

N 7 3 2 6 9 1 8

NASA CR-121200
OR 12,642

**REGISTER OF EXPERTS
FOR INFORMATION ON
MECHANICS OF STRUCTURAL FAILURE**

By James L. Carpenter, Jr., and Nestor Moya

**MARTIN MARIETTA AEROSPACE
Orlando, Florida 32805**

**CASE FILE
COPY**

prepared for

**NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LEWIS RESEARCH CENTER
AEROSPACE SAFETY RESEARCH AND DATA INSTITUTE
CLEVELAND, OHIO 44135**

**Patrick T. Chiarito, Project Manager
George Mandel, Technical Adviser**

Contract NAS 3-16681

1. Report No. NASA CR-121200	2. Government Accession No.	3. Recipient's Catalog No.	
4. Title and Subtitle REGISTER OF EXPERTS FOR INFORMATION ON MECHANICS OF STRUCTURAL FAILURE		5. Report Date June 1973	
6. Performing Organization Code		7. Author(s) James L. Carpenter, Jr., and Néstor Moya	
8. Performing Organization Report No. OR 12,642		9. Performing Organization Name and Address Martin Marietta Aerospace Orlando, Florida 32805	
10. Work Unit No.		11. Contract or Grant No. NAS 3-16681	
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D. C. 20546		13. Type of Report and Period Covered Contractor Report	
14. Sponsoring Agency Code		15. Supplementary Notes Project Manager: Patrick T. Chiarito Technical Advisor: George Mandel Aerospace Safety Research and Data Institute, Lewis Research Center, Cleveland, Ohio 44135	
16. Abstract This Register is comprised of a list of approximately 150 experts from approximately 60 organizations who have published results of theoretical and/or experimental research related to six problem areas in the mechanics of structural failure. Each author included is listed by organizational affiliation, address and principal field of expertise. The initial criteria for the selection of names for the register are recent contributions to the literature, participation in or support of relevant research programs, and referral by peers. The purpose of the register is to present, in easy reference form, sources for dependable information regarding failure modes and mechanisms of aerospace structures. The Register includes two indexes: an alphabetical listing of the experts and an alphabetical listing of the organizations with whom they are affiliated.			
17. Key Words (Suggested by Author(s)) Life Prediction Fracture Strength Fracture Mechanics Hydrogen Embrittlement Protective Coatings		18. Distribution Statement Composite Materials Indexes (Documentation) Directories Unclassified - Unlimited	
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 62	22. Price* 3.00

* For sale by the National Technical Information Service, Springfield, Virginia 22151

ANNUAL FOREWORD

This Register comprises those experts who have published results of theoretical and/or experimental research related primarily to the problem areas listed in the Table of Contents. There are also included areas of expertise which may be of use in the near future. In most cases the area of expertise was described by the expert accounting for variations in wording.

The purpose of this publication is to present, in easy reference form, sources for dependable information regarding failure modes and mechanisms of aerospace structures. The experts, who are points of contact, could be queried by researchers in similar fields of research and development work for unpublished information and more of the details which have not appeared in published reports, journal articles, or society presentations. In addition, further inquiries could be made regarding active ongoing projects where the published results may not appear for several months. No attempt was made to ascertain that persons listed are actually available for extensive consultation. This is left to negotiation between the parties involved.

The organizational affiliation reflects the latest reference document which was reviewed and is not necessarily current.

Selection for inclusion was based on the independent judgments of an author's peers as well as the number of his appropriate documents uncovered by a staff of technical reviewers. This is recognized as being an incomplete listing and represents only an initial installment. Nevertheless, we hope that it will contribute as a guide to those who seek related information. Candidates for a revised register are encouraged.

The authors wish to acknowledge the interest and assistance of the following individuals in the compilation of this Register: James E. Campbell, Battelle Memorial Institute; James C. Freche, NASA Lewis Research Center; and George C. Sih, Lehigh University.

TABLE OF CONTENTS

	<u>Page</u>
FOREWORD	iii
PROBLEM AREAS	
1. <u>Life prediction of materials at high temperatures</u>	I-1
and exposed to monotonic and cyclic loading - Includes information on low cycle and thermal fatigue particularly as it applies to turbine buckets in the gas turbine engine and high cycle fatigue data for materials used in components such as engine bearings.	
2. <u>Fracture toughness data on various structural</u>	II-1
materials - Available data are categorized with respect to test methods, K_{Ic} vs K_c and other peculiar parameters considered by the investigators. In particular, data derived from ASTM standard tests are identified.	
3. <u>Fracture mechanics analyses - capabilities and</u>	III-1
limitations - A significant amount of publications deal with linear elastic fracture mechanics and assume plane strain. Attempts are made to identify any work that was done, taking into account elastic-plastic theories.	
4. <u>Hydrogen embrittlement of superalloys -</u>	IV-1
This subject is of interest regarding turbine buckets, which are exposed to high temperatures. It will be of increasing importance if additional interest develops in using hydrogen as the fuel in gas turbine engines.	
5. <u>Protective coatings - Airbreathing engines operating . . .</u>	V-1
in contaminated environments are in need of protection against attack by the contaminants. Information on the various candidate coatings and the efforts of combustion products of contaminants in jet fuels on engine components is of prime interest. For example, the sulfur ordinarily contained in JP fuels reacts with salt present in shipboard and offshore environments and the resulting compounds attack turbine buckets severely.	

	<u>Page</u>
6. <u>Composite materials data on low cycle and thermal fatigue - Our aim here is to search for data related to composite structural materials.</u>	VI-1

INDEXES

ALPHABETICAL LIST OF EXPERTS	VII-1
ALPHABETICAL LIST OF ORGANIZATIONS	VIII-1

PROBLEM AREA 1

Life prediction of materials at high temperatures and exposed to monotonic and cyclic loading -
Includes information on low cycle and thermal fatigue particularly as it applies to turbine buckets in the gas turbine engine and high cycle fatigue data for materials used in components such as engine bearings.

Expert
Organization

ACHTER, M. R.
Naval Research Laboratory
Washington, D. C.

ANDERSON, William J.
NASA Lewis Research Center
Cleveland, Ohio

BIENIEK, Maciej P.
Columbia University
New York, New York

BISSON, Edmond E.
NASA Lewis Research Center
Cleveland, Ohio

CARDEN, Arnold E.
University of Alabama
University, Alabama

CARTER, Thomas L.
NASA Lewis Research Center
Cleveland, Ohio

CHRISTENSEN, Roy H.
McDonnell Douglas Company
Huntington Beach, California

Expertise

Flow and fracture characteristics
of metals at elevated temperatures.
Environmental effects on creep
and fatigue. Refractory metals.
Effects of laser radiation on
materials.

Life prediction of materials exposed
to cyclic loading in rolling and
sliding concentrated contacts.
Rolling fatigue. Contact stresses.
Elastohydrodynamics. Ball and roller
bearings. Gears.

Creep and fatigue failure predictions.
Inelastic solids. Large deflections
of structures. Structural dynamics.

Advanced bearing technology.
Rolling element fatigue life.
Lubrication.

Life prediction of materials at
elevated temperature. Fatigue.
Fatigue crack growth. Creep
crack growth. Fracture toughness -
experimental methods. Design of
experiments.

