

CAVITATION IN LIQUID CRYOGENS
 III - Ogives

by J. Hord

Prepared by
NATIONAL BUREAU OF STANDARDS
Boulder, Colo. 80302
for Lewis Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • MAY 1973

1. Report No. NASA CR-2242	2. Government Accession No.	3. Recipient's Catalog No.	
4. Title and Subtitle CAVITATION IN LIQUID CRYOGENS III - OGIVES		5. Report Date May 1973	
		6. Performing Organization Code	
7. Author(s) J. Hord		8. Performing Organization Report No. None	
9. Performing Organization Name and Address National Bureau of Standards Boulder, Colorado 80302		10. Work Unit No.	
		11. Contract or Grant No.C-39004B	
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546		13. Type of Report and Period Covered Contractor Report	
		14. Sponsoring Agency Code	
15. Supplementary Notes Project Manager, Werner R. Britsch, Fluid System Components Division, NASA Lewis Research Center, Cleveland, Ohio			
16. Abstract This document constitutes the cavitation studies. Experime Both desinent and developed cav The desinent data do not exhib were consistently influenced by The developed cavity data ind the vaporous cavities. These NASA CR-2156 (volume II of improves data correlation for future predictive applications are shown to vary with specif from knowledge of the noncavi	hird of four volumes to b al results for three, sca ity data, using liquid hy a consistent ogive size ogive size; B-factor inc ated that stable thermody ata were correlated by u s report series). The n ogives, hydrofoil, and The cavitation coefficien equipment-fluid combina ting pressure coefficient	n the results of er-caliber ogi liquid nitroge the developed th increasing o ilibrium exist xtended theory ating paramete nd appears att and equipment method of esti ted.	ontinuing are given. are report vity data e diameter hroughout rived in MTWO, tive for size effects ting $K_{c, m}$
17. Key Words (Suggested by Author(s)) Cavitation Cryogenics Hydrofoil Nucleation Ogives Pumps Venturi	18. Distributid Uncla	unlimited	
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassifjed	21. No. of Pages 244	$\begin{aligned} & \text { 22. Price* } \\ & \$ 3.00 \end{aligned}$

[^0]
CONTENTS

Page

1. Summary 1
2. Introduction 3
3. Experimental Apparatus 8
4. 1 Ogives, Tunnels, and Sting-Mount Assembly 8
3.1.1 Design Considerations. 9
5. 1.2 Details of Fabrication 25
3.2 Ogive Contours and Pressure Distributions 27
6. Data Analysis 31
7. 1 Correlation of Desinent Cavitation Data 31
8. 2 Discussion of Desinent Cavitation Data 51
9. 3 Correlation of Developed Cavitation Data 60
10. 4 Discussion of Developed Cavitation Data. 79
4.4.1 Cavity Visualization and Appearance 79
4.4.2 Graphical Display of Typical Developed Cavity Data 80
4.4.3 Mathematical Correlative Results 82
4.4.4 Variation of $\mathrm{K}_{\mathrm{c}, \mathrm{min}}$ With Geometry, Fluid, Size, Etc. 89
11. 5 Developed Cavity Shapes 93
12. Concluding Remarks 95
13. Nomenclature 97
14. References 102
Appendix A: Experimental cavitation data--nitrogen and
hydrogen--for ogives 106

LIST OF FIGURES

Figure 3.1 Photograph of 0.420 -inch and 0.210 -inch diameter ogives ready for installation in test facility

Figure 3.2 Photograph showing optical distortion attributable to plastic tunnel, as fabricated, for the 0.210 -inch ogive11

Figure 3. 3 Photograph showing optical distortion attribut
able to plastic tunnel, as fabricated, for the
0.357 -inch ogive
Figure 3. 4 Photograph showing optical distortion attribut- able to plastic tunnel, as fabricated, for the 0.420-inch ogive 13
Figure 3.5 Sketch of instrumented ogive and sting assembly 14
Figure 3.6 Photographs showing typical appearance of vaporous hydrogen cavities on the 0.210 -inch ogive 15
Figure 3.7 Photographs showing typical appearance of vaporous hydrogen cavities on the 0.357 -inch ogive 16
Figure 3.8 Photographs showing vaporous hydrogencavities on the 0.420 -inch ogive--bottom twophotographs show typical appearance17
Figure•3.9 Details of 0.210 -inch diameter ogive 18
Figure 3. 10 Details of 0.357 -inch diameter ogive 19

LIST OF FIGURES (Continued)

Page

Figure 3. 11 Details of 0.420-inch diameter ogive 20
Figure 3. 12 Details of plastic tunnel for 0.210 -inch diameter ogive.

Figure 3. 13 Details of plastic tunnel for 0.357 -inch diameter ogive.

Figure 3. 14 Details of plastic tunnel for 0.420 -inch diameter ogive 。23

Figure 3.15 Contour of the quarter-caliber rounded nose of the 0.210 -inch ogive.28

Figure 3. 16 Pressure distributions on the quarter-caliber ogives, for noncavitating flow.29

Figure 4. 1 Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid hydrogen--0. 210-inch ogive:

Figure 4. 2 Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid hydrogen--0. 357-inch ogive:

$$
\begin{aligned}
& 1=P_{\mathrm{v}} @ 37 \mathrm{R} ;\left(2=\mathrm{P}_{\mathrm{v}} @ 39 \mathrm{R} ;\right. \\
& 3=P_{\mathrm{v}} @ 41 \mathrm{R} . . . \mathrm{C} .
\end{aligned}
$$

Figure 4. 3 Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid hydrogen--0. 420-inch ogive:

$$
\begin{aligned}
& 1=P_{\mathrm{v}} @ 37.5 \mathrm{R} ; 2=\mathrm{P}_{\mathrm{v}} @ 39.25 \mathrm{R} ; \\
& 3=P_{\mathrm{v}} @ 41 \mathrm{R} . . . \mathrm{C} . \mathrm{C} .
\end{aligned}
$$

LIST OF FIGURES (Continued)

Page
Figure 4. 4 Desinent cavitation parameter for liquid hydrogen as a function of tunnel inlet velocity and liquid temperature--0.210-inch ogive. . . 42
Figure 4.5
Desinent cavitation parameter for liquid hydrogen as a function of tunnel inlet velocity and liquid temperature--0.357-inch ogive.
Figure 4. 6 Desinent cavitation parameter for liquid hydrogen as a function of tunnel inlet velocity and liquid temperature--0. 420-inch ogive.44

Figure 4.7 Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid nitrogen--0.210-inch ogive: $1=P_{\mathrm{V}} @ 141 \mathrm{R} ; 2=\mathrm{P}_{\mathrm{v}} @ 151 \mathrm{R}$; (3) $=P_{v} @ 161 \mathrm{R} ;\left(4=P_{v} @ 166 \mathrm{R}\right.$. 45
Figure 4.8

Figure 4.9

Figure 4.10
Desinent cavitation parameter for liquid nitrogen as a function of tunnel inlet velocity and liquid temperature--0.210-inch ogive.

LIST OF FIGURES (Continued)

		Page
Figure 4.11	Desinent cavitation parameter for liquid	
	nitrogen as a function of tunnel inlet velocity and liquid temperature--0. 357-inch ogive.	49
Figure 4.12	Desinent cavitation parameter for liquid	
	nitrogen as a function of tunnel inlet velocity and liquid temperature--0. 420-inch ogive.	50
Figure 4. 13	Desinent cavitation parameter for liquid	
	hydrogen as a function of $\mathrm{V}_{0}, \mathrm{~T}_{0}$, and D_{m}	54
Figure 4. 14	Desinent cavitation parameter for liquid hydrogen as a function of $(\mathrm{We})^{0.5}, \mathrm{~T}_{\mathrm{o}}$ and	
	D_{m} • • - . . -	55
Figure 4.15	Desinent cavitation parameter for liquid	
	nitrogen as a function of $\mathrm{V}_{0}, \mathrm{~T}_{\mathrm{o}}$, and D_{m}	56
Figure 4.16	Desinent cavitation parameter for liquid nitrogen as a function of (We) ${ }^{0.5}, \mathrm{~T}_{\mathrm{o}}$ and	
	D_{m} • • -	57
Figure 4.17	Pressure depressions within cavities in	
	liquid hydrogen	62
Figure 4.18	Pressure and temperature depressions	
	within cavities in liquid hydrogen .	63
Figure 4.19	Pressure and temperature depressions	
	within cavities in liquid hydrogen .	64
Figure 4. 20	Pressure depressions within cavities in	
	liquid hydrogen	65
Figure 4.21	Pressure and temperature depressions within	
	cavities in liquid hydrogen	66

LIST OF FIGURES (Continued)

> Page

Figure 4. 22 Pressure and temperature depressions within cavities in liquid nitrogen 67

Figure 4. 23 Pressure and temperature depressions within cavities in liquid nitrogen 68

Figure 4. 24 Pressure and temperature depressions within cavities in liquid nitrogen 69

Figure 4. 25 Pressure and temperature depressions within cavities in liquid nitrogen 70

Figure 4. 26 Pressure and temperature depressions within cavities in liquid nitrogen 71
Figure 4. 27 Minimum cavitation parameter, $\bar{K}_{c, m i n}$, as a function of minimum noncavitating pressure coefficient, $\stackrel{V}{\mathrm{~V}}_{\mathrm{p}}$, for various hydrodynamic bodies 92

LIST OF TABLES

		Page
Table 4. 1	Temperature-compensated desinent data (Hydrogen: 0.210 -inch (0.533 cm) ogive).	33
Table 4.2	Temperature-compensated desinent data (Hydrogen: 0.357-inch (0.907 cm) ogive).	34
Table 4. 3	Temperature-compensated desinent data (Hydrogen: 0.420-inch (1.067 cm) ogive).	35
Table 4. 4	Temperature-compensated desinent data (Nitrogen: 0.210 -inch (0.533 cm) ogive)	36
Table 4.5	Temperature-compensated desinent data (Nitrogen: 0.357-inch (0.907 cm) ogive) .	37
Table 4.6	Temperature-compensated desinent data (Nitrogen: 0.420-inch (1.067 cm) ogive)	38
Table 4.7	Correlative results for developed cavity data using equation (4-8)--ogives . .	74
Table 4.8	Correlative results for developed cavity data using equation (4-9)--ogives	75
Table 4.9	Summary of correlative results for developed cavity data--ogives, hydrofoil, and venturi .	76
Table 4. 10	Summary of developed cavity shape data	94
Table A-1a.	Experimental cavitation data for 0.210 -inch ogive using liquid nitrogen (English Units). .	106
Table A-lb.	Experimental cavitation data for 0.210 -inch ogive using liquid nitrogen (SI Units)	113
Table A-2a.	Experimental cavitation data for 0.210 -inch ogive using liquid hydrogen (English Units)	120

Page
Table A-2b. Experimental cavitation data for 0.210 -inch ogive using liquid hydrogen (SI Units) 128
Table A-3a. Experimental cavitation data for 0.357 -inch ogive using liquid nitrogen (English Units) 136
Table A-3b. Experimental cavitation data for 0.357-inch ogive using liquid nitrogen (SI Units) 151Table A-4a. Experimental cavitation data for 0.357-inchogive using liquid hydrogen (English Units) . . 166
Table A-4b. Experimental cavitation data for 0.357 -inch ogive using liquid hydrogen (SI Units) 182
Table A-5a. Experimental cavitation data for 0.420 -inch ogive using liquid nitrogen (English Units) . . 198
Table A-5b. Experimental data for 0.420 -inch ogive using liquid nitrogen (SI Units) 209
Table A-6a. Experimental cavitation data for 0.420-inch ogive using liquid hydrogen (English Units) 220
Table A-6b. Experimental cavitation data for 0.420 -inch ogive using liquid hydrogen (SI Units) 228

CAVITATION IN LIQUID CRYOGENS III - OGIVES

J. Hord

1. SUMMARY

This document constitutes the third of four volumes to be issued on the results of continuing cavitation studies. The first volume dealt with venturi experiments, and the second volume treated $0.5-\mathrm{caliber}$ hydrofoil experiments and extended the theory for correlating developed cavitation data. This third volume documents experimental results for three, scaled, quarter-caliber ogives.

Details of the ogive-tunnel configurations, cavity instrumentation, data analysis, and correlative techniques are discussed.

Experimental data resulting from this study are presented in their entirety in tabular form. Selected data are also presented in graphical form. Both desinent and developed cavity data were acquired, using liquid hydrogen and liquid nitrogen test fluids. A mathematical technique was used to correlate the ogive desinent cavity data. The desinent data tend toward a narrow range of K_{iv} values, at the maximum fluid velocities, irrespective of fluid or fluid temperature. Similar results were previously obtained with the venturi and hydrofoil. Comparison of our desinent data with that of others--for higher boiling-point liquids --shows that cryogenic liquids require less subcooling to avoid cavitation, i. e., less Net Positive Suction Pressure (NPSP) is required for the cryogens.

Our ogive desinent data do not reflect a consistent size effect, although the ogive diameters varied by a factor of two. For hydrogen, $K_{i v}$ increases with ogive diameter, but an opposite trend is noted for nitrogen. Use of the Weber and Reynolds numbers, as correlating
parameters, does not improve correlation of the se desinent data. It is also apparent from these data that correlation of desinent cavity data, to account for variation of $K_{i v}$ with fluid temperature, will require development of new correlating parameters. New parameters for correlating size effects in desinent cavity data may also be required.

Developed cavity data, consisting of pressure and temperature measurements within fully developed hydrogen and nitrogen cavities, indicated that stable thermodynamic equilibrium prevails throughout the vaporous cavities. These data were correlated using the extended theory derived in Volume II of this report series and the new correlating parameter, MTWO; MTWO is a liquid phase velocity ratio, derived from twophase flow considerations. These correlative expressions are also suitable for predicting the cavitating performance of a particular piece of equipment from one fluid to another. In certain instances, data correlation is improved by using liquid kinematic viscosity as a correlating parameter. Maximum benefit, in data correlation, is obtained by using the new MTWO parameter. When MTWO is used it appears that only two other correlating parameters, cavity length and equipment size, are required. Use of MTWO, to correlate or predict the performance of cavitating equipment, is recommended in all future work. It is significant that the parameters which satisfactorily correlated the venturi and hydrofoil data also work quite well for these ogive data. Thus, these correlating parameters are proven applicable to a variety of body geometries (two-dimensional and axisymmetric) that encompass internal and external cavitating flows.

The developed-cavity data obtained with the ogives exhibited a consistently strong size effect. The cavity pressure-depressions increased with increasing ogive diameter; consequently, B-factor increased with increasing ogive diameter. For these data, we found that B-factor increases almost linearly with increasing ogive diameter--if the cavity
length-to-ogive-diameter ratio is held constant. Comparison of our data with those of others indicates that size effects vary with specific equipment and equipment-fluid combinations.

This study demonstrates that $K_{c, \min }$ can vary widely with fluid, flow conditions, and equipment size, although the equipment geometry is fixed. $K_{c, m i n}$, of course, varies widely with equipment geometry and our ogive data show that $K_{c, \min }$ increases with increasing ogive size. This information, coupled with that of others, indicates that current predictive techniques must be used with prudence, i. e., the techniques that rely upon constant $K_{c, m i n}$ admit an additional source of error for some equipment geometries. This study also indicates that $K_{c, \min }$, for a specific piece of equipment, is not currently predictable prior to testing of that equipment. It is suggested that extensive experimental data relati.ng the cavitating $\underset{\mathrm{v}}{\mathrm{p}} \mathrm{m}$ sure coefficient, $\mathrm{K}_{\mathrm{c}, \mathrm{min}}$, to the noncavitating pressume coefficient, C_{p}, may alleviate this situation.

Photographic studies, performed during this experiment, indicate that the cavities formed on the ogives have an elliptical shape. The front halves of these cavities are adequately represented by a simple algebraic expression of parabolic form.

2. INTRODUCTION

Vaporous cavitation is the formation of the vapor phase within a flowing liquid, due to a reduction in pressure. Since the formation and collapse of vapor cavities alters flow patterns, cavitation may reduce the efficiency of pumping machinery $[1]^{l}$ and reduce the precision of flow measuring devices. Collapse of these vapor cavities can also cause serious erosion damage [2] to fluid-handling equipment. While the noncavitating performance of hydraulic equipment may be predicted from established similarity laws, cavitating performance is much more
difficult to predict from fluid-to-fluid. Recent advances in this area have been made by NASA-LeRC personnel [3-6] and others [7-9], but additional work is required to improve the current technique for predicting cavitating performance of equipment from fluid-to-fluid. The effects of fluid properties on cavitation performance are well recognized [10-19] and require more understanding to develop improved similarity relations [19] for equipment behavior. Much mpre knowledge is needed to extend this predictive capability from one piece of equipment to another, i.e., a more general predictive technique, applicable to equipment design, must include the effects of equipment geometry and size in addition to fluid properties.

NASA has undertaken a program [l] to determine the cavitation characteristics of various hydrodynamic bodies and the thermodynamic behavior of different fluids, in an effort to obtain improved design criteria to aid in the prediction of cavitating pump performance. The study described herein was conducted in support of this program.

Liquid hydrogen and liquid nitrogen were chosen as test fluids for this study for the following reasons: (1) the ultimate goal of this program is to acquire sufficient knowledge to permit intelligent design of pumps for near-boiling liquids, and (2) predictive analyses indicated [1] that the physical properties of hydrogen and nitrogen make them particularly desirable test fluids. The objectives of this study were l) to experimentally determine the flow and thermodynamic conditions required to induce desinent (or incipient) and developed cavitation on various hydrodynamic bodies, 2) to improve existing correlative expressions for the prediction of cavitating performance of hydraulic equipment, and 3) to establish, if possible, a technique for predicting the fluid-handling capability of different cavitating equipment using different fluids. The latter two items are extensions of the state-of-the-art and the last objective is highly optimistic, i. e., accounting for the effects of equipment geometry and size in the predictive expressions.

This report covers the work performed on three cylindrical bodies with quarter-caliber rounded heads. Such bodies are commonly called 'ogives' and 'quarter-caliber' indicates that the curve that is tangent to the cylinder nose and the cylindrical body has a radius that is $1 / 4$ of the diameter of the cylindrical body. The three quarter-caliber ogives had diameters of 0.210 -inch (0.533 cm) , 0.357 -inch (0.907 cm), and 0.420 -inch (1.067 cm). This two-to-one variation in size was provided to permit the study of size effects. Cavitation data, pertaining to a transparent plastic venturi and a half-caliber hydrofoil, were presented in Volumes I and II of this report series [20, 21].

Both desinent and incipient cavitation data were acquired with hydrogen and nitrogen test fluids. In this report, desinence (or incipience) refers to barely visible cavities. Preliminary tests indicated that the incipient data were not repeatable; consequently, very little effort was expended in acquiring incipient data--only two incipient data points are reported in the tabulated data given in appendix A. In the desinent cavity studies, the range of attainable test section inlet velocities varied with the size of the ogives as follows: For the 0.210 -inch ogive, the velocity varied from 120 to $255 \mathrm{ft} / \mathrm{s}(36.6$ to $77.7 \mathrm{~m} / \mathrm{s})$ with hydrogen, and from 30 to $90 \mathrm{ft} / \mathrm{s}(9.1$ to $27.4 \mathrm{~m} / \mathrm{s})$ with nitrogen; for the 0.357 -inch ogive, the velocity varied from 113 to $230 \mathrm{ft} / \mathrm{s}(34.4$ to $70.1 \mathrm{~m} / \mathrm{s})$ with hydrogen, and from 25 to $83 \mathrm{ft} / \mathrm{s}(7.6$ to $25.3 \mathrm{~m} / \mathrm{s})$ with nitrogen; for the 0.420 -inch ogive, the velocity varied from 110 to $158 \mathrm{ft} / \mathrm{s}(33.5$ to $48.2 \mathrm{~m} / \mathrm{s})$ with hydrogen, and from 27 to $70 \mathrm{ft} / \mathrm{s}(8.2$ to $21.3 \mathrm{~m} / \mathrm{s}$) with nitrogen. Inlet fluid temperatures were varied from approximately 37 to 42 R (20.56 to 23.33 K) with hydrogen, and from 138 to 166 R (76.67 to 92.22 K) with nitrogen.

Pressure and temperature profiles, within fully developed cavities, were measured and are referred to herein as developed cavitation data. The bulkstream vapor pressure exceeds the measured cavity pressure and the saturation pressure corresponding to the measured cavity tem-
perature; therefore, the measured pressure depressions, and the pressure depressions corresponding to the measured temperature depressions, within the cavity, are called "pressure depressions." Alternatively, the pressure depression may be expressed in terms of its equivalent equilibrium "temperature depression." Contrary to the venturi tests [20, 22], no thermodynamic metastability was detected within the vaporous hydrogen or nitrogen cavities developed on the hydrofoil [21] or the ogives; i.e., measured temperatures and pressures within the cavitated regions appeared to be in thermodynamic equilibrium.

Test section inlet velocity range, inlet liquid temperatures, and cavity lengths varied with ogive size; fluid velocities and temperatures were approximately the same as those listed for the desinent data. Slightly higher velocities were required to develop long cavities on the ogives, and maximum inlet velocities were attained with the 0.210 -inch ogive. Maximum inlet velocities were:

1) 0.210 -inch ogive-- $304 \mathrm{ft} / \mathrm{s}(92.7 \mathrm{~m} / \mathrm{s})$ with hydrogen and $111.6 \mathrm{ft} / \mathrm{s}(34.0 \mathrm{~m} / \mathrm{s})$ with nitrogen,
2) 0.357 -inch ogive-- $263.3 \mathrm{ft} / \mathrm{s}(80.3 \mathrm{~m} / \mathrm{s})$ with hydrogen and $90.6 \mathrm{ft} / \mathrm{s}(27.6 \mathrm{~m} / \mathrm{s})$ with nitrogen,
3) 0.420 -inch ogive-- $169.1 \mathrm{ft} / \mathrm{s}(51.5 \mathrm{~m} / \mathrm{s})$ with hydrogen and $72.0 \mathrm{ft} / \mathrm{s}(21.9 \mathrm{~m} / \mathrm{s})$ with nitrogen.

Cavity lengths varied as follows:

1) 0.210 -inch ogive- -0.22 to 0.96 inches $(0.56$ to 2.44 cm) with hydrogen and from 0.20 to 1.52 inches (0.51 to 3.86 cm) with nitrogen,
2) 0.357 -inch ogive-- 0.40 to 1.50 inches (1.02 to 3.81 cm) with hydrogen and from 0.40 to 1.75 inches (1.02 to 4.45 cm) with nitrogen,
3) 0.420 -inch ogive - 0.44 to 1.48 inches (1.12 to 3.76 cm)
with hydrogen and from 0.32 to 1.80 inches (0.81 to 4.57 cm) with nitrogen.

A similarity equation, based upon the B-factor concept of Stahl and Stepanoff [11], has been developed [19] for correlating cavitation data for a particular test item from fluid-to-fluid; this correlation is also useful in extending the velocity and temperature range of data for any given fluid. Thermal boundary layer considerations and two-phase mass flux limiting concepts were used $\lceil 21\rceil$ to improve this correlative expression. A new correlating parameter, MTWO, was developed [21] and has proven to be a valuable correlating parameter for our venturi, hydrofoil [21], and ogive data. The MTWO parameter is the ratio of $V_{o} / V_{l}-$ where V_{l} is proportional to the two-phase liquid-vapor sonic velocity across the cavity interface, see reference [21]. The correlative expressions [21] developed in the course of this study are used to correlate the experimental data for the ogives. A comparison of the correlative results for the venturi, hydrofoil, and ogives is also provided.

The developed cavitation number, $\mathrm{K}_{\mathrm{c}, \mathrm{min}}$, is a vital parameter in current formulations for predicting [3-5] the cavitating performance of liquid pumps. $K_{c, m i n}$, for a specific piece of equipment, is currently obtained from experimental performance tests. To apply existing predictive techniques, $K_{c, \min }$ must remain essentially constant, thus requiring the use of similar or identical equipment. Existing predictive techniques could be generalized, and possibly materially improved, if $K_{c, \min }$ were predictable from one piece of equipment to another. This study indicates that it may be possible to predict $K_{c, \min }$ from known fluid flow and equipment geometry considerations. It will be shown that $K_{c, \min }$ can be related to the non-cavitating minimum pressure coefficient for cavitating bodies, such as the venturi [20], hydrofoil [21], and ogives used in this study. A similar approach may be possible with rotating machinery such as liquid pumps and inducers.

3. EXPERIMENTAL APPARATUS

The experimental apparatus used in this study was explained in detail in the first volume [20] of this report series. The experimental facility, instrumentation, error statements, visual and photographic aids, and test procedures are fully described in that document [20]. One additional error statement--concerning uncertainty in pressure measurement for nitrogen test fluid--was needed and given in section 5.2 of Volume II [21]. Only the test section (tunnel) and ogive details need to be discussed here. The tunnel was located between the supply and receiver dewars of a blowdown flow system, see reference [20].

3.1 Ogives, Tunnels, and Sting-Mount Assembly

The quarter-caliber ogives, used in this experiment, were chosen so that developed cavitation test data could be obtained for external flow over axisymmetric bodies. These data may ultimately be correlated with similar data for external flow over a hydrofoil [21] and for internal flow through a venturi [20]. Also, the ogives offer an opportunity to study the effects of cavity shape on the correlative formulae, i. e., the cavity thickness, as a function of length, velocity, etc., may be determined.

The three ogives used in this experiment consisted of cylindrical bodies with quarter-caliber rounded noses. The diameters of the cylindrical bodies were 0.210 -inch $(0.533 \mathrm{~cm}), 0.357$-inch (0.907 cm) and 0.420 -inch (1.067 cm). The length-to-diameter ratio of the ogives is 8:1, and the ogives are instrumented with pressure and temperature sensors over a length of ~ 3.5 diameters.

Transparent plastic tunnels, and rigid metallic sting-mounts, were designed to experimentally complement the quarter-caliber ogives. The ogives were designed to mate directly with the sting-mount used in the hydrofoil tests [21]--this sting design was fully described in the hydrofoil report [21] and will not be discussed herein. Initially, the tunnels were
designed so that the internal passages were constant-diameter cylindrical ducts; however, difficulties were encountered with tunnel cavitation, and it was necessary to enlarge the tunnel diameters downstream of the ogive noses.

A photograph of the 0.210 -inch and 0.420 -inch ogives, ready for installation in the test facility, is shown on figure 3.1. Optical distortion photographs of the three plastic tunnels, as fabricated, are shown on figures 3.2 through 3.4. A sketch of an instrumented ogive and sting assembly is given on figure 3.5 , and figures 3.6 through 3.8 show photographs of the ogives as viewed during tests. Details concerning the ogives and tunnels are given below and on figures 3.9 through 3.14.

3.1.1 Design Considerations

The ogives were initially designed to be situated within constantdiameter cylindrical tunnels. A tunnel blockage factor, ($\left.\mathrm{D}_{\mathrm{m}} / \mathrm{D}_{\mathrm{o}}\right)^{2}$, of approximately 10 percent was selected to cause the ogives to cavitate readily; however, preliminary tests indicated that cavities, developed on the ogives, were sufficiently thick to cause tunnel cavitation. The tunnel (test section) cavitation is attributed to the pressure reduction that accompanies the acceleration of liquid between the cavity and tunnel walls. Machining a bell-contoured diffuser into the plastic tunnel alleviates this Bernoulli effect in the vicinity of the cavity, but simultaneously decreases the ogive cavitation number, $K_{i v}-$-resulting in lower magnitudes of subcooling, $P_{o}-P_{v}$, in the tunnel inlet liquid and therefore enhancing cavitation in the inlet of the tunnel. Thus, to perform experiments within the pressure and flow limitations of the existing facility, it was necessary to machine bell-contoured diffusers into each of the plastic tunnels, see figures 3.12 to 3.14 . These contours provided sufficient relief to avoid tunnel cavitation, without detachment of the cavity on the ogive, i.e., the cavity developed on the ogive adhered to the ogive--all tests were monitored via remote closed-circuit TV and motion picture cameras.
Pressure tap (typ.)

0.210 inch dia. ogive

들
흔
를
을
응
응
흘 -

[^1]

Figure 3. 4 Photograph showing optical distortion attributable to plastic tunnel, as fabricated, for the
PRESSURE - SENSING TUBES EXIT
PRESSURE - SENSING TUBES EXIT
HERE--USE ALIGNMENT PIN HERE --USE A
FOR ASSEMBL
FLANGE
HOLLOW ELLIPTIC
STRUT
TTUBE-SUPPO

 ALIGNMEN
PIN (y y.)

THERMOCOUPLE WIRES EXIT
HERE--USE ALIGNMENT
PIN FOR ASSEMBLY.
Figure 3.5 Sketch of instrumented ogive and sting assembly.

Figure 3.6 Photographs showing typical appearance of vaporous hydrogen cavities on the 0.210 -inch ogive.

Figure 3.7 Photographs showing typical appearance of vaporous hydrogen cavities on the 0.357 -inch ogive.

Figure 3.8 Photographs showing vaporous hydrogen cavities on the 0.420 -inch ogive --bottom two photographs show typical appearance.
150 "0.0 $\times 4017$ " Cong, Free cutting bross:
Mitled as shown fuil iongth
TUBE MANDREL for O.210"O.D HOLLOW OGIVE

END VIEW OF O.210"O.D. HOLLOW OGIVE
ALL DIMENSIONS IN INCHES (Unless ot herwise noted)

Figure 3. 10 Details of 0.357 -inch diameter ogive.

Figure 3.11 Details of 0.420 -inch diameter ogive.
ALL DIMENSIONS IN INCHES (Unless otherwise noted)

Figure 3. 12 Details of plastic tunnel for 0.210 -inch diameter ogive.
ALL DIMENSIONS IN INCHES (Unless otherwise noted)

Figure 3.13 Details of plastic tunnel for 0.357 -inch diameter ogive.
ALL DIMENSIONS IN INCHES (Unless ot herwise noted)

Figure 3. 14 Details of plastic tunnel for 0.420-inch diameter ogive,

Several experiments were performed to determine the optimum configuration of the diffuser contour. Conical tapers of 3.5 degrees (half-angle taper) and 4.94 degrees were tested before the bell-contour was tried. Neither of these conical diffusers provided sufficient pressure recovery, far enough upstream, to avoid tunnel cavitation in the vicinity of the cavity attached to the ogive. Calculations indicated that conical diffusers with steeper half-angles would promote flow separation at the diffuser entrance, thus promoting cavitation at that point. Consequently, bell-contours were designed and the configuration indicated on figures 3.12 to 3.14 was finally selected. This contour was located so that the ogive cavitation number, $K_{i v}$, was not drastically lowered, and a blockage factor of 9.5 percent was found to be optimum. Thus, to avoid tunnel cavitation, the tunnel design was compromised by the addition of a bell-contour diffuser--simultaneously, this diffuser demanded the use of a 9.5 percent blockage factor and dictated the axial position of the ogive nose, relative to the diffuser. This axial position is clearly indicated on figures 3.12 to 3.14 .

One of the primary objectives of this study was to experimentally determine cavity shapes, thicknesses, etc.; therefore, photographs were taken, using rectangular grid paper, to evaluate the optical distortion caused by the bell-contours. Figures 3.2 to 3.4 indicate the magnitude of this optical distortion--cavity dimensions, obtained from cavity photographs, were corrected to account for this tunnel induced optical distortion. The plastic tunnels were designed to provide noncavitating uniform flow at the ogive nose. Uniformity of static pressure at the wall of the tunnel inlet was experimentally verified by diametrically-opposed static pressure measurements in the tunnel inlet, see figures 3.12 to 3.14

The thermocouple junctions and pressure sensing ports, used to measure temperatures and pressures within the cavities developed on the ogives, were located as shown in figures 3.9 to 3.11 . The pressure
and temperature sensors were spaced to provide a well-defined continuous pressure profile, as obtained from the pressure and temperature measurements within the cavity. The cavities developed on the ogives appeared symmetrical in all tests, see figures 3.6 to 3.8 .

The ogive test assembly was installed in the same space allocated for the plastic venturi [20] and the hydrofoil [21] in the experimental apparatus.

3.1.2 Details of Fabrication

The tunnels were constructed from annealed, cast acrylic rod; they were easily machined by conventional means. The bell-contours were cut by grinding special lathe tools with the exact contours as indicated on figures 3.12 to 3.14 . The contours of the tool bits were verified by 50 X magnification on an optical comparator. After machining, the internal dimensions and contours of the tunnels were checked by using the tunnels as molds for dental plaster plugs; the plugs were then removed and measured. The internal passages of the tunnels were then carefully polished to a high lustre, using plastic polishing compound.

With the critical machining and polishing completed, the tunnel exteriors were machined and polished. Tunnel dimensions and the location of pressure taps are shown on figures 3.12 to 3.14. Maximum effort was devoted to polishing the interior and exterior surfaces of the tunnel walls, so that cavities on the ogives could be observed with maximum optical resolution. Scribe marks on the tunnel exteriors were used to estimate developed cavity lengths, see figures 3.2 to 3.4 and 3.6 to 3. 8.

Construction of the ogives is quite intricate; therefore, one must carefully study figures 3.9 to 3.11 and figure 3.5 to fully appreciate the finer details. The hollow ogives and ogive mandrels were easily machined by conventional means. The quarter-caliber ogival nose
was lathe-cut by using a special tool that was shaped by grinding. The mandrel portion of each ogive was designed to accommodate ten stainless steel tubes $[0.040$-inch (0.102 cm) diameter with 0.005 -inch (0.013 cm) wall thickness], see figures 3.9 to 3.11 . Each tube was plugged with silver solder on the end nearest the leading edge of the ogive, see figure 3.11. With the tubes in place, the mandrel and tubes were tinned with soft solder. The hollow ogive, as shown on figure 3.11, was puddled full of soft solder. The mandrel and hollow ogive were then carefully assembled, while the solder was liquid.

Upon completion of this assembly, holes were drilled through the ogive into each of the ten small tubes as indicated on figures 3.5 and 3.11. Each of the holes, so drilled, are isolated from the others by the soft solder that fills all voids between the mandrel and hollow ogive. Five of these holes became pressure sensing stations, while the other five were used for thermocouples. This entire assembly was then attached, by soldering, to the sting socket using a special alignment fixture, see figure 3.5. The small tubes must be threaded through the sting, hollow strut, etc., to mate the ogive and sting. Also, the five tubes used as thermocouple conduits were extended through a tube support, at the rear of the sting, and soft soldered to this support. Later, during thermocouple fabrication, this support was epoxied to the sting.

Five pressure transmitting tubes were routed from the ogive, through the hollow sting, and up through one of the hollow elliptical struts. Then, the tubes pass through a slot in the flange and extend through a short length of 0.25 -inch $(0.64 \mathrm{~cm})$ diameter tube that was located outside of the flange. The smaller tubes were collectively soldered inside this larger tube, to form a seal, and then the larger tube was sealed to the flange with a commercial compression fitting. Similar fittings were provided for the pressure sensing stations on the
plastic tunnel. The small pressure transmitting tubes terminate outside of the flange, in the vacuum insulation space, see figures 3.1 and 3.5 . These tubes were then solder-connected to larger tubes which penetrate the vacuum barrier and were attached to pressure transducers.

The other hollow elliptical strut was used to guide thermocouple wires into the vacuum space, see figures 3.1 and 3.5. Details of the thermocouple fabrication, installation, epoxy seals, etc., are given in appendix B of reference [21]. Following this installation, the thermocouple sensors extend through small mounds of epoxy on the ogives. These epoxy bumps must be removed so that l) the bare thermocouple junction is flush with the surface of the ogive and 2) the thermocouple junction is surrounded by epoxy that electrically and thermally isolates the thermocouple while sealing it to the ogive. This installation technique assures rapid response of the thermocouples, while electrically and thermally isolating the junctions from the metal ogive. The epoxy bumps were finished flush with the ogive, by using Swiss files and then fine-grit sandpaper; during this hand-finishing operation, the entire ogive was tapemasked, exposing only the epoxy bumps. Following this finishing operation, the entire ogive was carefully polished, measured, and installed in the test apparatus.

A detailed description of assembly procedures and instrumentation techniques was provided for the hydrofoil [21]--identical procedures and techniques were used for the ogives and the reader is referred to the earlier work [21] for further details.

3.2 Ogive Contours and Pressure Distributions

The actual and theoretical contours of the 0.210 -inch quartercaliber ogive are shown on figure 3.15. This plot is typical for all of the ogives tested; i.e., the machined contours coincided almost perfectly with the theoretical contours. The actual contours were verified

Figure 3.15 Contour of the quarter-caliber rounded nose of the 0.210 -inch ogive.

Figure 3.16 Pressure distributions on the quarter-caliber ogives, for noncavitating flow. Computed data supplied by Werner R. Britsch.
by using an optical comparator (shadowgraph) with 31.25 X magnification. The theoretical noncavitating pressure profiles for these ogives, with and without bounding walls, are shown on figure 3.16; experimental data from this study are also plotted for comparison. The theoretical pressure profiles were computed using existing computer programs [23, 24]. Figure 3.16 indicates good agreement between experimental and calculate data upstream of the third pressure tap, $P_{3^{\circ}}$ Further downstream, the experimental data lie below the theoretical curve, suggesting that pressure recovery in the belled diffuser is less efficient than indicated by the idealized computations.

The calculated data on figure 3.16 are for the cases of 1) an infinite flow field (without tunnel [24]), 2) a constant-diameter cylindrical passage with 9.5 percent tunnel blockage (without diffuser), and 3) the 9. 5 percent tunnel blockage ogive-tunnel configuration selected for this study (with diffuser). Figure 3.16 indicates that the minimum pressure point occurs at about 74 degrees of arc, measured from the stagnation point of the ogive. This minimum pressure location is indicated on the contour shown on figure 3.15. The value of 74 degrees corresponds favorably with the pressure coefficient data developed by Rouse and McNown [25], for cylindrical bodies with quarter-caliber rounded heads. Note from figure 3.16 that tunnel bounding wall configurations have negligible influence on the location of the minimum pressure point; however, the tunnel configuration does influence the minimum pressure coefficient, $\stackrel{v}{C}_{p}$, and the shape of the C_{p} curve downstream of the minimum pressure point.

It is comforting to note that the tunnel blockage correction factor, normally applied to pressure coefficients and cavitation numbers, agrees well with the calculated data shown on figure 3.16. This tunnel blockage
correction factor [2l] is simply $\left\{1-\left(D_{m} / D_{o}\right)^{2}\right\}^{2}$. For our ogives $\left(\mathrm{D}_{\mathrm{m}} / \mathrm{D}_{\mathrm{o}}\right)^{2} \approx 0.095$ and $\mathrm{C}_{\mathrm{p}}^{\mathrm{v}}=-1.47$ for 9.5 percent constant tunnel blockage, see figure 3.16. Correcting for tunnel blockage, we estimate that $\stackrel{v}{C}_{p}$ for an unbounded ogive is $(1-0.095)^{2}(-1.47)=-1.20$, in good agreement with the computerized solution plotted on figure 3.16. The bell-contour diffuser produces a minimum pressure coefficient $\left(\mathrm{V}_{\mathrm{p}}^{\mathrm{v}}=-1.38\right)$ intermediate to the unbounded $\left(\stackrel{V}{\mathrm{~V}}_{\mathrm{p}}=-1.21\right)$ and constant-diameter bounded $\left({\underset{p}{\mathrm{~V}}}_{\mathrm{p}}=-1.47\right.$) ogives, as would be expected.
4. DATA ANALYSIS

The desinent (incipient) and developed cavitation data, for liquid hydrogen and liquid nitrogen, are given in complete detail in appendix A. These tabulated data are given in English and metric units and no attempt has been made to separate the desinent and developed cavity data; however, the desinent (or incipient) cavity data are clearly marked by the attachment of asterisks to the run numbers. The desinent and developed cavity data are correlated and discussed separately in this section.
4. 1 Correlation of Desinent Cavitation Data

With the blow-down facility used in this experimental study, it was impossible to maintain a constant fluid temperature while varying the inlet velocities and pressures to obtain desinent cavities. Consequently, it was necessary to develop a mathematical technique for correlating the desinent data. This was accomplished by using a least-squares surfacefitting computer program. Once an equation is obtained, to fit the experimental surface $\left(\mathrm{P}_{\mathrm{o}}, \mathrm{V}_{\mathrm{o}}, \mathrm{T}_{\mathrm{o}}\right.$ coordinates), the conventional isotherm data for desinence are readily calculated. Complete details concerning this correlating technique, and the computer program, are given in appendix C of reference [21]. Polynomial expressions were derived to correlate the desinent hydrogen and nitrogen data for each of the three ogives.

These expressions were used to compute the desinent data presented in tables 4. 1 to 4.6. These same data are plotted on figures 4.1 to 4. 12. The algebraic expressions used to correlate the desinent data for the individual ogives are as follows:

> Hydrogen (0.210-inch ogive); $P_{o}=0.08720 \mathrm{~V}_{\mathrm{o}}$ $-2.29920 \mathrm{~T}_{\mathrm{o}}+0.00028 \mathrm{~V}_{\mathrm{o}}^{2}+0.06500 \mathrm{~T}_{\mathrm{o}}^{2}$

Hydrogen (0.357-inch ogive); $P_{o}=0.01427 \mathrm{~V}_{\mathrm{o}}$

$$
\begin{equation*}
-1.80390 \mathrm{~T}_{\mathrm{o}}+0.00067 \mathrm{~V}_{\mathrm{o}}^{2}+0.05525 \mathrm{~T}_{\mathrm{o}}^{2}, \tag{4-2}
\end{equation*}
$$

Hydrogen (0.420-inch ogive); $P_{o}=-4.29106 \mathrm{~T}_{\mathrm{o}}$

$$
\begin{equation*}
+0.75224 \mathrm{~V}_{\mathrm{o}}-0.01529 \mathrm{~T}_{\mathrm{o}} \dot{\mathrm{~V}}_{\mathrm{o}}+0.11418 \mathrm{~T}_{\mathrm{o}}^{2}, \tag{4-3}
\end{equation*}
$$

Nitrogen (0.210-inch ogive) $P_{o}=-0.02306 \mathrm{~V}_{\mathrm{o}}$

$$
+1.96230 \mathrm{~T}_{\mathrm{o}}+0.00634 \mathrm{~V}_{\mathrm{o}}^{2}-0.03268 \mathrm{~T}_{\mathrm{o}}^{2}+0.0001393 \mathrm{~T}_{\mathrm{o}}^{3},(4-4)
$$

Nitrogen (0.357-inch ogive) ; $P_{o}=-1.31363 \mathrm{~T}_{\mathrm{o}}$

$$
\begin{equation*}
+0.98429 \mathrm{~V}_{\mathrm{o}}-0.00778 \mathrm{~T}_{\mathrm{o}} \mathrm{~V}_{\mathrm{o}}+0.01022 \mathrm{~T}_{\mathrm{o}}^{2}+0.00802 \mathrm{~V}_{\mathrm{o}}^{2} \tag{4-5}
\end{equation*}
$$

Nitrogen (0.420-inch ogive); $P_{o}=0.39412 \mathrm{~V}_{\mathrm{o}}$
$+2.14806 \mathrm{~T}_{\mathrm{o}}+0.00168 \mathrm{~V}_{\mathrm{o}^{2}}-0.03482 \mathrm{~T}_{o^{2}}+0.0001418 \mathrm{~T}_{\mathrm{o}^{3}} \cdot(4-6)$

Table 4. 1 Temperature-compensated desinent data (Hydrogen: 0.210 -inch (0.533 cm) ogive).

$\begin{array}{r} \text { TO } \\ \text { DEG } \end{array}$	$\begin{gathered} \text { VO } \\ \text { FT/SEC } \end{gathered}$	$\begin{gathered} \text { PO } \\ \text { PSIA } \end{gathered}$	KIV	$\begin{gathered} \mathrm{PO} \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{aligned} & \text { VO } \\ & M / S E C \end{aligned}$	$\begin{aligned} & \text { TO } \\ & \text { DEG K } \end{aligned}$
37.50	120.0	19.69	0.35	13.58	36.6	20.83
37.50	140.0	22.89	0.60	15.79	42.7	20.83
37.50	160.0	26.32	0.74	18.15	48.8	20.83
37.50	180.0	29.97	0.83	20.67	54.9	20.83
37.50	200.0	33.85	0.87	23.34	61.0	20.83
37.50	220.0	37.95	0.90	26.17	67.1	20.83
37.50	240.0	42.28	0.91	29.15	73.2	20.83
37.50	260.0	46.83	0.92	32.29	79.2	20.83
39.50	140.0	28.31	0.54	19.52	$42 \cdot 7$	21.94
39.50	160.0	31.73	0.70	21.88	48.8	21.94
39.50	180.0	35.39	0.80	24.40	54.9	21.94
39.50	200.0	39.26	0.86	27.07	61.0	21.94
39.50	220.0	43.36	0.89	29.90	67.1	21.94
39.50	240.0	47.69	0.91	32.88	73.2	21.94
39.50	260.0	52.24	0.92	36.02	79.2	21.94
41.50	160.0	37.67	0.59	25.97	48.8	23.06
41.50	180.0	$41 \cdot 32$	0.71	28.49	54.9	23.06
41.50	200.0	45.19	0.79	31.16	61.0	23.06
41.50	220.0	49.29	0.84	33.99	67.1	23.06
41.50	240.0	53.62	0.87	36.97	73.2	23.06
41.50	260.0	58.17	0.89	40.11	$79 \cdot 2$	23.06

Table 4. 2 Temperature-compensated desinent data (Hydrogen: 0.357 -inch (0.907 cm) ogive).

$\begin{aligned} & \text { TO } \\ & \text { DEG } R \end{aligned}$	$\begin{aligned} & \text { VO } \\ & \text { FT/SEC } \end{aligned}$	$\begin{gathered} \text { PO } \\ \text { PSIA } \end{gathered}$	KIV	$\begin{gathered} \mathrm{PO} \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{aligned} & \text { VO } \\ & \text { M/SEC } \end{aligned}$	$\begin{aligned} & \text { TO } \\ & \text { DEG K } \end{aligned}$
37.00	110.0	18.52	0.44	12.77	33.5	20.56
37.00	130.0	22.00	0.75	15.17	39.6	20.56
37.00	150.0	26.02	0.94	17.94	45.7	20.56
37.00	170.0	30.56	1.06	21.07	51.8	20.56
37.00	190.0	35.64	1.14	24.57	57.9	20.56
37.00	210.0	41.26	1.20	28.44	64.0	20.56
37.00	230.0	47.40	1.25	32.68	70.1	20.56
39.00	130.0	26.79	0.64	18.47	39.6	21.67
39.00	150.0	30.81	0.87	21.24	45.7	21.67
39.00	170.0	35.35	1.01	24.38	51.8	21.67
39.00	190.0	40.43	1.11	27.88	57.9	21.67
39.00	210.0	46.05	1.18	31.75	64.0	21.67
39.00	230.0	52.19	1.23	35.98	$70 \cdot 1$	21.67
41.00	130.0	32.02	0.42	22.08	39.6	22.78
41.00	150.0	36.04	0.70	24.85	45.7	22.78
41.00	170.0	40.59	0.89	27.98	51.8	22.78
41.00	190.0	45.67	1.02	31.49	57.9	22.78
41.00	210.0	51.28	1.11	35.35	64.0	22.78
41.00	230.0	57.42	1.18	39.59	70.1	22.78

Table 4. 3 Temperature-compensated desinent data (Hydrogen: 0.420 -inch (1.067 cm) ogive).

$\begin{aligned} & \text { TO } \\ & \text { DEG } R \end{aligned}$	$\begin{gathered} \text { VO } \\ \text { FT/SEC } \end{gathered}$	$\begin{gathered} \text { PO } \\ \text { PSIA } \end{gathered}$	KIV	$\begin{gathered} P O \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{aligned} & \text { VO } \\ & \text { M/SEC } \end{aligned}$	$\begin{gathered} \text { TO } \\ \text { DEG K } \end{gathered}$
37.50	110.0	19.32	0.35	13.32	33.5	20.83
37.50	120.0	21.11	0.56	14.55	36.6	20.83
37.50	130.0	22.90	0.70	15.79	39.6	20.83
37.50	140.0	24.68	0.80	17.02	42.7	20.83
37.50	150.0	26.47	0.86	18.25	45.7	20.83
37.50	160.0	28.26	0.90	19.49	48.8	20.83
39.25	110.0	24.20	0.30	16.69	33.5	21.81
39.25	120.0	25.72	0.48	17.74	36.6	21.81
39.25	130.0	27.24	0.60	18.78	39.6	21.81
39.25	140.0	28.76	0.68	19.83	42.7	21.81
39.25	150.0	30.29	0.74	20.88	45.7	21.81
39.25	160.0	31.81	0.78	21.93	48.8	21.81
41.00	110.0	29.79	0.18	20.54	33.5	22.78
41.00	120.0	31.04	0.34	21.40	36.6	22.78
41.00	130.0	32.29	0.45	22.26	39.6	22.78
41.00	140.0	33.54	0.53	23.13	42.7	22.78
41.00	150.0	34.80	0.58	23.99	45.7	22.78
41.00	160.0	36.05	0.62	24.86	48.8	22.78

Table 4. 4 Temperature-compensated desinent data (Nitrogen: 0.210 -inch $(0.533 \mathrm{~cm})$ ogive).

