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AN ANALYSIS OF A CHARRING ABLATOR WITH THERMAL NONEQUILIBRIUM,
CHEMICAL KINETICS, AND MASS TRANSFER*

By Ronald K. Clark
Langley Research Center

SUMMARY

An analysis is presented for predicting the transient response of a one-dimensional
ablative thermal protection system to a high-energy air environment. The mathematical
equations are presented for the general case of a three-layer charring ablator system
(char layer, uncharred layer, and insulation layer) undergoing oxidation and/or sublima-
tion at the heated surface with homogeneous and heterogeneous chemical reactions occur-
ring within the char layer and with a finite rate of heat transfer between the char layer
and the pyrolysis gases flowing through the char (that is, the pyrolysis gases and char
layer may not be in thermal equilibrium). The equations are solved numerically by using
a modified implicit finite-difference scheme to obtain solutions for the thickness of the
charred and uncharred layers, surface-recession and pyrolysis rates, solid temperatures,
char-layer porosity profiles, and profiles of pyrolysis-gas temperature, pressure, com-
position, and flow rate.

Good agreement is obtained between numerical results and exact solutions for a
charring ablator system subjected to a constant heating environment. Effects of thermal,
chemical, and mass-transfer processes are pronounced. Also, results shown herein com-
pare numerical solutions from this analysis with solutions from a previous analysis which
did not treat the chemical and mass-transfer processes as thoroughly as this analysis.
This analysis predicts that the overall performance for a low-density phenolic-nylon
ablator is 16 percent greater than the performance indicated by the previous analysis.

The difference in predicted performance results from consideration of char-layer deposi-
tion in this analysis.

The calculations presented herein are for a phenolic-nylon charring ablator system.
However, since no restriction regarding the type of material was made in deriving the
governing equations, this analysis is capable of handling other ablation materials when
proper data are used.

"Part of the information presented herein was included in a thesis entitled "A
Numerical Analysis of the Transient Response of an Ablation System Including Effects of
Thermal Non-Equilibrium, Mass Transfer and Chemical Kinetics' submitted in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical Engi-
neeriil9g7;21t Virginia Polytechnic Institute and State University, Blacksburg, Virginia,

May .



INTRODUCTION

The analysis of ablative heat shields has been the subject of research for over
10 years. As a result of that research many analyses are available for making heat-
shield calculations. References 1 to 4 show that, in general, the capability exists for
treating the following:

(1) Multilayer systems

(2) Energy balance at the external surface with convective and radiative heat input
and energy blocking by mass injection

(3) Interaction of the external surface with the boundary-layer fluid resulting in
surface removal by oxidation, sublimation, and mechanical erosion

(4) Heat transfer internally by conduction and convection

(5) In-depth pyrolysis of the uncharred layer

(6) Internal chemical reactions with mass deposition

(7) Mass-transfer processes represented by quasi-steady-state equations
(8) Thermal equilibrium between the pyrolysis gas and the char layer

Experimental and numerical results presented in references 5 and 6 show that the
chemical processes and mass deposition in the char layer are extensive and that a sig-
nificant temperature difference between the pyrolysis gas and the char layer may exist.
Thus these results show that items (7) and (8) represent limitations of the existing anal-
yses. This paper presents an analysis which describes the transient response of an
ablative thermal protection system undergoing ablation, including a detailed treatment of
the various thermal, chemical, and mass-transfer processes present in ablation. Dif-
ferential equations governing heat and mass transfer for both the char layer and the
pyrolysis gases flowing through the char layer are used. These equations are coupled
through a convective-heat-transfer term which represents energy transfer between the
char layer and the pyrolysis gases. The differential equation governing the pressure
distribution in the char layer is also used as are the equations describing the chemical
reactions occurring in the char layer.

The governing equations are solved numerically by using a digital computer.
Numerical solutions are obtained for a number of simplified problems, for which exact
solutions can be obtained, to test the accuracy of various parts of the total program.
Results are presented for an ablator subjected to a constant heating rate with surface
removal by oxidation and finite-rate chemistry occurring in the char layer to illustrate
the effects of thermal, chemical, and mass-transfer processes in ablation. A comparison
is also made of these results with results obtained by using the analysis of reference 4.
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The governing equations necessary for a detailed description of ablation processes
are complex and computer solutions of these equations are time consuming. Thus, the
objectives of this program are to develop the capability of analyzing ablation systems
including some higher order effects, to provide the capability of studying effects of these
higher order parameters on ablative performance, and to provide a means of calibrating
existing less complex analyses to account for those effects which are found to be
significant.

SYMBOLS
A radiant-energy absorption of char layer, W/m3
A’ specific reaction-rate constant for pyrolysis of uncharred material,

(Al

kg/m2-sec

mole density of chemical species i, g-mol/m3

Ag specific surface area (area per unit volume) of char layer, 1/m; specific
reaction-rate constant for surface removal by oxidation (various units)

B’ activation energy for pyrolysis of uncharred layer, K

Bs activation energy for surface removal by oxidation, K

Cc mass fraction of oxygen in boundary layer

Cp heat capacity at constant pressure, J/g-mol-K

Cs solid carbon

D diffusion coefficient, m2/sec

E radiant-energy emission of char layer, W/m3

El’Ez’E3 coefficients in linearized differential equation for char-layer porosity

H enthalpy, J/g-mol

volumetric convective-heat-transfer coefficient, W/m3-K




heat of sublimation of char layer, J/kg

enthalpy at temperature T, J/g-mol
number of finite-difference stations in char layer
number of finite-difference stations in uncharred layer

permeability of char layer, m2; number of finite-difference stations in insula-
tion layer

constant in equation for Hp (eq. (7)), 1/m

reaction rate of chemical reaction (various units); thermal conductivity,
W/m-K

thickness, m
molecular weight, kg/g-mol
mass-flow rate, kg/m2-sec

mass rate of diffusion of O9 through boundary layer to char-layer surface,

kg/m2-sec
mass rate of char removal, kg/m2-sec
effective rate of mass injection into boundary layer, kg/mz-sec
dimensionless parameter, k/pCpD (Lewis number)
dimensionless parameter, uCp/k (Prandtl number)
order of chemical reaction

parameter defined by equation (11b)

[>e)
Laplace transform of ¢ defined by S e'Stcp(x',t)dt; pressure, N/m2
0




q rate of energy transfer, W/m?2

4AERO net aerodynamic-heating rate to surface, W/m2

ag net heating rate to back surface of insulation layer, W/m2

qc cold-wall convective-heating rate to front surface, W/m2

qC,n et net convective-heating rate to front surface, W/m2

aR radiant-heating rate to front surface, W/m2

q's" rate of energy generated in solid by sources, W/m?2

R molar rate of production by chemical reactions, g-mol/m3-sec

Ry universal gas constant, J/g-mol-K

T rate of progress of chemical reaction, 1/m3-sec

S dummy parameter used in equation (C9)

S(Ts,1 - Tl) step function defined by equation (23)

T temperature, K

TI maximum temperature of pyrolysis zone used when limiting temperature at
that station, K

Tl maximum char-surface temperature used when limiting temperature at that
station, K

t time, sec

Ve velocity of finite-difference station in moving coordinate system, m/sec

v velocity of pyrolysis gases in char layer, m/sec

superficial velocity of pyrolysis gases in char layer, m/sec



X dimensionless moving coordinate

x' parameter defined by equation (C8b)

Xj mole fraction of chemical species i

y fixed coordinate, m

z fixed coordinate, m

o] absorptance of front surface

Qe weighting factor for char material injected into boundary layer

ap weighting factor for pyrolysis gases injected into boundary layer
0q,09,05,0y coefficients in linearized differential equation for solid temperature
B trigger for selecting blocking approximation: g=0 for second-order

approximation; B =1 for linear approximation

B1:B9:83 coefficients in linearized differential equation for pyrolysis-gas temperature

Y1,7Y9:Y3:74 coefficients in linearized differential equation for pyrolysis-gas
pressure

Al,i’AZ,i’A3,i coefficients in linearized chemical-species conservation equation

AH heat of reaction for heterogeneous chemical reaction

AH, heat of combustion of char, J/g-mol

AH}, heat of pyrolysis of uncharred material, J/kg

Ap difference in density of uncharred material and char layer at pyrolysis zone,
kg/m3

€s emittance of char surface




emittance of back surface

n porosity

7] blocking coefficient used with linear ablation theory

6; fraction of surface sites occupied by molecules of chemical species i

o fraction of surface sites which are void

by ratio of char-layer mass removed to mass of oxygen diffusing to surface

7 viscosity of pyrolysis gases or boundary-layer fluid, N-sec/m?2

v coefficient of chemical species i appearing as reactant in stoichiometric
representation of chemical reaction, g-mol

v{' coefficient of chemical species i appearing as product in stoichiometric
representation of chemical reaction, g-mol

p density, kg/m3

Ps.0 density of char layer at front surface, kg/m3

o Stefan-Boltzmann constant, W/m2-sec-K4

o} dimensionless temperature defined by equation (C8a)

Superscripts:

! uncharred layer

" insulation layer

P at start of time step

P+At at end of time step

P+(At/2)  at middle of time step



r chemical reaction r

Subscripts:

CO carbon monoxide

Cg solid carbon

c oxidation

e edge of boundary layer

f forward direction

g pyrolysis gas

HS heat sink between uncharred layer and insulation layer
HSP heat sink at back surface

h heterogeneous chemical reaction

I pyrolysis zone

I+J interface of uncharred layer and insulation layer
I+J+K back surface of insulation layer

i chemical species i

N station N

O9 oxygen

o] initial value; reservoir condition

r reverse direction

s solid




sb sublimation

T total value

w wall

x=0 at char surface
x=1 at pyrolysis zone

1 char-layer surface
Overlines:

- normalized or average
per unit mass
ANALYSIS

Figure 1 shows a schematic diagram of a charring ablator system consisting of a
char layer, pyrolysis zone, uncharred layer, and insulation layer. The heated front sur-
face of the char layer interacts with the external boundary layer resulting in erosion of
the char layer. The uncharred layer degrades at the pyrolysis zone and the products of
pyrolysis flow through the char layer absorbing energy and undergoing homogeneous
and/or heterogeneous chemical reactions. If heterogeneous reactions are involved,
deposition or internal erosion will occur and the char-layer density is affected. Thus a
description of the char layer (a porous solid through which pyrolysis gases flow) requires
conservation equations for energy in the solid and the gas, momentum of the gas, chemi-
cal species, total mass, and an equation for porosity variation.

The pyrolysis zone is considered to be a plane of zero thickness in this analysis.
Reference 7 shows good agreement between numerical solutions for char-layer tempera-
tures obtained with a plane pyrolysis zone and with in-depth pyrolysis. The assumption
of a plane pyrolysis zone was necessary in this analysis to provide a second boundary
condition for the gas-momentum conservation equation.
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Figure 1.- Schematic diagram of charring ablator with coordinates.

Governing Equations

The equations describing the performance of a charring ablator system are derived
in reference 8. These equations, written for one dimension in space, and neglecting vis-
cous dissipation, gas-phase conduction, diffusion, and external forces, are now given.