Effects of hardness on fatigue
life of steel bearing materials.

Life prediction of aerospace
structures. Structural analysis.
Structural tests. Aircraft
structural design.

Expert
Organization

COFFIN, Louis F., Jr.
General Electric Company
Schenectady, New York

CROOKER, Thomas W.
Naval Research Laboratory
Washington, D. C.

DIETRICH, Marshall W.
NASA Lewis Research Center
Cleveland, Ohio

DORN, John E.
University of California
Berkeley, California

DUBLIN, Michael
General Dynamics/Convair
San Diego, California

FORSBERG, D. Kevin
Lockheed Aircraft Corporation
Burbank, California

FRECHE, John C.
NASA Lewis Research Center
Cleveland, Ohio

FREUDENTHAL, Alfred M.
George Washington University
Washington, D. C.

Expertise

Low cycle fatigue. Thermal fatigue.
Fatigue crack nucleation and
propagation. High-temperature
materials. Fracture analysis.
Plasticity. Plastic working
processes. Friction and wear.

Low cycle fatigue in high strength
alloys. Crack propagation in high
strength steels. Toughness of
welded structures.

Rolling element fatigue. Elasto-
hydrodynamic lubrication at both
cryogenic and high temperatures.
Bearing and gearing materials
evaluation. Mechanical power
transmission system research and
development.

Life prediction and mechanical
behavior of materials at elevated
temperatures. Creep. Fatigue.
Plastic flow.

Design criteria for strength, and
static and dynamic aeroelasticity.
Analytical and experimental investi-
gations involving structural and
dynamics investigations of aircraft,
launch vehicles, and missiles.

Fatigue. Aircraft structural
design. Life testing for aerospace
structures.

Fatigue data and life prediction of
various structural materials. Nickel
and cobalt base alloys. Materials for
airbreathing and space propulsion
systems.

Life prediction of structures.
Fatigue of metals and nonmetals.
Inelastic behavior of engineering
materials. Plasticity. Structural
design. Fracture toughness.

Expert
Organization

GELL, Maurice
United Aircraft Corporation
East Hartford, Connecticut

HALFORD, Gary R.
NASA Lewis Research Center
Cleveland, Ohio

HARDRATH, Herbert F.
NASA Langley Research Center
Hampton, Virginia

HIRSCHBERG, Marvin H.
NASA Lewis Research Center
Cleveland, Ohio

HOFF, Nicholas J.
Stanford University
Stanford, California

ILLG, Walter
NASA Langley Research Center
Hampton, Virginia

KOENIG, Herbert A.
University of Connecticut
Storrs, Connecticut

LIPSITT, Harry A.
Aerospace Research Laboratories
Wright-Patterson AFB, Ohio

MANSON, Samuel S.
NASA Lewis Research Center
Cleveland, Ohio

Expertise

Life prediction of materials at elevated temperatures. Loads. Deformation and fracture mechanisms. Fractography. Fatigue. Creep. Superalloys.

Life estimation of materials exposed to cyclic loading at high temperature. Creep. Low cycle fatigue. High temperature alloys. Fracture toughness.

Fatigue life prediction of aerospace structures and materials. Complex loadings. Complex configurations. Plasticity effects. Elevated temperature effects. Environmental effects. Fracture mechanics analysis.

Low cycle fatigue. Life prediction of structural materials.

Life prediction structural materials. Fatigue. Creep. Crack propagation.

Fatigue life. Structural steels and titanium alloys at elevated temperatures.

Life prediction of materials. Fatigue. Elastic-plastic analysis of structures. Creep. Deformation.

Mechanical metallurgy. Fatigue, creep, tension, and hardness properties of ceramics. Diffusion and strain aging. Elasticity. Precipitation hardening.

Life prediction of materials. Monotonic and cyclic loading. Elasticity. Thermal stress in design. Creep. Fatigue. Vibration. High temperature materials. Fracture mechanics analysis.

Expert
Organization

Expertise

MORRISON, Thomas W.
SKF Industries, Inc.
King of Prussia, Pennsylvania

Rolling element materials at high temperatures. Fatigue. Ball bearings.

NELSON, Lloyd
Lockheed Aircraft Corporation
Burbank, California

Fatigue. Aircraft structural design. Structural analysis. Structural test.

PARKER, Richard J.
NASA Lewis Research Center
Cleveland, Ohio

Rolling element bearing life. Prediction of fatigue life and other modes of failure. Materials. High speeds. Lubrication. High temperatures. Residual stresses.

SCIBBE, Herbert W.
NASA Lewis Research Center
Cleveland, Ohio

Rolling element fatigue life. Steel bearing materials. Advanced bearing technology.

SCOTT, Douglas
Naval Electronics Laboratory
San Diego, California

Bearing materials at elevated temperatures. Fatigue. Hardness. Metallurgy of rolling element materials.

SINES, George
UCLA
Los Angeles, California

Fatigue failure of metals. Thermal effects. Effect of residual stresses. Fracture of ceramics. Flaws in ceramics. Hydrides in titanium. Fracture mechanics analysis.

SMITH, Clarence R.
General Dynamics/Convair
San Diego, California

Life testing. Fatigue. Strain theory. Aluminum alloys. Fracture toughness testing.

SPERA, David A.
NASA Lewis Research Center
Cleveland, Ohio

Low cycle fatigue. Creep. Thermal effects. High temperature alloys. Linear creep damage theory.

SULLIVAN, C. Patrick
United Aircraft Corporation
East Hartford, Connecticut

Low cycle fatigue. High cycle fatigue. Creep. Fatigue-creep interaction.

Expert
Organization

WELLS, Clifford H.
United Aircraft Corporation
East Hartford, Connecticut

ZARETSKY, Erwin V.
NASA Lewis Research Center
Cleveland, Ohio

Expertise

Life prediction of high temperature
alloys. Fatigue. Creep. Fracture
mechanics.

Rolling element bearings. Machine
elements. Elastohydrodynamics.
Mechanical power transmission
systems. Rolling element fatigue.
Lubrication. Gearing.

Page Intentionally Left Blank

PROBLEM AREA 2

Fracture toughness data on various structural materials - Available data are categorized with respect to test methods, K_{Ic} vs K_c and other peculiar parameters considered by the investigators. In particular, data derived from ASTM standard tests are identified.

Expert
Organization

ADAIR, Atwell Mason
Aerospace Research Laboratories
Wright-Patterson AFB, Ohio

BROWN, William Findlay, Jr.
NASA Lewis Research Center
Cleveland, Ohio

CAMPBELL, James E.
Battelle Memorial Institute
Columbus, Ohio

CROOKER, Thomas W.
Naval Research Laboratory
Washington, D. C.

DAMIANO, Victor V.
Franklin Institute
Philadelphia, Pennsylvania

DOLAN, Thomas J.
University of Illinois
Urbana, Illinois

Expertise

Plastic deformation and brittle
fracture of metals. Mechanism
of fatigue limits on metals.
Fracture mechanics analysis.

Plane strain fracture toughness.
High strength materials. Fracture
toughness testing methods.
Fracture mechanics analysis.

