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assuring the continuity of our work which is now being pursued under

sponsorship of the National Science Foundation. Two pieces of work

have been completed with partial support of this grant and constitute

our final report.

1. Comments on "Basic Restricted Transformation and Performance

Measure for Spectral Representations," by V^ R. Algazi and

B. J. Fino, to appear in the IEEE Transactions on Information

Theory in July 1973.

2. "A Unified Treatment of Discrete Unitary Transforms with a Fast

Algorithm," by B. J. Fino and V. R. Algazi, submitted for

publication.
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Comment on "Basis Restricted Transformations

and Performance Measure for Spectral Representations",

V. R. ALGAZI
B. J. FINO

ABSTRACT: In this correspondence, we comment on some of the shortcomings,

for source encoding problems, of the measure of distance between ortho-

normal representations proposed by Pearl [1].

We further examine, using rate distortion theory, whether rates

achievable for a given distortion level by the use of basis-restricted

transformations have some inherent dissimilarity independently of input
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Comment on "Basis Restricted Transformations and
Performance Measure for Spectral Representations".

Pearl [1] has proposed a distance measure to characterize "inherent dissim-

ilarities" between orthonormal transformations. With this measure the distance

between orthonormal transformations is "independent of input statistics". One

of the applications mentioned for basis restricted transformations is to the

source encoding of random processes. In this correspondence we comment on some

of the shortcomings of Pearl's distance measure when applied to source encoding

problems. We further examine, using rate distortion theory, whether rates

achievable for a given distortion level by the use of basis-restricted trans-

formations have some inherent dissimilarity independently of input statistics

and of other implied parameters.

We note first that dissimilarity betv/een two transformations is defined by

Pearl for the class of random processes which have a diagonal correlation matrix -*

for one of the transformations. The transformation is thus the Karhunen-Loeve

expansion of a random process adapted to the specific transformation. Under

these circumstances independence on input statistics achieved by averaging

over a class of processes cannot be dissociated of the class of processes con-

sidered. Moreover this construction does not provide any insight into a common

question of interest in the use of basis-restricted transformations for source

encoding: Given a random process with known correlation matrix how do different

transformations rank in the encoding of this random process? This is the specific

question that Pearl refers to when he comments on the asymptotic distance between

the Walsh-Hadamard and the Fourier transformation for large block size. However

Pearl's distance measure also indicates a diverging distance between the Karhunen

Loeve (which is then the Kronecker or natural transformation) and Fourier trans-

formation for large block size. On this basis one cannot feel confident that

Pearl's distance between Walsh and Fourier transforms provides an answer to a



common conjecture.

The evaluation of the relative performance of orthonormal transformations

in source encoding problems can be done by assuming that the expansion coeffi-

cients are encoded independently and the rate distortion bound evaluated for

each coefficient. This approach was used by Goblick and Holsinger [2] to eval-

uate the performance of the Fourier expansion for source encoding and has been

extended to other "basis-restricted transformations" by Pearl.

For example we show in Figure 1 such rate distortion functions for a

Gaussian Markov random process with correlation function R(n) = e"a'n' (1)

n = 0, +_1, + 2 --. These curves are for a = + 0.05 and clock size N = 32.

Similar curves are given by Pearl, Andrews and Pratt for N = 256 [3]. Note

that the Haar and Walsh-Hadamard transformations behave similarly, in contra-

diction to Pearl's distance. The similarity of performance can be explained

by exploiting the formal relations between the Haar and Walsh Hadamard trans-

formations [4]. Note also that for the semi-logarithmic scale used for the

mean square distortion the rate-distortion per sample curves are parallel

straight lines. This occurs for mean-square distortions lower than the smallest

variance of expansion coefficients since we have then
N 2
n of

R(e) . L-logg^j— (2)

1 N£

Therefore dR1 R2 = R^e) - R2(e) = ̂  log,, n (°î /°2î  in wn'"cn subscripts 1

and 2 denote two distinct orthonormal transformations. .Mote that dR, R2
 1S

no longer dependent on the specific e .

To illustrate the dependence of source statistics we show in figure (2)

dR as a function of a , defined in (1) for the fixed block size N =. 32. It

is noteworthy that the curves for Walsh Hadamard and Fourier transformations

intersect. Thus no general conclusion can be obtained on the relative merit



of these two orthoriormal transformations in source encoding problems. Averaging

on some set of statistics is possible but the use of the results is dependent

on the specific application. As shown in Figure (3), when the block size in-

creases, distance dR, Ro between the Fourier and Karhunen Loeve transforms

decreases to zero as expected. It can be shown that the distance between the

Haar and Karhunen-Loeve transforms increases to a limit and it is conjectured

that the Walsh Hadamard transform has a similar limiting behavior.

V. Ralph Algazi
Department of Electrical Engineering
University of California, Davis

Bernard J. Fino
Department of Electrical Engineering
and Computer Science
University of California, Berkeley
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A UNIFIED TREATMENT OF DISCRETE UNITARY TRANSFORMS

WITH A FAST ALGORITHM

by

Bernard J. Fino and V. Ralph Algazi

Abstract

A set of recursive rules which generate unitary transforms with a

fast algorithm are presented. For each rule, simple relations gives the

number of elementary operations required by the fast algorithm. The

common Fourier, Walsh-Hadamard (W-H), Slant and Haar transforms are

expressed with these rules. The framework developed allows the intro-

duction of generalized transforms x\rhich include all common transforms in

a large class of "identical computation transforms." A systematic and

unified view is provided for unitary transforms which have appeared in the

literature and for a number of new transforms of potential interest.

Generalization to complex and multidimensional unitary transforms is

considered.

Research sponsored in part by the National Aeronautic and Space Admin-
istration, Grant NASA-NGR-05-003-538, and in part by the National Science
Foundation, Grant NSF-GK-37282

Department of Electrical Engineering and Computer Sciences, University
of California, Berkeley, California 94720. .

Department of Electrical Engineering, University of California, Davis
California 95616 .



A UNIFIED TREATMENT OF DISCRETE UNITARY TRANSFORMS

WITH A FAST ALGORITHM

Contents

Introduction

1. Recursive Generative Rules: Rule 1: Operations on the columns

Rule 2: Rotation of rows

Rule 3: Generalized Kronecker product

2. Identical Computation Family (1C)

3. Basic Transforms: Fourier, Walsh-Hadamard, Haar

3-1. Generalized Fast Fourier Transforms of Composite order

3-2. Walsh-Hadamard Transform

3-3. Haar Transform

4. Generalizations of the Basic Transforms

4-1. Family between Walsh-Hadamard and Fourier

4-2. Family between Haar and Walsh-Hadamard

4-3. IC2 Family

5. Other 1C Transforms

6. Slant Transform

7. Additional Properties and Generalizations

7-1. Complex Extension of a Real Transform

7-2. Multidimensional Transforms

7-3. Relations between Transforms

Conclusions



Index Terms:

Discrete transforms, fast algorithms, fast Fourier transforms, fast

generalized transforms, generalized Kronecker product, Haar transform,

identical computation transforms, slant transform, unitary transforms

and matrices, Walsh-Hadamard transform.



