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ABSTRACT

Several aspects of the nonhomogeneous flow associated with a

system combining lifting and propulsive requirements of an aircraft

are considered in detail by analytical and experimental methods. The

basic geometry of the problem is that of two lifting surfaces with an

actuator disk located between them.. The resulting flow consists of

two regions of different total energies.

Propulsive lift systems are prototypes of many similar multi-

energy flow problems. The principles governing flow with energy

addition are examined. Basic equations and boundary conditions are

developed for the complete inviscid and incompressible analysis for

the two-dimensional case. The corresponding flow singularities .are

discussed and the integral equations which completely specify the

system are derived.

The two special cases of small and large energy addition are

considered in detail including solutions.

A numerical procedure is developed to solve the full problem

including allowance for the wake deflection. Appropriate vorticity

forms are used to represent the entire system. Wake vorticity is

provided the freedom to move in the plane. An iterative scheme is

presented which rapidly converges to a solution for the magnitude

and location of the system vorticity distributions. Forces and

moments are evaluated on the propulsive lift system.

Analytical results are given from the numerical solution for

various values of the geometric and energy parameters. Comparison

of the numerical result with the solutions for extreme values of
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energizing is given.

Results from a wind tunnel study of the two-dimensional

propulsiye-lift system provide a check on the importance of real

effects. Comparison of the analytical and experimental results

is given in detail. The experimentally determined wake develop-

ment is observed to be similar to the predicted shape. In addition,

the lift augmentation is similar for the theoretical and experimental

cases. Further, the airfoil pressure distributions and resulting

pitching moments are seen to exhibit the behavior expected from

the calculations.
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I. INTRODUCTION

Incorporation of the propulsive and lifting requirements, of an

aircraft into a single integrated unit appears to be a natural evolu-

tionary step in aviation development. With the development of

efficient and compact engines, new aircraft configurations are now

feasible which combine the lifting and propulsive functions that have

traditionally been isolated. An example of this trend is the location

of the thrust engines in spanwise positions within the aircraft wing.

This proposal requires analysis which takes into account the inter-

action between the lift and thrust producing components. This is in

contrast to conventional arrangements where the relationship of the

two functions is largely ignored.

The propulsive lift system offers numerous possible advan-

tages over other wing and engine arrangements. These include

beneficial interaction between the high energy wake and the wing,

lower wetted surface area than conventional engine nacelles, high

subsonic cruise speeds, and structural advantages. Consequently

desirable V/STOL characteristics may be obtained by the use of a

propulsive lift system.

This is the foundation for the development of the propulsive

wing. The basic concept is but one of many ideas conceived to

employ the large thrust available from the turbine engine. Associ-

ated devices are ducted propellers and fan-in-wing designs. Several

propulsive lift configurations have been investigated. Common to

all of these proposals is the interaction of the energized jet wake

with the wing-like components of the systems.



The history of propulsive lift system development is rather

brief. Theoretical attention has been given to ducted propellers and

fan-in-wing designs, and a good presentation of these analyses is

presented in references 1 and 2. However only very approximate

theoretical and experimental results are available for either of these

problems. Also, there is evidently a total lack of theoretical analysis

on the present problem. Considerable attention has been devoted in

reference 3 to configuration studies of possible application of propul-

sive wings. Figure 1 illustrates an aircraft design which employs

the propulsive lift system.

References 4, 5 and 6 give further details of various features

of propulsive wing systems. Furthermore, reference 7 considers a

particular propulsive wing concept and considers some geometric

and aerodynamic factors. Additionally wind tunnel results for this

model are presented and analyzed. However the data included are

limited, and no attempt is presented to describe the system analyti-

cally.

We observe that the application in figure 1 has highly signifi-

cant three-dimensional characteristics as would most applications

of propulsive lift systems, The present analysis is primarily con-

cerned with a two-dimensional system but a few remarks about the

three-dimensional system are necessary before proceeding. Many

analyses of a wing in a propeller slipstream have been proposed.

This problem is similar to the propulsive wing since the interaction

of the high energy wake with a solid surface is involved. In reference

8, Jameson gives a linear analysis of the problem which neglects
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the wake deflection and deformation. Also Levinsky et al. have con-

sidered what they term an exact analysis in reference 9. However

both developments have neglected the important matter of the down-

stream wake shape. It has not been demonstrated that any self similar

wake shape exists in this nonhomogeneous flow. This point of diffi-

culty is avoided in the two-dimensional case where we can determine

the downstream behavior simply.

These analyses of the three-dimensional problem illustrate

the basic difficulty in solving this type of multi-energy problems.

The downstream deflection of the wake and its correspondingly
v

changing shape must be included to analyze the problem completely.

The lack of advance knowledge of the wake boundary location makes

application of the wake boundary conditions difficult. Two boundary

conditions are applicable on the wake boundary of unknown location.

The first, a kinematic'condition, requires flow to be tangential .to

the wake boundary. This simply prevents flow through the wake

boundary which is a streamline. The second boundary condition is

a dynamic condition that specifies pressure continuity through the

wake boundary.

As a result of these two boundary conditions, two integral

equations are required to specify the system vorticity. The first

results from the kinematic boundary condition and is similar to the

integral equation for the vorticity of a single isolated airfoil. The

second integral relation results from the dynamic condition of

pressure continuity across the wake boundary. The solution of this
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set of equations specifies the vorticity of the system and its location.

Attempts to eliminate this difficulty by assumption of the jet
j

shape have proven useful in thin jet analysis. In references 10 and

11 Spence considers the thin jet assumption and determines a bound-

ary condition to specify a single wake vorticity. Here the kinematic

condition of tangential flow is eliminated by assuming the jet to lie

directly behind the airfoil. The thinness of the wake allows a single

vorticity to adequately represent the two boundary vortieities.

Similar attempts of simplification are of little use in the

present problem since the jet is in general thick with a width of the

same order as the airfoil separation. Consequently representation

of the jet by a single center line vorticity is less adequate for the

thick jet than in the thin wake case. Similarly we will see that as-

sumptions about the location of the jet boundary are of little use

except in the case of high wake energizing.

With these considerations in mind we confine ourselves pres-

ently to a more restrictive problem than the three-dimensional case.

Since no satisfactory solution exists for the two-dimensional problem,

it is likely that some basic influences of the various parameters of

this problem can be determined by considering this limit. We also

note that the two-dimensional problem is a model of the general class

of nonhomogeneous flows. Consequently techniques and considera-

tions relevant to this problem apply to all flows which have regions

of different total energy.
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II. THEORETICAL ANALYSIS

The basic geometry of the problem we now consider is shown
T

in figure 2. It includes two lifting surfaces which in general can be

of arbitrary shape and are separated by a distance h. Somewhere

between these surfaces an actuator surface is located. The outside flow

of course is not energized while the flow which passes through the

disk receives additional energy. Consequently we have multi-energy
\

flow in the region aft of the airfoils.

A. Principal Assumptions and Considerations

Two-dimensional propulsive lifting systems are prototypes

of the nonhomogeneous class of flows. We consider an in vise id and

incompressible approach to the analysis of these systems. Clearly

justification is required for each of these assumptions. It is noted

however that this approach has been found useful in the analysis of

the jet flap and classical propeller analysis which are problems of

somewhat similar characteristics. The present problem is similar

to the jet flap since it is a lifting element influenced by a downstream

wake. In contrast the propeller, although nonlifting, has a thick

wake similar to the propulsive lift system.

Viscous effects may indeed be important considerations to

this problem as the unusual pressure distributions that can be

anticipated to result from the interaction of the various components

of the system, may induce separation of the flow from the lifting

surfaces. Even without separation entrainment of flow by the jet

wake may have a significant effect.
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The assumption of incompressibility implies low flow

velocities in the system. It must be realized that significant com-

pressibility effect may be encountered even at low flight speeds

if the energy addition to the wake is large. In addition, applica-

tions of the propulsive lift systems would likely involve high subsonic

cruise speeds. Thus we see that real effects may be important;but

in the absence of any idealized solution we proceed to consider the

in viscid and incompressible case which is a practical case for

low speed flight.

An idealized actuator disk is assumed as the position of

discontinuity in total head. Here energy is supplied to the portion

of the flow passing through the disk in the form of a pressure

difference which is subsequently converted into kinetic energy.

At the actuator line the pressure is discontinuous while the velocity

is continuous through the disk. Uniform energy addition is assumed

so that all the flow in the energized region has the same total

energy. This is necessary for the flow to be irrotational. The

actuator line may be any line perpendicular or oblique to the flow.

The actual location of the actuator between the lifting surfaces is

not important since the field equation and boundary conditions can

be specified independently of this location.

Two parameters may be used to describe the energy addition

to the flow. The more natural measure is the change in total head

across the actuator, AH. When normalized by the free stream

dynamic pressure this becomes the energy addition parameter,
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A more commonly used, but less suitable parameter fpr this

problem is the jet momentum coefficient. This is simply the jet

momentum normalized by the dynamic pressure and the airfoil chord

PT S V 2C JJ , •
2 p U C

Here pT, 6T, and VT are the jet density, thickness, and velocity

respectively.