Fracture toughness data. Harden-
ability of steels. Deformation of
fracture of materials at low and
elevated temperatures. Fatigue
crack propagation in metals.
Fracture analysis. Heat treatment
of steels. Hydrogen embrittlement.

Fracture toughness testing. Crack
propagation. Low cycle fatigue
in high temperature alloys.

Fatigue. Fracture characteristics.
Flow. Beryllium alloys.

Fatigue of structural components.
Deformation and fracture of metals.
Experimental stress analyses.
Analysis of causes of failure.
Environmental effects. Accident
reconstruction. Design philosophy.

Expert
Organization

FREUDENTHAL, Alfred M.
George Washington University
Washington, D. C.

GRUFF, James J.
Rockwell International, Inc.
Los Angeles, California

HAHN, George T.
Battelle Memorial Institute
Columbus, Ohio

HALFORD, Gary R.
NASA Lewis Research Center
Cleveland, Ohio

HAYDEN, H. Wayne
Martin Marietta Laboratories
Baltimore, Maryland

HEYER, Robert H.
Armco Steel Corporation
Middletown, Pennsylvania

Expertise

Fracture toughness. Fatigue of metals and nonmetals. Inelastic behavior of engineering materials. Plasticity. Structural design. Life prediction of materials.

Fatigue testing. Stress corrosion effects. Loads. Structural aluminum alloys.

Fracture toughness of alloys, ceramics, and polymers. The micro-mechanisms of fracture. Ductile-to-brittle transition in metals. Plastic zones of cracks. Fracture mechanics of crack extension, dynamic propagation, fracture arrest, and cyclic crack growth, crack extension and dynamic propagation in pipes and pressure vessels. Surface coatings.

Fracture toughness testing. Fatigue. Creep. Cyclic loads. High temperature materials. Life prediction.

Mechanical properties of metals. Deformation. Fracture. Fatigue. Superelasticity. Environmental embrittlement of metals and composites. Powder metallurgy. Fracture mechanics.

Indentation hardness testing. Metallurgy of flat rolled steel. Metallurgy.

Expert
Organization

Expertise

HUDSON, C. Michael
NASA Langley Research Center
Hampton, Virginia

Fatigue-crack propagation and fracture toughness on various materials.
Fatigue life in various gas environments. Fatigue-crack propagation under various amplitude loadings.

IRWIN, George R.
Lehigh University
Bethlehem, Pennsylvania

Fracture toughness testing. Crack propagation. Stress. Strain.
Fatigue testing. Structures.
Fracture mechanics.

KAUFMAN, John G.
Alcoa Research Laboratories
New Kensington, Pennsylvania

Mechanical properties of aluminum and its alloys. Fracture. Strain. Stress concentration. Cryogenic applications.

KENDALL, David P.
Watervliet Arsenal
Watervliet, New York

Fracture toughness of high strength steels. Yield strength. Strain rate. Loading. Temperature effects.

KENDALL, Ernest G.
Aerospace Corporation
El Segundo, California

Fracture toughness of nonmetallic structural materials. Failure modes. High temperature materials.

KLIMA, Stanley J.
NASA Lewis Research Center
Cleveland, Ohio

Fatigue testing. Crack propagation. Stress rupture. Mechanical properties of nickel and cobalt alloys.

KOBAYASHI, Albert S.
University of Washington
Seattle, Washington

Two and three-dimensional stress intensity factors for isotropic and orthotropic materials. Plasticity correction factors and J-Integral determination. Dynamic stress intensity factors and crack arrest in built-in stringer structures subjected to dynamic loading.
Fracture mechanics analysis.

Expert
Organization

KRAFFT, Joseph M.
Naval Research Laboratory
Washington, D. C.

KUSENBERGER, Felix N.
Southwest Research Institute
San Antonio, Texas

LANGE, Eugene A.
Naval Research Laboratory
Washington, D. C.

LATANISION, Ronald M.
Martin Marietta Laboratories
Baltimore, Maryland

LOW, John R., Jr.
General Electric Research Lab
Schenectady, New York

LOWNDES, Holland B., Jr.
Flight Dynamics Laboratory
Wright-Patterson AFB, Ohio

MASTERS, J. N.
The Boeing Company
Seattle, Washington

McEVILY, Arthur J., Jr.
University of Connecticut
Storrs, Connecticut

McMILLAN, J. Corey
The Boeing Company
Seattle, Washington

Expertise

Fracture toughness. Plastic flow.
Dynamic effects on toughness.
Environmental effects on stress
corrosion. Fatigue propagation.
Penetration ballistics.

Metal fatigue. Nondestructive
evaluation methods.

Low cycle fatigue data in terms of
crack propagation rates as a function
of total strain range and ΔK .
Fracture mechanics structural
analysis and material characterization
in the plane strain, elastic-plastic,
and the plastic fracture states.

Mechanical properties of nickel-
based alloys. Hydrogen embrittlement.

Fracture toughness testing. Effect
of microstructure on fracture
toughness. High strength alloys.

Fatigue testing. Fracture in
structures. Aerospace applications.

Fracture toughness properties of
aircraft structural materials.
Steel alloys. Fatigue testing.

Fracture. Crack propagation.
Crack detection.

Fatigue testing. Fracture
propagation. Stress corrosion
resistance. Electron fractography.

Expert
Organization

Expertise

McNITT, RICHARD P.
Virginia Polytechnic Institute
and State University

Fracture toughness data on various
structural materials in various
modes. Use of notched hollow
rounds for getting toughness data.
Hydrogen embrittlement.

MUKHERJEE, Amiya K.
The Boeing Company
Seattle, Washington

Fracture toughness testing. Fatigue
limits. Aircraft structures.

NAUMANN, Eugene C.
NASA Langley Research Center
Hampton, Virginia

Fatigue tests. Failure mode.
Loads. Cycling.

PARIS, Paul C.
Del Research Corporation
Hellertown, Pennsylvania

Fracture toughness and applied
mechanics. Structural stability.
Plastic analysis of structures.
Fracture mechanics analysis.

PELLINI, William S.
Naval Research Laboratory
Washington, D. C.

Metals processing. Brittle fracture.
Transformation and properties of
steel. Solidification of metals.
Gases in metals. Weldability.
High temperature materials.

POPP, Herbert G.
General Electric Company
Cincinnati, Ohio

Fracture toughness testing. High
strength alloys. High temperature.
Fatigue limits.

PRAGER, William
Brown University
Providence, Rhode Island

Fracture toughness testing. Creep.
Fatigue. Crack propagation.

ROSENFIELD, Alan R.
Battelle Memorial Institute
Columbus, Ohio

Fracture of metals, polymers, rocks,
and ceramics. Rapid crack propagation
and crack arrest. Microstructural
origins of fracture toughness and
of strength. Mixed mode crack
growth. Crack tip plasticity.

Expert
Organization

SIH, George C.
Lehigh University
Bethlehem, Pennsylvania

Expertise

Fracture toughness data analysis on plane strain, plane stress and three-dimensional crack specimens for metals and composites. Mixed mode fracture in the plane and through the thickness. Nonlinear behavior of materials with cracks. Design of test specimens.

SMITH, Clarence R.
General Dynamics/Convair
San Diego, California

Fracture toughness. Strain theory.
Fatigue. Aluminum alloys. Life testing.

