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Abstract
t

The observability of high altitude aerosol and atmospheric

scattering layers by a satellite-mounted optical detector is considered.

In particular the detectabillty of a 50 Ion layer with a wide-angle receiver

is investigated. It is found that a layer possessing an optical depth

greater than approximately 2 x 10' ** at 3000 A (i.e. strong enough to affect

BUY measurements of ozone) should be detectable with such an instrument

provided that the system can be constructed so as to be sensitive to a

signal of only 10 ** of the sunlight directly incident on the instrument.

However it is concluded that a narrow field-of-view satellite-mounted tele-

scope used to scan the earth's horizon has a more general applicability

for the detection of high altitude aerosol layers.
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Introduction

The particular atmospheric scattering layer calculations to

be described in this paper were the result of an attempt to establish

the observability of aerosols under various geometrical conditions. These

calculations were initiated after Monitor of Ultraviolet Solar Energy (MUSE)

observations indicated the presence of anomalous signal enhancements (at

approximately 2800 A) in the solar observations made from the Nimbus 4

satellite. At this wavelength, considerable absorption by atmospheric ozone

occurs; therefore, if an atmospheric scattering layer is to be a significant

source of energy, it must be located above approximately 40 km. Evidence

for the existence of aerosol layers at such high altitudes has tended to be

inconclusive becouse of the small amplitude of the scattering that such

(2)layers would produce. However we suggest that there is now sufficient

observational evidence » » » » » / t o beneve that an aerosol layer

in the region of 50 km exists in the atmosphere—atleast on isolated

(2 9)occasions and at particular locations. It has been suggested ' that

such a layer can affect the measurement of atmospheric ozone concentration

profiles by the backscattered ultraviolet (BUY) technique in which nadir

satellite observations of backscattered radiance at ultraviolet wavelengths

are made ' ' and it was thus concluded that the BUV technique requires

that simultaneous determinations of the aerosol extinction function profile

be made.

Both the BUV experiment and the MUSE experiment are on the Nimbus 4

satellite. We have therefore investigated the "anomalous" signal enhancements
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that an aerosol layer at 50 km would produce in the MUSE type of observations

for which a wide-angle detector was used. The resulting signal enhancements

are found to be of small amplitude and this implies that to observe the

layer such an instrument must undergo considerable modification. However

rather than modify the present instrument it is suggested that a narrow-field-

of-view telescope be used for observing the global distribution of high

altitude aerosol layers.
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Analysis

The geometry of the aerosol scattering problem is illustrated

in figure 1. (see the appendix for a list of the symbols used). We

assume that the sensitivity and orientation of the detectors is such

that the satellite-mounted instrument always views the earth's horizon and

is sensitive to radiation within a 45° half-angle cone as in the MUSE

instrument. It is further supposed in this analysis that the optical

axis of the instrument is located in the plane containing the sun and the

local vertical through the satellite. This is the plane in which figure

1 is presented. In the absence of any atmospheric-absorption effects, any

scattering from a high-altitude layer (located at height h ) would be
3.

difficult to separate from the Rayleigh scattering and albedo from the

lower atmosphere. By working at 3000 A, however, the lower atmosphere is

effectively shielded by atmospheric ozone, and little energy penetrates

below 40 km. The ozone absorption cross-section data used in the calculations

is taken from Vigroux

Consider the scattering produced by a thin atmospheric layer

of forward scatterers which are uniformly distributed over the surface of

a sphere of radius R + h . In the absence of absorption, the scattering
O a

layer produces a signal enhancement which peaks at the solar-occultation

angle for the satellite (which for a satellite altitude of 1100 km is

approximately 60°). The shape of the enhancement as a function of angle

is similar to the shape of the phase function of the scatterers. However,

the surface of the earth will prevent the illumination of those scatterers

situated on the night side of the earth. For this reason, the maximum

enhancement will, in fact, occur for angles, 6 , slightly greater than the
s
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solar-occultation angle.

