N 13： 27611

NASA TECHNICAL NOTE

NASA TN D－7354

CAS屋明昆
 COPY

SCATTERING OF 42－MeV ALPHA PARTICLES FROM COPPER－65

by William M．Stewart and Kamal K．Seth
Lewis Research Center
Cleveland，Obio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON，D．C．• JULY 1973

1. Redort No. NASA TN D-7354	2. Government Accession No.		3. Recipient's Catalog No.			
4. Title and Subtitle SCATTERING OF $42-\mathrm{MeV}$ ALPHA PARTICLES FROM COPPER-65			$\begin{aligned} & \text { 5. Report Date } \\ & \text { July } 1973 \end{aligned}$			
			6. Performing Organization Code			
7. Author(s) William M. Stewart, Lewis Research Center; and Kamal K. Seth, Northwestern University, Evanston, Illinois			8. Performing Organization Report No.E-7404			
9. Performing Organization Name and Address Lewis Research Center National Aeronautics and Space Administration Cleveland, Ohio 44135			10. Work Unit No.$503-10$			
			11. Contract or Grant No.			
			13. Type of Report and Period Covered Technical Note			
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D. C. 20546						
			14. Sponsoring Agency Code			
15. Supplementary Notes						
16. Abstract $42-\mathrm{MeV}$ alpha particles have been elastically and inelastically scattered from ${ }^{65} \mathrm{Cu}$ in an attempt to excite states which may be described in terms of an excited core model. Angular distributions ($10^{\circ} \leq \theta_{\mathrm{cm}} \leq 50^{\circ}$) were measured for 17 excited states. Seven of the excited states had angular distributions similar to a core quadrupole excitation and eight of the excited states had angular distributions similar to a core octupole excitation. The excited state at 2.858 MeV had an angular distribution which suggests that it may have resulted from the particle coupling to a two-phonon core state. An extended particle-core coupling calculation was performed and the predicted energy levels and reduced transition probabilities compared to the experimental data. The low-lying levels are described quite well and the wavefunctions of these states explain the large spectroscopic factors measured in stripping reactions. For ${ }^{65} \mathrm{Cu}$ the coupling of the particle to the core is no longer weak as in the simpler model, and configuration mixing results.						
17. Key Words (Suggested by Author(s)) Nuclear reactions Nuclear spectroscopy Copper-65 Nuclear energy levels Alpha scattering Transition probabilities Weak-coupling model		18. Distribution Statement Unclassified - unlimited				
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified		$\begin{aligned} & \text { 21. No. of Pages } \\ & 28 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 22. } \text { Price }^{*} \\ \$ 3.00 \end{array}$		

[^0]
SCATTERING OF 42-MeV ALPHA PARTICLES FROM COPPER-65

by William M. Stewart and Kamal K. Seth*

Lewis Research Center

SUMMARY

$42-\mathrm{MeV}$ alpha particles have been elastically and inelastically scattered from ${ }^{65} \mathrm{Cu}$ in an attempt to excite states which may be described in terms of an excited core model. Angular distributions ($10^{\circ} \leq \theta_{\mathrm{cm}} \leq 50^{\circ}$) were measured for 17 excited states. Seven of the excited states had angular distributions similar to a core quadrupole excitation and eight of the excited states had angular distributions similar to a core octupole excitation. The excited state at 2.858 MeV had an angular distribution which suggests that it may have resulted from the particle coupling to a two-phonon core state. An extended particle-core coupling calculation was performed and the predicted energy levels and reduced transition probabilities compared to the experimental data. The low-lying levels are described quite well and the wavefunctions of these states explain the large spectroscopic factors measured in stripping reactions. For ${ }^{65} \mathrm{Cu}$ the coupling of the particle to the core is no longer weak as in the simpler model, and configuration mixing results.

INTRODUCTION

The description of odd A nucleus in terms of the weak-coupling model in the limit of zero coupling strength has had limited success (ref. 1). The ${ }^{63} \mathrm{Cu}$ and ${ }^{65} \mathrm{Cu}$ nuclei have been studied by inelastic scattering (refs. 2 to 5), and the experimental results do not agree with the zero-strength model. Also the collective property of the low-lying states has been questioned because of the large spectroscopic factors measured in stripping (ref. 6) and pickup (ref. 7) reactions for ${ }^{63} \mathrm{Cu}$ and ${ }^{65} \mathrm{Cu}$. An extension of the zerostrength model by Thankappan and True (ref. 8) described the low-lying levels of ${ }^{63} \mathrm{Cu}$ quite well and explained the large spectroscopic factors by including more than one single particle orbit and allowing configuration mixing, by means of a finite coupling strength. Recent shell model calculations (ref. 9) for ${ }^{63} \mathrm{Cu}$ and ${ }^{65} \mathrm{Cu}$ have shown that

[^1]such an extended particle-core coupling scheme with configuration mixing is a good approximation to the more exact shell model calculations.

Scattering of $42-\mathrm{MeV}$ alpha particles is known to excite collective states. This experiment was done with better energy resolution (ref. 5) and a higher bombarding energy (ref. 4) than previous alpha particle scattering experiments on ${ }^{65} \mathrm{Cu}$. The extended particle-core model was used to calculate the energy levels and reduced transition probabilities for ${ }^{65} \mathrm{Cu}$ and the results are compared to the experimental values.

EXPERIMENTAL ARRANGEMENT

The experiment was done using the $42-\mathrm{MeV}$ alpha particle beam of the NASA Lewis 160 -centimeter cyclotron. A schematic drawing of the scattering system is shown in figure 1. The scattering system included magnetic analysis of the incident beam and particle detection by lithium-drifted silicon detectors (ref. 10). Complete details of the scattering system are given elsewhere (ref. 11). A four detector mount allowed simultaneous measurements of cross sections at four different angles. Data taken forward of 20° had a detector separation of 2° and an angular resolution of 0.06°. Beyond 20° the angular separation was increased to 4° and a resulting angular resolution of 0.12°. The accuracy of the angle setting was 0.05° and the zero direction was determined by rightleft scattering. A block diagram of the electronics is shown in figure 2. The overall energy resolution of the experiment was 80 to 100 keV and angular distributions were measured from 10° to 50° in the center of mass system. This angular range was sufficient to establish the angular momentum involved in the transition.

Absolute Cross Sections

The target was an isotopically enriched foil (99.64 percent ${ }^{65} \mathrm{Cu}$). The areal density of the target was determined by measuring the energy loss of an $8.78-\mathrm{MeV}$ alpha particle in passing through the foil. The areal density of the foil was measured to be 0.694 milligram per square centimeter. The total error in the absolute cross section is estimated to be 10 percent, and the error in the relative cross sections is 3 percent. The cross sections are listed in table I, and the errors quoted in the table are the statistical uncertainties.

Energy Spectra-Reduction and Excitation Energies

A typical energy spectrum is shown in figure 3. The number of counts in the elastic and inelastic peaks was found by fitting the energy spectra with a skewed Gaussian func-
tion using a least-squares computer program (ref. 12) with a linear background search. The peak shape was determined by fitting the elastic peak and held fixed for fitting all the other peaks in the spectrum. The energy calibration for each of the four detectors was based on the known energies of the ground and first six excited states. The excitation energies measured in this experiment are accurate to $\pm 25 \mathrm{keV}$. The angular momentum transfer of the reaction l was determined by comparing the shapes of the angular distributions to the calculated angular distribution. The partial deformation parameter $\beta_{l}^{\prime}\left(\mathrm{J}_{\mathrm{f}}\right)$ was obtained for each inelastic angular distribution by normalizing the calculated cross sections to the experimental data. All the inelastic states that were excited strongly enough in the experiment to obtain angular distributions are listed in table III, along with the corresponding partial deformation parameter.