SMITH, S. H.
The Boeing Company
Seattle, Washington

Fatigue testing. Crack propagation in aluminum alloys. Aircraft structures. Fracture mechanics.

SRAWLEY, John E.
NASA Lewis Research Center
Cleveland, Ohio

Fracture toughness testing of various structural materials. Fatigue.
Plane strain. Fracture mechanics analysis.

STEIGERWALD, Edward A.
TRW, Inc.
Cleveland, Ohio

Fracture toughness of high strength materials. Alloys. Plane strain.
Hydrogen embrittlement.

SULLIVAN, Timothy L.
NASA Lewis Research Center
Cleveland, Ohio

Fracture toughness of titanium.
Crack propagation. Measurement of crack growth.

TAGGART, Raymond
University of Washington
Seattle, Washington

Fatigue of metals with respect to crack propagation. Microstructures.
Mechanical properties of binary alloys.

TIFFANY, C. F.
The Boeing Company
Seattle, Washington

Fracture toughness testing. Crack propagation. Pressure vessels.
Fracture mechanics analysis.

TRUELL, Rohm
Brown University
Providence, Rhode Island

Fracture toughness testing. Fatigue.
Crack propagation.

Expert Organization

TURNER, N. G.
Forge Space Technology Center
King of Prussia, Pennsylvania

WEISS, Volker
Syracuse University
Syracuse, New York

WELLS, Clifford H.
United Aircraft Corporation
East Hartford, Connecticut

Expertise

Fracture toughness testing.
Mechanical behavior of titanium.

Fracture toughness testing. Theory
of fracture. Fatigue. Residual
stress. Fracture mechanics analysis.

Fracture toughness data on various
structural materials. Fatigue.
Life prediction of high temperature
alloys.

PROBLEM AREA 3

Fracture mechanics analysis - capabilities and limitations - A significant amount of publications deal with linear elastic fracture mechanics and assumes plane strain. Attempts are made to identify any work that was done, taking into account elastic-plastic theories.

Expert
Organization

Expertise

ABELKIS, Paul R.
McDonnell Douglas Company
Long Beach, California

Fatigue of materials and structures.
Fatigue design, analysis and testing.
Loads spectra. Statistical analysis.
Structural design. Crack propagation
and fracture analysis.

ADAIR, Atwell Mason
Aerospace Research Laboratories
Wright-Patterson AFB, Ohio

Fracture mechanics analysis.
Plastic deformation and brittle
fracture of materials. Mechanism
of fatigue limit on metals. Fracture
toughness testing.

AMATEAU, Maurice F.
Aerospace Corporation
El Segundo, California

Fracture mechanics analysis. Plastic
strain anisotropy. Titanium.

AUST, Karl T.
University of Toronto
Toronto, Canada

Structure and properties of grain
boundaries in metals. Plastic
deformation and annealing phenomena
in metals. Structure and properties
of metals.

BACKOFEN, Walter A.
Massachusetts Institute
of Technology
Cambridge, Massachusetts

Metal plasticity. Deformation
textures. Mechanical anisotropy.
High temperature deformation.
Plastic working processes. Fracture.
Fatigue.

BEACHEM, Cedric D.
Naval Research Laboratory
Washington, D. C.

Fracture mechanics analyses. Electron
fractography. Specimen design.
Crack tip mechanisms. Fatigue.
Stress corrosion cracking. Hydrogen
assisted cracking. Elastic-plastic
fracture. Hydrogen embrittlement.

BOCKRATH, George E.
McDonnell Douglas Company
Huntington Beach, California

Ductile fracture theory in metals.
Fatigue analysis. Maraging and
stainless steels. Aluminum
titanium, and beryllium alloys.

Expert
Organization

BROWN, William Findlay, Jr.
NASA Lewis Research Center
Cleveland, Ohio

BROWN, William Fuller, Jr.
University of Minnesota
Minneapolis, Minnesota

CHEN, Yu
Rutgers University
New Brunswick, New Jersey

DAVIS, Sidney O.
Aerospace Materials Laboratory
Wright-Patterson AFB, Ohio

FIGGE, I. E.
NASA Lewis Research Center
Cleveland, Ohio

FUCHS, Henry O.
Stanford University
Stanford, California

GRANT, Nicholas J.
Massachusetts Institute
of Technology
Cambridge, Massachusetts

GROSS, Bernard
NASA Lewis Research Center
Cleveland, Ohio

GROSSKREUTZ, Joseph C.
National Bureau of Standards
Washington, D. C.

Expertise

Fracture mechanics analysis.
Plane strain fracture toughness.
Fracture toughness testing.

Fracture mechanics analysis.
Ferromagnetic domains and magneto-
mechanical effects. Electromagnetics.
Elasticity and plasticity.

Fracture mechanics analysis.
Vibration. Dynamic stress concen-
tration. Structural analysis.

Fracture mechanics analysis.
Linear elastic concepts. Crack
propagation. Aluminum, titanium,
and columbium alloys.

Fracture mechanics. Fatigue limits.
Stress. Fatigue tests. Titanium.
Steel alloys.

Failure criteria for crack initiation
and propagation. Residual stress
effects. Analysis of irregular load
sequences.

Fracture mechanics analysis.
Deformation. Strain rate. Thermal
effects.

Fracture mechanics analysis.
Stress intensity factors. Splitting
forces. Boundary collocation.

Fracture mechanics analysis.
Plastic deformation. Metal fatigue.
Metal physics. Structure of light
nuclei.

Expert
Organization

Expertise

HARDRATH, Herbert F.
NASA Langley Research Center
Hampton, Virginia

Non K_{Ic} toughness, plasticity effects. Complex structural configurations. Elevated temperature effects. Fatigue crack propagation. Stress corrosion cracking. Life prediction.

HAYDEN, H. Wayne
Martin Marietta Laboratories
Baltimore, Maryland

Mechanical properties of metals. Deformation. Fracture. Fatigue. Superelasticity. Environmental embrittlement of metals and composites. Powder metallurgy. Fracture toughness.

HERTZBERG, Richard W.
Lehigh University
Bethlehem, Pennsylvania

Fracture mechanics analyses. Deformation and fracture of materials. Fatigue crack propagation of metals and polymers. Failure analysis. Mechanical response of unidirectional, solidified, eutectic composites.

HILTON, Peter D.
Lehigh University
Bethlehem, Pennsylvania

Fracture mechanics analysis.
Elastic-plastic analyses.

HULBERT, Lewis E.
Battelle Memorial Institute
Columbus, Ohio

Mathematical analysis of fracture in two and three-dimensional. Micromechanics of composites. Thermal stresses and thermal fatigue.

HUTCHINSON, John W.
Harvard University
Cambridge, Massachusetts

Fracture mechanics analysis.
Elastic-plastic analyses.

IRWIN, George R.
Lehigh University
Bethlehem, Pennsylvania

Fracture mechanics analysis.
Stress. Strain. Crack propagation.
Fatigue testing. Fracture toughness.

JACOBSON, Marcus J.
Northrop Corporation
Hawthorne, California

Fracture mechanics analysis.
Vibration effects. Thermal effects.
Composite materials.

