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Comment on "Basis Restricted Transformations
and Performance Measure for Spectral Representations”.

V. R. ALGAZI
"~ B. J. FINO

ABSTRACT: In this cofreSpondénce, we corment on some of the shbrtcomings,
for source-encoding'prob]ems, of the measufe of diétance between ortho-
normai'repreSentations proposed by Pear]z[l].

We further examine, using-réte distortion theory; whether rates
achievable for a given distortion level by the use of basis-restrictéd

transformations have some inherent dissimilarity independently of input

TUSTAtISTICS Taiid OF oiher hiiplieu. paranelers.
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Comment on "Basis Restricted Transformations and
Performance Measure for Spectral Representations”.

Pearl [1] has proposed a distance measure to characterize Jinherent dissim-
ilarities" between orthonormal transformations. With this measure the distance
between orthonormal transformations is “independent of input statistics". One
of the applications mentioned for basis restricted transformations is to the
source encoding of randoﬁ processes. ~ In this correspondence we comment on some
of the shortcomings of Pearl's distance measure when applied to source encoding
problems. . We further examine, using rate distortion theory, whether rates
_achievable for a given distortion level by the use 6f Sasis-restricted trans-
formations have some inherent dissimilarity independently of input statistics
and of other implied parameters. _

We note first that dissimilarity between two transformations is defined by
Péarl'for the class of random processes which have a diagonal correlation matrix -
for one of the transformations. 7The transtormation is thus fhe Karhunen-Loeve
expansioh of a random process adapted to the speciffc transformation. Under
these circumstances independence on input statistics achieved by averaging |
“over a class of processes cannot be dissociated of theAc1ass of processes con-
sidered, Moreover this construction does not prdvide any insight into a common
- question of interest in the use of basis-restricted transformations for source
encoding: Given a random process with known correlation matrix how do different
transformations rank in the encoding of this random process? This is the specific
question that Pearl refers to when he comments on the asymptotic distance between
the Walsh-Hadamard and the Fourier transformation for large block size. However
Pearl's distance measure also indicates a diverging distance between the Karhunen
Loeve (which is then the Kronecker or natural transformation) and Fourier trans-
formation for large block size. On this baSis one cannot feel confident that

Pearl's distance between Walsh and Fourier’transforms provides an answer to a




common conjecture.
The evaluation of the relative perfdrmance of orthonormal transformations
in source encoding problems can be done by assdming that the expansion coeffi-
| cients are encoded independently and the rate diétortion bound evaluated for
each coefficient. This approach was used'by Goblick and Holsinger [2] to eval-
uate the performance of the Fourier expansion for source encoding and has been
extended to other "basis-restricted transformations” by Pearl.. |
For example we show in Figure 1 such rate distortion functions for a
Gaussian Markov random process with correlation function R(n) = e-alnl (1)
n=20, i_], + 2 --. These curves are for a = + 0.05 and clock siée N = 32.
Similar curves are given by Pearl, Andrews and Pratt for N = 256.[3]. Note
that the Haar and wé1sh-Hadamard transformations behave ;imilarly, in contra-
diction to Pearl's distance. The similarity of performance can be explained
by expléiting the formal relations between the Haar and Walsh Hadamard trans- =
formations [4]. Note also that for the semi4logarithmic_sca1e used for the |
mean square distortion the rate-diétortion per sample curves are parallel
straight ]jnes. This occurs for mean-square distortions lower than the smallest
variance of expansidn coefficients since we have then
. | 1 ol
: o R(e) = 57 109, E—N—l (2)
' ' €
| 1 N L .
Therefore dR], R2 = R](s) - Rz(e) = ﬁ-logz ]E] (U]i/CZi) in which subscripts 1
and 2 denote two distinct orthonormal transformatioqs. Note that dR],RZ is
no longer dependent on the specific € . |
To illustrate the dependence of source statistics we show in figure (2)
dy as a function of a , defined in (1) for the fixed block size N = 32. It

is nbteworthy that the curves for Walsh Hadamard and Fourier-tfansformations

intersect. Thus no general conclusion can be obtained on the relative merit



of these two orthonormal transformations in source encoding problems. Averaging

on some set of statistics is possible but the use of the results is dependent
on the specific app]ication; As shown in Figure (3), when the block size in-
creases, distance dR], R2 between the Fourier and Karhunén Loeve transforms

decreases to zero as expected. It can be shown that the distance between the .
Haar and Karhunen-lLoeve transforms increases to a limit and it is conjectured

that the Walsh'Hadamard'transfqrm has a similar limiting behavior.

- V. Ralph Algazi
Department of Electrical Engineering
University of California, Davis
Bernard J. Fino . .
Department of Electrical Engineering

and Computer Science
- University of California, Berke]ey
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A UNIFIED TREATMENT OF DISCRETE UNITARY TRANSFORMS
' WITH A FAST ALGORITHM

by

Bernard J. Fino+ and V. Ralph A_]_gazi-H

AAbstract

AA set of recursive rules which generate unitary transforms with a
fast aigorithm are presented. For each rule, simple relations gives the
number of‘elémentary operations required by the fast algorithm. The"
common Fourier, Walsh-Hadamard.(W—H), Slant and Haar tréﬁsfbrms'are
expréssed with these rules. The framework developed allows the intro-
~ duction of generalized transforms which include all common transforms in
a 1arge class of "identical computation transforms." A systematic and
unified view is provided for uhitary'transforms which have appeared in the
literature and for a number of new transforms of potential interest.
Generalization to complex and multidimensional unitary transforms is

considered.
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Introduction

The dissemination of the Fast Fourler Transform algorithms,
originallyAintroduced by Good [1], and known as Cooley-Tukey [2] and
Sande—Tukey [3] algorithms, has resulted in a large extension in the
range of applications of the well known Féurier transform. Recently the
Walsh-Hadamard transform, also with a fast élgorithm [4] has drawn
considerable interest [5]. The Haar transform although closely related
to the Walsh-Hadamard transform [6] and potentially of interest [7], has
.received much less attention. These transforms have been used successfully
for error free signal representation [8], pattern classification [4], [9];
speech signal encoding [10] and above'éll for picture encoding [11], [12],
[13]. Only a few transforms have been considered in these applicatioms
whilé,many other transforms could be of interest. Some workers have
considered the definition of generalized transforms and we mention the
" works by Andrews, et al [14], [15], [16], Rao, et al [17], [18] and
Harmuth [19]. |

In this paper we present a unified view of discrete unitary trans-

forms with a fast algorithm. A discrete unitary transform is characterized

by a unitary matrix [T] such that [T][T*t] = [I] where * denote conjugate
"t" transpose and [I] is the unity matrix of same order as [T], say N.