Introduction

The dissemination of the Fast Fourier Transform algorithms,

originally introduced by Good [1], and known as Cooley-Tukey [2] and

Sande-Tukey [3] algorithms, has resulted in a large extension in the

range of applications of the well known Fourier transform. Recently the

Walsh-Hadamard transform, also with a fast algorithm [4] has drawn

considerable interest [5]. The Haar transform although closely related

to the Walsh-Hadamard transform [6] and potentially of interest [7], has

received much less attention. These transforms have been used successfully

for error free signal representation [8], pattern classification [4], [9],

speech signal encoding [10] and above all for picture encoding [11], [12],

[13]. Only a few transforms have been considered in these applications

while many other transforms could be of interest. Some workers have

considered the definition of generalized transforms and we mention the

works by Andrews, et al [14], [15], [16], Rao, et al [17], [18] and

Harmuth [19].

In this paper we present a unified view of discrete unitary trans-

forms with a fast algorithm. A discrete unitary transform is characterized

by a unitary matrix [T] such that [T][T* ] = [I] where * denote conjugate

"t" transpose and [I] is the unity matrix of same order as [T], say N.

For mathematicians a unitary matrix expresses a rotation of the orthonormal

basis and preserves the Euclidian norm IIVH of a vector V. In this N

j. . n n tT | | £ 3+t In signal representation, this propertydimensional space, I I V u = V-V* . 6 • 3

means energy conservation and an easy expression of the mean square error

when some components of the signal are ignored in the new base. The

computation of the transformed vector W of V by the transform [T] such

that W = [T]V usually requires N multiplications and N(N-l) additions.

-1-



For some specific transforms of interest such as the Fourier, Walsh-

Hadamard transforms a fast algorithm has been found which requires fewer

elementary operations. The analysis of these fast algorithms has been

done by factorization of the matrix [1] into a set of largely sparse

matrices, each expressing a stage of computation. This is the approach

followed by Good [1] in his original paper which lead to the Fast Fourier

Transform [2], [3] the Fast Walsh Transform [4] and other known fast

transforms.

Here we consider recursive rules for the generation of unitary

transforms having a fast algorithm. These rules allow us to generate

large classes of such transforms, many of which are new and possibly of

interest, and to give general formulas for the number of elementary

operations required by the corresponding fast algorithm.

1. Recursive Generative Rules:

We shall present three rules which generate a new unitary matrix

from some original unitary matrices. For each rule we relate the number

of elementary operations for the new transform to the number of elementary

operations of the same type required by the original transforms. For rule 1

there is only one original matrix, for rule 2 two, and for rule 3 a set of

original matrices.

we denote by "rule" a set of operations performed in a prescribed order.
We reserve the term "operation" for the elementary operations such as
additions, multiplications, etc. which determine the computational
complexity of a transform.

-2-



Rule 1; Operations on the columns of a unitary matrix;

Given a unitary matrix [T], two obvious operations on the columns

yield another unitary matrix of some order:

a) permutation of the columns: This operation does not require

any computation. In the computational process, this operation can be

performed by applying the permutation to the coefficients of the input

vector instead of the columns themselves.

b) multiplication of a column by a root of unity: This operation

introduces a complex multiplication if the root of unity is not + 1 or

+ j (j = •/-T) (see footnote 2).

These operations on the columns may be expressed by a matrix

product [T] [D] with [D] such that D,. = ej i if column k is to be replaced

i fl-j
by column i multiplied by the root of unity, e , and all other entries

of [D] are null.

Rule 2; Rotation of rows by a unitary matrix

Consider a unitary matrix [T] of order N. The N row vectors form

an orthonormal basis for S , the N dimensional space they span, m rows

vectors of [T] form an orthonormal basis for subspace S . If these m

vectors are rotated by a unitary matrix [U] of order m, we obtain a new

orthonormal basis o for S . The remaining unchanged N-m rows of [T] are
m

an orthonormal basis of the subspace S.T orthogonal to S and form with^ N-m " m

^oa new orthonormal basis for S . Thus, the matrix [T1] obtained after

rotation of the m rows by the unitary matrix [U] is unitary.

2
Multiplications by +1 and +j may be counted as operations if the hardware
realization of the algorithm is not able .to keep track of them. However,
for the error analysis of the algorithm these multiplications, even if
they are performed, do not introduce any error.

-3-



Some particular cases of interest are:

a) multiplication of the whole matrix by a unitary matrix of

the same order

b) permutation of the rows (multiplication by a permutation

matrix)

c) multiplication of a row by any root of unity.

The operation b) and c) can be represented by the matrix product

[D] [T] where [D] is, as before, such that D = e1 if row i of T is
XcC

replaced by row k multiplied by the root of unity, ej *, and all other

entries of [D] are null.

Number of Elementary Operations;

If transforms T and U require respectively t and u elementary

operations of a specific kind, it is obvious that the transform T' will

require at most t' of these operations with

t1 = t + u - (1)

(It may happen that [T1] so generated has a simpler algorithm).

Equation (1) applies independently to any type of elementary

operation, additions, real and complex multiplications as well as any

other specific operation (e.g. shift, multiplication by /J . . . etc.)

Rule 3: Generalized Kronecker Product:

Given two sets of unitary matrices, set <'̂ 4:>-of m matrices I A I

(i=0,. .. ,m-l) all of order n and sefĵ Ojof n matrices J B1] (i=0, . . . ,n-l) ,

all of order m, we define the generalized Kronecker product of the sets

V^f and l t> f» denoted j<~A KX)V-O rto be the square matrix [C] of order

(mn) such that

-4-



C, . = C . , . , = AW , • BU , (2)i,j umfw, u mtv uu ww

with i = unrfw u, u'=0, ..., n-1

j = u'm+w1 w, w'=0, ..., m-1

a) [C] is a unitary matrix:

Proof :

mn-1 j, n-1 m-1 .

E C C V* V* C C
ik Jk 2-*> / -> um+w, vm+z u'm+w1 , vm+z

k=0 v=0 z=0

with k = vmfz v=0, . .., n-1

z=0 , . . . , m-1

Using (2)

mn-1 n-1 m-1 . , .
V r r* V V AW A*,W BV B*,V

LJ cik Cik = JLt LJ uv u v wz w'z
k=0 v=0 z=0

*A W A * , W

uv u v ^f wz wz
v=0 z=0

-v ' r vi
S , by orthonormality of B

n-1,_^ w * w= 6 , X A A ,
w ,w £_j uv u v

v=0

by orthonormality of A

= "5 , <S , = 6. .ww uu i j

where 6 is the Kronecker delta 6 . = 1 if i=j

= 0 otherwise.