Expert
Organization

KOBAYASHI, Albert S.
University of Washington
Seattle, Washington

Expertise

Fracture mechanics analysis. Two and three-dimensional stress intensity factors for isotropic and orthotropic materials. Plasticity correction factors and J-Integral determination. Dynamic stress intensity factors and crack arrest in built-in stringer structures subjected to dynamic loading. Fracture toughness.

KRAMER, Irwin R.
Martin Marietta Aerospace
Denver, Colorado

Plastic deformation. Surface effects related to flow and fracture of metals. Effect of alloying elements on mechanical and physical properties of metals. Hardenability of steels.

LANGE, Eugene A.
Naval Research Laboratory
Washington, D. C.

Fracture mechanics structural analysis and material characterization in the plane strain, elastic-plastic, and the plastic fracture states. Low cycle fatigue data in terms of crack propagation rates as a function of total strain range and ΔK .

LIEBOWITZ, Harold
George Washington University
Washington, D. C.

Fracture mechanics analysis.
Deformation. Plasticity. Crack propagation.

MACMILLAN, Norman H.
Martin Marietta Laboratories
Baltimore, Maryland

Lattice and defect structure of solids. Relationship of structure and environment to mechanical properties. X-ray crystallography. Mathematical analysis of lattice structure and defects.

MANSON, Samuel S.
NASA Lewis Research Center
Cleveland, Ohio

Fracture mechanics analysis.
Elasticity. Thermal stress in design. Creep. Fatigue. Vibration. High temperature materials. Life prediction.

McCLINTOCK, Frank A.
Massachusetts Institute of
Technology
Cambridge, Massachusetts

Fracture mechanics analyses,
capabilities and limitations.
Plastic flow. Fracture.

Expert
Organization

Expertise

MENDELSON, Alexander
NASA Lewis Research Center
Cleveland, Ohio

Fracture mechanics analysis.
Plasticity theory. Deformation.
Stress. Strain. Applications
theory.

PARIS, Paul C.
Del Research Corporation
Hellertown, Pennsylvania

Fracture mechanics analyses.
Structural stability. Plastic
analysis of structures. Fracture
toughness.

PELLOUX, Regis M.
Massachusetts Institute
of Technology
Cambridge, Massachusetts

Ductile fatigue striations. Crack
propagation theory. Shear.
Aircraft structures.

SIH, George C.
Lehigh University
Bethlehem, Pennsylvania

Analytical and numerical analyses
of two and three-dimensional crack
problems. Torsion and flexure
of bars. Plane extension and bending
of plates. Pressurized cylindrical
and spherical shells. Surface
flaws. Application to structural
design.

SINES, George
UCLA
Los Angeles, California

Fracture of ceramics. Fatigue
failure of metals. Effect of
residual stress.

SMITH, C. William
Virginia Polytechnic Institute
and State University
Blacksburg, Virginia

Fracture mechanics of cracked plates
in bending including three-dimensional
efforts. Elastic-plastic effects.

SMITH, S. H.
The Boeing Company
Seattle, Washington

Fracture mechanics analysis.
Fatigue testing. Crack propagation
in aluminum alloys. Fracture
toughness.

SRAWLEY, John E.
NASA Lewis Research Center
Cleveland, Ohio

Fracture mechanics analyses.
Fatigue. Plane strain. Fracture
toughness testing.

Expert
Organization

SWEDLOW, Jerold L.
Carnegie-Mellon University
Pittsburgh, Pennsylvania

TIFFANY, C. F.
The Boeing Company
Seattle, Washington

WEI, R. P.
U.S. Steel Corporation
Pittsburgh, Pennsylvania

WEISS, Volker
Syracuse University
Syracuse, New York

Expertise

Analyses of crack and notch geometries including the effects of elasticity, anisotropy, elasto-plasticity, and nonplanar loadings and geometries. Applications to metals and advanced fiber composites.

Fracture mechanics analysis.
Pressure vessel structures. Crack propagation. Strain. Fracture toughness.

Fracture mechanics analysis.
Plane strain. Fracture toughness.
Test methods.

Theory of fracture. Fatigue.
Residual stresses. Solid state phase transformation. X-ray diffraction. Fracture toughness testing.

PROBLEM AREA 4

Hydrogen embrittlement of superalloys - This subject is of interest regarding turbine buckets, which are exposed to high temperatures. It will be of increasing importance if additional interest develops in using hydrogen as the fuel in gas turbine engines.

Page Intentionally Left Blank

<u>Expert</u> <u>Organization</u>	<u>Expertise</u>
BEACHEM, Cedric D. Naval Research Laboratory Washington, D. C.	Hydrogen embrittlement. Test methods. Microscopic mechanisms. Stress corrosion cracking mechanisms. Fracture mechanics analysis.
CAMPBELL, James E. Battelle Memorial Institute Columbus, Ohio	Hydrogen embrittlement. Hardenability of steels. Fatigue of steel and aluminum. High strength steels. Fracture toughness.
CHANDLER, Willis T. Rockwell International, Inc. Canoga Park, California	Hydrogen embrittlement. Metallurgy of high temperature and refractory alloys. Transformations in metals. Liquid metal corrosion.
GRAY, Hugh R. NASA Lewis Research Center Cleveland, Ohio	Hydrogen embrittlement. Hot salt stress corrosion. Titanium alloys.
HULBERT, Lewis E. Battelle Memorial Institute Columbus, Ohio	Hydrogen embrittlement. Fracture mechanics analysis. Deformation. Heat transfer.
LATANISION, Ronald M. Martin Marietta Laboratories Baltimore, Maryland	Hydrogen embrittlement. Mechanical properties of nickel alloys.
MCNITT, Richard P. Virginia Polytechnic Institute and State University Blacksburg, Virginia	Hydrogen embrittlement. Fracture toughness data on structural materials.
STEIGERWALD, Edward A. TRW, Inc. Cleveland, Ohio	Hydrogen embrittlement. Plane strain. Alloys. Fracture toughness testing.

Expert
Organization

TETELMAN, Alan S.
UCLA
Los Angeles, California

WILLIAMS, Dean N.
Battelle Memorial Institute
Columbus, Ohio

Expertise

Hydrogen embrittlement. Titanium
alloys.

Hydrogen embrittlement.
Titanium alloys.

PROBLEM AREA 5

Protective coatings - Airbreathing engines operating in contaminated environments are in need of protection against attack by the contaminants. Information on the various candidate coatings and the effects of combustion products of contaminants in jet fuels on engine components is of prime interest. For example, the sulfur ordinarily contained in JP fuels reacts with salt present in shipboard and offshore environments and the resulting compounds attack turbine buckets severely.

Expert
Organization

GREENE, John A. S.
Martin Marietta Laboratories
Baltimore, Maryland

GRISAFFE, Salvatore J.
NASA Lewis Research Center
Cleveland, Ohio

HAHN, George T.
Battelle Memorial Institute
Columbus, Ohio

LEGGETT, Hyman
Martin Marietta Aerospace
Orlando, Florida

NEJEDLIK, James F.
TRW, Inc.
Cleveland, Ohio

PERKINS, Roger A.
Lockheed Missiles and Space Co.
Palo Alto, California

QUIGG, Harold T.
Phillips Petroleum Company
Bartlesville, Ohio

STETSON, Alvin R.
Solar
San Diego, California

TENNEY, Darrell R.
Virginia Polytechnic Institute
and State University
Blacksburg, Virginia

Expertise

Protective coatings. Stress
corrosion cracking of aluminum
and titanium alloys. Aqueous corrosion
of aluminum and titanium alloys.
Formulation and characterization
of aluminum and titanium alloys.