The partial deformation parameter is defined by

$$
\begin{equation*}
\left(\frac{d \sigma}{d \Omega}\right)_{J_{f}}^{\exp }=\left[\beta_{l}^{\prime}\left(\mathrm{J}_{\mathrm{f}}\right)\right]^{2}\left(\frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega}\right)_{\mathrm{DWBA}} \tag{1}
\end{equation*}
$$

(Symbols are defined in the appendix.)
In the limit of weak particle-core coupling, the partial deformation parameter $\beta_{l}^{\prime}\left(J_{f}\right)$ for the odd A nucleus is related to the deformation parameter β_{l} (core) of its neighboring even A core nucleus by

$$
\begin{equation*}
\beta_{l}^{\prime}\left(\mathrm{J}_{\mathrm{f}}\right)=\left[\frac{2 \mathrm{~J}_{\mathrm{f}}+1}{\left(2 \mathrm{~J}_{\mathrm{i}}+1\right)(2 l+1)}\right]^{1 / 2} \beta_{l}(\text { core }) \tag{2}
\end{equation*}
$$

where
J_{f} excited state spin of odd A nucleus
J_{i} ground state spin of odd A nucleus
l angular momentum transfer
If equation (2) is summed over all the allowed excited states, it follows that

$$
\begin{equation*}
\left[\beta_{l}(\text { core })\right]^{2}=\sum_{\mathrm{J}_{\mathrm{f}}}\left[\beta_{l}^{\prime}\left(\mathrm{J}_{\mathrm{f}}\right)\right]^{2} \tag{3}
\end{equation*}
$$

The collective nuclear model relates the nuclear deformation parameter to the reduced transition probability $\mathrm{B}(\mathrm{El}) \uparrow$ for electromagnetic excitation of a one-phonon state (ref. 14)

$$
\begin{equation*}
\mathrm{B}(\mathrm{E} l) \uparrow=\left(\frac{3}{4 \pi}\right)^{2}\left(\mathrm{ZeR}_{\mathrm{o}}^{l}\right)^{2} \beta_{l}^{2}(\mathrm{core}) \tag{4}
\end{equation*}
$$

EXPERIMENTAL RESULTS AND ANALYSIS

The differential cross sections were measured for the elastic state and seventeen inelastic states. The experimentally measured distributions are shown in figures 4, 5, and 6. The elastic scattering data were fit by using the optical model with a six parameter Woods-Saxon potential given by

$$
\begin{equation*}
U(r)=V_{c}-V\left\{1+\exp \left[\frac{r-r_{o} A^{1 / 3}}{a_{0}}\right]\right\}^{-1}-i W\left\{1+\exp \left[\frac{r-r_{i} A^{1 / 3}}{a_{i}}\right]\right\}^{-1} \tag{5}
\end{equation*}
$$

where
$\mathrm{U}(\mathrm{r})$ scattering potential
$V_{c} \quad$ Coulomb potential
V strength of real term of nuclear optical potential
$r_{0} \quad$ radius of real term of nuclear optical potential
$a_{o} \quad$ diffuseness of real term of nuclear optical potential
W strength of imaginary term of nuclear optical potential
$r_{i} \quad$ radius of imaginary term of nuclear optical potential
\mathbf{a}_{i} diffuseness of imaginary term of nuclear optical potential
The computer program SCATLE (ref. 13) was used to do the calculation. The best fit calculation is shown in figure 4, and the resulting parameters are listed in table II.

The inelastic scattering angular distributions were compared with the predictions of a distorted wave Born approximation using the computer program DWUCK (information received from P. D. Kunz of Univ. of Colorado). A surface interaction was used in the form factor and complex coupling was included. Coulomb excitation was also included in the calculation. The best fit optical model potential was used to calculate the scattering waves and the collective model form factor. The particle-core model predicts that the electromagnetic transition probability $\mathrm{B}(\mathrm{El})$ to the ground state should be approximately equal to that for the collective core state. This implies that the cross section for inelastic scattering to any member of the multiplet should be proportional to $\left(2 \mathrm{~J}_{\mathrm{f}}+1\right)$ and that
the total cross section for excitation of the multiplet should be equal to that for excitation of the collective core state. In addition the shape of the angular distribution for each member of the multiplet should resemble the angular distribution for the corresponding core state. The relative transition strengths of the excited states are measured by the partial deformation parameters $\beta_{l}^{\prime}\left(\mathrm{J}_{\mathrm{f}}\right)$ and listed in table III. Using the spin assignments from previous works (ref. 15), the total deformation parameter β_{l} (core) can be calculated using equation (2). Since only the core is assumed to be excited, the reduced transition probabilities for ${ }^{65} \mathrm{Cu}$ relative to the ${ }^{64} \mathrm{Ni}$ core are found by taking the ratio. of β_{l}^{2} (core) $/ \beta_{l}^{2}\left({ }^{64} \mathrm{Ni}\right)$. These values of β_{l} (core) and the ratios of the reduced transition probabilities are listed in table III. The experimental value of the deformation parameter for ${ }^{64} \mathrm{Ni}$ was taken from reference 3. Also shown in table III are the ratios of the reduced transition probabilities measured for $17.5-\mathrm{MeV}$ proton scattering (ref. 3) and $29-\mathrm{MeV}$ alpha particle scattering (ref. 4).

The inelastic angular distributions of the excited states with angular momentum transfers of $l=2$ are shown in figure 5 along with the corresponding DWBA calculations. The angular momentum transfers and the partial deformation parameters are assigned on the basis of the DWBA calculations. The zero-strength coupling model predicts four states with their transition strengths proportional to $\left(2 J_{f}+1\right)$ and with an energy centroid equal to the energy of the 2^{+}core state of ${ }^{64} \mathrm{Ni}$. Experimentally three strongly excited states and four weaker states with an $l=2$ angular distribution are found. The excited state at $2.858-\mathrm{MeV}$ has been assigned an $l=3$ transfer by Kumabe, Matoba, and Takasaki (ref. 4). In this experiment at 42 MeV , the angular distribution is fit ky an $l=2$ DWBA calculation, although the large angle fit is not as good as the other $l=2$ angular distributions. Since at 29 MeV (ref. 4) the $2.858-\mathrm{MeV}$ state was in phase with the elastic angular distribution and at 42 MeV is out of phase with the elastic angular distribution, the energy dependence of the angular distribution of this state along with its relatively high excitation energy, suggest that it may result from the $p_{3 / 2}$ proton coupling to one of the two-phonon states in ${ }^{64} \mathrm{Ni}$. The phase relation of the twophonon angular distribution to that of the elastic angular distribution has been shown (refs. 16 and 17) to be energy dependent for the nickel isotopes.

Of the predicted quartet of states corresponding to the coupling of the $p_{3 / 2}$ proton to the 2^{+}core state, only three states are excited with the expected strength. The $3 / 2^{-}$ state at 1.725 MeV is excited too weakly to fit the $\left(2 \mathrm{~J}_{\mathrm{f}}+1\right)$ strength predicted by the simple model, although it gives an excellent energy centroid prediction. Perey (ref. 18) suggested that the strength of the $3 / 2^{-}$state would be weakened due to mixing with the ground state. The zero-strength particle-core model has its greatest success if the ground state spin is not included in the spins of the excited multiplet (refs. 1 and 19).

There are seven states observed experimentally with an $l=2$ angular distribution. If the total transition strength of the 2^{+}core state of ${ }^{64} \mathrm{Ni}$ is considered mixed into
all seven of the $l=2$ angular distributions, then from equation (3), β_{2} (core) $=0.166 \pm 0.014$. If this is compared to the deformation for the ${ }^{64} \mathrm{Ni}$ core state, $\beta_{2}\left({ }^{64} \mathrm{Ni}\right)=0.200 \pm 0.015$, the agreement is reasonable. The total core strength is not observed experimentally which suggests that there are some weakly excited states that were not observed.

The inelastic angular distributions for the excited states observed with an angular momentum transfer of $l=3$ are shown in figure 6 along with the corresponding DWBA calculations. Again on the basis of the weak-coupling model, four excited states are expected. Four strongly excited and four weaker excited states are observed all having an $\cdot l=3$ angular distribution. The state at 3.930 MeV has not been observed in previous inelastic scattering experiments (refs. 3 to 5).

Little can be said about the octupole-coupled states because the spins of the resulting states of ${ }^{65} \mathrm{Cu}$ are unknown. The excited state at 2.530 MeV is the strongest excited state for an $l=3$ transition, as was the case for the other inelastic scattering (refs. 3 and 4). Blair (ref. 6) reports a strong $l=4$ transition to a state of 2.54 MeV . Also, Bachner, Bock, and Duhm (ref. 7) report the pickup reaction on ${ }^{66} \mathrm{Zn}$ to the $2.535-\mathrm{MeV}$ state of ${ }^{65} \mathrm{Cu}$ is too strong to be explained by $\mathrm{g}_{9 / 2}$ admixtures in the ${ }^{66} \mathrm{Zn}$ ground state, and therefore collective contributions must be responsible for the strong excitation of this state. If this is the state that is excited in the inelastic scattering experiments, there must be considerable configuration mixing.

Again if it assumed that the core octupole transition strength is spread over all eight of the $l=3$ angular distributions, then β_{3} (core) $=0.150 \pm 0.011$ as compared to $\beta_{3}\left({ }^{64} \mathrm{Ni}\right)=0.181 \pm 0.016$ for the 3^{-}state of ${ }^{64} \mathrm{Ni}$. The agreement is not as good as for the $l=2$ transitions, but again the total core strength is not observed.