This proves that [C] is a unitary matrix. QED

In the particular case in which the matrices A = A are all

identical, and also the matrices B = B , then the generalized Kronecker

-5-



product {^} © f-} reduces to the usual Kronecker product of matrices

[14]: [A]<g)[B].

b) Factorization of [C] : We now prove that

[C] = [Pfc] [Diag{̂ >] [P] [Diag{Cg}] (3)

where [DiagOrl] and [Diag{C(̂ }J are block diagonal matrices formed with

the matrices of the sets {J( } and £6> (see Fig. 1) and [P] is the

permutation matrix of order mn such that P, = 6 , 6 , when k = vn-fz,
K.JC v Z 2*V

H = v'm+z1 and z', v=0, ..... m-1; z , v'=0, ...., n-1. Equation (3) is

a generalization of the factorization of a simple Kronecker product into

Good matrices [14] .

Proof:

[DiagO4}]k,k = 6^,, A^,,z with k' = v"n+z

= u'm + w'

- 6uz" 5wv" i - u m + w

We evaluate an element of the matrix on the. right hand side of (3)

mn-1 mn-1 mn-1

k'=0 k=0 £=0

m-1 n-1 m-1 n-1 n-1 m-1

V
" 6wv" 6w" A"Z

 Svz' 6zv' 6u'v ' Bz 'w'
v"=0 z"=0 v=0 z=0 v '=0 z '=0

AW , BU , = C., QED.
uu' ww ij

-6-



c) Number of elementary operations;

With the computational blocks corresponding to the transforms

A , . .. ., A and B ,...., B , the factorization of equation (3)

leads directly to the computational block of the transform C given in

Figure 2.

From the structure of the algorithm of Figure 2 it is easy to see

that if the matrices [A1] (i=0, ..., m-1) and [BU] (j=0,...,n-l)

have algorithms requiring respectively p and q~ elementary

operations of a specific type, their generalized Kronecker product [C]

will require P of these operations with

m-1 n-1

E -J
p +n

1=0 j=0

In the particular case of a simple Kronecker product p = p and

*£ = qm S°

P = m P + n q (5)
mn n m

Note that the use of rule 1 and 2 only increases the number of elementary

operations while the order of the generated transform does not change.

For rule 3, even if [A ] and [B ] do not have fast algorithms and thus

2 2
require n and m elementary operations, [C] requires a maximum of

2
(m+n)mn <^ (mn) (for m, n > 1) elementary operations.

The results of equations (1), (4) and (5) are important: for every

transform generated with the recursive rules presented, they give a

simple and systematic way to estimate its computational complexity.

-7-



2. Identical Computation (1C) Family;

The generative rules defined above create a unified framework

for the known fast unitary transforms, introduce new transforms, and

allow assessment of the computational complexity of such transforms.

In this paper, one large family of transforms is considered: the

"identical computation transforms" that we discuss now.

We denote by {̂}@ [B ] the generalized Kronecker product of

a set {J(.} of q matrices [A ] (K=0 , ..., q-1) of order p and a set

of p identical matrices [B ] of order q. [B ] will be called a core

^matrix and [A ] a parent matrix. The 1C transforms are recursively

generated from a unique class, (J , of parent matrices of some order f

and an original core matrix [©] of order q. An 1C transform of order

(qf ) is then obtained from the original core matrix [0] by the recursive

formulas :

UCqf] = [Dqf] '[{} ® [0]] [Dqf]

(6)

where the matrices [D] and [D'J express respectively a reordering

followed by multiplications by roots, of unity of the rows and the columns.

All parent matrices of ( . } . . . . ' (j } belong to .

The common characteristic of all the transforms of the 1C family is

that their algorithms only use in any computation intermediate results

obtained from the input vector through identical computations (so the name

of the family). This property provides a uniform treatment of successive

components of the input vector if we consider that any parent matrix

-8-



treats uniformly its input vector. For this family, all the normalizations

can be delayed to the last stage of computation.

We shall consider different choices for the original matrix [©],

the class C of parent matrices, the matrices [D] and [D1] and the sets

}. We first show that the basic transforms, Fourier, Walsh-Had amard

and Haar, are 1C transforms.

3. Basic Transforms; Fourier, Walsh-Hadamard , Haar;

In this section with the help of the generative rules, we examine

the well known Fourier, W-H , and Haar transforms. This approach allows

the derivation of some new results concerning the number of multipli-

cations required by a FFT of composite order, a concise presentation of

the different definitions of the W-H transform, and simple definitions

of the Haar transform. In addition it makes apparent the common

structure of these transforms. This will lead in the next section to

the definition of families of transforms between the basic transforms.

In the following we emphasize specific orderings for the basic

3
transforms: frequencies for the Fourier transform, zequencies for the

W-H transform and rank for the Haar transform. These orderings have

proved to be useful in signal encoding because they concentrate the

signal energy into the first transform coefficients, for some image

models [21].

This terminology has been introduced by Yuen £20]. The zequency is the
number of zero crossings.

-9-



3.1 Generalized Fast Fourier Transform of Composite Order

a) decomposition theorem;

Given the Fourier matrices [F ] and [F ] of orders p and q

respectively, the matrix [F ] such that

}® [Fp]] [P] (7)

k
is the Fourier matrix of order pq. The set {[F ]}, k=0, ... p-1 is

such that

] = [F 1 [D ] where C8)
q q K.

[D ] is a diagonal matrix such that (D,) = exp(-2irjK K. .
fc u'

[P] is the permutation matrix such that

. ,
u'u '

P = 6 6, with s = uq + k t ~ wp + z
st uz kw ^

u, z < p

k, w < q

Proof; We denote [{[Fk]}® [F ]] by [Ff ].

+ k, u'g + k1 ^p^uu1 ' (IVkk'

0 .ku' uu' . kuf . kk'-2irj n -2Trj ( h 1
(F ) . e M • (F ) - =4= e P Pq q

P uu' q kk' v^

-10-



, QED.

Note that [F ] is S3munetric and orthonormal so that

—1 *
([F ] ) = [F 1. Making use of (3) and (7) it is possible to derive a

new expression for [F ] :pq

[Fpq] = [[Fp]®{[*J]}] [P]

with fF^] = [Dk] [Fq]

If [Fp] and [Fq] require respectively (A and <J( complex additions,

complex multiplications, [F ] will require by application

of (4).

^A = ptj\ + q '_A complex additions (10)

= PO' + q + C complex multiplications (11)

where C is the number of complex multiplications introduced by (8).

C = pq if all the factors including + 1, + j are considered.
P iQ

C = (p-1) (q-1) if the factors +_ 1 are discarded

C = (p-1) (q-l)-l if the factors + j are also discarded

(when (pq) is a power of 2).

b) Generalized FFT of composite order

If the order of the Fourier transform is composite, i.e. N = p..

p , the previous decomposition theorem yields the well known FFT

-11-



algorithms [2] [3] detailed by Classman [22] in the most general case.