$\begin{aligned} & \text { TO } \\ & \text { DEG } R \end{aligned}$	$\begin{gathered} \text { VO } \\ \text { FT/SEC } \end{gathered}$	$\begin{gathered} \text { PO } \\ \text { PSIA } \end{gathered}$	KIV	$\begin{gathered} P O \\ N / C M / C M \end{gathered}$	$\begin{aligned} & \text { VO } \\ & M / S E C \end{aligned}$	$\begin{aligned} & \text { TO } \\ & \text { DEG K } \end{aligned}$
141.00	30.0	22.56	1.26	15.56	9.1	18.33
141.00	40.0	26.77	1.19	18.46	12.2	78.33
141.00	50.0	32. 24	1.17	22.23	15.2	78.33
141.00	60.0	38.99	1.16	26.88	18.3	78.33
141.00	70.0	46.99	1.15	32.40	21.3	78.33
141.00	80.0	56.27	1.15	38.80	24.4	78.33
141.00	90.0	66.82	1.15	46.07	27.4	78.33
151.00	30.0	35.89	1.31	24.75	9.1	83.89
151.00	40.0	40.10	1.24	27.65	12.2	83.89
151.00	50.0	45.57	1.21	31.42	15.2	83.89
151.00	60.0	52.31	1.20	36.07	18.3	83.89
151.00	70.0	60.32	1.19	41.59	21.3	83.89
151.00	80.0	69.60	1.19	47.99	24.4	83.89
151.00	90.0	80.15	1.19	55.26	27.4	83.89
161.00	30.0	55.31	1.23	38.13	9.1	89.44
161.00	40.0	59.51	1.21	41.03	$12 \cdot 2$	89.44
161.00	50.0	64.99	1.21	44.81	15.2	89.44
161.00	60.0	71.73	1. 21	49.46	18.3	89.44
161.00	70.0	79.74	1.21	54.98	21.3	89.44
161.00	80.0	89.02	1.22	61.37	24.4	89.44
161.00	90.0	99.56	1.22	68.64	27.4	89.44
166.00	40.0	71.76	1.13	49.48	12.2	92.22
166.00	50.0	77.24	1.16	53.25	15.2	92.22
166.00	60.0	83.98	1.19	57.90	18.3	92.22
166.00	70.0	91.99	1.20	63.42	21.3	92.22
166.00	80.0	101.27	1.21	69.82	24.4	92.22

Table 4. 5 Temperature-compensated desinent data (Nitrogen: 0.357 -inch (0.907 cm) ogive).

$\begin{array}{r} \text { TO } \\ \text { DEG } R \end{array}$	$\begin{aligned} & \text { VO } \\ & \text { FT/SEC } \end{aligned}$	$\begin{gathered} \text { PO } \\ \text { PSIA } \end{gathered}$	KIV	$\begin{gathered} \mathrm{PO} \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{aligned} & \text { VO } \\ & \text { M/SEC } \end{aligned}$	$\begin{aligned} & \text { TO } \\ & \text { DEG K } \end{aligned}$
140.00	25.0	18.83	1.00	12.98	$7 \cdot 6$	77.78
140.00	35.0	22.59	1.08	15.58	10.7	77.78 77.78
140.00	45.0	27.97	1.14	19.28	13.7	77.78 77.78
140.00	55.0	34.94	1.19	24.09	16.8	77.78
140.00	65.0	43.52	1.22	30.01	19.8	77.78
140.00	75.0	53.71	1.25	37.03	22.9 25.9	$77 \cdot 78$ 77.78
140.00	85.0	65.49	1.28	45.16	25.9	
	35.0	36.38	1.28	25.08	$10 \cdot 7$	83.33
150.00	45.0	40.97	1.21	28.25	13.7	83.33
150.00	55.0	47.17	1.20	32.52	16.8	83.33
150.00	65.0	54.97	1.21	37.90	19.8	83.33 83.33
150.00	75.0	64.38	1.23	44.39	22.9 25.9	83.33 83.33
150.00	85.0	75.39	1.24	51.98	25.9	83.33
160.00	35.0	52.20	0.78	35.99	10.7	88.89
160.00	45.0	56.02	0.84	38.62	13.7	88.89
160.00	55.0	61.44	0.92	42.36	16.8	88.89
160.00	65.0	68.47	0.98	47.21	19.8 22.9	88.89
160.00	75.0	77.09	1.04	53.15 60.21	22.9 25.9	88.89
160.00	85.0	87.33	1.09	60.21	25.9	

Table 4.6 Temperature-compensated desinent data
(Nitrogen: 0.420 -inch (1.067 cm) ogive).

$\begin{array}{r} \text { TO } \\ \text { DEG } \end{array}$	$\begin{gathered} \text { VO } \\ \text { FT/SEC } \end{gathered}$	$\begin{gathered} \text { PO } \\ \text { PSIA } \end{gathered}$	KIV	$\begin{gathered} P O \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{aligned} & \text { VO } \\ & \text { M/SEC } \end{aligned}$	$\begin{gathered} \text { TO } \\ \text { DEG K } \end{gathered}$
140.00	25.0	18.11	0.79	12.49	$7 \cdot 6$	77.78
140.00	30.0	20.55	1.05	14.17	9.1	77.78
140.00	35.0	23.06	1.15	15.90	10.7	77.78
140.00	40.0	25.66	1.18	17.69	12.2	77.78
140.00	45.0	28.34	1.18	19.54	13.7	77.78
140.00	50.0	31.11	1.16	21.45	15.2	77.78
140.00	55.0	33.96	1.13	23.42	16.8	77.78
140.00	60.0	36.90	1.10	25.44	18.3	77.78
140.00	65.0	39.92	1.07	27.52	19.8	77.78
140.00	$70 \cdot 0$	43.02	1.04	29.66	21.3	77.78
150.00	35.0	33.01	0.76	22.76	10.7	83.33
150.00	40.0	35.61	0.89	24.55	12.2	83.33
150.00	45.0	38.29	0.96	26.40	13.7	83.33
150.00	50.0	41.06	0.99	28.31	15.2	83.33
150.00	55.0	43.91	0.99	30.28	16.8	83.33
150.00	60.0	46.85	0.99	32.30	18.3	83.33
150.00	65.0	49.87	0.98	34.38	19.8	83.33
150.00	70.0	52.97	0.97	36.52	21.3	83.33
160.50	40.0	52.31	0.46	36.07	12.2	89.17
160.50	45.0	54.99	0.63	37.92	13.7	89.17
160.50	50.0	57.76	0.73	39.82	15.2	89.17
160.50	55.0	60.61	0.79	41.79	16.8	89.17
160.50	60.0	63.55	0.82	43.81	18.3	89.17
160.50	65.0	66.57	0.84	45.90	19.8	89.17
160.50	70.0	69.67	0.85	48.03	21.3	89.17
165.50	45.0	65.47	0.40	45.14	13.7	91.94
165.50	50.0	68.24	0.55	47.05	15.2	91.94
165.50	55.0	71.09	0.65	49.02	16.8	91.94
165.50	60.0	74.03	0.71	51.04	18.3	91.94
165.50	65.0	77.05	0.75	53.12	19.8	91.94
165.50	70.0	80.15	0.77	55.26	21.3	91.94

Figure 4.1 Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid hydrogen--0. 210-inch ogive: $(1)=P_{v} @ 37.5 \mathrm{R}$; (2) $=\mathrm{P}_{\mathrm{v}} @ 39.5 \mathrm{R}$; (3) $=\mathrm{P}_{\mathrm{v}} @ 41.5 \mathrm{R}$.

Figure 4. 2 Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid hydrogen--0. 357-inch ogive: (1) $=P_{v} @ 37 \mathrm{R}$; (2) $=P_{v} @ 39 R$; (3) $=P_{v}$ @ 41R.

Figure 4. 3 Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid hydrogen--0.420-inch ogive: (1) $=P_{v} @ 37.5 \mathrm{R}$; (2) $=P_{v} @ 39.25 \mathrm{R}$; (3) $=\mathrm{P}_{\mathrm{v}}$ @ 41 R .

Figure 4. 4 Desinent cavitation parameter for liquid hydrogen as a function of tunnel inlet velocity and liquid temperature-0.210 -inch ogive.

Figure 4.5 Desinent cavitation parameter for liquid hydrogen as a function of tunnel inlet velocity and liquid temperature.0.357 -inch ogive.

Figure 4.6 Desinent cavitation parameter for liquid hydrogen as a function of tunnel inlet velocity and liquid temperature-0.420 -inch ogive.

Figure 4.7 Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid nitrogen--0.210-inch ogive: (1) $=P$ @ 141 R ;
(2) = P_{v} @ 151 R ; (3) $=\mathrm{P}_{\mathrm{V}}$ @ $161 \mathrm{R} ;$ (4) $=\mathrm{P}_{\mathrm{v}}$ @ 166 R .

Figure 4. 8 Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid nitrogen--0. 357-inch ogive; (1) $=P_{V} @ 140 \mathrm{R}$; (2) $=P_{v}$ @ 150 R ; (3) $=P_{\mathrm{v}}$ @ 160 R . ${ }^{\mathrm{V}}$

Figure 4. 9 Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid nitrogen-0.420-inch ogive; (1) $=P$ @ 140 R ; (2) $=P_{v} @ 150 \mathrm{R}$; (3) $=P_{\mathrm{v}}$ @ 160.5 R ; (4) $=\mathrm{P}_{\mathrm{v}}$ @ 165.5 R .

Figure 4. 10 Desinent cavitation parameter for liquid nitrogen as a function of tunnel inlet velocity and liquid temperature-0.210 -inch ogive.

Figure 4. 11 Desinent cavitation parameter for liquid nitrogen as a function of tunnel inlet velocity and liquid temperature-0.357 -inch ogive.

Figure 4. 12 Desinent cavitation parameter for liquid nitrogen as a function of tunnel inlet velocity and liquid temperature-0.420 -inch ogive.

In the foregoing expressions, the units of P_{o}, V_{o}, and T_{o} are psia, ft / s, and degrees Rankine, respectively.

The experimental values of $K_{i v}$ are tabulated under the heading, $K V$, in appendix A, along with the experimental values of K_{V} for developed cavities. The $K_{i v}$ parameter as given in appendix A, and used herein, is not corrected for tunnel blockage. Multiplying $K_{i v}$ by the square of the appropriate area ratio, A_{1} / A_{2}, corrects for tunnel blockage, i. e.,

$$
\begin{equation*}
\text { corrected } K_{i v}=\left(\text { Experimental } K_{i v}\right)\left(A_{1} / A_{2}\right)^{2} \tag{4-7}
\end{equation*}
$$

where $A_{1}=$ blocked cross sectional flow area and $A_{2}=$ unblocked (inlet) cross sectional flow area. This correction factor evolves from consideration of steady volumetric flow, ${\underset{\mathrm{C}}{\mathrm{p}}}^{\mathrm{V}}$, and Bernoulli's equation, and is derived in detail elsewhere [26, 27]. This correction factor assures that the minimum static pressure is the same for blocked and unblocked flows, when the freestream static pressures are identical. Thus, tunnel constraint is easily accounted for, so that the results of this study may be readily compared with other experimental data. For the quartercaliber ogives, the correction factor has a numerical value of 0.82 .

4. 2 Discussion of Desinent Cavitation Data

Figures 4.1 to 4.3 are conventional P_{o}, V_{o}, T_{o} plots for hydrogen test fluid, $i_{0} e_{\text {. , }} P_{o}$ increases with increasing V_{o} and T_{o} in a conventional manner. The incipient (desinent) cavitation parameter, $K_{i v}$, for hydrogen also behaves in a conventional manner, see figures 4.4 to 4.6 . On all of these figures, the boundaries of the experimental data are indicated by the solid lines, i. e., the broken-line curves are extrapolations of the experimental data. Mathematical extrapolation, by correlative expressions, of experimentally-determined surfaces is rather risky; therefore, the broken-line extrapolations must be used with great caution. Only within the boundaries of the experimental data are the mathematically
derived data--as presented in tables 4.1 to 4.6 and on figures 4.1 to 4.12-- considered totally valid.

Due to test facility limitations it was impossible to obtain desinent hydrogen data at very low values of V_{o} with the 0.210 -inch ogive, and at very high values of V_{o} with the 0.420 -inch ogive. Flow control instabilities were experienced with the smaller body only at the lowest velocities and test duration was too short with the larger body only at the highest velocities. Referring to figures 4.4 and 4.6 , we see that the inlet velocities for the 0.210 -inch and the 0.420 -inch ogives barely overlap, except for the 37.5 R isotherm; however, use of the 0.357 -inch ogive data, figure 4.5 , permits a reasonably good comparison of $K_{i v}-V_{o}-T_{o}$ data with both the 0.210 -inch and the 0.420 -inch ogives.

Similar comments may be made about the nitrogen data shown on figures 4.7 to 4.12 , except that the $K_{i v}$ data on figures 4.10 and 4.11 do not consistently show conventional temperature dependency. Similar nitrogen $K_{i v}$ data were obtained with the hydrofoil [21] and were attributed to 1) a relatively weak temperature dependence with nitrogen fluid, 2) amplification of instrument error in the $K_{i v}$ parameter, and 3) mathematical correlation of the experimental data. Nonconventional behavior of the hydrogen $K_{i v}$ data was not encountered because of a stronger temperature dependence and lower instrument error [21].

The ogive desinent cavity data are quite similar to the data obtained for the venturi [20] and hydrofoil [21]. For those two bodies, the hydrogen and nitrogen data tended toward a single-valued $K_{i v}$, for each fluid, at the maximum velocities. The ogive data presented herein display similar tendencies. The water data of Rouse and McNown [25] indicate a maximum value of $K_{i v} \approx 1.3$ for quarter-caliber ogives. To compare these data with our data, we must first multiply our K_{iv} data by 0.82 to correct for tunnel blockage. The maximum value of K_{iv} on figures
4.4 to 4.6 and 4.10 to 4.12 does not exceed 1.3 ; therefore, it is apparent that our K_{iv} data is at least 20 percent lower than that of Rouse and McNown. Similar results were noted upon comparison [21] of our hydrofoil and venturi data with the data of others for non-cryogenic fluids. Thus, as previously concluded [21], it is apparent that these cryogens require less subcooling--relative to higher boiling-point liquids--for desinent cavitation to occur.

The data plotted on figures 4.1 to 4.12 were derived to represent the experimental data at the nominal experimental isotherms (for each ogive). In order to compare the desinent data for the scaled ogives, we must derive $K_{i v}-V_{o}-T_{o}$ data at identical isotherms. Using the expressions given in eqs $(4-1)$ to (4-6), the data plotted on figures 4.13 to 4.16 were generated. These graphs provide a direct comparison of ogive size effect at a specified fluid temperature.

Referring to figure 4.13, we note that $K_{i v}$ for the 0.210 -inch ogive is generally lower than $K_{i v}$ for the larger ogives at the lower values of V_{o} in hydrogen; however, at the highest values of V_{o} this trend is reversed for the 0.210 -inch and 0.420 -inch ogives. These hydrogen data indicate that $K_{i v}$ for the 0.357 -inch ogive is consistently larger than $K_{i v}$ for the 0.210 -inch and 0.420 -inch ogives. Interpretation of these data could imply that the 0.357 -inch ogive has a less streamlined contour and consequently a higher $K_{i v}$. Such is not the case, because all three ogives were carefully machined to fabrication tolerances as verified by measurements. Also, the $K_{i v}$ data for nitrogen behave differently, see figure 4.15.

With nitrogen, the $K_{i v}$ for the 0.210 -inch ogive is larger than $K_{i v}$ for the 0.420 -inch ogive. The $K_{i v}$ data for the two smaller ogives do not differ much at the lower temperatures but vary appreciably at the highest temperature ($T_{0}=160 \mathrm{R}$). From figure 4.15, it appears that

Figure 4. 13 Desinent cavitation parameter for liquid hydrogen as a function of $\mathrm{V}_{\mathrm{o}}, \mathrm{T}_{\mathrm{o}}$, and D_{m}.

Figure 4. 14 Desinent cavitation parameter for liquid hydrogen as a function of (We) ${ }^{0.5}, T_{o}$ and D_{m} 。

Figure 4. 15 Desinent cavitation parameter for liquid nitrogen as a function of V_{o}, T_{o}, and D_{m}.

Figure 4. 16 Desinent cavitation parameter for liquid nitrogen as a function of $(W e)^{0.5}, T_{o}$ and D_{m}.
size effect is more pronounced at the higher nitrogen temperatures. No such effect is apparent in the hydrogen data shown on figure 4.l3. For the nitrogen data, it appears that K_{iv} generally decreases with increasing size. No such conclusion can yet be drawn from the hydrogen data.

To shed some light on this topic, a desinent data correlating technique was sought. An attempt was made to use the method suggested by Parkin and Holl [26]. This technique employs a $K_{i v}-(W e){ }^{0.5}$ plot, where $(W e)^{0.5}$ is the essential part of the Weber number. $(W e)^{0.5}=V_{0} \sqrt{\left(\rho_{0} D_{m}\right) / \sigma}$ is plotted against K_{iv} on figures 4.14 and 4.16. Because ρ_{o} / σ does not vary much in the hydrogen or nitrogen tests (less than 30 percent) the $(\mathrm{We})^{0.5}$ parameter reduces to $\approx \mathrm{V}_{\mathrm{o}} \sqrt{\mathrm{D}_{\mathrm{m}}}$. Then the data, for the larger ogives, on figure 4.13 are merely shifted to the right of the 0.210 -inch ogive data on figure 4.14 without any substantial change in the shapes of the curves. Similar comments apply to the nitrogen data on figures 4.15 and 4.16. Considering only the 0.210 -inch and 0.420 -inch ogive data on figure 4.14 , we would conclude that $K_{i v}$ decreases slightly with increasing size--a result consistent with the nitrogen $K_{i v}$ data. This result is in direct contrast with those found by Parkin and Holl [26] for 0.5-caliber and 1.5-caliber ogives tested in water. Therefore, the $K_{i v}-V_{o} \sqrt{D_{m}}$ plot improved the Parkin-Holl scaled-model data [26], but is of little or no value for our data.

The apparent inconsistency of the hydrogen $K_{i v}$ data, as shown on figures 4.13 and 4.14 , may be partially explained by the following observations. Recall 1) that the experimental data are mathematically extrapolated in the regions where the dashed-line curves appear on these figures, 2) that extrapolation of experimental data in this fashion [21] is risky and, 3) that the highest velocity data for the 0.420 -inch ogive may reflect slight additional imprecision due to shorter available test duration. Re-examining figure 4.13 , with this background information, reveals
that the 0.357 -inch and 0.420 -inch ogive experimental data (solid-line curves) do not differ appreciably. Also, the K_{iv} data (solid-line curves) for the 0.210 -inch ogive lie well below those for the two larger ogives-a result consistent with those of Parkin and Holl [26]. This result is also consistent with physical reasoning that the larger bodies should cavitate more readily, thereby identifying with larger values of $K_{i v}$. While this argument establishes the credibility of the hydrogen $K_{i v}$ data, it does not explain why the hydrogen and nitrogen data display slightly different size effects. As previously explained, the latter is partially attributable to amplification of instrument error in $K_{i v}$ and mathematical correlation of the experimental data.

Considering only the solid-curve data on figures 4.13 and 4.15, we conclude that l) the hydrogen $K_{i v}$ increases with increasing ogive size and 2) the nitrogen $K_{i v}$ decreases with increasing ogive size. Also, perusal of figures 4.14 and 4.16 reveals that the Weber parameter 1) overcompensates for size effects with these hydrogen data and 2) has little effect on the apparent size dependency of the nitrogen data. Because there are more high quality hydrogen data for the 0.210 -inch and 0.357 -inch ogives, than for the 0.420 -inch ogive, the size trends reflected by the two smaller ogives in figure 4.13 are favored.

Comparison of the Parkin and Holl water data [26] for 0.5-caliber ogives with the data presented herein reveals some interesting trends. As previously explained, the size effects with water and hydrogen are similar but with water and nitrogen they are directly opposed; however, K_{iv} tends to increase with decreasing V_{o}, at the lower values of V_{o}, for some of the water and nitrogen data. None of the hydrogen data exhibit this latter characteristic. Similar trends in $K_{i v}-V_{o}$ data were observed in our hydrofoil-nitrogen data [21]. This effect was most pronounced for the smaller ogives (< 0.50 inch dia.) in the water data [26].

It was suggested [26] that use of (We) ${ }^{0.5}$ may account for temperature effects in desinent cavity data, while correlating size effects. Our data, figures 4.14 and 4.16 , indicate that temperature effects still prevail in the $\mathrm{K}_{\mathrm{iv}}-(\mathrm{We})^{0.5}$ plots. It appears as though a more universal correlating parameter is needed for desinent cavity data. This parameter should simultaneously account for the effects of fluid velocity, temperature and size. This criteria suggests use of the Reynolds number ($\mathrm{Re}=\rho_{0} V_{0} D_{m} / \mu$)--a parameter of limited value in the data correlated by Parkin and Holl [26]. Use of the Reynolds number would not improve the correlation of our data because we would merely be replacing V_{o} or $V_{o} \sqrt{D_{m}}$ in figures 4.13 to 4.16 , with $V_{o} D_{m}$. Such a simple substitution results because ρ_{0} / μ does not vary by more than 35 percent in any of our data; consequently, the $V_{0} D_{m}$ product dominates the magnitude of the Reynolds number. Use of the Reynolds number would effectively shift the $K_{i v}$ curves, for the larger diameter ogives, farther to the right in figures 4.14 and 4.16 . Because desinent cavity data are of limited interest, relative to developed cavity data, no further effort was expended in this direction.

4.3 Correlation of Developed Cavitation Data

The existence of thermodynamic equilibrium within developed cavities was verified by direct measurement of pressure and temperature within the vaporous cavities. Also, fully developed cavity data are correlated [20] by using these experimental values of cavity pressure and temperature to obtain cavity pressure depressions. The pressure depression in the cavitated region is determined by subtracting the measured cavity pressure, in one case, and the saturation pressure associated with the measured cavity temperature, in the other case, from the vapor pressure of the liquid entering the test section. In the hydrogen data reported here, the measured cavity pressure, P_{l}, was less than
bulkstream vapor pressure by as much as $13.77 \mathrm{psi}\left(9.50 \mathrm{~N} / \mathrm{cm}^{2}\right)$; these pressure-depressions are obtained by subtracting P_{1} from P_{V} in the tabulated data of appendix A. For the nitrogen data, P_{v} exceeded P_{1} by as much as $12.89 \mathrm{psi}\left(8.89 \mathrm{~N} / \mathrm{cm}^{2}\right)$.

Typical profiles of measured pressure depression, for liquid hydrogen, are given on figures 4.17 to 4.21 ; similar profiles, for liquid nitrogen, are plotted on figures 4.22 to 4.26 . Similar plots for the venturi and hydrofoil were presented in previous reports [20, 21]. From most of these figures, it can be observed that, within data accuracy, stable thermodynamic equilibrium exists throughout the vaporous cavity. This topic is discussed in greater detail in section 4.4 of this report. Temperature derived data ($\mathrm{P}_{\mathrm{v}}-\mathrm{P}_{\mathrm{n}, \mathrm{T}}$) are not shown on figures 4.17 and 4.20--temperature data were omitted on these graphs because cavity temperature measurements were not obtained at the higher velocities with the 0.420 -inch ogive. The time interval, during high velocity liquid hydrogen tests with the 0.420 -inch ogive, was too short to obtain steady state cavity temperature data; therefore, cavity temperature data for these conditions are not reported for the 0.420 -inch ogive. Thus, to avoid confusion, all cavity temperature data are omitted from these two graphs. In appendices $A-6 a$ and $A-6 b-$-tabulated hydrogen data for the 0.420 -inch ogive--the cavity temperature data, T_{1} through T_{5}, are held constant at T_{o} for these higher velocity tests. In this way the reader is instantly alerted that no cavity temperature data were acquired for these specific tests. No such difficulties were encountered with liquid nitrogen and all of the tabulated nitrogen data include cavity temperature data.

It should also be noted that some of the values of P_{4}, tabulated in appendix A, are in error. The P_{4} data help establish the vaporous cavity pressure profile, but are not directly used to correlate the developed

Figure 4. 17 Pressure depressions within cavities in liquid hydrogen.

AXIAL DISTANCE FROM MINIMUM PRESSURE LOCATION, x, cm

AXIAL DISTANCE FROM MINIMUM PRESSURE LOCATION, x , in

Figure 4.18 Pressure and temperature depressions within cavities in liquid hydrogen.

AXIAL DISTANCE FROM MINIMUM PRESSURE LOCATION,x,cm

Figure 4.19 Pressure and temperature depressions within cavities in liquid hydrogen.

Figure 4. 20 Pressure depressions within cavities in liquid hydrogen.

Figure 4.21 Pressure and temperature depressions within cavities in liquid hydrogen.

AXIAL DISTANCE FROM MINIMUM PRESSURE LOCATION, $x, \mathrm{~cm}$

AXIAL DISTANCE FROM MINIMUM PRESSURE LOCATION, x, in

Figure 4.22 Pressure and temperature depressions within cavities in liquid nitrogen.

AXIAL DISTANCE FROM MINIMUM PRESSURE LOCATION, $x, \mathrm{~cm}$

Figure 4.23 Pressure and temperature depressions within cavities in liquid nitrogen.

Figure 4. 24 Pressure and temperature depressions within cavities in liquid nitrogen.

AXIAL DISTANCE FROM MINIMUM PRESSURE LOCATION, $x, \mathrm{~cm}$

Figure 4. 25 Pressure and temperature depressions within cavities in liquid nitrogen.

AXIAL DISTANCE FROM MINIMUM PRESSURE LOCATION, $x, \mathrm{~cm}$

Figure 4. 26 Pressure and temperature depressions within cavities in liquid nitrogen.
cavity data; thus, the erroneous values of P_{4} have no effect on correlation of our developed cavity data. The developed cavity data are correlated using the minimum measured cavity pressure, P_{1} (or \bar{P}_{1}). Thus, an erroneous P_{4} merely distorts the 'pressure-depression' profile and complicates estimation of the instrumented cavity length--a minor inconvenience as revealed in the next paragraph. The erroneous data are restricted to the 0.357 -inch ogive and Run number series 302 to 371 . These P_{4} data are in error because of a leak in the P_{4} pressure transmitting tubing within the sting assembly. After careful analysis of the 0.357 -inch ogive data, this leak was discovered and corrected and tests on the 0.357 -inch ogive were repeated. The latter series of tests are recorded in appendix A as Run numbers 507 to 564. The pressure tubing leak caused P_{4} to appear too high, resulting in a lower pressure depression at station 4 , see figures $4.17,4.19$, and 4.20 . Because the measurement of P_{4} has no direct bearing on the correlation of developed cavity data, or desinent data, all of the data in Run series 302 to 371 were retained and tabulated in appendix A--thereby strengthening the statistical validity of the ogive data.

As indicated in previous reports [20, 21], the instrumented (actual)cavity length is estimated by extrapolating the pressure depression data to zero pressure depression. The actual length of the cavity, and the visual (as observed on film) length, differ because of the irregular trailing edges of the cavity and the difficulty in judging the visual length. Both actual and visual cavity lengths were used to correlate the data, and they produced essentially the same results. The visual cavity lengths, as tabulated in appendix A, were used in the final correlative data fits reported in tables 4.7 to 4.9 .

The correlative expressions, developed in a previous report [21], were used to correlate the developed cavity data from this experiment. The two correlative equations are given as follows:

$$
\begin{equation*}
B=B_{r e f}\left(\frac{\alpha_{r e f}}{\alpha}\right)^{E 1}\left(\frac{V_{o}}{V_{o, r e f}}\right)^{E 2}\left(\frac{x}{x_{r e f}}\right)^{E 3}\left(\frac{\nu_{r e f}}{\nu}\right)^{E 4}\left(\frac{\sigma_{r e f}}{\sigma}\right)^{E 5}\left(\frac{D_{m}}{D_{m, r e f}}\right)^{E 6} ; \tag{4-8}
\end{equation*}
$$

$B=B_{r e f}\left(\frac{\alpha_{r e f}}{\alpha}\right)^{E 1}\left(\frac{\text { MTWO }^{M T W O}}{r e f}\right)^{E 2}\left(\frac{x}{x_{r e f}}\right)^{E 3}\left(\frac{\nu_{r e f}}{\nu}\right)^{E 4}\left(\frac{\sigma_{r e f}}{\sigma}\right)^{E 5}\left(\frac{D_{m}}{D_{m, r e f}}\right)^{E 6}$.
(4-9).
These expressions, along with the correlative technique developed by Gelder, et al. [19], the isentropic BFLASH theory [28], and two leastsquares data-fitting computer programs [20] were used to correlate these ogive data. For convenience, we will refer to these correlative expressions as 'similarity' equations. The similarity equations are used to correlate developed cavitation data in similar testitems, and to predict the cavitation performance of a test item from fluid-to-fluid, and from one temperature to another, when limited test data from a single fluid are available. Size effects, for the ogives, are shown to be important.

Complete and detailed descriptions of the correlative technique, computational steps, and computer programs are given in reference [20]. The correlative procedure, as previously described [20], can be followed directly when using eq (4-8). To use eq (4-9), simply substitute MTWO for V_{o} in the computer program. Briefly, this correlative procedure ensures that the B values calculated from eq (4-8), or eq (4-9), and the BFLASH values [28] for each data point, are as nearly identical as possible; because both B values, at each data point, are evaluated from

Table 4. 7 Correlative results for developed cavity data using equation (4-8)--ogives.

$\begin{aligned} & \text { Line } \\ & \text { No. } \end{aligned}$	Ogive dia. (inches)	Fluids	Exponents:*					Ref. Run No.	Standard \dagger Deviation in B-Factor	$\overline{\mathrm{K}}_{\mathrm{c}, \min }$
			El	E2	E3	E4	E6			
1	0.210	Ha_{3}	0.47	-0.75	0.40	---	--	397B	0.2159	0.412
2	0.210	N_{2}	-2. 48	0.66	0.46	---	---	429B	0.1633	0.419
3	0.357	H_{2}	-0.32	-0.28	0.43	---	---	338B	0.1943	0.608
4	0.357	N_{2}	-1.08	0.10	0.28	---	---	557E	0.2111	0.537
5	0.420	H_{2}	-3.94	0.41	0.32	---	---	469B	0.1670	0.632
6	0.420	N_{2}	-1.88	0.67	0.37	---	---	450 C	0.1878	0.525
7	0.210	$\mathrm{H}_{2} \& \mathrm{~N}_{2}$	0.07	0.19	0.45	-0.97	--	397B	0.2686	0.415
8	0.357	$\mathrm{H}_{2} \& \mathrm{~N}_{2}$	-0.22	-0.03	0.35	---	---	338B	0.2198	0.568
9	0.420	$\mathrm{H}_{2} \& \mathrm{~N}_{2}$	0.88	0.50	0.39	-1.05	---	450 C	0.2308	0.567
10	$0.210 \& 0.357$	H_{2}	-0.21	-0.39	0.43	---	0.15	397B	0.2114	0.531
11	$0.210 \& 0.357$	N_{2}	-1.90	0.23	0.29	---	0.61	317B	0.2312	0.501
12	$0.357 \& 0.420$	H_{2}	-0.92	-0.13	0.43	---	0.28	515B	0.2126	0.617
13	$0.357 \& 0.420$	N_{3}	-1.86	0. 37	0.36	---	1.13	450 C	0.2402	0.532
14	0.21080 .420	H_{2}	-2.83	-0. 13	0.40	---	0.14	469B	0.2397	0.516
15	$0.210 \& 0.420$	N_{2}	-2.05	0.68	0.39	---	0.93	450 C	0.1821	0.485
16	$\begin{array}{r} 0.210 \& 0.357 \\ \& 0.420 \\ \hline \end{array}$	H_{2}	-0.75	-0.22	0.43	---	0.17	515B	0.2239	0.557
17	$\begin{array}{r} 0.210 \& 0.357 \\ \& \quad 0.420 \end{array}$	N_{2}	-2.08	0.41	0.39	---	0.88	450C	0.2381	0.509
18	$0.210 \& 0.357$	$\mathrm{H}_{2} \& \mathrm{~N}_{2}$	-0.30	-0.05	0. 38	---	0.39	338B	0.2491	0.516
19	U. 357 \& 0.420	$\mathrm{H}_{2} \& \mathrm{~N}_{2}$	0.43	0.27	0.32	-0.90	1.08	317B	0.2527	0. 568
20	$0.210 \& 0.420$	$\mathrm{H}_{2} \& \mathrm{~N}_{2}$	0.88	0.50	0.40	-1.10	0.79	450 C	0.2597	J. 499
21	$\begin{array}{r} 0.210 \& 0.357 \\ \& 0.420 \end{array}$	$\mathrm{H}_{2} \& \mathrm{~N}_{2}$	0.32	0.21	0.34	-0.84	0.60	338B	0.2620	0.531

$\% B=B_{\text {ref }}\left(\frac{\alpha_{\text {ref }}}{\alpha}\right)^{E 1}\left(\frac{v_{0}}{v_{o, \text { ref }}}\right)^{E 2}\left(\frac{x}{x_{\text {ref }}}\right)^{E 3}\left(\frac{{ }_{\text {ref }}}{\nu}\right)^{E 4}\left(\frac{\sigma_{\text {ref }}}{\sigma}\right)^{E 5}\left(\frac{D_{m}}{D_{m, r e f}}\right)^{E 6} \ldots$ eq (4-8).

+ Standard Deviation $\equiv \sqrt{\left[\sum\left(B-B_{t}\right)^{2}\right] /(N P T S-1)}$, where NPTS = number of data points (including "ref" data point). $B_{t}=B F L A S H$ and is computed from isentropic-flashing theory [28], and B is computed from eq (4-8).

Table 4. 8 Correlative results for developed cavity data using equation (4-9) -ogives.

Line No.	Ogive dia. (inches)	Fluids	Exponents : $:=1$				Ref. Run No.	Standard * Deviation in B-Factor	$\overline{\mathrm{K}}_{c, \min }$
			El	E2	E3	E6			
1	0.210	H_{3}	-0.48	0.39	0.35	---	397B	0.2638	0.412
2	0.210	N_{2}	1.14	0.51	0.35	---	429B	U. 1213	0.419
3	0. 357	H_{2}	-0.83	-0.03	0.44	---	338B). 2130	0.608
4	0.357	N_{2}	-0.53	0.18	0.23	---	557 E	0.1974	0.537
5	0.420	H_{2}	-1.41	0.53	0.22	---	469B	0.1274	0.632
6	0.420	N_{2}	0.74	0.55	0.30	---	450 C	0.1538	0.525
7	0.210	$\mathrm{H}_{2} \& \mathrm{~N}_{2}$	-0.28	0.41	0.34	---	397B	0.2129	0.415
8	0. 357	$\mathrm{H}_{2} \& \mathrm{~N}_{3}$	-0.06	0.18	0.31	---	338 B	0.2094	0.568
9	0.420	$\mathrm{H}_{2} \& \mathrm{~N}_{2}$	0.05	0.55	0.29	---	450 C	0.1694	0.567
10	$0.210 \& 0.357$	H_{2}	-0.79	0.14	0.38	0.26	397 B	0.2347	0.531
11	$0.210 \& 0.357$	N_{2}	-0.45	0.36	0.23	0.67	317B	0.2001	0.501
12	$0.357 \& 0.420$	H_{2}	-0.83	0.30	0.30	0.70	515 B	0.2017	0.617
13	0.35780 .420	N_{2}	-0.12	0.43	0.30	0.82	450 C	0.1994	0.532
14	$0.210 \& 0.420$	Ha_{3}	-1.06	0.51	0.27	0.52	469B	0.2084	0.516
15	$0.210 \& 0.420$	N_{2}	0.84	0.52	0.31	0.69	450 C	0.1375	0.485
16	$\begin{array}{r} 0.210 \& 0.357 \\ \& 0.420 \end{array}$	H_{2}	-1.07	0.27	0.31	0.42	515B	0.2237	0.557
17	$\begin{array}{r} 0.210 \& 0.357 \\ \& 0.420 \end{array}$	N_{2}	0.10	0.43	0.31	0.71	450 C	0.1903	0.509
18	$0.210 \& 0.357$	$\mathrm{H}_{2} \& \mathrm{~N}_{2}$	-0.09	0.36	0.28	0.53	338B	0.2228	0.516
19	$0.357 \& 0.420$	$\mathrm{H}_{2} \& \mathrm{~N}_{2}$	0.01	0.39	0.23	0.87	317 B	0.2081	0.568
20	$6.210 \& 0.420$	$\mathrm{H}_{2} \& \mathrm{~N}_{2}$	-0.09	0.52	0.29	0.61	450 C	0.1915	0.499
21	$\begin{array}{r} 0.210 \& 0.337 \\ \& 0.420 \end{array}$	$\mathrm{H}_{2} \& \mathrm{~N}_{2}$	-0.05	0.43	0.25	0.59	338B	0.2126	0.531

$\approx * \quad B=B_{r e f}\left(\frac{\alpha_{r e f}}{\alpha}\right)^{E 1}\left(\frac{M T W O}{M T W O}{ }_{\text {ref }}\right)^{E 2}\left(\frac{x}{x_{r e f}}\right)^{E 3}\left(\frac{{ }^{\nu}{ }_{\text {ref }}}{\nu}\right)^{E 4}\left(\frac{\sigma_{\text {ref }}}{\sigma}\right)^{E 5}\left(\frac{D_{m}}{D_{m, r e f}}\right)^{E 6}--$ eq $(4-9)$.

+ Standard Deviation $=\sqrt{\left[\sum\left(B-B_{t}\right)^{2}\right] /(N P T S-1)}$, where NPTS = number of data points (including "ref" data point), $B_{t}=B F L A S H$ and is computed from isentropic-flashing theory [28], and B is computed from eq (4-9).
Table 4.9 Summary of correlative results for developed cavity data--ogives, hydrofoil, and venturi.

$\begin{aligned} & \text { Line } \\ & \text { No. } \end{aligned}$	Model	Fluids	Correlative Equation	Source of Data	Exponents					Reference Run No.	Standard \dagger Deviation in B-Factor	$\overline{\mathrm{K}}_{\mathrm{c}, \min }$
					E1	E2	E3	E4	E6			
1	Ogives	$\mathrm{H}_{2} \& \mathrm{~N}_{2}$	(4-8)*	This Study	0.32	0.21	0. 34	-0.84	0.60	338B	0.2620	0.531
2	Hydrofoil	$\mathrm{H}_{2} \& \mathrm{~N}_{2}$	(4-8)	Reference [21]	0.80	0.64	0.45	-1.00	---	255B	0.3717	1.833
3	Venturi	H_{2}	(4-8)	Reference [20]	-1.92	0.74	0.31	---	---	071C	0.3466	2. 459
4	Venturi	H_{2} \& F-114	(4-8)	Reference [3]	1.0	0.8	0.3	---	-0. 10	---	---	2.47
5	Ogives	H_{2} \& N_{2}	(4-9)**	This Study	(-C.05)	0.43	0.25	---	0.59	338 B	0.2126	0.531
6	Hydrofoil	H_{2} \& N_{2}	(4-9)	Reference [21]	(-0.13)	0.59	0.27	---	---	255B	0.2565	1. 833
7	Venturi	H_{3}	(4-9)	Reference [20]	(0.10)	0.59	0.18	---	---	071C	0.2234	2. 459

$\% B=B_{r e f}\left(\frac{\alpha_{\text {ref }}}{\alpha}\right)^{E 1}\left(\frac{v_{o}}{v_{o, r e f}}\right)^{E 2}\left(\frac{x}{x_{r e f}}\right)^{E 3}\left(\frac{v_{\text {ref }}}{\nu}\right)^{E 4}\left(\frac{\sigma_{\text {ref }}}{\sigma}\right)^{E 5}\left(\frac{D_{m}}{D_{m, r e f}}\right)^{E 6}$

experimental data, this correlative procedure produces the best possible agreement between experiment, the isentropic flashing theory [28], and the correlative expression--eq (4-8) or eq (4-9). This 'best-fit,' of the experimental data, is obtained by selecting appropriate exponents for each of the correlative parameters in the correlative expression-eq (4-8) or eq (4-9). The exponent selecting process is quite complex and is treated in appropriate detail in reference [20]. Exponents for eq ($4-8$) and eq (4-9) were derived to evaluate the suitability of MTWO as a correlating parameter for the ogive data. Recall that the hydrofoil and venturi data correlations were significantly improved [21] by use of the MTWO parameter; similar improvement was obtained with the ogive data.

In eq (4-8) and eq (4-9) the cavity lengths were evaluated at the visually observed lengths. BFLASH was obtained, for each experimental data point, as follows: l) the average measured cavity pressure depression $\left(P_{v}-\bar{P}_{1}\right), T_{o}$ and the calculation method outlined in reference [28] were used, excepting the hydrogen data for the 0.357 -inch and 0.420 -inch ogives; 2) for the latter two batches of data we used $P_{v}-P_{1}, T_{o}$, and the calculation method of reference [28]. The average minimum cavity pressure, $\bar{P}_{1}=\left(P_{1}+P_{1, T}\right) / 2$, was used for most of the ogive data because the temperature measurements are considered just as accurate as the pressure measurements; however, the pressure measurements are considered slightly superior with the hydrogen data for the 0.357 -inch and 0.420 -inch ogives. The minimum cavity pressure, P_{1}, was used in those specific cases because test duration was shorter and the response characteristics of the pressure sensors hold a slight advantage over those of the temperature sensors.

In eq ($4-8$) and eq (4-9), the fluid physical properties are evaluated at P_{o} and T_{o}, with the exception that MTWO is evaluated at the minimum
measured cavity pressure $P_{1}\left(\right.$ or $\left.\bar{P}_{1}\right)$. The standard deviation in B is computed for each set of exponents; the individual exponents may be held constant or chosen by the computer. The standard deviation in B factor is minimized in the computer programs when one or more of the exponents is selected by the computer; the absolute minimum standard deviation is obtained when all of the exponents are selected by the computer-as in this report. In those cases where the exponents are held constant the standard deviation cannot be minimized and is merely computed. The set of exponents that produces minimum standard deviation in B is selected as the best correlative solution for any particular batch of data; i.e., the standard deviation is a measure of the validity of the similarity and isentropic-flashing theories, as both are evaluated from experimental data.

Because MTWO proved to be a valuable correlating parameter for the hydrofoil and venturi data [21], the ogive data were correlated with and without the MTWO parameter to further evaluate its influence. Correlating the ogive data with eq (4-8), and then eq (4-9), provides direct evaluation of MTWO as a correlating parameter-identical comparisons were prepared for the hydrofoil and venturi data [21]. Correlation of the ogive data, using eq (4-8), is summa rized in table 4.7; similarly, table 4.8 was prepared using eq (4-9). Table 4.9 summarizes the correlative results for developed cavitation on all geometries (bodies) tested in this study, i.e., venturi, hydrofoil, and ogives. The results given in tables 4.7 to 4.9 are discussed in the following section of this report.

4.4 Discussion of Developed Cavitation Data

4.4.1 Cavity Visualization and Appearance

Photographs of fully developed vaporous cavities, in liquid hydrogen, are shown on figures 3.6 to 3.8 . Inlet velocity and liquid temperature were observed to have very little effect on the appearance of cavitating hydrogen; i.e., the cavities were somewhat ragged but uniformly developed. Only at the highest temperature, and lowest velocities, did the hydrogen cavities exhibit a slightly porous, non-uniform character. Similar, though more pronounced, features were observed in the nitrogen cavities. If a cavity is sufficiently porous, i.e., if it visually resembles vapor streams, erratic developed cavity data may result. This occurs because the pressure and temperature sensing ports are not continuously covered with vapor during a test, but may be intermittently covered with vapor and then liquid. This results in non-steady data that are readily spotted•during data analysis and no such data are reported herein.

The photographs in figures 3.6 to 3.8 indicate that the cavity profiles are fairly smooth except in the vicinity of the belled diffusers. Figure 3.6 shows two long cavities with trailing clouds of condensing vapors--scribe lines on the plastic tunnel, used to detect cavity length, are visible in both of these photographs. Figure 3.7 shows hydrogen cavities on the 0.357 -inch ogive in various stages of development. Two very interesting photographs are shown in the top half of figure 3.8-these cavities were filmed in the rare act of tearing apart with the rear portion of the cavity collapsing. More typical photographs, for the 0.420 -inch ogive, are shown in the bottom half of this figure.

By comparing figures $3.6,3.7$, and 3.8 , it becomes apparent that cavity profile irregularities are accentuated with increasing size of the ogives. All of the photographs in these figures were acquired with a three microsecond stroboscopic flash exposure. Thus, these photographs are not representative of what one sees when viewing a test. At much slower exposure rates, that can be accommodated by the eye, the cavity profile irregularities are smeared into a nice smooth continuous elliptical shape.
4.4.2 Graphical Display of Typical Developed Cavity Data

In figures 4.17 to 4.26 , the data points representing cavity pressure measurements have been connected with a smooth curve-this facilitates comparison with the data points obtained from the cavity temperature measurements, where the latter are plotted. The pressure depressions obtained from the cavity temperature measurements are, for the most part, in good agreement with those derived from the measured pressures, i.e., within the allowances of instrument er ror, the cavity vapor is in stable thermodynamic equilibrium. Plots similar to figures 4.18 to 4.26 , of all the ogive data, reveal that stable thermodynamic equilibrium exists within the cavity vapor--within data accuracy. Similar results were obtained with the hydrofoil [21] while evidence of metastable vapor was presented in the venturi study [20].

In figures 4.18 to 4.26 , the only significant differences in the measured pressure and temperature profiles occur near the trailing edges of the cavities. Similar characteristics were observed in the
hydrofoil and venturi studies. The trailing edges of a cavity are normally irregular and are characterized by randomly-spaced clouds of condensing vapor. It was previously shown [21] that it is inadvisable to attempt to interpret the cavity data in this ill-defined region. Also, an explanation was offered [21] for the apparent discrepancy, in pressure and temperature measurements, near the aft end of the cavities.

Figures 4.17 to 4.26 were selected to demonstrate the functional dependency of cavity pressure depression upon various correlating parameters. The primary parameters, as differentiated from derived parameters, at our disposal are cavity length (ℓ), fluid temperature (T_{0}) and velocity $\left(V_{o}\right)$, and ogive diameter $\left(D_{m}\right)$. Comparing figures 4.17 and 4. 18, we note that ℓ / D_{m} and T_{o} are almost constant but V_{o} varies. Comparing these hydrogen data for the same size ogives, we see that the maximum pressure depression decreases slightly with increasing values of $\mathrm{V}_{\mathrm{O}^{-}}$-this conclusion applies only to the 0.210 -inch and 0.357 -inch ogives. This result differs from the ventari [3,20], hydrofoil [21], and zero-caliber ogive [29] tests; however, similar results were obtained in pump inducer performance tests [6] using liquid hydrogen.

The effect of hydrogen temperature upon $P_{v}-P_{n}$ is made apparent by comparing figures 4.18 and 4.19 --here ℓ / D_{m} and V_{o} are nearly constant and T_{o} varies. Cavity pressure depression increases markedly with increasing hydrogen temperature. Similarly, by comparing figures 4.17 and 4.20 and then figures 4.19 and 4.21 , we find that hydrogen cavity pressure depression increases with increasing cavity length. Upon comparison of figures 4.20 and 4.21 , we find that increasing $V_{o}, \ell / D_{m}$, and T_{o} increases the hydrogen cavity pressure depression. Figures 4.17, 4. 18, and 4. 20 reveal little size effect at the lower hydrogen temperatures; however, figures 4.19 and 4.21 indicate a definite size effect
exists at higher hydrogen temperatures. The cavity pressure depressions increase with increasing values of D_{m}.

Similar comparisons and comments apply to the nitrogen data plotted on figures 4.22 to 4.26. Comparison of figures 4.22 and 4.23 reveals that $P_{v}-P_{n}$ increases with increasing V_{o}. Comparing figures 4.23 and 4.24, we note that $P_{v}-P_{n}$ increases markedly with increasing $T_{0} . \quad$ Pairing figures 4.22 and 4.25 , and then figures 4.24 and 4.26 , we find that $P_{v}-P_{n}$ for nitrogen increases with increasing cavity length. For nitrogen, as with hydrogen, the combined effects of increasing V_{0}, T_{o}, and ℓ / D_{m} results in larger values of $P_{V}-P_{n}$ (pair figures 4.25 and 4. 26 or figures 4.24 and 4.25). Again, we see a definite ogive size effect at the higher velocities and temperatures with nitrogen test fluid--$P_{v}-P_{n}$ increases with increasing ogive size.

The foregoing discussions of figures 4.17 to 4.26 show that cavity pressure depressions generally increase with increasing cavity length, ogive diameter, fluid temperature, and velocity for these tests; however, the pressure depressions decrease with increasing velocity for the 0.210 -inch and 0.357 -inch ogives in liquid hydrogen.

4.4.3 Mathematical Correlative Results

The foregoing cavity parameter functional dependencies are also shown by simply observing the characteristics of the experimentally derived exponents in table 4.7. In reference [28], it is shown that the pressure depression increases with increasing T_{o} and B. Referring to line 10 of table 4.7, we observe that B increases with increasing x and D_{m}, and B decreases with increasing V_{0}. Then, for hydrogen cavities on the 0.210 -inch and 0.357 -inch ogives, $P_{v}-P_{1}$ must increase with increasing T_{o}, x, and D_{m}, and $P_{v}-P_{1}$ must decrease with increasing V_{o}. By inspecting tables 4.7 to 4.9 , similar deductions may be drawn for any body-fluid combination.

The 'similarity' equations were fitted with numerical exponents derived from the ogive experimental data. These equations were derived in the course of this study [21] and represent extensions of the work of Gelder, et al. [19]. The exponents given in tables 4.7 to 4 . 9 were obtained with a least-squares fitting technique and a digital computer; the suitability of the various exponents to the experimental data is indicated by the standard deviation in B-factor as explained previously. In the ogive experiments, the value of B varies with the diameter of the ogive as follows: 1) 0.210 -inch ogive-- B ranges from 0.7 to 2.0 for hydrogen and from 0.5 to 2.3 for nitrogen, 2) 0.357 -inch ogive--B ranges from 1.2 to 2.6 for hydrogen and from 1.1 to 2.5 for nitrogen, 3) $0.420-$ inch ogive--B ranges from 1.1 to 2.8 for hydrogen and from 1.1 to 3.0 for nitrogen. In the hydrogen venturi study, the value of B ranges from 2,0 to 5.0 ; in the hydrofoil experiments, the value of B ranges from 1.0 to 5. 0, for both hydrogen and nitrogen test fluids.