Char-layer equations.- The char temperature equation is

PsCp,s 8Ts _ 5 Ty (r) \ gy (T)
(1-mn) Mg a_t ='8—y' kg a—y - HA(TS -T) + nRS[H(T)]S + nRh,SHS -7 Zrh AH
r
PsHg o
+(1-m(A-E)+(Q - " o 1
(- -8+ (- gy + 225 ()
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The pyrolysis-gas pressure equation is

—(P2) L—@ (P2) - (0) - 7 ZRT M| =0 (2)
dy i
The char porosity equation is
an M
2 - 12 + ) ©®

The pyrolysis-gas temperature equation is

gy ARAT o =_n<aln..p.> OB, v2B) ) Ry Hy+ B(2 .y 20
1 M; \at dy d1ln T Px; oz dy )1 at dy

1
*3 nve ZRT,iMi +Hp(Tg - T) -7 RS[H(TﬂS
i

+ Rh,sHs - er(lr)AH(r) (4)
r

The chemical-species continuity equation is

9 3
B—t(npi> + 8_y<pivc9 - an,i =0 (5)

The total-mass conservation equation is

—(np) +—{ pvo -7 Z Iy (6)

The volumetric heat-transfer coefficient for convective energy transfer from the
char to the pyrolysis gases <H A ineq. (1)) is given in reference 9 as
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HA:Kh_nZT (7

where the proportionality constant K} is determined experimentally.

The energy term associated with the heterogeneous chemical reactions (eqs. (1)
and (4)) results from assuming that the heat of reaction for each heterogeneous reaction
is supplied by the char. As an example, consider the combustion of solid carbon to form
CO. The stoichiometric equation representing this reaction is

O3 + 2C4 -~ 2CO (8)

The oxygen for this reaction comes from the pyrolysis gases at temperature T, the
solid carbon for the reaction is at temperature Tg, and the product of the reaction (CO)
is at temperature Tg. Thus the heat of reaction is

AH = 2H(Ts)] - [H(Tﬂoz - 2EI(TS)]CS (9)

The chemical reaction rates appearing in equations (1) to (6) are obtained by using
the following equations:

The molar rate of production of species i resulting from homogeneous chemical
reactions (ref. 10) is

t T

" ] V.(r) V.(I’)
r-) 0 W [Ty -0 T g (10
r i i

The molar rate of production of species i resulting from heterogeneous chemical
reactions (ref. 11) is

| A2

— " T (r) (r)
Rn,i = Z["i(r) -] e 0T e Yast® i)
i i

r

where

n(r) = z [Vi(r)” - Vi(r)'jl (11b)

i
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Equations (10) and (11) are based on the Law of Mass Action and the Law of Surface
Action, respectively. They are general expressions for homogeneous and heterogeneous
chemical reactions. Most frequently chemical-kinetics data for a particular reaction are
obtained from empirical curve fits to experimental data. Such chemical-kinetics data are
usually presented with a rate law which best describes the particular chemical process.

Uncharred-layer and substrate-insulation-layer equations.- The uncharred-layer

temperature equation is

8T' aTV
0 ' S St S
—|k' —=2]=prCc!  —= 12
dy\ S oy Ps P,S at (12)

The substrate-insulation-layer temperature equation is

3T" 3T"
9 L ""s ~ S

—ik —Z2|=p'"C"'" —= 13
3y s 3y ps p,S ot ( )

Boundary Conditions

The boundary conditions for differential equations (12) and (13) are derived for the
case of stagnation heating with surface removal by oxidation in an air environment and/or
sublimation and with temperature-dependent pyrolysis of the uncharred material occurring
in a plane. (See ref. 8.)

Char-surface boundary conditions for solid-temperature equation.- Two conditions
must be specified at the front surface of the char layer to obtain a solution to the char-
layer solid-temperature equation. The first condition is an expression for either the rate
of material removal or the surface temperature, and the second condition is an energy
balance. When temperature and pressure conditions are such that the rate of oxygen con-
sumption at the surface is less than the rate of diffusion of oxygen to the surface, the rate

of surface removal is given by the reaction-rate equation
/ _ \R
-B.\[Cy M, p

Ts,l MOz N

m; = Ag exp (14)

where n is the order of reaction. When the rate of oxygen consumption equals the rate
of diffusion of that species to the surface, the rate of surface removal is obtained from
the oxygen diffusion rate as
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where X is the ratio of the mass of char removed by oxidation to the mass of oxygen
diffusing to the surface. The rate of oxygen diffusion to the surface is given by (see
ref. 8)

Ce -Cy 0.6

mQ, = He - Hy Nte 9c netMw (16)

where ¢ pet is the hot-wall convective-heating rate corrected for blocking. Thus, for
’
diffusion-controlled oxidation

. Ce - Cy 0.6 g
me = o T Hy ANT e c netMw (17

Equation (14) is combined with equation (17) to obtain an equation for the rate of surface
removal by oxidation which is valid in both the rate-controlled oxidation regime and the
diffusion-controlled oxidation regime. Thus, for an order of reaction of 1/2

2

(He - Hy)K2P, e - Hy) K*Pe . 4K%C M P, "

0.6 0.6 Mg
MOqu net*Le Mo,dc net*NLe 2

.1
mc=—2- -

where

K = Ag exp|— (19)
° Ts,1
For an order of reaction of 1
KP C_ M
fng ee W (20)
_ KP e(H o - HW)
Oy AN0-6
Le 4C net

Energy transfer to the surface results from convective and/or radiative heating and
combustion heating caused by oxidation. This energy is accommodated by blocking due to
mass injection into the boundary layer, reradiation from the surface, conduction to the
interior, and sublimation of the char when the surface temperature reaches the sublima-
tion temperature. The surface energy balance is (see ref. 4)

14



[sV]

H H.m H, . _ mpH
ac -2 a-a-pglonza =L o013 —2 g |- g —=2
He acMy, dcMy acMy
—— —
Cold-wall Hot-wall \ v -
convective correction : .
heating rate Aerodynamic blocking
— . . e
o
Net convective heating (qc ,net)
. 4 T4 ~\. y 1
+ aqp + mcAH., = cxesTs’1 - ksa—y + S TS,1 - Ty)mg He (21)
\ ~ " -~/ - \/_"J \ ~ -~/ \ \/_J \ ~
Radiative- Combustion- Reradiation Conduction Heat of sublimation
heating rate heating rate to interior of char

where
fnT = a, {S<Ts,1 - Tl)[’hsb - m{\ + r'nc} + apr'n (22)

and B is 1 or 0 depending on whether a first- or second-order approximation for block-

ing is used (ref. 4). A step function S(TS 1" T1> is defined by
- 23)

When the surface temperature is less than the sublimation temperature of the char
material, equation (21) is used as the boundary condition for soiving the char temperature
equation. When the temperature of the char-layer surface equals the sublimation temper-
ature of the char material, equation (21) is used to determine the rate of surface removal
by sublimation.

Pyrolysis-zone boundary condition for solid temperature equations.- The char-
layer and uncharred-layer energy equations are related through an energy balance at the
pyrolysis zone; that is

15



~kg — = myAHp - kI —= (24)

Also the temperatures of the two layers are equal at their interface; that is
1]

The rate of pyrolysis of the uncharred material is given by an Arrhenius type of
equation

. -B'
m, = A' exp(=— (26)

An alternative method, which allows a fixed pyrolysis temperature to be specified,
is also available. When this alternative method is used, equation (24) is used to deter-
mine the interface temperature and equation (26) is used to determine the pyrolysis rate
until the pyrolysis temperature reaches the specified value. Then equation (24) is used
to determine the rate of pyrolysis and the interface temperature is given by

Tg 1= Ty @)

Uncharred-layer—insulation-layer interface boundary condition.- The boundary

condition at the uncharred-layer —insulation-layer interface is

BT' 8T" aT'

S _ S ~ S
S 8y - kS dy +pHSCp,HSLHS ot (28)

t

~k

The temperature of the two layers is also equal at their interface; that is

T, =T, (29)

Back-surface boundary condition for solid temperature equation.- The energy trans-
ferred to the back surface (conduction through the insulation plus energy transfer to the
back surface from the surroundings) is accommodated by reradiation to the surroundings
and by an increase in the temperature of the heat sink at the back surface. The boundary
condition is
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aT" aT”

4 -
" S _ 11t s
sy T9B T UGS<TS> * PuspCp HSPMHSP 5 (30)

where ag is the net heat-transfer rate from the surroundings to the back surface. The
effect of an adiabatic back surface is achieved by setting adp equal to the rate of energy
radiated by the surface to the surroundings. Thus, for an adiabatic back surface

dp = “E'S'(T;)4 (31)

Boundary conditions for pyrolysis-gas pressure equation.- The differential equation

for pyrolysis-gas pressure requires two boundary conditions. The first boundary condi-
tion is that the pressure be specified at the char surface; that is

P=P, (32)

The second boundary condition is that the pressure gradient at the pyrolysis zone be pro-
portional to the pyrolysis rate. Darcy's equation for one-dimensional fluid velocity in a
porous medium is (ref. 12)

_ K OP (33)

By multiplying by the fluid density and by using the equation of state, the following equa-
tion is obtained

KM . 9P
= - p = 34
PV, LRLT 3y (34)

At the pyrolysis zone
pvo = -l'.ng (35)

Therefore, at the pyrolysis zone

= ing (36)

9 uT
—(P2) = 2R, ——
oy Fu KM

17




Boundary condition for char porosity equation.- A single boundary condition is
required for solution of the char porosity equation. The condition used in this analysis
is that of a specified porosity of the char layer at the pyrolysis zone.

Boundary condition for pyrolysis-gas temperature equation.- The pyrolysis-gas

temperature boundary condition used is that the pyrolysis-gas temperature be equal to
the solid temperature at the pyrolysis zone.

Boundary condition for total-mass conservation equation.- The mass-conservation-
equation boundary condition used is that the mass-flow rate be known at the pyrolysis

zone; that is

Boundary condition for chemical-species conservation equation.- The chemical-

species conservation-equation boundary condition is obtained from the molar composition
of the pyrolysis gases, which is specified at the pyrolysis zone, and the total-mass-flow
rate at that point. This boundary condition is

XM |

in = - nﬁ mg (38)

Initial Conditions

The initial conditions of all parameters necessary to describe the thermochemical
state of an ablation system are specified. These conditions may be other than zero and
the spacial parameters may have initial values which vary with location.

Coordinate Transformation

The governing equations presented here are partial differential equations with vari-
able coefficients. Thus, they must be solved numerically. These equations are trans-
formed to dimensionless coordinate systems attached to the ablator boundaries (see fig. 1)
to eliminate the problem of error accumulation associated with numerical solutions in
fixed coordinate systeins for layers which vary in thickness with time. Details of the
coordinate transformation are given in appendix A.