PARTICLE-CORE COUPLING CALCULATION

A recent shell model calculation (ref. 9) with a realistic effective force in the $1 f_{5 / 2}, 2 p_{3 / 2},{ }^{2 p_{1 / 2}}$ orbitals performed for ${ }^{65} \mathrm{Cu}$ has shown that an extended particlecore coupling scheme with finite coupling strength and configuration mixing gives a good approximation to the more exact calculation. Thankappan and True (ref. 8) did a calculation of this type for ${ }^{63} \mathrm{Cu}$. On the basis of the experimental evidence that the collective- and single-particle states are mixed for ${ }^{65} \mathrm{Cu}$, the calculation was extended to ${ }^{65} \mathrm{Cu}$.

The coupling between the particle and the core is a scalar which can be written as a sum of scalar products of a tensor of rank k (ref. 1),

$$
\begin{equation*}
\mathrm{H}_{\mathrm{int}}=\sum_{\mathrm{k}} \mathrm{~T}_{\mathrm{c}}^{(\mathrm{k})} \cdot \mathrm{T}_{\mathrm{p}}^{(\mathrm{k})} \tag{6}
\end{equation*}
$$

$T_{c}^{(k)}$ operates only on the degrees of freedom of the core and $T_{p}^{(k)}$ only on the particle coordinates. The exact nature of the core states are not specifically given. This gives the model a general validity, and it can therefore be applied to situations where the particle to core coupling is no longer weak, and allows several single-particle orbits to be considered. The Hamiltonian of the system is given by

$$
\begin{equation*}
\mathrm{H}=\mathrm{H}_{\mathrm{c}}+\mathrm{H}_{\mathrm{p}}+\mathrm{H}_{\mathrm{int}} \tag{7}
\end{equation*}
$$

where:
$\mathrm{H}_{\mathrm{c}} \quad$ Hamiltonian of core
$H_{p} \quad$ Hamiltonian of particle moving in field of core
$\mathrm{H}_{\text {int }}$ core to particle interaction
The basic set of states used for the calculation will be eigenfunctions of $H_{c}+H_{p}$ and are written as $\mid J_{c} j_{p}$, IM \rangle where J_{c} and j_{p} are the spin of the core and particle, respectively, I is the total angular momentum of the coupled core and particle, and M is the z projection of I.

Only two core states will be considered. These are the O^{+}ground state and the 2^{+} state at 1.348 MeV in ${ }^{64} \mathrm{Ni}$. The single-particle orbitals that are used are the $2 \mathrm{p}_{3 / 2}$, $2 \mathrm{p}_{1 / 2}$, and $1 \mathrm{f}_{5 / 2}$. The ${ }^{64} \mathrm{Ni}$ core closes the $1 \mathrm{f}_{7 / 2}$ proton orbital with 28 protons, so the three orbitals used are the only odd parity orbitals of low enough energy. Since the basis states used in the calculation, in general, will not be eigenfunctions of $\mathrm{H}_{\mathrm{int}}$, the eigenfunctions of H will be linear combinations of the basis states and will be obtained by diagonalizing the H matrix.

The form used for the interaction potential is that used by Thankappan and True (ref. 8)

$$
\begin{equation*}
\mathrm{H}_{\text {int }}=-\xi\left(\vec{J}_{c} \cdot \overrightarrow{\mathrm{j}}_{\mathrm{p}}\right)-\eta\left(\vec{Q}_{\mathrm{c}} \cdot \vec{Q}_{\mathrm{p}}\right) \tag{8}
\end{equation*}
$$

where J_{c} and j_{p} are the total angular momentum operator for the core and the particle, respectively; ξ and η are strength parameters; and Q_{c} and Q_{p} are the mass quadrupole-moment operators of the core and particles, respectively, where

$$
\begin{gather*}
\left(Q_{\mathrm{c}}\right)_{\mu}=\sum_{\mathrm{j}} \mathrm{r}_{\mathrm{j}}^{2} \mathrm{Y}_{2 \mu}\left(\theta_{\mathrm{i}}, \varphi_{\mathrm{i}}\right) \tag{9}\\
\left(Q_{\mathrm{p}}\right)_{\mu}=\mathrm{r}_{\mathrm{p}}^{2} \mathrm{Y}_{2 \mu}\left(\theta_{\mathrm{p}}, \varphi_{\mathrm{p}}\right) \tag{10}
\end{gather*}
$$

The matrix element of H between two basis states is then given by

$$
\begin{align*}
&\left\langle J_{c}^{\prime} j_{p}^{\prime}, I M\right| H\left|J_{c} j_{p}, I M\right\rangle=\left\langle J_{c}^{\prime} j_{p}^{\prime}, I M\right| H_{c}+H_{p}-\xi\left(\vec{J}_{c} \cdot \vec{j}_{p}\right)-\eta\left(\vec{Q}_{c} \cdot \vec{Q}_{p}\right)\left|J_{c} j_{p}, I M\right\rangle \tag{11}\\
&\left\langle J_{c}^{\prime} j_{p}^{\prime}, I M\right| H\left|J_{c} j_{p}, I M\right\rangle=\delta_{J_{c}^{\prime}} J_{c} \delta_{j_{p}^{\prime} j_{p}}\left\{E_{J_{c}}+E_{j_{p}}+\xi W\left(1 j_{p} J_{c} I ; j_{p} J_{c}\right)\right. \\
& {\left.\left[J_{c}\left(J_{c}+1\right)\left(2 J_{c}+1\right) j_{p}\left(j_{p}+1\right)\left(2 j_{p}+1\right)\right]^{1 / 2}\right\} } \\
&-\eta W\left(2 j_{p}^{\prime} J_{c} I ; j_{p} J_{c}^{\prime}\right)\left\langle J_{c}^{\prime}\right|\left|\vec{Q}_{c}\right|\left|J_{c}\right\rangle\left\langle j_{p}^{\prime}\right|\left|\vec{Q}_{p}\right|\left|j_{p}\right\rangle \tag{12}
\end{align*}
$$

where $E_{J_{c}}$ and $E_{j_{p}}$ are the energy eigenvalues of H_{c} and H_{p}, respectively. The reduced matrix elements used are the ones defined in Messiah (ref. 20). The particle reduced matrix elements can be calculated and are

$$
\begin{equation*}
\left\langle j_{p}^{\prime}\right|\left|\vec{Q}_{p}\right|\left|j_{p}\right\rangle=\frac{(-1)^{(1 / 2)-j_{p}^{\prime}}}{2}\left\langle j_{p}^{\prime}\right| r_{p}^{2}\left|j_{p}\right\rangle\left[\frac{\left(2 j_{p}+1\right)\left(2 j_{p}^{\prime}+1\right)}{4 \pi}\right]^{1 / 2}\left[1+(-1)^{l+l^{\prime}}\right] C\left(j_{p} j_{p}^{\prime} 2 ; \frac{1}{2}-\frac{1}{2} 0\right) \tag{13}
\end{equation*}
$$

The W coefficients and Clebsh-Gordon coefficients were obtained from an existing computer program (ref. 21). The radial integral was evaluated using harmonic oscillator wave functions. The value of the parameter ν, for the harmonic oscillator wavefunction used was

$$
\begin{equation*}
\nu=\frac{41 \mathrm{~m}}{\hbar^{2} \mathrm{~A}^{1 / 3}}=0.245 \mathrm{~F}^{-2} \tag{14}
\end{equation*}
$$

Since the model doesn't specify the exact nature of the core states, it is not possible to calculate the reduced matrix elements for the $\left\langle J_{c}^{\prime}\right|\left|\vec{Q}_{\mathbf{c}}\right|\left|J_{c}\right\rangle$, so these quantities are treated as parameters. For the ${ }^{65} \mathrm{Cu}$ calculation only the ground state and the first excited 2^{+}core states were considered. It was assumed that the presence of the extra core proton did not alter the core states and they were taken as the same states that exist in ${ }^{64} \mathrm{Ni}$. The three single-particle states used were the $2 \mathrm{p}_{1 / 2}, 2 \mathrm{p}_{3 / 2}$, and $1 \mathrm{f}_{5 / 2}$ orbitals. The energy spacing between the $p_{3 / 2}-p_{1 / 2}$ orbitals and $p_{3 / 2}-f_{5 / 2}$ orbitals were taken from the ${ }^{63} \mathrm{Cu}$ calculation (ref. 8) and adjusted slightly for better agreement with the data. With the single-particle energies fixed, the three remaining adjustable parameters of the model are
(1) ξ is the dipole-dipole strength
(2) $\mathrm{X}_{1}=\eta\langle 0|\left|\vec{Q}_{\mathrm{c}}\right||2\rangle$
(3) $X_{2}=\eta\langle 2|\left|\vec{Q}_{c}\right||2\rangle$