The correlative expressions, used to correlate the experimental data, are given at the bottom of tables 4.7 to 4.9. The mathematical technique, used to derive the exponents, can easily pick an extraneous value for any of the exponents if there does not exist significant variation in the corresponding physical parameter. The lack of variation in α explains why El frequently tends toward a negative number in tables 4. 7 to 4.9; this is particularly true when correlating with single fluids as explained in a previous report [21]. For the ogive data, α varied by less than 8 percent with hydrogen and by only 16 percent with nitrogen-the variation in α for hydrogen-nitrogen correlation was about 2: 1. Thus, sufficient variation in α exists, for the hydrogen-nitrogen correlations, to provide reliable exponents. There was over 400 percent change in α in the hydrogen-refrigerant 114 data correlated by Moore and Ruggeri [3], and thus the value for El reported in line 4 of table 4.9 is to be preferred when correlating with eq (4-8). It is apparent that
the combined fluid correlations, for any hydrodynamic model or correlative expression, are to be preferred because of the greater variation in physical parameters. We shall soon demonstrate that the α term is insignificant when correlating with the MTWO term--eq (4-9).

In all of our ogive, hydrofoil, and venturi data, use of the ν and σ terms improved the correlations; however, it is felt that use of these additional correlating parameters is not justified, unless they substantially improve the correlative fit. None of the data were materially improved by the use of σ; therefore, values for $E 5$ are not included in tables 4.7 to 4.9 . Similarly, the ν term was of value only for some of the combined fluid correlations using eq (4-8)--see values for E4 in tables 4.7 and 4.9. Correlation of the hydrogen-refrigerant 114 data (line 4 of table 4.9) would most likely be improved by using one or both of these terms.

Exponents for the ogive data, using eq (4-8), are given in table 4.7. Again, the viscosity and surface tension terms had little influence on the data correlation for single fluids (lines 1 to 6 and 10 to l7) and were not used; however, the viscosity term significantly improved some of the combined fluid correlations (lines 7,9 , and 19 to 21), and the corresponding exponent, E4, was determined. For these combined fluids, inclusion of the viscosity term reduced the standard deviation by 7 to 25 percent-a substantial reduction.

Inspection of the 0.210 -inch ogive data reveals typical variations in α, v, and σ. In the hydrogen data (line 1 of table 4.7), α varied by only 8 percent, v varied by 12 percent, and σ varied by 17 percent. In the nitrogen data (line 2), α varied by 16 percent, v varied by 35 percent, and σ varied by 29 percent. Thus, it is not surprising that the v and σ terms were of little benefit in the single fluid correlations, nor that the exponent on the α term is somewhat unsteady. In the combined fluid data
(line 7), α varied by almost 100 percent, v varied by 35 percent, and σ varied more than 300 percent. Then the α exponent, El, should be quite meaningful, the v exponent, E 4 , (though beneficial) is suspect, and the σ exponent, E5, should be beneficial. Because the σ term was of negligible value in the correlative fit, even though it varied by a factor of three, we must conclude that σ is not an important correlating parameter for the cryogens tested; however, it may yet prove to be a valuable correlating parameter for other fluid combinations--with smaller or larger variations in σ. Although the ν term improved the combined fluid correlation, the numerical value of $E 4$ is suspect because of the relatively small variation in v for these data. Again, v may be an excellent correlating parameter for other fluid combinations and is of considerable value for the hydrogen-nitrogen combination.

Inspection of the hydrogen data in table 4. 7 (lines 1,3 , and 5) indicates that E2 tends toward negative values with decreasing ogive size. This result has already been illustrated graphically, i. e., B decreases with increasing V_{o} for the 0.210 -inch and 0.357 -inch ogives. All of the nitrogen data (lines 2, 4, and 6) produced positive values of E2, but these values appear somewhat inconsistent. The foregoing comments are reflected throughout the remainder of the E2 data in table 4.7 (lines 7 to 21). The cavity length exponent, E3, is observed to be relatively constant for all ogive model-fluid combinations (lines 1 to 21 of table 4.7). The viscosity exponent, E4, is also observed to be relatively constant for those model-fluid combinations where v was found to be beneficial (lines 7, 9, and 19 to 21).

Lines 10 to 21 on table 4.7 were selected to establish the size effect for the ogives, i. e., the value of E6. Perusal of this data indicates considerable variation in E6, depending upon the model-fluid combination. The best set of exponents, using eq (4-8), is considered
to be those given in line 21 of table 4.7. These exponents are derived using all of the available ogive data and are consequently representative of the maximum variation in each of the correlating parameters. The data on line 21 is repeated on line 1 of table 4.9.

Comparison of these best experimental exponents (line 21 of table 4.7) for the ogives, with the exponents predicted from heat transfer considerations [21], is somewhat gratifying. The predicted [21] values of El, E2, and E3 bracketed the experimental data, but the predicted value of E4 did not. These ogive tests do not reveal that a particular flow mode, and technique for evaluating the thermal boundary layer thickness, are to be preferred. Similar results were obtained in the hydrofoil tests [21].

The ogive data were also correlated using eq (4-9); this was accomplished by substituting MTWO for V_{o} in the computer program. These results are shown in table 4.8. It is apparent from the foregoing discussion, and the results shown in table 4.8, that the v and σ terms did not materially improve the correlation. That eq (4-9) is quite superior to eq (4-8), as a correlative expression, is readily shown by a line-to-line comparison of the results given in tables 4.7 and 4.8. A substantial reduction (up to $1 / 4$) in standard deviation in B-factor is achieved, in all but three cases (lines 1,3 , and 10), by substituting MTWO for V_{0}. In those three cases where MTWO does not improve the correlation, the 0.210 -inch and 0.357 -inch ogives and hydrogen fluid are involved. For these three cases, it was found that the standard deviations listed in table 4.7 could be reduced by 10 to 20 percent by using eq ($4-9$) and evaluating MTWO in a different manner--the homogeneous thermal equilibrium two-phase mass flux limiting model [30] was used to derive an expression for MTWO. All of the data presented in table 4.8
were derived using the expression for MTWO that was developed in a previous report [21]. The fact that a different expression for MTWO works better in some cases implies that we have not yet developed the optimum formulation for evaluating MTWO; however, the use of MTWO, as currently evaluated, is clearly superior to the use of V_{o} as a correlating parameter.

In addition to reducing the standard deviation in B-factor, the use of MTWO results in far more consistent values of the exponents E2, E3, and E4 for the various model-fluid combinations (lines 1 to 21 of table 4.8). Careful study of these same data (and comparison with the data in table 4.7) will also show that the importance of the α and x terms is generally lessened when eq (4-9) is used, i. e., the numerical values of El and E3 are reduced. In the combined model-fluid correlations (lines 18 to 21 of table 4.8), the numerical value of El is so small that the α term could be neglected. The α term is undoubtedly diluted somewhat, because of the many thermophysical and thermodynamic fluid properties embodied in the MTWO parameter. It is believed that the slight correlative improvement offered by the ν and σ terms, when using eq (4-9), can be attributed to the very strong influence of the MTWO parameter. While the vterm was of considerable benefit (lines 7, 9, and 19-21 of table 4.7), when using eq (4-8), it has little effect when the standard deviation is reduced to a much lower value (lines 7, 9, and 19-21 of table 4.8), by use of the MTWO parameter. The predominant influence of the MTWO term may also be responsible for the slight reductions in $E 3$, when using eq (4-9). The importance of MTWO, as a correlating parameter, emphasizes that mass transfer plays an important role in the cavitation process. Again, line 21 of table 4.8 represents the best set of exponents for the ogive data using eq (4-9). These data are repeated on line 5 of table 4.9 .

Table 4.9 lists the best experimental exponents for the hydrodynamic bodies and fluids used in this study. The best correlative results using eq (4-8) and eq (4-9) are presented. The first four data lines indicate that the exponents, using eq (4-8), vary appreciably with the model-fluid combination--only E3 and E4 show reasonable constancy. Lines 5 to 7 of table 4.9 indicate that all of the exponents, using eq (4-9), are reasonably constant for the model-fluid combinations available to us. Certainly, it is not expected that the exponents derived from eq (4-8) or eq (4-9), for different bodies, should be the same. Our tests coupled with recent tests [29], on zero-caliber ogives, indicate that the exponents derived from eq (4-8) may vary widely from one hydrodynamic body to another. Yet it is remarkable that the variation in the exponents, using eq (4-9), is so small (lines 5 to 7 of table 4.9). It is apparent that the α term is negligible in lines 5 to 7 ; thus, it appears that the α term could be eliminated in eq (4-9). Then; only the MTWO, x and D_{m} terms remain as vital correlating parameters.

The importance of MTWO, as a correlating parameter, is readily demonstrated by comparing the standard deviation in B-factor for lines 1 and 5, 2 and 6, 3 and 7 in table 4.9. A significant improvement in data correlation is obtained, in each case, by using eq (4-9).

The diameter (size) terms in eq (4-8) and eq (4-9) produced almost identical values for E6 (lines 1 and 5 of table 4.9). Moore and Ruggeri [3] obtained an exponent value of -0.1 for the diameter term--E6 $=-0.1$ in eq (4-8)--based on tests using refrigerant 114 in two different venturi sizes. Those tests were performed with a venturi identical to the one used in our study [20], and with a larger (1.414:1) geometrically similar venturi. Billet [29] used water and refrigerant-113 to test 0.24 -inch and 0.50 -inch diameter zero-caliber ogives. He obtained
values of $\mathrm{E} 1=0.60, \mathrm{E} 2=0.30, \mathrm{E} 3=0.58$, and $\mathrm{E} 6=-0.25$ for these tests--as derived from a formulation similar to eq (4-8). Thus, it appears that size effects vary with equipment geometry.

It is instructive to consider another aspect of size effect. The ℓ / D_{m} ratio is used in a wide variety of geometric scaling problems and has special 'similarity' significance [3]. Substitution of ℓ / D_{m} for x in eq (4-8) and eq (4-9) requires that

$$
\begin{equation*}
\left(\frac{x}{x_{r e f}}\right)^{E 3}\left(\frac{D_{m}}{D_{m, r e f}}\right)^{E 6}=\left(\frac{\ell / D_{m}}{\left(\ell / D_{m}\right)_{r e f}}\right)^{E 3}\left(\frac{D_{m}}{D_{m, r e f}}\right)^{E 7} \tag{4-10}
\end{equation*}
$$

The true 'size effect' is then indicated by the value of the new exponent, E7, i. e., for the same cavity length-to-diameter ratio, ℓ / D_{m}, the size effect is functionally represented by $\left(D_{m} / D_{m, r e f}\right)^{E 7}$. Using the E3 and E6 data in lines 1, 4, and 5 of table 4.9 and Billets' data [29], we obtain values of E7 as follows: The Moore and Ruggeri data [3] produce the lowest value of 0.20 (from line 4), Billets' data [29] yields a value of 0.33 and our ogive data requires that $E 7=0.84$ (line 5) or 0.94 (line 1). Our ogive data indicate that B increases almost linearly with increasing equipment (body) size--for the same ℓ / D_{m}. From these limited available data, it appears that size effect must be individually determined for specific equipment-fluid combinations.

The results obtained herein indicate that eq (4-9), rather than eq (4-8), should be used for predictive calculations [4, 5].
4.4.4 Variation of $K_{c, \min }$ With Geometry, Fluid, Size, Etc.

The arithmetic mean value of the developed cavitation parameter,
$\overline{\mathrm{K}}_{c, \min }$, does not vary appreciably for the venturi data presented in
table 4.9 . This parameter was also relatively constant for the hydrofoil
data [21]; this is an important result, because constant $\bar{K}_{c, \min }$, eq
$(4-8)$, and the isentropic flashing theory [28] are used to predict [4, 5]
the cavitating performance of a particular piece of equipment. The
fact that $\bar{K}_{c, \min }$ is different, for different models, curtails the
current predictive techniques [4, 5] to a particular piece of equipment, i.e., the geometry (shape) of the cavitating equipment must be identical or similar. Actually, it was anticipated [20] that $\bar{K}_{c, \min }$, for many cavitating bodies, would not remain constant--as with the venturi--for all fluids, cavity lengths, velocities, temperatures, etc. Then, it was neither surprising that $\bar{K}_{c \text {, min }}$ for the hydrofoil varied slightly [21] nor that $\bar{K}_{c, \text { min }}$ varied appreciably with ogive model-fluid combinations, see table 4.7 or 4.8 . For the ogive data, $\bar{K}_{c, m i n}$ varied by a factor of 1.5:1.

Also, $K_{c, m i n}$ varied more for the ogives and the hydrofoil than for the venturi; $K_{c, \min }$ was within 7 percent of $\bar{K}_{c, \min }$ for the venturi and showed 15 percent deviation for the hydrofoil. $K_{c, m i n}$ for the ogives varied as follows: l) 0.210 -inch ogive-- $K_{c, \min }$ varied from 0.33 to 0.51 with hydrogen and from 0.36 to 0.63 with nitrogen, 2) 0.357 -inch ogive- $-K_{c, \min }$ varied from 0.50 to 0.77 . with hydrogen and from 0.43 to 0.71 with nitrogen, 3) 0.420 -inch ogive-- $K_{c, \text { min }}$ varied from 0.53 to 0.71 with hydrogen and from 0.45 to 0.63 with nitrogen. From these data and the $\bar{K}_{c, \min }$ data given in table 4.7 , it is apparent that $K_{c, m i n}$ increases with increasing ogive size. We note that the 0.24 -inch diameter zero-caliber ogive data of Billet [29], for water and refrigerant-113, show similar large variations in $K_{c, \min }(0.32$ to 0.52$)$. Also, significant variations in $K_{c, \min }$ have been observed in pump [4] and pump inducer $[5,6]$ performance tests. Then, for a specific piece of equipment $K_{c, \min }$ can vary appreciably with fluid and flow conditions, and $K_{c, \min }$ for similar equipment can be expected to vary with size.

An attempt was made to determine the functional dependency of $\mathrm{K}_{\mathrm{c}, \min }$ upon $\mathrm{x}, \mathrm{V}_{\mathrm{o}}$, and T_{o}; however, these results were somewhat discouraging. It was determined that the hydrofoil $K_{c, \min }$ is nearly
independent of cavity length and velocity and increases very slightly with increasing temperature. With the ogives, $K_{c, \min }$ was also found to increase with increasing temperature and is almost independent of cavity length and velocity. Billet obtained different results for zerocaliber ogives [29]--K ${ }_{c, \min }$ was nearly independent of T_{0}, and increased slightly with increasing V_{o}, and decreased with increasing cavity length. For the venturi [20], $K_{c, \min }$ was nearly independent of x, V_{0}, and T_{0}. Consequently, the behavior of $K_{c, \min }$ for different equipment is not currently predictable prior to testing.

Where $K_{c, m i n}$ does not vary appreciably, it is convenient to use $\bar{K}_{c, \min }$ for predictive purposes. With large variations in $K_{c, \min }$, as in our ogive data, this practice will produce relatively crude predictive results; however, in practical applications similar flow conditions can usually be selected [4-6], so that predictions can be made at identical values of $K_{c}, \min { }^{\circ}$ Data presented herein shows that $K_{c, m i n}$, and consequently $\frac{c}{\mathrm{~K}_{c}}, \min$, varies widely with body or equipment geometry, as does the pressure coefficient, C_{p}. Thus, it is quite obvious that prediction of cavitation performance, from one piece of equipment to . another, will require significant advances in the 'state-of-the art.'

As a preliminary step, we can supply, from this study and others, data that relates $\overline{\mathrm{K}}_{\mathrm{c}}$, min to the noncavitating minimum pressure coefficient, C_{p}. The definitions of these two parameters are nearly identical, except that $\bar{K}_{c, m i n}$ is based upon minimum cavity pressure in cavitating flow and C_{p} is based upon minimum pressure in noncavitating flow-also, C_{p} has a negative numerical value, see nomenclature. Experimental data from this study and others are plotted on figure 4. 27; neither $\overline{\mathrm{K}}_{\mathrm{c}, \min }$ or ${\underset{\mathrm{C}}{\mathrm{C}}}$ are corrected for blockage in this plot. If a designer can estimate values of C_{p} from idealized fluid flow solutions, or from model scale-up tests in wind tunnels, a corresponding value of $\bar{K}_{c, m i n}$ can be picked from figure 4.27 .

Figure 4. 27 Minimum cavitation parameter, $\bar{K}_{c, m i n}$, as a function of minimum noncavitating pressure coefficient, ${\underset{p}{V}}^{\mathbf{V}}$, for various hydrodynamic bodies.

It may then be possible to apply the predictive techniques of Ruggeri and Moore [4-6] to estimate cavitation performance from one piece of equipment to another. More data on this topic will be supplied in Volume IV of this report series.

The conventional cavitation parameter for developed cavitation, K_{v}, also varies with flow conditions for any particular geometry, e. g., see table A-1a and Rouse and McNown [25].

4. 5 Developed Cavity Shapes

One of the main objectives of the hydrofoil and ogive experiments was to obtain cavity volume - thickness data, in an effort to improve the correlative theory. The hydrofoil-tunnel and ogive-tunnel configurations were designed to provide optimum photographs of the developed cavities. Enlarged photographs of the cavities, for each experimental data point, were carefully studied to determine cavity shape, thickness, and volume. Ogive tunnel distortion, figures 3.2 to 3.4 , was taken into consideration in this cavity shape analysis. All of the cavities were elliptically shaped, and the photographed cavities were easily fit with a transparent-plastic elliptical-template. By recording appropriate data from the template, e.g., major and minor axes dimensions, maximum cavity thickness, and angle of projection, it was possible to compute cavity volumes, shapes, etc. We found that cavity thickness and volume increased with increasing cavity length, and were nearly independent of V_{0} and T_{0}. Because we are primarily interested in the shape of cavities near their leading edge, we restricted our attention to cavity volumes in the fronthalf of the cavity; in this way, the ill-defined trailing regions of the cavity are avoided. The shapes, of all of the cavities, were adequately represented by a simple algebraic expression of the form $\delta_{v}=C_{o} x^{p}$. Table 4.10 summarizes the cavity shape data.

Table 4. 10 Summary of developed cavity shape data.

Model	Fluid	C_{o}	p
Hydrofoil	H_{2}	0.77	0.37
Hydrofoil.	N_{2}	0.44	0.63
0.210 -inch ogive	H_{2}	0.41	0.86
0.210 -inch ogive	N_{2}	0.43	0.73
0.357 -inch ogive	H_{2}	0.49	0.69
0.357 -inch ogive	N_{2}	0.50	0.69
0.420 -inch ogive			
0.420 -inch ogive			
H_{2} v exceed the cavity half-length.	0.34	0.79	

The expressions for the ogive cavity shapes are observed to be reasonably consistent in the exponent p. These cavity data and shape analyses substantiate the assumption of the existence of parabolic-shaped cavities in a previous analysis [21]. These data also support the selection of a mean value for $p \approx 0.65$ in that analysis [21].

Because of its application in the pumping machinery field, pressure. head has been included in the data tabulated in appendix A. Mathematical conversion of pressure to pressure-head merely requires evaluation of the liquid density at the point of measurement; however, selection of the appropriate liquid density can be a bit perplexing. Figures 4.17 to 4.26 indicate that the measured pressures and temperatures, within the cavities, are not in perfect agreement. Also, due to the thermal expansivity
of liquid hydrogen, the bulkstream temperature does not remain perfectly constant as the liquid flows over the ogives. The following methods were used to calculate pressure head from the cavity measurements: (1) Head (h_{n}) was calculated from measured cavity pressure by using the saturation density at the measured pressure. (2) Head ($h_{n, T}$) was calculated from measured cavity temperature by using the saturation density at the measured temperature. Both values of head are given in the tabulated data in appendix A.

5. CONCLUDING REMARKS

Desinent cavity data, for three quarter-caliber ogives, were acquired for vaporous hydrogen and nitrogen cavities; the results for these scaled ogives are given in appendix A and on figures 4. 1 to 4.16. Correlation of the desinent data is treated in appendix C of reference [21]. The desinent data tend toward a narrow range of K_{iv} values, at the maximum velocities, ir respective of fluid or fluid temperature. The hydrogen data indicate that K_{iv} increases slightly with increasing body size, while the nitrogen data imply an opposite trend. Neither the Weber or Reynolds numbers appear attractive as correlating parameters for these ogive desinent cavity data. These ogive data, for cryogenic liquids, substantiate a previous observation [21] that these liquids require less subcooling--relative to higher boiling-point liquids--for desinent cavitation to occur.

Pressure and temperature profiles were measured within fully developed, vaporous hydrogen and nitrogen cavities; these results, for the ogives, are given in appendix A and on figures 4.17 to 4.26 . Within data accuracy, these pressure and temperature depressions were in stable thermodynamic equilibrium. These data were correlated using a previously described [20] technique, and the extended theory developed
in a previous report [21]. Using the conventional correlating technique, eq (4-8), it was found that α, V_{o}, x, and ν, were valuable correlating parameters for combined fluids, see table 4.7. Using the new MTWO parameter, only MTWO and x were of value, see table 4.8. If the MTWO correlation is not used, the results may be degraded by approximately 25 to 50 percent (as based on standard deviation in B), see table 4.9. Because MTWO is such an influential parameter, its use is highly recommended in future work, for both correlative and predictive purposes.

The ogive developed cavity data revealed a strong size dependency-for the same ℓ / D_{m} ratio the B-factor increases almost linearly with increasing size (diameter). Thus, for liquids that possess nearly linear relationships between B and pressure-depression, such as water [28], the pressure-depression will increase almost linearly with increasing body (ogive) size. The ogive size effect is clearly indicated in tables 4.7 to 4.9 and through the use of eq ($4-10$). Comparison of our data with those of others [3, 29] indicates that size effects vary with specific equipment-fluid combinations.

The parameters used in this study to correlate ogive, hydrofoil, and venturi data are obviously suitable for a variety of body geometries (and sizes) with two-dimensional and axisymmetric cavitating flows (internal and external). Correlation of developed cavitation data from one cavitating body to another (of different geometry) requires further development.
$\mathrm{K}_{\mathrm{c}, \min }$ was found to vary by a factor of approximately two for the ogives; however, relatively small deviations in $K_{c, \min }$ were experienced with the venturi and hydrofoil tests [21]. Variations, in $K_{c, \min }$ of $1.65: 1$ were found in tests on zero-caliber ogives [29] in water. Our data also show that $K_{c, \min }$ increases with increasing ogive size. It is quite apparent that $K_{c, \min }$ will vary with equipment geometry, size, fluid, velocities,
temperatures, etc. Then, the current predictive technique [4, 5], which relies on constant $K_{c, \min }$ (or $\bar{K}_{c, \min }$), must be used with appropriate caution.

It appears that the behavior of $K_{c, \text { min }}$ for different equipment is not currently predictable prior to testing of that equipment. With sufficient experimental data, it may be possible to estimate a range of values for $\overline{\mathrm{K}}_{\mathrm{c}, \text { min }}$ from knowledge of the noncavitating pressure coefficient, $\stackrel{V}{\mathrm{C}}_{\mathrm{p}}$. Such knowledge may permit us to predict cavitating performance, from one piece of equipment to another, under certain limiting conditions. A typical $\bar{K}_{c, \min }-{\stackrel{V}{C_{p}}}_{p}$ plot is shown on figure 4.27. The final volume of this report series will cover this subject in detail.

The cavity-shape data, acquired during this study, indicate that the cavities can be described by a simple expression of the form
$\delta_{v}=C_{o} x^{p}$; this expression is valid only•in the frontal regions of the cavity.
6. NOMENCLATURE
$B \quad=\quad$ ratio of vapor to liquid volume associated with the sustenance of a fixed cavity in a liquid

BFLASH $\quad=\quad$ B derived from isentropic flashing theory (Ref. [28])
$\mathrm{B}_{\mathrm{t}} \quad \equiv \quad \mathrm{BFLASH}$
$C_{0} \quad=\quad$ constant or numerical coefficient in various algebraic expressions

C_{p}	$=\text { pressure coefficient }\left[\equiv\left(\mathrm{h}_{\mathrm{x}}-\mathrm{h}_{\mathrm{o}}\right) /\left(\mathrm{V}_{\mathrm{o}}^{2} / 2 \mathrm{~g}_{\mathrm{c}}\right)\right]$
C_{p}	$=\quad \text { minimum pressure coefficient }\left[\equiv\left(\mathrm{h}^{\mathrm{v}}-\mathrm{h}_{\mathrm{o}}\right) /\left(\mathrm{V}_{\mathrm{o}}^{2} / 2 \mathrm{~g}_{\mathrm{c}}\right)\right]$
D_{m}	$=$ diameter of axisymmetric model (body)--in this study, the diameter of the cylindrical body with a quarter-caliber rounded nose (ogive)
D_{0}	$=$ test section (tunnel) inlet diameter
g_{c}	$=$ conversion factor in Newton's law of motion (gravitational acceleration)
h_{n}	$=(\mathrm{n}=1,2,3,4$, or 5$)$: head corresponding to cavity pressure, measured at a particular instrument port on the ogive
$h_{n, T}$	$=(n=1,2,3,4$, or 5$)$: head corresponding to the saturation pressure at the cavity temperature, measured at a particular instrument port on the ogive
h_{0}	$=$ tunnel inlet head corresponding to absolute inlet pressure
h_{v}	$=$ head corresponding to saturation or vapor pressure at the tunnel inlet temperature
h_{x}	$=$ head corresponding to absolute pressure, measured on the ogive at distance x, downstream of the minimum pressure point--for noncavitating flow
$\stackrel{\mathrm{v}}{\mathrm{h}}$	$=$ head corresponding to the minimum absolute pressure on the leading edge of the ogive, computed from expression for $\stackrel{V}{\mathrm{C}}_{\mathrm{p}}$

$K_{c, \min }$	$=$ developed cavitation parameter, based on minimum measured cavity pressure $\left[\equiv\left(P_{o}-P_{l}\right) /\left(\rho_{o} V_{o}^{2} / 2 g_{c}\right)\right]$
$\overline{\mathrm{K}}_{\mathrm{c}, \mathrm{~min}}$	arithmetic mean value of K_{c}, min for a complete set of data points for a particular hydrodynamic bodyfluid combination
K_{iv}	$\begin{aligned} = & \text { cavitation parameter, } K_{v} \text {, evaluated at incipient } \\ & (\text { desinent }) \text { conditions }\left[\equiv\left(P_{o}-P_{v}\right) /\left(\rho_{o} V_{o}^{2} / 2 g_{c}\right)\right] \end{aligned}$
K_{v}	$=$ developed cavitation parameter $\left[\equiv\left(\mathrm{P}_{\mathrm{o}}-\mathrm{P}_{\mathrm{v}}\right) /\left(\rho_{o} \mathrm{~V}_{\mathrm{o}}{ }^{2} / 2 \mathrm{~g}_{\mathrm{c}}\right)\right]$
ℓ	$=$ length of cavities developed on ogives, used interchangeably with x in eq's (4-8), (4-9), and (4-10)
MTWO	$\begin{aligned} = & \text { liquid phase velocity ratio }\left[\equiv \mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\ell}\right] \text {, see } \\ & \text { reference }[21] \end{aligned}$
P_{n}	$=\quad(\mathrm{n}=1,2,3,4$, or 5$)$: absolute cavity pressure, measured at a particular station or instrument port on the ogive
$\mathrm{P}_{\mathrm{n}, \mathrm{T}}$	$=\quad(\mathrm{n}=1,2,3,4$, or 5$)$: saturation pressure corresponding to the measured cavity temperature at a particular station or instrument port on the ogive
P_{0}	$=$ tunnel absolute inlet pressure
P_{v}	```= saturation or vapor pressure at tunnel inlet temperature```
Re	$=$ Reynolds number $\left[\equiv \rho_{0} \mathrm{~V}_{0} \mathrm{D}_{\mathrm{m}} / \mu\right]$
T_{n}	$\begin{aligned} = & (\mathrm{n}=1,2,3,4, \text { or } 5): \text { measured cavity temperature } \\ & \text { at a particular station or instrument port on the ogive } \end{aligned}$

T_{0}	bulkstream temperature in degrees Rankine (Kelvin) of liquid entering the tunnel
V_{ℓ}	$=$ characteristic liquid velocity component, normal to cavity liquid-vapor interface, see reference [21]
V_{0}	$=\quad$ velocity of test liquid at inlet to tunnel
We	$=\text { Weber number }\left[\equiv \rho_{0} \mathrm{~V}_{\mathrm{o}}^{2} \mathrm{D}_{\mathrm{m}} / \sigma\right]$
x	$=$ axial distance measured from minimum pressure point on ogive--used interchangeably with cavity length, ℓ, in eq's (4-8), (4-9), and (4-10)

Greek

$\alpha \quad=\quad$ thermal diffusivity of liquid, evaluated at tunnel inlet
δ_{v}
μ surface tension of liquid in contact with its vapor, evaluated at tunnel inlet

Subscripts

$=$	denotes tunnel inlet location
ref $\quad=$	reference run (data point), or test conditions, to
	which a computation is being referenced when
	attempting to correlate cavitation performance via
	eq (4-8) or eq (4-9)

Superscripts

E1 $\quad=\quad$ exponent on thermal diffusivity ratio in eq (4-8) and eq (4-9)

E2 $=$ exponent on tunnel inlet velocity ratio in eq (4-8) and also used as an exponent on the MTWO ratio in eq (4-9)

E3 $=$ exponent on cavity length ratio in eq (4-8) and eq (4-9)

E4 $=\quad$ exponent on kinematic viscosity ratio in eq (4-8) and eq (4-9)

E5 $=$ exponent on surface tension ratio in eq (4-8) and eq (4-9)

E6 $\quad=\quad$ exponent on (characteristic dimension) cavitating body diameter (or thickness) ratio in eq (4-8) and eq (4-9)

E7 . = exponent on cavitating body diameter ratio in eq (4-10)--used to determine true size effect for the same ℓ / D_{m} ratio
$p \quad=\quad$ exponent in algebraic expression for cavity shape $\left(\delta_{v}=C_{o} x^{p}\right)$

7. REFERENCES

1. Pinkel, I., Hartmann, M. J., Hauser, C. H., Miller, M. J., Ruggeri, R. S., and Soltis, R. F., Pump technology, Chap. VI, pp. 81-101, taken from Conference on Selected Technology for the Petroleum Industry, NASA SP-5053 (1966).
2. Erosion by Cavitation or Impingement, STP-408, 288 pages (1967), available from ASTM, 1916 Race Street, Philadelphia, Pa., 19103.
3. Moore, R. D., and Ruggeri, R. S., Prediction of thermodynamic effects of developed cavitation based on liquid hydrogen and freon-114 data in scaled venturis, NASA Tech. Note D-4899 (Nov. 1968).
4. Ruggeri, R. S., and Moore, R. D. , Method for prediction of pump cavitation performance for various liquids, liquid temperatures, and rotative speeds, NASA Tech. Note D-5292 (June 1969).
5. Moore, R. D., Prediction of pump cavitation performance, Proc. Int. Symp, on the Fluid Mechanics and Design of Turbomachinery, Pennsylvania State Univ., University Park, Pa., Aug. 30 - Sept. 3, 1970.
6. Moore, R. D., and Meng, P. R., Comparison of noncavitation and cavitation performance for $78^{\circ}, 80.6^{\circ}$, and 84° helical inducers operated in hydrogen, NASA Tech. Note D-6361 (May 1971).
7. Spraker, W. A., Two-phase compressibility effects on pump cavitation, Symposium on Cavitation in Fluid Machinery, presented at winter meeting, Chicago, Ill., Nov. 7-11, 1965, pp. 162-171 (ASME, New York, N. Y.).
8. Jakobsen, J. K., On the mechanism of head breakdown in cavitating inducers, Trans. ASME, Ser. D, 86, No. 2, 291-305 (June 1964).
9. Chivers, T. C., Cavitation in centrifugal pumps, first and second papers, Proc. Inst. Mech. Engrs. 184 , Part 1 , No. 2, 37-68 (1969-70).
10. Fisher, R. C., Discussion of "A survey of modern centrifugal pump practice for oilfield and oil refining services" by N. Tetlow, Proc. Inst. Mech. Engrs. 152, 305-306 (Jan. - Dec. 1945).
11. Stahl, H. A., and Stepanoff, A. J., Thermodynamic aspects of cavitation in centrifugal pumps, Trans. ASME 78, No. 8, 1691-1693 (Nov. 1956).
12. Jacobs, R. B., Prediction of symptoms of cavitation, J. Res. Nat. Bur. Stand. (U. S.), 65C (Eng. and Instr.), No. 3, 147-156 (July - Sept. 1961).
13. Hollander, A., Thermodynamic aspects of cavitation in centrifugal pumps, ARS J. 32, 1594-1595 (Oct. 1962).
14. Stepanoff, A. J., Centrifugal and Axial Flow Pumps, pp. 256-265 (John Wiley and Sons, Inc., New York, N. Y., 1957).
15. Stepanoff, A. J., Cavitation properties of liquids, ASME J. of Engr. for Power 86, No. 2, 195-200 (Apr. 1964).
16. Saleman, Victor, Cavitation and NPSH requirements of various liquids, ASME J. of Basic Engr. 81, No. 2, 167-180 (June 1959).
17. Wilcox, W. W., Meng, P. R., and Davis, R. L., Performance of an inducer-impeller combination at or near boiling conditions for liquid hydrogen, Book, Advances in Cryogenic Engineering 8, Ed. K. D. Timmerhaus, pp. 446-455 (Plenum Press, Inc., New York, N. Y. 1963).
18. Spraker, W. A. The effects of fluid properties on cavitation in centrifugal pumps, ASME J. of Engr. for Power 87, No. 3, 309-318 (July 1965).
19. Gelder, T. F., Ruggeri, R. S., and Moore, R. D., Cavitation similarity considerations based on measured pressure and temperature depressions in cavitated regions of freon-114, NASA Tech. Note D-3509 (July 1966).
20. Hord, J., Anderson, L. M., and Hall, W. J., Cavitation in liquid cryogens, Volume I: Venturi, NASA Rept. CR-2054 (May 1972).
21. Hord, J., Cavitation in liquid cryogens, Volume II: Hydrofoil, NASA Rept. CR-2156 (Jan. 1973).
22. Hord, J., Edmonds, D. K., and Millhiser, D. R., Thermodynamic depressions within cavities and cavitation inception in liquid hydrogen and liquid nitrogen, NASA Rept. CR-72286 (March 1968). Available from NASA, Office of Scientific and Technical Information, AFSS-A, Washington, D. C.
23. Stockman, N. O., and Lieblein, S., Theoretical analysis of flow in VTOL lift fan inlets without crossflow, NASA Tech. Note D-5065 (Feb. 1969).
24. Smith, A. M. O., and Pierce, J., Exact solution of the Neumann Problem. Calculation of non-circulatory plane and axially symmetric flows about or within arbitrary boundaries, Douglas Aircraft Co., Inc., Rept. ES-26988 (Apr. 1958).
25. Rouse, H., and McNown, J. S., Cavitation and pressure distribution on head forms at zero angle of yaw, State Univ. of Iowa, Bulletin 32 (Aug. 1948).
26. Parkin, B. R., and Holl, J. W., Incipient cavitation scaling experiments for hemispherical and 1.5-caliber ogive-nosed bodies, Report No. NOrd 7958-264, Ordnance Research Laboratory, Pennsylvania State Univ., (May 1953).
27. Parkin , B. R., Scale effects in cavitating flow--a preliminary report, Report No. 21-7, Hydrodynamics Laboratory, California Inst. of Tech., (Dec. 1951).
28. Hord, J., and Voth, R. O., Tabulated values of cavitation B -factor for helium, $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{~F}_{2}, \mathrm{O}_{2}$, refrigerant 114 , and $\mathrm{H}_{2} \mathrm{O}$, Nat. Bur. Stand. (U. S.), Tech. Note 397 (Feb. 1971).
29. Billet, M. L. , Thermodynamic effects on developed cavitation in water and freon-113 (M. S. Thesis, Pennsylvania State Univ., Dept. of Aerospace Engr., University Park, Pa., Mar. 1970).
30. Smith, R. V., Choking two-phase flow literature summary and idealized design solutions for hydrogen, nitrogen, oxygen, and refrigerants 12 and 11 , Nat. Bur. Stand. (U. S.), Tech. Note 179 (Aug. 1963).
APPENDIX A: Experimental cavitation data--nitrogen and hydrogen--for ogives.

RUN NO.	CAVITY INCHES	$\mathrm{TO}_{\mathrm{DE}}^{\mathrm{R}}$	$\begin{aligned} & \text { VO } \\ & \text { FT/SEC } \end{aligned}$	$\begin{gathered} \text { PO } \\ \text { PSIA } \end{gathered}$	$\begin{gathered} \text { PV } \\ \text { PSIA } \end{gathered}$	$\begin{aligned} & \text { HO } \\ & \text { F T } \end{aligned}$	$\begin{aligned} & \text { HV } \\ & \text { FT } \end{aligned}$	KV	$\underset{D E G}{ }{ }^{T} R$	$\mathrm{TEG}^{2} \mathrm{R}$	$\mathrm{DEG}^{\mathrm{T}} \mathrm{R}$	${ }_{D E G}{ }^{4} R$	$\stackrel{T}{D E G}{ }^{5}$
415A**		140.87	27.9	21.48	16.31	61.7	46.8	1.22					
$415 H^{*}$		141.19	28.0	21.82	16.65	62.7	47.9	1.22					
416 A	1.00	141.05	49.0	20.75	16.50	59.6	47.4	0.33	139.86	140.04	139.84	139.75	$140 \cdot 11$
$4160^{* *}$	1.00	141.17	38.5	26.83	16.63	77.1	47.8	1.27					
416 E	1.17	141.19	49.6	20.67	16.65	59.4	47.9	0.30	140.08	140.22	139.97	140.09	140.26
$416 F$	0.60	141.21	48.7	21.03	16.67	60.5	47.9	0.34	140.36	140.47	140.45	$140 \cdot 62$	$140 \cdot 85$
416G**		141.23	41.3	26.53	16.69	$76 \cdot 3$	48.0	1.07					
$416 \mathrm{H*}$		141.19	40.2	26.52	16.65	76.2	47.9	$1 \cdot 13$					
417 A	1.03	140.87	68.0	24.59	16.31	70.6	46.8	0.33	139.36	139.63	139.48	139.32	139.95
417 E	0.95	140.90	69.1	24.59	16.35	$70 \cdot 6$	46.9	0.32	139.27	139.45	139.30	139.41	139.81
417F**		140.94	55.4	36.66	16.38	105.3	47.1	1.22					
418 B *		140.74	71.2	47.40	16.18	136.0	46.4	1.14					
418C**		140.80	70.8	48.04	16.23	137.8	46.6	1.17			139.34	139.66	140.06
4180	0.86	140.83	86.8	29.86	16.27	85.7	46.7	$0 \cdot 33$	139.03	139.30	139.34	139.66	140.06
419 A	0.59	150.75	48.9	32.20	29.32	95.6	87.0	0.23	149.20	149.45	149.51	150.23	$150 \cdot 16$
419日**		150.91	$38 \cdot 3$	38.88	29.58	115.4	87.8	1.21					
419 C	0.28	150.97	47.1	33.49	29.67	99.5	88.1	0.33	150.10	150.30	150.68	$150 \cdot 97$	150.97
4190**		151.04	39.5	38.70	29.78	115.0	88.5	1.09					
419 E	0.46	151.02	48.3	32.94	29.75	97.9	88.4	0.26	149.80	149.98	150.19	150.57	$150 \cdot 75$
419F**		151.16	39.1	38.84	29.99	115.4	89.1	1.11					
419 G	0.61	151.18	48.9	32.63	30.02	97.0	89.2	0.21	149.67	149.89 149.87	149.92 150.03	150.26 150.39	150.64
419 H	0.62	151.20	48.0	32.70	30.05	97.2	89.3	$0 \cdot 22$	149.71	149.87	150.03	150.39	$150 \cdot 71$
419 J	0.57	151.40	49.0	32.95	30.38	98.0	90.4	0.21	149.90	$150 \cdot 10$	150.21	150.62	150.93
$420 A^{* *}$		151.15	54.8	49.44	29.96	146.9	89.0	1.24					
420 B	0.25	151.07	67.3	38.82	29.84	115.3	88.7	$0 \cdot 38$	150.21	150.46	150.84	150.75	151.02
4200**		151.07	55.0	49.30	29.84	146.4	88.7	1.23		149.06	148.79	149.00	149.60
4200	1.20	151.11	71.1	36.06	29.90	107.1	88.9	0.23 0.26	148.86 149.27		149.53	149.92	150.46
420 E	0.66	151.15	70.5	36.80	29.96	109.4	89.0	0.26	149.27	149.44	149.53	149.92	$150 \cdot 46$
420 F** *		151.18	56.1	48.68	30.02	144.6	89.2	1.13 0.39	150.32	150.48	150.97	151.15	151.16
420 G	0.22	151.18	68.2	39.58	30.02	117.6	89.2	0.39	$150 \cdot 32$	150.48	150.97	151.15	151.16
* DEN	TES AN	PIENT NENT RUN											

${ }_{D E G}^{T} 1_{R}$	$T_{D E G}^{2} R$	$\operatorname{TEG}^{T}{ }_{R}$	$\mathrm{TEG}^{4} \mathrm{R}$	$\underset{D E G}{T}{ }^{2}$
148.57	148.82	148.55	148.68	149.53
159.53	160.04	160.56	161.39	161.53
160.51	160.96	161.51	161.78	161.77
159.55	159.88	160．29	161.03	161.32
159.89	160.25	160.92	161.46	161.53
159.53	159.89	160.49	161．08	161.30
159.98	160.94	161.78	162.05	161.91
158.69	158.94	158.80	159.26	160.25
159.59	159.88	160.69	161.39	161.53
158.83	159.28	159.10	159.68	160.60
159.32	159.71	160.33	160.92	161.06
159.10	159.89	160.56	161.41	161.51
158.44	158.60	158.71	159.35	160.31

\geq	$\stackrel{0}{\sim} \stackrel{\infty}{N}$ 0.		ナvamoonmN $m N H N N N H O$ $\dot{\circ} \dot{\circ} \dot{\circ}+\dot{+}+\dot{\circ}+$	$a \wedge m \backsim N$ $\rightarrow N H N N$ HO HOO	$\stackrel{+}{\sim}$	nn m HN m －• HOH
$\geq \underset{\square}{\square}$		OOOONUMNNO かのaのaのaのかの ninum un min into in 	m nmNNぃைのN a a a a a anao \rightarrow－H－1 $-\rightarrow \rightarrow-1$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \text { or } \end{aligned}$	
은	$$	∞ のmNnoov 0 m tmanyanNon $\infty \infty$ ） $0 \infty \times \infty \times \infty$ 	Otn 大onnont $\infty N 0 N N N N A$ $\rightarrow N=N H N N H$		∞ ∞ \sim \sim	$\begin{aligned} & \infty \\ & \infty \\ & \bullet \\ & \bullet \\ & 0 \\ & \infty \\ & \infty \\ & N \\ & N \end{aligned}$

RUN	CAVITY
NO．	INCHES
421 A	1.10
4210＊＊	
422A＊＊	
422C＊＊	
422D	0.49
$422 E$	0.22
422F＊＊	
422 G	0.52
422H＊＊	
4221	0.34
422 J	0.42
422K＊＊	
423 A	0.21
423B＊＊	
423C	1.02
4230＊＊	
423 E	0.38
423F＊＊	
423G＊＊	
423H	0.81
423I＊＊	
424A＊＊	
424B	0.35
424C＊＊	
4240	0.47
424E	0.73
425A＊＊	
426A＊＊	
426B	0.37
426C＊＊	

[^2]Table A-1a. (cont'd)

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	CAVITY INCHES	$\stackrel{T O}{D E G}$	$\begin{aligned} & \text { VO } \\ & \mathrm{FT} / \mathrm{SEC} \end{aligned}$	$\begin{gathered} \text { PO } \\ \text { PSIA } \end{gathered}$	$\begin{gathered} P V \\ P S I A \end{gathered}$	$\begin{aligned} & \text { HO } \\ & \text { FT } \end{aligned}$	$\begin{aligned} & \text { HV } \\ & \text { FT } \end{aligned}$	KV	$\underset{D E G}{T} 1_{R}$	$\stackrel{T}{D E G}{ }^{2}$	$\operatorname{DEG}^{T}{ }^{3}$	${ }_{D E G}{ }^{4} R$	${ }_{D E G}{ }^{5} R$
4260	0.44	165.42	91.4	71.56	61.19	224.3	191.9	0.25	158.40	162.50	163.01	164.03	164.70
426E**		165.42	74.0	90.58	61.19	283.7	191.9	1.08					
426 G	0.52	165.42	91.6	70.35	61.19	220.5	191.9	0.22	161.91	162.40	162.79	163.76	164.61
427A**		165.31	46.6	74.07	60.89	232.0	190.9	1.22					
427C	0.20	165.35	56.6	66.56	60.99	208.6	191.2	0.35	163.33	163.94	164.84	165.37	165.33
427D	0.20	165.40	57.6	66.82	61.14	209.5	191.7	0.34	163.19	163.73	164.74	165.22	165.24
427E**		165.33	45.6	74.55	60.94	233.6	191.0	1.31					
428A**		161.50	88.6	97.81	50.94	301.5	157.3	1.18					
428B	0.52	161.50	108.8	69.38	50.94	214.1	157.3	0.31	159.07	159.26	159.70	160.36	161.14
428 D	1.06	161.57	111.0	66.72	51.11	205.9	157.9	0.25	157.48	157.91	157.45	157.86	159.28
$428 \mathrm{E}^{* *}$		161.55	87.2	99.17	51.07	305.7	157.7	1.25					
428 F	1.01	161.60	111.6	66.56	51.20	205.5	158.1	0.24	157.34	157.72	157.32	157.61	159.10
428 H	0.45	161.78	109.0	69.67	51.64	215.2	159.6	0.30	159.28	159.55	160.11	160.74	161.28
4281	0.15	161.77	104.2	77.03	51.60	237.9	159.5	0.46	160.29	160.79	161.59	161.71	161.64
428J**		161.91	86.1	98.04	51.96	302.7	160.7	1.23					
429A**		150.50	86.8	76.02	28.91	225.2	85.7	1.19					
429 B	0.72	150.77	106.3	48.75	29.34	144.6	87.1	0.33	148.23	148.54	148.57	148.34	149.45
4290	1.41	150.80	$107 \cdot 1$	47.20	29.40	140.1	87.3	0.30	147.33	147.62	147.17	147.44	148.23
429E**		150.95	85.9	76.78	29.64	227.8	88.0	1.22					
429F	0.98	150.93	106.9	48.53	29.61	$144 \cdot 1$	87.9	0.32	149.11	148.54	148.41	148.73	149.60
430A**		140.60	85.7	61.65	16.03	176.7	46.0	1.14					
4301**		140.54	85.4	62.37	15.97	178.7	45.8	$1 \cdot 17$					
430 C	0.98	140.54	103.3	36.30	15.97	104.1	45.8	0.35	138.47	138.67	138.78	139.09	139.50
4300**		140.56	88.5	61.72	15.99	176.9	45.9	1.13					
430 E	1.52	140.67	104.0	35.88	16.10	102.9	46.2	0.34	138.35	138.64	138.26	138.38	138.87
430F**		141.16	86.0	62.50	16.61	179.5	47.7	1-15					
* DENO	ES AN I	IPIENT R											

$\begin{aligned} & \text { ras } \\ & \text { ins } \\ & 0 \end{aligned}$	$\begin{aligned} & t_{0}^{\infty} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & n \\ & n \\ & n \\ & 0 \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{+}{+} \\ & \stackrel{n}{n} \end{aligned}$	MロMッ・• かのNNNN		$\begin{gathered} \infty \\ \sim \\ \end{gathered}$	$\begin{aligned} & \text { moomo } \\ & 00 \text { not } \\ & 0 \\ & \text { in in ind } \\ & \text { in } \end{aligned}$	$\begin{aligned} & 0 \text { on m } \\ & \text { onㅇ } \\ & \text { intin } \end{aligned}$	$\begin{array}{lll} \alpha & \infty & 0 \\ \infty & 0 & 1 \\ \alpha & 0 \\ 0 & 0 \\ 4 & 0 \\ \hline \end{array}$
	$\infty \mathrm{N}$ rin o趶 0 $\rightarrow-$	$$	$\begin{aligned} & \text { a } \\ & 0 \\ & i n \\ & i \end{aligned}$	かへNささコ ナ゚○にNー かのかかの NNNNNN		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \sim \end{aligned}$			
	への $\cdots \infty$ \sim n in ーのて		$\stackrel{\infty}{\underset{\sim}{\infty}} \underset{\sim}{+}$	OONORL MNさOHy $\sim \infty \infty \infty \infty$ NNNNNN		$\begin{aligned} & N \\ & \underset{N}{n} \\ & \stackrel{N}{N} \end{aligned}$		$\begin{aligned} & \ddagger \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
		$\begin{aligned} & 0 \infty \\ & 0 \\ & 0 \\ & \infty \\ & 0 \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & \underset{\sim}{*} \\ & \underset{\sim}{ \pm} \end{aligned}$	トの Nに゚ののッ $-\infty+\infty$ NNNNNN	$\begin{aligned} & n \sim_{0} N \\ & \infty \\ & N \\ & N \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{n} \\ & \dot{\sim} \end{aligned}$			
		$$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{ \pm} \\ & \pm \\ & \pm \end{aligned}$	の ∞ Oー～ ∞ No 00の \therefore－ハ～ド NNNNNN		$\begin{aligned} & \pm \\ & 0 \\ & \stackrel{1}{n} \\ & \end{aligned}$			
nin			$\begin{aligned} & \infty \\ & \stackrel{\infty}{\sim} \\ & \stackrel{\sim}{n} \end{aligned}$	Nomorr Nommmn ○○mo－ $m+m \mathrm{mmm}$	NON ∞ mrin ががの \rightarrow NNG	$\begin{aligned} & N \\ & \underset{\sim}{0} \\ & \stackrel{0}{N} \end{aligned}$	in Noo Nrmrn いべN～ जn 6 in 0 in		
$+\frac{a}{6}$			$\begin{aligned} & \infty \\ & \infty \\ & + \\ & +\underset{\sim}{+} \end{aligned}$	いがかのに $0 \infty 0 \rightarrow N 0$ ヘペーローが NMNNNN		$\begin{aligned} & a \\ & 0 \\ & 0 \\ & \sim \end{aligned}$	NONOL Nomo のレロージ ナnすにn		$\begin{array}{ll} m & 0 \\ 0 & 0 \\ 0 & 0 \\ n & 0 \end{array}$
$m \stackrel{s}{v}$	$\sim \infty$ in m in in $\boldsymbol{r} \boldsymbol{r}$	$$	$\begin{aligned} & N \\ & \underset{\sim}{*} \\ & \dot{\sim} \end{aligned}$			$\begin{aligned} & \text { n } \\ & \underset{N}{n} \\ & \underset{N}{n} \end{aligned}$			$\begin{aligned} & \text { mom } \\ & 080 \\ & \hdashline 0 \\ & \hdashline 0 \\ & y \end{aligned}$
$\sim \stackrel{a}{w}$	$\begin{aligned} & N H N \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & n \\ & n \\ & n \end{aligned} 0$		$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\dot{N}} \end{aligned}$	$\rightarrow \infty \infty$ NNOR NNNNNN		$\begin{aligned} & \text { in } \\ & \infty \\ & \text { in } \end{aligned}$			
$-\frac{a}{6}$		$$	$\begin{aligned} & \infty \\ & n \\ & \pm \\ & \pm \end{aligned}$	Nooana NMットのー － $\boldsymbol{o n}^{\circ}+\infty$ NNNNNN		$\begin{aligned} & \sim \\ & \infty \\ & \stackrel{\sim}{n} \\ & \sim \end{aligned}$	ronon orNHN ベャレ゚ in ゴざず		
$\begin{aligned} & z \\ & \underset{\alpha}{3} \dot{z} \end{aligned}$		$$	$\begin{aligned} & 0 \\ & \infty \\ & \stackrel{\infty}{-1} \end{aligned}$		$\begin{aligned} & \infty O W \\ & O O \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & \mathbb{G} \\ & \underset{\sim}{N} \\ & \underset{\sim}{2} \end{aligned}$			