For mathematicians a unitary matrix expresses a rotation of the orthonormal
basis and preserves the Euclidian norm IVl of a vector V. In this N
dimensional space, Iyl =’§.§*t. In signal representation, this property
means energy conservation and an easy expression of the mean square error
when some components of the signal are ignored in the ﬁew base. The

computation of the transformed vector ﬁ of-$ by the transform [T] such

that ﬁ = [T]V usually requires N2 multiplications and N(N-1) additions.

-1-



For some specific transforms of interest such as the Fourier, Walsh-

Hadamard transforms a fast algorithm has been found which requires fewer

elementary‘operations. The analysis of these fast algorithms has been
done by factorization of the matrix [T] into a set of largely sparse
matrices, each expressing a stage of computation. This is the approach
followed by Good [1l] in his original paper which lead fo the Fast Fourier
Transform [2], [3] the Fast Walsh Transform [4] and other known fast
transforms,

Here we consider recursive rules1 for the generation of unitary
transférms having a fast'algbrithm. These rules allow us to generate
large classes of such transforms, many of which are new and possibly -of
interest, and to give general formulas for the number of elementary

operations required by the corresponding fast algorithm.

1. Recursive Generative Rules:

We shall present three rules which generate a new unitary matrix
frqm some original unitary matrices. For each fule we relate the number
of elementary operations for the new transform to the number of elementary
operations of the same type required by the original transforms. For rule 1
there is only one original matrix, for rule 2 two, and for rule 3 a set of

original matrices.

1We denote by "rule" a set of operations performed in a prescribed order.
We reserve the term "operation" for the elementary operations such as
additions, multiplications, etc. which determine the computational
complexity of a transform. ' '



Rule 1: Operations on the columns of a unitary matrix: -

“Given a unitary matrix [T], two obvious operations on the columns
yield another unitary matrix of some order:

a) permutafion of the columns: This operation does not require
any cémputation. In the computational process, this operation can be
performed by applying the permutation to tﬁe coefficients of the input
vector instead of the columns themselves.

b) multiplication of a column by a root of unity: This operation
introduces a complex multiplication if the root of unity is not + 1 or
*3 @G-= Y-1) (see footnote 2).

These operations on the columns may be expressed by a matrix
product [T] [D] with [D] such that Dki = ejei if column k is to be replaced
by column i multiplied by the root of unity, e jei, and all other entries
of [D] are null.

Rule 2: Rotation of rows by'a unitary matrix

Consider a unitary matrix [T] of order N; The N row vectors form
an orthonormal basis for SN’ the N dimensional space they span. m Tows
vectors of [T] form an orthonormal basis for subspace Sm' If these m
vectors are rotated Ey a unitary matrix [U] of order m, we obtain a new
orthonormal basisczgfor Sm. The remaining unchanged N-m rows of [T] are
an orthonormal basis of the subspace SN—m orthogonal to Sm and form with
cI;a new orthonormal basis for SN; Thus,>the matrix [T'] obtained after

rotation of the m rows by the unitary matrix [U] is unitary.

zbﬁﬂtiplications by +1 and +j may be counted as operations if the hardware -
realization of the algorithm is not able to keep track of them. However,
for the error analysis of the algorithm these multiplications, even 1f
they are performed, do not introduce any error.



Some particular cases of interest are:

a) multiplication of the whole matrix by a unitary matrix of
the same order

b) permutation of the rows (multiplication by a permufation
matrix)

c) multiplication of a row by any root of unity.

The operation b) and c) can be represented by the matrix product

[(D] [T] where [D] is, as before, such that Dy = e3%1 if row i of T is‘

replaced by row k multiplied by the root of unity, eJei,'and all other

entries of [D] are null.

Number of Elementary Operations:

If transforms T and U require respectively t and u elementary
operations of a specific kind, it is obvious that the transform T' will

require at most t' of these operations with
t'*=t+u _ ‘ ¢H)
(It may happen that [T'] so generated has a simpler algorithm).
Equation (1) applies independently to any type of elementary

operation, additions, real and complex multiplications as well as any

other specific operation (e.g. shift, multiplication by v2 . . . etc.)

Rule 3: Generalized Xronecker Product:

Given two sets of unitary matrices, SQt‘{J%}Of‘m matrices [Ai
(i=0,...,m-1) all of order n and set{jg}of n matrices [Bl] (i=0,...,n-1),
all of order m, we define the generalized Kronecker product of the sets

{'\)A(} and {@},demoted {’A}@{Kg}to bel the square matr‘ix [C] of order

(m) such that



: _ W u'
Ci,j - Cum-l-w, u'mhw' Auu' wa' _ (2)
with 1 = umtw u, u'=0, ..., n-1
j o= u'mw' w, w'=0, ..., m1
a) [C] is a unitary matrix:
Proof:
m-1 % n-1 w1 *
>, Cik Cr = > > Cumtw, vtz Cu'mhe', virz
=0 v=0 z=0
With k = Vm+Z V=0, sy n_'l

z=0, ..., m-1

Using (2)
mn-1 n-1l m-1 v * ! v %y
*
: Z Cix Cjk = Z Z Aw Buty Bz Btz
- k=0 v=0 2z=0
n-1 m-1
w o *w' v %V
= Z A Bty z Bz Btz
v=0 =0
SR N J
v - v
$ : by orthonormality of [B ]
Www
n-1 w % w
- aw,w' Z uv Au'v
Guu' by orthonormality of [Aw]
= 6ww' wu' 613

where Gij is the Kronecker delta Gij =1 4if 1=j

0 otherwise.
This proves that [C] is a unitary matrix. QED
In the particular case in which the matrices [Ai] = [A]_are all

identical, and also the matrices [Bi] = [B], then the generalized Kronecker

-5~



productij4} ® 61}} reduces to the usual Kronecker product of matrices

[14]: [A]l ® [B].

b) Factorization of [C]: We now prove that

[c] = (%] [plag(A}]  [P] [Diag(B}] | 3
where [Diag{JQ}] and [Diagﬁj}}] are block diagonal matrices formed with

the matrices of the sets {j@} and'Fqg} (see Fig. 1) and [P] is the

permutation matrix of order mn such that P, =6_, § , when k = vntz,
ke vz zZVv

% = v'mtz' and z', v=0, ...., m-1; z, v'=0, ...., n-1. Equation (3) is

a generalization of the factorization of a simple Kronecker product into

Good matrices [14].