The recursive use of the formulae (10) and (11) gives the number of

required operations. In the case of N = r we can solve these recursive

equations: this is the case of FFT of radix r.

J(
n

- n

+ r J( «T - nr
r n-1 n

11'1
J(
^ r

(M = rn 1
01L + r (JA . +n T n—1r r

-:*)- 6 or

n-1

(r-a) [(n-

n-1

(12)

(13)

(a, 3 depend on the value of C )

The radices 2, 4, 8 and 16 have been considered in the literature.

For the radix 2, which gives the most popular FFT, the recursive

relations given by the decomposition theorem are

1 = [{[F]} ]]

and [F ]
2

.'k,[[F ]@ {[F ""]}] [P]
2

with
1 e
- ̂

1 -e

-2.J*;-
2

'k
and [F ] =

2uj ^ 2llj k^*- i~» 11 C- /\ll

(15)

The-algorithm corresponding to the recursive formula (14) and

obtained by recursive use of Fig. 2 is shown in Fig. 3a; it can be

arranged equivalently with all operations "in place" as shown in Fig. 3b

-12-



which is the classical diagram of the Cooley-Tuckey [2] algorithm

with decimation in time.

The algorithm corresponding to the formula (15) is the Sande-

Tukey [3] algorithm with decimation in frequency and is shown in Fig. 3-

c and d.

For these Figures the factors are

a = 1
o

a± = exp(-2TTJ/8)

a2 = exp(-4irj/8) = -j

a3 = exp(-6-rrj/8)

We can compare the FFT with radices 2,4,8 and 16 for transforms
n

n Iog2r
of order N = 2 = r (n is then a multiple of 12). The formulas

(12) and (13) then give:

Radix

2

4

8

16

^r

2

8

24

64

c_yllr

0

0

1

6

Ar

•n
1 n2n

JW'nr
(all factors)

(n-D 2n

(n 11 ?n

^2 •L'

^ 1 "4 9n
(8 D 2

,lln 1X On
(32 "^ "

^U2
n

r
(no factors + 1)

TT."™ J_ n-— *5 O i T

3n2n-3 - 2n + 1

n2n
 9n . .

3 " + 1

21n2n
 On _,_ ,• • ••• z -t- j.

64.

^U3
n

r
(no factors + 1 + j)

n2n-l _ 3>2n-l + 2

n-3 13.2n-2-4

n2n 57.2n~3 - 8
3. 7

21n2n 241.2n'4-16
64 15

The column̂ ! has been given by Singleton [23]. In fact our approach
r

allows the evaluation of the computational complexity for any composite

order, in particular for mixed radix FFT.
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The factors -H 1 are easy to track in the algorithms and for most

realizations multiplications by + 1 are not performed. The factors

+ j appear in various places in the algorithms and in most realizations

multiplications by + j are performed; however, in an error analysis

these multiplications do not introduce any rounding error and the

column Aj\ is then of interest.
n

r •

3.2 Walsh-Hadamard Transform:

The W-H functions are well known and the results presented in this

section are explicit or implicit in many publications. Here, we

wish to express these results in terms of our generative rules; we

think that the following compact notation clarifies the relations

between the various orderings of the W-H functions and the different

algorithms. This approach also makes apparent the common structure of

the W-H transform with the Fourier and Haar transforms.

These distinct orderings or rows of the W-H transform are commonly

used and are of interest (see the discussion by Yuen [20]). For each of

these orderings there exists a recursive matrix definition:

a) "natural order" It is obtained by simple Kronecker product

without any permutation

[WH nat.] = [Fj® [WH _ nat.] (16)<^n l /.' ~n J.

with the original core matrix [F̂ ]. This relation gives directly, by

recursive use of Fig. 2, the fast algorithm of Fig. 4a (without the

reorderings). A different presentation of this algorithm with identical

stages of computation is given in Fig. 4b.
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b) Paley's ordering; Used originally by Paley [24] it seems

more suitable for mathematical developments than the other orderings.

The recursive relations introduced by Yuen [20] are expressed by the

matrix relation

[WH pal.] = [[F ]@ [WH pal.]] [P]fc (17)
~u f. ~n—_L

with the original core matrix [F?] and [P] as defined previously for

the Fourier transform (see section 3.1). This relation gives the

algorithm of Fig. 4c (without the bit-inversion reordering) by recursive

use of Fig. 2. A different presentation of this algorithm can be

found in [6].

c) zequency ordering; This is the original ordering by Walsh

[25] and is the ordering of interest for signal encoding because it

ranks the transform coefficients roughly according to their variances

for signal statistics commonly encountered in practice. The generating

process^IA/ > introduced in [6], defines recursively the W-H matrices in

zequency order. We can express it by the matrix relation

[WH zeq.] = [W] [[F ]® [WH zeq.J] (18)
~n f. o

where [W] denotes the reordering of the process ~IA/. A zequency ordered

algorithm has been investigated by Manz [26].

Although the zequency ordering could be generated recursively, the

corresponding algorithm would not be simple and it may be preferable to

obtain the W-H transform in natural or Paley's order and then perform a

global reordering.
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Given the transform coefficients in Paley's order a

"bit inversion" reordering, denoted in matrix form by [Q], is necessary

to put them in zequency order: in a bit-inversion permutation,

consecutive coefficients with k bit of the binary representation

of their indexes equal to 1 are put in reverse order. This operation

is performed for all bits starting from the rightmost bit. With 8

coefficients to reorder this means the following permutation:

index of binary reverse order reverse order final
coefficients in representation for middle for leftmost order
Paley's order bit bit (see Fig. 4c)

0

1

2

3

4

5

6

7

nnn

010

— ̂Oil """

1 r\r\

110 ^̂

.---Ill

r nnn

m 1

**• m n

... ... t> i no.

r ' 1 0,1 V

^̂ r 111 /

"̂""̂  110

•>. nnn

_* nm

110

.̂ r 111

^̂ .
\ 101

100

0

1

3

2

6

7

5

4

Given the transform coefficients in natural order, a bit reversal

ordering, denoted by the matrix [R] , will order them in Paley's order and

a bit-inversion will order them in zequency order. For 8 coefficients

to reorder we have:
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index of
coefficients in
natural order

0

1

2

3

4

5

6

7

binary
representation

nnn
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m n x0 1 0 v ,

011 y100 V
im ^
' /

110

bit
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— «. nnn

100

/C,o m n

V110
A 001

— n 1 D 1\
x Oil

t> 111

0

4

2

6

1

5

3

7

bit
inversion

5
final

ordering
(compare
tfith Fig.4a,b)

0

4

6

2

3

7

5

1

•It is important to note that, as the W-H matrices are symmetric

in any of the three orderings, these reorderings can be performed on

the columns as well as on the rows. Hence we have the matrix relations;

[WH zeq.] = [Qj [WH pal.] = [WH pal.] [Qj
2n 2n 2

[WH zeq.] = [Q] [R] [WH nat.] = [WH nat.] lR]t [Q]1
n

2 2 2

Since the W-H matrices are their own inverses, we have also using Q-6)

and (17) the following recursive relations

[WH n nat.] = [P]t [[WH , nat .]® [Fj] [P]
*jll rtll~J- *•

[WH pal.] = [[WH pal.]® [F ]] [P]
2 2

These relations however do not give different algorithms. All these
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algorithms differ only by reordering and so have the same number of

additions given by

<J( - 2 • >J( _ , + 2 , Z11'1 with '-A = 2
n^- rtH J- ^

which gives

- 2
n = n2 , a well known result.