$\begin{aligned} & \text { ras } \\ & \text { ins } \\ & 0 \end{aligned}$	$\begin{aligned} & t_{0}^{\infty} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & n \\ & n \\ & n \\ & 0 \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{+}{+} \\ & \stackrel{n}{n} \end{aligned}$	MロMッ・• かのNNNN		$\begin{gathered} \infty \\ \sim \\ \end{gathered}$	$\begin{aligned} & \text { moomo } \\ & 00 \text { not } \\ & 0 \\ & \text { in in ind } \\ & \text { in } \end{aligned}$	$\begin{aligned} & 0 \text { on m } \\ & \text { onㅇ } \\ & \text { intin } \end{aligned}$	$\begin{array}{lll} \alpha & \infty & 0 \\ \infty & 0 & 1 \\ \alpha & 0 \\ 0 & 0 \\ 4 & 0 \\ \hline \end{array}$
	$\infty \mathrm{N}$ rin o趶 0 $\rightarrow-$	$$	$\begin{aligned} & \text { a } \\ & 0 \\ & i n \\ & i \end{aligned}$	かへNささコ ナ゚○にNー かのかかの NNNNNN		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \sim \end{aligned}$			
	への $\cdots \infty$ \sim n in ーのて		$\stackrel{\infty}{\underset{\sim}{\infty}} \underset{\sim}{+}$	OONORL MNさOHy $\sim \infty \infty \infty \infty$ NNNNNN		$\begin{aligned} & N \\ & \underset{N}{n} \\ & \stackrel{N}{N} \end{aligned}$		$\begin{aligned} & \ddagger \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
		$\begin{aligned} & 0 \infty \\ & 0 \\ & 0 \\ & \infty \\ & 0 \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & \underset{\sim}{*} \\ & \underset{\sim}{ \pm} \end{aligned}$	トの Nに゚ののッ $-\infty+\infty$ NNNNNN	$\begin{aligned} & n \sim_{0} N \\ & \infty \\ & N \\ & N \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{n} \\ & \dot{\sim} \end{aligned}$			
		$$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{ \pm} \\ & \pm \\ & \pm \end{aligned}$	の ∞ Oー～ ∞ No 00の \therefore－ハ～ド NNNNNN		$\begin{aligned} & \pm \\ & 0 \\ & \stackrel{1}{n} \\ & \end{aligned}$			
nin			$\begin{aligned} & \infty \\ & \stackrel{\infty}{\sim} \\ & \stackrel{\sim}{n} \end{aligned}$	Nomorr Nommmn ○○mo－ $m+m \mathrm{mmm}$	NON ∞ mrin ががの \rightarrow NNG	$\begin{aligned} & N \\ & \underset{\sim}{0} \\ & \stackrel{0}{N} \end{aligned}$	in Noo Nrmrn いべN～ जn 6 in 0 in		
$+\frac{a}{6}$			$\begin{aligned} & \infty \\ & \infty \\ & + \\ & +\underset{\sim}{+} \end{aligned}$	いがかのに $0 \infty 0 \rightarrow N 0$ ヘペーローが NMNNNN		$\begin{aligned} & a \\ & 0 \\ & 0 \\ & \sim \end{aligned}$	NONOL Nomo のレロージ ナnすにn		$\begin{array}{ll} m & 0 \\ 0 & 0 \\ 0 & 0 \\ n & 0 \end{array}$
$m \stackrel{s}{v}$	$\sim \infty$ in m in in $\boldsymbol{r} \boldsymbol{r}$	$$	$\begin{aligned} & N \\ & \underset{\sim}{*} \\ & \dot{\sim} \end{aligned}$			$\begin{aligned} & \text { n } \\ & \underset{N}{n} \\ & \underset{N}{n} \end{aligned}$			$\begin{aligned} & \text { mom } \\ & 080 \\ & \hdashline 0 \\ & \hdashline 0 \\ & y \end{aligned}$
$\sim \stackrel{a}{w}$	$\begin{aligned} & N H N \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & n \\ & n \\ & n \end{aligned} 0$		$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\dot{N}} \end{aligned}$	$\rightarrow \infty \infty$ NNOR NNNNNN		$\begin{aligned} & \text { in } \\ & \infty \\ & \text { in } \end{aligned}$			
$-\frac{a}{6}$		$$	$\begin{aligned} & \infty \\ & n \\ & \pm \\ & \pm \end{aligned}$	Nooana NMットのー － $\boldsymbol{o n}^{\circ}+\infty$ NNNNNN		$\begin{aligned} & \sim \\ & \infty \\ & \stackrel{\sim}{n} \\ & \sim \end{aligned}$	ronon orNHN ベャレ゚ in ゴざず		
$\begin{aligned} & z \\ & \underset{\alpha}{3} \dot{z} \end{aligned}$		$$	$\begin{aligned} & 0 \\ & \infty \\ & \stackrel{\infty}{-1} \end{aligned}$		$\begin{aligned} & \infty O W \\ & O O \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & \mathbb{G} \\ & \underset{\sim}{N} \\ & \underset{\sim}{2} \end{aligned}$			

$\begin{aligned} & \text { ras } \\ & \text { ins } \\ & 0 \end{aligned}$	$\begin{aligned} & t_{0}^{\infty} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & n \\ & n \\ & n \\ & 0 \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{+}{+} \\ & \stackrel{n}{n} \end{aligned}$	MロMッ・• かのNNNN		$\begin{gathered} \infty \\ \sim \\ \end{gathered}$	$\begin{aligned} & \text { moomo } \\ & 00 \text { not } \\ & 0 \\ & \text { in in ind } \\ & \text { in } \end{aligned}$	$\begin{aligned} & 0 \text { on m } \\ & \text { onㅇ } \\ & \text { intin } \end{aligned}$	$\begin{array}{lll} \alpha & \infty & 0 \\ \infty & 0 & 1 \\ \alpha & 0 \\ 0 & 0 \\ 4 & 0 \\ \hline \end{array}$
	$\infty \mathrm{N}$ rin o趶 0 $\rightarrow-$	$$	$\begin{aligned} & \text { a } \\ & 0 \\ & i n \\ & i \end{aligned}$	かへNささコ ナ゚○にNー かのかかの NNNNNN		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \sim \end{aligned}$			
	への $\cdots \infty$ \sim n in ーのて		$\stackrel{\infty}{\underset{\sim}{\infty}} \underset{\sim}{+}$	OONORL MNさOHy $\sim \infty \infty \infty \infty$ NNNNNN		$\begin{aligned} & N \\ & \underset{N}{n} \\ & \stackrel{N}{N} \end{aligned}$		$\begin{aligned} & \ddagger \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
		$\begin{aligned} & 0 \infty \\ & 0 \\ & 0 \\ & \infty \\ & 0 \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & \underset{\sim}{*} \\ & \underset{\sim}{ \pm} \end{aligned}$	トの Nに゚ののッ $-\infty+\infty$ NNNNNN	$\begin{aligned} & n \sim_{0} N \\ & \infty \\ & N \\ & N \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{n} \\ & \dot{\sim} \end{aligned}$			
		$$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{ \pm} \\ & \pm \\ & \pm \end{aligned}$	の ∞ Oー～ ∞ No 00の \therefore－ハ～ド NNNNNN		$\begin{aligned} & \pm \\ & 0 \\ & \stackrel{1}{n} \\ & \end{aligned}$			
nin			$\begin{aligned} & \infty \\ & \stackrel{\infty}{\sim} \\ & \stackrel{\sim}{n} \end{aligned}$	Nomorr Nommmn ○○mo－ $m+m \mathrm{mmm}$	NON ∞ mrin ががの \rightarrow NNG	$\begin{aligned} & N \\ & \underset{\sim}{0} \\ & \stackrel{0}{N} \end{aligned}$	in Noo Nrmrn いべN～ जn 6 in 0 in		
$+\frac{a}{6}$			$\begin{aligned} & \infty \\ & \infty \\ & + \\ & +\underset{\sim}{+} \end{aligned}$	いがかのに $0 \infty 0 \rightarrow N 0$ ヘペーローが NMNNNN		$\begin{aligned} & a \\ & 0 \\ & 0 \\ & \sim \end{aligned}$	NONOL Nomo のレロージ ナnすにn		$\begin{array}{ll} m & 0 \\ 0 & 0 \\ 0 & 0 \\ n & 0 \end{array}$
$m \stackrel{s}{v}$	$\sim \infty$ in m in in $\boldsymbol{r} \boldsymbol{r}$	$$	$\begin{aligned} & N \\ & \underset{\sim}{*} \\ & \dot{\sim} \end{aligned}$			$\begin{aligned} & \text { n } \\ & \underset{N}{n} \\ & \underset{N}{n} \end{aligned}$			$\begin{aligned} & \text { mom } \\ & 080 \\ & \hdashline 0 \\ & \hdashline 0 \\ & y \end{aligned}$
$\sim \stackrel{a}{w}$	$\begin{aligned} & N H N \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & n \\ & n \\ & n \end{aligned} 0$		$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\dot{N}} \end{aligned}$	$\rightarrow \infty \infty$ NNOR NNNNNN		$\begin{aligned} & \text { in } \\ & \infty \\ & \text { in } \end{aligned}$			
$-\frac{a}{6}$		$$	$\begin{aligned} & \infty \\ & n \\ & \pm \\ & \pm \end{aligned}$	Nooana NMットのー － $\boldsymbol{o n}^{\circ}+\infty$ NNNNNN		$\begin{aligned} & \sim \\ & \infty \\ & \stackrel{\sim}{n} \\ & \sim \end{aligned}$	ronon orNHN ベャレ゚ in ゴざず		
$\begin{aligned} & z \\ & \underset{\alpha}{3} \dot{z} \end{aligned}$		$$	$\begin{aligned} & 0 \\ & \infty \\ & \stackrel{\infty}{-1} \end{aligned}$		$\begin{aligned} & \infty O W \\ & O O \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & \mathbb{G} \\ & \underset{\sim}{N} \\ & \underset{\sim}{2} \end{aligned}$			

$\begin{aligned} & \text { ras } \\ & \text { ins } \\ & 0 \end{aligned}$	$\begin{aligned} & t_{0}^{\infty} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & n \\ & n \\ & n \\ & 0 \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{+}{+} \\ & \stackrel{n}{n} \end{aligned}$	MロMッ・• かのNNNN		$\begin{gathered} \infty \\ \sim \\ \end{gathered}$	$\begin{aligned} & \text { moomo } \\ & 00 \text { not } \\ & 0 \\ & \text { in in ind } \\ & \text { in } \end{aligned}$	$\begin{aligned} & 0 \text { on m } \\ & \text { onㅇ } \\ & \text { intin } \end{aligned}$	$\begin{array}{lll} \alpha & \infty & 0 \\ \infty & 0 & 1 \\ \alpha & 0 \\ 0 & 0 \\ 4 & 0 \\ \hline \end{array}$
	$\infty \mathrm{N}$ rin o趶 0 $\rightarrow-$	$$	$\begin{aligned} & \text { a } \\ & 0 \\ & i n \\ & i \end{aligned}$	かへNささコ ナ゚○にNー かのかかの NNNNNN		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \sim \end{aligned}$			
	への $\cdots \infty$ \sim n in ーのて		$\stackrel{\infty}{\underset{\sim}{\infty}} \underset{\sim}{+}$	OONORL MNさOHy $\sim \infty \infty \infty \infty$ NNNNNN		$\begin{aligned} & N \\ & \underset{N}{n} \\ & \stackrel{N}{N} \end{aligned}$		$\begin{aligned} & \ddagger \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
		$\begin{aligned} & 0 \infty \\ & 0 \\ & 0 \\ & \infty \\ & 0 \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & \underset{\sim}{*} \\ & \underset{\sim}{ \pm} \end{aligned}$	トの Nに゚ののッ $-\infty+\infty$ NNNNNN	$\begin{aligned} & n \sim_{0} N \\ & \infty \\ & N \\ & N \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{n} \\ & \dot{\sim} \end{aligned}$			
		$$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{ \pm} \\ & \pm \\ & \pm \end{aligned}$	の ∞ Oー～ ∞ No 00の \therefore－ハ～ド NNNNNN		$\begin{aligned} & \pm \\ & 0 \\ & \stackrel{1}{n} \\ & \end{aligned}$			
nin			$\begin{aligned} & \infty \\ & \stackrel{\infty}{\sim} \\ & \stackrel{\sim}{n} \end{aligned}$	Nomorr Nommmn ○○mo－ $m+m \mathrm{mmm}$	NON ∞ mrin ががの \rightarrow NNG	$\begin{aligned} & N \\ & \underset{\sim}{0} \\ & \stackrel{0}{N} \end{aligned}$	in Noo Nrmrn いべN～ जn 6 in 0 in		
$+\frac{a}{6}$			$\begin{aligned} & \infty \\ & \infty \\ & + \\ & +\underset{\sim}{+} \end{aligned}$	いがかのに $0 \infty 0 \rightarrow N 0$ ヘペーローが NMNNNN		$\begin{aligned} & a \\ & 0 \\ & 0 \\ & \sim \end{aligned}$	NONOL Nomo のレロージ ナnすにn		$\begin{array}{ll} m & 0 \\ 0 & 0 \\ 0 & 0 \\ n & 0 \end{array}$
$m \stackrel{s}{v}$	$\sim \infty$ in m in in $\boldsymbol{r} \boldsymbol{r}$	$$	$\begin{aligned} & N \\ & \underset{\sim}{*} \\ & \dot{\sim} \end{aligned}$			$\begin{aligned} & \text { n } \\ & \underset{N}{n} \\ & \underset{N}{n} \end{aligned}$			$\begin{aligned} & \text { mom } \\ & 080 \\ & \hdashline 0 \\ & \hdashline 0 \\ & y \end{aligned}$
$\sim \stackrel{a}{w}$	$\begin{aligned} & N H N \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & n \\ & n \\ & n \end{aligned} 0$		$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\dot{N}} \end{aligned}$	$\rightarrow \infty \infty$ NNOR NNNNNN		$\begin{aligned} & \text { in } \\ & \infty \\ & \text { in } \end{aligned}$			
$-\frac{a}{6}$		$$	$\begin{aligned} & \infty \\ & n \\ & \pm \\ & \pm \end{aligned}$	Nooana NMットのー － $\boldsymbol{o n}^{\circ}+\infty$ NNNNNN		$\begin{aligned} & \sim \\ & \infty \\ & \stackrel{\sim}{n} \\ & \sim \end{aligned}$	ronon orNHN ベャレ゚ in ゴざず		
$\begin{aligned} & z \\ & \underset{\alpha}{3} \dot{z} \end{aligned}$		$$	$\begin{aligned} & 0 \\ & \infty \\ & \stackrel{\infty}{-1} \end{aligned}$		$\begin{aligned} & \infty O W \\ & O O \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & \mathbb{G} \\ & \underset{\sim}{N} \\ & \underset{\sim}{2} \end{aligned}$			

26． 32

ث
$\stackrel{y}{*}$
$\stackrel{y}{*}$

on
in
a
\vdots
j

PSTA
PSIA 53.62
43.79
51.96 55.56
55.19 $\infty \pm$
0
\cdots
\cdots

$$
\begin{array}{r}
\text { P } 3, T \\
\text { PSIA }
\end{array}
$$

$$
\begin{aligned}
& 56 \cdot 93 \\
& 54 \cdot 73
\end{aligned}
$$

$$
\begin{aligned}
& 59.60 \\
& 59.31
\end{aligned}
$$

$$
\begin{aligned}
& 46.68 \\
& 41.74
\end{aligned}
$$

\[

\]

\[

\]

$$
\begin{aligned}
& \text { P } 2, T \\
& \text { PSIA }
\end{aligned}
$$

$$
\begin{aligned}
& 54 \cdot 96 \\
& 53 \cdot 44 \\
& 52 \cdot 17
\end{aligned}
$$

$$
\begin{aligned}
& \text { No } \\
& \text { No } \\
& \text { Nin }
\end{aligned}
$$$\infty=0$

∞
0
n
\sim
$\sim$$\stackrel{7}{9}$

	onn	$\cdots \infty$	nominm	Ora
のに	0 int		の○ 0	
－	－0in	mon	$\bigcirc 9$	$\bigcirc 0$

$<$	－in	\cdots		－のの	$\infty 0$
	mot	FO	NOMON	\because	
00	in in	∞	omNro	$\bigcirc 0$	

Table A-1a. (cont'd)

RUN NO.	$\mathrm{H}_{\mathrm{FT}} \underset{ }{1}$	$\begin{gathered} H_{2} \\ \mathrm{FT} \end{gathered}$	$\begin{aligned} & H \quad 3 \\ & \mathrm{~F} \end{aligned}$	$\begin{gathered} \mathrm{H} 4 \\ \mathrm{FT} \end{gathered}$	$\begin{array}{r} H_{F} 5 \\ \hline \end{array}$	$\text { H } \underset{F T}{1}{ }^{T}$	$\begin{gathered} H 2, T \\ F T \end{gathered}$	$\begin{gathered} H 39 \\ F T \end{gathered}$	$\begin{array}{rl} H & 4, T \\ & F T \end{array}$	$\begin{gathered} \text { H } 5{ }^{5}{ }^{T} \end{gathered}$
416 A	$45 \cdot 1$	44.8	44.5	44.1	45.0					
416 E	45.0	44.4	44.0	43.6	44.2	43.8 44.4	44.3 44.8	43.7		44.5
$416 F$	46.3	46.0	45.6	45.5	48.1	45.3	44.8 45.6	44.1 45.5	44.5 46.0	44.9 46.8
417 A	42.8	42.6	$42 \cdot 8$	42.7	44.1					
417 E	42.5	$42 \cdot 3$	$42 \cdot 4$	42.2	43.6	42.0	43.1 42.5	$\begin{aligned} & 42.6 \\ & 42.1 \end{aligned}$	$\begin{aligned} & 42.2 \\ & 42.4 \end{aligned}$	44.0 43.6
4180	41.6	42.1	$42 \cdot 7$	$42 \cdot 5$	45.2	41.3	42.1	42.2	$43 \cdot 2$	$44 \cdot 3$
419 A	80.6	80.4	80.2	81.8	89.9	79.4				
419 C	83.8	83.7	86.0	98.2	123.4	88.4	80.6 84.7	80.8 86.6	84.4	84.0
419 E	83.2	82.8	83.0	86.3	99.1	82.2	84.7 83.1	86.6 84.2	88.1	88.1
419 G	82.2	81.9	81.8	83.5	90.1	81.6	83.1 82.7	84.2 82.9	86.1	87.0
419 H	82.6	82.4	82.1	83.7	90.3	81.8	82.7 82.6	82.9 83.4	84.6	86.5
419 J	83.5	83.2	83.1	85.0	94.1	82.8	82.6 83.7	$\begin{aligned} & 83.4 \\ & 84.3 \end{aligned}$	$\begin{aligned} & 85.2 \\ & 86.4 \end{aligned}$	$\begin{aligned} & 86.8 \\ & 87.9 \end{aligned}$
420 B	83.4	83.8	87.5	110.3	150.2	84.3	85.5			
4200	77.7	77.4	77.1	77.0	79.0	77.8	85.5 78.7		87.0	88.4
420 E	79.3	79.4	80.3	81.5	88.3	79.7	80.5	77.4	78.4	81.3
420 G	84.4	84.8	91.1	122.7	152.7	79.7 84.8	$80 \cdot 5$ $85 \cdot 6$	$\begin{aligned} & 80.9 \\ & 88.1 \end{aligned}$	82.9 89.0	$\begin{aligned} & 85 \cdot 5 \\ & 89.1 \end{aligned}$
421 A	76.2	76.1	75.8	75.6	78.5	$76 \cdot 4$	77.6	76.3	76.9	80.9
422 D	139.8	139.3	142.7	153.4	171.7	141.9				
422 E	144.5	146.9	160.7	171.6	197.3	141.9 149.4	145.7 152.9	149.8 157.4	156.4	157.6
422 G	138.5	138.7	141.4	151.0	168.6	149.4	152.9 144.5	157.4	159.6	159.5
422 I	141.2	142.2	149.8	165.2	195.0	144.6	144.5	147.7	153.5	155.8
422 J	140.1	140.4	144.6	157.3	178.5	144.6 141.9	147.4 144.6	152.6 149.2	157.0 153.9	$\begin{aligned} & 157.6 \\ & 155.7 \end{aligned}$
423 A	142.2	146.8	170.9	199.5	222.5	145.3				
423 C	133.9	133.2	133.5	135.5	141.5	135.7	152.8 137.5	159.6 136.5	161.9	160.7
423 E	139.0	139.8	144.9	162.3	212.2	142.3	137.5 144.5	136.5 150.8	139.9 156.4	147.4
423 H	136.3	135.5	136.5	139.4	147.7	136.7	144.5 140.0	150.8 138.7	156.4 143.0	$\begin{aligned} & 157.6 \\ & 150.1 \end{aligned}$
4248	138.9	139.2	144.3	163.9	231.0					
4240	137.1	137.7	140.9	150.9	194.5	138.7	143.3 144.6	148.0	152.6	153.8
424 E	133.5	133.6	134.4	137.8	148.9	133.9	134.0	149.8 135.8	156.5 140.6	157.4

DEG ${ }^{5} K$ 77.84 | $N \sim$ |
| :--- |
| |
| |
| | N

N
N

N | -1 |
| :--- |
| ∞ |
| | N

∞
∞
∞ n

∞ o
∞
∞
∞
 0
\vdots
∞
∞ -1
\cdots
∞
∞ ∞
$\stackrel{\infty}{\infty}$
$\stackrel{\infty}{\infty}$

CAVITY
CAVITY
CM $\begin{array}{cc}\text { H } & \text { ~ } \\ \text { N } \\ \text { N }\end{array}$
RUN
NO.
415A**
$415 \mathrm{H}^{* *}$
416 A
$416 \mathrm{D}^{*}$
416 E
416 F
$416 \mathrm{G}^{*}$
$416 \mathrm{H}^{*}$
417 A
417 E
$417 \mathrm{~F} *$

Table A-1b. (cont'd)

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	$\text { CAVITY }_{\text {CM }}$
421 A	2.79
4210**	
422A**	
422C**	
422D	1.24
422E	0.55
422F**	
422G	1.32
422H**	
4221	0.86
422 J	1.06
422K**	
423A	0.53
423B**	
423 C	2.59
4230**	
423 E	0.96
423F**	
423G**	
423 H	2.05
4231**	
424A**	
4248	0.88
424C**	
424 D	1.19
424E	1.85
425A**	
426A**	
426B	0.94
426C**	

$T 1$	12	$T 3$	$T 4$	T 5
DEG K				
88.00	90.28	90.56	91.13	91.50
89.95	90.22	90.44	90.98	91.45
90.74	91.08	91.58	91.87	91.85
90.66	90.96	91.52	91.79	91.80
88.37	88.48	88.72	89.09	89.52
87.49	87.73	87.47	87.70	88.49
87.41	87.62	87.40	87.56	88.39
88.49	88.64	88.95	89.30	89.60
89.05	89.33	89.77	89.84	89.80
82.35	82.52	82.54	82.41	83.03
81.85	82.01	81.76	81.91	82.35
82.84	82.52	82.45	82.63	83.11
76.93	77.04	77.10	77.27	77.50
76.86	77.02	76.81	76.88	77.15

RUN NO.	$\underset{\text { CM }}{\text { CAVITY }}$	${ }_{\text {TO }}^{\text {TO }} \mathrm{K}$	$\begin{gathered} \text { VO } \\ \text { M/SEC } \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{gathered} \mathrm{PV} \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{array}{r} \mathrm{HO} \\ \mathrm{M} \end{array}$	$\begin{array}{r} \mathrm{HV} \\ \mathrm{M} \end{array}$
4260	1.11	91.90	27.9	49.34	42.19	68.4	58.5
426E**		91.90	22.5	62.45	42.19	86.5	58.5
426 G	1.32	91.90	27.9	48.50	42.19	67.2	58.5
427A**		91.84	14.2	51.07	41.98	70.7	58.2
427C	0.50	91.86	17.2	45.89	42.05	63.6	58.3
427 D	0.50	91.89	17.6	46.07	42.16	63.8	58.4
427E**		91.85	13.9	51.40	42.02	71.2	58.2
428A**		89.72	27.0	67.44	35.12	91.9	47.9
428 B	1.32	89.72	33.2	47.84	35.12	65.2	47.9
428 D	2.69	89.76	33.8	46.00	35.24	62.8	48.1
428E**		89.75	26.6	68.38	35.21	93.2	48.1
428 F	2.56	89.78	34.0	45.89	35.30	62.6	48.2
428 H	1.14	89.88	33.2	48.04	35.61	65.6	48.7
4281	0.38	89.87	31.8	53.11	35.58	72.5	48.6
428J**		89.95	26.2	67.60	35.82	$92 \cdot 3$	49.0
429A**		83.61	26.4	52.41	19.93	68.6	26.1
429R	1.82	83.76	32.4	33.61	20.23	44.1	26.5
429D	3.58	83.78	32.7	32.54	20.27	42.7	26.6
429E**		83.86	26.2	52.94	20.43	69.4	26.8
429 F	2.48	83.85	32.6	33.46	20.41	43.9	26.8
430A**		78.11	26.1	42.51	11.05	53.9	14.0
4301**		78.08	26.0	43.00	11.01	54.5	14.0
430 C	2.48	78.08	31.5	25.03	11.01	31.7	14.0
4300**		78.09	26.4	42.55	11.03	53.9	14.0
430 E	3.86	78.15	31.7	24.74	11.10	31.4	14.1
430F**		78.42	26.2	43.09	11.45	54.7	14.6

[^3]

$\begin{aligned} & \text { RUN } \\ & \text { NOO. } \end{aligned}$	$\stackrel{P}{\mathrm{P}} \stackrel{1}{\mathrm{CM} / \mathrm{CM}}$	$\stackrel{\mathrm{P}}{\mathrm{~N} / \mathrm{CM}^{2} / \mathrm{CM}}$	$\stackrel{\mathrm{P}}{\mathrm{~N}} \mathrm{~K} / \mathrm{CM}$	$\stackrel{\mathrm{P}}{\mathrm{~N} / \mathrm{CM}^{2} \mathrm{CM}}$	$\stackrel{P 5}{N / C M / C M}$	$\begin{aligned} & P / P^{P}{ }^{\top} M \end{aligned}$	$\begin{aligned} & \text { P/2:T} \\ & N / C M / C M \end{aligned}$	$\begin{aligned} & \text { P/C3,T} \\ & N / C M / C M \end{aligned}$	$\begin{gathered} P / M^{T} \\ N / C M / C M \end{gathered}$	$\begin{aligned} & P / 5^{\top} \beta^{\top} \\ & N / C M / C \end{aligned}$
416 A	10.84	10.77	10.70	10.61	10.82	10.54	10.66	10.53	10.47	10.71
416 E	10.82	10.69	10.60	10.51	10.64	10.69	10.79	10.61	10.70	10.81
416F	11.11	11.05	10.96	10.94	11.53	10.89	10.96	10.95	11.07	11.23
417A	10.33	10.27	10.33	10.29	10.62	10.20	10.38	10.28	$10 \cdot 18$	10.60
417E	10.25	10.20	10.22	10.18	10.49	10.14	10.26	10.16	10.24	10.50
418D	10.05	10.15	10.29	10.26	10.88	9.99	10.16	10.19	10.40	10.68
419A	18.80	18.76	18.72	19.06	20.84	18.54	18.80	18.86	19.64	19.56
419C	19.51	19.50	19.99	22.64	28.03	19.50	19.71	20.13	20.45	20.45
419E	19.37	19.29	19.34	20.05	22.84	19.17	19.36	19.60	20.01	20.21
419 G	19.16	19.10	19.08	19.44	20.89	19.03	19.26	19.30	19.67	20.09
419 H	19.25	19.20	19.15	19.48	20.94	19.07	19.25	19.42	19.81	20.17
419 J	19.44	19.39	19.35	19.77	21.77	19.28	19.50	19.62	20.07	20.41
420 B	19.42	19.51	20.33	25.25	33.66	19.62	19.89	20.31	20.21	20.52
4200	18.17	18.11	18.04	18.02	18.45	18.18	18.39	18.11	18.33	18.96
420 E	18.52	18.55	18.74	19.02	20.49	18.61	18.78	18.88	19.30	19.89
420 G	19.64	19.74	21.10	27.90	34.18	19.73	19.91	20.45	20.66	20.68
421A	17.84	17.82	17.75	17.71	18.35	17.89	18.15	17.87	18.00	18.88
422 D	31.49	31.39	32.10	34.32	38.09	31.93	32.73	33.57	34.94	35.18
422E	32.47	32.98	35.83	38.06	43.29	33.48	34.22	35.15	35.61	35.58
422 G	31.21	31.25	31.83	33.83	37.45	31.96	32.47	33.13	34.34	34.82
422 I	31.78	31.99	33.56	36.75	42.82	32.50	33.08	34.16	35.06	35.18
422 J	31.54	31.62	32.49	35.13	39.48	31.93	32.50	33.45	34.43	34.79
423A	31.99	32.95	37.92	43.73	48.31	32.64	34.19	35.61	36.07	35.82
423C	30.25	30.11	30.16	30.59	31.85	30.63	31.01	30.79	31.51	33.08
423E	31.33	31.48	32.56	36.16	46.28	32.02	32.47	33.78	34.94	35.18
423 H	30.76	30.59	30.80	31.41	33.13	30.85	31.54	31.26	$32 \cdot 16$	33.63
4248	31.30	31.36	32.43	36.49	49.99	31.60	32.22	33.19	34.16	34.40
4240	30.93	31.05	31.72	33.81	42.72	31.26	32.50	33.57	34.97	35.15
424E	30.17	30.20	30.36	31.06	33.39	30.24	30.49	30.65	31.65	33.16

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	$\stackrel{P 1}{N / C M / C M}$	$\stackrel{P}{\mathrm{P} / \mathrm{CM} / \mathrm{CM}}$	$\stackrel{P 3}{N / C M / C M}$	$\stackrel{P}{N} /{ }_{N}^{4} / C M$	$\stackrel{\mathrm{P}}{\mathrm{~N} / \mathrm{CM}^{5} / \mathrm{CM}}$	$\begin{gathered} \mathbf{P} I \not \boldsymbol{T}^{\top} \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 2: T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 3, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 4 ; T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 5, T \\ N / C M / C M \end{gathered}$
426B	38.47	38.48	39.76	43.28	56.66					
4260	38.14	38.16	38.99	41.35	56.66 50.62	36.97 30.19	37.89	39.26	41.33	41.95
426G	37.59	37.52	38.21	39.95	45.37	30.19 35.82	36.85 36.66	37.73 37.35	39.58 39.09	40.82 40.65
427 C	39.77	40.51	43.60	46.99						
4270	39.89	40.69	43.77	46.99 47.32	52.79 52.97	38.31 38.05	$\begin{aligned} & 39.42 \\ & 39.03 \end{aligned}$	$\begin{aligned} & 41.09 \\ & 40.89 \end{aligned}$	42.09 41.81	$\begin{aligned} & 42.02 \\ & 41.85 \end{aligned}$
428 B	31.75	31.89	32.37	33.59	39.18					
428 D	29.79	29.65	29.69	29.92	30.83	31.20 28.83	31.51 29.47	32.19	33.25	34.52
428 F	29.67	29.51	29.54	29.79	30.83 30.76	28.83 28.62	29.47 29.17	28.78	29.39	31.54
428 H	32.36	32.47	33.06	34.84	43.18	28.62 31.54	29.17 31.96	28.60 32.85	29.02	31.26
428 I	33.46	34.83	45.25	53.11	60.01	31.54 33.13	31.96 33.95	32.85 35.27	33.87 35.49	$34 \cdot 76$ 35.36
4298	17.86	18.13	18.27	18.58	20.46	17.54				
4290	16.80	16.75	16.73	16.61	16.97	17.54 16.66	17.85 16.94	17.89	17.65	18.80
429F	17.93	17.99	18.06	18.01	18.77	18.46	16.94 17.85	16.50 17.72	$\begin{aligned} & 16.76 \\ & 18.05 \end{aligned}$	$\begin{aligned} & 17.54 \\ & 18.96 \end{aligned}$
430 C	9.60	9.91	10.11	9.91						
430 E	9.68	9.79	9.71	9.50	10.62 9.64	9.62 9.54	9.75 9.73	9.82	10.02	10.30

$\text { in } \Sigma$	$\begin{aligned} & 0 \uparrow \underset{\sim}{n} \\ & \dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim} \end{aligned}$	$\begin{aligned} & \pm \\ & \dot{9} \\ & \dot{\sim} \dot{\sim} \end{aligned}$	$\begin{aligned} & \text { in } \\ & \dot{m} \end{aligned}$	○のにさにか号 $0 \dot{0} 00$ NNNNN		$\begin{aligned} & \text { N } \\ & \stackrel{y}{*} \end{aligned}$			$\begin{aligned} & a 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$
$\stackrel{\leftarrow}{5}$		$\begin{aligned} & 0 \\ & \dot{0} \\ & \dot{\sim} \stackrel{\vdots}{N} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{gathered} \underset{\sim}{N} \\ \dot{\sim} \end{gathered}$	$\dot{\sim} \dot{\circ} \dot{\circ} \dot{\circ} \dot{0}$ NNNNNN	$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \\ & \sim \\ & \sim \end{aligned} \underset{\sim}{n} \underset{\sim}{n} \underset{\sim}{n}$	$\begin{aligned} & \text { J } \\ & \dot{n} \end{aligned}$		$$	$\begin{aligned} & n \uparrow \infty \\ & \bullet \stackrel{\infty}{+} \underset{寸}{\circ} \end{aligned}$
		$\begin{aligned} & 0 \\ & \stackrel{\infty}{\infty} \\ & \underset{\sim}{\infty} \\ & \sim \end{aligned}$	$\begin{aligned} & a \\ & \stackrel{~}{\sim} \end{aligned}$	○ナトのさト 0 0ninn NNNNNN		$\begin{aligned} & \stackrel{m}{n} \\ & \stackrel{\sim}{n} \end{aligned}$	Noonn 	$$	
$\begin{aligned} & \vdash \\ & \stackrel{\star}{N} \\ & \pm \end{aligned}$	$\begin{aligned} & n \in q \\ & n_{n} \\ & n \end{aligned}$		$\underset{\sim}{\infty}$	$\infty_{0}^{\infty} m N \sim$ かinnin NNNNNN		$\stackrel{\underset{\sim}{n}}{\stackrel{n}{2}}$	$\begin{array}{lll} \pm & 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ j & j \\ j & j \end{array}$	$$	
$\stackrel{\leftarrow}{\stackrel{\rightharpoonup}{*}}$		$\begin{aligned} & 0 \infty \\ & \stackrel{\infty}{\sim} \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \bullet \\ & \stackrel{0}{\sim} \end{aligned}$			$\begin{aligned} & \stackrel{m}{n} \\ & \stackrel{m}{n} \end{aligned}$			$\begin{aligned} & \infty \\ & \infty \\ & \stackrel{\infty}{\infty} \\ & \dot{N} \dot{\sim} \\ & \dot{J} \\ & \hline \end{aligned}$

Table A－1b．（cont＇d） I

${ }^{n} \Sigma$		$\begin{array}{ll} \pm \\ \dot{m} \\ \dot{\sim} & \dot{\sim} \end{array}$	$\begin{aligned} & \infty \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$		$$	$\begin{aligned} & \dot{a} \\ & \dot{n} \\ & \dot{N} \end{aligned}$			
${ }_{I}^{\star} \Sigma$	$\begin{aligned} & \pm n \\ & \underset{\sim}{m} \dot{\sim} \dot{\sim} \end{aligned}$	$$	$\begin{aligned} & 0 \\ & \dot{\sim} \end{aligned}$		ongy mのさト mNNM	$\stackrel{\rightharpoonup}{\dot{n}}$	Nmoma $\dot{\circ} \dot{\sim} \dot{\circ} \dot{\circ}$ がすがす	$$	$\begin{aligned} & 000 \\ & 00 \\ & 00 \\ & \text { in } \\ & \hline \end{aligned}$
${ }_{I}^{m}$	$\begin{aligned} & 0 \pm \\ & \dot{m} \\ & \dot{m} \dot{m} \\ & \dot{m} \end{aligned}$	$\underset{\sim}{r} \underset{\sim}{\sim}$	$\begin{aligned} & 0 \\ & \stackrel{0}{m} \\ & \underset{\sim}{0} \end{aligned}$	さ～mのom Nのベベ		$\begin{aligned} & \stackrel{\rightharpoonup}{m} \\ & \sim \end{aligned}$			
${ }_{I}^{N}$		$\begin{array}{ll} 0 & 0 \\ & \dot{N} \\ & \end{array}$	∞ $\dot{\sim}$ \sim		un No べゥ 4 NNN	$\begin{aligned} & \underset{\sim}{n} \\ & \stackrel{n}{n} \end{aligned}$	in $\infty \mathrm{mm} \infty$ チ寸ざさ		$$

$H$$1 . T$	$H 2 . T$	$H 3 . T$	$H 4 . T$	$H 5, T$
M	M	M	M	M
50.7	52.0	54.1	57.2	58.1
40.7	50.5	51.8	54.6	56.4
49.0	50.2	51.2	53.8	56.2
52.7	54.3	56.8	58.3	58.2
52.3	53.7	56.5	57.9	58.0
42.2	42.6	43.6	45.2	47.0
38.8	39.7	38.7	39.6	42.7
38.5	39.3	38.4	39.0	42.3
42.7	43.3	44.6	46.1	47.4
45.0	46.2	48.2	48.5	48.3
22.8	23.2	23.3	23.0	24.6
21.6	22.0	21.4	21.7	22.8
24.1	23.2	23.1	23.5	24.8
12.1	12.3	12.4	12.6	13.0
12.0	12.3	11.9	12.1	12.5

Table A-1b. (cont'd)

RUN NO．	CAVITY INCHES	DEG ${ }_{\text {TO }}$	$\begin{gathered} \text { VO } \\ \mathrm{FT} / \mathrm{SEC} \end{gathered}$	$\begin{gathered} \text { PO } \\ \text { PSIA } \end{gathered}$	$\begin{gathered} \text { PV } \\ \text { PSIA } \end{gathered}$	$\begin{aligned} & \text { HO } \\ & \text { FT } \end{aligned}$	$\begin{aligned} & \text { HV } \\ & \text { FT } \end{aligned}$	KV	$\underset{\text { DEG }}{T} \mathrm{I}_{\mathrm{R}}$	$\underset{D E G R}{T}$	$\operatorname{DEG}^{T}{ }^{3}$	${ }_{D E G}{ }^{T} R$	$\operatorname{DEG}^{\top}{ }^{5}$
386A＊＊		37.84	120.4	19.84	18.23	$654 \cdot 3$	601.4	0.23					
386R	0.20	37.75	137.8	17.45	17.98	575.2	592.6	－0．06	36.79	36.97	37．51	37.76	37.76
3866＊＊		37.78	116.3	20.44	18.08	$673 \cdot 7$	596.1	0.37					
386 F	0.32	37.76	140.1	17.47	18.03	576.0	594.4	－0．06	36.92	37.26	37.76	37.84	38.07
387E	0.35	37.89	186.7	19.88	18.38	656.0	606.8	0.09	36.76	37.15	37.64	34.87	37．76
3870＊＊		37.91	157.5	26.52	18.43	874.4	608.6	0.69					
3870	0.72	37.89	192.6	18.92	18.38	624.4	606.8	0.03	36.20	36.47	36.83	37.06	37.58
387E＊＊		37.89	156.4	26.93	18.38	887.7	606.8	0.74					
388B	0.62	37.73	184.8	18.43	17.93	607.3	590.9	0.03	36.36	36．59	36.90	37.24	37.62
388C＊＊		37.75	151.1	25.90	17.98	$852 \cdot 7$	592.6	0.73					
3880	0.50	37.78	182.2	18.88	18.08	622.4	596．1	0.05	36.65	36.86	37.28	37.71	37.80
388E＊＊		37.69	$154 \cdot 2$	25.53	17.83	840.1	587.4	0.68					
388 F	0.56	37.80	184.8	18.78	18.13	619.3	597．9	0.04	36.92	36.94	37.55	37.80	38.16
388G＊＊		37.58	152．9	25.78	17.53	847.4	577.0	0.74					
3898	0.60	37.73	222.8	21.73	17.93	715.7	590.9	0.16	35.87	36．14	36.56	36.50	36.97
3890	0.76	37.73	223.5	21.54	17.93	709.5	590.9	0.15	35．82	36.31	36.31	36.40	37.03
389E＊＊		37.73	188.0	32.68	17.93	1074.7	590.9	0.88					
389F	0.33	37.80	225.0	23.21	18.13	764.8	597.9	0.21	35.91	36.22	36.92	36.85	36.86
3901＊＊		39.40	175.4	34.20	23.03	1143.6	771.7	0.78					
300 e	0.63	39.37	216.5	24.00	22.92	803.5	767.4	0.05	36.70	37．04	37.66	37.71	38．36
3900＊＊		39.37	178.9	33.79	22.92	1129.5	767.4	0.73					
390	0.70	39.38	217.2	23.96	22.97	802.4	769.6	0.04	36.59	36.81	37.31	37.37	38.05
390 F	0.34	39.42	214.9	25.61	23.09	857.7	773.9	0.12	37.57	37.73	38.54	38．61	38.70
3906＊＊		39.56	175.4	34.94	23.58	1170.2	791.2	0.79					
3918	0.67	39.42	192.4	22.40	23.09	750.6	773.9	－0．04	37.39	37.58	38.03	38.29	38.86
3910	0.60	39.42	191.6	22.61	23.09	757.6	773.9	－0．03	37.42	37.71	38.21	38.61	38．90
391E＊＊		39.46	154.5	30．68	23.22	1027．0	778.2	0.67					
391 F	0.34	39.42	188.0	24.23	23.09	811．7	773.9	0.07	37.78	$38 \cdot 16$	38.92	39.04	39.08
3910＊＊		39.56	155.6	30.68	23.58	1028.2	791.2	0.63					

\squareOn
0
0
0N․$\stackrel{\text { N }}{\circ}$0.16
0.15
0.88
0.21$\stackrel{\infty}{\uparrow}$$J_{0}$
0
0
1
1on个人
00

00| m |
| :--- |
| 0 |
| 0 |HV

FT

RUN NO．	CAVITY INCHES	DEG ${ }_{\text {TO }}$	$\begin{gathered} \text { VO } \\ \mathrm{FT} / \mathrm{SEC} \end{gathered}$	$\begin{gathered} \text { PO } \\ \text { PSIA } \end{gathered}$	$\begin{gathered} \text { PV } \\ \text { PSIA } \end{gathered}$	$\begin{aligned} & \text { HO } \\ & \text { FT } \end{aligned}$	$\begin{aligned} & \text { HV } \\ & \text { FT } \end{aligned}$	KV	$\underset{\text { DEG }}{T} \mathrm{I}_{\mathrm{R}}$	$\underset{D E G R}{T}$	$\operatorname{DEG}^{T}{ }^{3}$	${ }_{D E G}{ }^{T} R$	$\operatorname{DEG}^{\top}{ }^{5}$
386A＊＊		37.84	120.4	19.84	18.23	$654 \cdot 3$	601.4	0.23					
386R	0.20	37.75	137.8	17.45	17.98	575.2	592.6	－0．06	36.79	36.97	37．51	37.76	37.76
3866＊＊		37.78	116.3	20.44	18.08	$673 \cdot 7$	596.1	0.37					
386 F	0.32	37.76	140.1	17.47	18.03	576.0	594.4	－0．06	36.92	37.26	37.76	37.84	38.07
387E	0.35	37.89	186.7	19.88	18.38	656.0	606.8	0.09	36.76	37.15	37.64	34.87	37．76
3870＊＊		37.91	157.5	26.52	18.43	874.4	608.6	0.69					
3870	0.72	37.89	192.6	18.92	18.38	624.4	606.8	0.03	36.20	36.47	36.83	37.06	37.58
387E＊＊		37.89	156.4	26.93	18.38	887.7	606.8	0.74					
388B	0.62	37.73	184.8	18.43	17.93	607.3	590.9	0.03	36.36	36．59	36.90	37.24	37.62
388C＊＊		37.75	151.1	25.90	17.98	$852 \cdot 7$	592.6	0.73					
3880	0.50	37.78	182.2	18.88	18.08	622.4	596．1	0.05	36.65	36.86	37.28	37.71	37.80
388E＊＊		37.69	$154 \cdot 2$	25.53	17.83	840.1	587.4	0.68					
388 F	0.56	37.80	184.8	18.78	18.13	619.3	597．9	0.04	36.92	36.94	37.55	37.80	38.16
388G＊＊		37.58	152．9	25.78	17.53	847.4	577.0	0.74					
3898	0.60	37.73	222.8	21.73	17.93	715.7	590.9	0.16	35.87	36．14	36.56	36.50	36.97
3890	0.76	37.73	223.5	21.54	17.93	709.5	590.9	0.15	35．82	36.31	36.31	36.40	37.03
389E＊＊		37.73	188.0	32.68	17.93	1074.7	590.9	0.88					
389F	0.33	37.80	225.0	23.21	18.13	764.8	597.9	0.21	35.91	36.22	36.92	36.85	36.86
3901＊＊		39.40	175.4	34.20	23.03	1143.6	771.7	0.78					
300 e	0.63	39.37	216.5	24.00	22.92	803.5	767.4	0.05	36.70	37．04	37.66	37.71	38．36
3900＊＊		39.37	178.9	33.79	22.92	1129.5	767.4	0.73					
390	0.70	39.38	217.2	23.96	22.97	802.4	769.6	0.04	36.59	36.81	37.31	37.37	38.05
390 F	0.34	39.42	214.9	25.61	23.09	857.7	773.9	0.12	37.57	37.73	38.54	38．61	38.70
3906＊＊		39.56	175.4	34.94	23.58	1170.2	791.2	0.79					
3918	0.67	39.42	192.4	22.40	23.09	750.6	773.9	－0．04	37.39	37.58	38.03	38.29	38.86
3910	0.60	39.42	191.6	22.61	23.09	757.6	773.9	－0．03	37.42	37.71	38.21	38.61	38．90
391E＊＊		39.46	154.5	30．68	23.22	1027．0	778.2	0.67					
391 F	0.34	39.42	188.0	24.23	23.09	811．7	773.9	0.07	37.78	$38 \cdot 16$	38.92	39.04	39.08
3910＊＊		39.56	155.6	30.68	23.58	1028.2	791.2	0.63					

 +0
 0
-10
0
0
0
$\begin{array}{lll}\infty & 0 & \infty \\ 0 & \infty \\ \dot{0} & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 \\ 0\end{array}$
0
0
in
0
0
告
:
587.4
597.9
577.0

771.7
767.4

791.2
오
$H 0$
FT
$554 \cdot 3$
$n N$
tin
0
594.4

 No~
 (English Units).
 lid hydrogen
 Table A－2a．Experimental cavitation data for 0.210 －inch ogive using liquid hydrogen（English Units）．

$\stackrel{T}{ }{ }_{D E G}$	$\stackrel{T}{D E G}{ }^{2}$	${\stackrel{T}{T} G^{3}}_{R}$	${ }_{\text {DEG }}{ }^{\top}$	$\stackrel{T}{5}{ }_{D E G}^{R}$
36.07	36.40	36.88	37.26	37.49
36.05	36.31	36.49	36.83	37.39
38.88	39.38	40.36	40.16	40.32
38.36	38.57	39.02	38.99	39.92
38.05	38.45	38.88	39.46	39.82
38.52	38.86	39.33	40.03	40.28
38.90	39.37	39.78	40.34	40.50
38.66	38.93	39.85	39.91	$40 \cdot 10$
39.20	39.58	40.54	40.52	40.59
39.56	39.87	40.46	40.73	40.91
39.17	39.44	39.56	39.69	40.55
39.65	39.82	40.59	40.73	40.70
39.02	39.62	39.65	39.51	40.41
39.47	40.41	40.82	40.82	40.64
39.40	39.64	40.19	40.23	40.57