The electric quadrupole moment operator can be written as

$$
\begin{equation*}
\vec{Q}_{e}=\left(\frac{16 \pi}{5}\right)^{1 / 2}\left[e_{c}\left(\vec{Q}_{c}\right)_{0}+e\left(\vec{Q}_{p}\right)_{0}\right] \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
e_{c}=\frac{\sum e_{j} r_{j}^{2} Y_{20}\left(\theta_{i} \varphi_{i}\right)}{\sum r_{j}^{2} \mathrm{y}_{20}\left(\theta_{i} \varphi_{i}\right)} \tag{19}
\end{equation*}
$$

is defined as an effective charge for the core. The reduced E2 transition probability from an initial state of $\operatorname{spin} I_{1}$ to a final state of spin I_{2} is given by

$$
\begin{equation*}
\left.\mathrm{B}\left(\mathrm{E} 2, \mathrm{I}_{1}-\mathrm{I}_{2}\right)=\frac{5}{16 \pi\left(2 \mathrm{I}_{1}+1\right)} \right\rvert\,\left\langle\mathrm{I}_{2}\right|\left|\overrightarrow{\mathrm{Q}}_{\mathrm{e}}\right|\left|\mathrm{I}_{1}\right\rangle \tag{20}
\end{equation*}
$$

Since it has been assumed that the core states of the ${ }^{65} \mathrm{Cu}$ nucleus are identical to the states of ${ }^{64} \mathrm{Ni}$, it is possible to calculate

$$
\langle 0|\left|e_{c} \vec{Q}_{c}\right||2\rangle=[5 B(E 2) \downarrow]^{1 / 2}
$$

where the $\mathrm{B}(\mathrm{E} 2) \downarrow$ value is that of the first 2^{+}state of the ${ }^{64} \mathrm{Ni}$ nucleus. The positive square root is taken to obtain agreement with the experimental data. So now for a given x_{1} and x_{2}, the reduced matrix element $\langle 2|\left|\vec{Q}_{c}\right||2\rangle$ is determined by

$$
\begin{equation*}
\langle 2|\left|\vec{Q}_{c}\right||2\rangle=\frac{x_{2}}{x_{1}}\langle 0|\left|\vec{Q}_{c}\right||2\rangle \tag{21}
\end{equation*}
$$

Once ξ, x_{1}, and x_{2} have been determined, the $B(E 2)$ values can be calculated providing e_{c} can be considered as a constant which is independent of the core states.

RESULTS OF CALCULATIONS AND COMPARISON TO EXPERIMENTAL DATA

The Hamiltonians for the coupled spins were diagonalized and the energy eigenvalues and eigenfunctions obtained. A parameter search was not done as in the calculation of Larner (ref. 22), but a limited result of a gridded parameter study is shown in figures 7,8 , and 9 . Also shown in the figures is R, the ratio of the calculated $B(E 2)$ to those experimentally measured for the ${ }^{64} \mathrm{Ni}$ core (ref. 3). The energy of the lowest $3 / 2^{-}$ level has been set equal to zero in these figures. The final values of the parameters chosen were $\xi=0.20, x_{1}=0.40$, and $x_{2}=0.35$. In figure 10 the resulting energy levels are shown and compared to the experimental data. To obtain better agreement with the experimental data, it was necessary to reduce the $p_{1 / 2} \rightarrow p_{3 / 2}$ energy spacing from 1.30 MeV (ref. 8) to a new value of 1.20 MeV . The final values used for the calculation are shown in figure 10. The agreement is very good for the low-lying states, although the $3 / 2^{-}$state at 1.725 MeV is not reproduced by the calculation.

The calculated ratios of $B(E 2)$ are compared to the experimental data in table IV. Since no octupole-octupole terms were included in the interaction potential, E3 reduced transition probabilities could not be calculated. The large errors in the experimental values of R make it difficult to compare the ratios; although for the three lowest states, agreement exists within the experimental error.

In table V the components of the wavefunctions for the calculated energy levels are listed. The square of the amplitudes of the $\left|0, j_{p}\right\rangle$ component of the eigenfunctions gives the percentages of the single-particle admixtures in a level and should be equal to the spectroscopic factors measured in proton stripping reactions. Listed in table V are the spectroscopic factors measured by Blair (ref. 6) in the ${ }^{64} \mathrm{Ni}\left({ }^{3} \mathrm{He}, \mathrm{d}\right){ }^{65} \mathrm{Cu}$ reaction. The calculated spectroscopic factors agree quite well with Blair's experimental results. The wavefunctions show considerable configuration mixing and explain the large collective and single-particle nature of some of the ${ }^{65} \mathrm{Cu}$ states.

CONCLUSIONS

The experimental data for the scattering of $42-\mathrm{MeV}$ alpha particles from ${ }^{65} \mathrm{Cu}$ cannot be explained on the basis of the zero-strength particle-core coupling model. The number of observed states and their centroid energies do not agree with its predictions. There are seven states observed experimentally with an $l=2$ angular momentum transfer, and eight states with an $l=3$ angular momentum transfer. The $l=2$ state at 2.858 MeV may result from coupling to a two-phonon state of the core. Considering all the $l=2$ and $l=3$ transition strength measured experimentally in ${ }^{65} \mathrm{Cu}$, the total core transition strength of the first 2^{+}and 3^{-}states is not found. The extended particle-core calculation has shown that the coupling is not weak and considerable con-
figuration mixing of the low-lying levels results. The extended particle-core model gives a good description of the energy levels for the low-lying states and predicts values of the single-particle strengths which are in fair agreement with the stripping data. The configuration mixing explains how the low-lying levels of ${ }^{65} \mathrm{Cu}$ can have large singleparticle transition strengths and show strong collective behavior.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, May 11, 1973, 503-10.

APPENDIX - SYMBOLS

A

R	ratio of ${ }^{65} \mathrm{Cu}$ reduced transition probability to reduced transition probability of ${ }^{64} \mathrm{Ni}$
R_{o}	nuclear radius constant
r_{i}	radius of imaginary term of nuclear optical potential
r_{j}	radius in core quadrupole moment operator
r_{0}	radius of real term of nuclear optical potential
r_{p}	radius in particle quadrupole moment operator
$\dot{T}_{\mathrm{c}}^{(\mathrm{k})}$	$k^{\text {th }}$ component of operator that operates only on degrees of freedom of core
$\mathrm{T}_{\mathrm{p}}^{(\mathrm{k})}$	$k^{\text {th }}$ component of operator that operates only on degrees of freedon of particle
$\mathrm{U}(\mathrm{r})$	scattering potential
V	strength of real term of nuclear optical potential
V_{c}	Coulomb potential
W	strength of imaginary term of nuclear optical potential
$\mathbf{Y}_{2 \mu}{ }^{\left(\theta_{\mathbf{i}}, \varphi_{\mathbf{i}}\right)}$	spherical harmonic of order $2, \mu$
Z	nuclear charge
$\beta_{l}\left({ }^{\mathbf{A}} \mathrm{X}\right)$	deformation parameter of even A nucleus X
β_{l} (core)	deformation parameter of even core
$\beta_{l}^{\prime}\left(J_{f}\right)$	partial deformation parameter for final state of nucleus
η.	strength of quadrupole term in interaction Hamiltonian
ν	harmonic oscillator parameter
ξ	strength of angular momentum term in interaction Hamiltonian
π	parity of nuclear state
χ_{1}	strength of nondiagonal quadrupole term of interaction Hamiltonian
χ_{2}	strength of diagonal quadrupole term of interaction Hamiltonian
$\left(\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}\right)_{\mathrm{J}_{\mathrm{f}}}^{\exp }$	experimental differential cross section for spin state $\mathrm{J}_{\mathbf{f}}$
$\left(\frac{d \sigma}{d \Omega}\right)_{D W B A}$	differential cross section calculated by distorted wave Born approximation