Solution of Equations

All differential equations and boundary conditions presented in the previous sections
except the total-mass conservation equation are written in modified implicit finite-
difference form so that they may be solved by using a digital computer. The finite-

18




difference equations are formulated in appendix B.

finite-difference stations.

1 1
_______________
2 Ax
L T
E Char
_________ ;____________f layer
I1-2
1-1 /‘Py;g}ls;sis
- 1 "~ | L e
______________ L.
I+1 Ax'
I+2
S S S B
! Uncharred
| layer
S U
I+J-2

I+d-1 /rHeat sink

d—

> Insulation
layer

/—Heat sink

/ Char surface

Figure 2 shows the'location of the

Boundary conditions:
Energy balance or T
Specified P

Differential equations:
Solid temperature
Gas temperature
Pressure
Total-mass flux
Species-mass flux
Porosity

1 specified

Boundary conditions:
Energy balance
Thermal equ111br21um between two layers
Specified T, aP4/5x, m, m n

Differential equation:
Solid temperature

Boundary conditions:
Energy balance
Thermal equilibrium

between two layers

Differential equation:
Solid temperature

———————— Boundary condition:
- -
I+J+K —< { Ferey batance
Back surface

Figure 2.- Location of finite-difference stations.

The sets of finite-difference equations obtained from the second-order differential

equations are tridiagonal and are

B(1) #(1) + C(1) ¢(2) =D(1)

A(N) ¢(N - 1) + B(N) ¢(N) + C(N) ¢(N + 1) = D(N)

A() ¢ - 1) + B(@) ¢(I) =D()

N

(1<N<K)g (39)
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where the boundary equations have been reduced to the standard tridiagonal form by com-
bining them with the equations for neighboring stations. The sets of finite-difference
equations obtained from the first-order differential equations are not symmetric with
respect to the diagonal elements. These equations are

B(N) 6(N) + C(N) 6(N + 1) + E(N) 6(N + 2) = D(N) (1SN<I-1)
(40)
B(I-1)6(I-1)+C(-1) 6@ =D - 1)

These sets of equations are solved by a method which is equivalent to Gaussian elimina-
tion (ref. 13).

The transformed-mass conservation equation is written in integral form as

. . X(I) 3 fn r'n Ih a
m(N) = mg - I 2m0) - n ) Ry My 25 x T8 T8 )2 () o (412)
x(N) |8t : s lLip 5.0 Ap Py g x
where

and the integral is evaluated numerically from station N to the pyrolysis zone
(station I).

RESULTS AND DISCUSSION

The accuracy of various parts of the numerical analysis is verified by comparing
the numerical results with exact solutions for a number of simplified problems. The
derivation of the exact solutions are given in appendix C. Some typical results are also
given for a charring ablator subjected to a constant heating rate. These results are dis-
cussed in the following sections.

Comparison of Numerical Results With Exact Solutions

The equations governing the transient response of an ablation system are too com-
plex to solve exactly for the general case. However, exact solutions for a number of
simplified problems serve as a check of results obtained by using the finite-difference
equations.
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The exact solutions employed herein are for the following problems:

(1) The pressure distribution for a constant property, incompressible, isothermal
fluid flowing through an isothermal slab

(2) The transient temperature response of a constant property, incompressible fluid
flowing through an isothermal slab

(3) The transient temperature response of a heat sink subjected to a suddenly
applied constant heating rate

(4) Quasi-steady-state ablation

Pressure distribution for constant property, incompressible, isothermal fluid flow-
ing through an isothermal slab.- Table 1 shows errors in pressure solutions for flow of a
constant property, incompressible, isothermal fluid through an isothermal slab. The
exact solution was obtained by using equation (C5), and the numerical solution was
obtained by using the finite-difference equation of this analysis. Note that the error is
much less than 0.004 percent throughout the thickness of the slab.

TABLE 1.- ERRORS IN NUMERICAL AND EXACT SOLUTIONS FOR PRESSURE
DISTRIBUTION IN A CHAR LAYER FOR A SIMPLIFIED MODEL
Enput values used were: ! =0.01m; K=2X 10-10 m2; T =150 K;

ffg = 0.05 kg/m2-sec; p = 2.75 X 10-9 N-sec/m2; and
M = 0.02895 kg/g-mol]

Percent error2 in P for —
X
Py, = 0.01 atmP Py = 0.1 atmb

0 1 mmmmee— L e
1/4 0.00285 0.000215
1/2 .00308 .000406
3/4 .00311 .000571

1 .00319 .000726

2]

™ . n - - . L]
= rex - r ted
Percent error = —< act calcuia x 100.

Pexact

Transient temperature response of constant property, incompressible fluid flowing
through an isothermal slab.- The exact solution for flow of a constant property, incom-
pressible fluid through an isothermal slab is given by equations (C13). Figures 3 and 4
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show comparisons of results obtained by using this equation and results obtained by using
the finite-difference equations with difference spacings of 0.001 and 0.01, respectively.
The comparison with the transient results is favorable for the fine spacing, but as
expected, the accuracy is poorer for the larger grid spacing. The steady profile solu-
tions differ less than 0.02 percent for each case.

Transient temperature response of a heat sink subjected to a suddenly applied con-
stant heating rate.- The exact solution for the temperature response of a flat plate sub-

jected to a suddenly applied constant heating rate is given by equation (C14). This equa-
tion was used with the heating rate and material properties listed in table 2 to determine
the transient response of a flat plate. Solutions were obtained for the same problem by
using the finite-difference equations.

TABLE 2.- INPUTS USED IN HEAT-SINK EXACT SOLUTION

GW/Mme . 1 x 104
D o 0.01
A 0.01
K, W/M2-K . . o o v i e e e e e e e e e e e e e e e e e e 0.624
P, kg/m3 . L e 2140
Cp.s0 S < 715.16
S P 300

Figure 5 shows the numerical solutions for time steps of 0.01 and 0.1 second and
the exact solution. Even for the large time step of 0.1 second, the error at t = 1.0 second
is less than 3 percent.

Quasi-steady-state ablation.- In quasi-steady-state ablation, the pyrolysis interface
and the front surface recede at the same rate; that is, the char thickness is constant. If,
in addition, the pyrolysis gases are inert, incompressible, and in local thermal equilib-
rium with the char layer; properties of the system are uniform and independent of tem-
perature; there are no energy sources, viscous dissipation, or diffusion; and conditions
exist such that no energy is transferred into the uncharred layer; then the exact solution
to the governing equations is given by equations (C27).

Numerical solutions were obtained by using the finite-difference equations with the
data contained in table 3. The assumption of incompressibility was satisfied by specify-
ing a constant pyrolysis-gas density. To satisfy the assumption of local thermal equilib-
rium between the pyrolysis gases and the char layer, a very large value was used for the
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Numerical
solution (At = 0,1 sec)
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Figure 5.- Numerical results and exact solutions for heat-sink problem.

TABLE 3.- INPUTS USED IN QUASI-STEADY-STATE
ABLATION EXACT SOLUTION

dAERO? W/m2 . . 8 x 10°
Kg, W/M-K . . e e e e e 0.624
Ps o KE/mM3 L L 320
AP, RE/mS L L e e e e e e e 320
Cper I/k8-K . oo 2090
Cpr J/KB-K o o it e e e e e e e 2090
7 2222
7O 556
BHp, J/KE o v i e e e e 2.324 x 106
He, J/KE « v o e e e e e e e e e e e e e e 2.324 x 108
Y O Vo) 0.029




proportionality constant appearing in the equation for H A, the convective-heat-~transfer
coefficient; that is

KhVT[ p;iC i
Ha=x ) - (42)
Pr i 1

Calculations made by using a value for Ky, of5Xx 10° 1/m indicated a temperature dif-
ference of only 1.5 K between the char layer and the pyrolysis gases at the front surface.
The results from this calculation are compared with the exact solution in table 4. The

calculated char thickness and mass-loss rates are within 2 percent of the exact solution.

TABLE 4.- EXACT SOLUTION AND NUMERICAL SOLUTION OBTAINED WITH
K =5X 10° 1/m FOR QUASI-STEADY-STATE ABLATION

. Numerical Exact Percent
Parameter Unit solution solution error
mg kg/m2-sec 7.304 X 10-2 . 7.185 x 10-2 1.66
g kg/m2-sec 7.301 x 10~2 7.185 x 10-2 1.61
l m 2.924 x 10-3 2.973 x 10~3 -1.85

An additional set of calculations was made in which the pyrolysis-gas temperature
was set equal to the char-layer temperature and the term HA(Tg - T) appearing in the
char-layer equation was replaced by the expression

i/. m ~ R,\OT
7\ -0 5= <Cp'fu>—s 43)

which satisfied the assumption of local thermal equilibrium between the pyrolysis gases
and the char layer. Results from this calculation are shown in figure 6 and are within

1 percent of the exact solution after quasi-steady state is obtained. Note that the system
reached a quasi-steady-state condition after only 25 seconds. 'The near discontinuity in
the surface-removal-rate curve illustrates the three regimes of mass removal at the sur-
face. The initial segment of the curve represents that portion of time when oxidation of
the char layer was reaction-rate controlled. The second portion of lesser slope repre-
sents the time period when the rate of oxidation of the char layer was governed by the rate
of diffusion of oxygen through the boundary layer. The final portion of the curve repre-
sents the time during which the char layer was subliming.

25




25

2
o, 1 10°K
20
15 [~
. . . -2 2
Exact solution, i and My, 107 kg/m*°-~sec
10

= L
./. -
A < _———
5 — - —
'/ ., 1072k /mz-sec
/ ) g
; 2
! TS’ P 10° K
R
/
] 2z | | | |
0 5 10 15 20 25
Time, sec

Figure 6.- Numerical results for fns, fng, l, Ts,l’ and Ts,I for a case run to

quasi-steady-state ablation condition.

Numerical Results for an Ablation System Experiencing Thermal, Chemical,
and Mass-Transfer Processes

Figures 7 and 8 present numerical solutions for a charring ablator system subjected
to a constant heating rate. The ablator system considered here is typical of the general
ablation problem in that thermal nonequilibrium of the char layer and pyrolysis gases
exists and chemical reactions with mass deposition occur within the char layer. The
heating rate, enthalpy, and pressure histories used in this calculation are given in table 5,
and the material properties used are given in table 6 (from ref. 14). Table 7 lists the
chemical reactions and kinetics data. Figure 7 shows time histories of surface removal,
pyrolysis rate, char thickness, char-surface temperature, and pyrolysis-gas temperature
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Figure 7.- Typical time histories of mg, r'ng, 1, surface temperature, and pyrolysis-
gas temperature at surface for an ablation system subjected to constant heating rate.