3.3 Haar transform;

The Haar transform is usually defined from the Haar functions {11].

The Haar matrix of order 8 [H0] ordered by ranks is as followso

[Hs] 7?

1

1

/r
0

2

0

0

0

1

1

\fz
0

-2

0

0

0

1

1

_/2~

0

0

2

0

0

1

1

_/2~

0

0

_2

0

0

1

-1

0

N/2~

0

0

2

0

1

-1

0

\/2~

0

0

-2

0

1

-1

0

~\/2~

0

0

0

2

Zones

1

-1

0

V2"
0

0

0

-2
-

0

1

1̂
2

J

-\

> 3

J

Here we use the generative rules to define recursively the Haar matrices

and we have found two definitions:

1) The Haar matrix of order 2n is obtained from the Haar matrix of

—. —

1 0

followed byorder 2 by simple Kronecker product with. Jl J

0 1

rotation of the rows 0 and 2n by [I ] . This is the process (\̂ j of I6J,
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in terms of generative rules.

2) The Haar matrices are recursively defined by the relation:

[H nat.] {[F0], '[I ] , , [I,
2 '

[H nat.]
2

(19)

The rows are obtained in "natural" order. To reorder them

by their ranks, we need a "zonal bit reversal" ordering. A

zone as defined in [6] is a set of coefficients with indexes between two

successive powers of 2. A "zonal bit reversal" ordering is a bit-reversal

followed by a reordering in the original order inside each zone. For 8

coefficients the zonal bit reversal ordering gives:

Index

0

1

2

3

4

5

6

7

Binary representation Bit reversal : Reordering
inside zones

000

final order
(see Fig. 5a)

0

4

2

3

1

6

5

7

With both definitions we obtain by recursive application of the diagram

of Fig. 2 the algorithm of Fig. 5a. This algorithm can be more conveniently

organized as shown in Fig. 5b and give the rows directly ordered by their

rank. ' .

By application of (4) we obtain the following recursive formula for

the number of additions:
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J( = 2 • ,J( _ + 2. Hence ,J( = 2(2°-l) with
~n ^ti J- jft 2. 2n

normalizations are also required. A modified Haar transform obtained from

the Haar transform by permutation of its columns is related to the

Fourier transform (see later section 7.3): it is defined recursively by:

[MH ] = [Z] [{[F ], [I ], .... [I.]}® [MH JJ [P]1

«n i £ z. 9
(20)

Globally the permutations [Zj perform a bit-reversal ordering inside each

zone.

The modified Haar matrix of order 8 is as follows

1
fr

1

1

J*
o i

2

0

0

algorithm

1

-1

o -v

A
0

2

0

1

1

^~

0

0

0

2

is given

Generalizations of

1

-1

0

-^
0

0

0

in Fig.

1

1

yr
0

-2

0

0

5c.

the basic

1

-1

0

VT
0

-2

0

1 . 1

1 -1

-Jz o

0 V2~

0 0

6 o

-2 0

transforms

For the three basic transforms we have found recursive definitions

with a matrix formula similar to (6). The direct comparison of these

definitions suggests the generalization of the basic transforms to families

between them. The simplest generalizations are two families between the
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Fourier and W-H transforms, and between the W-H and Haar transforms. A

larger generalization is the IC_ family which includes all three basic

transforms with parent matrices of order 2. A number of these generalized

transforms has recently been discussed independently. We would like to

show that they fall easily within the framework we have developed and that

further generalizations are clearly possible.

4.1. Family between W-H. and F;

If we compare the recursive generation of the Fourier matrices with

radix 2 (14) and the W-H transform (17) , we notice that they differ only

by a set of factors. If we exclude the reordering of the rows, we see

that we can easily generalize the W-H and Fourier transforms to a large

family of unitary transforms given by the recursive formula

[GT ] = {[F (6 ),..,F (0 )} ® [GT J [P] t
- -~ 0 . ^ i

where[F2(9)j = i

1 exp(-je)

1 -exp(-je)

This family includes the W-H and Fourier transforms for the appropriate

choices of the parameters Q ... 6
0 2n~-l

Two families have appeared in the literature for special choices of

these parameters:

i \ n 2ir kc , . »1) 6, = where c is a realk 2n

scalar varying from 0 (W-H transform) to 1 (Fourier transform). The

corresponding transform has been called "general spectral analyzer" I14J.

[15].
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2) 6 = L̂JS. if k mod -̂-L-S) = 0
fc 2n

where g is an integer varying from 0 (W-H transform) to n-1 (Fourier

transform), and 6. = 0 otherwise. The corresponding transform is the

"Generalized Discrete Transform" [17]; we will denote it [GT8 ].
2n

2
Fig. 6 shows the matrix [GT ] and its fast algorithm. Many other choices

for these factors are obviously possible and these two special choices

do not seem to bear any exceptional importance.

As an example of use of our general formulas ve compute now the

required number of multiplications for the Generalized

Discrete Transform. There are 2g-~l factors different from 1.

Soj\J[B = 2̂ U8 .. + 2g-l for n - 1 > g
2n 2n-l

§ =0. A;|S j. O11"1jUn = 2^Ug
n_1 + 2 n~-l otherwise.

So that ,jU8 = g 2n - 2g + 1
2n

If we do not count the multiplications by +j , we find similarly

4.2 Family between Haar and W-H

In [6] one of the authors has presented a family of transforms between

the Haar .and W-H transforms. This family was obtained by replacing W-H

transforms of lower order by Haar transforms in the decomposition of the

fast algorithm of a W-H transform. Now we have further decomposed the fast
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algorithms of the two transforms up to similar recursive formulas (16)

and (19) or (17) and (20). Obviously, if we choose any of the 2n~

parent matrices needed to generate the matrix of order 2 to be either

[F_] or [I?] , we obtain a large family of unitary matrices which includes

the Haar, W-H, and unity matrices. There are

2n-l n-2 11+ + 2n~1 2n-l
.2 • V- ....... 21 = 21+ '' '' + ^ = T- L

members of order 2 in this family.