Either of these parameters fully describes the energy sup-

plied at the actuator. We will consider the relation between them

later but note that zero energy addition does not correspond to zero

jet momentum. The parameter C_ is often used in jet flap theory

for the case of zero jet mass but finite jet momentum, J, or

3 ^-» 0 as VT - oo
J

Hence for jet flap analysis, a momentum source of zero mass is

analyzed. In the present problem the jet always contains a finite

mass as well as momentum,and thus the parameter CT of the usual
J

jet flap analysis sense does not adequately describe the wake.
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B. Basic Equations and Boundary Conditions .

We have assumed that the flow both in the jet and in the outer

flow is incompres.sible. Further, by Kelvin's theorem we know that
«

for both of the flows £ = 0 since the flows are inviscid and ihcom-.

pressible. Thus the outside flow is irrotational since we have a

uniform flow at upstream infinity for which £ = 0. Similarly the

wake flow is irrotational since we have specified uniform energy

addition through the actuator disk. Thus we are assured of irrota-

tional flow in both regions of the problem.

Consequently we have incompressible and irrotational flow

in all parts of the flow, and we can define a velocity potential and

stream function so that the velocity outside the wake is

V = v (b (4)
o To

and the velocity inside the wake is

I

V. = 7<j). . (5)

As a further consequence of the incompressibility and irro-

tationality of both regions we know that the velocity potential and

stream function satisfy Laplace's equation. Hence we have the field

equations

V2 <b = 0 (6)

Now we consider the boundary conditions. We have the usual



9

condition of uniform flow at infinity in each region. The conditions

of the wake at downstream infinity are important and are fully dis-

cussed in section D. Briefly, the wake far downstream approaches

a uniform but higher than free-stream value of velocity.

The jet angle decreases downstream as a result of decreasing

influence of the wing surfaces. ;The induced vertical velocity is

v ~ —
x .

Consequently the jet angle far downstream is

QJ ~ ~x~ •' .

This shows that the jet asymptotically approaches y = -oo since

00

f
o

w

yj ~ / v dx

00 j

o xdx

which is unbounded. Thus although the jet slope -* 0 as x -* oo, the

jet location is approaching y = -oo.

At all solid surfaces the flow must satisfy the inviscid bound-

ary condition of tangential flow

4>n = ° • - <8)

However the flow conditions on the free boundaries of the jet

wake introduce the difficulty to this problem. We have two regions

of flow with special conditions at their interface. First we have the

kinematic condition given above, since the flow must be tangential
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to the jet boundary as a result of its being a streamline in the flow.

A second, dynamic condition must be introduced to assure no pres-

sure difference between the two regions. Outside the wake Bernoulli's

equation for incompressible flow gives

Ps4"Vo2 • Ho (9)

Similarly inside the jet we have

Ps+ i p v f = Ho + AH (10)

where AH is the change in total pressure change as the flow passes

through the actuator.

The static pressure is continuous across the jet boundary and

hence> elimination of H yields

("I

This then is the dynamic condition to be satisfied on the jet bound-

aries. The various boundary conditions are indicated in figure 3.

It should be observed that we have prescribed the field equa-

tion and the boundary conditions of the entire system without specifi-

cation of the actual location of the actuator disk other than requiring

it to be between the solid surfaces. Consequently we see that

kinematically, the energizing position is unimportant. Of course

the detailed pressure distribution on the lifting surfaces is dependent

on the actuator position. However in general the net force on this

propulsive lift system will be totally independent of the actuator

location since the external flow field is not dependent on this position.
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This result is due to only a total pressure change occurring as flow

passes through the actuator. If, for example, mass we re also injected

at this position, the location of mass addition would be important to

the flow solution. It is easily seen that slanting of the actuator does

not result in any change in the net force since the difference in the

forces on the solid surfaces is canceled by the change in the actuator

force and direction. Thus we conclude that both the wake and outer

flows and the net force on the system are completely independent of

the actuator position.
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C. Equivalent Singularities in the Flow

The entire propulsive lifting system can be replaced by a

uniform flow with embedded singularities. This equivalent repre-

sentation results from the field equation and boundary conditions.

First we have the usual set of singularities used to represent

a two-dimensional lifting body. These are distributions of sources

and vorticity located so that they are within or on the boundary of the

surface. The strengths of these singularities are such that the

resultant flow satisfies the kinematic boundary condition on each

of the surfaces. For the case of flat plates, we require only vorticity

on the chordline of the plates.

The nature of the wake singularities is determined by further

examination of the dynamic boundary condition. Simple rearrangement

of equation 11 yields

where V is the average of the velocities on the two sides of the jet

boundaries. Hence we see that there is a discontinuity in the velocity

across the wake boundary. This indicates that a vortex sheet can be

used to replace this interface. The strength of the sheet at any point

along the boundary is simply.

• (13)
V .

The location of the vortex sheet is an important consideration.

The wake kinematic condition gives the jet shape. The tangential flow

condition is,
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dy ,
— =. = — v_ (14)
d x U + u

where v is the ordinate of the wake boundary and x is in the direction7w '

of the main stream flow. Integration with respect to x yields

^w(x) = ^a + * V(X) dx . (15)W a *a U + u(x)

Here (x , y ) is the position of the trailing edge of the airfoils. Equa-a a

tion 15 specifies the boundary of the wake. Of course two wake bound-

aries exist and the upper and lower interfaces are each specified by

application of this equation. The velocity perturbations u and v are

not known and hence the wake shape is unknown. Thus we cannot

specify the position of the wake vorticity which is located on the wake

boundary.

We have replaced the entire propulsive lift system with an

appropriate set of singularities at the proper locations. Consider

the case of a flat plate system. The velocity at any point in the plane

resulting from an embedded vorticity element is given by application

of the Biot-Savart law as

dV
r

where r is the distance between the point of induced velocity and the

vorticity element. Also y is the vorticity strength, d^ is the length

of the element and 8 is the angle between the vorticity element and

the line connecting the element and the point in the plane.
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From this we determine the u and v velocity components

resulting from the airfoil and wake vorticity as

u(x. y) = / v F ds + /
o u X o

and

v(x, y) = /°y F ds + / y^ F ds . (18)
o o

Here subscripts u and v designate the upper and lower parts'of the

system. Also F and F are geometric functions which are independ-

ent of the .embedded vorticity strength or

FX(X, y, s) ' (19)

and

F F (x, y, s) . (20)

In these relations s is a coordinate along the lifting surface and wake

boundary.

Now we use the kinematic and dynamic boundary conditions,

equations 13 and 14, to develop a set of integral relations. First the

kinematic condition yields

y (21)

This applies to each lifting surface or

yg (X)

y = yg (X) 0 S X £ C£

Xt

Similarly equation 21 applies along each wake boundary or

(22)
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y = yw (x) ^x * c
u

(23)
y = y (x) Vx * c£

WA
Also from the dynamic boundary condition of pressure continuity

across the jet boundary we obtain

t oo oo o oo oo ?~\2^ AH
U+ /y F ds + /y,F ds) +(/ y F ds + /y, F ds) = =-^-

o u x o i x ouy o * y J P

(24)

This applies over the wake boundary as indicated by 23 above.

Relations 21 and 24 are integral equations which define the

singularities and their locations. Solution of these equations results

in specification of the strengths of all vortex sheets representing

both the airfoils and the wake boundaries. In addition the wake bound-

ary locations are determined by these equations.
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D. Some Areas of Special Interest

Particular attention must be given to three parts of the pro-

pulsive lift system.

1. Trailing Edge . .

A condition analogous to the Kutta condition for ordinary air-

foils is necessary at the trailing edges of the lifting surfaces. We

require the flow at the trailing edges? to leave the surfaces smoothly

without a discontinuity in direction of flow. This is justified by the

usual argument (see reference 12 for example) concerning the influ-

ence of viscosity. As a result of this requirement we specify that .1

the velocity is finite at the trailing edges if these edges are cusps.

An infinite velocity is required for the flow to leave a cusp trailing

edge in an abrupt manner. Specification of a finite velocity ensures

no flow around the trailing edge and as a consequence the flow departs

smoothly.

Compliance with this Kutta condition can be met if we require

that the vorticity is continuous at the trailing edge. Only a discon-

tinuity in vorticity at the trailing edge and the beginning of the jet

wake can produce an infinite velocity. Thus we require the airfoil

vorticity to approach the wake vorticity value at the trailing edge
» • .

to satisfy the Kutta condition for the propulsive lift system.

Reference 13 examines the Kutta condition for a considerably

simplified geometry and suggests that a less restrictive condition

than specified above may be appropriate. However this analysis

concerns a vortex sheet between two unbounded flow regions with
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one region of stagnated flow. Hence this analysis does not directly

apply and for the present the usual Kutta condition will be used.

2. Leading Edge

The leading edge flow can be expected to display a behavior

similar to an ordinary airfoil at angle of attack. For a flat plate we

anticipate a leading edge vorticity distribution

1
y ~

since there is flow around the leading edge of the airfoil. The jet

influence only induces a velocity at the airfoil so as to alter the

effective 'angle of attack. Consequently, the behavior at the leading

edge will not be expected to change in character because of the

presence of the jet.

3. Downstream Conditions

The wake conditions far downstream of the lifting system can

be fully determined. For the two-dimensional propulsive lift system,

the wake must become parallel to the free-stream flow. Stratford

in reference 14 obtained this result for the jet flap. We see this by

considering a two-dimensional jet which is continuously moving down-

ward at a finite rate. Of course all the flow above and below the wake

also is moving downward since there is no flow through the wake.

