
of deviations, then the Vectér d* in ¢ is chosen as BAS if for
all other vectors in ¢ the sum of the squares g?g.is larger thén
awlax, |

The following theorem by Penrose [29] shows that the BAS

exists and the generalized inverse of the coefficient maztrix can

be used to find it.

Theorem:
The best approximate solution to the system of equations Md = g 
is given uniquely by
ax = Ml | | (3.5)

.Wwhere MJr = (MTM)-lMT is the generalized inverse of M.

Proof:'

We have to show that for d* = My

d - o) [Md - ol > DHd* - o] TMI* - o

for all d and for those vectors such that the equality holds,
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ve have d'd > d*Tdx if d # d*.
Now,
T
[Md - a]"[Md - a]

= [Md - MMTQ_ + MM*E - g_]T[M_g_ - MMi‘g_ + MMTE - a]

M - o) + oo’ - DT @ - ve) + o - Doy

M - M1 M@ - o1 +1ee - Dal” [on’ -1

ropf -na1troe - 1)a]

o oo - 17 pedt

Y

The inequality

4 - 1" [ - @) > e LOM
holds for all d.-
If d% = M'q, then

d - 0" [ - o) > ' - @] par'e - o)

= [Md* - a]T [Md* - o] for all d.

The equality holds if and only if [M(d - M-rg)]T [M(d - MT_QL_)] =0
i.e. 1ff Md = MM q.
Next we have to show that, for the set of d's f{or which Md = MMT_o_L_

the inequality

For all d,
e + @umwa)t e + @ - v'md]
- ot ofw + 1@ - vwaTia - rwa Gee
substituting Md = MMTQL or equivently Mfg_ for M Md equation (3.6)

b
seomes dfa= afe)” (fe) + @ - 1" @ -no

1

arlax + @ - W' @ - Mo



32

This implies that d'd > d*'d 1f d # d*.

Hence the BAS always exists and is unique.

Least Square Solution:

The vector d* is defined to be a least square solution (LSS)
of the system Md - o = e(d) (vhere M‘is an nxp matrix of rank
p<n) if and onl& if for all d the following relationship holds:

[Md - gJT Md - o] > [Md* - gJT [Mg?.— ol 3.7

Remark; |

A LSS must satisfy equation (3.7). A BAS in addition to (3.7)
must satisfy the condition g?g > g}?g*. Thus there ﬁay be several
.least ;quare solutions.to a linear system while the bestvapproximate
solution is unique. Thus the approximate pole placement can be done

either by obtaining the BAS or LSS d*. Then the output feedback

gains are given by K = f(d*)T.

3.3.1 Computation of the Generalized Inﬁerse

There are several methods available for.the computation of the
 generalized inverse [30, 31]. Peters and Wilkinson [32] have
developed them from a uniform standpoint. In addition, the methods
are shown to-be natural extensions of the several methods‘available
to find the inverse of a matrix.

If the mxn matrix M is of rank r then it can be factorized in
the form

M= 1N

where L is an mxr matrix and N is an rxn matrix and both are of

rank r. The matrix

z=nvanh) 1 @y 1Lt (3.8)
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is the psuedoinyerse of M. It is easy to see that it is independent
of the particular LN factorization chosen and this can be verified

by replacing L by LY_1 and N by YN, where Y is any non-singular

rxr matrix.

Most algorifhms to invert a nxn matrix are based 6n factoriza—
tions M = LN of M where L and N are easily invertible non-singular
matrices - e.g. L and N could be upper and lower triangular matrices
and unitary (orthogonal) matrices. Each well-known method for
inverting a matrix has an analogous method for computing the
psuédoinverse.

When solving linear equations it is more economical to work

directly with the factors L and N by solving

Lg = o, Nd = g
rather than computing N-]'L-l explicitly. Similarly, when solving
the least squares problem it is uneconomical to compute the

psuedoinverse directly. Hence we compute d indirectly as follows.

From (3.5) and (3.8) we have

NT(NNT)-l (LLT)-l LT - NT (LTLNNT)_lLT

- and d= e i 60 Ao M i a . (3.9)

If we compute d given by (3.9) with

w=1'y, @'y =w, d=ny

then the solution of (LTLNNT)X.=.E requires only some factorization
of the matrix pre-multiplying v, not its explicit inverse.

When solving squations some pivoting strategy is usually employed
to achieve greater numerical stability. 'This has the effect that we

determine a factorization of a matrix ﬁ, rather than M itself, where
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M is obtained from M by suitably permuting its rows and/or columns.
The factorization results in matrices
M=PMP, = LN or M= P.LNP.
12 1 2
~=1

W= e, = Pt = el

where Pl and P2 are permutation matrices. Hence, the inverses
derived via L and N merely give the required matrix with its rows
and columns permﬁted. We can derive a similar result for the |
psuedoinverse using equation (3.8). Therefore, row énd column
interchanges can be freely used in factoring the matrix M to find-
its psuedpinverse.

All the three common methods - (i) methods reléted to Gaussian
elimination, (ii) Houéeholder and Givens method [33], (iii) modified
Gram—Séhmidt factorization - of finding the inverse of a matrix
can be extendea to find tﬁe psuedoinverse. The Householder and
Givens method is sligﬁtly better than Gauss elimination methods
regarding numerical stability. However, Householder's method aud
Given's method require two times and four times more work respectively.
.The modified version of Gram-Schmidt factorization gives better
results than Householder's method.

The most difficult practical problem associated with the
computation of the psue&oinverse is the determinafioﬁ of the rank.
Round-off errors are involved in the factori;ation and a decision
has to be made as to when the 'remaining' elements can be_regarded
as zero during the course of the reduction. Golub and Kahan [29]

have described an effective algorithm for determining the rank of

a matrix. The requirement that the residual vector e(d) should be
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a minimum wh;le d itself should be minimal often conflict to some
extent.

3.4 Approximate Pole Placement by Minimizing Least Square Error
Criterion:

- It has been shown that pole placement is reduced ‘to the problem
of solving n non-linear equations in (mtp) variables. The nonlinear
equations can be reduced to linear equations by chooéing dor f
‘arbitrarily. When the number of poles that can be placed is less
than n, the psuedoinverse can be used_to position all the poles
approximatély. However, a larger class of feedback matrices can

be obtained by solving the n non-linear equations

T i i
= i

i=1,2,-—~, n

2: T dpa f]_, f29 =T fm)°

in (wtp) variables (dl, d
‘It should be recalled that oy is a function of the closed .
loop poles (pl, Pys === pn). By minimizing a least square

error criterion of the form
n T i ' .
J=) q;(d gihjf, - ai(p_)) : (3.10)
i=1

subject to the constraints g(p) > 0 an approximate set of desired
closed loop poles can be realized. The weighting coefficients 9y
‘can be used to control the error between a pole in the desired

set and its corresponding pole in the apprbximate set. The
constraint equations

qi(pip« DZ,F""", Dn) i 0 ‘ i= 1’2’ ==, R

depends on the individual problem. The minimization procedure can

Be easily carried out using one of the standard stétic optimization
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. techniques like the conjugate gradient method.

.3.5 Example

Consider the controllable<and observable system

1 0 0o 0 1 0]
0 2 0 0 ) 0 1
x=| x + u
0 0 -3 O 1 0
0.0 0 -4 1 1

This system has two inputs and two outputs.. As a result only two
poles cao be placed'aroitrarily close to desired locations. Here‘
“all the poles will be positioned approximately using the two methods

~suggested in this section

Ve have d'c’b'f = o, 1=1,2,3,4.
where Q? = [dl,.dz] and f = [fl, fZ]T. ‘The non-linear 2quations
are given by

d,f. = a

171 1
dlf2 = 0,
d2f1 = 0q
(f +£ ) = a4
Let the desired closed loop poles oe at -p,, =Py -93 and —pA; The
open'loop poles are at'l,2r3, and -4. Then, _ :
closed loop_charactericticApolynomial = sA + 2 83 + 2 sz‘+ $.8 + 4

3 2 1 0
where . ’
IS B T T
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»
1

2 T PPyt eaPy tegp, F o0y t0ogeg 000,

P
]

17 P1f2 by py) + 040, (g +0,)

~ Y0 T P1PaPfy
and open loop characteristic polynomial =‘s4 + 483 - 732 - 22s + 24.