At the wavelengths of interest ('v-SOOO A), atmospheric ozone is a

powerful absorber. Ozone, therefore, plays an important role in determining

the signal enhancement, unless the layer of scatterers Is situated at a

much higher altitude (£80 km) than the ozone layer. Since the path

length of solar radiation through the ozone layer increases rapidly as

the satellite angle, 6 , tends to the solar-occultation angle , atmospheric
8

ozone tends to reduce the enhancement in the neighborhood of the solar-

occultation angle. It is thus possible for the enhancement to peak at

virtually any angle between the day terminator and the satellite-occultation

angle, and the actual location will depend upon the height of the scattering

layer and its scattering properties. This suggests the possibility

that observations of the scattered energy can yield information on the

characteristics of the scattering layer.

For computation purposes we can consider a vertical profile of

aerosols to consist of a collection of layers, each of 6 km (for example)

depth. A similar computational approach is used for treating the molecular

scatterers in the atmosphere. Since particular concern in this paper is

directed at an aerosol layer at 50 km, let us consider the scattering

produced by a single (6 km) layer of aerosols. We consider only single

scattering by the aerosols and assume them to be nonabsorbent. The

variation of the ozone concentration over the (vertical) depth of an

individual layer is ignored by assuming that the layer is of infinitesimal

thickness, located at a particular altitude and uniformly distributed

horizontally, and has an optical depth given by
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Sa = o p (h)dh (1)a. j a a. a. a
layer
depth

where a is a mean scattering depth cross-section for the aerosols
Si

and p (h ) is the concentration of the scatterers.a a

Little information is available a present on the scattering

properties of the 50 km aerosol layer. We have therefore calculated

aerosol phase functions for spherical particles based upon certain

assumed aerosol size distributions. The calculations assumed that the

concentration of aerosols (n) with radii between r and r,+ dr could be

related to their size by the usual expression

n(r) - A r~° dr (2)

where A is a constant related to the total density of aerosols and a is a

parameter which may be prescribed. For the well-known aerosol layer at

approximately 20 km, values of o between 2 and 4 are commonly used ' ,

while for the 50 km layer Elliott has suggested an a = 7. Figure 2

contains plots of the phase functions calculated for values of a of

3 and 7 at 3000 A, assuming spherical non-absorbent particles with a

refractive index of 1.5*. The calculated wavelength dependence of aerosol

extinction for these two values of a is depicted in figure 2. It may

*Particle size cut-offs of 0.04y and 2y were assumed in this calculation.
The results for a =7 tend to be sensitive to the size used for the lower
cut-off limit. The lower limit of 0.04y was chosen only because it is a
value that is often used in stratospheric aerosol calculations.
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be noted that the dependence is weaker than that for molecular scatterers.

Figure 2 also contains plots of the expression

1 + Xo * -Ixl/x
*(X) - 1̂ 77- e iX|/Xo (3)

2n(l + e /xo)

where x is the phase angle, for x B 0.25 and 0.04. It may be noted that the

mean of the latter curves is a reasonable approximation to the phase function

for a = 3. In the succeeding calculations, for mathematical simplicity,

we have arbitrarily assumed that the aerosol phase function may be

represented by expression (3) and we have investigated the limb enhancements

for x = 0.04, 0.1, and 0.25.

The pattern function of the receiver/detector is simply assumed

to fee given by

p-i if Ixl'<e 8-j

- o if lxlie 8-£

This representation of the response of the wide-angle receiver is considered

to be adequate for purposes of this study. The ozone concentration profile

used in the calculations is based upon the limited number of rocket observations

which are available at the present time ' .