Further, the flow above and below the wake cannot flow around the

ends of the wake as in the three-dimensional case. As a consequence

we have an infinite mass of fluid per unit span transversing down-

wards. We have a vertical momentum per unit span of

J = M
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Application of the momentum theorem shows that for this case we

have infinite lift per unit span. Hence, v -• 0 as x -• oo. Thus we

conclude that the jet boundaries must assume a position parallel with

the free-stream. As previously discussed a -* 0 although the jet
j

boundary location approaches y = -oo. We will continue the discussion

of the asymptotic behavior of the wake in Section H.

The flow inside and outside the wake is irrotational and hence

8u _ av
3y 3x

Now far downstream -3- -* 0 and thus -^- - 0. Therefore the flows
OX, jr

must be uniform inside and outside the wake. Outside the wake region

we know the flow is at the mainstream value, U. Across the free

boundary there is a jump in the velocity. From equation 12 we deter-

mine the jet velocity at downstream infinite to be

7u2
V. = VU + 2 A H / p

00

This with equation 13 gives the value of the wake vorticity at down-

stream infinity as

y.oo
V U 2 + 2 A H / P - U . (26)

Now it is possible to relate the parameters CH and Cj. If

the jet thickness is 6 at downstream infinity, the jet momentum

coefficient is

p(U 2 +2AH/p)6
°° (27)

i 2
I P ̂  c
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or

6
2(1 + A H / I p U2)-£2 . (28)

Thus using the definition of €„

CH)J • (29)

As noted previously, zero CH does not correspond to zero

CT since there is always momentum in the wake.J

In many theoretical studies C, is used in the thin wake limit

where 6 -• 0. Clearly we have
0(2 CH 6 ) 6

CT = - £L_S2 -22. « i
J c c

Thus for all finite values of CH we have the corresponding C- equal

to zero. This is the result of the zero thickness wake concept where

we have a momentum source with no jet mass flow. By contrast the

present case considers an actuator which adds momentum and energy

to a finite mass of fluid. This is a more realistic representation of

the actual thick jet wake.
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E. Linearized Solution

The difficulties in obtaining a solution for the problem dis-

cussed thus far are twofold. These are the unknown wake shape and

the dynamic boundary condition. Both of these difficulties introduce

nonlinearity into the solution of the problem so that the solution is

not a simple linear function of energy addition and angle of attack.

First the jet boundary deflection introduces nonlinearity into the

problem because its shape changes with variation of CH and a. The

wake shape is not known in advance and hence the correct position for

application of the dynamic boundary condition is not specified. The

dynamic condition involves the square of the local velocity and hence

introduces the second nonlinearity. We observe that both of these

difficulties must be removed in order to obtain a solution analogous

to linear airfoil theory or linear jet flap theory.

Of course the lifting members of the system present nonlinear-

itytothe system as in the case of thick airfoil analysis. However

this can be handled in a manner similar to thin airfoil theory by

placing the singularities that represent the lifting surfaces on mean

lines and linearizing the tangential flow conditions. The approxima-

tion has proven useful in airfoil theory for thin airfoils at small

angles of attack.

We now consider a linearization of the boundary conditions that

will apply for small angle of attack and small energy additions.

Writing the velocity components as U + u and v, where u and v are

perturbations, equation 11 becomes
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?TT/ !> -L 2 x 2 2 2 2&H .,_.2U(u. - UQ) + u. + v. - UQ - VQ = -£— . (30)

The subscripts i and o refer to the properties inside and outside the

jet. Neglecting second order terms, this is

AH '

This indicates that there is a vortex sheet of constant strength at the

jet boundaries. Now we further assume that the jet deflection is

small for the present case and apply the above condition on mean lines

directly behind the airfoils on the lines y = ± h/2.

Finally, the usual linearization of the tangential flow condition

on the airfoil is used.

y' • B - • <32>

We thus have the problem shown in figure 4.

Proceeding to solve the linearized problem posed above, we

observe that the boundary conditions can be separated into symmetri-

cal and antisymmetrical parts. These are solved separately and then

superimposed. This division of the problem is shown in figure 5.

We, consider a system with lifting surfaces of flat plate airfoils of

equal chords and zero stagger.

The antisymmetrical part is just the linearized biplane prob-

lem. This was solved by Glauert in reference 15 by conformal

mapping. The exact result for 'flat plate airfoils is.

CT = 4irB sina (33)
LA
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where the factor B is

V, 2 2.. 2 2.
^(p -m)(m -q )

me

The terms p, m and q are related to the separation of the flat plates

and their chord by

2 2 , -

P
2r -i

= 2pJE(k, T) - ^- F(k,T)J

where

T

/ 2 2
/P _-m

yT!2~/ p -qp -q
k' = q/p

E/ / J~—T dx

o / 1 - x

K' = 7 dx

E(k,T) = / 1 " k dx

F(k,T) =

o -x

dx

0 /(l-x2)(l-k2x2)

The factor B is shown in figure 6 as a function of h/c. •

The symmetric part of the problem is readily solved numeri-

cally in a manner similar to the method used in reference 16 to

analyze a flat plate in ground effect. We place a constant vorticity

at y = ± "- from x = c to downstream infinity. The magnitude of this
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vorticity is given by the boundary condition of equation 31. Then we

superimpose the additional vorticity

^ Ni 8in (19) + fir • x * c (34)

where

0 = ARC COS r^^-1

This vorticity represents the airfoil and is located on y = ± j- Now

we calculate the velocity induced at each of n control points on the air-

foils. Compliance with the boundary condition of equation 32 gives a

set of n linear equations for the coefficients N through N . . Solu-

tion of these equations gives the airfoil vorticity. Notice that the

Kutta condition has been satisfied since y -* — 77 as x -* c .
'o p U

Since the system is completely symmetrical about its center-

line, no net normal force on the device results from the symmetrical

solution of the problem. However the leading edge singularity pro-

duces a nose thrust. The first vorticity distribution of v is of the
ct

form of a flat plate at angle of attack.

• (35)

Thus at the leading edge, x -* 0, we have the velocity

• • - . . . - N .

Application of the'Blasius theorem to a vanishingly small circle at

the leading edge yields a leading edge thrust of
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CT = 2ir N2 . (36)

We observe that N is linear in CTT because of the linearized dynamic
o ri

boundary condition, equation 31. Hence we write N = N CTT, where
__ -L

N is a function of —only. The lift on the symmetric system is then

CL = CT sina

2 T r N 2 C 2 sina . (37)
o rl

Some values of N are given in table 1 for a flat plate airfoil system.

Now we have the total lift coefficient for the linear system as

CT = f2Tr(2B + N2 CT?) + C..-1 sina . (38)
J_i l_ o ri rl c j

The third term above is the force on the actuator resulting from the

pressure discontinuity there.
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F. Solution for Large Energy Addition

The case of the high energy wake is an interesting limit of

the propulsive lifting device. Here the wake system dominates the

entire flow to the extent that the free-stream flow is not important

compared to velocities induced by the jet. Hence in this limit we

have the system operating in stationary fluid. The energy addition

is so large that there is no jet deflection and the wake boundaries

are straight lines directly behind the airfoils. Thus the system is now

a two-dimensional channel extending to downstream infinity in the

chordwise direction as shown in figure 7.

We solve this flow problem in a manner similar to that out-

lined in reference 17. The channel is positioned with walls at y = ± j-

from x = 0 to x = +00. As x -• oo, the flow within the channel approaches

a uniform velocity value, U , and everywhere outside the channel

the flow velocity approaches zero. On the channel wall the velocity

potential, <p, and x are related by

-h
27 * U h

- e oo U (39)
00

Hence the velocity on the channel wall is

U
00 . (40). - 2 > / U h1 -e Y co

Note the correct behavior of u as x -* oo (<(> -* ± oo). On the outer wall

surface at downstream infinity

u -*• 0 as - oo

u -* U as <b-» oo
oo ~
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Thus equation 39 does provide the desired flow field.

We are concerned with the forces on the system. The pressure

on the surfaces is easily determined from Bernoulli's equation and

consequently the forces normal to the surfaces can be readily calcu-

lated. However, since the channel is symmetric about its center-

line, there is no net force normal to the channel.

Consider now the behavior at the leading edge of the system.

Here <j) and x are very small. Thus from equation 39 we have

^

-Z£- for <j)«l
T T ** 1

(41)
U " h

oo

Similarly equation 40 becomes .

U 2 h

' <42>

Eliminating <j> from these equations to obtain u(x), yields

u * -r-J-^= f o r x « l . (43)

We recognize the familiar square root leading edge singularity. The

thrust associated with this velocity singularity is given by equation 34

p U 2 h
(44)

for each leading edge. Twice this thrust value is exerted on the total

system.

The resulting lift is then

L = ~ p U 2 sinor . (45)
b 00
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Equation 25 gives. the value of U. for U = 0 as
00

00

Thus the lift is

L. = A H h s i n o r , - (47)

and the lift coefficient is

C, = Cu-sina . (48)
JU ri c

This obviously does not apply for small values of €„. However, we

can obtain the value of the slope of the CL versus CH curve as

9C

We thus expect a linear dependence of C. on CH for large energy

addition. This is a valuable check on any solution which predicts

the performance of the propulsive lift system.
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G. Numerical Solution of the Nonlinear Problem

A solution of the integral equations 21 and 24 can be deter-

mined by an iterative numerical method. The solution specifies the

location and magnitude of both the airfoil and wake vorticity. We

now consider the general methodology of the procedure and then con-

centrate on the details of various aspects of the solution. A flat plate

propulsive lifting system is analyzed and later we will extend the

discussion.