The values of ay are given by

a, = -(zo'+ L.+ L + 8. + 1)/20

1 1 2 3
ay = (20 + 221 + 422 + 823 + 16)/30
a3 = (8 = 34, + 9%, - 270, + 81)/20
a, = -(20 - 4zi + 1622 -'6423 + 256)/BQ

Let the‘design requirements be such that the closed loop poles

aré ati—l, -2, -3, and -5 resulting in Py = 1, Py = 2 = 3, and

’p3

Py = 5. Correspoﬁding to these pole locatiops a; = -7.2, @, = 14,
oy = 0, and a, = 0.2...Equations (3.11):can be rewrit;en as
dl = 51 | (3.12.1)
d; = a, ' (3.12.2)
d, = 63 _ ,» o ' | (3.12.3)
d, = a, (3.12.4)

) ) - = s = b = a = -+ .
where o) = o /f,, o) = 0,/f,, A3 = oy/f) and o, = o, /(£f+E))

In a matrix form (3.12) becomes

1 0] o

1 0 d; ) &2

o 1 a, ]y o (3.13)
L0 1] 5 ) o
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Since (3.13) is inconsistent, the Best apprq#imate-solution to (3.13)

is given by
d* = Mfg = (MTM)‘lMTg .
Thus _-1.
T 1 0]
1 ‘1 0 07 1 0 1 1 0 o
d*: a
0 0 1 1 0 1 0o 0o 1 1
0 1|
L i

and 4 . /

1

1 - -
dj =3 (a3 + o) = 2I S5CE,+ )]

-Notice that the dt and dg‘obtained by using the pseudoinverse is

the same value one would pick intuitively for dl and d2'to satisfy

(3.13) approximateiy. d1 has to satisfy the equations (3.12.1) and

1 - -
= -(al + az).

(3.12.2) and the best one could do is to piék dl 5



‘Similarly, a, = %-(a3 +a,)
given by '
‘ *
£,a%
K = £fd* =
- £,4%

with r = fl/fz,

BKC=

7r-3.6
7=3.6/r

7/x-3.6

| 3.4Q1+1/7)

" . and

4.6-71

3.6/r-7
A-BKC=
3.6-7/x

<3.4(1+1/x)

-3.4(1+1/1)

~3.6 + 71, /1, fl/;O(f1 + £
7-3.6 £,0F)  £,/10( +f,
~3.6 + 7r - r/10(1+4r) 1
7-3.6/r» 1/10(1+4y) 0
7r-3.6 r/10(1+r)
7-3.6/t 11/10(1+r)
-7/x-3.6 r/10(1+r)
3.4(141/1)  1/10
3.6-7r -r/10(1+r)
~543.6/r ~1/10(L+r)
~7/1+3.6 ~3-1r/10 (1+r)
-1/10

)

)

r/lO(l%r)
1/10(+x}

r/10(1+x)

_ 1/10

‘—r/10(1+t)

-1/10(1+rx)
-r/10(1+x)

-41/10

The closed loop poles of the system are the eigenvalues of A-BKC

and>these are tabulated for different values of r in Table 1.
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T _Gains’ ' Closed Loop Poles
-0.8 9.2 . =0.4 0.36 + 1 3.19
| 'Al 11.5 0.5 ~2.60, -4.12
0.5 . -7.1 0 -0.1 ' =3.31+3 1.5
| 4.2 0.2 4,45, ~4.024
~0.44 -6.7  -0.078 | -4.35, - 4.35
15.2 ~0.170 © _3.80, -0.0012

-d;s -5.7 =0.042 —10,3,_43.31
19.0  0.141 =423, 0.521

1{0 | 34 005 | -5.84, -3.76

3.4  0.05 ~2.87, 1.53

TABLE 1  Approximate Pole Placement
Using Psuedoinverse

Tﬁe cldsed loop.péleS'are functions of r=fi/f2. The dgsired
closed loop poles are at —i, -2, -3, and -5. The opeﬁ-loop system
has two.ﬁnstable poles at 1 and 2. F&r‘f in the range -0.4 to -0.5
the system caﬁ be stabilized with_the_closed loop poles and feedback
gains as shown in Table 1. | |

Tﬁé problem iS»recdnsidered by minimizing the least squaré
error ériterion. Let the design requirements be such'that
> 5.0. fhié.caﬁ bé_met by ﬁinimizing

L P 3 4

the performance index of the form

*2,P,> 3iand P

_ 2 2 - ’ 2 : : 2
3y (dlflﬂal) + (glgz_éz). + (dzfl—a3) f Idz(fl + fz) faaj

subject to the constraints
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and ps > 5.

el'and €y are small poSitiVe numbers. .Redefine the performance index

to include the constraints as

2 2
)Ty (E+E))=0,)

- 2 2
J = (dlfl - al) + (§1f2 - uz) +_(d2fl - o4

e 2 2 2 e o er2
+ Kl(pl l)'Ul +_K2(p2 2) U2 + K3(p3 3) U3 +’K4(p4f5) U4'
Kys Kygp K

~ where K, are constants and the functions Ui’ U2, U, and

1 4 3
U, are defined below.
10 Joy-1< e
Ul.:: _ .
1 Otherwise
0 |02—2| < e,
U2 = '
1 Otherwise
_ 0 Py 2 3
3
1 Otherwise
(0 Py 25
U, = ,
L} Otherwise -

J was minimized using the conjugate gradient technique and the

values of the K matrix and the corresponding closed loop pole
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locations for different initial values and different weighting

coefficients Kl' Kz, K3, K& are shown in ‘Table 2, €y and €, were

‘chosen to be 0.05.

Conditiohs of the Run ’ K ' Pole Position

Initial values: 01=6, 02=8, -9.0 -0.195 -1.0343, ~-2.015

=1, ¢,=3, d,=5, d,=5, £,=5

3 1 ‘
| 16.8  0.365 |-3.0702, -6.2226
£, = 5; K=1, K,=1, K,=10, |
K,=10
Initial values: p,=6, 0,=8 -8.5  0.067 -0.97, -1.9858
93=l, 94=3, d155, d2=57 f1555
£,=5; K =10, K,=10, K,=1,
16.05 -0.125 ~3.8041, -5.0143
K,=1
4
Initial values: pl=l, pz=l.0,
. ~7.8  -0.036 -0.0907, -2.05
0.=3.1, p,=5.1, d,=1, d,=1
3TTTATTT LT 2 14500 04070 | -3.2142, -4.9951
£,°1, £,=1; K=1, K,=1, K,=1,
%=1
TABLE 2

~ Appraximate Pole Placement Using Gradient Method
The example shows that the solution of the non linear
equations by minimiziné a least square error criterion provides
a more desirable approximate pole configuration than the one
obtained by using the psuedoinverse. This is because the psuedo-
" inyerse method is equivaient to minimizing a cost function of the

form
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4 -
. 2
T= 1 l4 - ag(e1s ys P30 Py, 1]
i=1
with no penalty on the error between the desired poles ~P14° 4p2d,
~Paq> "Puq and the actual pole_positions:at “P1s “Pps ~P3» and —Pye
This penalty is included in the method'using optimization and

hence we get a closer pole configuration ito the desired set of

poles.



IV. APPLICATION OF POLE PLACEMENT THEORY TO
HELICOPTER STABILIZATION SYSTEMS

In this chapter the results of.Chapters II and III are used to
design a controller for a complex dynamical_system using output
' feedback. . The system selected for study is the Boeiné-yertol'CH-46
tandem rotor helicopter. The output feedback gains are obtained by a
ieast square solution of the nonlinear equations to achieve a

Satisfactory set of poles for the closed loop system.

4.1 Boeing-Vertol CH-46 Helicopter

Tne dynamics of tne helicooter are cnatacterized by linear
pertubetion equations written about steady flight conditions. Furtner,
it.is assumed that the dynanics-could be separated into the standard
aircraft'longitudinal'and iatetal directional modes thereby redncing
the equation to two independent sets. Although not always a valid
assumption for helicopters, it is believedva valid assumption for
the CH-46 due to the hinged totor biedeé. The equations for the
longitodinal dynamics under level flight at 110 Kilometers/hr..is
given by Gray, Rempter and stevenSQn [34]1. The helicopter instability
is most pronounced at this flight condition. In. [34],Athe feedback
gains were obtained by minimizing a quadratic performance index ‘and
then~a suboptimal system was obtained by (i) feeding back the avail-
able states and (11) estimeting the unavilable states by using filters,

| The outputs of the system are pitch attitude (6), rate of |

descent (V ), pitch attitude rate (6), and forward velocity (V )

The attitude rate (6) is provided by a rate gyro, attitude by an
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inertial sénsing unit and it is assumed ;h;t thé rate of descent (Vz)
ahd'forﬁard velocity (Vx) is of a quality suitable‘for use in the
flight control system. There‘éfe two control inputs to the system.
The fofor blade angle of attack on both rotors can be varied together
to vary 1lift (collective input) or varied in opposition to produce a
'pitChing moment (differential collective.input). Electro~hydraulic
servo actuators accept electrical signals an& drive the rotor blades
'in the appropriate manner. Both the actﬁator and the rotor blades
‘exhibit dynamics when excited.