REFERENCES

1. de-Shalit, A.: Core Excitations in Nondeformed, Odd-A, Nuclei. Phys. Rev., vol. 122, no. 5, June 1, 1961, pp. 1530-1536.
2. Harvey, B. G.; Meriwether, J. R.; Bussière, A.; and Horen, D. J.: Excitation of Collective Levels in Cu^{63} by $50 \mathrm{MeV} \alpha$ Scattering. Nucl. Phys., vol. 70, 1965, pp. 305-312.
3. McCarthy, A. L.; and Crawley, G. M.: Inelastic Proton Scattering on the Isotopes $\mathrm{Ni}^{62}, \mathrm{Ni}^{64}, \mathrm{Cu}^{63}$, and Cu^{65} at 17.5 MeV . Phys. Rev., vol. 150, no. 3, Oct. 21, 1966, pp. 935-940.
4. Kumabe, Isao; Matoba, Masaru; and Takasaki, Eiichi: Inelastic Alpha-Particle Scattering on Copper 65 at 29 MeV . J. Phys. Soc. Japan, vol. 25, no. 2, Aug. 1968, pp. 301-306.
5. Bruge, G.; Faivre, J. C.; Barloutaud, M.; Faraggi, H.; and Saudinos, J.: Diffusion Inelastique De Particules α par $\mathrm{Ni}^{62}, \mathrm{Cu}^{63}, \mathrm{Ni}^{64}, \mathrm{Cu}^{65}$ et Interaction Coeur-Particule. Phys. Letters, vol. 7, no. 3, Nov. 15, 1963, pp. 203-206.
6. Blair, A. G.: $\mathrm{Ni}^{62,64}\left(\mathrm{He}^{3}, \mathrm{~d}\right) \mathrm{Cu}^{63,65}$ Reaction. Phys. Rev., vol. 140, no. 3B, Nov. 8, 1965, pp. 648-654.
7. Bachner, D.; Bock, R.; Duhm, H. H.; Santo, R.; Stock, R.; and Hinds, S.: Study of ${ }^{63} \mathrm{Cu}$ and ${ }^{65} \mathrm{Cu}$ Levels By The (t, α) Reaction. Nucl. Phys., vol. A99, 1967, pp. 487-496.
8. Thankappan, V. K. ; and True, William W.: Properties of the Low-Lying Cu ${ }^{63}$ Levels. Phys. Rev., vol. 137, no. 4B, Feb. 22, 1965, pp. 793-799.
9. Wong, S. S. M.: A Shell-Model Study of ${ }^{65} \mathrm{Cu}$ and ${ }^{63} \mathrm{Cu}$. Nucl. Phys., vol. A159, 1970, pp. 235-248.
10. Baron, Norton; and Kaminski, Gerald A.: Manufacture of Lithium-Drifted Silicon Surface-Barrier Semiconductor Counters. NASA TN D-3554, 1966.
11. Leonard, Regis F.; Stewart, William M. ; and Baron, Norton: Alpha-Gamma Angular Correlations in the Reaction $\operatorname{Tin}-120\left(\alpha, \alpha^{\prime} \gamma_{1} .18 \mathrm{MeV}\right)$. NASA TN D-5569, 1969.
12. Kern, Jean: Computer Analysis of Nuclear Spectra and γ-Energy Standards. Nucl. Inst. Meth., vol. 79, 1970, pp. 233-239.
13. Smith, Margaret M.; and Giamati, Charles C.: Expanded Fortran IV Program for Elastic Scattering Analysis. NASA TN D-6000, 1970.
14. Nathan, O.; and Nilsson, S. G.: Collective Nuclear Motion and the Unified Model. Alpha-, Beta-, and Gamma-Ray Spectroscopy. Vol. 1. K. Siegbahn, ed., NorthHolland Pub., 1965, pp. 601-700.
15. Nucl. Data, Sec. B, vol. 2; no. 6, Oct. 1968.
16. Broek, H. W.: Collective Excitations in $\mathrm{Ni}^{58,60,62}$ and $\mathrm{Zn}^{64,66,68}$. Phys. Rev., vol. 130, no. 5, June 1, 1963, pp. 1914-1925.
17. Meriwether, J. R.; Bussiere De Nercy, A.; Harvey, B. G.; and Horen, D. J.: Energy Variation of the Phase Rule in Alpha Particle Scattering. Phys. Letters, vol. 11, no. 4, Aug. 15, 1964, pp. 299-300.
18. Perey, F.; Silva, R. J.; and Satchler, G. R.: Excited-Core Model of Odd-A Nuclei and the $\mathrm{Cu}^{63}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)$ Reactions. Phys. Letters, vol. 4, no. 1, Mar. 1, 1963, pp. 25-27.
19. Stewart, William M.; Baron, Norton; and Leonard, Regis F.: Core Excitations in Silver, Indium, and Antimony Resulting From Inelastic Scattering of $42-\mathrm{MeV}$ (6.7-PJ) Alpha Particles. NASA TN D-4222, 1967.
20. Messiah, Albert (G. M. Temmer, trans.): Quantum Mechanics. John Wiley \& Sons, Inc., 1961.
21. Ford, William F.; and Braley, Richard C.: Fortran IV Subroutines for Coupling Coefficients and Matrix Elements in the Quantum Mechanical Theory of Angular Momentum. NASA TN D-6173, 1971.
22. Larner, D.: Intermediate Coupling in the $N=29$ and $Z=29$ Nuclei. Phys. Rev., vol. 2, no. 2 C , Aug. 1970, pp. 522-530.

TABLE I. - CROSS SECTIONS
[Incident energy, $E_{\alpha}=42.33 \mathrm{MeV}$]

Laboratory scattering angle, $\theta_{\text {lab }}$, deg	Center of mass scattering angle, ${ }^{\theta} \mathrm{cm}$, deg	$\begin{gathered} \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} \pm \Delta \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}, \\ \mathrm{mb} / \mathrm{sr} \end{gathered}$	Laboratory scattering angle, ${ }^{\theta}{ }^{\text {lab }}$ deg	Center of mass scattering angle, ${ }^{\theta} \mathrm{cm}$, deg	$\begin{gathered} \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} \pm \Delta \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}, \\ \mathrm{mb} / \mathrm{sr} \end{gathered}$
${ }^{65} \mathrm{Cu}$ elastic scattering			${ }^{65} \mathrm{Cu}$ alpha scattering; $1.114-\mathrm{MeV}$ state		
8.0	8. 49	$75029+366$	10.0	10.62	12.96 ${ }^{0} 0.44$
9.0	9.55	51055 ± 225	12.0	12.74	11. 32 ± 0.36
10.0	10.61	26934 ± 220	14.0	14.86	4. 20 ± 0.22
11.0	11.67	16113 ± 126	16.0	16.98	2. 54 ± 0.17
12.0	12.73	8130 ± 120	20. 16	21. 22	6.62 ± 0.07
13.0	13.79	5622 ± 74	24.08	25. 46	0. 593 ± 0.022
14.0	14.85	3937 ± 84	26.08	27.57	0.888 ± 0.026
15.0	15.91	3449 ± 58	28.08	29.68	2. 38 ± 0.08
16.0	16.97	2913 ± 22	30.16	31.79	2.08 ± 0.04
17.0	18.03	2028 ± 12	32. 16	33.89	0. 740 ± 0.024
18.0	19.09	1267 ± 15	34. 16	36.00	0. 134 ± 0.010
19.0	20.15	772 ± 7	36.16	38.10	0.269 ± 0.014
20.16	21. 20	394 ± 8	38.08	40.20	0.961 +0.028
22.08	23.32	262 ± 1	40.08	42. 30	0.892 ± 0.027
24.08.	25.43	283 ± 48	42.08	44. 39	0.257 ± 0.014
26.08	27.54	158. 7 ± 0.4	44.08	46. 48	0.029 ± 0.005
28.08	29.66	45. 44 ± 0.19	46. 16	48.57	0. 218 ± 0.013
30.16	31.76	20. 26 ± 0.13	${ }^{65} \mathrm{Cu}$ alpha scattering; 1.482-MeV state		
32. ${ }^{4} 16$	33.87	39. 58 ± 0.18			
34. 16	35.98	39.83 ± 0.18	10.0	10.62	16. 22 ± 0.54
36. 16	38.08	22.64 ± 0.14	12.0	12.74	11.56 ± 0.36
38.08	40.18	3. 95 ± 0.06	14.0	14.87	4.01 ± 0.21
40.08	42. 27	2. 60 ± 0.05	16.0	16.99	1. 14 ± 0.12
42.08	44. 36	8.18 ± 0.08	18. 16	19. 11	4.60 ± 0.06
44.08	46.45	8.50 ± 0.08	20. 16	21. 26	7. 55 ± 0.47
46.16	48.54	3. 27 ± 0.05	22.08	23.34	3.81 ± 0.06
48.16	50.62	0.392 ± 0.018	24.0826.08	25.4627.58	$\begin{aligned} & 0.478 \pm 0.020 \\ & 0.976 \pm 0.028 \end{aligned}$
${ }^{65} \mathrm{Cu}$ alpha scattering, $0.771-\mathrm{MeV}$ state					
10.0	10.61	9.30 ± 0.48	28.08 30.16	29.69 31.80	2. 24 ± 0.04
12.0	12.74	3.04 ± 0.18	30.16 32.16	31.80 33.90	0.707 ± 0.024
14.0	14.86	1. 18 ± 0.06	34.16	36.01	0.130 ± 0.010
20.16	21.22	1. 72 ± 0.04	36. 16	38.12	0.356 ± 0.017
22.08	23.34	0.944土0.028	38.08	40.22	0.972 ± 0.028
24.08	25. 45	0. 238 ± 0.014	40.08	42.31	0.902 ± 0.027
26.08	27.56	0. 552 ± 0.021	42.08	44.40	0.276 ± 0.015
28.08	29.67	0.879 ± 0.027	44. 08	46. 50	0. 0373 ± 0.0056
30. 16	31.78	0.539 ± 0.021	46.1648.16	48.58	$\begin{aligned} & 0.242 \pm 0.014 \\ & 0.482 \pm 0.020 \end{aligned}$
32. 16	33.89	0.138 ± 0.011		50.68	
34. 16	35.99	0. 0377 ± 0.0056	48.16		
36.16	38.09	0.184 ± 0.012			
38.08	40.19	0. 282 ± 0.015			
40.08	42. 29	0. 220 ± 0.013			
42.08	44.38	0.0364 ± 0.0054			
44.08	46.48	0.0149 ± 0.0035			
46.16	48.56	0.0916 ± 0.0087			
48.16	50.65	0.0969 ± 0.0090			