1. General Procedure

The method we now consider is based on the concepts we have

discussed in the previous sections. We saw that the propulsive lift

system can be completely replaced by embedded singularities in the

free-stream flow. Hence we position the proper singularities at the

correct locations to satisfy the various boundary conditions to obtain

a nonlinear numerical solution.

We begin by assuming some initial state for the wake vorticity,

both in strength and position. A simple approximate starting solution

which works well is the linear solution of section E. We know that the

airfoil vorticity is located on the chordlines of the flat plates. This

vorticity is represented by various blocks of vorticity which will be

of the correct form and will be discussed in detail subsequently.

The velocity induced by the airfoil vorticity on numerous

airfoil control points is calculated and stored in a matrix of influence

coefficients. Then the velocity induced by the wake on the airfoil

control points is determined; Now we satisfy the kinematic flow con-

dition, equation 18, on the airfoils at each control point by specifying'
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the correct magnitude of vorticity which represent the airfoils. This

involves the solution of a set of linear algebraic equations and corre-

sponds to a solution of the integral equation 21. This completes the

first part of one step in the iterative process.

The second part is devoted to determining the magnitude and

position of the wake vorticity. We represent the wake by embedded

vorticity. The vorticity representation is similar to the airfoil

representation and consists of numerous blocks of the proper form.

The magnitude of the vorticity in the wake is our first concern. We

determine this by calculation of the velocity induced by the airfoil

and wake vorticity at numerous wake control points. This permits

determination of the strength of the wake vorticity at each wake con-

trol point. The wake vorticity strength for the (v+1) iterative step

follows from the dynamic wake boundary condition of equation 13 as

' yK y (x) = =r - v = 0, 1, 2, .... . (50)
V ( V )(x,yw(x))

This corresponds to the solution of equation 24. The v superscript

refers to quantities determined from the v step. The initial

starting solution corresponds to v = 0.

Since we know the strength of the airfoil and wake vorticity,

all that remains to be determined to fully specify the system is the

wake boundary position. This results from the wake kinematic flow

condition equation 14. We determine the y coordinate of the various

wake control points for the (v+1) iterative step by
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, v xyw = y + / SV / dx' v = 0 ,1,2 (51)
W xa U + u (y '(x')

This corresponds to solution of equation 21.

We observe that we have completed one cycle of an iterative

process which can be repeated until a solution of sufficient conver-
(v) (v+1)

gence is obtained. This method proceeds so that y (x) and y(x) as
(v) (v+1)

well as y (x) and y (x) are nearly equal for a reasonably small v.

This indicates that the boundary conditions are closely satisfied at all

control points. Thus we have obtained a method of solution by rather

straightforward application of the ideas of the previous sections. We

have started from an initial state which we expect approximates the

actual solution. By continuously moving the wake vorticity in succes-

sive steps to points nearer to the proper wake location, we have deter-

mined a numerical solution.

Above we have mentioned that "blocks" of vorticity have been

employed to represent the vortex sheets we know are present in the

flow. Four differently shaped distributions are actually required to

represent the airfoil and wake adequately as shown in figure 8. The

first of these representations is a trapezoidal distribution. Trape-

zoids are used to represent much of the airfoils and wakes.

The second distribution is of the form of the loading on a flat

plate airfoil at angle of attack. This is the singular part of the air-

foil vorticity. The regular part of the airfoil vorticity is approxi-

mated by trapezoids. The flat plate loading is used on each of the

airfoils since we observe that the influence of the other airfoil and

the wake system is to effectively change the angle of attack of the
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lifting flat plates. We thus expect the airfoil vorticity to have much

the same character as an isolated flat plate at an angle of attack.

This distribution produces the leading edge square root singularity

we anticipate.

At the trailing edge the lifting flat plate vorticity approaches

zero. The trapezoidal distribution is forced to approach the value of

the wake vorticity just aft of the trailing edge as given in equation 26.

This satisfies the Kutta condition we have specified.

Aft of the trailing edges trapezoidal elements are again used

to represent the wake vorticity. "We continue this for a distance of

several chords downstream. Then at a point far downstream of the
:

airfoils, the vorticity is forced to approach a constant value. This is

accomplished with the use of the third distribution. This distribution

is used to avoid a discontinuity in vorticity at the point where the wake

is first represented by constant vorticity. The upstream vorticity is

matched to the constant value of vorticity by causing the difference to

decay to zero downstream. This requires a rapidly decreasing

function and we choose the function 1/x to accomplish this matching.

In practice, the mismatch is small and this distribution is not sig-

nificant.

This leads us to the final vorticity distribution which is simply

a constant strength vortex sheet. We have seen this to be the nature

of the wake vorticity far downstream. This distribution starts at

some point far aft of the airfoils and continues to downstream infinity.

The induction of the far wake from both the upper and lower wake

vorticity must be considered simultaneously since one of them will
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produce infinite velocity everywhere if considered singly.

All vorticity is placed at its actual location in the flow instead

of on a mean line as in linear theory. The vorticity location on the

airfoils is fixed during all iterations but the wake vorticity is located

on straight line segments which are allowed to move at each iterative

step. In contrast to many numerical procedures, the control points

of this scheme move with each iteration. This results from the

changing wake shape and consequent change in location for the appli-

cation of the boundary conditions. ;

This full nonlinear analysis is carried throughout the solution.

For example, the force and moment evaluation is performed by

determining the velocities on the airfoil surfaces. This accounts

for the difference of the local velocities from the free-stream value.

Also, the leading edge thrust is included in the computation.

Required inputs to the procedure are the surface geometry,

energy addition, and an initial approximate solution. A constant

vorticity located directly downstream of the lifting surfaces serves

adequately for this starting solution. The geometry of the lifting

surfaces is limited here to flat plates but can include plates of dif-

ferent length and different angles of attack. Other airfoil geometries

are a simple extension of the present analysis and will be discussed

briefly in section H.

2. Vorticity Distributions

As outlined above and s,hown in figure 8 , four basic distri-

butions of vorticity are used to represent the propulsive lifting system.

The velocity induction at any point in the plane is required for each
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of these four distributions. The complex conjugate velocity induced

at (x , y ) by a vorticity distribution y(z') located between z. and z?
P"P

is

z, z -z1 p
The remainder of this subsection is concerned with the detailed

induction functions of the various distributions. We give each vortic-

ity algebraically and then prescribe the velocity it induces at an

arbitrary point in the plane, (x , y ). The induction is found by

equation 52. The coordinate system we employ throughout the analysis

is the free-stream system with positive x in the downstream direction.

We place the leading edge of the upper airfoil at the origin. Often an

auxiliary coordinate system is involved in the calculation of the induced

velocities. This results from the location of the vorticity between

arbitrary points in the plane. Since we have carried the nonlinear

analysis through the entire procedure, we require expressions for

the induced velocity caused by vorticity located anywhere in the plane.

First we consider the trapezoidal distribution of vorticity

located on the line connecting (x,, y.) and (x~, y2)

• <53)

The velocity components induced at the point (x., y,) are

(54)

(55)
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where, we have the auxiliary terms

7(y / 2-x '(§-x'))2+y / 2§2

R = I g j
x + y

r v' s0 = arc tan 7*—2

I- ,, _ v 7 f e _ v7\

+ (Y2-Y!)2

and, the auxiliary coordinates

X/ =

y/ =

x<|)t =r
4arc tan

These velocity components are in the primed coordinate system,

rotated by an angle <)> from the free-stream system, and must be

transformed to the free -stream system by

u = u' cos <> - v7 sin

v = v cos <h + u' sin

The second vorticity representation employed is of the form

of the loading of a lifting flat plate, or,

O s x ' s l , . (56)

This distribution is located on the chordline of each airfoil which is

on the abscissa of the double primed system where
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i- [(x-xf )cos <|>f - (y-yf) sin <f)f]

- [(y-yf)cos (|>f - (x-Xf) sin4>f]

arc tan *b-xf
In the free-stream coordinate system the airfoil is located between

the points (x,, y,) and (x^, y, ). Thus c, the chord, is

Jn the double primed system the velocity components at
(VVare

a
*f

^(1-x*)2

x'2 +
V
y**

-4/^~X '2y x* +

2
t
*

)+Y
* ̂y

(cos

"
feo

9
y COS

6 . . 9 . 6\=• + siny sin ~-,
b u b /

6 . 9 6 \

(57)

(58)

where

arc tan (-*•* ) + ir
X.

In these expressions the branch of the arctangent function between

-it/2 and u/2 is used. On the line y* = 0, u^ is zero. The velocity
<

components must also be transformed in the free-stream system by
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u = u" cos <|>, - v* sin <f>,

v • = v* cos (|>f + u" sin <}),

The third vorticity distribution is a 1/x representation to

account for any difference between y and the vorticity of the farthest

downstream trapezoidal element. This is

rn = r - y TI = n + m + i
1J T) 00

Hence for the distribution

y(x) = Fn -J K*X (60)
D X T|

located on the abscissa, the velocity induced at (x , y ) is

u = 2 7— x 9 • y1071— (^M
2ir(x + y ) *- X1"1

"^ T> "*i I

y e +
2ir (x" + y") '

where

Zir (x- + y") •- XTI

y2

arctan (_zy__)

Far downstream the vorticity approaches a constant value

given by equation 26. Consequently the velocity induced by two lines

of constant vorticity of strength y is required. The lines are

y = ± 6 /2 from x = D to downstream infinity. The value of 6
00 . 7 00

t
changes with each iteration as the wake deforms, and is not" equal
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to the airfoil separation, h.