The contribution of the aerosol layer to the scattered energy

is given as an integral over the surface located at height h . The
ci

integration in the azimuthal (<{>) direction is evaluated approximately so that

the surface integral is expressed as 24> times the scattered contribution
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for 4> = 0. The surface integral is thus reduced to an integral over

e which is then evaluated numerically. <{» is defined by the ray from the
3. 'O

detector which is tangential to the sphere of radius R 4- h and which
O £L

meets the sphere at (0 , <J> ) - unless a smaller real value of 4> is
S O ' O

given by the angle at which the phase function declines to 1/e of its

value at 4> » 0.
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Results for an Isolated Scattering Layer

Examples of the scattered contribution at several wavelengths

produced by a layer of atmospheric scatterers localised in height but

uniformly distributed horizontally and located at several different

altitudes are given in Figures 4 - 7. Figure 4 depicts the effect of

varying the layer height. At the wavelength of 3000 X for a layer height

greater than about 80 km, the effect of atmospheric absorption is small.

It may be noted that for x •= 0.25 the peak scattered intensity can

be somewhat greater than the value S times the solar intensity. The

effect of atmospheric ozone is to reduce the intensity of the scattered

radiation at most of the angles shown, but particularly for those satellite

angles in the vicinity of the solar-occultation angle. Figures 5 and 6

contain results for various values of x • Figure 5 demonstrates that

in the absence of absorption effects, the shape of the enhancement

produced by scattering is similar to the shape of the phase function and

is centered about the solar-occultation angle. This result is produced

in Figure 5 because, for very strong forward scatterers, the effect of

atmospheric abserption is relatively constant over the small angle range of

interest. The peak intensity is found to be very much larger for the

strongest forward scatterers, because a layer with a small vertical optical

depth can produce substantial scattering, because the optical depth in the

viewing direction is roughly two orders of magnitude larger than in the

vertical

Figure 6 shows that as the phase function of the scatterers
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becomes more sharply peaked the location of the maximum scattered signal,

tends to increase and to move closer to the solar occultation angle.

However for a layer at 45 km ozone absorption becomes dominant for

X > 0.25 so that the peak scattered signal is in fact determined by

X0 * 0.25.

Figure 7 shows the effect of wavelength on enhancement.

This variation is produced by the wavelength dependence of the ozone

absorption coefficient. The results are similar to those produced by

varying the layer height. For shorter wavelengths (corresponding to

more ozone absorption), the maximum of the enhancement moves closer to the

day terminator, and the maximum enhancement diminishes. A similar result

is obtained by reducing the height of the scattering layer (see Figure 4).

Figures 4-7 indicate that if the contribution from a layer of

atmospheric scatterers can be isolated, information about the height of

such a layer and its scattering properties may be obtained with a wide

angle receiver and filters sensitive to several ultraviolet wavelengths.
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Total Atmospheric Scattering

In the previous section we considered the scattering produced
_3

by an isolated layer of aerosols having S = 10 . This optical depth isa i
produced by a layer of approximately 6 km width having an extinction

roughly equal to that for molecular scatterers at 50 km and at 3000 A.

The observations of the 50 km aerosol layer on the other hand have been

made at visible wavelengths and they suggest an extinction comparable with

that for molecular scatterers at the wavelengths used and at that height.

Since little information is available on the scattering properties of these

aerosols, it is not possible to infer the aerosol extinction at ultraviolet

wavelengths,although an extinction of the same order of magnitude as that

due to molecular scatterers at 50 km may be regarded as an upper bound for

(2)
the aerosol extinction. On the other hand, it has been estimated that

if aerosols are to affect BUY measurements of ozone, the extinction at
o

50 km and 2800 A must be greater than 10% of that, for molecular scatterers.

Clearly molecular scattering may thus adversely affect the detectability

of the aerosols of interest since the extinction for molecular scatterers

is comparable with that of the aerosols.