RUN
NO.
392C**
393B
393C**
3930
393E**
395A**
3958
395C**
3950
395E**
3968**
396B
396C**
3960
397A**
3979
3970
397E**
397 F
398E
3980
398E**
398F
398r.**
399 P
399D
3995
399G**

[^4]Table A-2a. (cont'd)

$\begin{gathered} \text { T1 } 11 \end{gathered}$	$T_{D E G}{ }^{2} R$	$\operatorname{TEG}_{R}^{\top}$	$\begin{gathered} T{ }_{D E G}^{4} \end{gathered}$	${ }_{\text {DEG }}^{T} 5$
39.06	39.51	39.69	39.53	40.45
39.71	40.16	40.86	40.82	40.93
39.53	39.91	40.43	40.57	40.66
39.78	39.98	40.64	40.66	40.66
36.68	36.90	37.06	37.35	37.57
35.77	36.14	36.74	36.74	36.63
37.73	38.09	38.21	38.45	38.81
38.36	38.74	39.35	39.37	39.28
38.03	38.25	38.66	38.86	39.06
37.66	38.25	38.45	38.56	38.92
37.76	38.02	38.41	38.66	38.90
37.91	38.61	39.22	39.04	38.95
38.00	37.96	38.00	38.09	38.81
36.22	36.76	37.31	36.97	36.97
36.49	36.92	37.44	37.31	37.08
36.67	36.97	37.24	37.31	37.42

NiN

0.20
0.20
0.94

$\stackrel{0}{0} \underset{\sim}{\infty} \underset{\sim}{N}$
OEG $^{5} R$
37.30
37.35
38.16
40.72
39.98
40.72

m^{∞}	-1	$\stackrel{\infty}{\sim}$	$\stackrel{\text { O}}{ }$
\vdash－出	－	－	－

	ñ	$\stackrel{N}{?}$	
－	n	¢	

\sim°	NM	$\stackrel{\sim}{\sim}$
	$\because{ }^{\circ}$	－
－㟔	¢ ${ }_{\text {¢ }}^{\text {¢ }}$	－

㞻	$\infty \times$	\cdots	
V	5°	「jom	
난	$\stackrel{\infty}{\sim} \stackrel{\infty}{\sim}$	$\stackrel{\infty}{\text { a }} \mathfrak{\sim}$	

TO
DEG R

37.84
37.69
39.33
39.33
39.38
39.33
41.24
41.22
41.27
41.26
41.31
41.45

RUN	CAVITY
NO．	INCHES
$407 B$	0.44
407 D	0.22
$408 \mathrm{~A} * *$	
$408 \mathrm{C} * *$	
408 D	0.90
$408 \mathrm{E} * *$	
409 B	0.30
$409 \mathrm{C} * *$	
409 D	0.72
$409 \mathrm{E} * *$	
409 F	0.39
$409 \mathrm{G} * *$	

[^5]| $\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$ | $\begin{aligned} & P \stackrel{1}{P} \text { IA } \end{aligned}$ | $\begin{aligned} & \text { PS } 2 \\ & P S A \end{aligned}$ | $\begin{aligned} & P{ }^{3} \\ & P S I A \end{aligned}$ | $\begin{aligned} & \text { P } 4 \\ & \text { PSIA } \end{aligned}$ | $\begin{aligned} & \text { P } 5 \\ & \text { PSIA } \end{aligned}$ | PRSIA | $\begin{aligned} & P \underset{P S I A}{T} \\ & \end{aligned}$ | $\begin{aligned} & \text { P } 3, T \\ & \text { PSIA } \end{aligned}$ | $\begin{aligned} & P 4, T \\ & \text { PSIA } \end{aligned}$ | $\begin{aligned} & \text { P } 5 \text { ST } \\ & \text { PSIA } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3868 | 12.42 | 13.75 | 16.07 | 18.03 | 21.35 | 15.46 | 15.91 | 17.33 | 18.03 | 18.03 |
| $386 F$ | 12.17 | 13.42 | 15.82 | 17.97 | 21.67 | 15.77 | 16.66 | 18.03 | 18.23 | 18.90 |
| 387 B | 11.45 | 12.78 | 15.25 | 19.91 | 30.08 | 15.37 | 16.37 | 17.68 | 18.33 | 18.03 |
| 387 D | 11.15 | 11.95 | 12.75 | 14.35 | 17.82 | 14.02 | 14.66 | 15.55 | $16 \cdot 14$ | 17.53 |
| 388B | 11.53 | 11.90 | 12.75 | 14.60 | 18.15 | 14.40 | 14.97 | 15.73 | 16.61 | 17.63 |
| 388 D | 11.70 | 12.18 | 13.36 | 16.18 | 21.72 | 15.10 | 15.64 | 16.70 | 17.88 | 18.13 |
| 388 F | 11.35 | 11.95 | 13.01 | 15.01 | 19.78 | 15.77 | 15.82 | 17.43 | 18.13 | 19.16 |
| 3898 | 12.13 | 12.66 | 13.23 | 14.63 | 18.73 | 13.28 | 13.89 | 14.88 | 14.75 | 15.91 |
| 3890 | 11.74 | 12.27 | 12.81 | 13.74 | 16.14 | 13.16 | 14.27 | 14.27 | 14.49 | 16.05 |
| 389 F | 12.63 | 13.57 | 15.09 | 22.35 | 46.31 | 13.36 | 14.06 | 15.77 | 15.59 | 15.64 |
| 390 B | 14.34 | 15.28 | 16.18 | 18.28 | 22.92 | 15.23 | 16.09 | 17.73 | 17.88 | 19.74 |
| 3900 | 13.96 | 14.96 | 15.73 | 17.38 | 21.41 | 14.97 | 15.50 | 16.80 | 16.94 | 18.84 |
| 390 F | 14.73 | 16.15 | 19.13 | 25.87 | 46.81 | 17.48 | 17.93 | 20.28 | 20.50 | 20.78 |
| 391 B | 14.10 | 14.97 | 15.83 | 18.27 | 21.97 | 16.99 | 17.53 | 18.79 | 19.53 | 21.29 |
| 3910 | 14.48 | 15.38 | 16.48 | 19.23 | 24.06 | 17.09 | 17.88 | 19.31 | 20.50 | 21.40 |
| 391 F | 15.66 | 16.96 | 20.23 | 24.76 | 36.93 | 18.08 | 19.16 | 21.46 | 21.86 | 21.97 |
| 393P | 11.15 | 11.92 | 13.02 | 15.95 | 20.75 | 13.73 | 14.49 | 15.68 | 16.66 | 17.28 |
| 393 D | 10.51 | 11.21 | 11.95 | 13.35 | 16.18 | 13.68 | 14.27 | 14.70 | 15.55 | 16.99 |
| 395 B | 19.31 | 21.37 | 25.77 | 32.21 | 54.84 | 21.34 | 22.97 | 26.37 | 25.65 | 26.24 |
| 395 C | 19.39 | 20. 24 | 21.22 | 23.32 | 27.97 | 19.74 | 20.39 | 21.80 | 21.68 | 24.82 |
| 3968 | 18.48 | 19.13 | 20.28 | 22.53 | 27.63 | 18.84 | 20.01 | 21.34 | 23.22 | 24.44 |
| 3960 | 18.58 | 19.30 | 20.40 | 22.50 | 27.53 | 20.23 | 21.29 | 22.80 | 25.20 | 26.11 |
| 3979 | 20.30 | 20.70 | 21.83 | 23.70 | 28.96 | 21.40 | 22.92 | 24.32 | 26.31 | 26.91 |
| 3970 | 20.17 | 21.55 | 23.90 | 30.57 | 56.70 | 20.67 | 21.51 | 24.57 | 24.76 | 25.46 |
| 397 F | 20.48 | 22.23 | 26.60 | 34.83 | 85.28 | 22.38 | 23.64 | 27.04 | 26.97 | 27.24 |
| 3988 | 21.70 | 22.60 | 24.46 | 29.33 | 48.53 | 23.58 | 24.63 | 26.77 | 27.79 | 28.48 |
| 3980 | 20.70 | 20.93 | 21.83 | 22.36 | 24.93 | 22.26 | 23.15 | 23.58 | 24.01 | 27.11 |
| 398 F | 21.73 | 23.03 | 25.87 | 34.47 | 104.90 | 23.89 | 24.44 | 27.24 | 27-79 | 27.65 |

$\begin{aligned} & \vdash \mathbb{4} \\ & \text { in } \\ & 0 \end{aligned}$			$\begin{aligned} & -1-1 \\ & \stackrel{n}{n} \\ & \underset{N}{N} \end{aligned}$		$\begin{aligned} & N N \\ & N \\ & \sim \\ & 0 \\ & \sim \\ & \sim \\ & N \end{aligned}$	$\begin{aligned} & 00 \\ & 0 \\ & 1 \\ & i \\ & \text { N } \end{aligned}$			$\begin{aligned} & n 0 \\ & \underset{\sim}{\circ} \mathrm{O} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{-1}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & N O N \\ & N O N \\ & N N N \end{aligned}$
				$\begin{aligned} & \circ N \\ & 0 N \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & -1 N o \\ & 0 \sim \\ & \dot{N} \\ & \dot{N} \underset{N}{N} \end{aligned}$	$\begin{aligned} & \dot{4} \text { N } \\ & \text { no } \\ & \dot{\circ} \dot{0} \\ & \text { N } \end{aligned}$			$\begin{aligned} & \text { No } \\ & \text { No } \\ & \dot{0} \\ & \dot{0} \dot{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{N}{N} \\ & \underset{N}{+} \end{aligned}$	a o 9 －へ NNN
$\begin{aligned} & \bullet \\ & m \\ & \text { mán } \\ & \text { a } \end{aligned}$	$\begin{array}{lll} a & m & \infty \\ \infty & \sim \\ \bullet \\ \cdots & \infty \\ \sim & \sim \\ N \end{array}$	$\begin{aligned} & -1 \\ & 0 \stackrel{N}{N} \\ & \dot{+} \\ & \stackrel{\infty}{N} \end{aligned}$	$$	$$		$\begin{aligned} & \text { ㅇog } \\ & \dot{0} \dot{0} \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { vo } \\ & \text { 0 } \\ & \dot{N} \dot{\sim} \\ & N \sim \end{aligned}$	$\begin{aligned} & \text { OH } \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & \sim \end{aligned}$	$\begin{aligned} & M \\ & N \\ & \\ & 0 \\ & 0 \\ & n \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	－ 0 \pm ！ $\infty \sim 0$ NNN
$\begin{aligned} & \text { F世 } \\ & \text { N } \\ & \text { a } \end{aligned}$				$\begin{aligned} & n_{n}^{\infty} \\ & { }^{\infty} \\ & i n \\ & n \\ & \infty \end{aligned}$		$\begin{aligned} & N さ \\ & \pm N \\ & \dot{\circ} \dot{\infty} \\ & -1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & N \\ & N \end{aligned}$		$\begin{aligned} & 0 \\ & n \\ & 0 \\ & 0 \\ & n \\ & n \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{N}{n} \\ & \stackrel{\sim}{n} \end{aligned}$	NトM in in ジゥ NNN
			$\begin{aligned} & 0 \\ & \underset{\sim}{N} \\ & \stackrel{N}{N} \\ & \underset{N}{\sim} \end{aligned}$	$\begin{aligned} & a \\ & \rightarrow 0 \\ & \rightarrow 0 \\ & n \\ & \rightarrow 1 \end{aligned}$		$\begin{aligned} & m \times \\ & \sim 0 \\ & \bullet \infty \\ & \sim-\infty \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
in	$\begin{aligned} & N \sim N \\ & N \sim \\ & \underset{\sim}{n} \underset{\sim}{*} \end{aligned}$		$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{N}{\infty} \\ & \underset{N}{N} \\ & \underset{\sim}{N} \\ & \sim \end{aligned}$	$\begin{aligned} & 400 \\ & 0.0 \\ & 0 . \\ & 0 \\ & N \\ & N \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{n} \\ & \stackrel{\sim}{N} \\ & \sim \end{aligned}$	$$			$\begin{aligned} & \infty \\ & 0 \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	
$+\underset{\sim}{\infty}$		$\begin{aligned} & \text { Ho } \\ & \text { o } \\ & \text { N } \\ & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & n m \\ & 0 \% \\ & 0 \\ & \infty \\ & n \\ & n \end{aligned}$	$$	NOO \rightarrow in $\infty 0^{\circ}-{ }^{-1}$ mm	$\begin{aligned} & \text { Non } \\ & 00 \\ & 00 \\ & 00 \\ & \sim 1 \end{aligned}$	$\begin{aligned} & n 0 \\ & n \\ & n \\ & n \\ & n \end{aligned}$	ono ーナN パー NNH		$\begin{aligned} & n \\ & \stackrel{n}{t} \\ & \stackrel{\rightharpoonup}{r} \end{aligned}$	Nomo $\infty ナ 0$ nio mNM
$m \frac{a}{n}$	$\begin{aligned} & 0 \pm \\ & 0 \\ & 0 \\ & 0 \\ & \stackrel{y}{t} \\ & N \\ & N \\ & N \end{aligned}$	$\begin{aligned} & 40 \\ & \infty \\ & 0 \\ & N \\ & N \end{aligned}$	$\begin{aligned} & \text { ON } \\ & \sim N \\ & \sim N \\ & \sim N \end{aligned}$	$$		$\begin{aligned} & 00 \\ & \sim \infty \\ & \infty \\ & \infty \\ & \rightarrow-1 \end{aligned}$	$$	$\begin{aligned} & \infty \\ & 0 \\ & \sim \end{aligned}$	$\begin{aligned} & 0 \\ & \text { NO } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & m \\ & \underset{\sim}{n} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	
N	orm mor $\rightarrow \mathrm{m}$ NNN	$\begin{aligned} & \sim \underset{\sim}{\sim} \\ & \underset{-}{0} \\ & \stackrel{\sim}{\sim} \\ & \sim \sim \end{aligned}$	$$			$\begin{aligned} & \text { Nr } \\ & \underset{\sim}{*} \\ & \stackrel{y}{*} \\ & \sim \end{aligned}$	$\begin{aligned} & m \times \\ & \underset{N}{\infty} \\ & 0 \\ & 0 \\ & \cdots \end{aligned}$	$\begin{aligned} & m n_{0} \\ & \infty \\ & \infty \\ & 0 \\ & n \\ & n=1 \\ & n \end{aligned}$	$\begin{aligned} & \text { Q } \\ & 0 \sim \\ & 0 \sim 1 \\ & \sim 1 \end{aligned}$	$\stackrel{m}{\sim} \stackrel{n}{\stackrel{1}{-}}$	$\begin{aligned} & N M O \\ & \infty \\ & \infty \\ & \infty \\ & \infty \\ & N \\ & N \end{aligned}$
$-\frac{a}{n}$	NさO NNM $-\mathrm{mN}$ $\sim N N$	$$	$\begin{aligned} & 0 \\ & 0 \\ & 7 \\ & 0 \\ & \dot{m} \\ & \sim \end{aligned}$			$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \sim \end{aligned}$	$\begin{aligned} & n m \\ & n \\ & n \\ & \infty \\ & \infty \\ & \sim \end{aligned}$	mon $\cdots \infty$ が in $\rightarrow \boldsymbol{r r}$	$$	$\begin{aligned} & m \\ & \underset{\sim}{n} \\ & \underset{\sim}{c} \end{aligned}$	$\begin{aligned} & \sim N O \\ & \sim \underset{\sim}{\circ} \\ & \underset{N}{N} \underset{N}{N} \end{aligned}$
$\underset{\alpha}{z} \underset{\sim}{\underset{z}{2}}$		$\begin{aligned} & \text { mo } \\ & 00 \\ & 00 \\ & t \end{aligned}$	$\begin{aligned} & a_{1} \\ & -1 \\ & 0-1 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & a 0 \\ & \text { NO } \\ & 00 \\ & 10 \end{aligned}$		$\begin{aligned} & \text { mu } \\ & \text { to } \\ & 0 \\ & \text { of } \end{aligned}$	$\begin{aligned} & 014 \\ & \sim_{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 00 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty 0 u \\ & 000 \\ & 00 \\ & 0 \\ & 0 \end{aligned}$

Table A-2a. (cont'd)

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	$H_{F T}$	$H 2$ $F T$	$H^{H} \mathrm{~T}$	${ }_{\text {H }} 4$	H FT			$\begin{gathered} H 3, T \\ F T \end{gathered}$	$\begin{gathered} H \\ F T \end{gathered}$	$\begin{gathered} H 5, r \\ F T \end{gathered}$
386 B	401.3	446.5	526.3	594.5	711.6	$505 \cdot 1$	520.8	570.1	$594 \cdot 4$	$594 \cdot 4$
386 F	392.8	435.3	$517 \cdot 7$	592.4	723.0	516.0	546.7	594.4	601.4	624-8
387 B	368.5	413.5	$498 \cdot 0$	$660 \cdot 6$	1028.4	$502 \cdot 0$	536.8	582•1	605.0	$594 \cdot 4$
387 D	358.4	385.3	412.5	467.1	587.2	$455 \cdot 7$	$477 \cdot 7$	508.2	$528 \cdot 8$	$577 \cdot 0$
3888	371.2	383.7	$412 \cdot 5$	475.6	$598 \cdot 7$	468.8	488.2	$514 * 4$	545.0	$580 \cdot 4$ 597
3880	376.9	393.1	433.2	$530 \cdot 1$	724.7	492.8	$511 \cdot 3$	$548 \cdot 3$	589.1	597.9
$388 F$	$365 \cdot 1$	385.3	421.3	489.7	656.0	516.0	$517 \cdot 6$	573.5	$597 \cdot 9$	$634 \cdot 0$
389R	391.4	409.4	428.8	476.7	619.0	$430 \cdot 4$	451.4	485.2	$480 \cdot 7$	$520 \cdot 8$
389 D	378.3	396.2	414.5	446.2	528.7	426.2	464.4	464.4	471.7	$525 \cdot 6$
389 F	408.4	440.4	$492 \cdot 5$	$747 \cdot 2$	1650.9	$433 \cdot 1$	457.1	516.0	$509 \cdot 7$	$511 \cdot 3$
390 B	466.7	499.0	$530 \cdot 1$	$603 \cdot 2$	$767 \cdot 6$	497.4	527.2	583.9	589.1	$654 \cdot 6$
3900	453.7	488.0	514.6	571.8	713.7	488.2	506.6	551.6	556.6	623.0
390 F	480.1	529.1	$633 \cdot 1$	$874 \cdot 0$	1670.8	575.3	590.9	673.7	681.5	691.3
391 B	$458 \cdot 5$	488.4	$518 \cdot 0$	$602 \cdot 9$	$733 \cdot 6$	$558 \cdot 3$	577.0	621.2	$647 \cdot 0$	709.3
391 D	471.5	502.5	540.5	636.6	808.5	$561 \cdot 7$	$589 \cdot 1$	639.6	$681 \cdot 5$	$713 \cdot 3$
391 F	512.1	$557 \cdot 2$	671.9	$833 \cdot 8$	1285.8	596.1	634.0	715.3	729.6	733.8
393 B	$358 \cdot 4$	$384 \cdot 3$	$421 \cdot 6$	$522 \cdot 2$		$445 \cdot 7$		512.9	$546 \cdot 7$	$568 \cdot 4$
393 D	336.9	360.4	385.3	432.9	530.1	$444 \cdot 3$	$464 \cdot 4$	$479 \cdot 2$	$508 \cdot 2$	$558 \cdot 3$
3959	639.4	$712 \cdot 3$	$870 \cdot 4$	1107.6	1995.8	$711 \cdot 3$	769.6	892.3	866.1	887.5
3950	$642 \cdot 2$	672.2	706.9	781.9	950.6	$654 \cdot 6$	$677 \cdot 6$	$727 \cdot 6$	723.5	$836 \cdot 0$
		$633 \cdot 1$	673.6		$938 \cdot 2$	623.0	$664 \cdot 1$	711.3	$\begin{aligned} & 778.2 \\ & 849.8 \end{aligned}$	822.4
3960	613.8	639.1	677.9	752.6	$934 \cdot 5$	$671 \cdot 8$	709.3	763.2	$849 \cdot 8$	882.7
397B	$674 \cdot 3$	688.5	728.7	$795 \cdot 6$	987.0	$713 \cdot 3$	$767 \cdot 4$	$817 \cdot 9$	889.9 833.7	
3970	669.7	$718 \cdot 7$	802.8	$1046 \cdot 5$	$2072 \cdot 7$	687.4	717.4	826.9		
397 F	$680 \cdot 7$	742.9	900.6	1206•1	3337.4	$748 \cdot 3$	793.4	916.6	$914 \cdot 2$	$924 \cdot 0$
3988	$724 \cdot 0$	756.1	823.0	$1000 \cdot 7$	1739.5	791.2	829.2	906.8	943.9	969.3
3980	688.5	696.7	728.7	747.6	839.9	$744 \cdot 2$	776.0	$791 \cdot 2$	806.7	919.1
398 F	725.1	771.5	$874 \cdot 0$	1192.5	4313.3	$802 \cdot 3$	$822 \cdot 4$	$924 \cdot 0$	943.9	$938 \cdot 9$

$\begin{aligned} & \text { Nr } \\ & \text { in } \\ & \text { I } \end{aligned}$	$\begin{array}{lll} n & 0 & n \\ 0 & -1 & 0 \\ \sigma & -1 \\ \infty & \alpha \\ \infty & \alpha \end{array}$		$\begin{aligned} & a \\ & \dot{n} \\ & \dot{m} \\ & \dot{m} \\ & \sigma \end{aligned}$	$\begin{aligned} & m \\ & \cdots \\ & i \\ & i n g \end{aligned}$		$$	$\begin{aligned} & \text { ポ } \\ & \dot{0} \dot{~} \\ & \underset{\sim}{1} \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & \dot{5} \\ & \stackrel{0}{0} \end{aligned}$	
$\begin{aligned} & \text { Fロ } \\ & \text { f } \\ & \text { I } \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \infty \\ & \sim \end{aligned}$	$\begin{array}{ll} n \\ \dot{n} \\ \dot{N} & \dot{1} \\ \alpha & \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & \text { in } \\ & \text { n } 0 \\ & \text { nin } \end{aligned}$	$\begin{aligned} & \because j \\ & \bullet 0 \\ & \dot{j} \stackrel{0}{\circ} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \sim \\ & 0 \\ & \underset{\sim}{0} \\ & \underset{\sim}{N} \\ & \hline \end{aligned}$	$\begin{array}{lll} \infty & 0 & 0 \\ 0 & \bullet \\ 0 & -1 \\ N & -1 \\ n & n \\ n \end{array}$	$$	＋ ∞ 0 0	
$\begin{aligned} & \text { Fit } \\ & \text { mit } \\ & \text { I } \end{aligned}$	$\begin{aligned} & m \sim o \\ & \sim 0 \\ & \sim \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { F } 0 \\ & 0 \\ & 0 \\ & 0 \\ & \infty \\ & \infty \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & n \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 10 \\ & \bullet 0 \\ & \dot{0} 0 \\ & 0 \\ & 0 \end{aligned}$		0 Jo \rightarrow Min un in in	$\begin{aligned} & \text { ON } \\ & \dot{0} \dot{0} \\ & \text { MO } \\ & \text { in in } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	
$\begin{aligned} & \text { FL- } \\ & \text { IL } \\ & \text { I } \end{aligned}$	$\begin{aligned} & \infty \sim 0 \\ & \dot{\sim} \dot{0} 0 \\ & \dot{\alpha} \dot{0} 0 \\ & \sim \end{aligned}$	$\begin{aligned} & \sim \\ & \bullet \\ & \pm \\ & \infty \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \dot{\sim} \\ & \underset{\infty}{\sim} \\ & \underset{\sim}{ \pm} \\ & \hline \end{aligned}$	$$						$\stackrel{\infty}{i}$	
$\begin{aligned} & \text { F } \\ & \text { I } \end{aligned}$				$$		$\begin{aligned} & a j \\ & \text { m. } \\ & \text { m } \\ & \text { in in } \end{aligned}$	$\begin{array}{ll} 0 & 0 \\ \infty & 0 \\ 0 & \stackrel{1}{2} \\ 0 & 0 \end{array}$		$$	$$	

I^{n}	$\begin{aligned} & \because H M \\ & 0 \\ & 0 \\ & \sim \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & N O \\ & \bullet 0 \\ & 0 \\ & 0 \\ & 0 \\ & \infty \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & m F \\ & \infty \\ & 0 \pm \\ & 0 \text { N } \end{aligned}$		$\begin{aligned} & o r \\ & \dot{0} \dot{\infty} \\ & \hat{N} \underset{\sim}{\alpha} \end{aligned}$	$\begin{aligned} & \rightarrow \infty \\ & \infty \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{array}{ll} n & 0 \\ \dot{\sim} & 0 \\ N & 0 \\ \sim & 0 \\ 0 & \infty \\ & -1 \end{array}$	$\begin{aligned} & \sim \\ & \dot{0} \\ & \underset{\sim}{0} \end{aligned}$	
I上						$\begin{aligned} & \sim 0 \\ & 0 \\ & 0 \\ & \sim \\ & \sim \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \sim 0 \\ & -0 \\ & -10 \\ & \infty \end{aligned}$		$\begin{aligned} & n \\ & 0 \\ & \dot{C} \\ & \text { in } \\ & \text { in } \\ & \hline \end{aligned}$	$\begin{gathered} \text { n } \\ \stackrel{+}{*} \\ \text { in } \end{gathered}$	
$\begin{aligned} & m \leftarrow \\ & I \end{aligned}$	$\begin{array}{lll} 0 & 0 & m \\ \dot{0} & \dot{0} \\ & \stackrel{n}{N} \\ & \infty \end{array}$	\wedge \sim -0 +0 \sim				$\begin{aligned} & 00 \\ & 00 \\ & 0 \\ & 0 \\ & n \\ & n \end{aligned}$			$\begin{aligned} & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & m \\ & \\ & \text { in in } \end{aligned}$	$\begin{aligned} & \stackrel{1}{0} \\ & \stackrel{0}{n} \end{aligned}$	
I^{NL}				$$		$\begin{aligned} & \text { ro } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \infty \\ & \infty \end{aligned}$		$$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
\pm		$$		$$		$\begin{aligned} & A \\ & 0 \\ & \dot{4} \text { in } \\ & \text { nin } \end{aligned}$	$\begin{aligned} & N 0 \\ & \sim 0 \\ & \sim 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { NOR } \\ & \text { NM } \\ & \text { HNN } \end{aligned}$
$\underset{\sim}{\underset{\sim}{3}} \dot{0}$		$$	$$	$$		$\begin{aligned} & \text { ru } \\ & t \pm \\ & c \\ & s \end{aligned}$	$\begin{aligned} & 011 \\ & N \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{lll} \infty & 0 & u \\ 0 & 0 & 0 \\ c & 0 & 0 \\ y & 4 & v \end{array}$		$\begin{aligned} & 0 \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	

$\begin{aligned} & \text { RUN: } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { CAVITY } \\ \text { CM } \end{gathered}$	${ }_{\text {DO }} \quad \text { K } K$	$\begin{aligned} & \text { VO } \\ & \text { M/SEC } \end{aligned}$	$\begin{gathered} \mathrm{PO} \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{gathered} \mathrm{PV} \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{array}{r} \mathrm{HO} \\ \mathrm{M} \end{array}$	$\begin{gathered} H V \\ M \end{gathered}$	KV	$\operatorname{DEG}^{\top} K$	$\stackrel{T}{D E G}{ }^{2} K$	$\operatorname{DEG}^{\top} K$	$\stackrel{T}{D^{4}}{ }^{2} K$	${ }_{D E G}{ }^{T}{ }^{5}$
386A**		21.02	36.7	13.68	12.57	199.4	183.3	0.23					
3869	0.73	20.97	42.0	12.03	12.39	175.3	180.6	-0.06					
$386 C^{* *}$		20.99	35.4	14.09	12.46	205.3	181.7	-0.06 0.37	20.44	20.54	$20 \cdot 84$	20.98	20.98
386 F	0.81	20.98	42.7	12.05	12.43	175.6	181.2	-0.06	20.51	20.70	20.98	21.02	21.15
3878	0.88	21.05	56.9	13.71	12.67	200.0	184.9	0.09					
387C**		21.06	48.0	18.28	12.71	266.5	185.5	0.09 0.69	20.42	20.64	20.91	21.04	20:98
387 D $387 \mathrm{*} *$	1.82	21.05 21.05	58.7 47.7	13.04	12.67	190.3	184.9	0.03	20.11	20.26	20.46	20.59	20.88
387E**		21.05	47.7	18.57	12.67	270.6	184.9	0.74			20.46	20.59	20.88
338B	1.57	20.96	56.3	12.71	12.36	185.1	180.1	0.03					
3880**		20.97	46.1	17.86	12.39	259.9	180.6	0.73	20.20	$20 \cdot 33$	20.50	20.69	20.90
3880 $3885 *$	1.27	20.99 20.94	55.5	13.02	12.46	189.7	181.7	0.05	20.36	20.48	20.71	20.95	21.00
388 F	1.42	21.00	46.0	17.60 12.95	12.29 12.50	256.1 188.8	179.0 182.2	0.68					
388G**		20.88	46.6	17.77	12.09	258.3	175.9	0.04 0.74	20.51	20.52	20.86	21.00	21.20
3899	1.52	20.96	67.9	14.98	12.36	218.2	180.1						
3890	1.93	20.96	68.1	14.85	12.36	216.2	180.1	0.15	19.93 19.90	20.08	20.31	20.28	20.54
389E**		20.96	57.3	22.53	12.36	327.6	180.1	0.15	19.90	20.17	20.17	20.22	20.57
389 F	0.83	21.00	68.6	16.00	12.50	233.1	182.2	0.21	19.95	20.12	20.51	20.47	20.48
390A**		21.89	53.4	23.58	15.88	348.6	235.2	0.78					
3908	1.60	21.87	66.0	16.55	15.80	244.9	233.9	0.05					
$390 C * *$		21.87	54.5	23.30	15.80	344.3	233.9	0.73	20.39	20.58	20.92	20.95	21.31
3000	1.77	21.88	66.2	16.52	15.84	244.5	234.6	0.04					
390 F	0.86	21.90	65.5	17.66	15.92	261.4	235.9	0.12	20.87	20.96	20.73	20.76	21.14
390G**		21.98	53.5	24.09	16.26	356.7	241.2	0.79	20.87	20.96	21.41	21.45	21.50
391 B	1.70	21.90	58.7	15.44	15.92	228.8	235.9						
3910	1.52	21.90	58.4	15.59	15.92	230.9	235.9	-0.04	20.77	20.88	21.13	21.27	21.59
291E**		21.92	47.1	21.15	16.01	313.0	237.2	0.67	20.79	20.95	21.23	21.45	21.61
$391 F$	0.86	21.90	57.3	16.71	15.92	247.4	235.9	0.07	20.99	21.20	21.62	21.69	
291G**		21.98	47.4	21.15	16.26	313.4	241.2	0.63			21.62		21.71

20.98
21.15 20:98 $88^{\circ} 02$
20.90
21.00
21.20
20.54
20.57
∞
$\stackrel{\infty}{+}$
$\stackrel{+}{+}$ 21.31

$\begin{aligned} & \text { RUN: } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} \text { CAVITY } \\ \text { CM } \end{gathered}$	${ }_{\text {DO }} \quad \text { K } K$	$\begin{aligned} & \text { VO } \\ & \text { M/SEC } \end{aligned}$	$\begin{gathered} \mathrm{PO} \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{gathered} \mathrm{PV} \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{array}{r} \mathrm{HO} \\ \mathrm{M} \end{array}$	$\begin{gathered} H V \\ M \end{gathered}$	KV	$\operatorname{DEG}^{\top} K$	$\stackrel{T}{D E G}{ }^{2} K$	$\operatorname{DEG}^{\top} K$	$\stackrel{T}{D^{4}}{ }^{2} K$	${ }_{D E G}{ }^{T}{ }^{5}$
386A**		21.02	36.7	13.68	12.57	199.4	183.3	0.23					
3869	0.73	20.97	42.0	12.03	12.39	175.3	180.6	-0.06					
$386 C^{* *}$		20.99	35.4	14.09	12.46	205.3	181.7	-0.06 0.37	20.44	20.54	$20 \cdot 84$	20.98	20.98
386 F	0.81	20.98	42.7	12.05	12.43	175.6	181.2	-0.06	20.51	20.70	20.98	21.02	21.15
3878	0.88	21.05	56.9	13.71	12.67	200.0	184.9	0.09					
387C**		21.06	48.0	18.28	12.71	266.5	185.5	0.09 0.69	20.42	20.64	20.91	21.04	20:98
387 D $387 \mathrm{*} *$	1.82	21.05 21.05	58.7 47.7	13.04	12.67	190.3	184.9	0.03	20.11	20.26	20.46	20.59	20.88
387E**		21.05	47.7	18.57	12.67	270.6	184.9	0.74			20.46	20.59	20.88
338B	1.57	20.96	56.3	12.71	12.36	185.1	180.1	0.03					
3880**		20.97	46.1	17.86	12.39	259.9	180.6	0.73	20.20	$20 \cdot 33$	20.50	20.69	20.90
3880 $3885 *$	1.27	20.99 20.94	55.5	13.02	12.46	189.7	181.7	0.05	20.36	20.48	20.71	20.95	21.00
388 F	1.42	21.00	46.0	17.60 12.95	12.29 12.50	256.1 188.8	179.0 182.2	0.68					
388G**		20.88	46.6	17.77	12.09	258.3	175.9	0.04 0.74	20.51	20.52	20.86	21.00	21.20
3899	1.52	20.96	67.9	14.98	12.36	218.2	180.1						
3890	1.93	20.96	68.1	14.85	12.36	216.2	180.1	0.15	19.93 19.90	20.08	20.31	20.28	20.54
389E**		20.96	57.3	22.53	12.36	327.6	180.1	0.15	19.90	20.17	20.17	20.22	20.57
389 F	0.83	21.00	68.6	16.00	12.50	233.1	182.2	0.21	19.95	20.12	20.51	20.47	20.48
390A**		21.89	53.4	23.58	15.88	348.6	235.2	0.78					
3908	1.60	21.87	66.0	16.55	15.80	244.9	233.9	0.05					
$390 C * *$		21.87	54.5	23.30	15.80	344.3	233.9	0.73	20.39	20.58	20.92	20.95	21.31
3000	1.77	21.88	66.2	16.52	15.84	244.5	234.6	0.04					
390 F	0.86	21.90	65.5	17.66	15.92	261.4	235.9	0.12	20.87	20.96	20.73	20.76	21.14
390G**		21.98	53.5	24.09	16.26	356.7	241.2	0.79	20.87	20.96	21.41	21.45	21.50
391 B	1.70	21.90	58.7	15.44	15.92	228.8	235.9						
3910	1.52	21.90	58.4	15.59	15.92	230.9	235.9	-0.04	20.77	20.88	21.13	21.27	21.59
291E**		21.92	47.1	21.15	16.01	313.0	237.2	0.67	20.79	20.95	21.23	21.45	21.61
$391 F$	0.86	21.90	57.3	16.71	15.92	247.4	235.9	0.07	20.99	21.20	21.62	21.69	
291G**		21.98	47.4	21.15	16.26	313.4	241.2	0.63			21.62		21.71

[^6]| $\text { DEGG }^{\top}{ }^{1} K$ | $\stackrel{T}{D E G}^{2} K$ | $\text { DEG }^{\top} K$ | ${ }_{D E G}{ }^{4} K$ | ${ }_{\text {DEG }}{ }^{5} \mathrm{~K}$ |
| :---: | :---: | :---: | :---: | :---: |
| 20.04 | 20.22 | 20.49 | 20.70 | 20.83 |
| 20.03 | 20.17 | 20.27 | 20.46 | 20.77 |
| 21.60 | 21.88 | 22.42 | 22.31 | 22.40 |
| 21.31 | 21.43 | 21.68 | 21.66 | 22.18 |
| 21.14 | 21.36 | 21.60 | 21.92 | 22.12 |
| 21.40 | 21.59 | 21.85 | 22.24 | 22.38 |
| 21.61 | 21.87 | 22.10 | 22.41 | 22.50 |
| 21.48 | 21.63 | 22.14 | 22.17 | 22.28 |
| 21.78 | 21.99 | 22.52 | 22.51 | 22.55 |
| 21.98 | 22.15 | 22.48 | 22.63 | 22.73 |
| 21.76 | 21.91 | 21.98 | 22.05 | 22.53 |
| 22.03 | $22 \cdot 12$ | 22.55 | 22.63 | 22.61 |
| 21.68 | 22.01 | 22.03 | 21.95 | 22.45 |
| 21.93 | 22.45 | 22.68 | 22.68 | 22.58 |
| 21.89 | 22.02 | 22.33 | 22.35 | 22.54 |

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { CAVITY } \\ & \text { CM } \end{aligned}$	$\begin{gathered} \text { TO } \\ \text { DEG } K \end{gathered}$	$\begin{gathered} V O \\ M / S E C \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{gathered} P V \\ N / C M / C M \end{gathered}$	$\begin{aligned} & \mathrm{HO} \\ & \mathrm{M} \end{aligned}$	$\begin{gathered} H V \\ M \end{gathered}$
3920**		21.90	46.4	21.97	15.92	325.0	235.9
393 B	1.14	20.89	51.0	11.94	12.12	173.8	176.4
393C**		20.92	$42 \cdot 3$	16.01	12.22	232.9	178.0
3930	1.82	20.95	51.6	11.71	12.32	170.6	179.6
393E**		20.97	42.0	15.77	12.39	229.6	180.6
395A**		22.92	56.2	28.54	20.56	430.2	310.6
3958	0.86	22.94	68.3	21.95	20.66	331.6	312.2
3950**		22.95	56.8	28.86	20.71	435.2	313.0
3950	1.77	22.96	69.9	20.73	20.76	313.4	313.9
395E**		22.95	57.9	28.05	20.71	423.1	313.0
396A**		22.90	55.4	27.39	20.47	412.7	309.0
396B	1.90	22.90	68.7	20.22	20.47	305.3	309.0
3960**		22.90	56.7	27.30	20.47	411.4	309.0
3960	1.82	22.88	69.1	20.29	20.37	$306 \cdot 2$	307.4
397A**		22.92	61.9	31.18	20.56	469.6	310.6
397 B	1.75	22.96	76.9	22.36	20.76	337.8	313.9
3970	0.99	22.93	75.8	23.17	20.61	349.7	311.4
397E**		22.93	62.7	31.56	20.61	475.3	311.4
397F	0.71	22.97	75.0	23.91	20.81	361.2	314.7
3988	1.06	22.94	85.0	25.46	20.66	384.2	312.2
3980	2.23	22.90	86.5	24.57	29.47	370.5	309.0
398E**		22.93	71.4	36.31	20.61	546.3	311.4
398 F	0.83	22.98	85.1	26.20	20.86	395.6	315.5
398G**		23.21	$72 \cdot 3$	35.78	22.04	541.5	334.9
3998	2.43	22.97	84.6	24.42	20.81	368.9	314.7
3990	0.91	22.96	82.9	25.97	20.76	392.0	313.9
399 F	1.27	23.07	83.8	25.37	21.32	384.0	323.0
399G**		23.18	68.7	36.05	21.89	545.1	332.3

$\text { DEG }^{\top} K$	$\mathrm{TEG}^{2} K$	$\text { DEG }^{T} K$	$\text { DEG }^{4} K$	${ }_{D E G}{ }^{5} K$
21.70	21.95	22.05	21.96	22.47
22.06	22.31	22.70	22.68	22.74
21.96	22.17	22.46	22.54	22.59
22.10	22.21	22.58	22.59	22.59
20.38	20.50	20.59	20.75	20.87
19.87	20.08	20.41	20.41	20.35
20.96	21.16	21.23	21.36	21.56
21.31	21.52	21.86	21.87	21.82
21.13	21.25	21.48	21.59	21.70
20.92	21.25	21.36	21.42	21.62
20.98	21.12	21.34	21.48	21.61
21.06	21.45	21.79	21.69	21.64
21.11	21.09	21.11	21.16	21.56
20.12	20.42	20.73	20.54	20.54
20.27	20.51	20.80	20.73	20.60
20.37	20.54	20.69	20.73	20.79

	-	${ }^{\infty} \times$	
\geqslant	N		$\infty \times \infty \times$
$\stackrel{\rightharpoonup}{2}$	$\bigcirc 0^{\circ}$	$\bigcirc 0^{\circ} 0^{\circ}$	$\bigcirc 0^{\circ} 0 \cdot 0$

0.27
0.91
0.22
0.93 0.20
0.20
0.94

 Table A-2b. (cont'd)

RUN	CAVITY	TO					
NO.	CM	DEG K	M/SEC	N/CM/CM	N/CM/CM	HO	MV

* DENOTES AN INCIPIENT RUN
** DENOTES A DESINENT RUN

\pm	N0	0	N	$\xrightarrow{-4}$	
0	「「	N	\bigcirc	\cdots	
\vdash	응	$\xrightarrow{-1}$	N	N	
0	N	N	N	N	

20.67
20.77$\begin{array}{lll}n & 0 & -1 \\ \infty & 0 & \infty \\ \dot{N} & \dot{N} & - \\ N & N & N\end{array}$$N$
N
N
N
DEG $^{\text {T }}{ }^{3}$ $\begin{array}{ll}-1 & N \\ 0 & 0 \\ \dot{0} & 0 \\ N\end{array}$ a
α
\vdots
0

N | N | -1 | |
| :--- | :--- | :--- |
| \dot{N} | $\dot{\sim}$ | |

DEG $^{\top} K$ $\begin{array}{ll}\sim & \infty \\ \pm & + \\ 0 \\ 0 & 0 \\ N & 0\end{array}$ $\begin{array}{ll}n & N \\ \infty & N \\ \dot{\sim} & \stackrel{N}{N} \\ \sim & N\end{array}$ Table A－2b．（cont＇d）
主 183.3
179.0 232.6 ∞
on
on
m ज
Table A-2b. (cont'd)

RUN NO.	$\begin{gathered} \stackrel{P}{1} \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\stackrel{\mathrm{P}}{\mathrm{~N} / \mathrm{CM}^{2} \mathrm{CM}}$	$\begin{gathered} P 3 \\ \mathrm{~N} / \mathrm{CM}^{3} / \mathrm{CM} \end{gathered}$	$\begin{gathered} \mathrm{P} 4 \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{gathered} P 5 \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 1, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 2, T \\ N / C M / C M \end{gathered}$	$\begin{aligned} & P 3 \cdot T \\ & N / C M / C M \end{aligned}$	$\begin{gathered} P 4, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 5, T \\ N / C M / C M \end{gathered}$
386 B	8.56	9.48	11.08	12.43	14.72					
386 F	8.39	9.25	10.91	12.39	14.92	10.66	10.97	11.95	12.43	12.43
				12.39	14.94	10.87	11.48	12.43	12.57	13.03
387 B	7.89	8.81	10.51	13.73	20.74	10.59				
3870	7.69	8.24	8.79	9.89	12.29	9.67	11.29	12.19	12.64	12.43
					12.29		10.11	10.72	11.13	12.09
388 B	7.95	8.20	8.79	10.07	12.51	9.93				
3880	8.07	8.40	9.21	11.16	14.98	9.93 10.41	10.32	10.84	11.45	12.15
388 F	7.83	8.24	8.97	10.35	13.64	10.87	10.78 10.91	11.52 12.02	12.32 12.50	12.50
389 B	8.36	8.73	9.12	10.09						
389 D	8.09	8.46	8.83	10.09 9.47	12.91	9.15	9.58	10.26	10.17	10.97
389 F	8.71	9.36	10.40	15.41	11.13 31.93	9.07	9.84	9.84	9.99	11.06
				15.41		9.21	9.69	10.87	10.75	10.78
3908	9.89	10.54	11.16	12.60	15.80					
3.90 D	9.63	10.31	10.85	11.98	14.76	10.50	11.10	12.22	12.32	13.61
390F	10.16	11.14	13.19	17.84	14.76 32.27	10.32 12.05	10.69 12.36	11.58 13.98	11.68 14.14	12.99 14.33
391B	9.72	10.32	10.91	12.60						
391 D	9.98	10.60	11.36	13.26	16.59	11.72	12.09	12.96	13.46	14.68
$391 F$	10.80	11.69	13.95	17.07	25.46	11.78 12.46	12.32 13.21	13.32 14.79	14.14	14.75
393B	7.69	8.22								15.15
3930	7.25	7.73	8.98	11.00	14.31	9.46	9.99	10.81	11.48	
3930	7.25	7.73	8.24	9.20	11.16	9.44	9.84	10.14	10.72	11.72
395 B	13.31	14.73	17.77	22.21						
3950	13.37	13.95	14.63	16.08	19.28	13.61	15.84	18.18	17.69	18.09
				16.08	19.28	13.61	14.06	15.03	14.95	17.11
396 B	12.74	13.19	13.98	15.53	19.05	12.99				
3960	12.81	13.31	14.07	15.51	18.98	13.95	13.80 14.68	14.71 15.72	$\begin{aligned} & 16.01 \\ & 17.38 \end{aligned}$	16.85
397 B	14.00	14.27	15.05	16.34	19.97					
3970	13.91	14.86	16.48	21.08	39.09	14.25	14.88	16.77	18.14	18.55
397 F	14.12	15.33	18.34	24.01	58.80	15.43	14.83 16.30	16.94 18.64	17.07 18.60	$\begin{aligned} & 17.55 \\ & 18.78 \end{aligned}$
398 B	14.96	15.58	16.86	20.22						
3980	14.27	14.43	15.05	15.42		15.26	16.98	18.46	19.16	19.64
398F	14.98	15.88	17.84	23.77	72.33	16.47	15.96 16.85	16.26 18.78	16.55	18.69

RUN NO.	$\begin{gathered} \mathrm{P} / \mathrm{CM}^{\prime} \end{gathered}$	$\stackrel{P 2^{2}}{N / C M / C M}$	$\begin{gathered} P 3 \\ N / \mathrm{CM}^{3} / \mathrm{CM} \end{gathered}$	$\stackrel{P 4}{N / C M / C M}$	$\begin{gathered} \mathrm{P}{ }^{5} \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{gathered} P 1, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P \stackrel{2}{P} T \\ N / C M / C M \end{gathered}$	$\begin{aligned} & P 3, T \\ & N / C M / C M \end{aligned}$	$\begin{gathered} P 4, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 5, T \\ N / C M / C M \end{gathered}$
				15.26	16.22	15.03	16.38	16.47	16.13	18.32
3998 3990	14.63	14.73 16.32	17.81	15.26 22.78	49.48	16.05	18.32	19.40	19.40	18.92
399 D 399 F	16.02 15.38	16.32 15.67	17.897	18.786	25.15	15.88	16.43	17.78	17.87	18.74
						15.11	16.13	16.55	16.17	18.41
400 B	15.06	15.29	15.75	15.73	16.51		17.69	19.49	19.40	19.68
4000	16.55	16.98	18.06	21.65	38.15	16.60	17.69	19.49	19.40	
	16.13	16.71	17.72	19.34	27.58	16.17	17.07	18.37	18.74	18.97
4010	16.82	17.26	18.80	24.63	82.14	16.77	17.24	18.92		
		9.31	9.74	10.16	11.91	10.47	10.84	11.13	11.65	12.05
$402 B$ $402 D$	8.85 8.89	9.47	10.07	11.07	15.36	8.99	9.58	10.56	10.56	10.38
						12.36	13.06	13.32	13.80	14.56
403B	11.03	11.51	12.09	12.53 21.03	14.44 55.85	13.61	14.40	15.76	15.80	15.59
403 D	11.55	12.63	14.98	21.03	55.85 21.10	12.96	13.39	14.25	14.68	15.11
403 F	12.00	12.32	13.17	15.03	21.10	12.96	13.39	14.25		
404B	11.64	11.94	12.52	13.11	15.98	12.22	13.39	13.80	14.02	14.79 14.75
404 F	11.47	12.05	12.96	14.22	18.87	12.43	12.92	13.72	14.25	
			14.29	17.60	31.18	12.71	14.14	15.47	15.07	14.87
405 B 405 F	11.88	12.32	12.78	12.89	13.93	12.89	12.81	12.89	13.06	14.56
						9.69	10.59	11.58	10.97	10.97
406B	10.74	10.91	11.57 12.48	17.31 20.31		10.14	10.87	11.82	11.58	11.16
406 D 406 F	10.89 9.83	11.00 10.31	12.48 10.93	11.86	17.37	10.44	10.97	11.45	11.58	11.78
4078	9.70	10.34	11.17	11.98	18.75	10.20	10.75	11.19	11.39	11.55 11.65
407 D	10.58	10.87	12.41	20.39	36.04	10.38	10.78	11.88	11.72	11.65
4080	11.74	11.88	11.95	12.03	13.07	11.48	11.98	12.46	11.92	13.21
		16.42				16.43	17.60	19.59	19.30	19.11
409 B	15.70 14.94	15.05	15.46	16.15	18.91	13.87	14.87	15.55	15.55	17.24
409 D 409 F	14.94 15.65	15.05 15.86	17.05	21.14	35.60	16.01	16.64	18.41	18.64	19.11