Proof:

[Diagb4}]k‘k =6

" Az"z with k' = v"ntz2"
. \ .
[Diagfjg}llj = 6u'v' B:'w' v j=u'm+w"
[Pt) =§ 1) i=um+
ik! uz" Wy = um w

v u
§ : z : 6uz" Gwv" va" Az"z'dvz' sz' 6u'v' Bz'

¢« B+ =C - QED.



c) Number of elementary operations:

With ﬁhe computational blocks corresponding to the transforms
Ao, ceses Am—l and BO, ceealy Bn~l, the factorization of equation (3)
leads directly to the computational block of the transform C given in
Figure 2,

From the structure of the algorithm of Figure 2 it is easy to see
that if the matrices [Ai] (i=0, ..., m~1) and [Bu] (j=0,...,n-1)
have algorithms requiriﬁg respectively pi and qi elementary

operations of a specific type, their generalized Kronecker product [C]

will require P of these operations with

m-1 n-1
S i |
DD RPIE- @
i=0 j=0 ‘
In the particular case of a simple Kronecker product pi =P, and
Q) = q_ so
Pmn = m Pn +nq) (5

Note that the use of rule 1 and 2 only increases the number of elementary
operations while the order of the generated transform does not change.
For rule 3, even if [Ai] and'[Bj] do not have fast algorithms and thus
_require n2 and m2 elementary operations, [C] requires a maximum of
(min)mn 5_(mn)2.(for m, n > 1) elementéry operations;
The results of equations (1), (4) and (5) are important: for every
transform generaﬁed with the recursive rules presented, they give a

simple and systematic way to estimate its computational complexity.



2. Identical Computation (IC) Family:

Thelgenerative rules defined above create a unified framework
for the known fast unitary transforms, introduce new transforms, and
allowvaséeSSment of the computational complexity of such transforms.
In this paper, one large family of transférms is considered: the
"identical computation transforms" that‘we discuss now.
We denote by {j@}@@ [Bq] the gengralized Kronecker produét of
a set_L}%} of q matrices [Ai] (X=0, ..., q-1) of order p and a set 633}
.of p identical matrices [Bq] of order q. [Bq] will be called a core
~matrix and [AE] a parent matrix. The IC transforms are recursively
generéted from a unique class, (}, of parent matrices of some order f
and an original core matrix [@)] of order q. An IC transform of order
(qfn; is then obtained from the original core matrix [@D] by the recursive

formulas:

[IC

qg] = D] 1A @ [0 [Dl)

6)
[Ic ]
qf”

D . } @ [1c 11 [p" ]
[ qfn] [{)4[1 qfn—-]_ . qfn

where the matrices [D] and [D'] express respectively a reordering
followed by multiplications by roots of unity of the rows and the columns.
All parent matrices Of‘(jii} ....'{j4n} belong to ().

The common characteristic of all the transforms of the IC family is
that their élgorithms only use in an§ computation intermediate results
obtained from the input vector through identical computations (so the name
of the family). This property provides a uniform treatment of successive

components of the input vector if we consider that any parent matrix

-8-



treats uniformly its input vector. For this family, all the ﬁormalizationé
" can be delayed to the last stage of computation.

We shall consider different choices for the original matrix‘[G)],
the class (} of parent matrices, the matrices [D] and [D'] and the sets
Lj*k}' We first show ghat the basic transforms, Fourier, Walsh-Hadamard

and Haar, are IC transforms.

3. Basic Transforms: Fourier, Walsh-Hadamard, Haér{

In this section with the help of the generative rules, we examine
the well known Fourier, W-H , and Haar transforms. This approach allows
the derivation of some new results concerning‘the number of multipli-
cations required by a FFT of composite drder, a concise presentation of
the different definitions of the W-H transform, and simple definitions
of the Haar transform, Iﬁ addition it makes apparént the common
. structure of these transforms. This will lead in the next section to
the definition of families of transforms between the basic transforms.

In fhe following we emphasize specific orderings for the.basic‘.
transforms: frequencies for the Fourier transform, zequencies3 for the
W-H transform and rank for the Haar transform. These orderings have
proved to be useful in signal encoding beqause they conceptrate the
signal energy into the first transform coefficients, for some image

models [21].

3This terminology has been introduced by Yuen [20]. The zequency is the
number of zero crossings.



. 3.1 Generalized Fast Fourier Transform of Composite Order

a) decomposition theorem:

Given the Fourier matrices [Fp] and [Fé] of orders p and ¢

respectively, the matrix [quj such that
[F 1= [{[F1® [F]1] [P1* BNG)
P4 q" "< p . '

is the Fourier matrix of order pq. The set'{[Fz]}, k=0, .. p-1 is

such that
+ .
[Fq] = [Fq] [Dk] where (8)
. L &
[Dk] is a diagonal matrix such that (Dk) LT exp(~-21j %%— )
- u'u
[P]t is the permutation matrix such that
PSt = Guz ka with s =uq +k € =wp + z
u, z < p-
ky, w < g
k
Proof: We denote [{[F F by [F' ].
[[q]}®[p]J y[pq]
(x! = (F - (F)
pq’ ug + k, u'g + k' p’uu' q’kk'
] ‘l -:' \
. _2"j§: ) _zﬂj(uu + ku + kk )
.= (F)) . e : . (F) = =e P Pq q
puu' qkkl ‘lz.q
. )
[rF_ 1 =1(F'] . [P]"=(F_) = (F') : I
Pq P4 P etk, wptz Pq ugq+k, u'q+k' zu' “wk

-10-



—21j (_‘£+ EE..*. _ky_) ' -27j (ugtk) (wptz)
=e - P Pa 9 _ 4 Pq

QED.

Note that [qu] is symmetric and orthonormal so that
-1 % ' ' ' '
([qu] ) = [qu]. Making use of (3) and (7) it is possible to derive a

new expression for [qu]:

. . B ' _'k .
[qu] = [[Fp] ® {[Fq 1}] [P] : (9
: ko o
with [F2 ]l = [Dk] [Fq]

If [Fp] and [Fq] require respectively(j4p andgj4q complex additions,

;AAP andpAAq complex multiplications, [qu] will require by application

of (4).
VAbq = p&)tq + q'va complex additions (10)
= 'lA + LAA + C omplex multiplications 11
LAqu PV M p,q COWP plic (.)
where C is the number of complex multiplications introduced by (8).
, .
Cp q = pq if all the factors including + 1, + j are considered.
s’
Cp Q- (p-1) (q-1) if the factors + 1 are discarded
>
~Cp q = (p-1) (q-1)-1 if the factors + j are also discarded
3

(when (pq) is a power of 2).