To illustrate the observability of this aerosol- layer we have

arbitrarily assumed an extinction equal to 1.25 times that for Rayleigh

scatterers at 50 km and 3000 A. The aerosol phase function used is the mean

of those given by expression (3) with x 0 0.25 and 0.04. As has already

been mentioned this phase function model is regarded as an adequate

approximation to a = 3 aerosols (which aerosols appear to be typical of

the 20 km stratospheric aerosol layer). The contribution from molecular
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scattering has been computed using a phase function defined by expression (3)

with x =2.0. The various contributions and the total scattered signal at

3000 A and 2800 A are shown in Figures 8 and 9. It is to be noted that the

aerosols produce a considerable enhancement of the scattered energy at

satellite locations beyond the day terminator (9 = 90°). At 2800 A,s

considerably more of the forward scattered energy (mainly produced by the

aerosols) is removed by ozone absorption, as compared to the results for 3000 A.

Figures (8) and (9) further suggest that an aerosol layer at

50 km having an extinction comparable with that for molecular scatterers at

3000 A should be detectable with a wide angle receiver. The figures suggest

a detectability limit with such an instrument of order 0.2 that for ex-

tinction by molecular scatterers. It is particularly to be noted however

that the scattered signal is only 0.1% of the directly incident solar energy.

Thus, to detect aerosols capable of affecting BUV observations, a detector

of the type considered would have to be sensitive to fluctuations of

-4approximately 10 against the background of directly incident solar energy,

and the instrument would have to possess baffling sufficient to prevent

signals of this amplitude and scattered by the instrument housing from

entering the detector. The MUSE instrument does not possess this capability

and is therefore incapable of detecting a 50 km aerosol layer with an

extinction which is less that or equal to that from molecular scatterers

at 50 km and 3000 A. These considerations in fact imply a degree of

sophistication if a wide angle detection system is to be used for monitoring

such high altitude aerosol layers. Since a coronograph is specifically

designed to prevent directly incident solar energy from entering a detector

it could form the basis of such a wide angle instrument.
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A Limb-Scanning Telescope

We have considered whether the MUSE type of instrument might

be modified to detect the 50 km aerosol layer, and for detecting other

high altitude aerosol layers. A wide angle instrument possesses the
o

limitation that it must be operated at approximately 3000 A so that, by

virtue of absorption by ozone, the energy scattered by an aerosol layer may

be separated from that produced by molecular scatterers in the lower atmo-

sphere. However, it is reasonable to expect that the wavelength dependence of

aerosol scattering is weaker, and could in fact be considerably weaker, than

that for molecular scatterers. Thus, if the scattering from 50 km, for

example, can be isolated, high altitude aerosol layers (including the BUV

related layer) would be more easily detected by making measurements at visible

wavelengths (e.g., 5000-7000 A). A narrow-field-of-view telescope may be used

for this purpose.

A wide angle detection system also permits only one average atmo-

spheric scattering layer to be derived per orbit while a horizon-scanning tele-

scope allows many observations per orbit. A limb-scanning telescope therefore

has wider applicability to the detection of high-altitude aerosol layers

than a wide-angle MUSE-type instrument. Such a satellite-mounted telescope

used to scan the earth's horizon with an altitude resolution of 1 km should

yield the extinctions and scattering properties of stratospheric aerosols as

a function of both altitude and wavelength ' .An example of a simulated

limb scan with such a device in the presence of a 50 km aerosol layer having

an extinction equal to that for molecular scatterers at that height and at 3000 A

is shown in Figure 10. At a solar zenith angle of 69° (i.e., a scattering

angle of 21°) the layer produces a signal enhancement comparable with the

signal resulting from molecular scattering.
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Conclusions

The detectability of an aerosol layer with a wide-angle

satellite-mounted detector has been discussed. Information about its

height and scattering properties may be obtained by monitoring the energy

at several ultraviolet wavelengths as a function of satellite location.

However, the detectability of this layer strongly depends upon its

scattering properties about which little is known at the present time.