The helicopter, including the rotors and the actuators, has
twelve states. These are thé four outputs and thé'eight ﬁnaﬁailable
states of the actuatoré and :otoréf In this report the actuator
dynamics are ignored résuliing‘in a system with eightAstates,.two
inputs.and four outputé,, The linearized eQuatidné of mo;ion together

with the rotor and actuator dynamics are given below.

. X X o ' . X, X
oV = 2+ Xteano.| AV + (tan'6,.) AV - |—= tan 6, - —=| AV
X m m 0 b4 0 zZ - \m - 0 m z
P S S . %5, ¥,
+ A ph- |2 W - Xy +gcos 6 |00+ —8 +—=28
cogeo m m O m O 0) | m e m c

Z zZ Z vA
. : : u W u W
av, =-(tan eO)Avx_-l- (—-— + — tan eo} AV - _(m tan 8, ~ —= ] av,

N [ z Zce Zaé
+ — 30| 2w --2U +gsino, |06 +—6+—=25
m O m O 0 m e m c
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. M oM M M
A6 = T~ cos 00 + T sin 60 AVX - T sin 60 -1 cosve0
Yy yy yy yy
gﬂ 2 | Mu - M M(Se Mac
+ I A - 'f— WO - 'i— Uo AD + T—— (Se + T—— GC
vy yy yy yy vy
where at 110 kilometers/hr.
0 = 4.75 deg, m = 416.,0'_s1ugs, I, = 76000.0 slug ft, uy = 100.6
2 L2
ft/sec., Wo - 8.4 ft/sec.,vg = 32,2 ft/sec”.
X 2 z | 2
U036 ft/sec’ U _ 022 ft/sec
m ‘ ft/sec : ft/sec
X ¥ - 089 t[sec Eﬁ= —.802 ft/sec2
ft/seC»T‘ m . ft/sec
Xg Z 2
9 . t(sec I ft/sec
-850 rad.sec m 1.814 rad/sec
X Z
8 - '142 ft/sec2 ‘ S = .568 ft/se o2
m : in, *m ' in.
X, . z
é 2 é. 2
c _ ft/sec c_ _ ft/sec
- = .803 T - 8.524 I
M 2 M 2
U 007 rad/sec” Y ol4 rad/sec
I ft/sec ft/sec
Yy _ Yy .
M ' 2 M
9 .. rad/sec s 2
I 1.460 rad/sec € = 450 rad/sec
yy ‘ I in.
Yy
Ma 2
—< = .068 rad/sec”

AV
z



47

Servo Actuator Dynamics

- . 2. _ 2
BCV+ chwAac + wABC = wAacc
N . 2 2
Se + ZCAwAae + wABe = GAGec

Rotor Dynamics

’

, : 2, _ .2
5+ (Ya/8) & + 9% = %
' . 2 2 .
5, + (va/8) §_ + as_ =a"3_
where
z, = -60 y = 10.0
w, = 15,0 rad/sec Q = 28,0 rad/sec

The equations can be rewritten as

AV, = 0.02109 Ayx'+ 0.02352 AV_ + 0.69686 A6 - 29.6417 46

+ 0.1879 6+ 0.09406 6 .
e c

Aﬁz = -0.090393 AVx - 0.802275 AVz - 1.87830 A6 - 80.98 A6

+ 0.5524 6§ - 8.5172 & .
e - Cc

Aé =

+ 0.450 6 + 0.068 & .
e . Cc
5 =-355 - 784 6 + 784
Cc C (o] [o4
§ =-13568 - 784 & + 784 3
e . e e T e

0.0058169 AV_ + 0.014531 AV - 1.46 A6 + 1.4672 A8

Expressing these in the matrix form, the helicopter + rotor dynamics

are described by the state equations.

,Q Jad
A +3Bu

y=Cz

X



where
T

T _ ’ o
y =11av, av_ a8 48]

o ~

P ”
and the matrices A, B and C are given by

[ 0.0210 0.025
-0.0903  -0.802
0 0
A= |-0.0058  =-0.0145
0 0
o o0
0 0
i 0 0
[0 0
0 0
0 0
0 0
B =
0 0
784 0
0 0
0 784

x' = [AV AV A6 A8 &
- X Z i e

48

~29.64
-80.98
0
1.4672
0

0

and

Qo

0.6968

-1.878

-1.460

M1

.1879 -.0941
.5524 0  -8.517
0 0 0
.45 0 0.068

0 1 0
-784 -35 0
0 0 0

0 0 -78
0 o ]
'O
1 oé

0 1° ]

The elgenvalues of the system computed by using Francis' ]35] method

are -2.3585084, 0.50432908, -0,19350035 + j 0.35283477 and -17.5 *

j 21.857493 (double roots).

-35]
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4.2 Hélicopter Stabilization Using dutpﬁt FeedBack

The open loop of the CH~46 helicopter'system has a pole,
0,50432908, in tﬂe right half s-plane and is;unstable. The major
part of the deéign is to stabilize the closed loop system. Let the
desired.closed loop poles bé at ~-0.1, -0.2 + j 0.4, —0;2 - j 0.4,
- 2'5».—95 + 3 Pgs =Pg =3 Pg, =Pyt Jpgand py -~ ] pg with
pS’IOG’ Pys Pg > 15.0, The open loop poles and the desired closed
loop poles are shown in Fig (1 ).

The first step in the design is to reduce the given system

s

gﬁ= AE + Bu, y = Cx to its dlagonal or Jordan canonical form dependlng
on the eigenvalues of A. The transformation matrix T is made up of
eigenvectors and generalized elgenvectors. An algorithm to compute

T and the Jordan canonical form T-lAT is given in Appendix A. The
Computation of the eigeﬁvectors and the generalized eigenvectors depend
on the accuracy with which the eigenvalues of A are computed.

Francis algorithm is suggested for computing the eigenvalues.

The eigenvectors corresponding to the distinct rocts are

[ 0.25710] [ 1.00000 | [ -0.0956 F 3.0.6460 ]
1.00000 ‘ 0.91564 1.0000 + j 0.0000
0.02003 ~-0.01571 -0.0074 ¥ § 0.0035

-0.04724 -0.00792 -0.0027 + J 0.0019
0.00000 0.00000 0.0000 + j 0.0000
0.00000 0.00000 | 0.0000 + j 0.0000
0.00000 | 0.00000 | - 0.0000 + 3 0.0000

| 0.00000f | 0.00000 | | 0.0000 + 3 0.0000 |

respectively. Each of the double roots has two eigenvectors assoclated

with it, These are
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~0.00488 T § 0.0045
-0.01348 F j 0.0164
-0.00015 + j 0.0005
-0.00979 + j 0.0133

1.00000 + j 0.0000
and

~17.5000 + j 21.8574

0.00000 + j 0.00000

. 0.00000 + j 0.00000 |

since the multiple eigenvalues have as many eigenvectors as their

~0.000028 + j
~0.001432 + i
0.000000 + j
0.000000 + j

1.000000 + j

~17.5000 + j

-

[0.00205 + 3 0.00244

0.18777 + j 0.24599

0.00008

0.0021821
0.0000000
0.0000000

0.0000000

21.8574

-l

multiplicity, the Jordan canonical form for this matrix is diagonal

and is given by

A = diag [-2.3585 0.5043 -0.1935 + j 0.3528 -0.1935 - j 0.3528

~17.5 + j 21.8574 =-17.5 + § 21.8574 -17.5 - j 21.8574

-17.5 - § 21.8574]

The B = T'-1 ﬁ and é

[ -6.629
-10.215
8.286 + j 10.54
8.286 ~ j 10.54
- 3 17.93
0.0

J 17.93

CT matrices are given by

©~2.1981

0.5197

~3.55 - § 0.565

—3'55 + j 00565

0.0

-3 17.93

0.0

j 17.93 |

and
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[0.2751 1.0 -0.0956 - 3 0.646 -0.0956 + j 0.646 | |
1.0 0.9156 1430 1+30
- ' ' O
0.02003  -0.0157 ~0.0074 - 3 0.0035 -0.0074 + j 0.0035!
F0.0472  -0.0079 ~0.0027 - § 0.0019 ~0.0027 + j 0.0019! |
The open loop characteristic polynomial is
(5+2.358) (5-0:504) (40.193 - § 0.352) (s+0.193 + _-1 0.352)
(s+ 17.54 - § 21.85)% (s+17.54 + § 21.85)2
_ 8 7 6 5 4 3
= s° + 72.24s’ + 2949.57s” + 61117.75s> + 736774.84s" + 1360083.54s

2.