The velocity induced by this constant distribution at (x , y )

is then

= zf <V9
2> <"'

. (64)
. £• ' i ~ '

where, we have the auxiliary terms

• - 6 /2

P
y

.
P

Rl

The four vorticity distributions are superimposed to yield a

general representation of the airfoil and wake systems.

3. Calculation of Vorticity Strengths

The induction functions of the previous subsection provide

easy calculation of the velocity induced at any point in the plane by

the embedded vorticity representing the airfoil and wake systems.

We now use these induction functions to determine the airfoil and

'wake vorticity strengths from the appropriate boundary conditions.

The kinematic boundary condition on the airfoils is

v = ( l + u j y ' . (65)
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Here the velocity components are normalized with respect to the

free -stream velocity. The velocity components, u and v, are

composed of two parts. First there is u and v resulting from the
3l ct

airfoil vorticity. Secondly, we have u and v induced by the wake

systems. Thus the tangential flow condition becomes

)y' - v . (66)

Since the airfoil control points and vorticity locations re-

mained fixed for all iterations, the effect of the various vorticity

distributions on the lifting surfaces can be determined and stored

for use during the entire process. These influence coefficients are

stored in a matrix, C, defined so that.

)
v - u y/. C.. y . (67)ai ai *J y aj

Here y. is the slope of the surface at the i control point and y isi a .

the value of the j vorticity distribution on the airfoils. Also u and

th i

v are the airfoil induced velocity components at the i airfoil con-
i

trol point.

The first n-1 terms of y are the magnitudes of the vorticity
£L

elements on the upper surface. These include a flat plate vorticity

distribution and 2(n+l) trapezoidal distribution values as shown in

figure 10. Similarly the second n-1 elements of the vector ya

correspond to the vorticity on the lower airfoil. There are n-1

control points on each airfoil. Thus C is a 2 (n-1) by 2 (n-1) matrix f

of influence coefficients for use in satisfying the tangential flow

condition on the airfoil surfaces.
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If we satisfy the condition of equation 66 at each of the control

points on the two airfoils we have the system of equations

c i jV = <1 + ui>V-vi • <6 8>
This is a system of 2(n-l) linear equations to determine the present

iteration's values of y on the airfoils. We have thus defined the
cL.
j

vorticity on the two airfoils for this step. This completes the first

phase of each iterative step and now attention is given to the calcula-

tion of the wake vorticity and shape.

The wake representation is shown in figure 11. There are m

control points on each of the two wake boundaries. The vorticity

representation is formed by m trapezoids, a 1/x decaying function,

and a constant vorticity as indicated.

Now velocity components induced at each of the 2m control

points on the wakes are calculated and stored in the vectors U and V.

These include the induction from both the airfoil and wake systems.

At each control point the magnitude of the velocity is determined by

iU. = / ( i+u. r+V. . (69)

The dynamic boundary condition on the wake is used to deter-

mine the corresponding value of vorticity at each wake control point

ycCi U.i

All control points on the wake and on the airfoils are located at the

midpoints between the endpoints of vorticity distributions. Hence in

the wake the value of the vorticity at each endpoint is determined by
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averaging the values at adjacent control points or

v +
'c.

Vi

This procedure produces a smooth vorticity distribution in contrast

to the results obtained by extrapolation of the vorticity values at the

adjacent control point and end point.

Two exceptions to this procedure exist. First at the trailing

edge of the airfoils extrapolation is used to determine the vorticity.

This satisfies the Kutta condition for this problem. The second

exception is at the last element of the vorticity distribution down-

stream. Here extrapolation is again used to determine the final value

of wake vorticity. The difference between this value and y is r_

for the 1 /x distribution.

4. Wake Shape Calculation

The new wake coordinates can be calculated by

x
yw(x) = y a + / -^-dx' (72)

Xa

where x and y are the coordinates of the trailing edge of the airfoil.a a

Since line segments are used to represent the wake, the ordinate of

.. .th . .the i segment is
i (v)

(v+1) * V

- VaU Her Vj-i} • (73)
j=l (1+U.)

This gives the wake shape for the (v+l)th iteration.

All of the above steps are completed for both the upper and

lower wake systems. At this point the new vorticities and wake shapes
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r, -;

have been determined and hence this step of the process is completed.

If desired, the process is repeated to obtain the next iteration.

5. Special Points of the Numerical Solution

In section D we discussed three areas of importance to this

problem; the leading edge, the trailing edge, and downstream infinity.

The proper conditions for each of these areas have been incorporated

into the present solution.

At the leading edge we have the anticipated square root singu-

larity provided by the flat plate vorticity distribution. Of course the

value of y will differ from the isolated flat plate value of sina be-
ct. ' •
i

cause of the influence of the other airfoil and the wake system. How-

ever we have provided the proper singularity to account for the leading

edge flow.

Use of the wake dynamic condition to determine the vorticity

at the trailing edge of the airfoils has assured compliance with the

Kutta condition for this problem. This results from requiring the

vorticity on the airfoils to approach the wake vorticity value. This

precludes the possibility of a discontinuity in vorticity with a resulting

infinite velocity at the trailing edge. Consequently the flow leaves

the trailing edge smoothly, as desired.

Asymptotic behavior far downstream has been represented by

parallel lines of constant vorticity. We know this approximates the

actual behavior well but note that the actual wake continues to deflect

downward. However the far downstream wake has little effect on the

lifting surfaces since the inductions of the opposing vorticities partially
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cancel each other. Further comparison of the downstream wake

influence is included in section H.

6. Force and Moment Evaluation

.After the convergence of the iterative procedure, the forces

and moments on the propulsive lift device are determined. We desire

to carry the nonlinear analysis throughout the evaluation and thus we

take account of the variation of the local velocity over the airfoils.

The velocity at each control point on the lifting surfaces, UB, is

calculated. Then the force resulting from the vorticity on each

segment of the airfoils is calculated.

First due to the lifting flat plate distribution we have for the

.th
i segment

j (74)C_, = UB. y I 9. ., - 0. + sin 6. . , - sin 9
Ff i 'ajLi+1 i i+l

where.

9. = arc cos (l-2x.) . (75)i i

Next the force resulting from the triangular distributions is found

to be,

°Ft • ""iLVviJ*1 (76)

where R. is the length of the i segment of the airfoil.

The total normal force coefficient is then

n-1
Cr = . L (C-, + C_ ) . (77)
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Also there is a leading edge force on each airfoil given by equation

36 as

CN = f ya* • (78)

Now the system lift and thrust coefficients can be determined as

CL = CN sinor + Cp cosa (79)

CT = CN coso- - CF sin* . (80)

Note that the actuator force is not included in these calculations since

it can easily be added.

In a completely analogous manner the pitching moment is now

calculated for the system. From the flat plate loading term we have

the moment about the leading edge for the i segment as.

r sin 2 9. , . -, n
c = UB, v. U ,1-e , - 1+ • s i n

— V J . D . - V I O. , , - U. ~ 5 r j. i /Q 1 \rri£ i 'a. [_ i+l i 2 —2 J (81)

9. is as given above. Due to each trapezoidal element we have

UB. y.
C = -^- (ri,1-ri)(2r. + 1+r.) . (82)

k*

Here r. is the distance from the leading edge of the airfoil to the i

endpoint. The leading edge force of course does not contribute to the

pitching moment.

Cm ' , <Cm£
 + Cmt ' • (83)

Again we have not included the effect of the actuator force on the

system characteristics.
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7. Convergence Test

A criterion is required to determine when the iterative pro-

cess should be halted. A convergence test is constructed for this

procedure by comparing the values ,of the corresponding vorticities ,

during successive iterations. Thus we form
(v+1)" (v) i

, k = 2 (m+n-1) . (84)
1 = 1 '00

If E becomes smaller than a specified number the procedure is

considered to have converged and the iterative process is stopped..

Of course this neglects any change in the wake shape between suc-

cessive steps. However since the wake shape is calculated from the

induction of the vorticity, it is indirectly accounted for by this test.

A second provision is made for stopping the procedure. This

is simply at the completion of some maximum number of iterations

if convergence has not occurred. By this method we guard against

excessive numbers of steps.

8. Control Points and End Points

The present procedure does not appear to be highly sensitive

to the selection of control points and the end points of the segments

of the airfoil and wake vorticity distributions. Typical usage was

ten equal length segments on each airfoil with a control point in the

center of each segment. In the wake the segments were usually

larger. An efficient distribution was twenty segments dividing five

chords of the wake behind the lifting surfaces. Further downstream

than five chords the constant distributions were used. The end points
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were more closely spaced near the airfoils than downstream since

the vorticity varies significantly in the vicinity of the airfoils. Again

the control points are chosen as the segment midpoints.

The solution will have improved accuracy with increasing

numbers of airfoil and wake segments. This results from a better

vorticity representation and more uniform compliance with the

boundary conditions since more control points would be used. How-

ever, practical considerations limit the number of segments. Compu-

tation time is more of a limiting factor than storage capacity by

virtue of the construction of the procedure.