Nickel aluminide coatings.
Protective coatings for superalloys.

Protective coatings. Heavy element
chemistry. Diffusion. Isotope
separation. Plasma chemistry.
Space materials. Fracture toughness.

Fused oxide coatings. Zirconium
systems. Testing superalloys at
elevated temperatures. Ceramics.

Aluminate coatings. Stress corrosion.
Coatings for nickel- and cobalt-base
alloys. Test methods.

Protective coatings for superalloys;
Oxidation protection for hypersonic
structures.

Hot corrosion effects. Sulfidation.
Superalloys.

Protective coatings for tantalum-
based and columbium-based alloys.
Turbine engine materials.

Protective coatings. Oxidation
behavior of structural materials
under re-entry environments.

Expert
Organization

WURST, John C.
University of Dayton
Dayton, Ohio

Expertise

Protective coatings for high
temperature materials. Aerospace
applications. Refractory materials.
Thermal fatigue. Test methods.

PROBLEM AREA 6

Composite materials on low cycle and thermal fatigue - Our aim here is to search for data related to composite structural materials.

Expert
Organization

Expertise

BOLLER, Kenneth H.
U.S. Department of Agriculture
Washington, D. C.

Fatigue properties of plastic
laminates reinforced with fibers.
Axial loading. Shear loading.
Stress. Notching.

BROUTMAN, Lawrence J.
Illinois Institute of Technology
Chicago, Illinois

Fracture toughness, strength, and
fatigue of fiber and particulate
composites. Effect of material
parameters on fracture and fatigue.
Crack propagation and fracture in
polymers and glasses. Impact
strength and damage in polymers and
composites. Fracture at interfaces.

CHAMIS, Christos C.
NASA Lewis Research Center
Cleveland, Ohio

Fiber reinforced composites. Impact
resistance. Fracture mechanics.
Failure criteria.

CHIAO, T. T.
Lawrence Livermore Laboratories
Livermore, California

S-Glass/Epoxy composites. Stress
rupture. Yield strength.

DALLY, James W.
University of Maryland
College Park, Maryland

Fatigue failure mechanisms in
composite materials. Stress analysis
of composites. Predicting fatigue
failure with damage indicators.
Static and dynamic photoelasticity.

DECKER, Raymond F.
International Nickel Company
Sterling Forest, New York

Composites. Mechanisms of nickel-
based superalloys. High temperature
effects.

DOW, Norris F.
General Electric Company
Valley Forge, Pennsylvania

Composite materials data on low
cycle and thermal fatigue.

Expert
Organization

HALPIN, John C.
Aerospace Materials Laboratory
Wright-Patterson AFB, Ohio

HELLER, Robert A.
Virginia Polytechnic Institute
and State University
Blacksburg, Virginia

HERTZBERG, Richard W.
Lehigh University
Bethlehem, Pennsylvania

HOWELL, William E.
NASA Langley Research Center
Hampton, Virginia

JACOBSON, Marcus J.
Northrop Corporation
Hawthorne, California

JOHNS, Robert H.
NASA Lewis Research Center
Cleveland, Ohio

KROCK, Richard H.
P.R. Mallory & Company, Inc.
Burlington, Massachusetts

LYTTON, Jack L.
Virginia Polytechnic Institute
and State University
Blacksburg, Virginia

Expertise

Fibrous composites. Structural applications. Static strength. Environmental effects.

Composite material data. Fatigue under varying embrittlement conditions. Creep effects.

Microstructural aspects of fatigue crack propagation in metal alloys and polymers. Mechanical response of unidirectional, solidified eutectic composites. Electron fractography. Failure analysis. Deformation and fracture of materials. Fracture mechanics analysis.

Composite materials. Data on low cycle and thermal fatigue.

Fiber reinforced composites. Honeycomb structures. Vibration effects. Thermal effects. Acoustic fatigue. Fracture mechanics analysis.

Structural characteristics, metal- and resin-matrix composites.

Composite materials data on low cycle and thermal fatigue. Refractory metals. Beryllium-and copper-base alloys.

Fracture characteristics of fiber-reinforced composites. Hydrogen embrittlement of superalloys. Mechanisms of failure of steel.

Expert
Organization

Expertise

PETRASEK, Donald W.
NASA Lewis Research Center
Cleveland, Ohio

Wire reinforced composites. Metal matrix composites. Mechanical characteristics of refractory metal wires.

RAO, P. Nagaraja
ITT Research Institute
Chicago, Illinois

Fatigue mechanisms of reinforced composites. Aircraft structures.

REIFSNIDER, Kenneth L.
Virginia Polytechnic Institute
and State University
Blacksburg, Virginia

Composite material data on low cycle fatigue. Thermal effects near stress concentrations. Elastic-plastic fatigue crack propagation.

SALKIND, Michael J.
United Aircraft Corporation
East Hartford, Connecticut

Fiber reinforced materials.
Controlled solidification. Powder metallurgy. Sintering.

SIGNORELLI, Robert A.
NASA Lewis Research Center
Cleveland, Ohio

Wire reinforced composites. Metal matrix composites. Mechanical characteristics of refractory metal wires.

STEELE, James H., Jr.
Virginia Polytechnic Institute
and State University
Blacksburg, Virginia

Fracture characteristics of fiber-reinforced composites.

TENNEY, Darrell R.
Virginia Polytechnic Institute
and State University
Blacksburg, Virginia

Analysis of metallic diffusion in fiber-reinforced composite materials.

TOTH, Istvan J.
TRW, Inc.
Cleveland, Ohio

Aluminum matrix composites.
Fatigue and fracture of metal matrix composites.

WRIGHT, Maurice A.
University of Tennessee
Space Institute
Tullahoma, Tennessee

Effects of thermal cycling and loading on boron-aluminum composites.
Linear elastic fracture mechanics analysis of composite materials
Fatigue properties of fiber-reinforced plastic-matrix structural materials.