"b) Generalized FFT of composite order

If the order of the Fourier transform is composite, i.e. N = Py v

pn, the previous decomposition theorem yields the well known FFT

-11~



algorithms [2] [3] detailed by Glassman [22] in the most general case.
The recursive use of the formulae (10) and (il) gives the number of
required operations. In the case of N = r" we can solve these recursive

equations: this is the case of FFT of radix r.

A

-1 ' -1
SR r A o =

rn
(12)
M_ = 2T+ e M+ ) (") B or
r r
. v n-1 . n-1
. ) -1 -1
M =0 T+ @0 [ PTG - B s
r : B

(o, B depend on the value of C )
Psq
The radices 2, 4, 8 and 16 have been considered in the literature.

For the radix 2, which gives the most popular TFT, the recursive

relations given by the decomposition theorem_afe

[ 1 - HIFs1} @ (¥ (1 [ (14)

and [F ] = [[F __ 1@ {([F,“1}] [¢]
2 2
ko
-21j ;;' (15)

: 1l e 1 1

. ky_ 1 'k, 1
Vi 7, = 2 camg B | @R )2 Al an B ang K
2

2 _ ot =

The- algorithm corresponding to the recursive formula (14) and
obtained by recursive use of Fig. 2 is shown in Fig. 3a; it can be

arranged equivalently with all operations "in place" as shown in Fig. 3b

12—



which is éhe plassical diagram of the Cooley-Tuckey [2] algorithm
with decimation in time.
The algorithm corresponding to the formula (15) ié the Sande;
fukéy [3] algorithm with decimation in frequency and is shown in Fig. 3-
¢ and d. |

For these Figures the factors are

a =1
)
a, = exp(-2713/8)
a, = exp(-4713/8) = -3
a, = exp(-6uj/8)

We can compare the FFT with radices 2, 4, 8 and 16 for transforms
a .
logzr

of order N = 2" = r (n is then a multiple of 12). The formulas

- (12) and (13) then give:

. 1 12 3
rasin| A (M| A M, M M
r r X - r
(all factors) (no factors + 1) (no factors + 1 + j)
2 2 0 ) (n-1) 2" n2™ L _ oty a2™l _30m 4,
n-2
4 8 0 | &n 2 3n2™3 - 2% 1 [3n2™3 13'23 ~4
$n2
-3
3n n n2" n n2n 57.2n - 8
8 24 1 (FD 2 -2 t1 3 - =
4
11n n 21n2"  .n 212" 241.2%'-16
16 64 6 G5~ 2 -2t - —
J

The column*jhfn has been given by Singleton [23]. - In fact our approach
" .
allows the evaluation of the computational complexity for any composite

order, in particular for mixed radix FFT.
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~The factors + 1 are easy to track in the algorithms and for most
realizations multiplications by + 1 are not>performed. The factors
+ j appear in varioﬁs-places in the algorithms and in most realizations
multiplications by i_j are pefformed; however, in an error analysis
these multiplications do not introduce anyvrounding error and the

column,AA3n 1s then of interest.
- r . . . .

3.2 Walsh-Hadamard Transform:

The W-H functions are well known and the results presented iﬁ this
section are explicit or implicit in many publications. Here, we
wish to express these results in terms of our generative rulés; we
think that the following compact notation clarifies the relations
betweén the QariOus'orderings of the W-H functions and the diffefent
.algorithms. This approach also makes aéﬁarent the common structure of
the W-H transform with the Fourier and Haaf franSforms.

Three distinct orderings or rows of the W-H transform are commonly
used and are of interest (see the discussion by Yuen [20]). For each of
these orderings there exists a recursive matrix definitién:

a) ‘"natural order” It is obtained by simple Kronecker product

without any permutation

[WH a nat.] = [FZKQ [WH el nat.] (16)
2 2
with the original core matrix [F2]. This relation gives directly, by
recursive use of Fig. 2, the fast algorithm of Fig. 4a (without the
reorderings). A different presentation of this algorithm with identical

stages of computation is given in Fig. 4b.
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b) Paley's ordering: Used originally by Paley [24] it seems
more suitable for mathematical developments than the other’ orderings.
The recursive relations introduced by Yuen [20] are expressed by the

matrix relation

(i, pal.] = [[F))@ [, pal.l] (p1° < 7)
with the original core matrix [F2] and [P] as defined previously for

the Fourier transform (see section 3.1). This relation gives the
algorithm of Fig. 4c (without the bit-inversion reordering) by recursiﬁe
use of Fig. 2. A different presentation 6f fhis algorithm can be

found in [6]. | |

c) zequency ordering: This is the original ordering by Walsh

[25] and is the ordering of interest for signal encoding because it
ranks the transform coefficients roughly according to their variances
for signal statistics commonly encounteréd in practice. ' The generating
processclk/, introduced in [6], defines recursively thé W-H matrices in
zequency order. We can express it by the matrix relation |

(8, zeq] = (W] [[F,]® (W) sea.d] ~as
where [W] denotes the reordering of the process CLU. A zequency ordered
algorithm has been investigated by Manz [26].

Although the zequency ordering could be génerated recursively, the
corresponding algorithm would not be simple and it may be preferable to
obtain the W-H transform in natural or Paley's order and then perform a

global reordering.
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Given the transform coefficients in Paley's order a

" "bit inversion" reordering, denoted in matrix form by [Q], is necessary

to put them in zequency order: in a bit-inversion permutation,

th : .
consecutive coefficients with 'k  bit of the binary representation

of their indexes equal to 1 are put in reverse order. This operation

is performed for all bits starting from the rightmost bit. With 8

coefficients to reorder this means the following permutation:

index of

binary reverse order reverse order final

coefficients in representation for middle for leftmost order
Paley's order bit - bit (see Fig. 4c)

0 000 —_— | 000 ~———— 000 0

1 001 - 001 -——— 001 1

2 010 011 —— 011 3

3 011 ;:::><::::T 010 ————— 010 2

4 100 —— 100 110 6

5 101 — 101 111 7

6 110 111 101 5

7 111 :::><::::: 110 100

Given the transform coefficients

in natural order, a bit reversal

ordering, denoted by the matrix [R], will order them in Paley's order and

a bit-inversion will order them in zequency order. TFor 8 coefficients

to reorder we have:
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index of binary ~ bit bit | final
coefficients in |representation| reversalj- inversion ordering
natural order ' ' _ : (compare
' yith Fig.4a,b)