TABLE 5.- TRAJECTORY DATA USED IN MAKING CALCULATIONS FOR AN
ABLATION SYSTEM WITH THERMAL, CHEMICAL, AND MASS TRANSFER

dc, W/m2, at time, sec:

0 e e e 2.162 x 103
10 . . e 8.0 x 105
1000 . . . . e e, 8.0 x 10°
Py, N/m2, at time, sec:
O s, 1.0 x 10-6
S 1.0 x 10-4
20 L L 9.0 x 10-4
89 L e 1.0 x 16-1
1000 . . v vt e e e e, 1.0 x 10-1
5 P 3.1x 109
e v v e e 0.23



at the surface. These parameters change very rapidly at early times, but after 100 sec-
onds the temperature and mass-transfer rates are approaching steady state. The spike
in r'ng at 10 seconds corresponds to the rapid increase in system temperature at initia-
tion of heating. The sharp drop in r'ng results from the growth of the char layer which
insulates the pyrolysis zone and from the blocking effect of the pyrolysis gases which
reduces the heat transfer to the char surface. The initial steep slope of the surface
mass-loss curve fns is associated with the rate-controlled (highly temperature-
dependent) oxidation regime. The curve for mg undergoes an orderly transition to the
much flatter region which corresponds to the diffusion-controlled oxidation regime.

Figure 8 shows profiles of pyrolysis-gas temperature, molecular weight, mass-flow
rate, pressure, char-layer temperature and porosity at a time of 500 seconds for the
same case. Note that x = 0 is the char-layer surface and x =1 is the pyrolysis zone.
The presence of chemical reactions and mass deposition is indicated by the decrease in
molecular weight and pyrolysis-gas mass-flow rate.

g
1.0 \ \_—:—_-_._
)

Figure 8.- Profiles of pyrolysis-gas temperature, char-layer temperature, pyrolysis-gas
molecular weight, char porosity, local mass-flow rate, and pyrolysis-gas pressure at
time of 500 sec. (See fig. 7.) Char thickness = 1.646 x 10-2 m; P, = 1.013 X 104 N/n12;

g = 1.52 x 1072 kg/m2-sec; Mp = 2.573 x 1072 kg/g-mol; Ts,1 - Ts,1 = 1312 K.
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TABLE 6.- THERMOPHYSICAL PROPERTIES OF LOW-DENSITY
PHENOLIC-NYLON ABLATION MATERIAL (REF. 14)

Char:
Oxidation kinetics (first order):
Specific reaction rate constant, kg/m2-sec-atm . . . . .. . ....... 4.90 x 1010
Activationenergy, K . . . . . . . . . . L L e 4.25 x 104
Mass of char removed per mass of oxygen reaching surface . . . ... ... ... 0.75
Heat of combustion, J/KZ . . . . . . . v v v vt e e e e 1.20 x 107
Heat of sublimation, J/KE « « « « v v v v v v e e e e 5.00 x 107
Surface emissivity. . . . . . . . . L L e e e e e e e e e 0.80
Theoretical density, kg/m3 . . . . . . . ... ... . . 1.43 x 103
Porosity at pyrolysiszone . . . . . . ... ... o e e 0.85
Proportionality constant in equation for gas char heat-transfer
coefficient, 1/m . . . . . . .. it e P, 1.00 x 103
Permeability, m . . . . . ... .. e 1.00 x 10-9
Thermal conductivity, W/m-K, at temperature of —
2T8 K . . e e e e e e e e e e e e e 0.16
B33 K . . e e e e e e e e e e e e 0.16
TII0K . . o o e e e e e e e e e e e e e e e e e e 0.50
1390 K . . . o v e e e e e e e e e e e e e e 1.22
L 1 - 1.87
1940 K. . . . o o e e e e e e e e e e e 2.65
2220 K . o s e e e e e e e e e e e e e e e 3.74
2500 K . . . o e e e e e e e e e e e e e e e e e 4.75
2780 K . . . e e e e e e e e e e e e e e e e e 6.24
3050 K. . . . e e e e e e e e e e e e e e e 7.66
Uncharred material:
Density, kg/m3 . . . . . ... e 5.53 x 102
Pyrolysis kinetics:
Specific reaction rate constant, kg/m2-sec-atm . . . . ... .. ..., 7.74 x 106
Activationenergy, K . . . . . . .. .. ... oL Lo o 1.289 x 104
Effective heat of pyrolysis, J/KE& . . . . . v v v v v v v v e e 1.28 x 106
Specific heat, J/kg-K, at temperature of —
BILK oo oot e e e e e 1.51 x 103
BETK © o o e i e e e e e 1.80 x 103
23K ot 2.07 x 103
AT8K o o oo e e e e 2.24 x 103
B3ZK v vt e e 2.28 x 103
BBIK & v it i e e e e e 2.28 x 103
Thermal conductivity, W/m-K, at temperature of —
300 K . . . e e e e e e 0.080
L - G 0.084
500 K . . . o e e e e e e e e e e e e e 0.088
BIOK . . . e e e e e e e e e e e e 0.092
TI0 K o e e e e e e e e e e e e e 0.094

Initial composition of pyrolysis gases, mole fraction of chemical species
at pyrolysis zone:

101 0
2 S 0.294
CoHy o v e i e e e e e e 0
CoHg . o o i e e e e e e e e e e 0
L0 P 0.59
HoO . . . o e e e e e 0
) 8 L T 0
S 0.009
COg v i i i e e e e e e e e 0
HON & o o et e e e e e e e e e e e e e e e e e e e e e e e 0
[0 - U J T T 0
(07} ¥ S T T T 0.107
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TABLE 7.- CHEMICAL REACTIONS INVOLVING PYROLYSIS GASES AND CHAR

kg
General reaction: aA+bB+. .. = nN+00+. .. where k= A exp(-B/T)
kr
Activation
: Rate Frequency
Reaction Type law factor, A energlg, B,
1 1 14 4
CHy -~ 3 CoHg + 3 Ho Homogeneous kA 7.60 x 10 4,775 X 10
CoHg — CoHy + Hg Homogeneous kA 3.14 x 1015 3.019 x 104
CoHy — CoHo + Ho Homogeneous kA 2.57 x 108 1.157 x 10°
CoHg — 2C + Hyg Homogeneous kA2 2.14 x 1010 2.009 x 104
CgHg ~ 6C + 3Hg Homogeneous keA 1.40 x 1011 | 2,622 x 104
C + COy - 2CO Heterogeneous | kB 1.20 x 1012 | 4.282 x 104
C +H90 - CO + Ho Heterogeneous kB 9.26 x 103 3.524 x 104
NHg ~ = Ny + 1% Hy Homogeneous keA 2.86 x 106 3.055 x 10%
NH3 + C ~HCN +Hy | Heterogeneous | kA 8.78 x 108 3.885 x 10%

Figures 7 and 8 demonstrate the capability of this analysis to obtain solutions for
the general ablation problem. The significance of this capability lies in the increased
accuracy of the results and the greater detail in which the thermal, chemical, and mass-
transfer processes are treated compared with previous treatments of the problem. The
governing mass-transfer equations are solved numerically in their fully transient form
compared with the previously used quasi-steady form.

The detail in which the chemical and mass-transfer processes are treated provides
a complete characterization of the pyrolysis gases injected into the boundary layer and
describes the char-layer densification by mass deposition. The complete characteriza-
tion of the pyrolysis gases leaving the char layer is critical in making calculations for
the flow field about an ablating body since the injected species strongly influence the flow-
field chemistry. Consideration of mass deposition in the char layer results in a more
accurate calculation of char density. The surface recession rate is directly related to
the char-layer density at the surface; thus an accurate description of the mass-deposition
processes enables a more accurate computation of the total-surface recession.

The full significance of possessing the capability of treating thermal nonequilibrium
of the char layer and pyrolysis gases is not known at this time because the fluid-solid
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heat-transfer characteristics of charring ablators have not been determined. Any lag of
the pyrolysis-gas temperature relative to the char temperature usually reduces the ben-
efits obtained from thermal, chemical, and mass-transfer processes in the char layer
compared with the case with thermal equilibrium between the two phases.

The effects of the fluid-solid heat-transfer characteristics on charring-ablator
thermal performance are shown in figure 9. Profiles were calculated for ablation mate-
rials of the same thickness (but different fluid-solid heat-transfer characteristics)
exposed to a constant-heating-rate environment until all the material was pyrolyzed. The
abscissa in figure 9 is the constant K in equation (7) which defines the fluid-solid heat-
transfer coefficient of the porous char layer. The pyrolysis-gas—char-layer tempera-
ture difference at the char surface is a measure of the thermal nonequilibrium of the sys-
tem, and the exposure time required for pyrolysis of a given thickness of material is a
measure of the thermal performance of the material. The molecular weight of the pyrol-
ysis gases leaving the char layer indicates the extent of the chemical reactions occurring
in the char layer.

1.0

t, 103 sec

( Air flow through porous metal

1 \r } I —

0 .2 4 .6 .8 1.0 x 103

Kh , i/m

Figure 9.- Effect of pyrolysis-gas—char-layer heat-transfer characteristics on

K nv p.C .

performance of ablators. q = H (T, - T}; Hp = h 1Pt
A\*s ’ A

1\TPr M1
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As a point of reference for figure 9, K; for air flow through porous metal with a
porosity of 0.4 is about 400 per meter (ref. 9). At values of K; of 400 and larger the
pyrolysis-gas—char-layer temperature difference is less than 50 K and the time to com-
plete pyrolysis is within 2 percent of the limiting value obtained when T = Tg. At values
of Kj, less than 200 the pyrolysis-gas—char-layer temperature difference is much
larger and the time to complete pyrolysis approaches its lower limit which is 75 percent
of its upper limit.

In figure 9 a very sharp transition in pyrolysis-gas molecular weight occurs around
Kj = 40 per meter. At values of K greater than 50 per meter the chemical species
injected into the boundary layer are in equilibrium; however, the location within the char
layer at which the chemical reactions occur is affected. Figure 10 shows profiles of
pyrolysis-gas molecular weight in the char layer for several values of K} ranging from
50 per meter to 1000 per meter. This figure shows that a larger K results in chem-
ical reactions occurring nearer the pyrolysis zone where heat absorption processes are
more effective.

10 —
K 501
p = 20™
8 - 90 250 /1000
6
M/M,
4
2 -
1 | 1 | J
0 .2 4 .6 .8 1.0
X
Char surface Pyrolysis zone

Figure 10.- Effect of pyrolysis-gas—char-layer heat-transfer
characteristics on chemical processes in ablators.
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Comparison of Current Results With Those From Previous Analyses

Calculations were made by using this analysis and the analysis of reference 4 for
an ablator system subjected to a constant heating rate. In each case calculations were
made for constant heating until all the uncharred material was pyrolyzed. Results from
these calculations are shown in figures 11 and 12, Figure 11 shows histories of char-
and uncharred-layer thicknesses and surface temperature. Figure 12 shows the surface-
removal rates and the pyrolysis rates,

Current analysis

20 ---- Ref.4

0 2 4 6 8 10 x 102
Time , sec

Figure 11.- Thickness and temperature histories obtained with current analysis and
reference 4 for an ablator subjected to constant heating.