ALPHABETICAL LIST OF EXPERTS

<u>Expert</u>	<u>Page</u>	<u>Expert</u>	<u>Page</u>
ABELKIS, Paul R.	III-3	DALLY, James W.	VI-3
ACHTER, M. R.	I-3	DAMIANO, Victor V.	II-3
ADAIR, Atwell Mason	II-3, III-3	DAVIS, Sidney O.	III-4
AMATEAU, Maurice F.	III-3	DECKER, Raymond F.	VI-3
ANDERSON, William J.	I-3	DIETRICH, Marshall W.	I-4
AUST, Karl T.	III-3	DOLAN, Thomas J.	II-3
BACKOFEN, Walter A.	III-3	DORN, John E.	I-4
BEACHEM, Cedric D.	III-3, IV-3	DOW, Norris F.	VI-3
BIENIEK, Maciej P.	I-3	DUBLIN, Michael	I-4
BISSON, Edmond E.	I-3	FIGGE, I. E.	III-4
BOCKRATH, George E.	III-3	FORSBERG, D. Kevin	I-4
BOLLER, Kenneth H.	VI-3	FRECHE, John C.	I-4
BROWN, William Findlay, Jr.	II-3, III-4	FREUDENTHAL, Alfred M.	I-4, II-4
BROWN, William Fuller, Jr.	III-4	FUCHS, Henry O.	III-4
BROUTMAN, Lawrence J.	VI-3	GELL, Maurice	I-5
CAMPBELL, James E.	II-3, IV-3	GRANT, Nicholas J.	III-4
CARDEN, Arnold E.	I-3	GRAY, Hugh R.	IV-3
CARTER, Thomas L.	I-3	GREENE, John A. S.	V-3
CHAMIS, Christos C.	VI-3	GRISAFFE, Salvatore J.	V-3
CHANDLER, Willis T.	IV-3	GROSS, Bernard	III-4
CHEN, Yu	III-4	GROSSKREUTZ, Joseph C.	III-4
CHIAO, T. T.	VI-3	GRUFF, James J.	II-4
CHRISTENSEN, Roy H.	I-3	HAHN, George T.	II-4, V-3
COFFIN, Louis F., Jr.	I-4	HALFORD, Gary R.	I-5, II-4
CROOKER, Thomas W.	I-4, II-3	HALPIN, John C.	VI-4

<u>Expert</u>	<u>Page</u>	<u>Expert</u>	<u>Page</u>
HARDRATH, Herbert F.	I-5, III-5	LANGE, Eugene A.	II-6, III-6
HAYDEN, H. Wayne	II-4, III-5	LATANISION, Ronald M.	II-6, IV-3
HELLER, Robert A.	VI-4	LEGGETT, Hyman	V-3
HERTZBERG, Richard W.	III-5, VI-4	LIEBOWITZ, Harold	III-6
HEYER, Robert H.	II-4	LIPSITT, Harry A.	I-5
HILTON, Peter D.	III-5	LOW, John R., Jr.	II-6
HIRSCHBERG, Marvin H.	I-5	LOWNDES, Holland B., Jr.	II-6
HOFF, Nicholas J.	I-5	LYTTON, Jack L.	VI-4
HOWELL, William E.	VI-4	MACMILLAN, Norman H.	III-6
HUDSON, C. Michael	II-5	MANSON, Samuel S.	I-5, III-6
HULBERT, Lewis E.	III-5, IV-3	MASTERS, J. N.	II-6
HUTCHINSON, John W.	III-5	McCLINTOCK, Frank A.	III-6
ILLG, Walter	I-5	McEVILY, Arthur J., Jr.	II-6
IRWIN, George R.	II-5, III-5	McMILLAN, J. Corey	II-6
JACOBSON, Marcus J.	III-5, VI-4	McNITT, Richard P.	II-7, IV-3
JOHNS, Robert H.	VI-4	MENDELSON, Alexander	III-7
KAUFMAN, John G.	II-5	MORRISON, Thomas W.	I-6
KENDALL, David P.	II-5	MUKHERJEE, Amiya K.	II-7
KENDALL, Ernest G.	II-5	NAUMANN, Eugene C.	II-7
KLIMA, Stanley J.	II-5	NEJEDLIK, James F.	V-3
KOBAYASHI, Albert S.	II-5, III-6	NELSON, Lloyd	I-6
KOENIG, Herbert A.	I-5	PARIS, Paul C.	II-7, III-7
KRAFFT, Joseph M.	II-6	PARKER, Richard J.	I-6
KRAMER, Irwin R.	III-6	PELLINI, William S.	II-7
KROCK, Richard H.	VI-4	PELLOUX, Regis M.	III-7
KUSENBERGER, Felix N.	II-6	PERKINS, Roger A.	V-3

<u>Expert</u>	<u>Page</u>	<u>Expert</u>	<u>Page</u>
PETRASEK, Donald W.	VI-5	TENNEY, Darrell R.	V-3, VI-5
POPP, Herbert G.	II-7	TETELMAN, Alan S.	IV-4
PRAGER, William	II-7	TIFFANY, C. F.	II-8, III-8
QUIGG, Harold T.	V-3	TOTH, Istvan J.	VI-5
RAO, P. Nagaraja	VI-5	TRUELL, Rohm	II-8
REIFSNIDER, Kenneth L.	VI-5	TURNER, N. G.	II-9
ROSENFIELD, Alan R.	II-7	WEI, R. P.	III-8
SALKIND, Michael J.	VI-5	WEISS, Volker	II-9, III-8
SCIBBE, Herbert W.	I-6	WELLS, Clifford H.	I-7, II-9
SCOTT, Douglas	I-6	WILLIAMS, Dean N.	IV-4
SIGNORELLI, Robert A.	VI-5	WRIGHT, Maurice A.	VI-5
SIH, George C.	II-8, III-7	WURST, John C.	V-3
SINES, George	I-6, III-7	ZARETSKY, Erwin V.	I-7
SMITH, C. William	III-7		
SMITH, Clarence R.	I-6, II-8		
SMITH, S. H.	II-8, III-7		
SPERA, David A.	I-6		
SRAWLEY, John E.	II-8, III-7		
STEELE, James H., Jr.	VI-5		
STEIGERWALD, Edward A.	II-8, IV-3		
STETSON, Alvin R.	V-3		
SULLIVAN, C. Patrick	I-6		
SULLIVAN, Timothy L.	II-8		
SWEDLOW, Jerold L.	III-8		
TAGGART, Raymond	II-8		

ALPHABETICAL LIST OF ORGANIZATIONS

<u>Organization</u>		<u>Page</u>
<u>Expert</u>		
AEROSPACE CORPORATION		
Amateau, Maurice F.		III-3
Kendall, Ernest G.		II-5
AEROSPACE MATERIALS LABORATORIES		
Davis, Sidney O.		III-4
Halpin, John C.		VI-4
AEROSPACE RESEARCH LABORATORIES		
Adair, Atwell Mason		II-3, III-3
Lipsitt, Harry A.		I-5
ALCOA RESEARCH LABORATORY		
Kaufman, John G.		II-5
ARMCO STEEL CORPORATION		
Heyer, Robert H.		II-4
BATTELLE MEMORIAL INSTITUTE		
Campbell, James E.		II-3, IV-3
Hahn, George T.		II-4, V-3
Hulbert, Lewis E.		III-5, IV-3
Rosenfield, Alan R.		II-7
Williams, Dean N.		IV-4
BOEING COMPANY		
Masters, J. N.		II-6
McMillan, J. Corey		II-6
Mukherjee, Amiya K.		II-7
Smith, S. H.		II-8, III-7
Tiffany, C. F.		II-8, III-8
BROWN UNIVERSITY		
Prager, William		II-7
Truell, Rohm		II-8
CARNEGIE-MELLON UNIVERSITY		
Swedlow, Jerold L.		III-8
COLUMBIA UNIVERSITY		
Bieniek, Maciej P.		I-3