9. Performance of the Procedure

The overall operating characteristics of this method are

•highly dependent on the parameters of energy addition, airfoil

separation, and angle of attack. In general the process converges

in about ten to fifteen iterations. Exceptions are cases of small

lifting surface separation which require more steps. Here conver-

gence was assumed when E < 0. 001 y .

On the IBM System/360, Model 75 computer, the process

requires approximately five seconds per iterative step. This is with

the use of ten airfoil segments and twenty wake segments for each
7

of the upper and lower systems.

A satisfactory starting solution appears to be the linear solution

of section E. The initial solution is also an important factor in deter-

mining the number of iterations required before convergence.
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Slowest convergence was observed for cases with low values

of h/c and high values of C... However the angle of attack appears

to be the least important parameter to the performance of the pro-

cedure. Solutions have been obtained for angles of attack greater

than 70 degrees.



47

H. Presentation of Results

We now consider the solution obtained by the various methods

discussed previously. Consideration of these results may provide

insight into the propulsive lifting system problem.

1. Numerical Solution

The procedure of section G has provided efficient means for

solution of the complete nonlinear problem. It is tedious to present

detailed results of these solutions since three parameters (CH, h/c, or)

are required to specify even the simplest geometry. Thus we con-

sider a particular solution in some detail and then examine the

effects of varying some of the parameters.

The solution case we consider is that of two equal chord flat

plates without stagger and at 10° angle of attack. The airfoil separa-

tion is one quarter of a chord and CTT = 2. 0. The calculated wakerl

shape is shown in figure 12. Notice that the wake contracts slightly

and deflects downward before aligning with the free-stream flow

several chords aft of the airfoils. The end points of the wake vorticity

distributions are also indicated.

Figure 13 shows the upper and lower vorticity distributions

for this particular solution. Observe the behavior at the three points

of special consideration of section D. At the leading edge the square

root singularity accounts for flow about the leading edges. The veloc-

ity here is infinite but has integrable lift.

The trailing edge vorticity is continuous but the vorticity in-

creases sharply to the wake value.. This rapid rise is characteristic

of the jet flap pressure distribution near the trailing edge. Note also
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that y is somewhat larger than y at the same station. This

results in a net clockwise vorticity which is in the proper sense

to account for the curvature of the jet as expressed by the jet flap

boundary condition , . ,

u - u = —5—
£ 1dx

Finally, far.downstream we see the asymptotic representation

in figure 13. is parallel lines of constant vorticity. The 1/x decay of

vorticity is also shown. Notice that the value of y is very nearly

equal to y at five chor.d lengths behind the trailing edges of the air-

foils. As a consequence IL is quite small. ; ,

Also note the unusual loading of the airfoils shown in figure 13.

We expect this to produce high pitching moments and distribute the

lift unevenly between the two surfaces.

Having considered this case in detail we turn to some more

general results. Figure 14 displays the performance of systems of

three different airfoil separations. This figure refers to parallel

flat plates with no.stagger and 10° angle of attack. We:see that these

lift curves approach a linear relationship with C-r for large energizing

of the wake and that the slopes of these curves- increase with increasing

h/c. For smaller CH these curves vary significantly from this

linear behavior. . . .

The • thrust = of the, system is shown in figure 15. The same

system as considered in figure 14 is used. We observe a sharp in-

crease in the thrust'of the system as the energy addition becomes

larger. In all of these figures the actuator force is neglected since
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it can easily be added and does not contribute to the understanding of

the problem.'

Figures 16 and 17 show a rapid change of lift on each airfoil

with increasing C... The upper airfoil has greater lift than the lower

airfoil at zero energizing but its lift decreases as additional energy

is added until its load is actually downward. In contrast the lower

wing lift increases rapidly and becomes very heavily loaded. The

net lift of-the system varies to a much lesser extent than that of

either of the airfoils because of cancellation. >

The reason for the behavior just described is apparent.' The

effect of the wake systems and the lower airfoil is to induce a down-

ward velocity at the upper ai'rfoil and hence lessen its effective angle

of attack. Of course a decrease in lift results. Conversely, the wake

and upper airfoil induce an upward velocity at the lower airfoil tending

to increase its effective angle of attack and lift. Any practical design

using the propulsive wing at'sizeable C.. will certainly need to account

for this behavior. Separation is likely to occur without careful design.

Also structural and flying qualities of the design will be dependent on

.this behavior. 1

' Pitching moments resulting from these lift distributions are

shown in figures 17 and 18. We observe that the behavior is to be

expected considering the distribution shown in figure 13. Additionally

we note that since the pitching moments are of different sign for large

Cj., the net system moment is much smaller'than'either of the sepa-

rate airfoil moments. This eliminates the possible difficulty of large

pitching moments for the total system.
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2. Wake Deflection

The influence of the far wake on the system and the validity of

the approximate representation of the numerical solution merits atten-

tion. We know that the actual wake, continues to deflect far down-

stream. This is largely as a result of the influence of the concen-

trated vorticity at the airfoils which induces a downward velocity.

The far field representation of the lifting system is a point vortex

so that at the wake

r
. _ c

Hence the wake deflection is

o

a- _H ^ (*)

Now F is related to the lift by

CLU

Thus we have the asymptotic wake deflection as

c CL x=w J^ /7** / * \yw - TT- * {
c - ) .

This is plotted on figure 12 and we observe that the wake solution is

centered about this line. We also note that in the area where the wake

is represented by parallel lines of constant vorticity, the centerline

has a small slope. Thus we expect that the parallel lines of constant

vorticity will represent the actual wake closely.
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To verify this we calculate the velocity induced by vorticity

on curved lines as given by y above and separated by 6 =0. 25c.
W 00

This vorticity originates at x/c = 6. 0 and extends to downstream

infinity. The evaluation of the velocity was accomplished numerically

and the result is shown in figure 20. Also the comparable velocity

induced by a system of straight parallel lines of vorticity is indicated.

We find that the parallel representation is remarkably close to the

deflected vorticity. Therefore we conclude that the straight parallel

wake shape approximates the far downstream wake quite effectively.

3. Comparison of Solutions

Some aspects of the solution provided by the numerical method

can be investigated by the use of three associated solutions. First,

the solution for C.. = 0 obviously corresponds to the unpowered bi-

plane. The solution to this problem was given by Glauert in reference

15. At all angles of attack and airfoil separations the values of B,

as defined in equation 30, agree well with the values determined from

the numerical solution. This does not provide a test for the wake

representation but does imply that the airfoil vorticity representation

is adequate.

Other characteristics of Glauert's solution were found in the

numerical method. The aerodynamic center was shown to be aft of

the quarter chord point as in the exact solution. Also the upper air-

foil was seen to carry more lift than the lower aiifoil as anticipated.

The second check case is the large CH limit as discussed in

section F. We cannot use for comparison the lift found in section F

since it obviously is in serious error at CH = 0. However the slope
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of the C versus C., curve for large energy additions is relevant.

The slope indicated by equation 49 is shown on the lift curve of figure

14, We observe that this is the slope attained by the nonlinear solu-

tion for large CTT. We also note that the h/c dependence of equation

49 seems to be verified. Thus we find good agreement for the case

of large CR.

Finally, we consider the solution for small CH
 and a of

section E. This is compared with the nonlinear solution in figure 21.

We see that the linear solution differs from the nonlinear solution,

but this difference is most significant for large CTT. At large energy

additions the strength of the wake vorticity of the linearized solution

is much too large. The difference in far downstream vorticity be-

tween the two solutions is

Ay = y - y
00 OOi. 00linear nonlinear

For small CTT we see that Ay is small but as CTT increases Ayi~i oo rl oo

becomes large. This explains the extra lift predicted by the linear-

ized theory at large energy additions.

The difference between the two solutions at small CTT can be ..
rl

attributed to the importance of the wake deflection. Apparently this

deflection contributes significantly to the lift even at small energy

levels. Better agreement between the linear and nonlinear solutions

could be obtained for smaller angles of attack where the wake deflec-

tion would be less important. Also there is a slight wake contraction.
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but the effect is relatively small compared with the wake deflection

downward.

4. Variations in Airfoil Geometry

The previous discussion was limited to two parallel flat plate

airfoils of equal chords. This basic case can be easily extended to

include numerous general geometries.

First the case of unequal length parallel airfoils is the simplest

variation. This geometry is handled in the same manner as equal

chord systems with vorticity placed only on the chord lines of the flat

plate airfoils of different lengths. Identical vorticity functions are

used as before and conditions at the trailing edges are the same.

Figure 22 shows a typical result for an unequal chord airfoil

system. All lift coefficients are based on the lower airfoil chord.

As we anticipate the unequal chord lift is less than the equal chord

lift at Cjj = 0. However, the unequal chord system benefits from

more rapidly increasing CL as C.. increases and eventually achieves

a greater lift than the equal chord system. This performance results

from the absence of a large upper airfoil to carry sizeable negative

lift at high energy additions. The lower airfoil of the unequal chord

system benefits from the wake system in a manner similar to the

equal chord system. Consequently, the net result is an improved

performance from the unequal chord system. Of course for c /c, > 1

we expect the opposite behavior with poorer performance than the

equal chord system.
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The case of nonparallel airfoils is again a simple extension

of the present procedure. Since the method is nonlinear, the only

modification necessary is placement of the airfoil vorticity in its

correct position.