The current analysis indicates that the time to experience a back-surface tempera-
ture rise of 167 K is 16 percent greater than the time indicated by the analysis of refer-
ence 4 (fig. 11). This difference in time results from the mass deposition in the char
layer which is treated in this analysis but neglected in reference 4. Mass deposition
densifies the char layer ne
shown in figure 11. The thicker char layer provides greater insulation of the pyrolysis
zone and, hence, a lower pyrolysis rate as shown in figure 12. The lower pyrolysis rate
provides less convective blocking at the front surface, thereby, resulting in a slightly

higher surface temperature (see fig. 11) and surface removal rate (see fig. 12).

o 3 n +thinlran Ahon 1o
O il A4 ulluvncil uiiai ia
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—— Current analysis
---- Ref. 4

\Z r.ns , 1073 kg/mz-sec

10 —

Time, sec

Figure 12.- Mass-transfer histories obtained with current analysis and
reference 4 for an ablator subjected to constant heating.

The presence of deposition in the char layer of ablators has been known for some
time. Ablation calculations have been made in the past by using the analysis of refer-
ence 4 wherein modifications of the input data were included to account for the presence
of char-layer deposition. The difference in the results obtained with these two analyses
is caused by a process which has been handled effectively by empirical means prior to
this time. The present analysis provides a quantitative theory to calculate gas-phase
reaction effects such as carbon deposition. Therefore, the present analysis can not only
be used to validate results obtained with simplified analysis; but it also provides guidance

in modifying the simplified analyses to include gas-phase reactions with engineering
accuracy.

CONCLUDING REMARKS

A one-dimensional analysis of the transient response of an ablative thermal protec-
tion system, including a detailed treatment of the various thermal, chemical, and mass-
transfer processes, is presented. These equations are solved numerically by using a
modified implicit finite-difference scheme. Numerical results compare favorably with
exact solutions for a number of simplified cases.
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Calculated results for an ablative material subjected to a constant moderate heating
rate show that thermal nonequilibrium, chemical effects, and the overall performance of
charring ablators are strongly affected by the pyrolysis-gas—char-layer heat-transfer
characteristics. For the condition analyzed, as the gas-char heat-transfer coefficient is
reduced below about one-half the value for air flow through porous metal, the pyrolysis-
gas—char-layer temperature difference becomes significant and the total performance
drops sharply. The pyrolysis gases leaving the char layer have undergone degradation
to their low-molecular weight form except at very low values of gas-char heat-transfer
coefficient.

Calculations made with this analysis show that ablator performance is 16 percent
better than is indicated by calculations with a less detailed treatment of the thermal,
chemical, and mass-transfer processes. This difference results primarily from con-
sideration of mass deposition in the char layer.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., March 19, 1973.
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APPENDIX A
TRANSFORMATION OF COORDINATES

The transformation of the governing equations from the fixed coordinate system to
the moving coordinate systems attached to the ablator boundaries (see fig. 1) is pre-
sented in this appendix.

Location of System Boundaries

The char surface moves with respect to a fixed coordinate system when surface
removal occurs. The change in location of this boundary with respect to time is given by

t 3
7 =§ Ds gt (Ala)
0Ps,0
where

and the change in location of the pyrolysis zone with respect to time is

tm :
=\ —Eat (A2)
0 Ap

The char-layer thickness at any time t is given by

1=1 g mg dt (A3)
= + _—
¢ 0\Ap Ps.0

b

and the uncharred-layer thickness at any time t is given by

Lt
vt - | Ea (%)
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APPENDIX A — Continued

Coordinate Transformations

The equations and boundary conditions for the char layer are transformed to a non-
dimensional moving coordinate system with x = 0 at the front surface and x =1 at the
pyrolysis zone by using the following transformation (see ref. 4)

X = (A5)

Similarly, the governing equations and boundary conditions for the uncharred layer are
transformed to a nondimensional moving coordinate system with x' =0 at the pyrolysis
zone and x' =1 at the uncharred-layer—insulation-layer interface by using the following
transformation (ref. 4)

x'= (A6)

The boundaries of the insulation layer are also nondimensionalized with the
transformation

y - (l + l(')>
LI (an)
ZH
By using these equations, the space derivatives in the fixed coordinate system
become: For the char layer
2. 13 )
o9y Il &x
) (48)
02 _1 o2
ayz 12 axzj
ror the uncharred layer
218 |
oy l' ox'
) (A9)
82 1 92
ay2 I 2 axz
) =)
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APPENDIX A — Continued

For the insulation layer

The time derivative in the char-layer equations is transformed as follows

(1) _ (1) ,[ex o, ox
d/fixed \%t/moving \2 Ot

where
x_ X W
1 l
x__10s
Bt ps,O
t/m m
=1, +5 —£__ S at
0\Ap pS,O
o _Mg Ms
8 Ap pS,O
J/
Therefore
hea™ (#honing 7
bt/fixed \Ot moving
where
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APPENDIX A - Continued

For the uncharred layer the time derivative is transformed as follows

(3) _ (i) . (EL'EJL’)L (Al5)
% tixed ot moving al' ot at/ox’
where
& __x' )
al' A
ax'_ _1TMg
ot ' Ap
> (A16)
t tn
=7 -Sﬂ —2 gt
0 AP
ot Ap
/
Therefore
(1> i} <g> Eg(l -_x'>_§_ (A17)
9t/tixed \t/moving AP\ U' /X

Transformed Differential Equations and Boundary Conditions

The differential equations and boundary conditions in the transformed coordinate
system are given in a convenient standardized form in the following sections.

Solid temperature equations and boundary conditions.- The transformed char tem-
perature equation is

39Ty 8Ty 9T
. + oy o +ayTg + ag +a4-?t—=0 (A18)
where
ok
_1|s 201 _
= o o + Pl (1 n)Cp,ch (A19a)
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APPENDIX A — Continued

2
l
= - o—— Algb

2 |
orf;ﬁ_s H,T + nRsEH(T)]S + MRy Hg = M er(lr)AH(r) +(1-n)(A - E)
r

p_H
_ " S 371 - fﬂ Al9
- may + Sy ) (a190
psC
oy = -(1 - =RS (A19d)
MSkS

The transformed temperature equation for the uncharred layer is

a2 9T aT},
S+al —S40!T +al+a, —S =0 (A20)
(8x")
where
ok! m
N S - TP ' B(1 - x A2la
) g o +1 Cp,sps Ap( x") ( )
a'z =0 (A21Db)
aé =0 (A21c)
p 2
Ch g’
o = -pr SBs@) (A21d)
4 S k'
S
The transformed temperature equation for the insulation layer is
2 1] 1" Tt
i) TS STS 8TS (A22)
+ all + a" " + a" 1" = o
1 ox" 2°s 3 + a4 ot

ex)2
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where

The boundary conditions for the solid temperature equations are as follows:

At x=0

e

qc< --II:—W> 1-(1-p)o.724

ak"
ar=1_8
kH 3xn
S
ay=0
al=0
"o n‘ 1"
oy = pst,s

At x=1, x'=0

and

At x' =1,

and

()?
kg

APPENDIX A - Continued

. . \2 .
HemT _ 0 13 HemT _ Bﬁ HemT
qcMy qcMy AcMy
k_ 9T
_ 4 s 'S

= oeSTS,l - _l__a—x- +8S
' t
an - S5 0s
g P 1" &x'

-~ 3Tg

+oqp + r'ncAHc

<Ts,1 - T1>mstc

(A23a)

(A23Db)

(A23c)

(A23d)

(A24)

(A25a)
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At x"'=1

aT"
4 p s

- —— =ge''(T" C 2 A27

" oax" * qB S< S> + pHSP p,HSPlHSP ot ( )

Pyrolysis-gas pressure equation and boundary conditions.- The transformed
pyrolysis-gas pressure equation is

2,2 2 2
°p P 2 ape _
az+'}’1—a;-+’}’zp +'}’3+'}’4—5—t——0 (A28)
X
where
M \'4
KT o [k AL (A292)
K|M Bx\uT P
2 e e -y —_
y2=-.___“_nin£-vcm-nMa_T_§I +MM-VC-8—11» (Ang)
=EEEZ Rp M (A29¢)
Ko 1 )1
vy = -% (A29d)

The boundary conditions for the pyrolysis-gas pressure equation are:

At x=0
P=PW (A30)
At x=1
9 LT .
Z(P2) = 2IR,, &= A3l
(P = 2Ry Lo ing (A31)

Char porosity equation and boundary condition.- The transformed char porosity
equation is

n o _
3)—(+E1n+E2+E35t——0 (A32)
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where
|
' -Mg(R +R
El - S( h,S S) (A33a)
| pSVC
: EZ =0 (A33b)
)
E,=-—L (A33¢)

Ve

The boundary condition for the char porosity equation is unchanged by the coordinate
transformation.

Pyrolysis-gas temperature equation and boundary condition.- The transformed

pyrolysis-gas temperature equation is

§I+BIT+BZ+B3—=0 (A34)
where
0 9 9 Ps
H, - nRy He=(— - U V. P
A" nMQ’t ¢ 8x> <; > (z >ax12 M1>
By = (A35a)
v 1 p 1 i
"(7 - V°> Z ZK«'
1 i
2
Z RT,iHi - v?z RT 1M1 +R E—I(T)]S + R'h,SHS _ Z r}(lr)AH(r) - HATS
By = 1 : i (A35b)
v i p,
v e
> By = — (A35¢)

3 v -,
o

The boundary condition for the pyrolysis-gas temperature equation is unchanged by the
coordinate transformation.
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Chemical-species continuity equation and boundary condition.- The transformed
chemical-species continuity equation is

5 . . 9 .
where
R .M,
1on, [[ITATE Lon gy 2V
n 0X Py n ot ox
A . = (A37a
1, WV, -v )
op:
s
Ag . = ————— A3Tb
2,1 W, -v ( )
A3,i =0 (A317c¢)

The boundary condition for the chemical-species continuity equation is unchanged by the
coordinate transformation.