ST T S199841:818” 108957217 — 118392535 s e —ee e

Let the desired closed loop poles be at'—pl, ;pz, —93 + j 04,
"93 - J 04; -ps + jp6, —ps -3 p6’ -p7 + 1] p8 and —07 -J p8' The
requirements are

blpl—Z.Slf_el

lp,m0.1]< ¢,

|p3"0'2lf.€3

_‘|p4—0.4|_<_ €4

p5’06’p7’p8v> 15'0
1°€22€3€, are small positive numbers,
l

| The closed loop cﬁarééteristic polynomial

where ¢

= (stp)) (stp,) (stoy = § 0,) (st0q + 3 94)(S+95" 3 06)(s+p; *+ 31 pg)

3
(stp, - ] 08)(sfo7 + 3 og)
= 38 + 2737 + %686 + ~—— + zlsl + 20
ﬁhere
24 = (83 + b3) |
26 = (a2 + a3b3 + b2)
fs = (al‘+ azb3 + a3b2 +.b1)
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4+ a.b, +.a,b, + a.b, + bo)

Yy = (8 1Py +a5b, P,
fy = (ab +ab2+azb +ab)
22 = (aob2 + albl + aZbo)
By = (gpby + a;by)
b = aQbO
and
ay = 2(pg + py)
L mpmestegtertopt ey,
a, =2 (o, (o5 +p )4 0, (o? + og)) I
ay = (2 + 02 (0% + o))
by =py + 0, +20, |
by =010, + 205 (0y + ) + (p§ + pz)
b = 2919293 + (o tey) (pg + pz)
by = PPy (p3 + pz).
Let f(ﬁ) - ,c.L.c.g:LTC?é%.c.P.
4 « ' al az al az
=) = b2 2 , + 6 46 '
j=1 (&723) (s-Ag)  (sXg) (s-)¢) (s-1)

The coefficients in the partial fraction expansion can be evaluated

by
o, = (S—}‘i) £() 1=1,2,3,4
' s=\
i
2 12 )
%y = (S_Ai) £() i=5,6

éﬂ%i

1 d 2
. Is (S—Ki) £(2)

[
Wi
=9

g=r, 1=15,6
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and they are found to be

@, = (7.3720 E-09)2, + (1.4617 E-08)%, + (2.8984 E-08)%,
|+ (5.7470 E-08)%, + (1.1395 E-07)%, + (2.2595 E-07)4,
+ (4.4802 E-07)2, + (8.8836 E-07)%, + (1.4064 E-09),.
= (5.895 E-05)1, - (2.4995 E-os)i6 + (1.0598 E-05)%,
- (4.4935 E-06)2, + (1.9052 E-06)2, - (8.0782 E~07)%,
+ (3.4251 E-07)%, - (1.4522 E-07)%, - 1.3901 E-04.

(-1.8675 E-09 - 1.4048 E—09)2 +(~-8.2945 E-10 + 5.7478 E—09)2

Q
]

+ (1.3514 E-08 - 5.0609 E-09)2 + ( 2.7176 E-08 - 2.3399 E-08)¢,
, (-1.8511 £-08 + 8.7174 E E-08)2 + (2.1206 E- 07 - 6.3834 E-08) 1, »
+ (-3.9248 E~07 - 3.8577 E-07)%, + (-3.7156 E-07 + 1.3161 E-06)2
+ (7.3906 E-10 ;'1.?790 E-09) |

ay = ag (complex»conjugate of a3).

as = (1.2734 E+00)1, + (1.9839 E-02)2¢ + (4.7370 E-04)2g
|+ (-2.4398 E-05)2, + (2.1340 E-07)%, + (7.0130 E-08)%,

+ (=5.2240 E-09) %, + (2.1875 E+01).
a§ = (-1.0465 E-01 - 6.0017 E-00)%, + (6.6289 E-Gz + 4.2575 E-01)2
+ (1.0390 E-02 - 1.1351 E~02) % + (-5.4839 E-04 - 3.6287 E-05)%,
+ (1.1229 E-05 + 1.6098 E-05)2, + (1.9817 E-07 - 6.7241 E-07),
+ (-2.3170 E-08 + 9.4842 E-09)2, + (7.8160 E-10 + 4.3427 E~10),
+ (3.1423 E-02 - 1.2372 E-02)

.ul and qgvare complex conjugates'of_ai and a§ respectively.

-6
The 8 ﬂon-linear equations are
T o ’
d El.blli = al
S
4 g byt =0y
T
& oot = o
dT c,bf=a

*
~—4= 3

!
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o1
d (c5__.5 caba)i_— og
d (c.b c b')f = al
—7—7 —8—8 - 6
0= ag
0= “2
Also notice that (csl_n5 + 5626) and (c b + ) should be

complex conjugates.

The nonlinear equations are solved by minimizing the cost

B T -5 <) St

3= 4 @ef - a)? + gy (@leyb,f ~a,)” + g (Real &'

.l, 22 3—3—
Real o ) + q, (Im d c3_3_ - Im o ) + qS(Real d (c5 5
2626)2-- Real ds) + q6»(I@ é-(EGES + E6E6)£'_ Im aS)
Subject td | |
Real a§ =0
Im a§ =0
loy - 2.50 < e, lo, - 0.1 < ey, |p3 -'0.2| < eq | P, = 0.4] <€,

and Pgr Pgr Py ps_i 15.0. A i=1,2,-—--6 are the weighting coefficients.
This equivalent to minimizing the cost function..
J=J +K (p -2 5)2 U, +K, (p, - 0 1)2 U. +K (o, = O 2)2
B S W 17 2 P2 ' 27 73 W3 ¥
+K, (o, - 0.2 + K, (o, - 152 U_+K (. - 1520,
4 Py _ 5 s 57 %6 “P6 6

2
+ Ky (oy - 15)° Uy + Ky (pg —-;5)2

+ q7(Real ag)2 + dg (Im a§)2
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where

U, = 1 if lp1 - 2.5 > 0.1
= (0 otherwise

U, = 1if lp2 - 0.1| > 0.01

= 0 otherwise

U, = 1 if lp3 - 0.2| > 0.01

T T = "0Tothexwise Tt

U, = 1if |p, ~ 0.4] > 0,02

]

0 otherwise

U, =1if Py -15<0. 1i=5,6,7,8
=>0‘otherwise |

97 g and Ki’ 1= 1,2,~--8 are the weighting

coeffients

The results of the optimization using the conjugate gradien;
method with different set of weighting coefficients are shown in

Table 3 .
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Weighting Gain Matrix Closed Loop
Coefficients Poles
9ps""qg = 0.01 0.154 ~0,407 0.207 0.169 ~2.45, -0.093
Kl,-—~K8_= 10.0 1.281 -3.15 1.605 1.309 -0.181 + § 0.418
=20.74 + j 18.9
(double pole)
ql,qz,-—~q8=0.01 0.165 =0.407 0.207 0.169 -2.45, ~0,0896
Kl,KZ,———K8=100 1.281 ° -3.15 1.605 - 1.309 -0.187 + 3 0.399
-20.77 + 3 18.18
(double pole)
qs~"=qg = 0.01L 0.135 -.316 0.296 0.217 ~2.50 =0.116
K, =100, K, =1, :
K3=100, K4=1, —0.180 + 0.442
Ks,———K8=10 - 1.425 . -3.35 3.13 2.3 -19.91 + J 17.51
(double pole
TABLE 3.

Gains For The Helicopter

Closed Loop Poles and Feedback
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4,3 Discﬁssion

This chapter has demonstrated that approximate pole placement
can be achieved in complex systems using output feedback; It is
assumed that the systems are output stabilizable. The different
weighting coefficients give rise to sets of acceptable pole

~configurations and the corresponding outﬁut feedback gains.



Y. ZEROS IN MULTIVARTABLE
SYSTEMS

5.1 'Introdﬁction

The previous chapters have focussed on tﬁe design of multfvariable
systeﬁs with the location of the closed loop poles as the design criterion,
Although, pole locations are an important element in the specification

f satisfactory control, they are by no means sufficient in ‘,t;hgmsgly_@s .