Table A-2b. (cont'd)										
$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	$\mathrm{H}_{\text {M }} 1$	$\mathrm{H}_{\mathrm{M}}{ }^{2}$	$\mathrm{H}_{\mathrm{M}}{ }^{3}$	H_{M}^{4}	H_{M}^{5}	$H \underset{M}{I, T}$	$\begin{gathered} H 2, T \\ M \end{gathered}$	$\begin{gathered} H, T \\ M \end{gathered}$	$\begin{gathered} H 4, T \\ M \end{gathered}$	$\mathrm{H}_{\mathrm{M}}^{5, T}$
386 B	122.3	136.1	160.4	181.2	216.9	153.9	158.7	173.8	181.2	181.2
386 F	119.7	132.7	157.8	180.6	220.4	157.3	166.6	181.2	183.3	190.4
387 B	112.3	126.0	151.8	201.3	313.5	153.0	163.6	177.4	184.4	181.2
3870	109.2	117.5	125.7	142.4	179.0	138.9	145.6	177.4 154.9	184.4 161.2	181.2 175.9
3888	113.1	116.9	125.7	145.0	182.5	142.9	148.8	156.8	166.1	176.9
388 D	114.9	119.8	132.0	161.6	220.9	150.2	155.8	167.1	179.6	182.2
388F	111.3	117.5	128.4	149.3	199.9	157.3	157.8	174.8	182.2	182.2
389B	119.3	124.8	130.7	145.3	188.7	131.2	137.6	147.9	146.5	158.7
3890	115.3	120.8	126.3	136.0	161.2	129.9	141.5	142.5	146.5 143.8	158.7
389 F	124.5	134.2	150.1	227.7	503.2	132.0	139.3	157.3	155.4	155.8
390 B	142.3	152.1	161.6	183.9	234.0	151.6	160.7	178.0	179.6	199.5
3900	138.3	148.7	156.8	174.3	217.5	148.8	154.4	168.1	169.7	189.9
390 F	146.3	161.3	193.0	266.4	509.3	175.3	180.1	205.4	207.7	210.7
391 B	139.8	148.9	157.9	183.8	223.6	170.2	175.9	189.3	197.2	216.2
3910	143.7	153.2	164.8	194.0	246.4	171.2	179.6	194.9	207.7	217.4
$391 F$	156.1	169.8	204.8	254.1	391.9	181.7	193.2	218.0	222.4	223.7
393 B	109.2	117.1	128.5	159.2	210.4	135.9	143.8	156.3	166.6	173.3
3930	102.7	109.8	117.5	131.9	161.6	135.4	141.5	146.1	154.9	170.2
395 B	194.9	217.1	265.3	337.6	608.3	216.8	234.6	272.0	264.0	270.5
395D	195.7	204.9	215.5	238.3	289.8	199.5	206.5	221.8	220.5	254.8
396B	186.0	193.0	205.3	229.7	286.0	189.9	202.4	216.8	237.2	250.7
3960	187.1	194.8	206.6	229.4	284.8	204.8	216.2	232.6	259.0	269.1
397B	205.5	209.9	222.1	242.5	300.8	217.4	233.9	249.3	271.2	277.9
397 D	204.1	219.1	244.7	319.0	631.8	209.5	218.7	252.0	254.1	261.9
397 F	207.5	226.4	274.5	367.6	1017.2	228.1	241.8	279.4	278.6	281.6
398B	220.7	230.5	250.8	305.0	530.2	241.2	252.7	276.4	287.7	295.4
3980	209.9	212.3	222.1	227.9	256.0	226.8	236.5	241.2	245.9	280.1
398 F	221.0	235.2	266.4	363.5	1314.7	244.5	250.7	231.6	287.7	286.2

x^{Ln}	$\begin{aligned} & n \infty \infty \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned} \infty$		$$	$\begin{aligned} & \text { No } \\ & \dot{M} \underset{\sim}{N} \\ & \rightarrow N \end{aligned}$		$\begin{aligned} & \infty \\ & \dot{\infty} \\ & \dot{0} \\ & \underset{\sim}{\infty} \\ & \underset{N}{\infty} \end{aligned}$	$\begin{aligned} & \text { Nin } \\ & \dot{0} \dot{寸} \\ & 0.0 \\ & \dot{y} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { NM } \\ & 0 \\ & \underset{\sim}{\infty} \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{-} \\ & \underset{r}{2} \end{aligned}$	
$\Psi^{ \pm}$		$\begin{aligned} & \infty \\ & 0 \\ & \dot{\sim} \\ & \sim \\ & N \\ & N \end{aligned}$		$\begin{aligned} & m \sim \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \infty-1 \\ & \dot{\bullet}-0 \\ & \dot{\sigma} 0 \\ & \sim 0 \end{aligned}$			$\begin{aligned} & \text { NT } \\ & \text { 士 } \\ & \text { NO } \\ & \text { rin } \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{n} \\ & \sim \\ & r \end{aligned}$	
${ }^{m} \Sigma$	o～の － NNN	$\begin{aligned} & \because r \\ & \stackrel{1}{\dot{\circ}} \dot{\sim} \\ & \underset{\sim}{n} \stackrel{1}{n} \end{aligned}$			$\begin{aligned} & 000 \\ & \dot{\circ} \underset{\sim}{N} \\ & \sim \sim N \end{aligned}$		$\begin{aligned} & N 0 \\ & 0 \\ & 0 \\ & -\infty \\ & N \end{aligned}$		$\begin{array}{ll} \infty & 0 \\ 0 & 0 \\ -1 & 0 \\ 0 & \infty \end{array}$	$\begin{aligned} & \infty \\ & \stackrel{m}{N} \\ & \underset{\sim}{\prime} \end{aligned}$	$\begin{aligned} & n \\ & \bullet \infty \\ & \underset{\sim}{\sim} \underset{\sim}{\sim} \\ & \underset{\sim}{\sim} \\ & \sim \end{aligned}$
${ }_{I}^{N}$	o～の $\stackrel{\bullet}{*}$ ㄴN N	$\begin{aligned} & \infty \sim \\ & \stackrel{n}{\sim} \\ & \underset{\sim}{N} \end{aligned}$		$\begin{aligned} & n \\ & m_{n}^{n} \\ & \min _{n}^{0} \end{aligned}$		$\begin{aligned} & \because \underset{\sim}{n} \\ & \stackrel{y}{n} \\ & \stackrel{n}{r} \end{aligned}$	$\begin{aligned} & 0 \sim \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \sim \end{aligned}$			$\begin{aligned} & \underset{\sim}{N} \\ & \stackrel{N}{N} \end{aligned}$	
${ }^{-1} \Sigma$	$\begin{aligned} & n \sim N \\ & \sim \sim \\ & n \\ & \sim N \sim \\ & N \sim N \end{aligned}$		$\begin{aligned} & N \sim \\ & 0 \\ & 0 \dot{0} \\ & \underset{\sim}{\sim} \\ & \sim \end{aligned}$	$\begin{aligned} & n m \\ & \dot{\sim} \underset{\sim}{c} \\ & \underset{\sim}{n} \end{aligned}$		$\begin{aligned} & 00 \\ & 00 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \infty N \\ & \dot{\infty} \\ & \infty \\ & \infty \\ & \infty \end{aligned}$		\pm 0 0 \sim \sim \sim	$\begin{aligned} & 0 \\ & 0 \\ & \stackrel{0}{-} \\ & -1 \end{aligned}$	$\begin{aligned} & m \\ & n \\ & \sim \end{aligned}$

* DENOTES AN INCIPIENT RUN

$\underset{D E G}{T}{ }^{1}$	$\underset{D E G}{ }{ }^{2}$	$\operatorname{DEG}^{T}{ }^{3}$	$\operatorname{TEG}^{T} 4$	${ }_{D E G}^{T}{ }_{R}^{5}$
146.90	147.06	147.85	148．81	149.17
154.37	154.69	155.93	157.50	158.24
154.87	155.74	157.50	158.33	158.54
155.90	157．18	158．76	158．99	159.03
153.68	153．79	154.64	156.44	157.81
154.49	155.25	157.16	158．02	158.45
146.65	146.97	147.85	148.84	148.99
145.66	145.89	146.79	147.78	148.43
146.52	147.04	148.23	148.79	148.82
136.35	136.33	136.48	136.80	137.09
136.69	136.76	137.12	137.48	137.59
136.89	137.05	137.47	137.63	137.65
139.12	139.25	139.66	$140 \cdot 18$	140.24
138.58	138.69	139.12	139.55	139.84
138.62	138.67	139.07	139.43	139.82

2	$\stackrel{ \pm}{N}$		$\begin{aligned} & \text { mo } \\ & 08 \\ & \hdashline-9 \end{aligned}$	ーのさか Trm゙ －			
住促	$\begin{aligned} & \pm 0 \\ & \text { Ni } \\ & \infty \\ & \hline \infty \end{aligned}$		$$			$\rightarrow の \infty \rightarrow 009$ 둔	$\begin{aligned} & \infty m a m \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
오난	$\begin{aligned} & \infty \\ & \dot{\circ} \dot{0} \\ & \dot{\circ} \\ & \underset{\sim}{\sim} \end{aligned}$		$\begin{aligned} & \infty \text { in } \\ & \dot{j} \underset{\sim}{j} 0 \\ & \end{aligned}$				$0 寸 \rightarrow \infty \quad 0$ © Ninn in
$\geq \frac{4}{0}$	$$	か○「No 				n்ற்ற்ற்ற்ற்ற்	
$\stackrel{4}{5}$	$\begin{aligned} & \text { 웅 } \\ & \stackrel{\infty}{\dot{0}} \dot{\sim} \dot{\infty} \end{aligned}$	Nが心が	$\begin{aligned} & \circ \text { oin } \\ & \stackrel{\circ}{\circ} \stackrel{0}{i} \\ & \text { in } \end{aligned}$				
و	$\stackrel{\uparrow}{\stackrel{\rightharpoonup}{*}}$				$\stackrel{y}{c}$		
은						すべががmが の「ベ「ペか が田	

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	CAVITY INCHES
308C	0.90
308D＊＊	
309A＊＊	
309B	1.50
309 C	0.75
309D＊＊	
309E	0.50
310A＊＊	
310F＊＊	
311A＊＊	
311 B	1.20
311 C	0.60
311E＊＊	
3128	0.90
312 C	1.20
312D	0.60
312E＊＊	
313A＊＊	
315A＊＊	
315B	1.50
315 C	0.80
315 D	0.50
315E＊＊	
315I＊＊	
316A＊＊	
316B	1.00
316 C	1.30
316 D	1.50
316G＊＊	

[^7]Table A-3a. (cont'd)

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	CAVITY INCHES	$\begin{gathered} \text { TO } \\ \text { DEG } R \end{gathered}$	$\begin{gathered} \text { Vo } \\ \text { FT/SEC } \end{gathered}$	$\begin{gathered} \text { PO } \\ \text { PSIA } \end{gathered}$	$\begin{gathered} \text { PV } \\ \text { PSIA } \end{gathered}$	$\begin{aligned} & \text { HO } \\ & \text { FT } \end{aligned}$	$\begin{aligned} & \text { HV } \\ & \text { FT } \end{aligned}$	KV	$\stackrel{T}{\text { DEG }}{ }^{1}$	$\underset{D E G}{ }{ }^{2} R$	$\operatorname{DEG}^{T} R$	${ }_{D E G}{ }^{\top}{ }^{2}$	$\stackrel{T}{5}$
317A**		149.90	57.3	49.57	27.97	146.6	82.8	1.25					
317 B	1.50	150.62	64.8	36.10	29.11	107.1	86.4	0.32	147.44	147.55	148.16	149.18	149.87
317 C	0.90	150.75	63.7	37.25	29.32	110.5	87.0	0.37	147.40	147.80	149.04	149.69	149.83
318A**		159.61	55.3	64.16	46.48	196.5	142.5	1.14					
318 B	1.50	159.80	63.1	49.65	46.93	152.3	144.0	0.13	155.41	155.75	157.09	158.56	159.10
318 D	1.20	159.64	62.5	49.65	46.56	152.2	-142.7	0.16	154.80	155.34	156.76	158.04	158.31
318E**		159.75	54.7	64.15	46.81	196.6	143.5	1.14					
319B	1.20	159.44	63.5	49.55	46.11	151.8	141.2	0.17	155.23	155.70	157.07	158.51	158.90
319 C	1.00	159.37	62.7	49.62	45.95	151.9	140.7	0.18	154.75	155.25	156.87	158.06	158.49
320A**		159.39	45.0	57.77	45.99	176.9	140.8	1.14					
3200**		159.68	$44 \cdot 7$	57.62	46.64	$176 \cdot 6$	143.0	1.08					
321 A**		159.64	77.1	82.09	46.56	251.4	142.7	1.18					
321 B	1.20	159.59	86.0	58.45	46.44	179.1	142.3	0.32	155.32	155.38	156.15	157.86	158.69
321F**		159.70	76.5	79.12	46.68	242.3	143.1	1.09					
322B	1.30	159.34	86.4	58.25	45.87	178.3	140.4	0.33	154.75	154.89	155.81	157.46	158.38
322 E	0.40	159.41	84.6	62.22	46.03	190.5	141.0	0.44	155.50	156.69	158.36	158.13	158.31
323A**		149.58	79.0	69.72	27.47	205.9	81.2	1.29					
323D	0.50	149.81	86.4	47.89	27.83	141.6	82.3	0.51	147.15	147.64	148.81	148.81	148.88
323E**		149.90	78.1	65.85	27.97	194.7	82.8	1.18					
324A**		149.42	80.0	68.44	27.22	202.0	80.4	1.22					
325A**		150.08	58.6	50.98	28.25	150.9	83.7	1.26					
325B	1.30	150.12	65.6	36.28	28.31	107.4	83.8	0.35	146.92	147.10	147.92	148.81	149.49
3250	0.45	150.08	62.7	38.42	28.25	113.7	83.7	0.49	147.15	148.00	149.22	149.20	149.22
325F**		150.21	56.0	49.14	28.45	145.5	84.3	1.25					
3268**		150.55	$42 \cdot 3$	39.28	29.00	116.5	86.0	1.10					
326 C	1.50	150.61	48.1	31.57	29.08	93.6	86.3	0.21	147.67	147.73	148.52	149.49	149.96

Table A-3a. (cont'd)

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	CAVITY INCHES	$\begin{gathered} \text { TO } \\ \text { DEG } R \end{gathered}$	$\begin{aligned} & \text { VO } \\ & \mathrm{FT} / \mathrm{SEC} \end{aligned}$	$\begin{gathered} \text { PO } \\ \text { PSIA } \end{gathered}$	$\begin{gathered} P V \\ P S I A \end{gathered}$	$\begin{aligned} & \text { HO } \\ & \text { F T } \end{aligned}$	$\begin{aligned} & \text { HV } \\ & \text { FT } \end{aligned}$	KV	$\underset{D E G}{T}{ }^{1} R$	${ }_{D E G}{ }^{2} R$	$\operatorname{DEG}^{T} R$	$\stackrel{T}{D E G} R$	$D_{E G}{ }^{5} R$
			47.6	31.92	29.20	94.7	86.6	0.23	147.71	147.91	148.79	149.67 150.21	150.03 150.30
3260	1.00	150.68	47.6	33.28	29.34	98.8	87.1	0.36	148.34	148.86	149.87	150.14	150.26
326 E	0.50	150.77	45.9	33.28 32.59	29.34 29.49	96.8	87.6	0.28	148.10	148.46	149.56	150.14 149.72	150.26 150.07
326 F	0.75	150.86	46.2 46.6	32.59 32.25	29.49 29.55	95.8	87.7	0.24	147.78	147.96	148.86	149.72	150.07
326G	1.00	150.89	46.6	32.25	30.20	117.2	89.8	1.03					
326H**		151.29	41	30.42	30.20								
3		140.00	78.0	58.74	15.43	$168 \cdot 1$	44.2	1-31					
327 E													
		140.00	77.1	58.76	15.43	168.1	44.2	$1 \cdot 34$					
3280**													
		139.95	50.6	33.54	15.38	96.0	44.0	1.31	137.77	137.79	138.20	138.78	139.07
$329 A * *$ 3298	1.60	140.00	55.9	22.62	15.43	64.8	44.2	0.42 0.42	137.77 137.32	137.45	138.11	138.51	138.87
329 D	1.30	140.06	$55 \cdot 4$	22.55	15.48	64.6	44.3 44.7	0.53	138.01	138.35	139.19	139.21	139.25
329 F	0.50	140.17	53.8	23.92	15.59 15.68	68.5 90.7	44	1.20					
329G**		140.26	49.5	31.64	15.68	90.7							
		139.86	50.6	32.32	15.29	92.5	43.8	1.23					
$3301 * *$ $3300 * *$		140.80	48.5	32.42	16.23	93.0	46.6	1.27					
			32.7	21.68	16.07	62.2	46.1	0.97				139.09	139.23
547A**		140.63 140.63	32.7 36.3	17.42	16.07	50.0	46.1	0.19	138.82	138.64	139.61	139.93	140.08
5478	1.75	140.63 140.65	36.3 36.0	17.78	16.09	51.0	46.2	0.24	139.03	139.09	139.61	139.93	
547 C	1.00	140.65 140.72	36.0 32.7	21.60	16.16	62.0	46.4	0.94					
5470 **		140.72 140.67	$32 \cdot 7$ 35.9	21.60 17.75	16.16 16.10	50.9	46.2	0.24	139.36 139.19	139.43 139.27	139.75 139.70	140.20 140.06	140.27
547 E	0.90	140.67	35.9 35.2	17.68	16.14	50.7	46.3	0.23	139.19	139.27		140.06	140.27
547F	1.10	140.71 140.69	35.2 31.8	17.68 2.147	16.12	61.6	46.3	0.98				140.53	140.56
$547 \mathrm{G} * *$		140.69 140.71	31.8 34.4	18.25	16.14	52.4	46.3	0.33	139.70	139.91	$140 \cdot 31$	140.53	
547 H	0.50	$140 \cdot 71$	$34 \cdot 4$	18.25	16.1								
		140.74	48.0	29.27	16.18	84.0	46.4	1.05		139.12	139.75	140.09	140.17
$548 A^{* *}$ 5488	0.90	140.80	51.7	21.35	16.23	61.3	46.6	0.35	138.89	139.09	140.11	140.13	140.00
548 B 548 C	0.60	140.83	51.2	22.05	16.27	63.3	46.7	0.41 1.12	138.8				
5480**		140.80	47.1	29.64	16.23	85.1 59.9	46.6	-0.32	138.67	138.73	139.16	139.48	139.82
548 E	1.30	140.83	51.4	20.87	16.27	64.1	46.7	0.45	139.00	139.34	140.08	140.02	140.00
548 F	0.50	140.81	49.8	22.32	16.33	82.4	46.9	1.04					
548G**		140.89	46.8	28.70	16.33								

* DENOTES AN INCIPIENT RUN
** DENOTES A DESINENT RUN

$\underset{D E G}{T}{ }^{1}$	$\mathrm{TEG}^{2} \mathrm{R}$	$\mathrm{DEG}^{\mathrm{T}} \mathrm{R}$	${ }_{D E G}{ }^{4} R$	${ }_{D E G}{ }^{T} R$
148.37	148.50	149.18	149.94	150.37
148.28	148.50	149.51	150.12	150.39
148.39	148.73	149.51	150.34	150.53
148.79	149.42	150.37	150.64	150.68
148.95	149.54	150.37	150.86	150.84
147.92	148.36	149.24	149.90	150.03
147.82	148.45	149.58	149.81	149.87
247.80	148.19	148.88	149.63	150.07
156.82	157.10	158.02	159.41	159.91
157.21	157.86	159.34	159.82	160.65
157.32	157.86	159.03	160.09	160.29
157.63	158.45	159.80	160.25	160.29
157.23	157.37	158.26	159.53	160.11
157.32	157.72	158.87	159.97	160.20

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	CAVITY INCHES	$\text { TO }_{\text {DEG }}$	$\begin{aligned} & \text { VO } \\ & \mathrm{FT} / \mathrm{SEC} \end{aligned}$	$\begin{gathered} \text { PO } \\ \text { PSIA } \end{gathered}$	$\begin{gathered} \text { PV } \\ \text { PSIA } \end{gathered}$	$\begin{aligned} & \text { HO } \\ & \text { FT } \end{aligned}$	$\begin{aligned} & \text { HV } \\ & \text { FT } \end{aligned}$
549 A *		150.80	39.2	37.98	29.40	112.7	87.3
5498	1.10	150.97	44.5	30.17	29.67	89.6	88.1
549 C	0.90	150.93	44.0	30.52	29.61	90.6	87.9
5490 *		150.93	39.0	37.64	29.61	111.8	87.9
549 E	1.00	150.95	43.6	30.47	29.64	90.5	88.0
549F	0.50	150.98	42.5	31.52	29.70	93.6	88.2
549G**		151.00	38.5	36.95	29.73	109.7	88.3
549 H	0.60	151.06	42.5	31.34	29.81	93.1	88.6
550A**		150.68	56.4	45.60	29.20	135.2	86.6
550 B	0.90	150.70	61.4	34.64	29.23	102.8	86.7
550 C	0.60	150.70	61.1	35.20	29.23	104.4	86.7
$5500 * *$		150.68	56.0	45.39	29.20	134.6	86.6
550 E	1.10	150.73	60.8	33.90	29.29	100.6	86.9
550F**		150.77	54.3	46.58	29.34	138.2	87.1
551A**		160.58	57.5	65.62	48.73	201.8	149.9
551 B	1.30	160.74	64.9	50.62	49.12	155.8	151.2
551 C	0.75	160.72	64.2	52.42	49.08	161.3	151.1
$5510 * *$		160.78	58.4	64.54	49.20	198.6	151.5
551E	0.90	160.83	64.6	51.56	49.33	158.8	151.9
551 F	0.60	160.87	63.9	52.92	49.42	163.0	152.2
552A**		161.12	46.4	58.10	50.02	179.1	154.2
552C**		161.12	46.8	56.68	50.02	174.7	154.2
552E**		161.19	45.7	57.85	50.20	178.3	154.8
553A**		161.19	47.2	58.40	50.20	180.0	154.8
$5530 * *$		161.10	46.8	58.54	49.98	180.4	154.1
553G**		161.21	46.9	58.44	50.24	180.2	154.9
$554 A^{* *}$		161.03	72.9	75.23	49.81	231.6	153.5
554 B	1.30	161.01	80.5	55.68	49.76	171.6	153.3
554 C	1.00	161.06	80.2	56.35	49.89	173.6	153.8

[^8]| $\underset{D E G}{T}{ }_{R}^{1}$ | ${ }_{O E G}^{T}{ }_{R}^{2}$ | $\operatorname{TEG}^{T}{ }_{R}$ | $\operatorname{DEG}^{T}{ }^{4}$ | $\operatorname{TEG}^{5}{ }_{R}$ |
| :---: | :---: | :---: | :---: | :---: |
| 157.97 | 158.83 | 160.13 | 160.34 | 160.36 |
| 157.99 | 158.38 | 159.32 | 160.29 | 161.01 |
| 158.54 | 158.81 | 159.89 | 160.74 | 161.05 |
| 157.79 | 158.04 | 159.05 | 159.91 | 160.63 |
| 157.82 | 158.13 | 159.05 | 160.07 | 160.65 |
| 158.17 | 159.16 | 160.31 | 160.54 | 160.78 |
| 158.00 | 158.08 | 158.94 | 159.95 | 160.72 |
| 157.91 | 158.45 | 159.82 | $160 \cdot 33$ | 160.36 |
| 158.47 | 158.74 | 159.64 | 160.70 | 161.14 |
| 158.90 | 159:75 | 161.05 | 161.26 | 161.21 |
| 148.97 | 149.27 | 150.05 | 150.61 | 150.91 |
| 148.82 | 149.36 | 150.34 | 150.50 | 150.52 |
| 148.75 | 149.08 | 149.58 | 150.25 | 150.73 |
| 149.22 | 149.90 | 150.80 | 150.93 | 150.89 |
| 148.99 | 149.00 | 149.54 | 150.10 | 150.68 |
| 149.22 | 149.47 | 150.26 | 150.68 | 150.80 |
| 149.40 | 149.74 | 150.32 | 150.93 | 151.00 |
| 149.60 | 149.99 | 150.79 | 150.95 | 151.02 |

RUN NO.	CAVITY INCHES	${ }_{D E G}^{T O}$	$\begin{aligned} & \text { VO } \\ & \text { FT/SEC } \end{aligned}$	$\begin{gathered} \text { PO } \\ \text { PSIA } \end{gathered}$	$\begin{gathered} \text { PV } \\ \text { PSIA } \end{gathered}$	$\begin{aligned} & \text { HO } \\ & \text { FT } \end{aligned}$	$\begin{aligned} & \text { HV } \\ & \text { FT } \end{aligned}$
5540	0.50	161.05	79.6	58.95	49.85	181.6	153.6
554 F	0.90	161.08	80.4	56.73	49.94	174.8	153.9
554G**		161.15	73.3	76.54	50.11	235.8	154.5
555A**		161.21	80.1	81.99	50.24	252.6	154.9
555B	0.90	161.26	85.0	59.65	50.37	183.9	155.4
555C	1.10	161.21	83.9	58.07	50.24	179.0	154.9
$5550 * *$		161.06	73.8	76.80	49.89	236.5	153.8
555E	1.00	161.15	79.8	56.23	50.11	173.3	154.5
555 F	0.50	161.08	77.1	58.55	49.94	180.4	153.9
555G**		161.15	70.2	73.40	50.11	226.1	154.5
556A**		161.30	79.5	80.59	50.46	248.4	155.7
556B	1.00	161.30	85.8	59.36	50.46	183.1	155.7
556C	0.70	161.21	84.5	60.69	50.24	187.1	154.9
5560**		161.24	77.5	80.89	50.33	249.2	155.2
556 E	1.00	161.59	84.7	59.32	51.16	183.2	158.0
556 F	0.50	161.66	83.2	62.12	51.33	191.8	158.6
556G**		161.73	76.1	81.06	51.51	250.2	159.2
557A**		$151.1) 5$	72.0	61.95	29.81	183.9	88.6
5578	1.00	151.22	79.1	40.63	30.08	120.8	89.4
557C	0.60	151.11	78.3	42.01	29.90	124.8	88.9
557 E	1.30	151.22	78.6	40.08	30.08	119.1	89.4
557 F	0.50	151.31	77.8	42.23	30.23	125.5	89.9
558A**		151.04	82.1	72.01	29.78	213.7	88.5
558B	1.30	151.06	9 9.1	45.60	29.81	135.4	88.6
558 C	0.60	151.09	89.6	46.75	29.87	138.9	88.8
553 E	0.75	151.20	89.7	46.45	30.05	138.0	89.3
558 F	0.50	151.36	88.8	48.15	30.32	143.1	90.2
558G**		151.60	80.6	72. 15	30.71	214.5	91.4
559A**		150.88	82.5	72.23	29.52	214.2	87.7
559 B	1.30	150.97	90.6	45.43	29.67	134.9	88.1

$\underset{D E G}{T}{ }^{1}{ }_{R}$	$\underset{D E G}{T}{ }^{2}$	$\operatorname{TEG}_{R}^{3}$	$\mathrm{T}_{\text {OEG }} \mathrm{m}_{\mathrm{R}}$	${ }_{D E G}^{T}{ }_{R}$
148.90	149.15	150.05	150.46	150.53
149.44	149.76	150.43	150.89	150.91
148.48	148.82	149.76	150.44	150.62
148.63	149.26	150.23	150.46	150.50
148.32	148.64	149.40	150.16	150.50
148.64	149.20	150.21	150.61	150.71
148.12	148.39	149.17	149.90	150.34
139.05	139.05	139.66	140.00	$140 \cdot 13$
138.55	138.40	138.91	139.05	139.34
138.94	138.91	139.23	139.55	139.82
139.00	139.05	139.52	139.90	140.04
139.18	139.30	139.86	140.08	$140 \cdot 15$
139.50	139.63	140.08	140.47	140.47

Table A-3a. (cont'd)

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	CAVITY INCHES
559C	0.70
559D**	
559 E	0.60
560A**	
5608	0.75
560 C	0.50
5600**	
560 E	0.90
560 F	0.60
560 G	1.00
560H**	
561A**	
5618	0.90
561 C	1.50
5610**	
561 E	1.30
$561 F$	0.90
561 G	0.60
561H**	
561 I	0.75
561 J**	
562A**	
562C**	
563A**	
563E**	
564B**	

[^9]Table A－3a．（cont＇d）

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& \leftarrow \alpha \\
\& \sin \\
\& \text { a }
\end{aligned}
\] \& \& \[
\begin{aligned}
\& \stackrel{\circ}{\vdots} \\
\& \stackrel{\sim}{n}
\end{aligned}
\] \& \[
\begin{aligned}
\& \infty \\
\& \infty \\
\& \sim \\
\& \sim
\end{aligned}
\] \& \& \& \[
\begin{aligned}
\& \sim \underset{\sim}{\sim} \\
\& \underset{\sim}{\infty} \\
\& \underset{\sim}{\infty} \underset{\sim}{\circ}
\end{aligned}
\] \& － \& \& \& \& \[
\underset{\sim}{N} \underset{\sim}{N} \underset{\sim}{\sim} \dot{\sim}
\] \& \\
\hline \& \& \[
\begin{aligned}
\& \stackrel{\rightharpoonup}{n} \\
\& \stackrel{n}{n}
\end{aligned}
\] \& \[
\begin{aligned}
\& \infty \\
\& \infty \\
\& \stackrel{n}{n}
\end{aligned}
\] \& \& \& \& － \& \& \& \& ＋ \& \\
\hline \[
\begin{aligned}
\& \leftarrow \measuredangle \\
\& \text { mis } \\
\& \text { a }
\end{aligned}
\] \& \& \[
\begin{aligned}
\& \infty \\
\& \infty \\
\& \dot{j}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { N } \\
\& \stackrel{n}{n}
\end{aligned}
\] \& \& \(\infty\)
0
0
\(\sim\)
\(\sim\)
\(\sim\) \& \& No． \& \[
\begin{array}{ccc}
n \& \infty \\
0 \& \infty \\
0 \& 0 \\
\infty \\
\infty \\
\infty \\
0 \& -1 \\
\hline
\end{array}
\] \& mi \& OFJ \& Nin
N
N
\(\sim\) \& \\
\hline \& ヘベヘ \& \[
\begin{aligned}
\& \text { F } \\
\& \ddagger \\
\& \text { ju }
\end{aligned}
\] \& \[
\begin{aligned}
\& \stackrel{\sim}{N} \\
\& \stackrel{n}{n}
\end{aligned}
\] \& \& \(m\)
\(\infty\)
\(\sim\)
\(\sim\)
\(\sim\) \& \(\infty\)
0
0
\(n\)
\(N \sim\) \& N \({ }_{\sim}^{\infty}\) \& \& \& \& and
¢
No
\(\sim \sim\)
\(\sim\) \& \\
\hline \& \begin{tabular}{l}
 \\
N～N
\end{tabular} \& \[
\begin{aligned}
\& \stackrel{0}{\vdots} \\
\& \underset{\sim}{ \pm}
\end{aligned}
\] \& \[
\begin{aligned}
\& \circ \\
\& \stackrel{\circ}{\sim} \\
\& \stackrel{0}{2}
\end{aligned}
\] \& \& \& No
N
Nin \& ¢ \(\stackrel{\infty}{\sim}\) \& \[
\begin{aligned}
\& N_{0}^{\infty} 0_{0}^{\infty} \\
\& 0 \\
\& 0.0 \\
\& 0.0 \\
\& 0 \\
\& 0
\end{aligned}
\] \& 0

0
0
j

m \& NO才 \& \& $$
\begin{aligned}
& \text { ino o } \\
& 0 \\
& 0 \\
& \hline
\end{aligned}
$$

\hline
\end{tabular}

$\begin{aligned} & \sin \\ & 0 \sim \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & \stackrel{1}{\bullet} \\ & \infty \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \text { M } \\ & \stackrel{0}{N} \end{aligned}$		$$		$\begin{aligned} & 08 \\ & \circ 0 \\ & \text { No } \\ & \text { mi } \end{aligned}$		$\begin{aligned} & n N \\ & \sim N \\ & \operatorname{nn} \underset{\sim}{n} \end{aligned}$			
ง \&		$\begin{aligned} & \infty \\ & \sigma \\ & \dot{0} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & 0 \\ & \sim \end{aligned}$		$\begin{array}{ll} 4 & a \\ m & n \\ \infty & 0 \\ N & 0 \end{array}$	$\begin{aligned} & n \\ & \sim \\ & \sim \\ & \hdashline-1 \\ & m \\ & m \end{aligned}$	$\begin{aligned} & N 寸 \\ & \infty \\ & \infty \\ & 0 \\ & \text { N } \\ & \sim \end{aligned}$		$\begin{aligned} & n \\ & \stackrel{n}{N} \\ & \stackrel{y}{n} \\ & \dot{\sim} \\ & \underset{\sim}{n} \end{aligned}$			
ms		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & - \\ & \hline-1 \end{aligned}$	$\begin{aligned} & \text { N} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & \infty \\ & \infty \\ & \stackrel{n}{\sim} \\ & \sim \end{aligned}$				$\begin{aligned} & n \\ & \sim \\ & \sim \\ & n \\ & n \\ & n \end{aligned}$		$$	
$\begin{aligned} & \text { w } \\ & \text { an } \end{aligned}$		$$	$\begin{aligned} & \pm \\ & \underset{1}{0} \\ & \stackrel{0}{1} \end{aligned}$		$\begin{aligned} & \circ ᄋ \\ & \stackrel{O}{N} \\ & \dot{N} \stackrel{n}{N} \end{aligned}$	$\begin{aligned} & \infty \infty \\ & \sim \\ & \stackrel{\infty}{0} 0 \\ & \sim \end{aligned}$	$\begin{aligned} & 0 \sim \\ & \infty \\ & 0 \\ & \dot{\sim} \\ & N \\ & N \end{aligned}$			$\xrightarrow{n} \mathrm{NO}$ －•• NNN		
-is		$\begin{aligned} & N \\ & \underset{\sim}{+} \\ & \underset{\sim}{4} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \dot{ \pm} \\ & \dot{n} \end{aligned}$		$\begin{aligned} & \pm 0 \\ & \underset{\sim}{t} \\ & \underset{N}{N} \\ & \underset{N}{n} \end{aligned}$	$\begin{aligned} & \infty \\ & \sim \\ & \sim \\ & 0 \\ & \sim \\ & \sim \end{aligned}$	$\begin{array}{ll} 0 & 0 \\ \text { M } \\ \dot{G} \\ \text { N } \\ \text { N } \end{array}$	$\begin{aligned} & n \\ & n \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & m \\ & m \end{aligned}$		On in in mNo		$\begin{aligned} & \text { No } 0 \\ & \text { N } \\ & \text { G } \\ & \text { G } \end{aligned}$

(cont'd)

$\begin{aligned} & P I P T \\ & \text { PSIA } \end{aligned}$	$\begin{aligned} & P 2, T \\ & \text { PSIA } \end{aligned}$	$\begin{aligned} & P 3, T \\ & \text { PSIA } \end{aligned}$	$\begin{gathered} \text { P } 4, T \\ \text { PSIA } \end{gathered}$	PSSIT
24.31	24.46	25.34	26.86	27.91
24.26	24.82	26.64	27.63	27.86
37.62	38.29	40.99	44.14	45.34
36.44	37.48	40.32	43.01	43.59
37.27	38.18	40.95	44.02	44.90
36.34	37.30	40.54	43.05	43.98
37.44	37.55	39.08	42.62	44.42
36.34	36.61	38.40	41.78	43.75
37.79	40.17	43.71	$43 \cdot 20$	43.59
23.91	24.59	26.29	26.29	26.40
23.58	23.83	25.00	26.29	27.33
23.91	25.10	26.92	26.89	26.92
24.64	24.72	25.87	27.33	28.05
24.69	24.97	26.27	27.61	28.17
25.60	26.37	27.91	28.45	28.59
25.26	25.79	27.44	28.34	28.54
24.79	25.05	26.37	27.69	28.22
13.32	13.34	13.71	14.24	14.52
12.93	13.04	13.63	13.99	14.33
13.53	13.84	14.64	14.65	14.69
14.28	14.11	14.41	14.53	14.67
14.48	14.53	15.04	15.36	15.50
14.79	14.86	15.18	15.63	15.81
14.64	14.71	15.13	15.48	15.70
15.13	15.34	15.74	15.96	15.99
14.43	14.57	15.18	15.52	15.59
14.35	14.53	15.54	15.56	15.43
14.14	14.19	14.60	14.92	15.25
14.45	14.78	15.50	15.45	15.43

P4 P5
n

∞
n 28.35
39.22 49.02 $\begin{array}{ll}\infty & \\ N & 0 \\ 0 & 0 \\ 0 & 0\end{array}$
47.95

56.14
30.68
43.17

N
No
No
-
O
n

N
in

Non
Non
inn
Hin
$\underset{\sim}{N}$
$A N O M$
N
N
N
\circ
\rightarrow
+
∞
\rightarrow $n N$
nn
$m=0$ N
N
\vdots PSIA $\begin{array}{ll}\infty \\ \sim \\ \infty \\ \infty \\ \infty & n \\ n\end{array}$ $46 \cdot 58$ $47 \cdot 62$

47.82 46.20 | \boldsymbol{H} | N |
| :--- | :--- |
| N | 0 |
| 0 | 0 |
| | 0 | 48.01 $\begin{array}{ll}n & N \\ \infty & N \\ 0 & 0 \\ N & 0 \\ N & \end{array}$

N
0
0
0
N

N
0
H

N

PSIA
PS
N
∞
n
n $5 Z^{\circ} 0+$
$8 G^{*} 68$ 39.88
40.12 0
0
∞
m 38.07
47.72 27. 77
24.98
29.32 $\begin{array}{llll}n & 0 & N & 0 \\ 0 & 0 & n & n \\ 0 & 0 & 0 \\ n & 0 & \infty & 0 \\ N & N & N\end{array}$ $\begin{array}{ll}n & \infty \\ 0 & 1 \\ \text { n } \\ n\end{array}$

Nron
in
ind

P 2
$P S I A$ 0∞
0×0
+10
$N N$ $38 \cdot 18$
$38 \cdot 27$
38.08
38.17 :
-
-
μN
$\infty 0$
$\infty \quad 0$
\cdots N
O
N
N
$24 \cdot 28$

$25 \cdot 87$ | N | ∞ | \pm | N |
| :--- | :--- | :--- | :--- |
| N | | 0 | 0 |
| \bullet | | 0 | 0 |
| \sim | 0 | 0 | |

$\stackrel{0}{2}$

$$
\begin{aligned}
& 326 \mathrm{C} \\
& 326 \mathrm{D} \\
& 326 \mathrm{E} \\
& 326 \mathrm{~F} \\
& 326 \mathrm{G}
\end{aligned}
$$

PI 1
$P S I A$ $24 \cdot 62$
$25 \cdot 88$ 38.42 $38 \cdot 42$
38.57
$38 \cdot 22$ 38.22 37.60 36.75
38.82 24.59 24.45
25.52

+
+

$\infty N O$
$+\sim 0$
 $+N$
N
N $\begin{array}{ll}\operatorname{m} & 0 \\ 0 & \infty \\ 0 & 0 \\ m & m\end{array}$
 $N N \infty$
\sim

$\sim$$\infty$ $\begin{array}{ll}n & n \\ m & 0 \\ j & + \\ H & t\end{array}$ | $z 0$ |
| :--- |
| 20 |
| 2 | 3178

317 C
318 B
318 D
3198 $319 B$
$319 C$ 321B $322 B$
$322 E$

325 B
325 D

$$
126 C
$$

＇Table A－3a．（cont＇d）

		$\begin{aligned} & \sim \sim N \\ & \sim N \\ & \infty \\ & \sim \\ & \sim \\ & N \end{aligned}$				∞ n～寸 ONON $\infty \infty 0$ 4 sin	かけのに以のヘル $0 \infty 0$ NNN	
			$\begin{aligned} & \text { MNO } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				$\begin{array}{lll} \infty & -1 & -1 \\ 0 & -1 \\ 0 \\ 0 & 0 \\ \infty & \infty \\ N & 0 \\ N \end{array}$	
$\begin{aligned} & \text { 上 } \\ & m \\ & 0 \\ & 0 \end{aligned}$	000ッツ mmor $0 \rightarrow-\infty$ NNNNN			个Nom 				
$\begin{aligned} & \text { 上a } \\ & \sim \\ & \text { ~ } \\ & \text { a } \end{aligned}$		$m \times 0$ $\sim \sim$ $\sim \sim$						のㅇNN －－
	へNのNー 0 in 0 N in in in on 0 NNNNN			onn on ․ ．∞ ゙ばざさ				
\sin	NNOMN MHNON のनHmN Nmmmm		N～No M． a t M	$\begin{aligned} & m \text { o n } n \\ & \text { f } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & t \end{aligned}$	n上oin Nomin 0 －ing			ベ～～오N $\infty \infty \stackrel{\circ}{\circ}$ Nさなホ
$\begin{aligned} & \text { ホ } \\ & \text { a } \end{aligned}$	$-\infty \infty \infty$ O～ㄴN～ $\stackrel{+\infty}{+\infty}$ NNNMm	$\begin{aligned} & 0 \\ & 0 \\ & m \end{aligned} \infty$			$\begin{aligned} & N \sim 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & t \end{aligned}$			
m息	寸○ト寸 ∞ innan ค 0 0 ∞ NNNNN				$\begin{aligned} & \infty \circ \circ \\ & \sim \\ & \sim \end{aligned} 0$	mソにの nm下in \sim in m さざき	$n \infty n$ －oか $\infty \infty$ in NNNN	$\begin{aligned} & 0 \text { in } \\ & N \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & N \\ & N \end{aligned}$
$\begin{gathered} N \\ 0< \\ 0 \end{gathered}$	＊NONO Horon NNNNN	∞ in ∞ $m \infty N$ in in NNN					$\begin{aligned} & n \underset{\sim}{0}-10 \\ & \sim \\ & 0 \\ & n \\ & \sim \\ & \sim \end{aligned}$	ヘッN oun m場 \circ NNNN
$-\frac{4}{w}$	aOnOt m m o o $\sim \sim N \sim N$	$\begin{aligned} & \text { ON } \\ & \text { On } \\ & \text { n } \\ & N \sim \\ & N \end{aligned}$	ヘN～か のローシ Mナチさ		NGMn ～のmin $\begin{array}{r} 90 \\ 49 \\ 4 \end{array}$		Oomin －※ ッ． のル゙ォ NNNN	
	のソせんエ かのののホ へinimin in	© ய w nin n in u		かuロに的化化 in in in in	かumu in in in がmin	mumu玹in in เn in in in	ゅ いいい in in in in in in in un	

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & \text { P } 1 \\ & \text { PSIA } \end{aligned}$	$\begin{aligned} & \text { P } 2 \\ & \text { PSIA } \end{aligned}$	$\begin{aligned} & P \quad 3 \\ & \text { PSIA } \end{aligned}$	$\begin{aligned} & \text { P } 4 \\ & \text { PSIA } \end{aligned}$	$\begin{aligned} & P 5 \\ & \text { PSIA } \end{aligned}$	$\begin{aligned} & \text { PRSIA } \\ & \text { PSI } \end{aligned}$	$\begin{aligned} & \text { P } 2, T \\ & \text { PSIA } \end{aligned}$	$\begin{array}{r} \text { P } 3, T \\ \text { PSIA } \end{array}$	$\begin{array}{r} \text { P4 IT } \\ \text { PSIA } \end{array}$	$\begin{aligned} & \text { P5,T } \\ & \text { PSIA } \end{aligned}$
559B	25.13	25.83	26.40	28.00	30.73	26.43	26.51	27.52	28.34	29.11
559 C	25.52	26.56	27.88	33.02	47.60	26.43	26.81	28.19	28.85	28.97
559 E	25.66	26.61	27.99	33.71	47.87	27.24	27.74	28.79	29.55	29.58
5608	24.60	25.22	26.16	28.92	31.30	25.81	26.32	27.74	28.82	29.11
5600	25.12	25.99	28.35	32.02	32.84	26.02	26.97	28.48	28.85	28.91
$560 E$	24.58	25.23	26.03	28.08	35.04	25.57	26.05	27.19	$28 \cdot 37$	28.91
560F	25.09	25.93	27.49	31.19	32.53	26.05	26.89	28.45	29.08	29.26
560G	24.64	25.14	25.84	27.52	30.00	25.29	25.68	26.83	27-97	28.65
5618	14.30	14.52	14.74	15.55	17.09	14.50	14.50	15.09	15.43	15.56
561 C	14.22	14.32	14.40	14.86	15.14	14.03	13.89	14.36	14.50	14.78
561E	14.26	14.38	14.46	14.88	15.38	14.40	14.36	14.67	14.99	15.25
561 F	14.42	14.60	14.78	15.48	17.16	14.45	14.50	14.95	15.32	15.46
561 G	14.54	14.84	15.02	16.67	18.79	14.62	14.74	15.29	15.50	15.57
5611	14.32	14.79	15.10	16.37	18.57	14.93	15.06	15.50	15.90	15.90

Table A-3a. (cont'd)

Table A－3a．（cont＇d）

$\begin{aligned} & \text { H } \underset{F}{\mathrm{~F}} \mathrm{~T} \end{aligned}$	$\begin{gathered} H 29 T^{T} \\ \\ \hline \end{gathered}$	$\begin{gathered} H 3, T \\ F T \end{gathered}$	$\begin{gathered} H 4, T \\ F T \end{gathered}$	$\begin{gathered} H 5, T \\ F T \end{gathered}$
71.3	71.8	74.5	79.3	$82 \cdot 6$
71.2	72.9	78.6	81.7	82.4
113.5	115.7	124．5	134.8	138.7
109．7	113.1	122．3	131.0	133.0
112.4	115.3	124.3	134.4	137．3
109．4	112.5	123.0	131.2	134.3
113.0	113.3	118．2	129．8	135．7
109.4	110.3	116.0	127.0	133.5
114.1	121.8	133.3	131.7	$133 \cdot 0$
$70 \cdot 1$	72.2	77.5	77.5	$77 \cdot 8$
69．1	69.9	$73 \cdot 5$	77.5	80.8
70．1	73.8	79．5	79.4	79.5
72.4	72.6	76.2	80.8	83.0
72.5	73.4	77.4	81.6	83.4
75.4	77.8	82.6	84.3	84.7
74.3	75.9	81.1	83.9	84.6
72.8	73.6	77.8	81.9	83.6
37．9	37.9	39.0	40.6	41.4
36.7	37.0	38.8	39.9	40.9
38.5	39.4	41．8	41.9	42.0
40.7	40.2	41.1	41.5	41.9
41.3	41.5	43.0	44.0	44.4
42．3	42.5	43.4	44．8	$45 \cdot 3$
41.8	42.0	43.3	44.3	45.0
43.3	43.9	45．1	45.8	45.9
41.2	41.6	43.4	$44 \cdot 5$	44.7
40.9	41.5	44.5	44.6	44.2
40.3	40.5	41.7	42.6	43.6
41.2	42.2	44.4	44.2	44.2

\pm	$$	$\begin{aligned} & 0 \\ & i n \\ & 0 \\ & 0 \\ & n \\ & n \\ & n \end{aligned}$	$\begin{aligned} & \because \pm \\ & \bullet 0 \\ & n \\ & n \\ & n \end{aligned}$	$\begin{aligned} & n \\ & \stackrel{n}{+} \\ & \stackrel{y}{*} \end{aligned}$	$$	$\begin{aligned} & \text { r} \\ & \vdots \\ & \underset{\sim}{n} \end{aligned}$			$$		$\begin{aligned} & \text { NOF } \\ & \dot{0} \dot{0} \dot{0} \\ & \text { NO } \end{aligned}$
$\pm \underset{~}{\text { I }}$	$$		$\begin{aligned} & N \\ & 0 \\ & 0 \\ & 0 \\ & \pm \\ & 0 \end{aligned}$	$$	$\begin{aligned} & m 0 \\ & 00 \\ & \infty \\ & m \\ & m \\ & m \end{aligned}$	$\begin{aligned} & \stackrel{n}{*} \\ & \stackrel{4}{4} \end{aligned}$					
$\underset{I^{\prime}}{m \vdash}$	$\begin{aligned} & \uparrow \stackrel{n}{\bullet} \\ & \stackrel{\circ}{\boldsymbol{o}} \end{aligned}$	$\begin{aligned} & 00 \\ & 0 \\ & \sim \\ & \sim \\ & \sim \end{aligned}$	$\begin{array}{ll} \infty & 0 \\ \dot{8} \\ \underset{\sim}{*} \\ \sim \\ \sim \end{array}$	$\begin{gathered} \stackrel{\rightharpoonup}{0} \\ \dot{H} \\ \stackrel{H}{4} \end{gathered}$	$\begin{aligned} & 00 \\ & 00 \\ & -10 \\ & -10 \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\infty}{2} \end{aligned}$	$\begin{aligned} & \pm 0 \\ & \stackrel{+}{*} \\ & \stackrel{+}{\infty} \end{aligned}$	in 0 in NJ in $0<\infty$ ค下 $\infty \infty$	$\begin{aligned} & \infty \quad r \\ & 0 \\ & 0 \\ & 0 \\ & m \\ & \hline \end{aligned}$		

$\stackrel{\square}{\square}$	$\because \sim 90 \sim$	00	∞	MONm		α	$\infty \infty$		m m
いい		$\cdots \times m$			m○○－	－－${ }^{\circ}$			
エ	$\infty \infty \infty$	$\infty \infty$	ざざさ	さささべヘ	nnon		$\cdots \infty$		$\infty \times \infty$

$\stackrel{\square}{\square}$	ーFNさO	$\checkmark \infty$
N	\bigcirc	เก
	人下Nかめ	下N

\qquad
 $0 m$ n
$\dot{-} \dot{0}$
m
n
n $\infty N H$
$\dot{\circ} \dot{\circ} \dot{+}$
$m \mathrm{~m}$

$$
\begin{aligned}
& H \quad \text { CT }
\end{aligned}
$$

$$
\text { He. H } 5
$$

$$
\begin{array}{ll}
\text { He. } & H 5 \\
\text { FT } & \text { FT }
\end{array}
$$

$$
\begin{aligned}
& o r o o \\
& \cdots \cdots \infty \\
& m a \operatorname{on} \alpha
\end{aligned}
$$

$$
\begin{gathered}
N \sim n \\
\infty \\
\infty \\
\infty \\
\infty \\
\infty \\
n
\end{gathered}
$$

$$
\begin{aligned}
& a \pm m \\
& 0 \\
& 0 \\
& 0 \\
& n
\end{aligned}
$$

$$
\begin{aligned}
& a r N+ \\
& 0+ \pm \\
& \sim \infty \\
& \sim
\end{aligned}
$$

$$
\begin{aligned}
& 0 \\
& 0 \\
& \sim \\
& \sim \\
& \infty \\
& 0 \\
& 0
\end{aligned} \infty
$$

$$
\begin{aligned}
& 138 \cdot 3 \\
& 163 \cdot ?
\end{aligned}
$$

$$
\begin{aligned}
& 138 \cdot 3 \\
& 163 \cdot 2 \\
& 149 \cdot 5 \\
& 167.9
\end{aligned}
$$

$$
\begin{aligned}
& 149 \cdot 7 \\
& 139 \cdot 3 \\
& 139 \cdot 3 \\
& 193.6
\end{aligned}
$$

$$
\begin{aligned}
& 137 \\
& 168 \cdot 5 \\
& 142.3
\end{aligned}
$$

$$
\begin{aligned}
& \quad N a \\
& \infty \\
& \cdots \infty
\end{aligned}
$$

$$
\begin{aligned}
& n \in m \\
& 0 \leftrightarrow 0 \\
& 0 \\
& 0 \\
& N \\
& n \\
& m
\end{aligned}
$$

$$
\begin{aligned}
& n n m u \\
& o \infty m \\
& n m m \\
& n m m
\end{aligned}
$$

$$
\begin{array}{r}
0 \\
0 \\
0 \\
-1 \\
-1 \\
\sim \\
\sim \\
N
\end{array} 0
$$

$$
\begin{aligned}
& 0 \sim 0 \\
& \bullet-1 \\
& \sim N \\
& \sim N
\end{aligned}
$$

$$
\begin{aligned}
& \infty \sim N \\
& \infty \sim N \\
& \sim \sim N \\
& \sim \\
& \sim
\end{aligned}
$$

$$
\begin{array}{ccc}
N 0 & N \\
0 & 0 \\
N & 0 \\
N & N
\end{array}
$$

$$
\begin{aligned}
& m N m \\
& \sim N M \\
& N N M ? \\
& \sim N H=
\end{aligned}
$$

$$
\begin{aligned}
& N m m \\
& n \\
& N \\
& n \\
& n
\end{aligned}
$$

$$
\begin{array}{ccc}
0 & 0 & 0 \\
\bullet & 0 \\
N & 0 \\
N & N \\
r-1
\end{array}
$$

$\begin{array}{llll}\infty & u & w \\ 0 & 0 & 0 & 0 \\ n & 0 & 0 & 0\end{array}$ in in in in

凹U以L	∞ ¢
NNNN	$\infty \infty \infty$
in in in in	in in
on intin	in in in

	ナのか	$\pm \uparrow \sim \infty a$	$0 \sim 0 m o$
$\stackrel{+}{*}$	－	－	$\bullet \bullet$
トリレ		\sim_{∞}^{∞}	
エ			

$$
I
$$

エ

$\text { DEG }^{\top}{ }^{5} K$
76.26
76.46
76.54
$77 \cdot 74$
78.03
77.78
77.52
77.51
82.68
82.96
83.42
83.24
82.93

KV
1.13

HV
M

$\stackrel{\infty}{\infty} \underset{\sim}{\infty} \dot{\sim}$
mí

25.4
25.5
25.5
26.1
26.2
26.0
25.2
25.0
HO
M

15.8
13.1
13.6
15.5
13.3
15.4
19.7
16.1
90
$\dot{9} 0$
0
OOMON
44.2
31.9
34.2

35.0
∞
∞
∞
∞
∞
(s)!un IS

$\dagger 1$	T 2	13	14	T 5
DEG K				
81.61	81.70	82.14	82.67	82.87
85.76	85.94	86.63	87.50	87.91
86.04	86.52	87.50	87.96	88.08
86.61	87.32	88.20	88.33	88.35
85.38	85.44	85.91	86.91	87.67
85.83	86.25	87.31	87.79	88.03
81.47	81.65	82.14	82.69	82.77
80.92	81.05	81.55	82.10	82.46
81.40	81.69	82.35	82.66	82.68
75.75	75.74	75.82	76.00	76.16
－75．94	75.98	76.18	76.38	76.44
76.05	76.14	76.37	76.46	76.47
77.29	77.36	77.59	77.88	77.91
76.99	77.05	77.29	77.53	77.69
77.01	77.04	77.26	77.46	77.68

立	$$		$\begin{aligned} & \text { mo } \\ & 0.8 \\ & \text { in } \end{aligned}$			 \rightarrow－100～ー	of in men nin $\therefore \dot{\circ} \dot{\circ} 0^{\circ} \dot{-}$
主 ${ }^{\text {² }}$	$\begin{aligned} & \rightarrow 0 \\ & \text { nin } \end{aligned}$	「0．00 ～ヘN～N	$\begin{aligned} & m \underset{~ m}{9} \\ & \dot{\sim} \end{aligned}$	$\because m \backsim \sim$ N～N ナナボ	nnn n がき NNN		
오 $^{\Sigma}$	$\begin{aligned} & \text { N } \\ & \stackrel{y}{+} \\ & \end{aligned}$		$\begin{aligned} & \text { M } \\ & \dot{\sim} \\ & \dot{n} \\ & i n \\ & i n \end{aligned}$				
a	$\begin{aligned} & \vec{\sim} \underset{\sim}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$						
O			¢ ¢ ¢ mid	M N Mo ting in invo			
$\text { و } \stackrel{u}{u}_{\frac{u}{\Sigma}}$	$\begin{aligned} & \sim \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$			momm mo $0 m$ NNN			
$\underset{\substack{* \\ \hline \\ \hline \\ \hline}}{ }$	$$	운 No No $^{\infty}$ $\infty^{\circ} \infty_{\infty}^{\circ} \infty^{\circ} \infty^{\circ}$ $\infty \infty \infty \infty$	$\begin{aligned} & \ddagger \\ & 0 \\ & \stackrel{m}{0} \\ & \infty \end{aligned}$				

RUN
NO.