Total-mass conservation equation and boundary condition.- The transformed total-
mass conservation equation is

3 - ] e}
o 0= U5 (00) - 7 ) Ry (M - Ve 2-(n0) (A38)
1

It is convenient to integrate this equation numerically rather than use finite-difference
methods; hence, it is not expressed in the linear form. The solution to this equation is
used with the total density obtained from the equation of state to determine the mass
average velocity of the pyrolysis gases. The boundary condition for the total-mass con-
servation equation is unchanged by the coordinate transformation.
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FINITE-DIFFERENCE EQUATIONS

The procedure used to solve all equations except the total-mass conservation equa-
tion involves converting the governing differential equations to finite-difference form and
solving the resulting sets of algebraic equations by iteration. The total-mass conserva-
tion equation is solved by numerical integration,

The distances between stations in the char layer, the uncharred layer, and the
insulation layer are

ax=-L)
I-1
v 1
Ax =3 B (B1)
1
AX" = —
K

v

where I, J,and K are the number of stations in the respective layers. The station
coordinates are: For the char layer

x = (N - 1)Ax (B2)
For the uncharred layer

x' = (N - I)Ax' (B3)
For the insulation layer

x"=(N-1I- J)Ax" (B4)

Solid-Phase Temperature Equations
The differential equation for the char temperature is
82T T oT

825+a1 axs+a2Ts+a3+a4
X

—S=o0 (B5)
ot

45




. A&
APPENDIX B — Continued

Interior stations of char layer.- At interior stations the partial derivatives are
replaced by central-difference approximations. The central-difference approximations
of the partial derivative are obtained from Taylor series expansions at the station N
evaluatedat N+ 1 and N - 1. Thus

<a'rs> T (N + 1) - T (N - 1)
N

(B6)
ox 2AX
which is accurate to terms of the order of Ax2 and
asz ) T (N - 1) - 2T_(N) + T (N + 1) -
2 2
ox N Ax
which is accurate to terms of the order Ax2,
Equations (B6) and (B7) are used in equation (B5) to obtain
1 1( )
5 |TN - 1) - 2T () + Tg(N 4 1)] + [T(N 1)-T(N—1):]
+ag(N) Tg(N) + ag(N) + a,(N) 8TS> 0 (B8)
+ O + o =
20 s 3 AW\t )y

The finite-difference approximation of the time derivative in equation (B8) is
obtained from Taylor series expansions at time P + (At/2) evaluated at time P and
P + At. Thus

P+(At/2) P P+At
oT oT
s 1| P["*s P+At s
a t— = - — — Bg
45 5 lal ) * o n (B9)
which is accurate to terms of the order Atz. Now
P+(At/2) P+(At/2)
o f& _ aP+(At/2) 8Ts (BlO)
4 5t 4 ot
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} where
| af+(At/2) ) _;_ Q"f . afmt) 1)
|
" and
|
P+(At/2)
BT T§+At - Tg
S == 2 (B12)
’ ot At
Combining equations (B8) to (B12) gives
A,®) TN - DPHALL B ) TP c ) TN + DFHAY = DY) (B13)
where
P+At
1‘_1 o )7
AN) =2 - (B14a)
2 \_sz 2Ax
P+At P P+At
B.(N) = %{3:2(N) - _2_2 + 7i-thtl(N) + a,(N) + ]} (B14b)
Ax
P+At
p oM
CS(N) = + (Bl4c)
: 2Ax2 4Ax
t
P
at]l 1]1 AW -I P
DS(N) = -%EI:;(N)P + a3(N)P+ ] - -2-[ - TS(N - 1)

Ax2 28X J

Av

; %&2@1)1’ -2 - i@ JF + o 4(N)P+At]>TS(N)P

k ——
P
N
i %[1 - + a;f_\x) }TS(N + )P (B14d)
Ax
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Interior stations of uncharred layer.- The modified implicit finite-difference equa-
tion at interior stations of the uncharred layer is obtained in a similar way. The result-
ing equation is

ALN) Tg(N - DPHAL L B (N) T (N)FFAL, CL(N) T (N + nF+AL. D.(N) (B15)
where

P+At
al(N) (B16a)
LAX )

[4(N) +a 4(N)P+At}} (B16D)

Al (N)——

By(N) = 3 {ap@)PAt -
(ax')?

l’— . al(N)P+At

2 LAx )2 24x!

Cé(N) = (B16c)

' P
D' (N) - _1@. WP 4 ol (N)P+Atil ) J 1 4N T(N- 1P
s 903 3 2'_(Ax')2 2A%" s

2

1 P
-=dal (N) -
22 (ax")

- 1 ay,mF + a"l(N)P"A'] TS(N)P

v (P
a;(N)
o e A Y 1 (B16d)

Interior stations of insulation.- The modified implicit finite-difference equation at
interior stations of the insulation layer is similarly obtained as

A ToN - AL BI) T 0P L cin T (v + )PA - D) (B17)
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where
ALY I Ci (B182)
=~ a
\\Axn)z 2Ax"
" __]; [T} P+At 2 " P+At
By(N) = 5 (ay(N) g At[ @ + aym) ] (B18b)
vV(N)P+At
"(N) _EIL 1) +a12Ax” (B18c)
AXH
" PAf 1( L _\P
Dy = -LaymvP + agmPraY - 1 LAX">2 Ll XOREY
1) wanP 2 P+At P
- o {ay(N)* - e ")2 At[ 4(N) + ay(N) + :| T (N)
AA 4 P
_l[ S ol TN + )P (B18d)

2 kM")z * 2Ax"

Boundary stations.- Each boundary-condition equation and the corresponding govern-
ing differential equation are combined to obtain a differential equation which is valid only
at the boundary. The solution of this equation satisfies both the boundary condition and

the governing differential equation,

At front surface (N = 1).- The front-surface boundary condition is

7 S gy

oA /N=1

oT -
1 . . 4
(k —j = dAERO * m.AH - S<Ts,1 - T1>mstc - msSTS’1 (B19a)

where

9AERO = 9C,net * 4R (B19b)
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The usual procedure at this point would be to combine the boundary condition with the
differential equation for the char layer (eq. (A18))

92T oT 8T

Sy, —= 4 @,T +0q +Q
32 1 ax 2°s 3 4
X

—S_-o (B20)
ot

by inserting the boundary condition in place of the first derivative. However since the

coefficient @, is quite small for most ablator systems, this method does not give good

results. This proglem is overcome by including the boundary condition in the second-
84Tg

9x

derivative term

The second-order term in equation (B20) is written as

92T oT
S . i<_~°’> (B21)
8x2 ax\ 9x

The derivative of the temperature gradient is obtained from Taylor series expansions at
the station N =1 evaluatedat N=2, N=3,and N=4. Thus

aT aT oT T aT
SR R IS I
X\ 9X N-1 X X /N=1 X | N=2 X /N=3 X/

Equations (B19) to (B22) are combined to obtain the finite-difference equation at the
surface

11 l 3 3 3
1) - —— 1)° - 1 1 —_— 2
Exl( rye kg (1) sTsll) 282 1T + 4ax? Ts@
v 1 (3) - 3T @)+ —L_T_(5) + a,Q1) -qC’“etlEx (1)
3ax2 ° 4ax2 ° 6ax2 ° 3 ks(1) L1
RS *’Ts> _
GAx] + a4(1)<—at— L 0 (B23)

Following the procedure used to obtain the modified implicit finite-difference equa-
tion for interior stations, the analogous equation for the station at the front surface is

P+At P+At P+At P+At P+At _
BlsTs(l) + CISTS(Z) + GISTS(3) + HlSTS(4) + IlSTs(5) =Dlg
(B24)
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where

lP+At06 3
Bls = al(l)P+At 11 EI. ( )P+A] _ __3__ +
2Ax2

6Ax Kk (1)P+At

1l LF +a 4(1)P+At:l

3
C1l_ =
S 8Ax2
Gl = Lz
3Ax
HI, = -3
8AX2
I = 1
12A%2
P P+At P+At 11 | P+At
Dls = -a3(1) - (13(1) + 011(1) - -GT—AX} ,nEt

P
_iilqg . \}1(1)13_ 1|t % [1‘ (1)1)]3_
6ax| C.net k()P i 68, (1)P 8

bt '!I-\A

_Al_‘_4(1) + a4(1)P+A‘§T oF - 2o .@f

+

p 1 = P
> Te@" - —— T,(6)
4Ax 6AX

az(l)P+At
(B25a)
(B25b)
(B25¢)
(B25d)
(B25e)

P+At

ks(l)P+At
3 P
+ ao(1)
2 2
_4

—T (3)

oaXx
(BZ51)
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At pyrolysis zone (N =1I).- The boundary condition at the pyrolysis zone is

oT oT
; ZIQ{S _5_S> =i AH - %(k's a—s-> (B26)
*/N=1 X /N=1

Equation (B26) is combined with the differential equations for conservation of the char
layer and the uncharred layer in the same manner as the surface boundary condition was
combined with the char-layer equation to obtain the following modified implicit finite-
difference equation

P+At P+At P+At P+At
ZISTS(I - 4) + YISTS(I - 3) + XISTS(I - 2) + AISTS(I - 1)

P+At P+At P+At P+At
+ BISTS(I) + CISTS(I +1) + EISTS(I +2) + FISTS(I +3)
P+At _
+ GISTS(I + 4) = DIs (B27)
where
X (I)P+At/<12 axiP+AY)
Z1 = (B28a)
+
lP+At (l')P+At
P+At
P+At[ 3 (D P+At
kS(I) + l
lgAx 3
VI, = (B28b)
(I{s @)P+At o, @0 P+Atax K. (D) P+At a4 () P+At, s
2 +
L ,P+At @) P+At
P+At
3a (%)
'ks (I)P+At 4 + 1 lP+At
3AX 2
Xl = (B28c)

2 +

P+At (l')P+At

l
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_kS(I-)P+At|i3 3 al(I)P+A1i‘l /ZP+At |
4Ax

Alg = (B28d)

lP+At (ly)P+At

PiAt
1 1 ks(I) [3

ks @ P+aAt a4(I) P+At Ax k's 1) P+At 1 (I) P+At lP+At lgAx

i

+
P+At @ ')P+At

kv (I)P+At ‘

_Hal(I)P+At _ az(I)P+AtAx + 3 11 l(I)P+At o (I)P+At
6 (lv)P+At 2AX' 6

(B28e)

4AX

Cl = (B28f)
ZF{S (@P+At a, mP+Atay K (P +Aty: (I)P+At "
+

L | PrAt @) P+At J

EI = (B28g)

+
lP+At (ll)P'l-At

1 .,,\P+At—l /,,.\P+At
-3 1t @

I Ry, P+At‘_ 3
A rvec
4Ax
FI, = (B28h)
, l_ks (@ P+At a4(I)P+At Ax K, (@ P+At a;l(I)P+At A
+

L JP+At (@' P+t
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+
lP+At (lv)P+At

GI

s (B28i)

. . l—ks (@ P+At ay (O P*+Atax

k. @PHat a4(I)P+At Ax ka(I)P+At @ PHAL AxT‘L  P+At
+ ]

9|8 Xy
L lP+At (l.)P+At

' P+At P+At '
k_(I) aq(l) Ax
+ S 3 _ 11 mP+AtAH +

' 6 &
(@) P+t

1

2ks(1)Pa4(1)PAx k. (Fa,mPax’
+

lP (l')P

P P v PP
k. (I)7 as(I)” Ax Kk (I)” a()” Ax
x |- 3 53 L gAHp
lP (l')P 6

P/.P 5
k (I)"/1 .
_ L0/ 1 Ts(1'4)P+'Z—3—+al():]TS(I-3)P
P

4 3 P P 3 P P
; [33 + 2 ay 0 leS(I -2)P - LE - 3a,(1) :lTS(I - 1)

1 k@

zks(I)Pa4(I)PAx k.0Pa,mPax|| £ 24X
+
P

(Equation continued on next page)

54




APPENDIX B — Continued

k@ g gy PP 1 P
P23 MR aymPax)y « 1| T,
; (l')P ZAX' 6 At

KL mF/)P [
2[1-<S(I)Pa 4(I)PAx k's(I)P ozll(l)P Ax' l_‘mx
+

+3a)@F|T @+ DF 4|2
! 3Ax

ZP (l')P

3 P P 3 1 +oP P 1 P B28j
-3 7T+ 2)7 - |- - 2 a7 T+ 3)" + = Tl + 4) (B28j)

t

At uncharred-material—insulation interface (N = I + J).- The boundary condition at
the interface of the uncharred material and the insulation is

oT oT

Jlp s _ L s + psCy gslas\i= (B29)
U\ S ax' 1"\ S ax" HS™p,HS"HS\ 5¢
N=I+J N=I+J N=I+J