0 000 ~——— 000 | 0 - 0

1 001 100 4 > 4

2 010 »4 010 | 2

3 011 110 | 6 _

4 100\ >(‘ 001 | 1° | 3

5 101 i 101 | 5 7
' : 011 | 3 -l 5

6 110

7 111 — 111 | 7 1

-1t is important to note that, as the W-H matrices are symmetric
in any of the three orderings, these reorderings can be performed on

' the columns as well as on the rows. Hence we have the matrix relations:

]

i, zeq.] = [Q) (W, pal.] = [Wi pal.] [Q1*

t

(W1 zeq.] = [Q] [R] [WH _nmat.] = [WH nat.] [R]° [Q]
2 2 2

Since the W-H matrices are their own inverses, we have also using (16)

and (17) the following recursive relations

t

]

(i mae.] = (P17 [y nac.]1® [F,1] (7]

[WH n pal.l

X [y peL.]@ [F,]] (7]

These relations however do not give different algorithms. All these
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algorithms differ only by reordering and so have the same number of

additions given by

S
S

+2, 2% Gith 'Ja‘z = 2 which gives
QJA n = n2", a well known result.

3.3 Haar transform:

The Haar transform is usually defined from the Haar functions [11].

The Haar matrix of order 8 [H8] ordered by ranks is as follows

“ Zones
1 1 1 1 1 1 1 1 0
1 1l 1 1 -1 -1 -1 -1 1l

ﬂﬁ—ﬁ‘—ﬁoooo}z

IH
N
9
4
4

[tg] VA P 0 0 0 0 0 0
0 0 2 -2 0 0 0 0
0 0 0 0 2 -2 0 0 >
0 0 0 0 0 0 2 -2
L -

Here we use the generative rules to define recursively the Haar matrices
and we have found two definitions:
1) The Haar matrix of order 2" is-obtained from'tﬁe Haar matrix of
| 1 0
order 2n-1 by simple Kronecker product with,IIZJ = followed by
' 0 1

rotation of the rows 0 and 2 by [12]. This is the proeess?}é of [6],
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in terms of generative rules.

2) The Haar matrices are recursively defined by the relation:

[H2n nat.] {[Fz],‘[IZ], ceees [12]}C? [Hzn_l nat.] (19)
The rows are obtained in "natural” order. To reorder them
by their ranks, we need a "zonal bit reversal" ordering. A
zone as defined in [6] is a set of coefficients with indexes between two
successive powers of 2. A '"zonal bit reversal" ordering is a bit-reversal
followed by a reordering in the original order inside each zone. For 8

coefficients the zonal bit reversal ordering gives:

Index Binary representation  Bit reversal : Reordering . final order
: inside zones  (see Fig. 5a)

0 000 — 000 )———s000 0
1 001 o 100 ) ———> 100 | 4
2 010 \ /j 010 }——— 010 2
3 011 120 J———— 110 3
4 100 001 )—— 001 1
5 101 / S 101 011 6
6 110 \ 011 ?>< 101 ' 5
7 | 111 > 111 J—111 7

With both definitions we obtain:by recursive application of thevdiagram
of Fig. 2 the algorithm of Fig. 5a. This algorithm can be more conveniently
‘organized as shown in Fig. 5b and give the rows directly ordered by.their
rank,

By application of (4) we obtain the foilowing recursive formula for

the number of additions:
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‘LJ4 =2 - Lj( + 2. Hencé ;}l = 2(2“—1) withiJA = 2, anl
n-1 ' va 2

2" 2
normalizations are also required. ‘A modified Haar transform obtained from
fhe Haar transform by permutation of its columns is related to the .
. Fourier tranmsform (see later section 7.3): it is defined recursively by:
: . . t
ba 1 = (2] (5], (1)), ..os (L@ BE 1] [2) Y
" Globally the permutationé [z] perform a bit~reversal ordering inside each

zone.

The modified Haar matrix of order 8 is as follows

2 0 0 0 -2 0 0 0
0 2 0 0 0 -2 0 0
0 0 2 0 0 0 -2 o |

and its algorithm is given in Fig. 5c.

" 4, Generalizations of the basic transforms

For the three basic transforms we have found recursive definitions
with a matrix formula similar to (6). The direct comparison of these
definitions suggests the generalization of the basic transforms to families

between them. The simplest generalizations are two families between the
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Fourier and W-H transforms, and between the W-H and Haar transforms. A

larger generalization is the IC, family which includes all three basic

2
transforms with parent matrices of order 2. A number of these generalized
transforms has recentiy been discussed independently. We would like to

show that they fall easily within the framework we have developed and that

further generalizations are clearly possible.

4,1. Family between W-H and F:

If we compare the recursive generation of the Fourier matrices with
radix 2 (14) and the W-H transform (17), we notice that they diffef only
by a sét of faétors. If we exclude the reorderipg of the rows, we see
that we can easiiy generalize the W-H and Fourier transforms to a. large

family of unitary transforms given by the recursive formula“

il

for ]

{[F (o )-,;-,F (e )} @ [T 111t
2 20 _ 2 2n—l_l 2n-l

1 exp(-j0)

)] =

where[Fz(eﬂ
1 -exp(-30)

This family includes the W-H and Fourier transforms for the appropriate

choices of the parameters 80 oo eznfl_l.

Two families have appeared in the literature for special choices of

these parameters:

21 ke
f;;*—' -
scalar varying from O (W-H transform) to 1 (Fourier transform). The

1) © where ¢ is a real

k:

corresponding transform has been called "general spectral analyzer" [14]

[15].

-21~



2) o = 27 k
k oh

where g is an integer varying from 0 (W-H ;ranéform) to n-1 (Fourier

C4f k mod (227178 = ¢

transform), and Gk = 0 otherwise. The ébrresponding transform is the
"Generalized Discrete Transform" [17]; we will denote it [GTgn].
Fig. 6 shows the matrix [GTi6] and its fast algorithm. Manyzother choices
for these factors are obviously possible énd‘these two special choices
do not seem to bear any exceptional importance.