-4A layer possessing an optical depth greater than approximately 2 * 10

at 3000 A. (i.e., strong enough to affect BUV measurements of ozone)

should be detectable with a wide-angle instrument provided that the

observing system can be constructed so as to be sensitive ot a signal

-4of only 10 of the sunlight directly incident on the instrument. However,

it is concluded that the 50 km aerosol layer is not detectable with the

MUSE instrument. For systematically monitoring the global distribution of

high altitude aerosol layers, a wide-angle instrument possesses certain

limitations and it was suggested that a narrow-field-of-view telescope which

scans the earth's horizon be used.
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Appendix

List of Symbols

9 is the angular location of the satellite with 6 » 0 being the
o S

antisolar direction

6 ,4> is the angular location of an element of the aerosol scattering
3.

layer in polar coordinates with the polar axis being the anti-

solar direction

<|> (6 ) is an azimuthal angle of an element of the scattering layer;
O 3

in the calculations scattered contributions from <$> > $ areo

neglected.

h is the altitude of the aerosol layer
cl

S is the (vertical) optical depth of the aerosol layer
d

R is the radius of the eartho

X is the angle between the direction opposite to the satellite motion

and a line drawn between the detector and the element of the

scattering layer.

X is a parameter used in the mathematical representation of the

aerosol phase function. It is approximately the value of x at which

the phase function falls to 1/e of its value at x * 0.

a is an index used to represent the distribution of particle sizes

within the aerosol layer.

X is the wavelength (Angstroms) at which observations are assumed

to be made
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Figure Captions

Figure 1: The geometry of the scattering-layer satellite detector

problem. The aerosol layer at height h is situated in the

atmospheric ozone layer and is viewed at angle x relative to the

optic axis with a fixed wide angle detector located on the satellite.

Figure 2: Aerosol phase functions for size distributions represented by

a = 3 and 7. Also shown are two model phase functions used in

the computations and defined by expression (3) with x "0.04

and 0.25.

Figure 3: A comparison of the wavelength dependence of aerosol extinction

for size distributions represented by a » 3 and 7. The aerosols

were assumed to be non-absorbent with refractive index 1.5 and a

lower cut-off size of . 04y was assumed. The extinctions were

normalized to be equal at 5577 A.

Figure 4: Examples of the scattering produced by an aerosol layer located

at,heights of 50, 60, and 80 km. The wavelength Was 3000 A and

the phase function, was assumed to be given by expression (3) with

XQ *> 0.25.

Figure 5: Examples of the scattering produced at 3000 A by an aerosol layer located

at 60 km altitude. Curves are plotted for aerosol phase functions

given by expression (3) with x " 0.25, 0.1, and 0.04.o
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Figure 6: Examples of the scattering produced at 3000 A by an aerosol

layer located at 45 km altitude. Curves are plotted for

aerosol phase functions given by expression (3) with X " 1T>

0.25, and 0.1.

Figure 7: Examples of the scattering produced at 2800, 2900, and 3000 A

by an aerosol layer located at 50 km altitude. The aerosol

phase function was assumed to be given by expression (3) with

XQ - 0.25.

Figure 8: The total scattering (sum) produced in a realistic atmosphere at
o

3000 A by an aerosol layer located at 50 km altitude. The

aerosol phase function was assumed to be given by the mean value

of expression (3) with x °0.25 and 0.04. The contribution from

Rayleigh scattering was modeled with a phase function given by

Xo - 2.0.

Figure 9: The total scattering (sum) produced in a realistic atmsophere at

2800 A by an aerosol layer located at 50 km altitude. The

aerosol and Rayleigh phase functions were similar to those

described in the caption to Figure 8.

Figure 10: A 3000 A limb scan of the atmosphere containing an aerosol layer

located at 50 km. The aerosol phase function was that given in

Figure 2 with a = 3 and the scattering angle was approximately 21°.

The abscissa refers to the altitude at which the line drawn through

the axis of the instrument is closest to the surface of the earth

(i.e., tangent height).
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