Equation (B29) is combined with the uncharred-material temperature equation and the
insulation-material equation by following the procedure used for the pyrolysis-zone equa-
tions. The resulting modified implicit finite-difference equation is

P+At P+At P+At
ZPSTS(I +J-4) + YPSTS(I +J-3) + XPSTS(I +J-2)

P+A
+APT(1+J - DPHAL, Bp T (14 )P, cp T (145 + )P

+ EP T U +J +2) +FP T (i+J+3) +GP T+ + 4) = DPg (B30)
where
s -
+ -p
HsCp HS'HS
(l')P+At (ln)P"I-At
(B31a)
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[ . P+At
ai(I+J)
K (1 + J)P+A%')P+At 3,4

S

4Ax’ 3
YPS =
k;(I + J)P+At ' (I + J)P+At kaV(I + J)P+At "(I J)P+AtAxn .
2 + - PrraC lH
) Y HsCp,HstHS
@ )P+At @" +A
(B31b)
3Aax' 2
XP =
kS(I + J)P+At '(I + J)P+AtAX' k'SV(I +J )P+At "(I )P+AtAx é ZH
2 + -p
us“p,HS'HS
(l')P'f-At (ln)P+At
(B31c)
4Ax'
, ké(I + J)P+At ' (I )P+AtAxv k'S'(I + J)P+At H(I )P+AtAx" R
+ - Py C lH
HsCp HslHS
(Z')P+At (ln)P+At
(B31d)
BP, = 1
, k's(I + J)P+At [ (I J)P+AtAxy k:s'(I + J)P'l-At n( J)P+AtAxn é lH
+ - PHs™p, HS'HS
: m P+At P,
@ )P+At @ )P+
P+At " P+At
( +J) I+J)
@)Frat L‘”‘ @)
% 3 +_ al(I )P+At - ava(I + J)P+AtAxH _ L (B31e)
2ax" 6 At
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_kav(I + J)P+At (lvv)P+At + 3(11(1 J)P+At
CPS = — L
's( )P+At '(I J)P+AtAX k"(I+J)P+At n( J)P+At 5 lH
-p
HS™p,HS'HS
[} A 1" ’
(B311)
-k'S'(I + J)P+At (ln)P+At 4 3 (I )P+At
3Ax"
EPS =
zﬁ{é(“ )P+t 4L+ 7)P+atay KT+ 7P+t e 5y PHAty, .
+ - Pr;cC I’H
HS~p HS'HS
n P+At m P+AL 2
L @) @)="
(B31g)
_k'S'(I + J)P+At (ln)P+At 3 _ l avlv(I + J)P+At
4Ax" 3
FPS =
. k'S(I + J)P+At v(I J)P+AtAxy kVSV(I + J)P+Atl12(l + J)P+AtAxn R
+ - P cC Z’H
HS™p,HS"HS
' [T A 4
(B31h)
GP _k's'(I + J)P+At/|3.2Ax"(l")P+At]
s~ T
+ - Py eC Iy
HS~p , HS'HS
[} 1 A 4
(B31i)
. k;(l + y)PHat ay(r + J)Prat Ax./(l.)Pmt SR+ J)P+Ata§(1 . )Pt Ax,,l/(lu)P+At
S 4
) k's(I + J)P+At V(I )P+AtAx. kg(I +J)P+At vv(I P+AtAX 5
+ - PusCp Hslus
(lv)P+At (l")P+At

(Equation continued on next page)
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KL( + J)P/(z')P

+ - PysCp uslus

k (I + J)P+At V(I J)P+AtAx| k'S'(I + J)P+At H(I + J)P+AtAX
P+At (ZVV)P+At

L ra+r-9P |2 slaias pPT @ g - 9)F
6Ax’ Tlaax T3

.3 3
+5ajl+ J)JT I+J-2) -|;E-3a1(I+J)]T @+J-1F

1
( KL+ J) ajl(l + HPax’ KI( + HPa oy (1 + + HFax"

+ - p C by
HS™p,HS*HS
@)® @
k(1 + )P s _ p kg(I+J)P[_3
. 6 i@+ 0P - ap@+ nPax| + _
P LAX (l")P lgAx
L@+ 9P - apa+ J)PAx'TJ + ZIE T (1 + DT
KU + J)P/ P
P 1 1" P "
(I+J) a4(I+J)Ax k(I+J) 4(I+J) Ax"' -
5 o - PysCp Hs'Hs
' l"

|

4 P
+3a I+ |T.A+T+ 1) + ——a I+J) |T.(I+J+2)
{4Ax" 1( ) } ( ) 3Ax" 1( ) :l S

-———a(I+J)T(I+J+3) 1
6Ax"

(B31j)
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At back surface (N =1 + J + K).- The back-surface boundary condition is

oT 3Ts

1(, ] _ " 4 ~
- —.,Q‘s Py > = 06T+ T+ K)" - qp + pHSPCp,HSPlHSP<__3t (B32)
N=L+J+K

> N=I+J+K

Equation (B32) is combined with the insulation-material equation. The resulting modified
implicit finite-difference equation is

22T+ T+ K- yz T 1474k - 3PHAL, XZ T (L +J +K - 2)PHAt
+AZT [+ T+ K- )P Bz T (1454 0Pt oDy (B33)

where

_
kKI(I+J +KF *At/ 12(Ax")zl']

77 =
S
5 ” PHAL, 11 oy +J + K)P+Atk's'(1 + J 4+ K)Prat
b o (I+J+ + - -
HSPCp, HsPHSP|%1 Py .

(B34a)
YZg = -4.52Z (B34b)
X7 = 8ZZ (B34c)
AZg = -YZ (B34d)

t A m2 1
BZ, =[6a2(I+J+K)P+ tax™? - sﬂzzs - A

3 3
oe's'[FS(I+J+K)P+AE] loz'l'(I+J+K)P+At +———11 J
6Ax"

X a, [+ +K) P (1, 5 g PHAt
2¢p C a"(I+J+K)P+At+ 11§ 4 S
HsP“p HSPHSP (%1 Py T

(B34e)

59



APPENDIX B — Continued

oz'l'(I+J+K)P+At+————11 -
_— 6Ax

T aH(I+J+K)P+At H(I J+K)P+At
20 apC a1+ J+x)FHAL, 11 | 4
1spCp HSPHSP|?1 A" "

al@+J+K)PHAY "(I+J+K)P+At/l
P+At ©3
X qB

a'l'(I +J+ K)P*'At+—-11 -
6AXx

11

1"

a'l'(I+J+K)P+

a,0+J+K)TK "(I+J+K)
11 4

p (I+J+K) + -
{HSP p HSPHSP|%1 Py =

=z a3(I+J+K) k"(I+J+K)171" k's'(I+J+K)P/l"

@+ 3+ 0T 2 a'l'(I+J+K)P+ 1
6Ax" 6Ax

TS(I+J+K)P 3 T (I+T+K- P+ —2 T (+T+K- 2)F
4(Ax") 3(ax")

L3

TS(I+J+K- l)P- L-0{'2'(I+J+K)P TS(I+J+K)P
a(ax")2 2(Ax")2

4
" P 1 P
-oeSEI‘s(I+J+K)] -ETS(I+J+K) (B34f)

Char-Layer Porosity Equation

The differential equation for the char-layer porosity is

2 on
ox |t EIN T Eg+ Eg—5=0 (B35)

60




APPENDIX B - Continued

The procedure to this point has been to approximate the first-order derivative by a
central-difference approximation. With that method the diagonal element of the coeffi-
P+At

P+At | B3
cient matrix would be E1 +

, where E1 and E3 are usually very small

compared with the off-diagonal coefficients. One requirement for a coefficient matrix to
be well conditioned is that the diagonal elements be of the same order in size as the off-
diagonal elements. Therefore, to overcome the problem of a near zero diagonal, the first
derivative is approximated by a three-point forward difference expression, part of which
contributes to the diagonal term. Thus

<@> _-3n(N) + 4n(N + 1) - n(N + 2) (B36)
X N 2Ax

which is accurate to terms of the order sz.

Combining equations (B35) and (B36) gives

E,(N) - i n(N) + ZZZ N + 1) - i n(N + 2) + Ey(N) + E3(N)<z—?>N =0 (B37)

which yields the following modified implicit finite-difference equation

BMN) n()FH2t 4 o) n(v + DPHAL L B (N + 2)PHAt - D) (B38)
where
-1 P P+At] 1 P+At _ 3
BN) = > [E3(N) + Ey(N) +5[EL ) e (B39a)
o) =L (B39b)
Ax
E(N) = -1 (B39c¢)
4Ax
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_ 1 P P+At| _1 P_3 1 P P+At P
D(N) = -5[Eq(N)" + Ey(N) 5(E1) rYoly E3(N)™ + Eg(N) 1(N)

1 P 1 P
-—n(N +1 +—7n(N + 2 B39d
( ) n ) ( ) ‘

Equation (B37) is valid at all stations from N=1 to N=I-2. At N=I-1 the
third term in equation (B37) would contain 7(I + 1) which is not defined. The finite-
difference equation for station I - 1 is obtained in a manner similar to that used to
obtain equation (B3'7) except that the first-order derivative is approximated by a two-point
forward difference equation. Thus

<E> _nm-n@-1 (B40)
O%/N=1-1 Ax

which is accurate to terms of the order Ax. The resulting modified implicit finite-

difference equation for station I -1 is

P+At P+At

B(I-1)nI-1) +C(I - 1) n(@) =D( - 1) (B41)
where
BI- 1) = Ll}'::s(l - )P LB, - 1)P+At] + Eo(1 - npP¥ALL 1 (B42a)
At Ax
-1
Ca-1)=2 (B42b)
DI - 1) = -[E:Z(I - )P+ By - 1)1’] -(E@- 1P - é - KITEE3(I -1P
B - 1)P+At] 21 - 0P - L P (B42c)
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The single boundary condition for the char-layer porosity equation is
n(D) = ny (B43)

Pyrolysis-Gas Temperature Equation

The differential equation for the pyrolysis-gas temperature is

8T aT
= + BT + + — =0 B44
0% + P 62 33 ot ( )

The single boundary condition for this equation is

TI) =T S(I) (B45)

The forms of the pyrolysis-gas temperature equation and its boundary conditions are
identical to the char-layer porosity equation and boundary condition; therefore, the modi-
fied implicit finite-difference equation for pyrolysis-gas temperature is of the same form
as the equations for char-layer porosity. Thusfor 1=NZ=I-2