The dynamic response of the system also depends on the zeros of the

system. This chapter reviews the different types of zeros in multi-

variéble Systems and their significance to multivariable system design.
Further,‘the advantages and limitations of using a»unity rank feedback‘
matrix to provide a total design which includeé both poles and zeros
are examined.
5.2 Zeros of the Numerator Polynomial

The zero probiem is well defined and clearly understocd in the single-
input single-output (SISO) case. The zeros are the roots of the numerator
polynomial of the transfer function and affect the tranmsient behaviour
of fhe system. The zeros of the SISO system are invariant under state
feedback. Broékett [36] has shown that the zeros are the poles of the
inverse system. Loscutoff, Schenz and Beyer [37] haﬁe shown that the
zeros of any sysfem with eiﬁher a single input or a single output are
invariant under any feedback policy, i.e. either state or output feed-
back, | |

Two types of zeros are defined in tﬁe iiterature on ﬁultivariable

systems - (i)' the roots of the numerator polynomials of the transfer

59
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functipn’matrix. These will be referred to as zeros in subsequent dis-

cussion. (i1) the roots of the numergtor p01Ynomials-of the Smith
MéMillan canonical form of the_tfansfer function matrix. These wili be
referred to as McMillan Zeros in SubseQuent'discussion.

There are certain difficulties in extending the known results
about the zeros in SISO systems to multivariable systems. There may

be a large number of zeros, as many as mp(n-1) in an nth'order system

' with m inputs and p outputs, in a multivariable system. Furthermore,

readily predicted as the movement of the poles of the system. In

the movement of the zeros in the s-plane with feedback canhot be as

.the multivariable'éase the eigenvaluéSgof the inverse system to not
correspond to thg zeros qf the particular transfer function G(s),'but
rather they correépond to the zeros of |G(s)| which; it will be seen,
bears a relation to the McMiilan ierqsf  Simon and Mitter [38] have
generalized the results'on [36] to that fof a special class of systems

the pdles~of which can be moved arbitrarily using state feedback while

~ the zeros are invariant. This class of systems called 'systems with

disjoint control" have distinct eigenvalues and are completely control-
lable. Further, each actuéting vector influences a different set'of
éigenvalues. The conditions Which guaranteé zero invariance afe very
restrictive, and the general problem of identifying invariantvzeroé
remains unsolved. Chen [39] has attempted to place.certain zeros
and'poles by using-a sequential design appfoach that takes advantage of
the invariance of zeros under singie input feedback. However,'hié
design is limited to placing zefos in only one component of the transfer
functionbmatrix, and seems to have exploited the possibilities of using

zero invariance in the designing technique.
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It.is appﬁrent that mest of the preﬁléms»:egaxding zero placement
are due to two inherent facts - (i),‘considering the number of zeros
in the system, exact zero placement would be too demanding for the
design ffeedom available. (ii) There 1is no readily a&ailableAmethod
of predicting zero movements with feedback as compared to the movement
of poles with feedback [40]. (iii) Even if zeros can be placed at
Qill thevproblem remains of wheré indeed they should be placed. Hence
some simplifications of the problem statement is necessary and some

of these are considered,invSection 5.4,

5.3 ‘McMillan Zeros of a System .

Let G(s) = C(sI;A)le be the (pxm) transfer function matrii of
the system. Then, G(s) gan_be expressed as
6(s) = B(S)M(a)QCs) R
whére ' A
(a) _P(s)‘and Q(s) are pxp and mxm polynomial matrices, respectively,
which have.constant, nonzero determinants, i.e. P(s) and Q(s) are
unimodular.
(b) M(s) is a pxm Smitﬁ—McMillan canonical matrix [41] of G(s)

- ej(s) | o O
v

M(s) =| G.2)
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satisfying the_coﬁditions 1) ei(s)'and wi(s) are relatively prime

monic polynomials foi i=1,2,~—~k. k denbtes the rank of G(s). (ii)

each ei(s) ig a factor of:§i+l(s) and each wi+l(s) is a fac;or of

v;(s) for 1= 1,2,-~~,k-1. The factors () = e (5) /v (s),

i=1,2,~<k are referred to as the invariant factors of G(s) 143].

The McMillan zeros of the system are the roots of ek(s) = 0,

The roots of wl(s) = 0 give all the poles of the system. Although,

the McMillan zeros have certain system significant properties they

discussed in 5.2.‘

Given G(s), the Smith-McMillan form can be obtained in the

following manner. Let d(s) be the monic least common denominator of the

elements of G, and write G = N(é)/d(s).‘ Now, the polynomial matrix.

N(s) can be brought to;Smith form by the transformation

L(s)N(s)R(8) = S(s)l

(5.3)

where L(s) and R(s) are unimodular matriceé. Recall that in the

Smith form of N(s),

el(S)

s(s) =

O

L

~€2(S)

ek(S)

t
!
[
|
l
|
!
!
|
1
1
t
'
'
t
!

O

O

(5.4)

the polynomial ei(s) is the greatest common divisor of all'minofs,of

order 1 of the matrix S(s). In the rational matrix S(s)/d(s),,theré
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may be common factors between mumerator and denominator in the elements
on the leading diagenal. On cancelling these common factors, we get
the Smith~McMillan form of G(s). This procedure is illustrated in

Example 5.3.1,

5.3.1 Example:

Let .
i . LA
(s+1) 2 (s+1) (s42)
G(s)= | o ] R o
1 . ‘ s+3
(s+1) (s+2) o (s+2)2
2 2
Then, d(s) = (s+1)” (s+2)
| (s+2)? (s+1) (s+2)
N(s) = ‘ ,
(s+1) (s42) (s+1)% (s+3)
1 0
S(s) =
0 (s+1)2(s+2)3

and the Smith-McMillan form
_ | 1 1
(s+1) % (s+2)2

M(8) =

0 - (s-f-Z) _|
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2
Thus, €,(s) = 1, 82(s) m (st2), ¢,(s) = 1 and ¥, () = (3+1)2(s+2) .
The system has poles at s= -1 and s= -2, a zero at s= -3 and a

McMillan zero at s= -2.

5.3.2 Effect of Feedback on the McMillan Zeros
Consider the system

%= Ax + By, y = Cx ' (5.5)
with n states, m number of inputs and outputs and (A,B) controllable..
The transfer function matrix G(s) = C(sI—A)—lB haé the McMillan form
Diag[el(s)]wl(éy';;;_eﬁié)7¢;(sf];<.If—féedbéék is.éﬁpliedwtdrtﬁévrﬂrﬁ
system according to the rule |

u=y-y | . - (5.6)
let the closed loop transfer function matrix be

H(s) = [T+ G()1 ™" G(s)
with McMillan form Diag'[el(s)/wi(s) —-—em(S)/Wé(S)]-

Rosenbrock [42] has shown that C can be chosen such that

X
—

Y

Figure 2 System In Rosenbrock's Pole-~Zero Allocation Problem

€9) ei(s) in the McMillan form of G(s) are arbitrary monic polynomials

satisfylng the necessary coﬁditions.
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(a) ey divides €41

®) d(e)) + 6(e)) + ===+ (e) < n-m
where é(ei) is the degreevof'the polynomial ei(s)
(ii) wi(s) in the McMillan form of H(s) are‘érbitrary monic
polynomials satisfying the nécessary conditions

(a) wl divides wi—l

®) 6] v} = ¥ = n.

5.3.3 Role of McMillan Zeros in Multivariable Systems
' The McMillan Zeros are .the roots of the ﬁolynomial'ék(S)._‘The"
polynomial ek(s) playsAén important role in certain aspects of
multivariable system design, and in some respects are similar to
that of the numerator pqunomiél in SISO B&stems. In the SISO
case, ek(s) is a scalar_multiplé of the numerator polynomial.
A system_g = Ax + Bu, 2§q§.+ Qg is defined by some authors
to belminimum phase if all the roots of the polynomial ek(s) are
in the left half-plane. Moore and Silverman [43] hove shown that
a stable psuedoinverse of G(s) exists if and only if (A,B,C,D) is,
according to the above definition, . minimum phase. For a system
with an equal number of inputs and outputé (=k)
[66)| = ey(s) e,y (8) —mr ey (8)/; (&) === ¥, (8).
Minimum phase properties of a system arise in connection with
the linear regulator problem. Consider the minimal system
2(t) = Ax(t) + Bu(t) |

y(t) = cx(t) , x(tgy) = %,

with quadratic cost function
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V@QR,x,0) = | Iy () Q y(e) +u'(e) pRu(t)] de
, .
where Q@ and R are pdSitive definite matrices and p Is a scalar.
In designing a control~sy$tem, it is usually'néCESsary to make a
tradeoff between achieVing better performance and using smaller
control forces. By increasing the amplitudes of the control variables
it is possible td achieve_smalier deviations of the controlled

variable from its desired trajectory. Systems with unlimited accuracy

‘are those for which the performance index can be reduced to zero

(i.e. the deviation is instantaneously reduced to zero) if‘the-

amplitudés of the inputs a;e.allowed to Be afbitrarily large.
Let‘g?(p,t) denote the control'which minimizes the cost |

fuﬁction~and let 2} (p,t) be the outputlof the system. Kﬁakernaak

and Sivan [44] define a system to be of'unlimited aCCuracy'if and

oo

limit ..X*T(p"t) Qy* (o,0) dt =0

p> 0
0 .

for all Xy They have shéwn tha; the nécessary and sufficient
condition for achieving unlimited accuracy is that (i) the number
of inputs be at least as large as the numbériof controlled variables,
and (ii) the system éhould be minimum phase.