The number of additions is obviously twice the number of parent

matrices equal to [F?]. For the W-H transform we have n2 such matrices

and therefore n2 additions. For the Haar transform we have 2 +2

... + 1 = 2n-l such matrices [F ] and so 2(2n-l) additions. The number of

normalizations varies from O(W-H) to 2 -2 (the normalizing factors come by

pairs and all pairs are different in the worst case). No multiplication is

required during the computation. At the order 8, 2 matrices are in the

family. We show in Figure 7 one of them with its fast algorithm.

Assume as a particular case that we choose the parent matrices of

the recursive formulas to be

[Fk] k = 0 2P~1-1

with

[Fk] = [F2]for k = 0 mod (2
P+h n)

F = [I_] otherwise

where p is the stage of computation up to n when we generate a transform of
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order 2 and h an index lower than n. •

Then, i-f the recursive formula used is similar to (16) and (19) we

obtain a subclass of n transforms: for h = 0 we have the W-H transform and

for h =• n - 1 we have the Haar transform, both in natural order.

If the recursive formula is similar to (17) and (20) (with the per-

mutation [P] of the columns) we still obtain n transforms: for h = 0 we

have the W-H transform in Paley's order and for h = n - 1 we have an

k
unordered modified Haar transform. We denote these transforms [WHH9n].

2 /-
Fig. 8 shows [WHH..,] and its fast algorithm.

4.3 IC2 family;

To generate the family between W-H and W we have introduced a set of

factors into the recursive formula for the W-H transform. To generate the

family between W-H and Haar, we have replaced some parent matrices by the

identity matrix [I?J in the same recursive definition of the W-H transform.

If we allow simultaneously both operations we generate a larger family

that we call IC?•

More formally if [T J is a member of IC2 of order 2 , a member

of order 2 is given by

1 = [D,J [{[C ], ..., [C _ , J}® [T JJ ID J
~n 1 U j11"-1- i 2

where [D-] and [D9] are permutation matrices and CnJ ..., C _, are either
1 2. U 2-1

1 exp(-h9)

or [F0(9)] = ±

1 -exp(-je)
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Let us call this class of parent matrices (_,_ . For the order 2 ,

2n-l(2n~1 + 2n~2 + - + 1 = 2n-l) parent matrices have to be chosen

independently in C2
: we say that the family IC2 has 2 -1 degrees of

freedom over L/ (see footnote 4)..

The IC? family is very large and includes the families between W-H

and F, W-H and Haar.

The number of required operations is given recursively by

additions: <J( = 2 .J( _ + 2A
—ti — n~x n

—

n

Hence ,J( = 2n- A. (21)
,n A^ K
Z k=l

multiplications : J(j[ ̂ = 2jj{ ̂  +
£- £•

n
n-k

hence J\j( = > 2n~k L. C22)
on A»^ K

k=2

(4) This notion of degree of freedom is an extension of a concept introduced
by Andrews and Caspari [16]. For them the degree of freedom of a class of
matrices is the number of free parameters required to define this class.
This definition is ambiguous when the constraints which define a class cannot
be reduced_>to a set of free parameters. For example, the unitary matrices
of order 2 are given 1 degree of freedom in [16] when in fact, on the real
numbers, the most general matrix is

cos a sin a

e sin a -e cos a

e = + 1

a e [0,2ir]

and on the complex numbers the general solution depends on 4 angles
G [0,2ir] and 2 binary choices. Our approach is to track as far as possible
the reduction to independent choices. If it can be reduced to a number of
free parameters our degree of freedom will be the number of these parameters.
Note that the relations (1) and (4) apply also to the recursive computation
of the degree of freedom of a class. Note also that the degree of freedom
has generally no relation with the computational complexity (which varies
-usually for the transforms of a class).
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where A is the number of parent matrices different from [I?] at this k

stage, and L, the number of factors different from + 1 (and maybe + j) at
1C ™̂

this stage.

For Haar A^ = 1 for any k and J( = 2(2n-l)
K —II

For W-H A^ = 2k~1 and ,J( = n2n

For Fourier c_A n = n2
n'and Lfc = 2

k~1, 2k L-l or 2k~2-2, which yield

the results of section 2.3 (radix 2).

We present now an example of interest in the IC_ family: a class of

transforms which make a discrete transition between the 3 basic transforms

and which we call therefore the WFH class.

Each transform of this class is indexed by two positive integer para-

meters h and g such that h 4- g < n when 2 is the order of the transform

and is denoted [WFHg> ].

» k
[WFH ] is obtained recursively as the Fourier transform of radix

2n
1 1

2 (formula 14 ) but with the parent matrices [P^] k = 0, .., 2P such that

[F2(2irk/2P)] for k = 0 (mod 2P g

for k = 0 (mod 2p4~h~n) but

k ^ 0 (mod 2P g -

[p!j] = [I21 otherwise

where p is the level of computation up to n.
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We can represent then WFH transforms on a (g, h) plane as shown in

Fig. 9. With appropriate permutation matrices, for h = 0 we have the n

Generalized Discrete Transforms (see section 4.1), for g = 0 the n WHH

transforms (see section 4.2). WFH ' is the W-H transform, WHH ' n~ the

Modified Haar transform and WHHn ' the Fourier transform. For h + g =

n - 1 we have a set of n transforms in between the Fourier and Haar trans-

forms which have been called the Modified Generalized Discrete Transforms and

defined after much work in [18],

5. Other 1C transforms;

Except for the Fourier transform, we have restricted ourselves

so far to 1C transforms obtained from original core matrix [F_] and parent

matrices of order 2. The generative rules have given a unified approach

of the usual unitary transforms. We now consider some examples with a

different original core matrix and parent matrices of higher orders.

The matrices of order 2 are of practical interest for the fast

algorithm as long as we perform the required operations (specially

additions) with only two operands at a time. If fast additions involving,

let us say, f operands, become available, the transforms with parent

matrices of order f may be of interest.

Most of the recursive structures of the transforms presented in the

previous sections can be applied to parent matrices of higher orders

than 2. We now give some examples:

a) different original core matrix

In the definition of the W-H transform the original core matrix

[F J may be replaced by the core matrix

cos 6 sin 0

sin 8 -cos 6

-27-
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transform considered by Andrews et al. [15]. This original core matrix

can be used for all the recursive definitions considered.

b) Generalized 2 and 3 valued transforms;

In the definition of the W-H transform the role of [F_] as original

core matrix and parent matrix can be performed by any unitary matrix

[U] of order f. If [U] is an Hadamard matrix (its entries are +1/V/T)

the generated matrix of order f will also be an Hadamard matrix. These

matrices have been called "generalized 2-valued transforms" [19].