By TP+t L o) TV + DPHAL L E) TV + 2)PAY - D) (B46)
where
1 P P+At| | 1 P+At 3
B(N) = EE%(N) + 53(N) * ] + P Bl(N) At 2—5(' (B417a)
cavy =L (B47b)
Ax
E(N) = 1 (B4T7c)
4AXx

D(N) = -%@2(N)P+32<N)P+At] -3 31<N>P-5‘Z—X-AitEa3<N>P+33<N)P+AE| (P

1 P 1 P
-—T(N+1 — T(N + 2 B47d
N+ P4 TN+ 2) (B470)
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and for N=1-1

B(1 - 1) T( - HP*A 4 e - 1) TP+t - D@ - 1) (B48)
where

B -1) = ALtES:;(I - )P 4 gyt - 1)P+At] + By - nPHAL. i (B49a)

c-1) = le (B49b)

D(I - 1) = -|:Bz(1 - )P 4 8,01 - 1>P+AtJ - By - DT - ﬂ%a - P

+ Byl - 1)P+AE\}T(I -1)P - 21; (0¥ (B49c)

At N =1

T(D) = T, (D) : (B50)

Pyrolysis-Gas Pressure Equation

The differential equation for the pyrolysis-gas pressure is

52p2

2

2 2
N 3—5— =0 (B51)

ox

The form of this equation is identical to that of the solid-phase temperature equa-
tion. At interior stations the modified implicit finite-difference equations for the
pyrolysis-gas pressure are

Ap(N) PA(N - 1)Prat, Bp(N) P2n)P+At cp™) PA(N + Pt - Do) (B52)
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where

Ax2 2Ax

Ap(N) =

Bp(N) = 7P At - é + Ait[y4(N)P + y4(N>P+‘“]

|y ()Pt
Ax2 2Ax
Dp(N) = ~yo()F - yoPHAt | 1 71 PPN - 1) ¥
P =73 ’3 2 2Ax TN\ T e

The boundary condition at the front surface (N = 1) is

2

p?(1) = P2

The condition at the pyrolysis zone (N =1) is

2
(ﬂ) _ ZRul(Lg) iy
ox N=I KM N=I

This equation is combined with equation (B51) to obtain

(B53a)

(B53b)

(B53d)

(B54)

(B55)

PX P(1 - 4)F+At | py p2(1 - 3)P*At | pz P21 - 2)F+AL L Ap PP - )T+

P+At -

+ BP P2(D) DP

(B56)

65



APPENDIX B —- Continued

where
px =1 (B57a)
12ax%2
li
3 |
PY = -2 (B5'7b)
8Ax2
PZ = —2_ (B5'c)
3A%2
AP = -PY (B517d)
P+At 1 P+At 3
= — 7'4(1) + 74 ] +=(ro(D - (B57e)
2At 2 oA
P
DP = -l[:y3(1)P+y3(I)P+At:| AL sy @FlR P BAL) AL
2 6AX E\KM 6AX
N=I
P+At
+ yl(I)P+At RulP+Atfn§+At _L_L_T__ 1 - Pz(I _ 4)P . 3 P2(I } 3)P
KM 12A% Ax2
N=I
-2 P2- 9P - 2P0 0P - 2o - 2 Ll oF
3Ax2 8Ax2 2
+ y4(I)P+At] p2@pP (B57f)

Chemical-Species Conservation Equation
The differential equation for conservation of chemical species is

afn
. —==0 (B58)

0
— m, +A11m +A2 +A3’1 -

ox
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The boundary condition is

(fni>N=1 ) _Ml<:—1_>N=IIhg (559

Equation (B59) and its boundary condition are of the same form as the first-order equa-
tions and boundary conditions handled previously. The modified implicit finite-difference
equation for conservation of chemical species for 1 = N=1-2 is

B, (N) i, )P+ 4 ¢, () i (N + DAL L E 0 iy (v + 2P - DY) (B60)
where
1 p P+At| 1 P+At 3
c.v) =L (B61b)
1 Ax
E,(N) = 1 (B61c)
4Ax
_ 1 P P+At| 1 P 3 1 P
Di(N) - E[AZ,I(N) + A2,i(N) } = E Al,i(N) - m - A—t A3,i(N)
+ A3’i(N)P+AE|> in, ()P - i i (N + )P + 4—‘1“— in (N + 2)P (B61d)

For N =1I - 1, the equation is

B(I - 1) in, (1 - DP¥AL 4 ¢, - ) P2t =D - 1) (B62)
where

(1 - 1)PrAt

1 P . P+At
Bi(I -1) -.E[A:;,i(l -1+ A3,i(1 1) ] + A1,1 (B63a)

1
Ax
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Cit- =2 (B63b)
Dy - 1) = -8 (I - P . Ag 4l - pPrat {Al’i(l -1P. i - %tl}:",i(l - 1P
+Ag (- 1)PJ} iy (1 - HF - i in, (P (B63c)
For N=1
in, (1) = —Mi<%>N_Ir'n e (B64)
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EXACT SOLUTIONS

Pressure Distribution for a Constant Property, Incompressible,

Isothermal Fluid Flowing Through an Isothermal Slab

The differential equation and boundary and initial conditions for the pyrolysis-gas

pressure in the char layer are

82 p2 2 (p2 2 2 (p2) =
——5(P%) + 71 5 (P2) + 7oP% + v 4y, =(P2) =0

ox

P2=P\2;v x=0)

d pTA.

_._P2 =21 —lm x=1

—(P2) = AR, E)in, (x=1)
and

2 _ p2 _

P —Pw (t=0)

The coefficients in equation (C1) are not constant.

(C1)

(C2)

(C3)

(C4)

Equation (C1) written for the idealized case of flow of a constant property, incom-
pressible fluid through an isothermal slab with the fluid and slab in thermal equilibrium
reduces to the Laplace equation. The solution of the Laplace equation subject to the

boundary conditions of equations (C2) and (C3) is

\1/9

2uIR, Tin e
P = —MX+P‘2N
KM

Transient Temperature Response of a Constant Property, Incompressible

Fluid Flowing Through an Isothermal Slab

(C5)

The differential equation for constant property, incompressible flow from a reser-

voir of specified temperature through an isothermal slab is
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% ,ap+22-0 (C6)
ax' ot

The boundary condition is
o(/v,t) =1 (C7a)

and the initial condition is

¢(x',0) = 0 (CTb)
where
T - TS
¢ = ————— (C8a)
To - Ts
and
x' = xl/v (C8b)

To solve this set of equations the Laplace transform of ¢ defined by
o0
P =§ St (x' tydt | (C9)
0

is introduced. Equations (C6) and (C7) become

2P L (A+8P=0 (C10)

ax'

PQ/v,t) = 1.0/S (C11a)
and

P(x',0) =0 (C11b)
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The solution to equations (C10) and (C11) is

.é- exp[AQ/v - x")]exp[SE/v - x']] (C12)
The reverse transform of equation (C12) gives
T' = exp[Al/v(1 - x]JS_(t) (C13a)
where
5 () - 0 (0 <t<(x- 1)) C13m)
1 (t > (x - DAY

Transient Response of a Heat Sink Subjected to a Suddenly Applied
Constant Heating Rate

The exact solution for the temperature response of a flat plate subjected to a sud-
denly applied constant heating rate is given in reference 15. When written with the sym-

bols used in this paper, the equation is

k.t
1+ s +1(1_x)2_%

T =T_,+4
S s,0 k - 2 9
S |
pst,s(l +1")

‘_ n2712kst
lpsCp st +12

(C14)

-2 nz (;l-—lzz_n cos[nn(1 - xJJexp
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Quasi-Steady-State Ablation Case
A guasi-stcady-state ablating system is one in which the pyrolysis interface and the
front surface recede at the same rate; that is, the char thickness is constant. If in addi-
tion the pyrolysis gases are inert, incompressible, and in local thermal equilibrium with
the char layer, material properties of the system are uniform and independent of tempera-
ture, there are no energy sources, viscous dissipation, or diffusion, and conditions exist
such that no energy is transferred into the uncharred layer, an exact solution to the gov-

erning mathematical equations can be obtained.
1
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The equation governing the char-layer temperature is (eqs. (A18) and (A19))

2
pSCP,S(aTs T - kg 8"Tg 1 kg 8Ty

(- Ms |\t ™ 2 ox? +-z§ ax  ox 'HA<TS ) T) +"RS[:H(T)]s

+ nRh,sHS -1 Zrl(lr)AH(r) +(1-n(A-E)
r

pH 0 0
" s s{on n
+(1 - n)qs +——S <—8t - Vc _8x> (C15)

The governing equation for the pyrolysis-gas temperature is (eqs. (A34) and (A35))

o v m ) Ty (r, 1) oy, 21) L 25 2
i

Undtot ¢ ex)  at\e My

p. 2
v d i v
+ <Z - V(> " Zﬁ:) T + nz RT,iHi -7 -z—z Ry iM; + nRS[H(T)]s + nRh,sHs
i i i

Z (O ag (1) | ”<Z Lpi_g Z%%T—:O (C16)

With quasi-steady-state ablation, 1, r'np, and r'ns are constant and

. N

Dg_Ms

Ap s,0

9T

S

=0 ) €1
ﬂI‘—,:O

at

J
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By using equation (C17) with the assumptions of no chemical reactions, incompressible
pyrolysis gases, constant material properties, and no energy sources or sinks, equa-
tions (C15) and (C16) reduce to

s, L¢& __§-_HA(TS-T)=0 (C18)

and

m . < P
v S i\oT _
n-= - pcp_RUZﬁ__x-HA<TS-T>—O (Clg)

Equations (C18) and (C19) are combined to eliminate the term H A(Ts - T); thus

2 .
04T . . oT m . P.
s*—LCpSmS_S-nV-_S>pcp-RuZ—18T =0 (Czo)
ox2 Ks| P ox Ps.0 : M;/ ox

Invoking the assumption of local thermal equilibrium between the pyrolysis gases and

T
char layer <T = TS and T . —§> gives

ox 9x
a2 8T
Syp—2-0 (C21)
3X2 ox
where
D=LimC +/fn + —-—pmS\/‘“- -R—“ﬂ (C22)
kSLS p,S \g s )\p 171} \as
s,0,
The solution of equation (C21) is
Tg=Cy +Cy exp(-Dx) (C23)
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The integration. constants are determined from the boundary conditions
(C24)

and the final solution is
T, - T, exp(-D) +(T - T, exp(-Dx)
I 1 1 I) (C25)

S -
1 - exp(-D)

T

The mass loss rates fns and m_ and the char-layer thickness ! are obtained

from equation (C25) and the following equations

b )
Ap Pso
0 S i/
%), o k—s<mch - qAERO>> (C26)
aT
_..._..S_ = -In AH L
ox g P ks
x=1

where energy transfer into the uncharred layer is neglected. Thus

o Ps,0/APIAERO )
° Hg+aH, + DTy - Ty)
q R
g = — AERO b (C27a)
H, + AHp + D/(Ty - Ty)
t=———H; + AH, + D'(T; - Ty)In
1AERO L am )
where
(] 2 pod R Ap -
D'=C  +(C, - I (C27b)
P, M/\ Ps,0
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