We see that we can immediately extend the present procedure

to include flat plate airfoils of quite general positions. Two further

extensions of interest are airfoils with thickness and camber. These

effects are considerably more complicated to incorporate in the

present method than the flat plate systems. However, conceptually

the only modification necessary is provision for the correct types of

singularities. Although feasible, this does not appear to greatly

extend the understanding of the present problem and hence is not

considered here.
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III. EXPERIMENTAL, INVESTIGATION

In order to investigate the validity of some of the assumptions

and idealizations of the previous par^ a wind tunnel study was con-

ducted. This study provided a useful check on various aspects of the

model we have considered thus far.

The wake representation is one important factor to be examined.

We know that the vortex sheets at the wake boundary of the theoretical

model will not be present in the real flow case. Influences of viscosity

such as entrainment and mixing have been ignored in the analytic study.

Thus effects of viscosity on the wake system must be observed to deter-

mine the limitations of the analytical wake model.

Additionally, the adequacy of the lifting surface representation

merits investigation. Again, real effects may be significant. Tiie

theoretical calculation predicts high airfoil loadings with unusual

pressure distributions. As a result the flow may separate from the

airfoil surfaces. Also the lifting surfaces, because of physical con-

siderations, must be thick airfoils instead of flat plate airfoils. There-

fore we obtain a check on the importance of thickness of the airfoils.

A. Wind Tunnel Model

An apparatus to closely simulate the analytical models discussed

previously is difficult to construct. The method of uniform, two-

dimensional energy addition chosen was injecting numerous small

streams of high energy air between two lifting surfaces. Obviously

this produces the undesirable side effect of mass addition to the internal

airstream. However, precaution was taken to keep the mass addition

small in relation to the mass of the air passing between the lifting
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surfaces.

The ejectors obtained for this experiment, loaned from NASA

Ames Research Center, are shown in Figure 23. Nine-hundred and

twenty individually supplied tubes are attached to the common mani-

fold. Each tube is fitted with a nozzle. The nozzles have throats of

about 0. 018 inch in diameter. This fine grid of ejectors provides a

uniform energy addition after a mixing region of several nozzle diam-

eters downstream.

Flow blockage by the ejectors was found to have a small influ-

ence for the zero C^ case since removal of the ejectors resulted in
rl •

only minor surface pressure changes. The ejectors blocked 17$ of

the total internal flow area. The total nozzle area of about 0. 002

square foot provided for large energy additions by high velocity air,

while the total ejector mass addition remained small. Typically the

ejector mass addition was about one percent of the mass flow between

the airfoils.

Ideally the wind tunnel model lifting surfaces would have been

flat, or at least thin airfoils. This would have allowed direct compar-

ison of the experimental and analytical results. However, the rather

bulky manifold tube of the ejector assembly prevented the use of a

thin airfoil section. In fact, a twenty percent thick airfoil was re-

quired to house the manifold tube. A laminar flow airfoil, NACA

653020 was selected since its maximum thickness point occurs near

the midchord and consequently the manifold could be located at this

position. The energy addition was made at the midchord in order that

the initial mixing of the high energy air with the flow between the air-
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foils would not disturb the uniform head flow conditions at the leading

or trailing edges.

The model cross section is shown in Figure 25 and the model

assembly in Figures 23 and 24. The airfoil chords are 0. 98 foot and

the airfoil is 0. 44 foot. The model span is 2. 31 feet with the resulting

aspect ratio of 2. 4. This aspect ratio was limited by the ejector

assembly dimensions and the wind tunnel size. In an effort to increase

the effective aspect ratio and obtain as nearly two-dimensional flow

as possible, end plates were placed on both sides of the model. The

end plates started approximately one chord upstream and extended

four chords downstream aft of the model.

An additional feature of the model is apparent from Figure 24.

This is the location of nine vanes between the upper and lower airfoils.

These vanes were employed to minimize the spanwise flow which was

observed before their placement.

The wind tunnel used for this study was the Merrill Wind

Tunnel at the Graduate Aeronautical Laboratory of the California

Institute of Technology. The test section measures 46 by 32 inches

and 9 feet in length. The tunnel is a closed return, constant operating

tunnel capable of speeds of over 100 feet per second. However, in

order to obtain C,, values of interest, a speed of twenty feet per second

was used in the tests.

The effect of the wind tunnel top and bottom walls might be ex-

pected to be significant. However, the influence of these walls can be

estimated by placing wake system images above and below the actual
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wake system. These images induce insignificant velocity at the airfoil

locations for two reasons. First, the vorticity representing the

various wake image boundaries are of opposite direction and also

of nearly equal strength. Therefore, the induced velocity of the

pair nearly cancels. Secondly, the image systems are at a distance

of about three chords from the airfoils at their nearest point. This

distance results in small induced velocity at the airfoils when com-

pared to the velocity induced by the wake system immediately behind

the airfoils. Due to these factors, the wall influences are expected

to be small.
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B. Experimental Measurements

The most important parameter of this experiment is the

energy addition intensity. The coefficient CH is the most convenient

parameter to use in comparison of the experimental results with

the calculated values and consequently we consider the measurement

of this factor.

A direct approach to this measurement is through the equiva-

lent actuator thrust. We determine the momentum supplied by the

ejectors and then we can find the corresponding value of AH. We

assume that the flow in the manifold and through the ejectors is isen-

tropic and that the air behaves as a perfect gas and consequently we

can determine the exit velocity at the nozzles by the relation

i
z

>

where p and a are the supply pressure and speed of sound, p the
5 8 6

exit pressure and y is the ratio of the specific heats of air. The

exit pressure of the nozzles is assumed to be atmospheric pressure.

Of course the airfoil system causes the exit pressure to be somewhat

different from atmospheric pressure. However this variation was

measured from the airfoil surfaces and found to be less than 0. 001

atmosphere of pressure and therefore is neglected.

Now the momentum that passes through the ejectors is

MV,, = M Vflux e e

where M is the mass flux through the ejectors. This mass flux was
6

determined by measuring the volume flow through the supply line,

V
2

s y- I
(i . **?\ p /s
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V , at supply pressure. Then by simple mass conservation

e rs s

where p is the supply air density. In terms of standard cubic feet
8

per unit time, V , measured by a Fischer-Porter flow meter, this
S

becomes

M

where p is one atmosphere of pressure and p is the density of air

at standard temperature and pressure.

Finally then

MVflux

Here the supply speed of sound is given by

T
1117 s

88

where T is the supply air temperature. The values of p were ob-s s

tained from the low velocity supply line.

We now have the necessary relations to determine the simu-

lated value of TTxi

U Z b h

Here b is the model span, h is the ejector height and U is the free-
ct
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stream velocity. This relation shows the necessity of using relatively

slow test speeds in order to obtain €)„ values of interest.

The measurement of C,, for this study was determined from the

volume flow and ejector pressure ratio using the above relation. This

was used for procedural considerations rather than direct measurement

in the jet. Checks of the wake energy levels showed them to correspond

closely with the values measured from the high pressure air supply

conditions.

In order to determine the pressure distributions on the airfoils,

80 static pressure taps were incorporated into the model surfaces.

This was accomplished by embedding copper tubing in spanwise slots

cut into the surfaces of the model. One sixty-fourth inch diameter

holes were drilled in the tubing at desired spanwise positions. The

static pressures were measured individually by a single micromanom-

eter.

The dependency of the flow on Reynolds number wake checked

by tests at various wind tunnel speeds. In the case of zero energy,

addition by the ejectors, the pressure distribution on the airfoil sur-

faces was found to be nearly identical over a range of Reynolds number

of 1 . 3 x 1 0 to 6. 5 x 1 0 . Indication of flow separation from the air-

foils would have been evident over this range and was not found. For

nonzero CTT the Reynolds number variation check was also conducted

and again no sign of significant viscous behavior was observed.

Examination of the wake was conducted by two methods. First

extensive total head surveys were made at seven positions downstream
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of the model trailing edges. Also, a hot wire anemometer was

employed to survey various stations downstream. Particular use

was made of the hot wire anemometer in areas near the trailing

edges where the static pressure could vary significantly from the

value far from the jet.
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C. Presentation of Results

The following results were obtained at a test speed of 20 feet

per second. The Reynolds number based on the model chord was

1 . 3 x 1 0 . Runs were conducted at zero and ten degrees angles of

attack of the airfoils. The chord lines of the airfoils were always

kept parallel. Runs at zero degrees were primarily devoted to

checks on the flow symmetry and the effects of the substantial thick-

ness of the airfoils on the air flow between them. All other runs

were conducted at ten degrees. Although higher angles of attack

would be of interest, the tunnel size prohibited such tests. Impinge-

ment of the high energy jet and wind tunnel blockage would certainly

become dominant at higher angles of attack.

First checks of the two-dimensionality of the flow resulted

in the placement of nine flow straightening vanes in the aft portion

of the model as pictured in figure 24. Previous to this modification,

some spanwise flow was observed by the use of tufts. This flow was

apparently the result of some secondary flow or an imperfection in

the model construction. The vanes corrected this situation to a

high degree.

The next check performed concerned the two-dimensionality

of the exit flow. At ten degrees angle of attack the wake was sur-

veyed at a distance of 1. 5 inches behind the upper trailing edge.