As an example of use of our general formulas we compute now the

required number of multiplications for the Generalized

Discrete Transform. There are del factors different from 1.

e - 5 \l8 g . ~

So,AA n - ZVAA -y T 27-1 forn-1>g

2 2

;Aﬂg = 2 B + 211 otherwise.

n n-1 .

2 2 .
So that ublgn =g 2™l 8y

) _

If we do not count the multiplications by +j, we find similarly

-1 )
MAB_ = (-1 27728+ 2
2

4.2 Family between Haar and W-H

In [6] one of the authors has presented a family of transforms between
the Haar and W-H transforms. This family was obtained by replacing W-H
transforms of lower order by Haar transforms in the decomposition of the

fast algorithm of a W-H transform. Now we have further decomposed the fast
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algorithms'of the two transforms up to similar recursive formulas (16)
A o1 ,

and (19) or (17) and (20). Obviously, if we choose any of the 2
parent'matrices needed to generate the matrix of order 2" to be either
[F2] or [12], we obtain a large family of unitary matrices which includes

the Haar, W-H, and uniti matrices. There are

members of order 2" in this family.
The number of additions is obviously twice the number of parent
| -1 .
matrices equal to [Fz]. For the W-H transform we have n2" such matrices

n—-1 + 2n--2

and therefore n2" additions. For the Haar transform we have 2
e + 1= 2%-1 such matrices [F2] and so 2(2n-l) additions. The number of
normal;zations varies from 0(W-H) tb 2"-2 (the normalizing factors come by
pairs and all pairs are different in the worst case). No multipliéation is
: required during the computation. At the order 8, 27 matrices are in the
family. We show in Figure 7 one of them with its fast algorithm,

Assume as a particular case that we choose the parent matrices of

the recursive formulas to be

with

[F] = [F,]for k = 0 mod (2Pth-my
k .
F = [12] otherwise

where p is the stage of computation up to n when we generate a transform of
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order 2" and h an index lower than n.

Then, if the recursive formula used is similar to (16) and (19) we
obtain a subclass of n transforms: for h = 0 we have the W-H transférm and
for h = ﬁ - 1 we have the Haar transform, both in natural order.k

If the recursive formula is similar to (17) and (20) (with the per-
mutation [P]t of the éolumns)~we stiil obtain n transforms: for h = 0 we
have the W-H transform in Paley's order and for h = ﬁ -1 we have an

: ' k
unordered modified Haar transform. We denote these transforms [WHHZn].

Fig. 8 shows [WHHiG] and its fast algorithm,

2

To generate the family betweén W-H and W we have introduced a set of

4.3 1c, family:

factors into the recursive formula for the W-H transform. To generate the
family between W-H and Haar, we have replaced some parent matrices by the

identity matrix [12] in the same recursive definition of the W-H transform.

1f we allow simultaneously both operations we generate a larger family

that we call 1024

More formally if [T-n_l] is a member of IC2 of order Zn_l; a member
2
of order 2% is given by

[t = (0,1 [iCyl, -.vs [C . 13@®IT ;11 ID,]
2 27 -1 2
where [DI] and [D2] are permutation matrices and CO’ ceey C a1  2re either

1 - exp(-h8)

[1,] or [F,®)] = =

Ny

1 -exp(~39)
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Let us call this class of parent matrices (32. For the order 2n,

2n_1(2n—1‘+ 2n—2 + -+ 1= Zn—l) parent matrices have to be chosen

independently in (32: we say that the family IC, has 21 degrees of

2
freedom over C& (see footnote 4).

The 102 family is very large and includes the families between W-H
and F, W-H and Haar.

The number of required operations is given recursively by

additions: [j4 = 2 £J4 a-1 + 2An
2

2
n
Hence U4 = Z 2n—k+1 Ak (21)
oh
=1
multiplications: LAAzn = Z\Jbgn—l + Ln
n
hence d\/lzn = Z 2B L, (22)

(4) This notion of degree of freedom is an extension of a concept introduced
by Andrews and Caspari [16]. For them the degree of freedom of a class of
matrices is the number of free parameters required to define this class.

This definition is ambiguous when the constraints which define a class cannot
be reduced.to a set of free parameters. For example, the unitary matrices
of order 2 are given 1 degree of freedom in [16] when in fact, on the real
numbers, the most general matrix is

cos o sin a e=+1

€ sin o -g cos o o € [0,27]

and on the complex numbers the general solution depends on 4 angles

€ [0,27] and 2 binary choices. Our approach is to track as far as possible
the reduction to independent choices. If it can be reduced to a number of
free parameters our degree of freedom will be the number of these parameters.
Note that the relations (1) and (4) apply also to the recursive computation
of the degree of freedom of a class. Note also that the degree of freedom
has generally no relation with the computational complexity (which varies
~usually for the transforms of a class).
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where Ak is the number of parent matfiées different from [IZ] at this kth

stage, and L, the number of factors different from + 1 (and maybe + j) at

k

this stage.

Fbr'Haar Ak = 1 for any k and \}k' = 2(2n—1)
. 2"
For W-H Ak = Zk_l and L}l = n2"
S . - 2"
“For Fourier (JA'n = n2" and Lk = Zk_l, 2k-1—1 or 2k'2-2, which yield
2

the results of section 2.3 (radix 2).

We present now an example of interest in the IC, family: a class. of

2
transforms which make a discrete transition between the 3 basic transforms
and which we call therefore the WFH class.

Each transform of this class is indexed by two positive integer para-

meters h and g such that h + g < n when 2" is the order of the transform

and is denoted [WFHg;h].
; )

[WFH ng,k] is obtained recursively as the Fourier transform of radix
2 : '
2 (formula 14 ) but with the parent matrices [Pg] k=0, .., ZP-l such that

e [F2(2nk/2p)] for k = 0 (mod 2P7871y

[P;] = [F,] for k = 0 (mod PPy e
k 4 0 (mod 2P7871
ka] - [1,] otherwi
2 = 2 otherwise

where p is the level of computation up to n.
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We can represent then WFH transforms on a {g, h) plane as shown in
'Fig. 9. With appropriate permutation matrices, for h = 0 we have the n
Generalized Discrete Transforms (see section 4.1), for g = 0 the n WHH

0, n-1

transforms (see section 4,2). WFHO’O is the W-H transform, WHH the

n-1,0 the Fourier transform. For h+ g =

Modified Haar transform and WHH
n - 1 we have a set of n transforms in between the Fourier and Haar trans-

forms which have been called the Modified Generalized Discrete Transforms and

defined after much work in [18].