308 C
$308 D^{*} *$
$309 A * *$
309 B
309 C
$309 \mathrm{C}^{*} *$
309 E
$310 A * *$
$310 \mathrm{~F} *$
$311 \mathrm{~A} *$

$316 A^{* *}$
316 B
316 C
316 D
$316 \mathrm{G}^{*}$
＊DENOTES AN INCIPIENT RUN
＊＊DENOTES A DESINENT RUN

	$\begin{aligned} & \stackrel{0}{N} \underset{\sim}{ \pm} \\ & \dot{\sim} \\ & \dot{\infty} \\ & \hline \infty \\ & \infty \end{aligned}$			$\begin{aligned} & \stackrel{0}{1} \\ & \stackrel{\infty}{\infty} \end{aligned}$		$\begin{aligned} & \underset{\sim}{n} \\ & \dot{\infty} \end{aligned}$	$\begin{aligned} & \text { n } 0 \text { O } \\ & 0 \\ & \dot{n} \\ & \dot{\infty} \dot{\sim} \\ & \infty \end{aligned}$	$\stackrel{\rightharpoonup}{n}$
		$\begin{aligned} & 0.0 \\ & 0 . \infty \\ & 0 \\ & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & 0-\infty \\ & 0-\infty \\ & \infty \end{aligned}$	$\stackrel{\bigcirc}{\stackrel{-1}{+}}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{+} \\ & \stackrel{+}{+} \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{\infty} \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{̣} \\ & \dot{\sim} \\ & \infty \end{aligned}$		$\stackrel{1}{ }$
$\begin{gathered} n \times \underset{0}{n} \\ -\underset{\sim}{u} \end{gathered}$			$\underset{\infty}{\sim}$	$\stackrel{\sim}{\sim}$		-	∞ \cdots \sim \sim \sim	n \sim \sim \sim 0
	$\begin{aligned} & \text { ~ } \\ & \text { - } \\ & \dot{-} \dot{\sim} \\ & \infty \end{aligned}$	$\begin{aligned} & \text { mo } \\ & n \\ & \dot{0} \\ & \dot{\infty} \dot{0} \end{aligned}$	$\begin{aligned} & \text { Oin } \\ & \dot{0} \underset{\sim}{0} \\ & \dot{\infty} \dot{\infty} \end{aligned}$	N \sim 0 ∞	$\begin{aligned} & n i n \\ & 0 \\ & 0 \\ & \dot{0} \\ & \infty \\ & \infty \end{aligned}$	N	N	-
- ${ }_{\text {- }}^{\text {- }}$	Wo - - -		4 N N ¢ in	a $\stackrel{1}{0}$ \vdots ∞	$\hat{0}$ \sim \sim ∞ ∞ ∞	$\stackrel{\sim}{\sim}$	Nin	$\stackrel{ \pm}{+}$

Table A-3b. (cont'd)

* denotes an incipient run
** denotes a desinent run

 TEG $^{3} K$
$\begin{array}{llll}\infty & 0 & 0 & 0 \\ 0 & N & 0 & 1 \\ \dot{N} & 0 & \cdots & \cdots \\ \infty & \infty & \infty & \infty\end{array}$ TEG ${ }^{4} K$ v
0
w
0
\vdots
0
u
0
 $\sim \infty$
$\sim+$
\sim
$\sim \infty$
∞

∞ $\begin{array}{lll}n & 0 & 0 \\ n & \infty \\ 0 & 0 \\ 0 & 0\end{array}$ | ± 0 |
| :--- |
| 0 |
| 00 |
| 00 |

T1 1	T^{2}
$D E G^{2} K$	$D^{2} K$
82.06	82.17
82.41	82.70
82.28	82.48
82.10	82.20

$77 \cdot 35$
$77 \cdot 82$
$77 \cdot 99$
$77 \cdot 93$

$N N$	0
$0 N$	H
N	\cdots

$60^{\circ} 8 \mathrm{~L}$ No
\cdots
N $\begin{array}{ll}\infty & \infty \\ 0 & + \\ \sim N\end{array}$

$\text { DEG }^{\top}{ }^{1}$	$\operatorname{TEG}^{2} K$	$\stackrel{T}{D E G}^{3} K$	$\stackrel{T}{T}^{4}{ }^{4}$	$\mathrm{DEG}^{\mathrm{T}} \mathrm{~K}$
82.43	82.50	82.88	83.30	83.54
82.38	82.50	83.06	83.40	83.55
82.44	82.63	83.06	83.52	83.63
82.66	83.01	83.54	83.69	83.71
82.75	83.08	83.54	83.81	83.80
82.18	82.42	82.91	83.28	83.35
82.12	82.47	83.10	83.23	83.26
82.11	82.33	82.71	83.13	83.37
87.12	87.28	87.79	88.56	88.84
87.34	87.70	88.52	88.79	89.25
87.40	87.70	88.35	88.94	89.05
87.57	88.03	88.78	89.03	89.05
87.35	87.43	87.92	88.63	88.95
87.40	87.62	88.26	88.87	89.00

RUN	CAVITY	TO	vo	PO	PV	HO	HV
NO.	CM	DEG K	M/SEC	N/CM/CM	N/CM/CN	M	M
549A**		83.78	12.0	26.19	20.27	34.4	26.6
5498	2.79	83.87	13.6	20.80	20.45	27.3	26.9
549C	2.29	83.85	13.4	21.04	20.41	27.6	26.8
5490**		83.85	11.9	25.95	20.41	34.1	26.8
549E	2.54	83.86	13.3	21.01	20.43	27.6	26.8
549 F	1.27	83.88	13.0	21.73	20.47	28.5	26.9
549G**		83.89	11.7	25.48	20.49	33.4	26.9
549 H	1.52	83.92	13.0	21.61	20.56	28.4	27.0
550A**		83.71	$17 \cdot 2$	31.44	20.13	41.2	26.4
5508	2.29	83.72	18.7	23.88	20.15	31.3	26.4
550 C	I. 52	83.72	18.6	24.27	20.15	31.8	26.4
5500**		83.71	17.1	31.30	20.13	41.0	26.4
550 E	2.79	83.74	18.5	23.37	20.19	30.7	26.5
550F**		83.76	16.5	32.12	20.23	42.1	26.5
551A**		89.21	17.5	45.24	33.60	61.5	45.7
551 B	3.30	89.30	19.8	34.90	33.87	47.5	46.1
551 C	1.90	89.29	19.6	$36 \cdot 14$	33.84	49.2	46.0
5510**		89.32	$17 \cdot 8$	44.50	33.92	60.5	46.2
551 E	2.29	89.35	19.7	35.55	34.01	48.4	46.3
551 F	1.52	89.37	19.5	36.49	34.07	49.7	46.4
552A**		89.51	14.2	40.06	34.49	54.6	47.0
552C**		89.51	14.3	39.08	34.49	53.2	47.0
552E**		89.55	13.9	39.89	34.61	54.4	47.2
553A**		89.55	14.4	40.27	34.61	54.9	47.2
5530**		89.50	14.3	40.36	34.46	55.0	47.0
553G**		89.56	$14 \cdot 3$	40.29	34.64	54.9	47.2
554A**		89.46	22.2	51.87	34.34	70.6	46.8
554 B	3.30	89.45	24.5	38.39	34.31	52.3	46.7
$554 C$	2.54	89.48	24.5	38.85	34.40	52.9	46.9

Table A-3b. (cont'd)

RUN NO.	$\underset{\text { CAVITY }}{\text { CM }}$	$\text { DEG }_{\text {TO }} K$	$\begin{gathered} V O \\ M / S E C \end{gathered}$	$\begin{gathered} \mathrm{PO} \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{gathered} P V \\ N / C M / C M \end{gathered}$	$\begin{gathered} \mathrm{HO} \\ \mathrm{M} \end{gathered}$	$\begin{gathered} H V \\ M \end{gathered}$	KV	$\mathrm{DEG}^{\mathrm{T}} \mathrm{I}^{\prime}$	${ }_{D E G}{ }^{2} K$	$\text { DEG }^{3} K$	$\mathrm{DEG}^{\mathrm{T}} \mathrm{~K}^{4}$	$\text { DEG }^{T} K$
5540	1.27	89.47	$24 \cdot 3$	40.64	34.37	$55 \cdot 4$	46.8	0.28	87.76	88.24	88.96	89.08	89.09
554 F	2.29	89.49	24.5	39.11	34.43	53.3	46.9	0.21	87.77	87.99	88.51	89.05	89.45
554G**		89.53	22.3	52.77	34.55	71.9	47.1	0.97		87.	88.51	- 0	8.4
555A**		89.56	24.4	56.53	34.64	77.0	47.2	0.98					
5558	2.29	89.59	25.9	41.13	34.73	56.1	47.4	$0 \cdot 25$	88.08	88.23	88.83	89.30	89.47
555 C	2.79	89.56	25.6	40.04	34.64	54.6	47.2	0.22	87.66	87.80	88.36	88.84	89.24
5550**		89.48	22.5	52.95	34.40	72.1	46.9	0.98					
555 E	2. 54	89.53	24.3	38.77	34.55	52.8	47.1	0.19	87.68	87.85	88.36	88.93	89.25
555 F	1.27	89.49	23.5	40.37	34.43	55.0	46.9	0.29	87.87	88.42	89.06	89.19	89.32
555G**		89.53	21.4	50.61	34.55	68.9	47.1	0.93					
556A**		89.61	24.2	55.56	34.79	75.7	47.4	0.94					
556B	2. 54	89.61	26.2	40.93	34.79	55.8	47.4	0.24	87.78	87.82	88.30	88.86	89.29
556 C	1.78	89.56	25.7	41.84	34.64	57.0	47.2	0.29	87.73	88.03	88.79	89.07	89.09
5560**		89.58	23.6	55.77	34.70	76.0	47.3	1.01					
556 E	2.54	89.77	25.8	40.90	35.27	55.8	48.2	0.23	88.04	88.19	88.69	89.28	89.52
556 F	1.27	89.81	25.4	42.83	35.39	58.5	48.3	0.31	88.28	88.75	89.47	89.59	89.56
556G**		89.85	23.2	55.89	35.52	76.3	48.5	1.01					
557 A **		83.92	21.9	42.71	20.56	56.1	27.0	1.18					
557 B	2. 54	84.01	24.1	28.01	20.74	36.8	27.3	0.32	82.76	82.93	83.36	83.67	83.84
557 C	1.52	83.95	23.9	28.96	20.62	38.0	27.1	0.38	82.68	82.98	83.52	83.61	83.62
557 E	3.30	84.01	24.0	27.63	20.74	36.3	27.3	0.31	82.64	82.82	83.10	83.47	83.74
557 F	1.27	84.06	23.7	29.12	20.84	38.3	27.4	0.38	82.90	83.28	83.78	83.85	83.83
558A**		83.91	25.0	49.65	20.54	65.1	27.0	1.19					
558 B	3.30	83.92	27.5	31.44	20.56	41.3	27.0	0.37	82.77	82. 78	83.08	83.39	83.71
558 C	1.52	83.94	27.3	32.23	20.60	42.3	27.1	0.40	82.90	83.04	83.48	83.71	83.78
558 E	1.90	84.00	27.3	32.03	20.72	42.1	27.2	0.39	83.00	83.19	83.51	83.85	83.89
558 F	1.27	84.09	27.1	33.20	20.90	43.6	27.5	0.43	83.11	83.33	83.77	83.86	83.90
558G**		84.22	24.6	49.75	21.17	65.4	27.9	1.22					
559A**		83.82	25.1	49.80	20.35	65.3	26.7	1.20					
559 B	3.30	83.87	27.6	31.32	20.45	41.1	26.9	0.37	82.72	$82 \cdot 75$	83.12	83.41	83.68
* denotes an incipient run ** DENOTES A DESINENT RUN													

Table A－3b．（cont＇d）

$\begin{gathered} n \underset{u}{n} \\ 1-\underset{\sim}{u} \end{gathered}$	$\begin{aligned} & \text { m } \\ & \stackrel{0}{0} \\ & \dot{\infty} \end{aligned}$	$\begin{aligned} & \stackrel{+}{\infty} \\ & \dot{\infty} \\ & \dot{\infty} \end{aligned}$					$\stackrel{+}{\circ}$
$\pm \stackrel{*}{*}$	0	¢	${ }_{\sim}^{\infty} \sim 0$	～へ～～	$\stackrel{\sim}{\sim}$	$\underset{\sim}{n} \sim$ N	\pm
－岕	¢	$\underset{\infty}{\infty}$	¢	min m	－		$\stackrel{\infty}{\sim}$
－	$\stackrel{0}{0}$	$\stackrel{\sim}{0}$	우	O～N	$\stackrel{0}{0}$	¢ñ	－
ャレ	¢	$\underset{\infty}{\infty}$	$¢_{\infty}^{10}$	$\underset{\sim}{\sim}$	AN		N
\sim	－	$\stackrel{\text { N}}{\sim}$	¢ ${ }_{0}$	¢ $\cos _{0}^{0}$	べか	$\stackrel{\sim}{\sim} \stackrel{\sim}{\sim}$	
－岗	－	∞	～～N	$\underset{\infty}{\sim} \sim{ }_{\text {c }}^{\sim}$	축		
\checkmark	N	N	an	O～on	N「	\cdots N	
－4	$\stackrel{\sim}{\sim}$	$\dot{\square}$	～	NNN	$\stackrel{\circ}{\circ}$		
－	∞	∞	$\infty \infty$	$\infty \infty$	－r		

 RUN
NO．
559C
$559 D^{* *}$
559 E

$560 A^{* *}$
560 B
560 C
$560 \mathrm{D}^{* *}$
560 E
560 F
560 G
$560 \mathrm{H}^{*} *$

$562 A * *$
562 C＊＊ $563 A * *$
$563 \mathrm{E} *$ 564B＊＊

[^10]Table A-3b. (cont'd)

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} P 1 \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\stackrel{P}{N /{ }_{N M}^{2} / C M}$	$\begin{gathered} \mathrm{P}^{3} \\ \mathrm{~N} / \mathrm{CM}^{\prime} / \mathrm{CM} \end{gathered}$	$\begin{gathered} P 4 \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 5 \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 1, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 2, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 3, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 4, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 5, T \\ N / C M / C M \end{gathered}$
302B	8.52	8.55	8.45	9.48	8.89	8.47	8.46	8.54	8.75	8.88
302D	8.73	8.80	8.85	10.41	11.31	8.59	8.68	8.94	9.09	9.10
302 F	8.58	8.62	8.58	9.79	10.18	8.72	8.70	8.86	9.11	9.19
303B	9.87	10.04	10.07	11.71	12.48	9.83	9.97	10.21	10.49	10.59
304D	10.05	10.44	11.08	13.65	14.29	10.38	10.54	10.88	10.93	10.95
305B	9.72	9.83	9.96	12.45	12.13	9.81	9.87	10.13	10.53	10.64
305 D	9.83	10.17	10.72	16.44	19.06	9.61	9.74	10.20	10.32	10.32
305 F	9.61	9.84	9.89	12.71	12.02	9.45	9.52	9.80	10.14	10.31
3068	16.37	16.34	16.41	19.54	18.96	15.75	15.74	16.33	17.20	18.15
306 D	17.51	17.72	19.81	27.30	30.79	16.64	17.29	18.56	18.63	18.67
307B	17.43	17.77	18.17	21.55	23.37	17.38	17.71	18.54	19.38	19.56
307 C	17.86	18.31	19.88	23.55	25.04	17.42	18.11	19.03	19.25	19.21
308 B	16.80	17.10	17.43	20.56	22.10	16.40	16.74	17.60	18.54	18.61
308 C	16.62	16.80	16.94	19.61	20.68	16.24	16.40	17.17	18.13	18.50
309B	25.20	25.36	25.92	30.91	31.98	24.56	24.98	26.65	28.86	29.95
309 C	26.20	26.50	28.09	33.78	36.84	25.22	26.38	28.86	30.08	30.41
309 E	26.86	27.17	30.16	35.89	39.23	26.60	28.39	30.74	31.09	31.15
311 B	23.75	23.51	24.30	29.96	31.13	23.69	23.83	24.91	27.34	29.31
311 C	25.62	25.79	27.41	36.74	47.73	24.72	25.72	28.36	29.63	30.27
312B	16.20	16.17	16.65	21.58	25.13	16.01	16.31	17.17	18.16	18.31
312 C	15.53	15.60	15.91	19.97	19.63	15.10	15.31	16.14	17.10	17.74
3120	16.27	16.62	17.31	22.82	33.65	15.89	16.38	17.54	18.11	18.15
315B	8.40	8.54	8.55	9.53	8.98	8.34	8.33	8.41	8.60	8.77
315 C	8.51	8.71	8.78	9.78	10.74	8.54	8.58	8.79	9.01	9.08
3150	8.66	8.85	9.13	10.69	11.16	8.66	8.75	9.00	9.10	9.11
316 B	10.01	10.18	10.29	11.94	12.11	10.04	10.13	10.40	10.76	10.80
316 C	9.93	10.10	10.18	11.60	11.38	9.69	9.76	10.04	10.33	10.53
316 D	9.86	10.03	10.10	11.45	11.00	9.72	9.75	10.01	10.25	10.51

Table A-3b. (cont'd)

RUN NO.	$\stackrel{\mathrm{P}}{\mathrm{~N} / \mathrm{CM} / \mathrm{CM}}$	$\stackrel{\mathrm{P}}{\mathrm{~N} / \mathrm{CM}^{2} / C M}$	$\begin{gathered} \mathrm{P}^{3} \\ \mathrm{~N} / \mathrm{CM}^{2} \mathrm{CM} \end{gathered}$	$\stackrel{P 4}{N / C M / C M}$	$\stackrel{P}{\mathrm{P}} \mathrm{~F} / \mathrm{CM}^{2} / \mathrm{CM}$	$\begin{gathered} \mathrm{P} \\ \mathrm{~N} / \mathrm{CM} / \mathrm{C}^{\top} \end{gathered}$	$\begin{gathered} \mathrm{P} 2, \mathrm{~T} \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{aligned} & P{ }^{3} \cdot \mathrm{~T} \\ & N / C M / C M \end{aligned}$	$\begin{gathered} \mathrm{P} 4, \mathrm{~T} \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{array}{cc} P 5: T \\ N / C M / C M \end{array}$
317B	16.97	16.96	17.29	19.84	19.55	16.76	16.87	17.47	18.52	19.25
317 C	17.84	17.84	18.56	22.12	27.04	16.73	17.11	18.37	19.05	19.21
318B	26.49	26.32	27.29	32.12	33.80	25.94	26.40	28.26	30.44	31.26
318 D	26.59	26.39	27.75	32.45	34.75	25.12	25.84	27.80	29.65	30.06
319B	26.35	26.26	27.50	32.83	34.67	25.70	26.33	28.24	30.35	30.96
319 C	26.35	26.32	27.66	32.97	34.94	25.05	25.72	27.95	29.68	30.33
3218	25.92	25.92	26.54	31.85	33.06	25.82	25.89	26.94	29.39	30.63
3228	25.34	25.42	26.25	31.17	33.01	25.05	25.24	26.47	28.81	30.16
322 E	26.77	27.59	32.90	44.83	48.90	26.06	27.70	30.14	29.79	$30 \cdot 06$
323n	16.95	17.29	19.15	33.10	38.71	16.48	16.95	18.13	18.13	18.20
3258	16.86	16.74	17.22	20.58	21.15	16.26	16.43	17.24	18.13	18.84
3250	17.60	17.84	20.22	27.73	29.76	16.48	17.31	18.56	18.54	18.56
326 C	17.15	17.39	17.69	20.66	20.84	16.99	17.04	17.83	18.84	19.34
326 D	17.39	17.57	17.99	20.88	21.32	17.02	17.22	18.11	19.03	19.42
326 E	17.94	18.40	19.66	23.52	24.55	17.65	18.18	19.25	19.62	19.71
326 F	17.75	18.09	18.73	22.35	23.80	17.42	17.78	18.92	19.54	19.67
326%	17.73	17.94	18.33	21.13	22.49	17.10	17.27	18.18	19.09	19.46
329B	9.43	9.56	9.63	12.05	10.49	9.19	9.20	9.45	$9 \cdot 82$	10.01
3290	9.58	9.67	9.71	11.73	11.02	8.91	8.99	9.40	9.65	9.88
329 F	10.05	10.25	10.87	17.18	18.80	9.33	$9 \cdot 54$	10.09	$10 \cdot 10$	$10 \cdot 13$
5478	9.74	9.85	9.89	10.25	10.15	9.84	9.73	9.94	10.02	10.12
547 C	9.87	10.04	10.19	10.82	11.82	9.99	10.02	10.37	10.59	10.69
547 E	9.91	10.05	10.24	10.74	11.53	10.20	10.25	10.47	10.77	10.90
547 F	9.90	10.09	10.22	10.65	11.76	10.09	$10 \cdot 14$	10.43	10.68	10.82
547 H	10.20	10.41	10.77	12.71	13.27	10.43	10.58	10.85	11.00	11.03
548 B	9.89	10.20	10.48	11.14	12.48	9.95	10.04	10.47	10.70	10.75
548 C	10.10	10.48	10.94	14.08	16.51	9.89	10.02	10.71	10.72	10.64
548 E	9.75	9.98	10.11	10.58	10.84	9.75	9.79	10.07	10.28	10.51
548 F	10.18	10.51	11.42	16.55	16.77	9.96	10.19	10.69	10.65	10.64

Table A-3b. (cont'd)

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	$\stackrel{\mathrm{P}}{\mathrm{~N} / \mathrm{CM} / \mathrm{CM}}$	$\stackrel{P}{N / C M^{2} / C M}$	$\stackrel{P}{\mathrm{~N}_{3}^{3}} \mathrm{CM}$	$\stackrel{P 4}{N / C M / C M}$		$\begin{gathered} P 1, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P \quad 2, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 3, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 4, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 5, T \\ N / C M / C M \end{gathered}$
549 B	17.16	17.33	17.82	18.66	20.22	17.69	17.82	18.52	19.32	19.79
549 C	17.44	17.66	18.27	19.71	21.46	17.60	17.82	18.86	19.52	19.81
549 E	17.51	17.78	18.32	19.71	21.51	17.71	18.05	18.86	19.75	19.97
549 F	17.93	18.35	19.95	22.26	22.81	18.11	18.77	19.79	20.09	20.13
549 H	17.95	18.27	19.71	21.91	22.57	18.28	18.90	19.79	20.33	20.31
550 B	17.24	17.49	18.40	20.20	24.70	17.24	17.67	18.58	19.28	19.42
5500	17.35	17.69	18.87	23.03	25.72	17.13	17.76	18.94	19.19	19.25
550 E	17.14	17.43	17.95	$1+.02$	20.62	17.11	17.51	18.20	18.99	19.46
551 B	27.28	27.52	28.70	31.18	34.04	27.88	28.29	29.63	31.74	32.53
551 C	28.08	29.01	31.42	36.35	37.59	28.44	29.39	31.62	32.39	33.72
551 E	28.01	28.61	29.92	33.51	36.90	28.60	29.39	31.15	32.82	33.13
551 F	28.39	29.36	32.10	37.31	37.89	29.04	30.27	32.36	33.08	33.13
554 B	27.77	27.72	28.34	30.01	32.01	28.47	28.68	29.97	31.93	32.85
554 C	27.79	28.18	29.16	31.34	37.51	28.60	29.17	30.90	32.62	32.99
5540	28.01	28.92	32.85	41.86	40.44	29.55	30.85	32.87	33.22	33.25
554 F	28.34	28.74	29.63	32.12	38.53	29.57	30.16	31.60	33.13	34.31
5558	28.42	29.18	30.19	33.59	41.54	30.41	30.82	32.50	33.87	34.37
555 C	28.23	28.52	29.37	31.49	35.83	29.28	29.65	31.18	32.53	33.69
555 E	27.81	28.52	29.37	31.48	41.23	29.33	29.79	31.18	32.79	33.72
555 F	27.96	29.27	33.92	42.54	43.82	29.84	31.34	33.16	33.54	33.92
556 B	28.17	28.41	29.32	31.03	33.80	29.60	29.71	31.01	32.59	33.84
556 C	28.99	29.55	31.26	37.43	42.09	29.47	30.27	32.39	33.19	33.25
$556 E$	28.68	29.27	30.16	$32 \cdot 12$	37.80	30.30	30.71	32.10	33.81	34.52
$556 F$	29.27	30.14	33.50	44.92	40.78	30.96	32.27	34.37	34.73	34.64
557 B	17.24	17.75	18.37	19.84	23.95	18.30	18.61	19.44	20.05	20.39
557 C	17.55	18.17	19.36	26.26	29.09	18.15	18.71	19.75	19.93	19.95
557 E	16.79	17.24	17.89	18.95	20.57	18.07	18.41	18.94	19.66	20.19
557 F	17.34	17.93	19.89	29.72	28.63	18.56	19.28	20.27	20.41	20.37
558 B	17.34	17.70	18.06	18.93	19.96	18.31	18.33	18.90	19.50	20.13
558 C	17.56	18.28	19.20	22.24	33.24	18.56	18.82	19.67	$20 \cdot 13$	20.27
558 E	17.57	18.28	19.08	21.70	32.69	18.75	19.11	19.73	20.41	20.49
558 F	18.22	18.88	20.24	31.58	29.44	18.96	19.38	20.25	20.43	20.52

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} P 1 \\ N / C M / C M \end{gathered}$	$\begin{gathered} \mathrm{P} 2 \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{gathered} \mathrm{P}^{3} \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{gathered} P 4 \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 5 \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 1, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 2, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 3, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 4, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 5, T \\ N / C M / C M \end{gathered}$
559 B	17.33	17.81	18.20	19.31	21.19	18.22	18.28	18.98	19.54	20.07
559C	17.60	18.31	19.22	22.77	32.82	18.22	18.48	19.44	19.89	19.97
559 E	17.69	18.35	19.30	23. 24	33.01	18.78	$19 \cdot 13$	19.85	20.37	20.39
5608	16.96	17.39	18.04	19.94	21.58	17.80	$18 \cdot 15$	19.13	19.87	20.07
560 C	17.32	17.92	19.55	22.08	22.64	17.94	18.60	19.64	19.89	19.93
560 E	16.95	17.40	17.95	19.36	24.16	17.63	17.96	18.75	19.56	19.93
560 F	17.30	17.88	18.95	21.50	22.43	17.96	18.54	19.62	20.05	20.17
560G	16.99	17.33	17.82	18.97	20.68	17.43	17.71	18.50	19.28	19.75
5618	9.86	10.01	10.16	10.72	11.78	10.00	10.00	10.40	10.64	10.72
561 C	9.80	9.87	9.93	10.25	10.44	9.67	9.56	9.90	10.00	10.19
561 E	9.83	9.91	9.97	10.26	10.60	9.93	9.90	$10 \cdot 12$	10.33	10.51
$561 F$	9.94	10.07	10.19	10.67	11.83	9.96	10.00	10.31	10.56	10.66
561 G	10.02	10.23	10.36	11.49	12.96	10.08	10.16	10.54	10.69	10.74
5611	9.87	10.20	10.41	11.29	12.80	10.30	$10 \cdot 38$	10.69	10.96	10.96

Table A-3b. (cont'd)

${ }_{I}^{N}$	$\begin{aligned} & 0 \sim \\ & 0 \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 5 \end{aligned}$	$$	$\begin{aligned} & 9 \\ & \stackrel{+}{5} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \text { r } \\ & +\infty \\ & \pm \infty \end{aligned}$	$\begin{aligned} & \text { m } \\ & \text { in } \\ & \text { in } \end{aligned}$				mo Noo ーーかのー	
${ }_{I}^{N}$	$\begin{aligned} & 0 N \\ & 00 \\ & \sim \sim \\ & \sim \end{aligned}$	$\begin{aligned} & n 0 \\ & \text { m } \\ & \dot{f} \end{aligned}$	$$	$\begin{aligned} & \because \\ & \stackrel{1}{*} \end{aligned}$		$\begin{aligned} & c \\ & \dot{0} \\ & \text { in } \end{aligned}$					
${ }_{I}^{m} \Sigma$	$\begin{aligned} & n \\ & \sim \\ & \sim \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & n \\ & \dot{n} \stackrel{n}{n} \\ & m \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{0}-\stackrel{1}{\circ} \\ & m \\ & m \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { in } \\ & m \end{aligned}$	$\begin{aligned} & 0 r \\ & \text { in } \\ & \text { in } \end{aligned}$	$\begin{aligned} & 0 \\ & \text { in } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \pm \stackrel{n}{\sim} \\ & \stackrel{\sim}{\sim} \stackrel{1}{\sim} \end{aligned}$	○ナ かにの $\dot{m} \dot{m} \dot{m}$ NNNNN			
${ }^{N} \Sigma$	$\begin{aligned} & 0 N \\ & \stackrel{N}{N} \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \sim N \\ & 0 \sim \\ & m i n \end{aligned}$	$\begin{aligned} & \because \because \\ & \bullet \bullet \\ & m \\ & m \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{m} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & a 0 \\ & \dot{m} \sim \\ & m \end{aligned}$	$\begin{aligned} & \text { n } \\ & \dot{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \sim N \\ & \sim \sim \\ & \sim N \end{aligned}$	60004 NN～NN	$\begin{array}{r} 0 \sim O \\ \dot{N} \underset{\sim}{\sim} \end{array}$		
$I^{-1} \Sigma$	$\begin{aligned} & 0 N \\ & \underset{\sim}{\sim} \underset{N}{N} \end{aligned}$	$\begin{aligned} & \text { In } \\ & \text { in } \\ & \text { min } \end{aligned}$	$\begin{aligned} & \sim N \\ & \text { in } \\ & \end{aligned}$	$\begin{aligned} & 0 \\ & \bullet \\ & \stackrel{5}{m} \end{aligned}$	$\begin{aligned} & \mathfrak{\sim} \\ & \dot{m} \stackrel{n}{m} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{N} \\ & N \end{aligned}$	$\begin{aligned} & a \\ & \bullet \\ & \dot{N} N \end{aligned}$		$\begin{aligned} & 9 \sim N \\ & \hdashline \stackrel{y}{\circ} \\ & =\underset{\sim}{\circ} \end{aligned}$	muルいの NNNN $\rightarrow \rightarrow+\rightarrow-1$	
$\begin{aligned} & z \dot{~} \\ & \underset{\sim}{3} \dot{Z} \end{aligned}$	$\begin{gathered} \infty \\ \underset{m}{N} \\ \end{gathered}$	$\begin{array}{ll} \infty & 0 \\ \infty & 0 \\ -1 & \infty \\ m & m \end{array}$	$\begin{aligned} & a u \\ & \sigma \\ & \cdots \\ & \cdots \\ & m \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{m}{N} \\ & m \end{aligned}$	$\begin{aligned} & \infty \omega_{N}^{N} \\ & N \\ & N \\ & \sim \end{aligned}$	$\begin{aligned} & \underset{N}{N} \\ & N \\ & N \end{aligned}$	$\begin{aligned} & \alpha_{0} \\ & \stackrel{1}{w_{1}} \\ & \underset{m}{\sim} \end{aligned}$	mmmmm			

Table A-3b. (cont'd)										
RUN	H 1	H^{2}	H 3	H 4	H 5	H 1, ${ }^{\text {r }}$	H $2, T$	H 3, T	H 4, $\mathrm{T}^{\text {l }}$	H 5, T
NO.	M	M	M	M	M	M	M	M	M	M
549 B	22.3	22.5	23.2	24.4	26.5	23.0	23.2	24.2	25.3	25.9
549 C	22.7	23.0	23.8	25.8	28.3	22.9	23.2	24.6	25.6	26.0
549 E	22.8	23.1	23.9	25.8	28.3	23.0	23.5	24.6	25.9	26.2
549 F	23.3	23.9	26.2	29.4	30.2	23.6	24.5	25.9	26.4	26.4
549 H	23.4	23.8	25.8	28.9	29.8	23.8	24.7	25.9	26.7	26.7
5508	22.4	22.7	24.0	26.5	32.8	22.4	23.0	24.2	25.2	25.4
550 C	22.6	23.0	24.7	30.5	34.3	22.3	23.1	24.7	25.1	25.2
550 E	22.3	22.7	23.4	24.9	27.1	22.2	22.8	23.7	24.8	25.5
5518	$36 \cdot 5$	36.9	$38 \cdot 6$	$42 \cdot 2$	46.3	37.4	38.0	39.9	$43 \cdot 0$	44.1
551 C	37.7	39.0	42.5	49.8	51.6	38.2	39.6	42.8	43.9	45.9
551 E	37.6	38.4	$40 \cdot 3$	45.6	50.6	38.4	39.6	42.1	44.5	45.0
551 F	38.1	39.5	43.5	51.2	52.0	39.1	40.8	43.9	44.9	45.0
5548 $554 C$	37.2 37.3	37.2 37.8	38.0 39.2	40.5 42.4	43.4 51.5	38.2 38.4	$38 \cdot 5$ 39.3	40.4	43.3	$44 \cdot 6$
554D	37.6	38.9	44.6	58.0	55.8	39.8	41.7	44.6	44.3	44.8
554 F	38.0	38.6	39.9	43.5	53.0	39.8	40.7	42.8	45.0	46.7
5558	38.2	39.3	40.7	45.7	57.5	41.0	41.6	44.1	46.1	$46 \cdot 8$
555 C	37.9	38.3	39.5	42.6	49.0	$39 \cdot 4$	39.9	$42 \cdot 2$	$44 \cdot 1$	45.8
555 E 555 F	37.3 37.5	$38 \cdot 3$	39.5	42.6	57.0	39.5	40.1	42.2	44.5	45.9
555 F	37.5	39.4	46.2	59.0	60.9	$40 \cdot 2$	42.4	45.1	45.6	$46 \cdot 2$
5568	37.8	38.2	39.5	41.9	46.0	39.9	40.0	41.9	$44 \cdot 2$	46.0
5560	39.0	39.8	$42 \cdot 3$	51.4	58.3	39.7	40.8	43.9	45.1	45.2
556 E	38.5	39.4	$40 \cdot 7$	43.5	51.9	40.9	41.5	43.5	46.0	47•0
556 F	39.4	40.7	$45 \cdot 6$	62.6	56.4	41.8	43.8	46.8	47.4	47.2
5578 5570	22.4	23.1	24.0	26.0	31.8	23.9	24.3	25.4	26.3	26.8
557 C	22.8	23.7	$25 \cdot 3$	35.1	39.1	23.7	24.4	25.9	26.1	26.2
557 E	21.8	22.4	$23 \cdot 3$	24.8	27.0	23.5	24.0	24.7	25.7	26.5
557 F	22.5	23.3	26.1	40.0	38.5	24.2	25.2	26.6	26.8	26.7
558 B	22.5	23.0	23.5	24.7	26.2	23.9	23.9	24.7	25.5	26.4
558 C	22.8	23.8	25.1	29.4	45.2	24.2	24.6	25.8	26.4	26.6
558 E 5585	22.9	23.8	25.0	28.6	44.4	24.5	25.0	25.9	26.8	26.9
$553 F$	23.7	24.7	26.6	41.3	39.6	24.8	25.4	26.6	26.8	26.9

$\stackrel{\underset{\sim}{\infty}}{\infty}$

36.04
M

$\dot{子}$
39.60 $\stackrel{N}{\stackrel{N}{+}} \underset{+}{-}$ $\stackrel{\infty}{\stackrel{\infty}{i}}$

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	CAVITY INCHES	$\mathrm{TO}_{\mathrm{DEG}}^{\mathrm{R}}$	$\begin{aligned} & \text { VO } \\ & \mathrm{FT} / \mathrm{SEC} \end{aligned}$	$\begin{aligned} & \text { PO } \\ & \text { PSIA } \end{aligned}$	$\begin{aligned} & \text { PV } \\ & \text { PSIA } \end{aligned}$	$\begin{aligned} & \text { HO } \\ & \text { FT } \end{aligned}$	$\begin{aligned} & \text { HV } \\ & \text { FT } \end{aligned}$	KV	$\stackrel{T}{\text { TEG }} \mathrm{R}$	$\operatorname{TEG}^{2}{ }^{2}$	$\text { DEG }^{T}{ }^{3} R$	${ }_{D E G}^{T}{ }^{4}$
331A**		36.58	113.7	19.75	14.92	643.6	486.7	0.78				
331B	1.50	36.74	129.9	14.11	15.32	460.9	500.4	-0.15	34.56	34.45	35.19	35.59
331C	1.00	36.63	129.2	14.26	15.05	465.3	491.2	-0.10	34.09	34.11	35.15	35.46
3310**		36.94	113.2	20.76	15.82	678.7	517.6	0.81				
332A**		38.48	195.9	39.06	20.12	1292.8	667.9	1.05				
332B	1.00	38.54	216.9	26.36	20.28	874.6	673.7	0.27	37.01	36.54	36.97	38.05
333A*		41.36	128.8	31.81	30.26	1087.8	1035.1	0.20				
334A**		37.71	173.1	31.71	17.88	1042.7	589.1	0.97				
334 B	1.30	37.78	191.3	21.77	18.08	717.4	596.1	0.21	34.81	34.54	35.03	35.75
3340**		38.09	169.2	34.11	18.95	1125.4	626.7	1.12				
335B	1.20	40.01	213.8	28.71	25.14	967.2	847.5	0.17	38.14	37.49	37.94	39.33
336A*		41.33	130.8	31.21	30.12	1067.0	1029.7	0.14				
336R**		41.35	130.3	31.71	30.19	1084.2	1032.4	0.20				
337\%	1.50	37.64	240.9	27.76	17.68	912.7	582.1	0.37	35.32	34.70	34.92	35.89
338A**		41.20	182.2	44.81	29.61	1525.7	1011.0	1.00				
338 B	1.30	41.27	207.8	30.64	29.90	1046.9	1021.7	0.04	38.34	37.91	38.86	39.96
339A**		41.36	153.1	36.31	30.26	1240.6	1035.1	0.56				
340A**		39.64	179.8	37.61	23.82	1260.0	800.0	0.92				
3418	0.90	39.91	244.9	33.01	24.76	1110.0	833.7	0.30	38.11	37.57	38.34	39.40
342B	1.30	41.56	251.5	35.71	31.07	1223.2	1065.1	0.16	39.08	38.48	39.19	40.79
344B	1.30	36.49	125.9	13.86	14.70	451.7	479.2	-0.11	34.33	34.33	35.03	35.50

* DENOTES AN INCIPIENT RUN
** DENOTES A DESINENT RUN
Table A-4a. (cont'd)

RUN NO.	CAVITY INCHES	$\stackrel{T O}{D E G} R$	$\begin{aligned} & V O \\ & F T / S E C \end{aligned}$	$\begin{gathered} \text { PO } \\ \text { PSIA } \end{gathered}$	$\begin{gathered} \text { PV } \\ \text { PSIA } \end{gathered}$	$\begin{aligned} & \mathrm{HO}_{0} \\ & \mathrm{FT} \end{aligned}$	$\begin{aligned} & \text { HV } \\ & \text { FT } \end{aligned}$	KV	$\operatorname{DEG}^{T}{ }^{1}$	$\mathrm{TEG}^{2} \mathrm{R}$	$\operatorname{UEG}^{3} R$	${ }_{D E G}{ }^{4} R$	${ }^{T} E G^{5} R$
345A**		36.41	124.0	19.26	14.53	626.8	473.2	0.64					
345 B	C. 90	36.50	138.1	14.51	14.75	472.9	480.7	-0.03	33.86	33.77			
345C**		36.63	124.7	20.46	15.05	667.0	491.2	-0.03 0.73	33.86	33.77	$34 \cdot 72$	$35 \cdot 15$	35-33
346A**		36.45	124.6	20.66	14.62	672.4	476.2	0.81					
3468	0.50	36.43	131.8	15.64	14.57	509.3	474.7	0.13	35.42	35.69			
346C**		36.45	119.7	19.96	14.62	649.7	476.2	0.78	35.42	35.69	36.23	36.18	36.20
347A**		36.83	159.5	29.03	15.55	947.0	508.2	$1 \cdot 11$					
347 R	C. 50	36.92	174.1	20.91	15.77	683.5	516.0	0.36	36.25	36.27	36.92	$37 \cdot 03$	36.97
347C**		36.95	158.0	28.46	15.86	929.6	519.2	1.06	36.25	36.27	36.92	37.03	36.97
348日	1.30	36.99	179.0	18.86	15.96	617.1	522.4	0.19	34.94	34.65			
348C	1.00	37.12	178.7	19.26	16.28	630.9	533.6	$0 \cdot 20$	34.78	34.65 34.49	$\begin{aligned} & 35 \cdot 19 \\ & 35 \cdot 35 \end{aligned}$	$\begin{aligned} & 35 \cdot 80 \\ & 35.91 \end{aligned}$	$\begin{aligned} & 36 \cdot 38 \\ & 36.23 \end{aligned}$
349A**		38.34	192.2	39.33	19.69	1299.8	652.7	1.13					
349 B	0.60	38.39	209.8	27.63	19.85	915.3	658.4	$0 \cdot 38$	37.51	37.33	38.16	38.43	
349 ${ }^{*} *$		38.45	189.9	40.33	20.01	1334.1	664.1	$1 \cdot 20$	37.51	37.33	30.16	$38 \cdot 43$	38.32
350A**		39.64	139.9	29.03	23.82	973.9	800.0	0.57					
351A**		38.25	189.5	40.11	19.42	1324.3	643.3	1.22					
3518	1.00	38.36	212.5	25.61	19.74	848.3	654.6	0.28	36.90	36.52	36.95		
351 C	1.30	38.36	212.6	25.01	19.74	828.5	654.6	0.25	35.64	35.30	36.86	$\begin{aligned} & 38.18 \\ & 36.56 \end{aligned}$	$\begin{aligned} & 38.41 \\ & 37.37 \end{aligned}$
3510**		38.41	189.7	37.11	19.90	1227.7	660.3	1.01					
$352.8 * *$		39.78	152.2	33.46	24.32	1123.5	817.9	0.85					
352 B	1.20	39.91	172.9	24.59	24.76	828.0	833.7	-0.01	37.66	37.28	38.18	38.95	39.40
352C**		40.05	155.5	34.41	25.27	1158.6	852.1	0.82	37.66	. 27.8	38.18	38.95	39.40
353A**		39.53	157.0	32.79	23.46	1098.1	786.9	0.81					
353 B	0.50	39.55	172.7	25.29	23.52	848.2	789.1	0.13	38.61	38.68	39.53	39.46	39.58
354 B	1.20	38.43	241.2	29.09	19.96	963.8	662.2	$0 \cdot 33$	36.38	36.38	36.95	38.20	38.41
$\begin{aligned} & \text { * DENO } \\ & \text { * DENO } \end{aligned}$	$\begin{aligned} & E S \text { AN I! } \\ & E S \text { A DE } \end{aligned}$	IENT NT RUN											

$$
\begin{aligned}
& N_{\sim}^{\alpha} \\
& \vdash \underset{\sim}{\alpha}
\end{aligned}
$$

$$
\begin{aligned}
& 0 \\
& \dot{0} \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& 39.94 \\
& 37.12
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{\mathrm{F}} \\
& \dot{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ot } \\
& 0.0 \\
& \stackrel{\rightharpoonup}{\circ} \stackrel{0}{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{0} \\
& \infty \\
& \infty \\
& \infty
\end{aligned}
$$

Table A-4a. (cont'd)