Similarly we can replace [F«] in the definition of the Haar transform by

the same matrix [U] and we will generate a unitary matrix with entries 0

or + 1/C. where C. is the normalizing factor of the i row: these

matrices are the "generalized 3-valued transforms" [19] . More generally [U]

can replace [F_] in the definition of the family of transforms between

W-H and Haar.

c) 1C, family;

The IC? family was based on the set C*> for the parent matrices. We

can define similarly the ICf family based on the class jf of parent matrices

of order f which contains [I J and [F (6 , ..., 9f_,)J where k column

of [FfCSj. ..-, 9f_1)] =
 kth column of [Ff] x exp(e~

j6k) ([Ff] is the

f n-lFourier matrix of order f ) . The family 1C,, has -=— - — independent parent

f\ fn-l
matrices chosen in \_j'. we say that 1C has f _•• degrees of freedom over

Cf. The required number of additions and multiplication is computed

recursively as done for (21) and (22) :

additions : uA ' = f . -^ , + <A A
£•**• -U— J. t n.

(23)

. fYf f £^i
k=l
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multiplications: <jU = f J[j\ +jlL A + L
^H — I*~JL 1 H II

k=l k-2

where A^ is the number of parent matrices different from [i ] at the k stage

and L, the number of column multiplications with factors different from

•f 1 (and maybe j; j) at this k stage.

d) WFHg'h subfamily of 1C,,
fn f

a ft
By analogy to the WFH subfamily of 1C- we can define the subfamily

2n -

[WFH8'h] of !Cf as follows:
fn r

Or h.

[WFH6' ] is obtained by successive generalized Krbnecker products with
fn ' •

0 k fP~ -1
the sets { [M ] , ... [M̂ ] . . . , [M J) of parent matrices such that

[Mk] = [F̂ ] with column i of [F̂ ] = column i of [Ff] x e"
2ir^ki

for k = 0 mod (f15"8"1)

[Mk] = [F] for k = 0 mod (fp+h~n) and

k ̂  0 mod (f"')

[MkJ = [IfJ otherwise

and at each level the permutation matrix [P] , P = 6 6, with s = uf + k,
St VIZ KW

t = wfp + z, is applied to reorder the columns.

It is easy to see that [WFH ' ] is the usual Fourier transform of
fn

order f°; the matrices [WFH°'°] and [WFH°>n~ ] have been introduced in the
fn fn
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literature respectively by Chrestenson [27] and Watari [28]. For these

2 matrices (23) and (24) reduce to the same recursive formulas and denoting

by r the number of additions or multiplications:

for WFH.0,0

for WFH
0,n-l

,-n

n̂

= n

cpfn-i
'f f-1

(This last result corrects the result given in [15], page 200

The other matrices of the family can be represented in the g-h diagram of

Fig. 9. •

6. Slant transform;

The Slant transform has been proposed by Enomoto et al. [29] for the

order 8. Pratt et al. [30] have generalized this transform to any order

2 and compared its performance with other transforms [31]. In this section

we want to express the recursive generation of the Slant transform with our

generative rules and compute the number of elementary operations required

by its fast algorithm.

The Slant transforms of orders A and 8, [S.] and [S0] , are as follows
H O

(in "natural" order).

-3 -1

-1 -3

-1 -1

1//5

Zequencies

0
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Zequencies

1

1

7

I

1

1

3

1

1

-3

-1

-1

5

-3

1

-1

1

3

-9

-1

3

3

-1

-1

1

-1

.-17

1

1

-1

-3

1

1

1

17

1

-1

-1

-3

-1

1

-3

9

-1

-3

3

-1

1

1

3

1

-1

-5

-3

1

1

1

-i xiA/T
-7 x 1 //5x2]

1

-7 x 1//21

1 x l//5~

3 ,lVT

-1

0

7

3

4

1

6

2

5

The rows can be reordered by zequencies with the same permutation as

the W-H transform in natural order.

The Slant transform of order 2 in natural order is obtained from the

Slant transform of order 2 in natural order by simple Kronecker product

with [F?] followed by rotation of the rows 2 and 2 by the matrix

Sin 9
n

cos en

Cos 6 -Sin 6
n n

with Sin 9

and Cos 6 =
n

This choice of 9 introduces in the Slant matrix [S ] the Slant vector S
n n
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with components linearly decreasing:

s = (2n- 1) - 2i

2n(22n_

3

But some normalizations can be delayed to the last stage of computation

O "1

and the rows 2 and 2 are rotated by the matrix

, /02n—2
2n~1 _ (2

2n-l

requiring 2 shifts, 2 additions, 1 multiplication. The corresponding

algorithm is shown in Fig. lOa.

Number of elementary operations;

Formulas (1) and (5) give:

jor the number of additions;

J( n = 2 ,J( n_1 + 211'1 -2 + 2 with eA, = 2

hence jln = (n+1) 2
n - 2

for the number of shifts:

hence 2 = 2n - 2
2n
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for the number of multiplications:

J(J( = 2^U , + 1 withjU. = 0
2n 2n

hence J[j[ = 2-1
2n

Finally 2-2 -1 normalizations are required at the last stage of

computation.

However the algorithm at the order 4 can be performed with 8

additions, 2 multiplications as shown in Fig. lOb [30] instead of 10 additions

and 2 shifts as above. The formulas (1) and (5) give then:

additions :

J( = 2 J( ' + 2n~1 -2 + 2 withoC = 8
rt o"^ -1* ^

hence J( ' = (2n+l) 2n~1-2 = ,A -211"1

2n 2n

shifts:

: = 2 - 0 +2 with Q=0
^n °2n-l A

hence 2 = 2n~1-2 =

multiplications :

2n 2'
W±th

hence (jU = 32n~2-l =<j\j{ + 2
2n 2n

A

and as before 2-2 - 1 normalizations.

-33-



7. Additional properties and generalizations of unitary transforms;

In this section we discuss briefly the complex extension of a real

transform. We also point out some additional relations between transforms

suggested by the unified framework presented.

7.1 Complex extension of a real transform;

From a real unitary matrix [RT] with rows RT/j, ..., RT -, we construct

a complex extension noted [CT] with rows CTg,...., CT by creating two

complex rows CT and CT from two real rows RT RT as follows
p q m n

CTP =

(25)

J RV

Then the complex transform V = (Q + j,() of a complex input vector

V = R + j I is expressed uniquely from the real transforms of Hd and

Q denoted^ and

Oj = CT -V =/k(RT - RT ) (R+j I) orVP P ^ m n

and

With these relations the properties of complex transforms can be

deduced from those of the real transform. In the literature, besides the

real and complex Fourier transforms, the complex W-H. transfoms (also

called Complex BIFORE transform) [32] [33] complex Haar transform (also

called Complex Modified BIFORE transform) [34] have been defined.
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Note that the complex W-H transform obtained by relations (25) would have

entries — —j_; commonly the rows are then rotated by ~^~ to give a trans-

/2 n
form with entries +1 and +j. The rows of the complex W-H transform can

be ordered according to a generalized frequency defined as the number of

clockwise rotations around the origin when following cyclically the entries

of a row.