At present it is not known to what extent the Mcﬁillan zeros.

would be useful in developing algorithms to design multivariable

" systems. Apart from [42-44] very little has been done'aboutbusing' ,

McMillan zeros in system design. The McMillan zeros appear to have

no bearing upon design for conventional poie zero placement. This
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is a potential area for future research.

5.4 Design Freedom Using Unity Rank Feedback For Pole Zero
Placement

So far, unity rank feedback has been used to place the poles
of the closed loep system. -Consider the system defined by the

equations (2.1) and (2.2). Here,'they are repeated'for convenience.

é_: A§ + ﬁg : (5.6)

y=Cx S (5.7)
Let'the state feedback .

u=-Kx = -~ d?z o ' R 7(5.8)

be used to place the closed loop poles. From (2.32). for pole
piacement with state feedback we have to satisfy the equation

di =_ai[2i£ ‘i'=.1,2,--5 n (5.9)
d 1is chosen to satisfy (5.9).and-we'are free to choose f to satisfy

some other design requirement in addition to pole placement. The

feedback gain matrix K is given by

K=fd = [d) 4, - a1

* oy o2 Y
T w57 -

(5.10)
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1 o fy
bt LR 4

alﬁm anfm

b.f b_£

=1~ i g _

Notlce that we can. normallze f by wrltlng

ey
whgfe‘fn = [1 fz/f ———f /fl] Nov,
' a a
: 1 n
£a° = ££ ] R
e ! - flgif flbnﬁn
. f' t s o :
~n blf b £
o2 2atn
Thus normalizing does not affeét K.
The ijth element of K has the form
a, f
ij b.f
j.._
o f
b f +b f + —-—+ b, £
- T 22 1m ")
(5.11)
i} ajfi/fk | |
£ £ . f
: 1 2 : m
b,, &—+b,, ==+ ~-—+b, . )
il fk, j2.fk | jm fkf

This shows that we are free to choose -the quantities
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£./5, 317 l——m J¢k

Thus, there are (m~1) degrees of freedbm left after pole placement.
This freedom in choosing Kiﬁan bevused to (a) restrict magnitude - '
of feedback gains (b) design for aéceptéble steady state behavior

() zero—plaéemént. |

5.4;1 Example:

| This example illustrates the freedom in design uéing unity rank
. feedback. The simplified model of a d.c. to a.c. rotary coﬁvertér

" 7153] can be described by the state equation

“2 -4 -4 =2
1 0
Lo 1

The transfer function matrix G(s) C(sI-A)_lB is given by

~ o ~

=4 o 4
(s+6) - (s%6) (s+2)
s+6 (s+6) (x+2)

L . : )

The system has two poles at 8= -6 atild'S'= 12.andra zero at S= -4.
State feedback is used to placé thé cloéed loop.poles ét ~5 and -1.
. There 1s one degree (m=2 in this case) of freedom left after placing
the p§les. | | |

Choosing
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The C.L.C.P. = s2 + 6s + 5 and the 0.L.C.P. = sz‘+ 8s + 12. ‘Also

-(2s +7) _ -=3/4 + -5/4

C-LuCoPo "l = =
o.L.C.P. (s+6) (s+2) (s+2) . (st6)
Hence, o, = - 3/4 and a, = - 5/4

1 2

From (5.9),

4y = oy/byf = - 345,

dy = ay/byf = 5/4 (4f) + £,).

Now, BK = Bfd' = 1 [d. 4 j
1 %2
-4 -1 |f, ,
£291 59
= -
B £ 7
2y 5 2
i} 4 4f1 + f2.
3 .4f1 +‘f2
3 1 2 - 5/4
4 £
L 2
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The closed loop transfer function matrix H(s) = C(sI-A + BK)-lB is

<

equal to
~4(s-at5/4 14/4+a-b
H(s) =  —p . -
' s + 6s + 5. o b
~b(stat5/h) <2 (s+3+ iz—)
where £
2 . (4fl+f2)
a=5/4 ————0 and b= 3/4 —F— .
4f1+f2 . f2

" Thé zeros of the System are'at ~~ =~ - I
S = 'a—S/l‘”.' s= —3—5/4’ and s= _3_. %.(a.'.b).

Notice, thaf although we cahvchoose fi and f 1ndependently the zero

2
locatibﬁ is affected only by the ratio f1/f2. Due to this only one
zero can be placed. |

Let us position thg zero corresponding to first inpui and

first output at -2,

i.e.. a - 5/4 = =2

.
-5 2
= I 57 -1] = -2.
| 4 4f1+f2‘ -
-This gives f1/f2 = - 2/35 Choosing f2 = 1 gives f1 = ~2/3
1 1
. : ; ,' 2 2 | ‘
d1 = =-3/4, d, = -3/4 and K =| © 4.
| 3.3
4 4

With this value of K the closed loop poles are at -1 and -5 and omne
of the zeros at -2.
Next, the system is rew-designed for approximate pole-~zero place-~

ment and diagonal dominance at steady state using state feedback.
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Let the closed loop poles be at -0, and «ﬁz and the zeros be at -El,

rgz and e§3. al and 02 arg functions of Dl and 02 and are equal to

21200, + 0, 8) + (010, = 12)]

and
1 ‘ -
A IG(pl + p2—8) - (9102—12)] respectively.
This results in
r- . ) -
s+2+0tl —a2f2((4f1 + f2)

(sI-A+BK)= o ' -

~o (4F. +£,) ’

: 171 27 s+6+ a

U 2
2
L , : |
‘and : ' o,f )
» . 272
(s+6+0.; ) —r—————
| o 2’ 4f1 +.f2
(SI»A+BK)—1 = i— ,
' o, (4F,+£,)
~l-4L~Jé—v s+2+a:
£, : 1

N 2 : _ '
Where A= 87 + (pl + p2) s + PPy

The closed loop transfer function matrix

I

i . 7
—4(s+2+a1+a22) 4—(a22+u1) + (az - alll)
H(s) = 1 '
A 1 °1, 1
—4(s+2+a1 —azl) | —2[s+4+-§ (azl + Efo - 5-(a1 + az)]

where



- Qe + aR), <, = -2 + @

*P1a® P24 ~B14’ ~E2a
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The poles of the éystem‘are at ebi, epz and the zeros at - gl

o
1
=2 1 T

1
-zazz) and —EB = -(4 +-§ (a22 + 2

F'%(al + az)]. Let the désired closed loop poles and zeros be at

and respectively. Thus, we have to

satisfy the equations
d) =/,

d, = faz/(éfl + £,)

a = 4 [ 2(plwf p2 8) + (o1 02-12)]

-
L]

) =5 166, + 0, - 8 - (910,-12)]

gl =2 +.a1 + a22_
52 =2+ a b.azzv
. - a, .
TS R N |
163 _.4-+ 5 (azl + zn) -3 ( o, + az)‘

L = f /(4f + fzj

Let §4 = 4 - (a L+ a ) + (a -0 /2) and ay = éf + fz. For diagonal

domlnance w1th pole zero placement we have to satisfy (5.13) subject

to the constraint 5153.3 5&254. This can be done by minimizing the

cost function

_ 2 | 2 o 2
J --v Kl(fzdl—al) +~ Kz(d2a3+ a2) +AK3 (4£1a3 80(.3-40.1 3 4f2 2)

| 2 _, 2 e 2
+ K, (8gjaqf, - 32a,f, = boyf, = bajay + 4a3(pl + p,-8))

+4a2f2) + K (454 9 3 l6a f ~4f, o

2 22 ., -
+ hoyf, + baga 3f2 + bogag) + (pl"Pld) vt (92'92d)2U2

- 2 Cele + 122y
o+ (g —Eld)?U3 + (g, ~5,9) U, +(, —£3d)2U5+(|slz3|_5|€2§4I)‘U6-
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‘Ul' UZ' R .‘U6 are functions similar to those defined in Chapter III,

| The results of the minfmization are shown in Table 4. |
Table 4 shows that there.is a degradation in performaﬁce as more

and more requirements are placed on the design. This is to be expected

hecausé of the limited-ambunt of design freedom. Thus the (m-1l)

degrees of freedom can bevused to sétisfy other design requirements

in addition to placing poles of the system.