TABLE I. - Continued. CROSS SECTIONS
[Incident energy, $\mathrm{E}_{\alpha}=42.33 \mathrm{MeV}$.]

Laboratory scattering angle, ${ }^{\theta}{ }_{\text {lab }}$, deg	Center of mass scattering angle, ${ }^{\theta} \mathrm{cm}$, deg	$\begin{gathered} \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} \pm \Delta \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}, \\ \mathrm{mb} / \mathrm{sr} \end{gathered}$	Laboratory scattering angle, ${ }^{\theta}{ }_{\text {lab }}$, deg	Center of mass scattering angle, ${ }^{8} \mathrm{~cm}$,	$\begin{gathered} \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} \pm \Delta \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}, \\ \mathrm{mb} / \mathrm{sr} \end{gathered}$
${ }^{65} \mathrm{Cu}$ alpha scattering; $1.629-\mathrm{MeV}$ state			${ }^{65} \mathrm{Cu}$ alpha scattering; 2. $344-\mathrm{MeV}$ state		
10.0	10.62	1. 48 ± 0.11	12.0	12.75	1.144土0. 114
12.0	12. 74	0.515 ± 0.076	20.16	21. 24	0.175 ± 0.012
18.16	19.11	0.225 ± 0.012	22.08	23.36	0.0372 ± 0.0054
20.16	21. 23	0.374 ± 0.017	28.08	29.70	0.0649 ± 0.0072
24.08	25. 46	0.0613 ± 0.0042	30.16	31.82	0.0504 ± 0.0064
26.08	27.58	0.117 ± 0.010	36.16	38.14	0.0360 ± 0.0054
30.16	31.80	0.0456 ± 0.0060	38.08 .	40.24	0.0164 ± 0.0036
32.16	33.91	0.0342 ± 0.0052	40.08	42.34	0.0288 ± 0.0048
34.16	36.02	0.0376 ± 0.0060	42.08	44.44	0.0174 ± 0.0038
36.16	38.12	0.0336 ± 0.0052	46.16	48.62	0.0182 ± 0.0038
40.08	42.31	0.0494 ${ }^{0} 0.0064$	48.16	50.76	0.0183 ± 0.0039
42.08	44.41	0.0232 ± 0.0044	${ }^{65} \mathrm{Cu}$ alpha scattering; 2. $530-\mathrm{MeV}$ state		
44.08	46.50	0.0058 ± 0.0022			
46.16	48.59	0.0092 ± 0.0028	10.0	10.63	7. 862 ± 0.432
48.16	50.68	0.0234 ± 0.0044	12.0	12.76	8. 352 ± 0.293
${ }^{65} \mathrm{Cu}$ alpha scattering; $1.725-\mathrm{MeV}$ state			$\begin{aligned} & 14.0 \\ & 16.0 \end{aligned}$	14.88 17.00	7. 185 ± 0.286
10.0	10.62	0.629 ± 0.084	18.16	19.12	0. 829 ± 0.026
12.0	12. 75	0. 996 ± 0.106	20.16	21. 24	0.892 ± 0.026
18. 16	19.11	0. 242 ± 0.011	22.08	23.36	2. 758 ± 0.047
20.16	21. 23	0.371 ± 0.017	24.08	25.48	2.974 ± 0.049
24.08	25. 46	0.0308 ± 0.005	26.08	27.60	1. 048 ± 0.029
28.08	29.69	0.0878 ± 0.0084	30. 16	31.82	0.724 ± 0.024
30.16	31.80	0.108 ± 0.009	32. 16	33.93	1. 294 ± 0.032
32.16	33.91	0.0400 ± 0.0057	36.16	38. 14	0. 526 ± 0.020
36.16	38.12	0.0041 ± 0.0018	38.08	40.24	0.0920 ± 0.0086
38.08	40.22	0.0214 ± 0.0042	40.08	42.34	0. 226 ± 0.014
40.08	42.32	0.0247 ± 0.0045	42.08	44.44	0. 497 ± 0.020
42.08	44.42	0.0248 ± 0.0045	44.08	46.53	0. 412 ± 0.018
44.08	46.50	0.0058 ± 0.0022	46.16	48.62	0. 128 ± 0.010
46.16	48.60	0.0250 ± 0.0014	48. 16	50.71	0.0316 ± 0.0051
${ }^{65} \mathrm{Cu}$ alpha scattering; $2.098-\mathrm{MeV}$ state			${ }^{65} \mathrm{Cu}$ alpha scattering; $2.858-\mathrm{MeV}$ state		
10.0	10.62	3. 199 ± 0.224	10.0	10.63	1. 484 ± 0.130
12.0	12. 75	1.922 50.148	12.0	12. 76	0.982 ± 0.106
14.0	14.87	0. 206 ± 0.048	14.0	14.88	0. 286 ± 0.057
16.0	16. 99	0. 367 ± 0.064	18. 16	19. 13	0. 371 ± 0.017
18.16	19.12	0.675 ± 0.023	20.16	21. 25	0. 422 ± 0.018
20.16	21. 24	0. 434 ± 0.018	22.08	23. 37	0. 184 ± 0.012
22.08	23.36	0.0954 ± 0.0088	24.08	25.49	0.0420 ± 0.0058
24.08	25. 48	0.122 ± 0.010	26.08	27.60	0.1069 ± 0.0093
26.08	27. 59	0. 226 ± 0.014	28.08	29. 72	0. 193 ± 0.012
28.08	29.70	0. 262 ± 0.015	30.16	31.83	0. 176 ± 0.012
34.16	36.02	0.0188 ± 0.0039	32. 16	33.94	0.0774 ± 0.0079
36.16	38.13	0.0532 ± 0.0066	34.16	36.04	0.0670 ± 0.0074
38.08	40.23	0.0797 ± 0.0080	38.08	40.26	0.1010 ± 0.0091
40.08	42. 33	0.0560 ± 0.0068	40.08	42. 36	0.0898 ± 0.0086
42.08	44. 42	0.0214 ± 0.0042	42.08	44.45	0.0809 ± 0.0082
44.08	46.52	0.0082 ± 0.0026	44.08	46.54	0.0282 ± 0.0048
46.16	48.61	$0.0332+0.0052$	46.16	48.64	0.0299 ± 0.0050
48.16	50.69	0.0450 ± 0.0061	48.16	50.72	0.0433 ± 0.0060

TABLE I. - Continued. CROSS SECTIONS
[Incident energy, $E_{\alpha}=42.33 \mathrm{MeV}$.]