<u>Organization</u>	<u>Expert</u>	<u>Page</u>
DEL RESEARCH CORPORATION		
Paris, Paul C.		II-7, III-7
FLIGHT DYNAMICS LABORATORY		
Lowndes, Holland B., Jr.		II-6
FRANKLIN INSTITUTE		
Damiano, Victor V.		II-3
FORGE SPACE TECHNOLOGY CENTER		
Turner, N. G.		II-9
GENERAL DYNAMICS/CONVAIR		
Dublin, Michael		I-4
Smith, Clarence R.		I-6, II-8
GENERAL ELECTRIC COMPANY		
Coffin, Louis F., Jr.		I-4
Dow, Norris F.		VI-3
Low, John R., Jr.		II-6
Popp, Herbert G.		II-7
GEORGE WASHINGTON UNIVERSITY		
Freudenthal, Alfred M.		I-4, II-4
Liebowitz, Harold		III-6
HARVARD UNIVERSITY		
Hutchinson, John W.		III-5
ILLINOIS INSTITUTE OF TECHNOLOGY		
Broutman, Lawrence J.		VI-3
ITT RESEARCH INSTITUTE		
Rao, P. Nagaraja		VI-5
INTERNATIONAL NICKEL COMPANY		
Decker, Raymond F.		VI-3
LAWRENCE LIVERMORE LABORATORIES		
Chiao, T. T.		VI-3

Organization
Expert

Page

LEHIGH UNIVERSITY	
Hertzberg, Richard W.	III-5, VI-4
Hilton, Peter D.	III-5
Irwin, George R.	II-5, III-5
Sih, George C.	II-8, III-7
LOCKHEED AIRCRAFT CORPORATION	
Forsberg, D. Kevin	I-4
Nelson, Lloyd	I-6
Perkins, Roger A.	V-3
MARTIN MARIETTA CORPORATION	
Greene, John A. S.	V-3
Hayden, H. Wayne	II-4, III-5
Kramer, Irwin R.	III-6
Latanison, Ronald M.	II-6, IV-3
Leggett, Hyman	V-3
Macmillan, Norman H.	III-6
MASSACHUSETTS INSTITUTE OF TECHNOLOGY	
Backofen, Walter A.	III-3
Grant, Nicholas J.	III-4
McClintock, Frank A.	III-6
Pelloux, Regis	III-7
McDONNELL DOUGLAS COMPANY	
Abelkis, Paul R.	III-3
Bockrath, George E.	III-3
Christensen, Roy H.	I-3
NASA LANGLEY RESEARCH CENTER	
Hardrath, Herbert F.	I-5, III-5
Hudson, C. Michael	II-5
Howell, William E.	VI-4
Illg, Walter	I-5
Naumann, Eugene C.	II-7

<u>Organization</u>		<u>Page</u>
<u>Expert</u>		
NASA LEWIS RESEARCH CENTER		
Anderson, William J.		I-3
Bisson, Edmond E.		I-3
Brown, William Findlay, Jr.		II-3, III-4
Carter, Thomas L.		I-3
Chamis, Christos C.		VI-3
Dietrich, Marshall W.		I-4
Figge, I. E.		III-4
Freche, John C.		I-4
Gray, Hugh R.		IV-3
Grisaffe, Salvatore J.		V-3
Gross, Bernard		III-4
Halford, Gary R.		I-5, II-4
Hirschberg, Marvin H.		I-5
Johns, Robert H.		VI-4
Klima, Stanley J.		II-5
Manson, Samuel S.		I-5, III-6
Mendelson, Alexander		III-7
Parker, Richard J.		I-6
Petrasek, Donald W.		VI-5
Scibbe, Herbert W.		I-6
Signorelli, Robert A.		V-5
Spera, David A.		I-6
Srawley, John E.		II-8, III-7
Sullivan, Timothy L.		II-8
Zaretsky, Erwin V.		I-7
NATIONAL BUREAU OF STANDARDS		
Grosskreutz, Joseph C.		III-4
NAVAL ELECTRONICS LABORATORY		
Scott, Douglas		I-6

Organization
Expert

Page

NAVAL RESEARCH LABORATORY	
Achter, M. R.	I-3
Beachem, Cedric D.	III-3, IV-3
Crooker, Thomas W.	I-4, II-3
Krafft, Joseph M.	II-6
Lange, Eugene A.	II-6, III-6
Pellini, William S.	II-7
NORTHROP CORPORATION	
Jacobson, Marcus J.	III-5, VI-4
PHILLIPS PETROLEUM COMPANY	
Quigg, Harold T.	V-3
P. R. MALLORY & COMPANY, INC.	
Krock, Richard H.	VI-4
ROCKWELL INTERNATIONAL, INC.	
Chandler, Willis T.	IV-3
Gruff, James J.	II-4
RUTGERS UNIVERSITY	
Chen, Yu	III-4
SKF INDUSTRIES, INC.	
Morrison, Thomas W.	I-6
SOLAR CORPORATION	
Stetson, Alvin R.	V-3
SOUTHWEST RESEARCH INSTITUTE	
Kusenberger, Felix N.	II-6
STANFORD UNIVERSITY	
Fuchs, Henry O.	III-4
Hoff, Nicholas J.	I-5
SYRACUSE UNIVERSITY	
Weiss, Volker,	II-9, III-8
TRW, INC.	
Nejedlik, James F.	V-3
Steigerwald, Edward A.	II-8, IV-3
Toth, Istvan J.	VI-5

<u>Organization</u>	<u>Expert</u>	<u>Page</u>
UNITED AIRCRAFT CORPORATION		
Gell, Maurice		I-5
Salkind, Michael J.		VI-5
Sullivan, C. Patrick		I-6
Wells, Clifford		I-7, II-9
UNIVERSITY OF ALABAMA		
Carden, Arnold E.		I-3
UNIVERSITY OF CALIFORNIA, BERKELEY		
Dorn, John E.		I-4
UNIVERSITY OF CALIFORNIA, LOS ANGELES		
Sines, George		I-6, III-7
Tetelman, Alan S.		IV-4
UNIVERSITY OF CONNECTICUT		
Koenig, Herbert A.		I-5
McEvily, Arthur J., Jr.		II-6
UNIVERSITY OF DAYTON		
Wurst, John C.		V-3
UNIVERSITY OF ILLINOIS		
Dolan, Thomas J.		II-3
UNIVERSITY OF MARYLAND		
Dally, James W.		VI-3
UNIVERSITY OF MINNESOTA		
Brown, William Fuller, Jr.		III-4
UNIVERSITY OF TENNESSEE SPACE INSTITUTE		
Wright, Maurice A.		VI-5
UNIVERSITY OF TORONTO		
Aust, Karl T.		III-3
UNIVERSITY OF WASHINGTON		
Kobayashi, Albert S.		II-5, III-6
Taggart, Raymond		II-8

OrganizationExpertPage

U.S. DEPARTMENT OF AGRICULTURE	
Boller, Kenneth H.	VI-3
U.S. STEEL CORPORATION	
Wei, R. P.	III-8
WATERVLIET ARSENAL	
Kendall, David P.	II-5
VIRGINIA POLYTECHNIC INSTITUTE	
Heller, Robert A.	VI-4
Lytton, Jack L.	VI-4
McNitt, Richard P.	II-7, IV-3
Reifsnider, Kenneth L.	VI-5
Smith, C. William	III-7
Steele, James H., Jr.	VI-5
Tenney, Darrell R.	V-3, VI-5