Comparison of this survey at three spanwise positions is shown in

figure 26. These results made it,apparent that the exit flow was

two-dimensional (or at least uniform in a spanwise direction) even

within the neighborhood of the end plates.
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The decrease and increase of velocity at the top of the curve

was evidently caused by the flow retardation of the boundary layer on

the airfoil. This decrease and increase was a characteristic of the

velocity curves for all values of CTT. The curve of figure 26 does

not display the same decrease at the bottom of the jet since here the

probe was somewhat further aft of the bottom trailing edge due to

the angle of attack. Hot wire anemometer measurements perpendic-

ular to the chordlines of the airfoils, displayed this, decrease in the

vicinity of both trailing edges. This characteristic of the velocity

curves was not found in measurements further downstream. In

these areas the flow had mixed so that no velocity was les.s than the

free-stream value.

As a final check on the two-dimensionality of the model,

static pressures were measured at various spanwise positions.

Again the model exhibited two-dimensional behavior. Unquestionably

the flow at the end plates was not two-dimensional. However, the

above checks indicated that a large part of the model approximated

the desired flow.

Wake surveys were conducted at seven downstream positions

by use of a total head probe for each of six values of CH at a = 10°.

A typical display of the resulting wake velocities is given in figure

27. The straight vertical lines represent a free-stream velocity of

20 feet per second at the downstream location examined. The solid

curves indicate velocity above the free-stream value according to

the scale shown. The broken line of this figure is the wake boundary

calculated by the numerical procedure of Section IIA for this CTT and a.
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Also indicated on this figure is the center of momentum for

the jet. This was calculated from the wake surveys as the position

y wher e

V '
c 2 ?° 2

/ p u d y = / p u d y
, -oo yc

Thus there is equal jet momentum flux above and below this line.

This line indicates the mean downward movement of jet momentum

as the wake proceeds downstream.

Figure 28 shows the experimental wake boundary shape. The

wake boundary shown by the solid line was determined from points

where the measured wake velocity was five percent higher than the

free-stream velocity. This method of determining the wake boundary

lessened error due to the sensitivity of the measuring equipment.

As before the numerically predicted shape is indicated by the broken

line.

The second set of experimental measurements was the surface

pressure measurement. These pressures were measured from taps

in the tube embedded in the model surfaces. The static pressures

were quite-small even though their corresponding coefficients of

pressures were sizable due to the low free-stream velocity. The

low pressures involved required special precautions for accurate

measurement. Also particular attention was given to minimize

effects of long scale unsteady-ness due to changing wind tunnel and

' air supply conditions. All of the following pressures were measured

at the midspan of the model. '
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As an introduction to the characteristics to be anticipated

from the pressure distributions of this airfoil geometry, Figures

29 and 30 give the zero energy addition case. The pressure distri-

bution shown for a single airfoil was obtained from Reference 18.

The analytic biplane solution shown in these figures was determined

numerically by the Douglas Neumann method for a two-dimensional

biplane in unbounded flow as described in Reference 19. By compari-

son with the single airfoil pressure distribution, we note,that the

pressure distributions for the biplane are significantly altered by

the neighboring airfoil. For cases of nonzero CH we expect many of

the same characteristics that these figures display to be amplified.

The experimentally determined pressure distributions of

Figures 29 and 30 agree well with the analytical solution with the

exception of the upper surface of the lower airfoil near the leading

edge. Here the suction peak expected from the analytic solution is

not observed experimentally. This discrepancy was seen not to be due

to the effects of viscosity. The adequacy of the analytic representation

in this area of the lower airfoil is likely the reason for the disagree-

ment. The position of the stagnation point is critical here and may

account for the apparent inaccuracy of the analytic solution.

Figure 31 shows a typical lower airfoil pressure distribution

for moderate €„. We observe that the lower surface pressure distri-
H

bution is much like that of a single airfoil at angle of attack as shown

in Figure 29. This was observed to be true for the range of CH values

tested. Further, the lower surface pressure distribution was found to

have a weak dependence on intensity of energy addition. However, the
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upper surface of the lower airfoil was observed to be strongly affected

by changes in C .̂. The basic shape of the pressure curve is similar

for all moderate C., values.
rl

The increase and decrease in Cp of the upper surface at approx-

imately x = 0. 1 c in Figure 31 was found for all values of CH. At first
n

it might appear that this dip in the pressure resulted from separation

of the flow from the lower airfoil as it becomes more heavily loaded

with increasing C... However, after study of this area with China clay

and tufts, it became evident that separation of the flow was not occur-

ring. Comparison with tests at o r '= 0 showed that the sudden decrease

in Cp was due to the acceleration of the flow between the airfoils.

The rather thick airfoils are seen to produce a Venturi effect at all

values of C... The acceleration modifies the pressure distribution

in a manner observed in Figure 31.

Pressure distributions of the upper airfoil are presented in

Figure 32. Again, we notice that the external surface, the upper

surface in this case, has a pressure distribution similar to an isolated

airfoil. The pressure distribution of this surface has little dependence

on the other airfoil or the parameter CH. However, again the internal,

or lower surface, is strongly influenced by the other airfoil and the

energy addition! The pressure on the lower surface is observed to

reach its lowest value at the point of energizing.

The same rapid change in pressure at approximately x = 0. 1 c

is again observed as for the upper surface of the lower airfoil. In the

case of the lower surface of the upper airfoil, however, the decrease

in Cp due to the accelerating flow is not as prominent. This is because
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the pressure is decreasing from its high value as the flow stagnates

near the leading edge.

We also observe that much of the upper airfoil carries a down-

ward load for the case shown in Figure 32. At about x = 0. 2 c the
i i .

lower surface pressure becomes less than the upper surface pressure.

Hence, from that point aft to the trailing edge, the load is downward.

Forward of this point the load is in the upward direction.
i

The loadings of the airfoils are more clearly shown in Figures
i

33 and 34. We see that the load on the lower airfoil steadily increases

with increasing energy addition. In contrast, we note that the upper
1

airfoil, although having positive lift at CR = 0, becomes heavily

loaded in the negative direction as CH increases. Also, we see that

the point where the loading crosses the axis between positive and
: . I

negative lift moves forward as CH increases for the upper airfoil.

The rapid decrease and following increase in the loading of the lower
i i

airfoil,is apparent and results from the acceleration of the flow between
' * t

the airfoils as discussed above.

The total airfoil lift is shown in Figure 35. This lift was deter-

mined by integration of the surface pressures measured on the air-

foils. As in the numerical calculations, the lift resulting from the

force on the actuator is not included. The calculated lift for flat plate

airfoils with the airfoil separation and angle of attack of the model is

also indicated in Figure 35.

Of course, due to the significant differences in the experimental

and theoretical airfoil geometries, we expect different lifts at C.. = 0.

However, the quantity of importance is the lift augmentation as energy
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is added to the flow. Figure 36 displays the rate of lift increase with

increasing €„. Here the numerical result of the lift slope shows

rapid decrease to the limit value for large energy addition.

The experimental lift slope determined from the slope of lines

connecting neighboring points of Figure 35 has extreme scatter. Con-

sequently a least squares fit of the points shown in Figure 35 was

accomplished and the slope of this curve is shown in Figure 36 as

the experimental value. >

Of nearly equal importance as the system lift is the pitching

moment resulting from the pressure distributions discussed earlier.
i

Figures 37 and 38 show the measured and predicted pitching moments

for the two lifting surfaces. These are nose down moments about the

leading edge of each surface. We observe that each of the airfoils

develops quite large pitching moments as C^,. increases. However,
rl

since the moments are of opposite directions, we expect that the net

moment is much smaller. This is verified in Figure 39 where the

total pitching moment for the two surfaces is shown.
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D. Comparison of Experimental and Calculated Results

The previous section provides considerable experimental data

for use in comparison with the calculations of part II. We consider

these points now.

First, the wake shape experimentally determined compares

well with the shape of the numerical solution. Of course the effects

of viscosity are quite evident in the experimental tests in the form

of considerable mixing'of the wake. However this primarily occurred

relatively far downstream and we anticipate this to have rather

insignificant influence on''the airfoils.

The surface pressure distributions are significantly altered

by the thickness of the airfoils and consequently do not lend them-

selves to direct comparison. Nevertheless we notice the similarity

in the observed and predicted behavior. The lower airfoil was seen

to be more heavily loaded as energy addition increased. Further,

the upper airfoil exhibited rapidly decreasing lift with increasing

CTT until this airfoil became loaded negatively. Moreover the forwardri

part of the upper airfoil was observed to carry positive lift while

the aft portion was loaded negatively. All of these characteristics

are exactly as anticipated from the numerical solution.

Additionally, the model lift curve, although of lower lift than

predicted for flat plate airfoils, does exhibit the correct shape. The

lift at zero energy addition is the difficulty here. The considerable

thickness of the airfoils lessened the lift of the biplane system. Also

viscous effects may account for some of the discrepancy in the lift
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at zero energy addition.

Due to the discrepancy of the lift at CTT = 0, the lift slope is

more significant than the actual lift. We observe good agreement

between the predicted and experimentally determined augmented lift

slope.

The pitching moments found experimentally make it apparent

that the pressure distributions are similar in nature for the experi-

mental model as predicted by the numerical procedure. We expect

differences in these moments due to the considerable thickness of

the experimental model. We observe that the cancellation of the

moments for the upper and lower airfoils fortuitously removes the

problem of large pitching moments for either of the lifting surfaces

separately.
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