Laboratory scattering angle, ${ }^{\theta}$ lab, deg	Center of mass scattering angle, ${ }^{\theta}{ }^{\mathrm{cm}}$, deg	$\begin{gathered} \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} \pm \Delta \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}, \\ \mathrm{mb} / \mathrm{sr} \end{gathered}$	Laboratory scattering angle, $\theta_{\text {lab }}$, deg	Center of mass scattering angle, θ_{cm}, deg	$\begin{gathered} \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} \pm \Delta \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}, \\ \mathrm{mb} / \mathrm{sr} \end{gathered}$
${ }^{65} \mathrm{Cu}$ alpha scattering; 2.980-MeV state			${ }^{65} \mathrm{Cu}$ alpha scattering; 3. $494-\mathrm{MeV}$ state		
10.0	10.63	1. 472 ± 0.073	10.0	10.64	3. 649 ± 0.202
12.0	12.76	1.689 ± 0.082	12.0	12.76	4.051 ± 0.214
14.0	14.88	1. 345 ± 0.073	14.0	14.89	3. 061 ± 0.187
16.0	17.01	0. 183 ± 0.027	16.0	17.01	1.669 ± 0.138
18.16	19. 13	0.137 ± 0.006	18.16	19.14	0.560 ± 0.021
20. 16	21. 25	0. 174 ± 0.007	20.16	21.26	0. 482 ± 0.020
22.08	23. 37	0.458 ± 0.011	22.08	23.38	1. 089 ± 0.030
24.08	25.49	0.514 ± 0.012	24.08	25.50	1. 183 ± 0.031
26.08	27.60	0.194 ± 0.008	26.08	27.62	0.581 ± 0.022
28.08	29.72	0.0327 ± 0.0030	28.08	29.74	0.174 ± 0.012
32. 16	33.94	0.185 ± 0.008	30.16	31.84	0. 236 ± 0.014
34. 16	36.04	0. 214 ± 0.008	32. 16	33.95	0. 580 ± 0.022
38.08	40.26	0.038 ± 0.003	34. 16	36.06	0. 482 ± 0.019
40.08	42.36	0.034 ± 0.003	36.16	38.17	0. 388 ± 0.018
42.08	44.45	0.080 ± 0.005	38.08	40.28	0.1116 ± 0.0096
44.08	46.54	0.074 ± 0.004	42.08	44.47	0. 229 ± 0.014
${ }^{65} \mathrm{Cu}$ alpha scattering; $3.082-\mathrm{MeV}$ state			44.08 46.16	46.56 48.66	$\begin{aligned} & 0.208 \pm 0.013 \\ & 0.110 \pm 0.010 \end{aligned}$
10.0	10.63	4. 213 ± 0.212	48. 16	50.74	0.0416 ± 0.0058
12.0	12.75	4. 853 ± 0.235	${ }^{65} \mathrm{Cu}$ alpha scattering; 3. $709-\mathrm{MeV}$ state		
16.0	17.01	0. 526 ± 0.078	10.0	10.64	0.912 ± 0.102
18.16	19.13	0.396 ± 0.018	12.0	12.77	1. 186 ± 0.116
20.16	21.26	0.500 ± 0.020	14.0	14.90	0.891 ± 0.101
22.08	23.38	1. 315 ± 0.032	16.0	17.02	0. 892 ± 0.101
24.08	25.50	1. 478 ± 0.034	18. 16	19. 14	0. 278 ± 0.014
26.08	27.61	0.558 ± 0.022	20. 16	21. 26	0.370 ± 0.017
28.08	29.72	0.0941 ± 0.0087	22.08	23.38	0. 476 ± 0.020
32.16	33.94	0.582 ± 0.022	24.08	25.50	0.358 ± 0.017
34.16	36.05	0.614 ± 0.022	26.08	27.62	0. 262 ± 0.014
38.08	40.26	0. 110 ± 0.010	28.08	29.73	0. 199 ± 0.012
40.08	42. 36	0. 128 ± 0.010	30.16	31.85	0. 112 ± 0.010
42.08	44.45	0. 230 ± 0.014	32. 16	33.96	0.148 ± 0.012
44.08	46.55	0. 212 ± 0.013	34.16	36.08	0.140 ± 0.010
46.16	48.64	0.0664 ± 0.0074	36.16	38.18	0. $115+0.010$
48.16	50.73	0.0466 ± 0.0062	40.08	42.38	0.0467 ± 0.0038
${ }^{65} \mathrm{Cu}$ alpha scattering; 3. $310-\mathrm{MeV}$ state			42.08 44.08	44.48 46.58	0.0726 ± 0.0077 0.0910 ± 0.0086
10.0	10.64	4.399 ± 0.220	46.16 48.16	48.66 50.75	$\begin{aligned} & 0.0805 \pm 0.0082 \\ & 0.0383 \pm 0.0056 \end{aligned}$
12.0	12.76	4.977 ± 0.238	46.16	50.75	0.0383 ± 0.0056
14.0 16.0	14.89 17.02	3. 474 ± 0.199	${ }^{65} \mathrm{Cu}$ alpha scattering; 3. $930-\mathrm{MeV}$ state		
18. 16	19.14	0.426 ± 0.018	10.0	10.64	1. 310 ± 0.122
20. 16	21.26	0.739 ± 0.024	12.0	12.77	0.952 ± 0.092
22.08	22.38	1. 394 ± 0.034	16.0	17. 02	0. 468 ± 0.073
24.08	25.50	1.314 ± 0.032	22.08	23. 39	0.222 ± 0.013
26.08	27.62	0.610 ± 0.022	24.08	25.51	0. 212 ± 0.013
28.08	29.73	0. 304 ± 0.016	26.08	27.63	0. 134 ± 0.010
34.16	36.06	0. 584 ± 0.022	28.08	29. 74	0.0551 ± 0.0066
36.16	38. 16	0.351 ± 0.016	32.16	33.97	0. 115 ± 0.010
40.08	42. 37	0.181 ± 0.012	34.16	36.08	0. 123 ± 0.010
42.08	44.46	0.308 ± 0.016	38.08	40.29	0.0328 ± 0.0052
44.08	46.56	0.243 ± 0.014	40.08	42. 39	0.0444 ± 0.0060
46. 16	48.65	0.108 ± 0.010	46. 16	48.67	0.0481 ± 0.0063
48. 16	50.74	0.113 ± 0.010	48.16	50.76	0.0249 ± 0.0046

TABLE I. - Concluded. CROSS SECTIONS
[Incident energy, $\mathrm{E}_{\alpha}=42.33 \mathrm{MeV}$]

Laboratory scattering angle, $\theta_{\text {lab, }}$ deg	Center of mass scattering angle, ${ }^{\theta}{ }^{\mathrm{cm}}$, deg	$\begin{gathered} \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega} \pm \Delta \frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}, \\ \mathrm{mb} / \mathrm{sr} \end{gathered}$
${ }^{65} \mathrm{Cu}$ alpha scattering; 4.047-MeV state		
10.0	10.64	1. 994 ± 0.150
12.0	12.77	1.744 ± 0.140
14.0	14.90	2.236 ± 0.159
16.0	17.02	1. 712 ± 0.139
18. 16	19. 15	0.591 ± 0.022
20.16	21.27	0. 524 ± 0.024
22.08	23.39	0.798 ± 0.025
24.08	25.52	0.789 ± 0.025
26.08	27.63	0.344 ± 0.016
28.08	29.74	0.216 ± 0.013
30. 16	31.86	0. 262 ± 0.014
32. 16	33.97	0. 276 ± 0.015
34. 16	36.08	0.370 ± 0.017
38.08	40.29	0. 121 ± 0.010
42.08	44.49	0. 164 ± 0.012
46. 16	48.68	0.0863 ± 0.0084
48. 16	50.77	0.0325 ± 0.0052
${ }^{65} \mathrm{Cu}$ alpha scattering; 4. $180-\mathrm{MeV}$ state		
10.0	10.64	1. 480 ± 0.130
12.0	12.77	0.398 ± 0.067
16.0	17.02	0. 206 ± 0.048
18. 16	19.15	0. 184 ± 0.012
20.16	21.28	0.217 ± 0.013
22.08	23. 40	0.0532 ± 0.0065
24.08	25. 52	0.0322 ± 0.0016
26.08	27.64	0.0856 ± 0.0083
30. 16	31.86	0.0511 ± 0.0064
32. 16	33.98	0.0830 ± 0.0082
34. 16	36.08	0.0562 ± 0.0068
38.08	40.30	0.0934 ± 0.0088
42.08	44.50	0.0536 ± 0.0066
46.16	48.68	0.0382 ± 0.0056
48. 16	50.77	0.0333 ± 0.0052