7.2 Multidimensional transforms

The techniques presented for the one dimensional transforms extend

to multidimensional separable transforms. Let us denote an input array

of p dimensions by A. , ...... ^ and the p-dimensional separable transform

by T . . = T1 . T2 . ... TP '. Then the
u1 , u » I ,...., i u i uo 1o u_ i
1 P •!• P 1 1 2 2 PP

transformed array

B = > 7 j A Tul ..... up £^S £*4 . '" Z^ i-j^,..., i
•i. — J- '«-j -J-1 2 p

can be written

r

If we express both arrays as 1 dimensional vectors A and B , for which

indexes are obtained by lexicographic ordering of the indexes (in , ..... i )1 P

and (u , . . . , u ) , the multidimensional transform can be expressed as a

1-dimensional transform:
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A = [[I1]® [T2J ... ® [TP]J B

A = [T] B

The multidimensional transform has been reduced to a 1 dimensional trans-

form. This expression now allows the evalution of the number of elementary

operations and other generalizations discussed previously.

7.3 Relations between transforms

Two transforms with similar structures will often be related by matrix

relations or energy invariants between the two sets of transformed

coefficients.

a) matrix relations between transforms of same order;

In [6], matrix relations between the W-H and Haar transforms were

proved. More generally, for WFH families, similar relations hold for all

transforms lying on the same vertical line in the g-h graph of Fig. 9.

These transforms only differ by the number of parent matrices [F~] they

include. Therefore a multiplication by all the missing [F?] matrices will

generate one transform from the other. Note that these relations only

involve computations in zones as defined in 3.3 or subzones (zonal

divisions of a zone).

b) energy invariants:

By Parseval's theorem the total energy of the transform coefficients

of a same vector with different transforms is preserved. However, it may

happen that the energy of a subset of coefficients is the same for some trans-

forms: we say then there is an energy invariant between these transforms.

Energy invariants are most likely when the transforms have an identical struc-

ture with different multiplicators. For example, by direct comparison of the



algorithms for the Fourier (Fig. 3b) W-H (Fig. Ac) and modified Haar

(Fig. 5c), it is clear that the transformed coefficients before respective

reorderings have identical energies in the zones defined in 3.3. This

leads to the following energy invariants for the order 8.

Zone

0

1

2

3

Fourier
(frequencies)

0

4

2, -2

l,3,-l,-3

W-H
(zequencies)

0

7

3,4

1,2,5,6

Mod . Haar
(rank)

0

1

2,3

4,5,6,7

For the WFH families, the transforms with same sets of invariants

form nested triangles as shown in Fig. 9: the introduction of additional

factors leads to additional smaller subsets of coefficients of a same

subzone over which energy is invariant; the relations between transforms which

exist along vertical lines of the diagram of Fig. 9 preserves this energy

invariance in zones. The invariants between the Generalized Discrete

Transforms and the Modified Discrete Transforms have been studied by

Rao et al. [18].

Conclusions

In this work we have presented a unified treatment of unitary

transforms having a fast algorithm. The use of recursive rules to describe

unitary transforms allows a systematic way to view known transforms,

to generate new transforms and provide a general approach to the evaluation

of the computational complexity of transform algorithms. Among transforms
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which are clearly related, we have studied the 1C, families and the WFH

subfamilies which include most of the transforms considered in the

literature.

In addition to allowing the introduction of new transforms with

properties of interest, the framework provided can be used in several

other studies and applications of unitary transforms. In particular an

error analysis of unitary transforms is being carried out.
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FIGURE CAPTIONS

Fig. 1. Block diagonal matrix.

Fig. 2. Generalized Kronecker product: algorithm

Fig. 3. Fast Fourier Transform - radix 2, order 8

a. Algorithm from Fig. 2 (decimation in time)

b. Cooley-Tukey algorithm (decimation in time-in place)

c. Algorithm from Fig. 2 (decimation in frequency)

d. Sande-Tukey algorithm (decimation in frequency-in place)

Fig. 4. Walsh-Hadamard transform (order 8)

a. Algorithm - natural order

b. Algorithm with identical stages

c. Algorithm - Paley's order

Fig. 5. Haar transform (order 8)

a. Algorithm - natural order

b. Algorithm - rank order

c. Modified Haar transform.

2
Fig. 6. Generalized discrete transform [GT..,]

a. matrix

b. algorithm

Fig. 7. Example of a member of the family between Haar and Walsh-

Hadamard transforms.

a. matrix

b, fast transform (16 adds, 4 normalizations)

Fig. 8. Generalized transform [WHH-,]

a. matrix

b. algorithm



Fig. 9. WFH family

Fig. 10. Slant transform

a» algorithm - order 8 -

b. modified algorithm - order 4 -
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Fig. 1 : Block diagonal matrix



Irvput t Output
vector n matrices[B] permutation [P] m matrices [Aj permutation [PJ vector

o
i
2
3

m-l

m
nrul

2m-

mn-l

B
o

B1

B
n-l

2m+l

(n-l)m

(n-l)m-fl

nm-l

fig. 2 ; Generalized Kronecker product ; algorithm



Columns
Input permutations

vector r-̂ —-.
Output
vector

(a) Algorithm from Fig. 2

Fig« 3 : Fast Fourier Transform _-_ radix 2, order 8-



Input
vector

(b )

Output
vector

bit reversal
ordering

Fre-
quency

0
I
2
3

-3

Cooley-Tukey algorithm - decimation in time, in place -

Fig. 3 Fast Fourier Transform - radix 2, order 8 -



Input
vector

column
permutations

(0

Output
vector

Algorithm from Fig. 2 = decimation in frequency -

Fig. 3 : Fast Fourier Transform - radix 2, order 8 -



Input vector

Vo

V,

V2

V,

Output vector

V,4

V,

V,

VT

( d )
bit reversal

ordering

Sande-Tukey algorithm -decimation in frequency, in place -

Fig. 3 ' Fast Fourier Transform -radix 2, order 8,-



Input
vector

Vo
Vi
V2

V3

V4

V5

V6

Vr

(a)

Output
vector
natural
order

XxxZ

WH7

Output
vector
zequency
order

RQ Ordering

WHo

WHa
13

WHV

6
i
7

Algorithm - natural order -

Fig. h : Walsh-Hadamard Transform -order 8 -



Input
vector

( b )

Output
vector
natural
order

Output
vector
zequency
order

RQ Ordering

Algorithm with identical stages

Pie. h : WalsTa-Hadamard Transform - order 8 -



Input
vector

(0

Transformed
coeff ic ients
in Paley's
order

Transformed
coefficients
in zequency
order —

bit reversal
ordering

bit inversion
ordering

Algorithm - Paley's order

Fig, k : Walsh-Hadamard Transform - order 8 -



Input
vector

V0
V,
V2

V3

V5

V6

V7

( a )

Output
vector
natural

Output
vector

Zonal bit reversal
ordering

Algorithm - natural order -

Fig. 5 ; Fast Haar Transform - order 8 -