5. Other IC transforms:

Except for the Fouriér transform, we have restricted ourselves
so far to IC transforms obtaihedAfrom original core matrix [FZJ and parent
matrices of order 2. The generative rules have given'a unifiedbapproach
of the usual unitary transforms, We now consider some examples with a
different original coré matrix and parent matrices of higher orders.

The matrices of order 2 are of practical interest for the fast
élgorithm as long as we performvthe required operations (specially
additions) with only two operands at a time. If fast additions involving,
let us say, f operands, become available, the transforms with parent
matrices of order f may be of interest.

Most of the recursive structures of the trénsforms presentéé in the
previcus sections can be applied to parent matrices of higher orders
tﬁan 2, We now give some examples:

a) different original core matrix
_In the definition of the W-H transform the original core matrix
cos 0 sin 6

[Fé] may be replaced by the core matrix and we obtain a

sin 8 -cos ©
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transform considered by Andrews et al. [15]. This original core matrix
can be used for all the recursive definitions considered.

b) Generalized 2 and 3 valued transforms:

In the definition of the»W—H transforﬁ'the role of [F2] as original
core matrix and parent matrix can be performea by any unitary matrix
[U] of order £. If [U] is an Hadamard matrix (its éntries are i}ﬁ]@?_
the generated matrix of order £ will élso be an Hadamard matrix., These
matrices have been called‘"geherélized 2-valued transforms” [19].'
Similarly we can replace [F2] in the definition of the Haar transform by
the same matrix [U] and we will generate a unitary matrix with entr{éé 0
or t_l/Ci whefe Ci is the normalizing factor of the ith row: these
matrices are the "generalized 3-valued transforms" [19]. More generally. [U]
can replace [Fz] in the definition of the family of transforms between
W-H and Haar.

c) IC_ family:

f

The 102 family was based on the set (& for the parent matrices. We

can define similarly the IC_ family based on the class (% of parent matrices

f
of order f which contains [If] and [Ff(el, ceey Bf_l)] where kth column

= Lt -j6x
of [Ff(el, ey ef_l)] = k column of [Ff] X expée ) ([Ff] is the
- Fourier matrix of order f). The family ICf has'%:%l-independent parent
n

1 degrees of freedom over

matrices chosen in (%: we'say that ICf has

(;. The required number of additions and multiplication is computed

recursively as done for (21) and (22):
additions: = f ., ¢
ons ‘JA n ‘jln—l +‘”Af Ah

£ £
. _ E : n-k
k=1 .

(23)
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multiplications:.;ﬂﬂ.n =‘f‘“AAn—1 +\jU& A +’Ln
. £Y . '

f
' n n ‘
_ n-k ' n-k_ -
M, M D D D D]
k=1 k-2

where Ak is the number of parent matrices different from [If] at the kth stage
and Lk the number of column multiplications with factors different from
+ 1 (and maybe + j) at this kth stage.

d) wmgt;h subfamily of IC.

£
By analogy to the WFHg;h subfamily of'IC2 we can define the subfamily
2 . 3
[WFHg;h] of ICf as follows:

£

[WFHg;h] is obtained by successive generalized Kronecker products with
£

4 . p-1
the sees {[M°], ... M7 ..., [f

-1]} of parent matrices such that

[Mk] = [Fk] with column i of [Fk] = column i of [F,.] x efgﬂiki
f f £ ff
for k = 0 mod (£P7871)
] = [F.] for k = 0 mod (£P™B0y ang
k # 0 mod (£P787Yy
k ,
M7] = [If] otherwise
‘ . ) t ,
and at each level the permutation matrix [P] , PSt = 6uz 6kw with s = uf + k,
t = wfp-l + z, is applied to reorder the columns.
It is easy to see that[WFHn—l’ O] is the usual Fourier transform of
¢ ,
n . 0,0 0,n-1 . .
order f ; the matrices [WFH ; 1 and [WFH . ] have been introduced in the
£ £
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literature respectively By Chrestenson [27] and Watari [28]. Forthesé
.2 matrices (23) and (24).reduce to the same recursive formulas and denoting

by Cp the number of additions or multiplications:

for WFHO’O : Cp =n Cp fn-l
n n -f
£ f - 4
’ n
Oyn-1 - (Ppf-
for WFan Cill & )

(This last result corrects the result given in [15]; page 20)
The other matrices of the family can be represented in the g-h diagram of

Fig. 9.

6. Slant transform:

The Slant transform has beenvproposed by Enomoto et al., [29] for the
order 8. Pratt et al. [30] have generalized this transfoxm to any ordey
_2n and compared its pérformance with other transforms [31]. 1In this section
we want to express the recursive generation of the Slant tfansform with our
_genefative rules and computé the number of eleﬁentéry operations required
by its fast algorithm.

The Slant transforms of orders 4 and 8,'[S4] and [S8], are as follows

- (in "natural" order).

Zequencies
e n
1 1 1 1 . o
o B 3 -1 x 14/5 3
&1 [4
Vr—3 1 -1 -3 x 1Af5 1
1 -1 -1 1 2
- : -
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_Zequencies

(1 1 1 1 1 1 1 1 0

1 -3 3 -1 1 -3 3 -1 x1/5 7

7 -1 -9 17 17 9 1 -7 x 1//5x21 3

1 -1 -1 1 1 -1 -1 1 4

[S ]= 1 .
81 VB 7 5 3 1 -1 -3 -5 -7 x1p21 1
1 -3 3 -1 -1 3 -3 1 x 14/5 6

3 1 -1 -3 -3 -1 1 3 x 145 2

-Lf -1 -1 1 -1 1 1 -1 5

The rows can be reordered by zequencies with the same permutation as
the W-H transform in natural order.
The Slant transform of order 2% in natural order is obtained from the
) Slaﬁt transform of order 2n—1 in natural order by simpié Kronecker product

2.
a

with [FZ] followed by rotation of the rows 2774 ‘and 2n—l by the matrix

Sin 6 Cos 6
n n

Cos © ~-Sin 6
n Con

with Sin 8
n

8
o
Q
(o]
w
(a2
o}
|

This choice of Gn introduces in the Slant matrix [S n] the Slant vector $
: 2 '
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with components linearly decreasing:

S (%~ 1) - 21
1 .
2n(22n__ 1)
3 ,
But some normalizations can be delayed to the last'stage of computation

n-1

and the rows 2n—2 and 2 are rotated by the matrix

- -

requiring 2 shifts, 2 additions, 1 multiplication. The corresponding

algorithm is shown in Fig. 10a.