CRAPTER'-V‘I“. CONCLUDING REMARKS

6.1 Conclusions |

A new method is p;opoéed.for designing mﬁltivariable systéms.
The désign is primarily based on an.alternate deri?ation'of Daviéon's
theorem on pole placement and the solution of the nonlinear equations
for thé feedback gains.by the least square.error method. Output feed-
back is used to control a comblex dynamical system. The freedom in - - -
design, after ailocgting poles, is used to place zerds.and/or satisfy
other design objectives. Throughout, the design is carried out using
unity rank feedback gain matrices. This has a number of consequences.
On the ohe hand it results in algorithms which are computationally
attractive. However, tﬁis is done_ét a considerable sacrifice in
terms of the design freedom available. For a system with m inputs
and pIOutpﬁts we can choose only (mtp) variables instead of mp
vafiableé.
6,2 Areas for Further Investigation_

There are several natural extensions and areas for further
investigation which follow from the work reported here. Some of
these are (i) sﬁudy of pole-zero placement using feedback gains
of rank greater than one (ii) use of dunamic compensator for pole
zero placement and (iii) pole and MCMillan Zero placement ﬁsing
feedback.

The design procedure caﬁ be logically extended to feedback
matfices of higher rank than one. The proceduré is illustrated for

a third order system.

76
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Consider the system

* 2 L}

X = Ax+ Bu

y=Cx (6.1)
where A is a 3x3 matrix énd has distinct eigenvalues Al’ 12, and A
The system (6.1) can be transformed into

x = Ax + Bu

y=cCx 6.2)

by a similarity transformation.
The 0.L.C.P. = |sI-A| = a= (s—xl)(s-xz)(s-x3), and the C.L.C.P.

|sI- A + BKC| . Let m,, be the ijth:element of matrix M where

ij
_ ' _ _ 4th : 3oL
M = BKC. Also, miy = EiKEj where'}_)__i 41 row of B and ¢~ is the
jth'column of C. The C.L.C.P. can be expressed as
: m,.. A m,.,.A m,,, A
|sI - A + BKC| = & + 'E%%X' + Sifk T
_ -1 2 3.
. -nl- A . n2. A
(sI—Az)(sI—A3) (sI—X3)(sI—Al)
n3.A
tGEip Gy M- -3
S & 2
where n, is the co-factor of m If K has rank one then equation

i 11°

(6.3) reduces to

m,.. A m,,.4A m,.,.A
_ 11 22 33
lsI- A + BKC| = 2 + G55+ Cioy t i (6.4)
‘ 1 2 3
Notice that 1f K = f£d', m , = bKC = b, fd'c = d'c'b f.

1

Now

C.L.C.P. - 0.L.C.B. _ ¢ %4

- 4
0.L.C.P. PR CEW) . . (6.5)

3°
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From (6.3),

|sI- A+ BRC|- & 3 Tyg !
= ) ¢ + _
A 151 sfki) (s-xz)(sfx3)
i) T3
B G C S R C= W Y =W M
| o _ f P4 +- 2, "3 % M 1
e S TR R TG TG T GG R
[ o, 3 M| 1
+ + - + :
|Gy o)) G2y O, A | (=1,)

it ) M| 1
+ |- + + T
LA35A2) [ GO | X,)

(6.6)
Comparing (6.5) and (6.6), for pole placement we have to satisfy

the n equations

n n '
| 2 3 ik
m, . + + - + = .
11 TG T O T G Oy 1
n  n
1 3 M|
m,. + + + = a
22 T O, T LT T () (A 2
6.7)
n n
1 2 M|
m + - r + - + - r = qa
33 TG, TG O3 A ) 01 3

in mp variables. It is interesting to note that. for K = de,'

‘@) n, my,ng, M =0



(1) m,, = dclple 1=1,2,3

i1
and (6.7) reduces to (2.10).

This is not intended to be a complete treatment of the pole
placement problem using output feedback matrix gains of rank greater
than one. It is-introduced to show that the techniques discussed
in the previous chapters can be easily modified to take advantage
of the increased design freedom afforded by K of rank greater than
unity. A compariéon between equations (6.7) and (2.10) shows the
increased amount of computation and complexity.

Brasch and Pearsqﬁ [21] have used a dynamic compensator
to place all the poles of the system using output feedback. The
feedback gains are not unique and thié design freedom can be used
to plaéeﬂzerOS or satisfy other systems requirements.

It has been pointéd'out in Chapter 5 that the McMillian Zeros
have certain important properties related to the behavior of the
multivariab}e system. Apart from Rosembrock's [42] work very
little has been done about using McMillan Zeros in system design.
One important problem is to find the conditions under which a
feedback gain'maﬁrix K exists such that

Ax + Bu, y = Cx with transfer

(1) given the system_g

function matrix G(s).

(11) a feedback law u = v + Ky
the closed loop transfer function matrix‘H(s) = G(s) (I + G(s))—l'
has a desired McMillan form.

The solution to some of these problems should provide more

effective ways of designing multivariable systems.



APPENDIX A

AN ALGORITHM FOR CALCULATION OF THE
JORDAN CANONICAL FORM. OF A MATRIX

Introduction

It is well-known that any métrix may be brought into the
Jordan canonical form by a siﬁilarity transformation [45]. There
are.se&eralAﬁethods,availahlg_;gwéompugg_the,eigenvectors‘offg o
matrix when the eigenvalues are distinct [46~47]. Some of these
could be used to computebthe eigenvectors for matricés with
"multiple roots. In Varah's method [4Sj multiple eigenvélues are
handled by perturbing the multiple_eigenvalue to produce distinct
eigenvaiﬁes. Eberlin and Boothroyd [49]_also compute eigenvectors
for multiple eigenvalueé. However, none of these metﬁods generate
the basis vectors necessary to transform the given matrix into it's
Jord#n canonical form. Chen [27] has suggested & pfocedure for
computing the Jordan canonicé; form. Here, a simplg'and efficient
algorithm, based on the notion of a generalized eigenvector, and
using Gauss»elimination techniques is given to compute the Jordan

form of an nxn matrix.

BACKGROUND

Given the nxn matrix A, we want to find the matrix T such that

lAT is a Jordan matrix J. Let (Al, Az, —, Am) be the eigen-

T‘
values of A with multiplicity (nl, n,, ---, nm) respectively. The

number of eigenvectors associated with the elgenvalue }i is given

80
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by o, = n-Rank (A-A.I). The Jordan matrix, J, has the form

J = diag [J)4, Jip = Jlalz Jo10 Jpp0 = J2a2: "
ZJml’ sz, - Jma ] ' (A1)
with Ny 1 O 1
Jik = . . . i=1,2,~~~,m
. 1 f (A-2)
‘ O R
i | M
Let Bik be the dimension of the block Jik and define‘
P e
o = B . + B,.,. with o,,. = 0 (A-3)
ik =1 §=1 23 j=1 1j 10

Let the generalized eigenvecto;s and the eigenvector corresponding

1 and t

to J be t Eb +8, - t
i(k-1) "ik ik

’ t ’ . o0 ,
ik —ﬂi(k—l)+l _oi(k—l)+2 _

respectively. The transformation matrix T is made up of the n

LI J t )

—t t st
1

Ly e b o B g e K

columns (El’
11 11 12

?
(al-l)+l

. ...,'Eq- " .- The similarity transformation satisfies
lo., - mo.

" the relation
AT = TJ : (A=4)
i.e. Alty, £y, --0, t 1= [t Loy ees t v

Then, the eigenvectors of Ar satisfy the relation

(A-x D, =0 L=o0 4, o (A-5)



82

Given an eigenvector of lr the corresponding generalized eigenvectors

satisfy the recursive relationship

1, +eo, 0_,=B ,+1

(A D gy =t b=o rkPrk

1°- % rk’ rk”

k = l, 2, LI Y a (A-6)

"
The solution of equations (A-5) and (A-6) yields the transformatipn

matrix T.