TABLE II. - OPTICAL MODEL PARAMETERS

TABLE III. - EXPERIMENTAL INFORMATION

Energy level, MeV (a)	Angular momen- tum transfer, l	Partial deformation parameter, $\beta_{l}^{\prime}\left(\mathrm{J}_{\mathbf{f}}\right)$	Spin and parity, J^{π}	Deformation parameter of even core, β_{l} (core)	$\mathrm{R}_{\text {ALPHA }}$	$\mathrm{R}_{\text {PROTON }}{ }^{\text {b, c }}$	$\mathrm{R}_{\text {ALPHA }} \mathrm{b}, \mathrm{d}$
0.771	2	0.0578	$1 / 2^{-}$	0.183 ± 0.016 :	0.836 ± 0.226	1. 00 ± 0.17	0.925
1. 114		. 0977	5/2-	. 178 ± 0.014	. 795 ± 0.208	1. 21 ± 0.22	. 99
1. 482		. 108	7/2 ${ }^{-}$. 172 ± 0.014	. 730 ± 0.202	. 95 ± 0.18	. 90
1. 629		. 0234	$(5 / 2)^{-}$.	. 042 ± 0.004	. 045 ± 0.012	. 20 ± 0.05	. 09
1. 725	1	. 0222	$3 / 2^{-}$. 049 ± 0.003	. 060 ± 0.015	---------	. 22
2.098	2	. 0365	$(5 / 2)^{-}$. 066 ± 0.005	. 105 ± 0.021	---------	28
2.344	---	- ------	---	----------	-----------	---------	--
2.530	3	. 0864	$(9 / 2)^{+}$. 122 ± 0.011	. 455 ± 0.136	1. 25 ± 0.20	-
2.858	2	. 0267	-----	-----------	-----------	---------	-----
2.980	3	. 0390	-	-----------	-----------	---------	-----
3.082	3	. 0666	-----		-----------	---------	-----
3.310		. 0683	(5/2) ${ }^{+}$. 124 ± 0.011	. 467 ± 0.014	1. 30 ± 0.30	--
3. 494		. 0624	-----		-----------	---------	-----
3. 709		. 0335	-----	-----------	-----------	---------	-----
3.930		. 0331	-	-----------	-----------	---------	-
4.047	1	. 0496	-	-----------	-----------	---------	-
4. 180	--	--				---------	-----

${ }^{\text {a }}$ Error in energy levels is $\pm 25 \mathrm{keV}$.
$\mathrm{b}_{\mathrm{R}}=\frac{\mathrm{B}(\mathrm{E} l) \downarrow^{65} \mathrm{Cu}}{\mathrm{B}(\mathrm{E} L) \downarrow^{64} \mathrm{Ni}}$.
$\mathrm{c}_{\text {Ref. }} 3$.
$\mathrm{d}_{\text {Ref. }} 4$.

TABLE IV. - RATIOS OF B(E2)

Energy level, MeV	Spin and parity, J^{π}	Deformation parameter, β_{2} (core)	R^{a}	Deformation parameter, β_{2} (core)	R^{a}	Deformation parameter, β_{2} (core)	R^{a}	$\begin{gathered} \mathrm{R}^{\mathrm{a}} \\ \text { (calcula- } \\ \text { tion) } \end{gathered}$
		Alpha scattering		Proton scattering ${ }^{\text {b }}$		Alpha scattering ${ }^{\text {c }}$		
0.771	$1 / 2^{-}$	0.183 ± 0.016	0.836 ± 0.226	0. 200 ± 0.010	1.00 ± 0.17	0. 174	0. 925	1.003
1. 114	$5 / 2^{-}$. 178 ± 0.014	. 795 ± 0.208	220 ± 0.014	1. 21 ± 0.22	181	. 99	786
1. 482	$7 / 2^{-}$. 172 ± 0.014	- 730 ± 0.202	. 195 ± 0.014	. 95 ± 0.18	. 173	.. 90	928
1.629	(5/2) ${ }^{-}$. 042 ± 0.004	. 045 ± 0.012	. 078 ± 0.007	. 20 ± 0.05	. 055	. 09	. 440
1. 725	$3 / 2^{-}$. 049 ± 0.003	. 060 ± 0.015	----------	---------	. 084	. 22	-----
2: 098	(5/2) ${ }^{-}$. 066 ± 0.005	. 105 ± 0.021			. 097	. 28	. 420

$\mathrm{a}_{\mathrm{R}}=\frac{\mathrm{B}(\mathrm{E} l) \downarrow{ }^{65} \mathrm{Cu}}{\mathrm{B}(\mathrm{E} l) \downarrow{ }^{64} \mathrm{Ni}}$.
${ }^{\mathrm{b}}$ Ref. 3.
${ }^{\mathrm{c}}$ Ref. 4.

TABLE V. - EIGENFUNCTIONS

Energy level, MeV	Spin and parity, J^{π}	$\left\|0, p_{1 / 2}\right\rangle$	$\left\|0, p_{3 / 2}\right\rangle$	$\left\|0, f_{5 / 2}\right\rangle$	$\left\|2, \mathrm{p}_{1 / 2}\right\rangle$	$\left\|2, p_{3 / 2}\right\rangle$	$\mid 2, \mathrm{f}_{5 / 2}$	$\mathrm{C}^{2} \mathrm{~S}$	
								Calcu- lated	Reference $6^{\text {a }}$
0	$3 / 2^{-}$	------	0.9286	--	0.1810	-0.3070	0.1034	0.86	$0.79 \mathrm{p}_{3 / 2}$
. 776	$1 / 2^{-}$	0.8809	------	------	------	-. 4116	-. 2334	. 79	. $75 \mathrm{p}_{1 / 2}$
1. 143	$5 / 2^{-}$	------	-	0.7224	-. 1044	-. 6422	-. 2343	. 52	. 26 f $5 / 2$
1.451	$7 / 2^{-}$	------	------	------	------	. 9869	. 1612	----	. 054
1. 565	$5 / 2^{-}$		-	. 5234	-. 4243	. 7194	-. 1686	. 27	$57 \mathrm{f}_{5 / 2}$
2. 133	$3 / 2^{-}$. 1612		. 5821	. 7855	-. 1345	----	. $073 \mathrm{f}_{5 / 2}$

${ }^{a_{64}} \mathrm{Ni}\left({ }^{3} \mathrm{He}, \mathrm{d}\right){ }^{65} \mathrm{Cu}$.

Figure 1. - Scattering system. (All dimensions are in cm.)

Figure 2. - Block diagram of electronics. (Channel 1 is shown in detail and is representative of channels 2, 3, and 4.)

Figure 3. - Energy spectrum ${ }^{65} \mathrm{Cu}\left(\alpha, a^{\prime}\right)$; laboratory scattering angle $\theta_{\mathrm{lab}}=26.0^{\circ}$.

Figure 4.: ${ }^{55} \mathrm{Cu}$ elastic alpha scattering incident energy $E_{a}=42.33 \mathrm{MeV}$. Real well depth $V=195.9 \mathrm{MeV}$; real well radius $r_{0}=1.364 \mathrm{f}$; real well diffuseness $a_{0}=$ 0.586 f ; imaginary well depth $\mathrm{W}=21.93 \mathrm{MeV}$; imaginary well radius $r_{i}=1.505 \mathrm{f}_{\text {; }}$ imaginary well diffuseness $a_{i}=0.627 \mathrm{f}$.

Figure 5. $-l=2$ angular distributions.

Figure 6. $-l=3$ angular distributions.

Figure 10. - Comparison of experimental and calculated energy level for ${ }^{65} \mathrm{Cu}$. Calculation parameters: $\mathrm{P}_{3 / 2}-\mathrm{P}_{1 / 2}=1.20 \mathrm{MeV} ; \xi=0.20 ; \mathrm{p}_{3 / 2}-\mathrm{f}_{5 / 2}=$ $1.40 \mathrm{MeV} ; \chi_{1}=0.40 ; \chi_{2}=0.35$.

> "The aeronautical and space activities of the United States shall be conducted so as to contribute . .to the expansion of buman anowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."
> -NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

T'ECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.
TECHNICAL MEMORANDUMS:
Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.
CONTRACTOR REPORTS: Scientific and rechnical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information

 derived from or of value to NASA activities. Publications include final reports of major. projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.
TECHNOLOGY UTILIZATION

 PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.Details on the availability of these publications may be obfained from:
SCIENTIFIC AND TECHNICAL INFORMATION OFFICE
D.C. 20546

[^0]: *For sale by the National Technical Information Service, Springfield, Virginia 22151

[^1]: *Associate Professor of Physics, Northwestern University, Evanston, Illinois.