Number of elementary operations:

Formulas (1) and (5) give:

for the number of additions:

- n-1 ; -
ul(zn—z,j{zn_l+2 -2+2wnhu42—2

hence L}ln = (n+l) 2" -2
2

for the number of shifts:

Qz“ =2 . ’gzn_l + 2 with Qz =0

hence Qn = Zn

2

-2
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for the number of multiplications:

M_ = zubizn_l +1 yith;/\/k =0

2
henceLAA = 2n—2_1
P

Finally 2" - 2n—2_1 normalizations are required‘at the last stage of
computation,

However the algorithm at the order 4 can be performed with 8
ad&itions, 2 multiplications as shown in Fig. 10b [30] instgad of 10 additions
and 2 shifts as above. The formulas (1) and (5) give then:

additions:

' ' n-1 | v
L}gn = 2 L}gn—l + 2 e 2+ 2 withu44 = 8

‘ -
hence A = (2nt1) 2"z = 4 -2t
| 2 2

shifts:
1 \ ]

o
an=2- an_1+2with “94=0

multiplications:

! ) 1
M = ZJ/lzn_l + 1 with JA4 = 2

2

hence(J&dn = 32872 = U ot 1
2 2

n-2

and as before 2n - 2 - 1 normalizations.
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7. Additional properties and generalizations of unitary transforms:
In this section we discuss briefly the complex extension of a real
transform. We also point out some additional relations between transforms

suggested by the unified framework presented.

7.1 Complex extension of a real transform:

From a real unitary matrix [RT] with rows RTO, teas RTN-l’ we construct
a complex extension noted [CT] with rows CTO,...., CTN by creating two
complex rows CTp and CTq from two real rows RTm RTn as follows

CTP = 5—_(RTm—J RTn)-
. (25)
C’I.‘q = \/—2—_ (RT +j RT )
Then the complex transformﬁcv =<JQ + j&) of a complex input vector

.V=R+ 3 I is expressed uniquely from the real transforms ofCIQ and

9 denotedCQ and 9:
b
CIé T/%;éiim + 5 )+, ‘<12n) and similarly

With these relations the properties of complex transforms can be
deduced from those of the real transform. In the literature, besides the
real and complex Fourier transforms, the complex W-H transfoﬁs (also
célled Complex BIFORE transform) [32][33] complex Haar transform (also

called Complex Modified BIFORE transform) [34] have been defined.
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Note that the complex W-H transform obtained by relations (25) would have

. I
entries H tj; commonly the rows are then rotated by‘l:;-to give a trans-
/3 i V2 :
form with entries +1 and +j. The rows of the complex W-H transform can
be ordered according to a generalized frequency defined as the number of

clockwise rotations around the origin,When following cyclically the entries

of a row,.

7.2 Multidimensional transforms

The techniques presented for the one dimensional transforms extend
to multidimensional separable transforms. Let us denote an input array
of p dimensions by Ai s eeves § and the p-dimensional separable transform
by T =T T . e Tu' i Then the

Ups meees uP, il’ cesay 1p ul il u, i, : p p

transformed array

B. =§ Z E A ' Tb . - ,
ul, ce ey up . ) il""’ ip' ul’ ceeaey up, 11, ceeny }p
can be written

= 1
‘B, =§ ™ Z 2 A, T ..
ul, s e ey up up i . d : il, ---ip »ul 11

: P
1 1 1
P p-l

If we express both arrays as 1 dimensional vectors A and B , for which
indexes are obtained by lexicographic ordering of the indexes (il, e ip)
and (ul, cees up), the multidimensional transform can be expressed as a

l1-dimensional transform:
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>
It

(r'1@ (1’1 ... @ (1°11 B

>
!

(T] B

The multidimensional transform has been reduced to a 1 dimensional trans-
form. This expression now allows the evalution of the number of elementary-

operations and other generalizations discussed previously.

7.3 Relations between transforms

Two transforms with similar structures will often be related by matrix
relations or energy invariants between the two sets of transformed
coefficients.

a) matrix relations between transforms of same order:

In [6], mat;ix relations between the W-H and Haar transforms were
proved. More generally, for WFH families, similar reiations hold for all
.transforms lying on the same verticél 1ine.in the g-h graph.of Fig. 9.
These transforms only differ by the number of parent matrices [Fz] they.
inclﬁde. Therefore a multiplication by all the missging [F2] matricesAwill
generate one transform from the other. Note that these relations only
involve computations in zones as defined in 3.3 or subzones (zonal
divisions of a zone).

b) energy invariants:

By Parseval's theorem the total energy of the transform coefficients

.of a same vector with different transforms is preserved. However, it may
happen that the energy of a subset of coefficients is the same for some trans-
forms: we-say then there is an energy inﬁariant between‘thesé transforms.
Fnergy invariants are most likely when the transforms héve an identical struc-

ture with different multiplicators. For example, by direct comparison of.the
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algorithms for the Fourier (Fig. 3b) W-H (Fig. 4c)4and modified Haar
. (Fig. 5¢), it is clear that the transformed coefficients before respective
reorderings have identical energies in the zones defined in 3.3. This

leads to the following energy imvariants for the order 8.

Zone | Fourier : W-H Mod. Haar
(frequencies) . (zequencies) (rank)
0 0 . _ 0 0
1 4 7 1
2 2,2 3,4 2,3
3 1,3,-1,-3 | 1,2,5,6 4,5,6,7

Fér,the WFH families; the transforms with same sets of invariants
form nested triangles as shown in Fig. 9: the introduction of additional
. factors leads to additional smaller subsets of coefficients of é same
subzone over which energy is invariant; the relations betwéen transforms which
exist along vertical lines of the diagram of Fig. 9 preserves this energy
invariance in zones. The invariants between the Generalized Discrete
Transforms and the Modified Discrete Transforms have been studied by

Rao et al. [18].

Conclusions

In this work we have presented a unified treatment of unitary
transforms having a fast algorithm. The use of recursive rules to describe
unitary transfofms allows a systematic way to view'known'transforms,
fo generate new transforms and proQide a general approacﬁ to the evaluation

of the computational complexity of transform algorithms. Among transforms
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which are clearly related, we h;ve studied the ICf families and Ehe‘WfH
subfamilies which include most of the transforms considered in the
literature.

In addition to allowing the introduction of new transforms with
properties of interest, the framework provided can be used in several
other studies and applications of unitary transforms. In particular an

error analysis of unitary transforms is being carried out.
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