Computation of the Eigenvectors

‘Let A= (A- AI). We can choose non-singular matrices P_ and
Q_ such that P_AQ_ = U_, where, U has the form
T rr T r

Here U11 is an (n—ar)x(n-ar) upper triangular matrix with |U11| #0

and A12 is an (n—ar)xar mat?ix. Glven (ArArI), Pr’ Qr and Ur can’
be obtained by Gauss elimination with full pivcting [50]. The ar
elgenvectors corresponding to the eigenvalue Ar are obtained by

solving the equation

Ut =0 | (A-7)

rte
using a back substitution scheme employing ar‘independent'seleCtions

of the last a,. components of t . Full pivoting guarantees that this

L
will result in o linearly independent solutions which become the o
independent eigenvectors corresponding to ﬁr. Substitution of

these eigenvectors in equation (A-6) yields the set of generalized

eigenvectors,
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Algorithm:

" 1. Find the eigenvalues of A. Label them A s Ams eaey A
: -1 2 > "m

2. Solve the equation U = 0 for all eigenvectors corresponding

r-t-f,
to Arusing independent selection of undetermined constants. The
solution involves undefined variableS'vr, LAPRERE . Generate an

| independent set of eigenvectors for Ar by setting each‘uhdefined
variable in turn equal to 1 while holding all otﬁer'variables

equal'to 0. Denote the eigenvectors by Eﬂ . Eq > sty Eﬁ

' rl r2 ro_
3. For each elgenvector £, ,1=1,2,..., o form PrQrﬁg_ and
' ri _ 1
solve .
Urko -1 7 PrQrEo

ri ri

for generalized elgenvector corresponding to eigenvector L with
: ri
the undetermined constants taking values given to them while

evaluating £,
ri : :
4, Repeat step 3 by forming PrQr_t_:_0 -1 and solve UrEO 2 =
i ri
PrQrEo -1°
ri
5. Continue to generate generalized eigenvectors as in step 4 until

the equation U_t f ~j becomes inconsistent i.e. when

i —3-1 - PrQrEd
ri

ri
a non-zero quantity appears on the right hand side corresponding
to zero rows of Ur' This gives the baéis vectors corresponding to
the eigenvalue Ar.

6; Repeat step 2 thru 5 for r = 1, 2, ..., m. to obtain all the
basis vectors and hence the matrix T.

7. Obtain the Jordan canonical form from J = T—lAT. Note that J

need not be calculated directly since the block structure of (A-2)
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is determined by the number of generalized eigenvectors that are

generated for each eigenvector.

Computational Discussion:

The computation of the eigenvectors and the geueralized
eigenvectors depend on the accuracy with uhich the eigenvalues
of A are computed. Frencis [35] algorithm is suggested for
couputing the eigenvalues. When the’ eigenvalues are approximate

the calculation of the eigenvector can be refined as suggested '
be Wilkiuson [51] o

The algorithm suggested in this paper resules in a large
reduction in the amount of'computation necessary to obtain the
Jordan canonical form.' The number of computacions necessary for
an nth order system with m distinct eigenvalues is shown iIn Table
A-1.

A‘similar analysis of Cuen's algor;thm [27] shows that the
numuer of computations are of the order 0(% n4).' Thus the
algorithm suggested here fesults in at'Least a fivefold saving
in the uumber of ¢omputafions; The-uethod does not require the

evaluation of the rank of matrices of powers of (A—ArI) as in

Chen's method. .
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TABLE A-1

NUMBER dF COMPUTATIONS

STEP - :
n-1 n
P, (A-1.1)Q V124 Y i= i@l
im0 , 3
- i=1 . iﬁl
Total elimination 3 '
for m eigenvalues m(n”~n)/3:
_ o n=-1 T2
Back substitution < 2 i= 5
=1
Total for n _ n3—n2
back substitution < 5
To construct a n 2
right hand side Z { = B -n
1=1 2
(P,Q;x)
2 n3—n2
Total R.H.S. n(n“=n)/2 = 5

Total




Examgles:-

8

6

The algorithm is applied to find the eigenvectors and the Jordan

canonical form of two different matrices.

A. Foﬁrth order matrix;

3

This matrix is taken from Eberlin and Boothroyd 149]. The

eigehvalues of the matrix are 5.23606797749979 (double root) and

0.763932022500210_(double_root).

The eigenvector and the generalized eigenvector associated with

‘the double root 5.23606797749979 are

0.4270509831]
1.0000000000

0.3819660113

|1.1458980340)

and

~ |1.0000000000

(b.5868810394'

0.4721359550

[1.0901699410 ]

-respectively.

For the double root 0.763932022500210 the corresponding vectors

are given by

0.1273220038

0.3333333333

[ -0.3726779962

1.0000000000 |

and

[ 0.2197175016]
0.4182146692

-0.3171224407

| 1.0000000000] -

Notice that the two eigenvectors and the two generalized eigenvectors

are all independent unlike in [49]. 7The Jordan canonical form can

be readily written as
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o

[5.230 . 1 o . 0 ]
o 5.2360 - 0 0
o - 0  0.7639. _ 1

0 .0 00 ' 0.7639]

The exécution time was 1.57 secs with a WATFiV (Univ, of Waterloo -
Fast Fortran) compiler.
__B. ,System_Matrix of Boeing Helicopter o

The following 8x8 matrix arises in the design of the helicopter

stabilization systém used in Chapter IV.

F 021 .025  -29.64  .6968 1879 0 °-.091 0]
-.0903 -.802  ~-80.98  -1.878 .5524 0 -8.517 0
o 0 o - 1 o o0 o0 0
~.0058 .0145 1.4672  =1.460 450 .068 0
o 0 0 0 0 1 0 0
0 0 0 0 784 -35 0 0
0 .0 o o 0o . 0 0 1

0 0 0 0 0 0 - -78%  -35

The eigenvalues of the system computed by using Francis' method are
0.50432908, -2,3585084, -0.19350035 + j 0.35283477 and -17.5 + 3
21.857493 (double root). ' The eigenvectors corresponding to the

distinct root are



[ 1.0000000000
0.9167473189
~0.0157197678
-0.0079269851
_o.oobooboooo
0.0000000000

- 0.0000000000

0.0000000000

+. 0.0000000000; ,

[ 0.2528902161]
1.0000000000
0.0200347219

-0.0472520599
0.0000000000
0.0000000000

0.0000000000

~0.0949009676

-0.0074706563

88

+3
10000000000 +9
+ 3
0.0026856551 + 3
+ 3

+J

0.0000000000
0.0000000000
0.0000000000 + 3

0.0000000000 + j

0.6460398691]
0.0000000000
0.0035914411
0.0019501968 |
0.0000000000

0.0000000000

0.00000000600

0.0000000000

respectively.. Each of the double roots has two eigenvectbrs

associated with it. These are

~0.0000183498 + j
| -0,0001564383
0.0000193897
~0.0001545381
-0.0223214285
1.0000000000
0.0000000000

0.0000000000

0.0002379966
+ 3 0.0007421192
¥ § 0.0000084539
k|

3

+3

+ 1 0.0005715717

+ § 0.0278794553
0.0000000000

+ j 0.0000000000

+ 3§ 0.0000000000)

( 0.0000224177
0.0026667158
0.0000031152
| ~0.0000288496
and| 0¢0000000000

0.0000000000

-0.0223214285

| 1.0000000000

4+

0.0001119734

0.0107258554

+1
(SN . [

+1

0.0000011743

0.0000886422

1+

0.0000000000
3.0000000000

0.0278794553

0.0000000000

Since the multiple eigenvalues have as many eigenvectors as their

multiplicity, the Jordan canonical form for this matrix is diagonal

and is given by

diag [.50432908, -2,3585084, -0.19350035 + j 0.35283477,

-0.19350035 - j§ 0.35283477, -17.5 + j 21.857493, -17.5 +

j 21.857493, -17.5 - j 21.857493, -17.5 - J 21.857493]

The execution time using a WATFIV compiler was 8.69 secs.
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Flowchart and Computer Program:

These are givén in [52].
Conélusion:

A method -has been outlined to find.the basis vectors to
transform a given nxn matrix to'its Jordaﬁ canonical form. The
- method is simple and efficient. It does not require the evaluation
of the rank-of matrices of powers of (ArAiI) as in Chen's method
[27]. There is at least a fivefold reduction in ﬁhe number of

" computations. Two examples are given to illustrate this method.
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