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	CAVITY INCHES	$\mathrm{TO}_{\mathrm{DEG}}^{\mathrm{R}}$	$\begin{gathered} \text { Vo } \\ \text { FT/SEC } \end{gathered}$	$\begin{gathered} \text { PO } \\ \text { PSIA } \end{gathered}$	$\begin{gathered} \text { PV } \\ \text { PSIA } \end{gathered}$	$\begin{aligned} & \text { HO } \\ & \text { FT } \end{aligned}$	$\begin{aligned} & \text { HV } \\ & \text { FT } \end{aligned}$
355A**		41.27	211.1	51.13	29.90	1740.3	1021.7
3558	1.50	41.38	237.9	33.36	30.33	1140.7	1037.8
355C	1.00	41.31	231.4	35.39	30.04	1208.6	1027.0
356A**		41.44	207.2	51.93	30.55	1770.6	1045.9
3578	0.70	38.39	240.9	31.99	19.85	1059.0	658.4
3588	1.30	41.38	200.7	31.29	30.33	1070.4	1037.8
359A**		41.35	179.6	43.73	30.19	1491.7	1032.4
3598	0.60	41.38	199.7	34.03	30.33	1163.5	1037.8
360A**		41.36	143.8	35.16	30.26	1201.6	1035.1
361A**		41.29	145.3	36.79	29.97	1255.8	1024.3
362A**		41.49	155.8	38.63	30.77	1321.3	1054.1
362C**		41.72	157.9	38.01	31.74	1303.9	1090.2
363B	0.60	41.35	179.0	31.46	30.19	1075.7	1032.4
364A**		39.76	212.6	48.09	24.26	1610.5	815.6
364B	1.30	40.14	237.6	32.86	25.59	1107.8	863.8
365B	0.70	39.73	236.2	34.03	24.13	1141.8	811.2
366B	0.60	39.64	188.6	27.46	23.82	921.5	800.0
3678	1.00	39.94	217.2	30.01	24.88	1010.0	838.3
367 C	1.50	40.27	218.3	29.76	26.04	1005.2	880.3
368A**		39.74	199.8	43.83	24.19	1468.6	813.4
368B	0.60	39.83	219.4	32.16	24.51	1080.7	824.6

* DENOTES AN INCIPIENT PUN
** DENOTES A DESINENT RGIN

$$
\underset{D E G}{T} l_{R}
$$

$$
\begin{aligned}
& 37.85 \\
& 38.86
\end{aligned}
$$

$$
\begin{aligned}
& 35.41 \\
& 38.39
\end{aligned}
$$

$$
\begin{aligned}
& \sim \\
& \infty \\
& \dot{\sim}
\end{aligned}
$$

$$
39.85
$$

$$
37.64
$$

$$
38.83
$$

$$
38.57
$$

$$
\begin{aligned}
& 38.20 \\
& 37.37
\end{aligned}
$$

$$
\begin{aligned}
& 35.46 \\
& 38.45
\end{aligned}
$$

$$
38.43
$$

$$
\begin{aligned}
& \tilde{\sim} \\
& \underset{\sim}{\infty} \\
& \infty
\end{aligned}
$$

$\stackrel{T}{\mathrm{~T}} \mathrm{l}_{\mathrm{R}}$	${ }_{D E G}^{T}{ }_{R}^{2}$	${ }_{D E G}{ }^{3} \mathrm{R}$	${ }_{\text {DEG }}{ }^{4} R$	${ }_{D E G}^{T}{ }_{R}$
37.55	37.17	37.84	38.97	39.53
37.26	36.90	37.35	38.70	39.33
37.49	37.21	38.00	38.92	39.11
35.93	35.86	37.08	37.30	37.19
36.27	36.47	37.42	37.22	37.06
35.95	35.73	36.95	37.33	37.33
36.13	36.31	37.28	37.10	36.90
36.05	35.89	37.31	37.85	37.62
36.18	36.05	37.67	37.78	37.62
35.60	35.48	36.65	37.03	36.77
35.66	35.73	37.12	36.76	37.06
36.40	36.43	36.79	37.48	37.39

Table A-4a. (cont'd)

$\begin{gathered} \text { TO } \\ \text { DEG } R \end{gathered}$	$\begin{gathered} v 0 \\ \mathrm{FT} / \mathrm{SEC} \end{gathered}$	$\begin{gathered} \text { PO } \\ \text { PSIA } \end{gathered}$	$\begin{gathered} \mathrm{PV} \\ \mathrm{PSIA} \end{gathered}$	$\begin{aligned} & \text { HO } \\ & \text { FT } \end{aligned}$	$\begin{aligned} & \text { HV } \\ & \text { FT } \end{aligned}$	KV
39.89	175.4	39.59	24.70	1329.5	831.5	1.04
39.94	195.3	26.99	24.88	908.8	838.3	0.12
39.96	172.6	40.11	24.95	1347.9	840.6	1.10
39.64	212.9	48.71	23.82	1628.9	800.0	1.18
39.65	239.0	31.71	23.89	1063.6	802.3	0.29
39.85	207.7	49.91	24.57	1672.5	826.9	1.26
39.51	173.3	37.66	23.40	1260.0	784.7	1.02
39.62	193.4	26.59	23.76	892.3	797.8	0.16
39.94	169.7	39.51	24.88	1327.6	838.3	1.09
37.42	116.3	19.67	17.09	646.1	561.7	0.40
37.64	137.6	23.76	17.68	781.7	582.1	0.68
37.67	151.5	17.39	17.78	572.8	585.6	-0.04
37.69	149.2	18.46	17.83	608.1	587.4	0.06
37.67	137.5	23.94	17.78	787.8	585.6	0.69
37.71	134.9	22.74	17.88	748.7	589.1	0.56
37.73	148.2	16.94	17.93	558.3	590.9	-0.10
37.67	144.9	18.39	17.78	605.7	585.6	0.06
37.78	134.7	22.86	18.08	753.2	596.1	0.56
37.71	167.3	30.16	17.88	992.0	589.1	0.93
37.76	185.1	20.61	18.03	679.2	594.4	0.16
37.78	183.1	21.06	18.08	694.1	596.1	0.19
37.64	166.3	29.53	17.68	970.7	582.1	0.90
37.66	183.2	20.19	17.73	664.7	583.9	0.15
37.67	181.0	21.56	17.78	709.8	585.6	0.24
37.71	164.8	29.16	17.88	959.2	589.1	0.88
37.66	190.4	37.16	17.73	1220.3	583.9	1.13
37.73	211.9	23.93	17.93	787.9	590.9	0.28

RUN	CAVITY
NO.	INCHES
369A**	
369B	1.20
369 ${ }^{* *}$	
370A**	
370 B	1.30
370C**	
371A**	
371 B	1.00
371C**	
507A**	
508A**	
5088	0.60
508 C	0.40
5080**	
509A**	
509 B	0.90
509 C	0.40
5090**	
510A**	
510 B	0.90
510 C	0.60
511A**	
511 B	1.00
511 C	0.50
5110**	
512A**	
512 B	0.75

* DENOTES AN INCIPIENT RUN
** DENOTES A DESINENT RUN

	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{*} \end{aligned}$	$\begin{aligned} & m \\ & \infty \\ & \hline \end{aligned}$		$\begin{aligned} & \underset{\sim}{1} \\ & \dot{\sim} \end{aligned}$		$\begin{aligned} & \text { প} \\ & \dot{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{0}{+} \\ & \stackrel{+}{\mathrm{m}} \end{aligned}$	$\begin{aligned} & -1 \\ & \dot{0} \\ & \dot{\sim} \end{aligned}$		
$\begin{aligned} & \stackrel{\sim}{0} \\ & \vdash \underset{\sim}{\sim} \end{aligned}$	$\stackrel{N}{n}$		No	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{0} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.0 \\ & \dot{8} \dot{8} \end{aligned}$	$\begin{array}{r} \infty \\ 0 \\ \stackrel{-1}{4} \end{array}$	$\stackrel{\infty}{\infty}$	N N n		
$\begin{gathered} m_{0}^{\alpha} \\ \vdash \underset{\sim}{u} \end{gathered}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{N}} \\ & \stackrel{\sim}{\mathrm{~m}} \end{aligned}$			\circ ∞ ∞ 0	$\begin{aligned} & 0 \\ & 0 \\ & \dot{0} \\ & \dot{\circ} \\ & \dot{9} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { on } \\ & \dot{0} \\ & \dot{f} \end{aligned}$	$\begin{aligned} & \text { + } \\ & \dot{\sim} \end{aligned}$	0 \cdots \cdots 0		
$\begin{aligned} & \sim \stackrel{\infty}{\sim} \\ & -\underset{\sim}{u} \end{aligned}$	$\begin{aligned} & \therefore \\ & \stackrel{8}{0} \\ & \dot{m} \end{aligned}$		$\begin{aligned} & m \times \infty \\ & 0 \\ & 0 \\ & \infty \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \text { a } \\ & 0 \\ & \dot{\infty} \\ & \dot{\sim} \end{aligned}$		$\begin{aligned} & \text { m } \\ & \infty \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & n \\ & \underset{\sim}{n} \\ & \vdots \end{aligned}$	-1 \sim \sim \sim		
	$\begin{aligned} & \infty \\ & \infty \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \text { No } \\ & \underset{\sim}{1} \underset{m}{1} \end{aligned}$		$\begin{aligned} & \stackrel{-1}{\sim} \\ & \dot{\infty} \\ & \underset{\sim}{0} \end{aligned}$		$\begin{aligned} & 0 \\ & \sim \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \text { in } \\ & \text { n } \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \mathbf{N}_{\infty}^{\infty} \\ & \stackrel{\sim}{\mathrm{m}} \end{aligned}$		\pm
:---										
0										
$\dot{0}$	\hat{n}									

$\dot{0}$
$\dot{8}$ ∞
∞
∞
∞ N
$\dot{\sim}$
$\dot{\sim}$ $\stackrel{\circ}{9}$
$\stackrel{0}{\circ}$
in

${ }_{D E G}^{T}{ }_{R}^{1}$	$\operatorname{DEG}_{R}^{2}$	${ }_{D E G}^{T}{ }^{3}$	${ }_{D E G}^{T}{ }^{4} R$	$\text { OEG }^{T}{ }^{5}$
39.26	39.87	40.27	40.84	40.75
39.40	39.20	40.01	40.64	40.77
36.36	36.13	37.17	37.37	37.12
36.52	36.67	37.48	37.26	37.10
37.85	37.48	38.59	39.10	39.08
38.36	38.45	39.31	39．13	38.92
38.70	37.71	39.62	39.69	40.32
36.18	35.89	36.81	37.39	37.44
35.46	35.35	35.78	36.45	36.59

\bigcirc	主占	$\begin{aligned} & \pm \infty \\ & \stackrel{\infty}{\circ} \\ & \stackrel{0}{\infty} \stackrel{0}{\infty} \end{aligned}$	$\begin{aligned} & 0 N \\ & 00 \\ & 00 \\ & 00 \end{aligned}$							$\begin{aligned} & n \\ & \text { n } \\ & \text { nion } \end{aligned}$
	오는									
$\underset{F}{0}$	2				$\begin{aligned} & \text { ON゚さN } \\ & \dot{N} \dot{N} N \\ & \underset{N}{N} \underset{N}{N} \end{aligned}$				＋mm	a － － \sim
	®ふ		$\begin{aligned} & 0 .-1 \\ & 0 . \infty \\ & \dot{0}-\dot{m} \end{aligned}$		NNNN ペ．．． mNN	$$				¢ 0 ¢ m
	$9 \stackrel{u}{u}$		N			N		$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & j \\ & j \\ & \sim \\ & \sim \end{aligned}$	m ∞ $\infty \sim \sim$ \sim \sim	¢
	$\stackrel{\propto}{\circ}$	守	응			$\begin{gathered} 0 \\ \stackrel{\infty}{n} \\ \vdots \\ \vdots \\ \ddagger \end{gathered}$				$\stackrel{\sim}{0}$

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	CAVITY INCHES
524A＊＊	
524R	0.60
526A＊＊	
526B	0.60
528A＊＊	
528 B	0.80
528 C	0.40
528D＊＊	
529A＊＊	
5298	1.00
529 C	0.40
5290＊＊	
530A＊＊	
5308	0.90
531A＊＊	
5318	1.30
5311＊＊＊	
532A＊＊	
532B	1.00
532C＊＊	
533A＊＊	
533B	0.90
533C＊＊	
534A＊＊	
534＊＊＊	

＊DENOTES AN INCIPIENT RUN
＊＊DENOTES A DESINENT RUN

$\mathrm{DEG}^{\mathrm{T}}{ }^{1}$	$\text { DEG }^{T}{ }^{2}$	${ }_{D E G}{ }^{3} R$	${ }_{D E G} 4_{R}$	${ }_{D E G}{ }^{T} R$
36.41	36.04	37.01	37.55	37.57
36.52	36.07	37.30	37.31	37.15
37.94	37.64	38.54	39.20	39.13
38.18	38.02	39.19	38.86	38.77
38.95	38.90	39.69	40.93	40.50
39.01	39.19	$40 \cdot 32$	$40 \cdot 63$	$40 \cdot 07$
38.14	37.96	38.52	39.46	39.28
39.46	39.06	39.89	40.97	40.75
$\begin{aligned} & 36.14 \\ & 35.98 \end{aligned}$	$\begin{aligned} & 36.18 \\ & 36.09 \end{aligned}$	36.58 36.85	37.28 36.97	37.12 36.67
39.08	38.74	39.74	40.43	40.41
39.53	39.73	40.52	41.24	41.40
35.64	35.71	35.98	36.68	$37 \cdot 15$

1.05
0.21
0.27寸N
-
20
0
0
0
1 8 1.05
0.26 $\because N$
$\because:$
$\because 0$
$-10 M$
0.
0000
N
\sim
\sim
\sim 0
\cdots
-1
-0
 Table A-4a. (cont'd)

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	CAVITY INCHES	$\begin{gathered} \text { TO } \\ \text { DEG } R \end{gathered}$	$\begin{aligned} & \text { Vo } \\ & \text { FT/SEC } \end{aligned}$	$\begin{gathered} \text { PO } \\ \text { PSIA } \end{gathered}$	$\begin{gathered} \text { PV } \\ \text { PSIA } \end{gathered}$	$\begin{aligned} & \text { HO } \\ & \text { FT } \end{aligned}$	$\begin{aligned} & \text { HV } \\ & \text { FT } \end{aligned}$
535A**		40.93	144.3	35.37	28.55	1202.6	971.9
535C**		41.18	143.9	37.12	29.54	1265.4	1008.4
536A**		37.49	165.2	30.92	17.28	1014.8	568.4
536 B	1.00	37.53	184.5	20.75	17.38	682.2	571.8
536 C	0.60	37.58	182.5	21.85	17.53	718.7	577.0
537 A *		39.01	172.7	36.25	21.74	1206.7	725.5
537 B	0.90	39.13	195.9	25.12	22.15	838.8	740.0
537 C	0.50	39.17	194.1	27.22	22.26	909.0	744.2
538A**		40.88	168.5	40.49	28.34	1374.6	964.2
538 B	1.00	40.93	194.4	28.52	28.55	970.9	971.9
538 C	0.60	40.97	193.0	30.45	28.69	1036.7	977.0
539A**		39.04	196.9	40.99	21.86	1364.0	729.6
539 B	0.90	39.13	217.9	27.83	22.15	928.9	740.0
540A**		41.13	195.5	48.75	29.32	1657.3	1000.5
540 B	0.90	41.27	224.3	32.62	29.90	1114.1	1021.7
$541 \mathrm{~A} * *$		37.55	136.2	24.52	17.43	805.9	573.5
5418	0.90	37.60	153.9	18.22	17.58	599.7	578.7
541 C	0.60	37.53	152.8	18.85	17.38	619.9	571.8
$5410 * *$		37.51	138.0	25.62	17.33	841.6	570.1
$542 \mathrm{~A} * *$		41.31	233.4	58.12	30.04	1976.5	1027.0
542 B	0.90	41.38	263.3	38.32	30.33	1309.1	1037.8
$543 \mathrm{~A} * *$		41.13	227.9	57.87	29.32	1964.0	1000.5
543 E	1.00	41.26	259.1	37.17	29.83	1268.2	1019.0
543C**		41.27	227.9	57.72	29.90	1962.2	1021.7
544A**		37.31	218.3	42.92	16.80	1403.8	551.6
544 B	1.30	37.48	241.6	26.95	17.23	884.8	566.7

* DENOTES AN INCIPIENT RUN
* DENOTES A DESINENT RUN
TEG ${ }^{5} R$
36.90
$\begin{array}{cc}\stackrel{\alpha}{\circ} & \stackrel{\circ}{0} \\ \vdash \underset{0}{\omega} & \dot{m}\end{array}$
$\begin{array}{cc}m_{0}^{\alpha} & \vec{\sim} \\ \vdash & \dot{\sim} \\ \dot{\sim}\end{array}$

Table A-4a. (cont'd)

PV	HO	HV
PSIA	FT	FT
21.46	1596.4	715.3
22.15	1024.9	740.0
22.09	1704.6	737.9

TO
DEG R
38.92
39.13
39.11

* DENOTES AN INCIPIENT RUN
** DENOTES A DESINENT RUN

$$
\begin{aligned}
& \text { P } 5 . T \\
& \text { PSIA } \\
& 13.08 \\
& 12.80 \\
& 19.85 \\
& 14.40 \\
& 24.19 \\
& 13.64 \\
& 26.44 \\
& 23.70 \\
& 29.97 \\
& 13.08 \\
& 12.10 \\
& 14.02 \\
& 15.91 \\
& 14.44 \\
& 14.10 \\
& 19.63 \\
& 19.90 \\
& 16.94 \\
& 23.03 \\
& 23.64 \\
& 19.90
\end{aligned}
$$

Table A-4a.
(cont'd)

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & P 1 \\ & \text { PSIA } \end{aligned}$	$\begin{aligned} & P \stackrel{2}{P S I A} \end{aligned}$	$\begin{aligned} & \text { P } \quad 3 \\ & \text { PSIA } \end{aligned}$	$\begin{aligned} & \text { P } 4 \\ & \text { PSIA } \end{aligned}$	$\begin{aligned} & P 5 \\ & \text { PSIA } \end{aligned}$	$\begin{aligned} & \text { PIST } \\ & \text { PSIA } \end{aligned}$	$\begin{aligned} & \text { P } 2, T \\ & \text { PSIA } \end{aligned}$	$\begin{array}{r} P B T \\ P S I A \end{array}$	$\begin{array}{r} \text { P } 49 T \\ \text { PSIA } \end{array}$	$\begin{array}{r} \text { PSI } \\ \text { PSIA } \end{array}$
5128	12.83	13.20	13.90	17.33	25.63	14.49	14.57	15.46	17.23	16.99
513 B	12.89	13.26	14.06	17.59	25.16	13.32	13.56	16.75	16.94	16.56
514 B	15.30	15.66	16.40	19.20	23.36	16.28	16.47 16.90	19.37 21.51	$\begin{aligned} & 21.51 \\ & 21.23 \end{aligned}$	$\begin{aligned} & 21.17 \\ & 20.39 \end{aligned}$
514 C	16.36	17.06	19.02	24.16	26.69	16.23	16.90	21.51		
515B	18.66	18.96	20.11	24.16	31.46	20.28 23.34	20.56	$\begin{aligned} & 24.26 \\ & 29.68 \end{aligned}$	$\begin{aligned} & 27.72 \\ & 28.83 \end{aligned}$	$\begin{aligned} & 27.72 \\ & 27.58 \end{aligned}$
515 C	21.06	24.61	32.76	38.21	40.36	23.34	26.11	29.68		
5178	15.91	16.61	18.71	25.26	28.86	19.31	18.95	21.40	23.15	22. 26
518月	19.36	20.31	22.41	28.11	31.46	23.22	22.21 24.57	26.77	$\begin{aligned} & 28.76 \\ & 28.06 \end{aligned}$	$\begin{aligned} & 28.13 \\ & 27.58 \end{aligned}$
518 C	20.66	23.13	28.49	32.83	34.39	24.44	24.57	28.76		
5208	20.56	21.56	25.01	30.76	32.96	23.58	24.51	27.24	29.11	28.41
521 A	13.09	13.26	13.86	17.29	28.39	$14 \cdot 75$	$14 \cdot 10$	15.32	17.23	17.19
522 A	16.63	17.43	22.33	35.73	40.46	18.23	19.31	22.03	22.44	21.74
323B	20.13	20.76	22.33	28.10	39.90	23.03	21.46	$24 \cdot 70$	27.17	27.45
$524 B$	20.36	21.09	24.49	33.46	37.53	22.56	24.63	26.04	28.20	27.86
526 B	21-34	21.66	23.91	32.51	41.81	23.03	22.38	25.14	27.45	27-92
528B	12.15	12.32	13.15	15.85	18.48	14.40 14.79	$13 \cdot 85$	16.42	$\begin{aligned} & 16.94 \\ & 16.66 \end{aligned}$	$\begin{aligned} & 16.28 \\ & 16.23 \end{aligned}$
528 C	12.67	13.54	16.62	19.50	20.27	14.79	15.14	17.23	16.66	
529月	14.82	14.95	15.85	18.39	22.62	18.28	17.23 20.01	20.45 22.74	22.03 22.15	21.97 21.46
529 C	16.22	17.52	21.87	25.87	26.77	19.74	20.01	22.74	22.15	21.46
530 B	19.72	20.02	21.07	25.52	36.17	20.78	17.88	23.76	24.01	26. 24
5318	11.29	11.25	11.65	12.95	14.99	13.98	13.32	15.50	16.99	$17 \cdot 14$
532 B	12.06	12.09	12.76	14.66	20.09	12.37	12. 14	13.08	14.62	14.97

RUN NO.	$H_{F}{ }_{T}^{1}$	$\begin{gathered} H^{2} \\ F T \end{gathered}$	$\begin{gathered} \mathrm{H}_{\mathrm{FT}} 3 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{H}_{4} \\ \mathrm{FT} \end{gathered}$	$\begin{array}{r} H 5 \\ F T \end{array}$	$\mathrm{H} \underset{\mathrm{FT}}{ }{ }^{\mathrm{I}} \mathrm{~T}^{\mathrm{T}}$	${ }_{\mathrm{FT}}^{2}{ }_{\mathrm{F}}^{2} \mathrm{~T}$	$\begin{gathered} H 3, T \\ F T \end{gathered}$	${\underset{\mathrm{FT}}{\mathrm{H}}}_{\mathrm{H}}$	$\begin{gathered} H 5, T \\ F T \end{gathered}$
3558	543.3	550.2	569.4	839.2	880.9	603.2	594.4	671.8	859.1	954.0
355C	664.4	684.6	736.9	1144.3	1325.2	709.3	737.9	902.0	987.4	1005.7
357B	459.9	478.7	527.0	975.3	1206.5	395.7	399.5	471.7	580.4	606.8
358B	601.1	611.7	643.3	880.9	973.4	658.4	664.1	769.6	926.5	964.2
359B	699.1	742.9	902.8	1227.7	1288.5	822.4	859.1	1019.0	1035.1	1035.1
363B	675.4	741.5	917.3	1124.4	1173.3	826.9	838.3	961.6	977.0	984.8
364B	505.2	517.3	538.1	810.3	897.3	582.1	533.6	624.8	771.7	875.6
3658	556.1	581.6	647.2	1115.8	1302.2	705.3	662.2	767.4	824.6	840.6
366B	543.3	564.1	635.9	950.3	1023.9	677.6	660.3	769.6	797.8	802.3
3678	508.7	519.0	539.8	770.8	862.8	637.7	597.9	637.7	817.9	840.6
367C	476.0	484.6	498.3	729.7	761.9	556.6	527.2	573.5	729.6	817.9
368B	558.9	587.2	671.2	1133.8	1235.6	650.8	624.8	735.8	$780 \cdot 3$	776.0
3698	499.4	508.7	524.6	713.0	795.2	573.5	538.5	601.4	721.4	786.9
370 B	470.8	477.7	496.6	763.7	792.4	546.7	514.4	555.0	691.3	763.2
371 B	497.0	508.7	538.4	759.4	890.4	568.4	541.7	617.6	715.3	737.9
508 B	357.4	379.9	447.9	548.8	636.2	434.5	429.0	530.4	550.0	540.1
508 C	380.6	446.9	567.6	646.4	688.9	461.5	477.7	561.7	543.4	528.8
509 B	359.7	377.2	407.7	495.9	592.4	435.9	419.4	519.2	553.3	553.3
509C	387.7	444.5	561.7	642.2	683.5	$450 \cdot 0$	464.4	$548 \cdot 3$	$532 \cdot 0$	514.4
510 B	393.1	411.1	434.9	519.0	708.4	$444 \cdot 3$	431.7	551.6	603.2	580.4
510 C	400.2	424.0	486.3	719.0	826.6	$454 \cdot 3$	444.3	585.6	596.1	580.4
511 B	379.9	392.5	418.2	497.0	682.1	410.1	400.9	492.8	525.6	503.5
511C	395.8	429.8	555.5	778.0	844.6	414.1	419.4	533.6	502.0	528.8

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	H F	$H 2$ FT	H F	H FT	$H 5$ F
$512 B$	415.2	427.8	451.7	570.1	865.3
513B	417.2	429.8	457.1	579.1	848.3
514 B	499.7	512.1	537.7	635.5	783.4
514 C	536.4	560.7	629.2	$812 \cdot 1$	903.8
515B	616.6	627.1	667.6	812.1	1079.6
515 C	701.3	828.4	1128.2	1334.8	1417.6
517 B	520.8	545.0	618.3	851.9	983.3
518 B	641.2	674.7	749.4	955.8	1079.6
518 C	687.1	775.1	969.7	1130.8	1189.5
$520 B$	683.5	719.0	842.8	1053.6	1135.7
521 A	424.0	429.8	$450 \cdot 3$	568.7	966.1
522 A	$545 \cdot 7$	573.6	746.5	$1240 \cdot 2$	1421.5
523B	668.3	690.6	746.5	955.4	1399.9
524 B	676.5	702.3	824.0	1154.5	1308.7
5268	711.2	722.6	803.1	1118.8	1473.9
528 B	392.1	397.9	$426 \cdot 1$	518.7	$610 \cdot 3$
528 C	409.7	439.4	545.4	646.1	673.3
529B	483.2	487.7	518.7	607.1	756.9
529C	531.5	576.7	$730 \cdot 1$	874.0	906.8
5308	653.9	664.4	701.6	861.3	1256.9
531 B	363.1	361.7	375.2	419.3	489.0
5328	389.1	390.1	412.8	477.7	666.9

Table A-4a. (cont'd)

in	$\begin{aligned} & \text { n } \\ & \dot{\circ} \\ & \underset{\infty}{\infty} \end{aligned}$	$\begin{aligned} & \text { No } \\ & 0 \\ & 0 \\ & \text { No } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & \infty \\ & \infty \\ & 0 \\ & 0 \\ & \infty \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \infty \\ & \dot{0} \\ & \dot{\$} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & - \\ & -1 \\ & -1 \end{aligned}$	$\begin{aligned} & N \\ & 0 \\ & \infty \\ & \infty \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	n 0 n n n n	$\begin{aligned} & a \\ & 0 \\ & N \\ & N \\ & \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{\sim} \\ & \text { in } \end{aligned}$	0 0 0 ∞
	\vec{r}	$0 \cdot 1$	ma								
エ	\cdots							∞		$\stackrel{\square}{+}$	\cdots
	N	\bigcirc	$1{ }^{1} 0$	on	0	*	-	$\stackrel{\sim}{\sim}$	¢	-	-
		$\checkmark 6$	-の	∞	∞	∞	± 0	σ	∞	\checkmark	in

Table A-4b. Experimental cavitation data for 0.357 -inch ogive using liquid hydrogen (SI Unita).

$\begin{aligned} & \text { RUN } \\ & \text { no. } \end{aligned}$	$\begin{gathered} \text { CAVITY } \\ \text { CM } \end{gathered}$	$\stackrel{T O}{\text { DO }}^{(}$	$\begin{aligned} & \text { Vo } \\ & \text { M/SEC } \end{aligned}$	$\begin{gathered} \text { PO } \\ \mathrm{N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{gathered} \mathrm{PV} \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{gathered} \mathrm{HO} \\ \mathrm{M} \end{gathered}$	$\underset{M}{H V}$	KV	$\mathrm{TEG}^{\mathrm{T}} \mathrm{~K}$	$\underset{D E G}{T}{ }^{2} K$	$\operatorname{DEG}^{T}{ }^{3}$	$\text { DEG }^{\top} K$	${ }_{D E G}{ }^{5} K$
331A**		20.32	34.7	13.62	10.29	196.2	148.3	0.78					
331 B	3.81	20.41	39.6	9.73	10.56	140.5	152.5	-0.15	19.20	19.14	19.55	19.77	19.88
331 C	2.54	20.35	39.4	9.83	10.38	141.8	149.7	-0.10	18.94	18.95	19.53	19.70	19.81
3310**		20.52	34.5	14.31	10.91	206.9	157.8	0.81					
332A**		21.38	59.7	26.93	13.87	394.0	203.6	1.05					
332B	2.54	21.41	66.1	18.17	13.98	266.6	205.4	0.27	20.56	20.30	20.54	21.14	21.33
333A*		22.98	39.3	21.93	20.86	331.6	315.5	0.20					
334A**		20.95	52.8	21.86	12.32	317.8	179.6	0.97					
334B	3.30	20.99	58.3	15.01	12.46	218.7	181.7	0.21	19.34	19.19	19.46	19.86	20.20
334D**		21.16	51.6	23.52	13.06	343.0	191.0	1.12					
335B	3.05	22.23	65.2	19.79	17.33	294.8	258.3	0.17	21.19	20.83	21.08	21.85	22.08
336A*		22.96	39.9	21.52	20.76	325.2	313.9	0.14					
3368**		22.97	39.7	21.86	20.81	330.5	314.7	0.20					
337A	3.81	20.91	73.4	19.14	12.19	278.2	177.4	0.37	19.62	19.28	19.40	19.94	20.02
338A**		22.89	55.5	30.90	20.42	465.0	308.2	1.00					
338B	3.30	22.93	63.3	21.13	20.61	319.1	311.4	0.04	21.30	21.06	21.59	22.20	22.43
339A**		22.98	46.7	25.03	20.86	378.1	315.5	0.56					
340A**		22.02	54.8	25.93	16.43	384.0	243.9	0.92					
341R	2.29	22.17	74.6	22.76	17.07	338.3	254.1	0.30	21.17	20.87	21.30	21.89	22.00
342B	3.30	23.09	76.7	24.62	21.42	372.8	324.7	0.16	21.71	21.38	21.77	22.66	22.94
344B	3.30	-20.27	38.4	9.56	10.14	137.7	146.1	-0.11	19.07	19.07	19.46	19.72	19.88

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{r}

*

+\underset{\sim}{*}

r
\end{array}

\] \& \[

$$
\begin{aligned}
& n \\
& \underset{\sim}{\dot{a}} \\
& \stackrel{1}{2}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0 \\
& \dot{0} \\
& \dot{N}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { N } \\
& \dot{\sim} \\
& \text { N }
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \alpha_{\infty}{ }^{\circ} \\
& \dot{\infty} \\
& \dot{a} \dot{\sigma}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \stackrel{n}{n} \\
& \stackrel{1}{-} \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
\vec{\sim}-\vec{~} \\
\dot{\sim} \dot{N} \\
\hline
\end{array}
$$
\] \& \& N

N \& N
\sim
\sim
\sim

\hline $$
\begin{aligned}
& m_{0}^{\underline{0}} \\
& -\underset{\Delta}{\leftrightarrows}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \stackrel{a}{\hat{a}} \\
& \dot{\sigma}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { m} \\
& \stackrel{\rightharpoonup}{\sim} \\
& \hline
\end{aligned}
$$
\] \& in

i

i \& $$
\begin{aligned}
& n 00 \\
& n 00 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$ \& O

\cdots \& $$
\begin{aligned}
& M N \\
& \sim \\
& \\
& \dot{\sim} \dot{\sigma} \\
& \sigma
\end{aligned}
$$ \& N

N
N \& － \& $\xrightarrow{\substack{\text { a } \\ \text { d }}}$

\hline $$
\begin{aligned}
& \text { N } \\
& \text { rü }
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \stackrel{0}{\circ} \\
& \underset{\sim}{\infty}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \infty \\
& \infty \\
& \dot{\infty} \\
& \underset{\sim}{2}
\end{aligned}
$$

\] \& $\stackrel{n}{\sim}$ \& \& | \pm |
| :--- |
| |
| | \& \& \& ＋ \& ה

N

\hline $$
\begin{aligned}
& -\underline{y} \\
& -\underset{\sim}{山}
\end{aligned}
$$ \& $\stackrel{\infty}{\infty}$ \& \[

$$
\begin{aligned}
& \infty \\
& \stackrel{\infty}{0} \\
& \dot{\sigma}
\end{aligned}
$$
\] \& \pm

$\stackrel{-}{+}$

$\stackrel{\text { N }}{ }$ \& \[
$$
\begin{aligned}
& \text { FN N } \\
& \stackrel{y}{0} \\
& 0 \rightarrow 0
\end{aligned}
$$

\] \& ＋ \& \[

$$
\begin{aligned}
& \text { 옹 } \\
& \text { in } \\
& \dot{\circ} \dot{\sim}
\end{aligned}
$$
\] \& \sim

$\dot{\sim}$
$\dot{\sim}$ \& N \& İ
－
N

\hline
\end{tabular}

2	$\begin{aligned} & \text { JM M M } \\ & 0.9 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 90 \\ & 0 \\ & 00 \\ & 00 \end{aligned}$		N		$\begin{aligned} & n-1 \\ & \infty \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	－${ }_{\text {－}}^{\square}$
	～	\because ？	9 の「	～0	のr，	．	Mn吅m	$\cdots \rightarrow \sim$	
$>^{\text { }}$	＋0゚	第式式			$\begin{aligned} & \dot{\infty} \dot{\circ} \dot{\circ} \\ & \stackrel{\circ}{\mathrm{N}} \stackrel{\circ}{\mathrm{~N}} \end{aligned}$	$\stackrel{\underset{\sim}{c}}{\underset{\sim}{2}}$		$\begin{aligned} & \dot{\circ} \stackrel{0}{\circ} \\ & \sim \\ & \sim \end{aligned}$	$\stackrel{0}{\sim}$
옫				$\begin{gathered} \underset{\sim}{\infty} \\ \infty \\ \infty \\ \infty \\ \sim \\ \hline \end{gathered}$	$\begin{gathered} N \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered} \dot{0}$	$\begin{aligned} & \dot{a} \\ & \dot{\circ} \\ & \stackrel{\sim}{\sim} \end{aligned}$			$\begin{aligned} & \text { } \underset{\sim}{\sim} \\ & \dot{j} \dot{\sim} \\ & m \sim \end{aligned}$
a	Nへ～		Nへす。	ON	ingo	$\stackrel{\text { ¢ }}{\stackrel{1}{*}}$	の．0．0	个へ～～	\cdots
	COO	으웅	응	ゴ心	$\stackrel{(1)}{\oplus}$	$\stackrel{\square}{-}$	$\stackrel{m}{\sim} \times{ }_{\sim}^{\circ} \dot{\sim}$	－¢ ¢	$\stackrel{0}{0}$
$\circ \sum_{0}^{\sum}$			N N	－		～	¢ ¢ ¢ ¢ N	OnN	－
	mo	－${ }_{\text {－}}^{\text {－}}$	べきの	$\stackrel{m}{m}$	べがN	$\stackrel{\circ}{\sim}$	へべべべべへ		Ni
و	¢	ON：	\bigcirc	$0 \sim$	－09	$\stackrel{\square}{0}$	∞	さ「．	90
	$m+m$	mom		u゙it	min	$\stackrel{\sim}{*}$	去式䒺	－べさ	へ～N

RUN
NO．
34
345B
34
34
346B
346
347A
347R
347C
3488
348C
34
349
34
350
351A＊＊
3518
351 C
3510＊
352A＊
352 B
352C＊＊
353A＊＊
353B
3548

＊DENOTES AN INCIPIENT RUN
＊＊DENOTES A DESINENT RUN

T 1	T 2	T 3	T 4	T ${ }^{5}$
DEG K	DEG K	DEG K	DEG K	DEG K
21.03	20.98	21.40	22.28	22.67
21.59	21.73	22.46	22.80	$22 \cdot 87$
19.67	19.70	20.22	20.90	21.05
21.33	21.36	21.88	22.56	22.71
22.12	22.28	22.92	22.98	$22 \cdot 98$

$$
\stackrel{\rightharpoonup}{\dot{\rightharpoonup}}
$$

\[

\]

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{array}{r}
m \\
\underset{\sim}{m} \\
\underset{\sim}{\infty} \\
\hline 0
\end{array}
$$

$$
\begin{array}{cc}
\stackrel{N}{N} \\
\stackrel{N}{\circ} & \dot{0}
\end{array}
$$

$$
\stackrel{m}{\underset{0}{\circ}}
$$

조		$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	N	$\begin{aligned} & n \\ & 0 \\ & 0 \\ & m \end{aligned}$	$\begin{aligned} & \because m \\ & \vdots \\ & \vdots \\ & \hdashline \mathbf{m} \end{aligned}$	$\begin{aligned} & \stackrel{n}{\dot{n}} \\ & \stackrel{n}{m} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & m \\ & \stackrel{m}{m} \\ & \dot{\sim} \underset{m}{\sim} \end{aligned}$	$\begin{gathered} \stackrel{\rightharpoonup}{+} \\ \underset{m}{\prime} \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \\ & \underset{\sim}{\infty} \underset{\sim}{\sim} \\ & \sim \end{aligned}$	$\begin{gathered} \underset{\sim}{N} \\ \underset{\sim}{*} \end{gathered}$	$\begin{aligned} & \dot{a} \\ & \dot{\sim} \\ & \underset{\sim}{+} \end{aligned}$	$\begin{aligned} & n \\ & n_{0}^{\infty} \\ & N \\ & N \sim \end{aligned}$	
오 $^{\Sigma}$		$\begin{aligned} & \underset{\sim}{\circ} \\ & \dot{\sim} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\sim}{\sim} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \underset{\sim}{n} \\ & \dot{\sim} \\ & \underset{\sim}{2} \end{aligned}$		$\begin{aligned} & \text { N } \\ & \dot{\circ} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{\sim} \\ & \infty \\ & \infty \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \underset{m}{n} \end{aligned}$	$\begin{aligned} & a r \\ & \dot{\circ} \stackrel{\rightharpoonup}{\circ} \\ & \underset{\sim}{m} \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & \infty \\ & \text { ef } \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \dot{8} \\ & \stackrel{\infty}{\sim} \\ & \hline \end{aligned}$		
Z	$\begin{aligned} & \text { bo } \\ & \text { O } \\ & \text { O } \\ & \text { NO } \end{aligned}$	$\begin{aligned} & \hat{O} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \stackrel{a}{0} \\ & \dot{9} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \vec{a} \\ & \dot{0} \\ & \dot{N} \end{aligned}$	$\begin{aligned} & \infty-1 \\ & \infty \\ & \dot{\infty} \\ & \dot{\sim} \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \dot{\sim} \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{0}{\circ} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \sim \\ & \underset{\sim}{\infty} \\ & \stackrel{y}{N} \end{aligned}$	$\begin{aligned} & -1 \\ & \dot{0} \\ & \dot{N} \end{aligned}$	Nさ			－	∞ 0 0 0 \bullet $\bullet 0$ \sim
\&		$\begin{aligned} & 0 \\ & \infty \\ & \text { n } \end{aligned}$	\circ N	$\begin{aligned} & i n \\ & \stackrel{i}{n} \end{aligned}$	～～0	$\stackrel{ \pm}{N}$	N	$\begin{aligned} & m \\ & 0 \\ & 0 \\ & \dot{0} \\ & \stackrel{0}{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{a}{0} \\ & \stackrel{-}{n} \\ & \end{aligned}$	0 ~ 0 $\sim \sim \sim$ $m \sim \sim$	－	$\stackrel{\infty}{\infty}$	ON $0 \sim$ $\dot{\sim}$ \sim	NN
○	$$	$\stackrel{\rightharpoonup}{\dot{m}}$	$\stackrel{ \pm}{\stackrel{N}{r}}$	$\stackrel{N}{\vdots}$	号：	$\begin{gathered} \infty \\ \stackrel{\infty}{\sim} \end{gathered}$	$\begin{gathered} \text { n } \\ \text { ¢ } \\ \text { n } \end{gathered}$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & 0 \\ & \text { i } \\ & \text { in } \end{aligned}$	mさ	$\stackrel{\bigcirc}{\sim}$	$\stackrel{\sim}{n}$	？	0
응		$\begin{aligned} & \stackrel{N}{0} \\ & \dot{N} \end{aligned}$	$\begin{gathered} \underset{\sim}{n} \\ \stackrel{i}{n} \end{gathered}$	$\begin{aligned} & \underset{\sim}{2} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \hat{\sim} \sigma^{\circ} \\ & \dot{N} \stackrel{\dot{N}}{2} \end{aligned}$	$\stackrel{\infty}{\circ}$ $\stackrel{\sim}{N}$	$\begin{aligned} & \dot{\sim} \\ & \dot{N} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{\infty} \stackrel{\infty}{0} \\ & \stackrel{\sim}{\sim} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\alpha} \\ & \dot{N} \end{aligned}$	$\begin{aligned} & \dot{0} 0 \\ & \dot{N} \\ & \dot{N} \dot{N} \end{aligned}$	「	$\begin{aligned} & \text { N } \\ & \stackrel{1}{\sim} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & a \underset{\sim}{n} \\ & \stackrel{\sim}{N} \\ & \underset{N}{N} \end{aligned}$	～M

Table A－4b．（cont＇d）
＊DENOTES AN INCIPIENT RUN
＊＊DENOTES A OESINENT RUN

	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{-1}{\sim} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \infty \\ & \stackrel{\rightharpoonup}{\sim} \end{aligned}$		$\begin{aligned} & \text { on } \\ & 00 \\ & \dot{0} 0 \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & \text { No } \\ & \dot{\sim} \dot{\sim} \\ & \dot{N} \end{aligned}$	$\begin{aligned} & \dot{O} \dot{O} \\ & \dot{\circ} \dot{\sim} \\ & \dot{N} \end{aligned}$	$$
†	$\begin{aligned} & n \\ & 0 \\ & \dot{N} \end{aligned}$	$\begin{aligned} & i \\ & i \\ & i \\ & i \end{aligned}$	$$	$\begin{aligned} & N{ }_{N}^{\infty} \\ & \stackrel{0}{0} \\ & \dot{\sim} \dot{N} \end{aligned}$	$\begin{aligned} & N=0 \\ & \dot{N} \dot{\sim} \\ & \dot{N} \end{aligned}$	$\begin{aligned} & \text { mo } \\ & \vdots \vdots \\ & \dot{\sim} \dot{\sim} \end{aligned}$	$\begin{aligned} & \text { N N} \\ & \dot{\sim} \dot{\sim} \\ & \dot{N} \end{aligned}$
$\begin{aligned} & \text { mu } \\ & 1-\underset{\sim}{u} \end{aligned}$	$\begin{aligned} & \tilde{O} \\ & \dot{\sim} \end{aligned}$	$\stackrel{n}{\dot{\circ}}$	$\begin{aligned} & \vec{~} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$			$\begin{aligned} & \text { m } \\ & \underset{\sim}{\circ} \dot{\circ} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & 0 \sim \\ & \text { Mo } \\ & 00 \\ & \text { No } \end{aligned}$
$\begin{aligned} & N_{0}^{*} \\ & \vdash \underset{\sim}{U} \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \text { o} \\ & \dot{\circ} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \text { ion } \\ & \dot{\sim} \\ & \underset{\sim}{n} \end{aligned}$	$$		$\begin{aligned} & J_{0}^{n} \\ & 0.0 \\ & \dot{\sim} \dot{\sim} \end{aligned}$	
$\begin{aligned} & -\underbrace{0}_{0} \\ & -\underset{0}{4} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \dot{\circ} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{\infty} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & 0 . n \\ & \alpha \underset{1}{2} \\ & \dot{0} \dot{\sim} \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { a } \\ & \dot{\circ} \dot{0} \\ & -1 \end{aligned}$	$\begin{aligned} & \text { mo } \\ & \dot{O}-\dot{0} \\ & \text { NiN } \end{aligned}$	$\stackrel{\infty}{\sim}$

$\stackrel{m}{\sim}$
Table A-4b. (cont'd)

交		ano	$\begin{aligned} & \sim N \sim \\ & 0 \\ & \underset{\sim}{\sim} \underset{\sim}{\sim} \sim \\ & \sim \end{aligned}$	$\stackrel{y}{\underset{\sim}{\sim}}$					－
오 $^{\Sigma}$				$\begin{aligned} & \stackrel{0}{0} \\ & \dot{\circ} \\ & \underset{\sim}{2} \end{aligned}$					－
$2 \sum_{i}^{\sum}$		mへす		$\stackrel{\infty}{\stackrel{\infty}{-}}$		M．… $\underset{\sim}{N} \sim \underset{\sim}{N}$	NM．0゚	an゚N NNM． ํNN \rightarrow－r	N
O				$\begin{aligned} & \stackrel{0}{n} \\ & \dot{\sim} \end{aligned}$					N 0 0 \sim \sim
وự		のが	mor Nosin nin	$\begin{aligned} & \text { in } \\ & \text { in } \end{aligned}$			－		－
\circ_{0}°				$\stackrel{\sim}{\dot{\circ}}$					No a － Ni

RUN
NO． 369A＊＊ 369C＊＊

70A＊＊ $370 A^{* *}$
370 B
370 C 370C＊＊ 371A＊＊ 3718
371 C＊＊ 507A＊＊ 508A＊＊ 508 B
508 C
508 D 509A＊＊ 509B 5090 ＊＊ $510 A^{* *}$
$510 B$ $511 A^{* *}$
511 B
511 C
$511 \mathrm{D}^{*}$ $512 A^{*}$
512 A －

${ }_{T}{ }^{5}$

$\begin{array}{ll}0 & \infty \\ \stackrel{\infty}{0} \\ \underset{\sim}{\sim} & \dot{\sim} \\ \sim & N \\ N\end{array}$
$\begin{array}{ll}N \\ \stackrel{\rightharpoonup}{0} \\ \stackrel{\sim}{\sim} & \dot{\sim}\end{array}$
$\underset{~}{i}$
20.76
$\begin{array}{ll}m & \infty \\ 0 & n \\ \bullet & 0 \\ n & n\end{array}$

$\overrightarrow{0}$	$\underset{\sim}{N}$
$\dot{\sim}$	\dot{N}
\dot{N}	

$\begin{array}{ccc}\infty & \infty & \infty \\ \dot{\sim} & \dot{\sim} \\ \dot{N} & \dot{\sim} & \dot{\sim}\end{array}$
OO
웅
N N

n	$\underset{\sim}{I}$	
\dot{N}	$\dot{\sim}$	

$\underset{\sim}{*}$

$\begin{array}{ll}m & \cdots \\ \stackrel{m}{\sim} \\ \underset{\sim}{N} & \dot{\sim}\end{array}$
n
$\underset{\sim}{n}$
$\underset{\sim}{n}$ N
N
N DEG $^{1} K$

さす
21.23
21.92
22.12 ∞
$\stackrel{\infty}{i}$
$\stackrel{\rightharpoonup}{2}$ $\stackrel{\infty}{N}$
$\stackrel{+}{+}$
N
N
N

[L•0

 a
0
0 0.86 0.33 $\stackrel{N}{n} \stackrel{ \pm}{0}$
 Table A-4b. (cont'd)

RUN	CAVITY	T0	vo	PO N/CM/CM	PV $\mathrm{N} / \mathrm{CM} / \mathrm{CM}$	HO	HV
NO.	CM	DEG K	M/SEC	N/CM/CM	N/CM/CM	M	M
513A**		20.90	55.6	25.69	12.15	372.8	176.9
513B	1.90	20.94	62.6	16.20	12.29	235.7	179.0
514A**		21.82	45.1	22.30	15.59	329.3	230.7
514 B	2.54	21.89	51.7	15.74	15.88	233.1	235.2
514 C	1.52	21.91	50.9	16.54	15.96	245.0	236.5
5140**		21.96	45.2	22.59	16.17	334.4	239.8
515A**		22.83	58.5	33.27	20.12	499.9	303.3
515 B	2.54	22.88	66.7	21.55	20.37	325.2	307.4
515C	1.02	22.90	64.9	24.10	20.47	363.6	309.0
516A**		22.90	42.9	24.90	20.47	375.4	309.0
517A**		21.90	52.0	24.61	15.92	363.7	235.9
517B	1.52	21.92	58.1	17.55	16.01	260.0	237.2
517C**		21.90	52.6	24.01	15.92	355.0	235.9
518A**		22.83	50.4	26.78	20.12	403.0	303.3
518 B	1.90	22.86	56.3	19.97	20.27	301.2	305.7
518 C	1.27	22.87	55.7	21.14	20.32	318.9	306.5
5180**		22.86	50.1.	27.07	20.27	407.6	305.7
5194**		22.88	43.7	24.86	20.37	374.8	307.4
520A**		22.88	49.9	27.64	20.37	416.3	307.4
520 B	1.52	22.90	56.5	20.52	20.47	309.8	309.0
521 A	2.29	21.00	76.9	19.44	12.50	282.9	182.2
522 A	1.27	21.90	76.0	22.84	15.92	337.8	235.9
522B**		22.00	68.0	34.69	16.34	512.5	242.5
523A**		22.84	69.5	38.98	20.17	584.8	304.1
523B	1.90	22.91	79.0	24.98	20.51	376.8	309.8

denotes an incipient run * DENOTES AN INCIPIENT RUN

T ${ }^{4}$
x
$-\quad \underset{0}{0}$
a
0
$\stackrel{j}{~}$
$\begin{array}{ll}\infty & 0 \\ \\ \dot{N} & \stackrel{0}{\sim} \\ \dot{N} & \dot{N}\end{array}$
$\begin{array}{ccc}\underset{N}{N} & \stackrel{n}{\circ} & \underset{\sim}{*} \\ \underset{N}{\dot{N}} & \dot{\sim} & \dot{N}\end{array}$

\sim^{2}	\cdots	$\stackrel{\infty}{\sim}$	今N	~~0	$\stackrel{\sim}{2}$	む	\pm	\checkmark
-	$\stackrel{\square}{\sim}$	\cdots	$\dot{\circ} \dot{0}$	-:	$\stackrel{\square}{\circ}$	$\stackrel{\square}{\circ}$	$\stackrel{-}{\square}$	
-			No	N		\rightarrow	\cdots	
\times	${ }_{\infty}$	\cdots	우N	m- ${ }^{\text {m }}$	in	\bigcirc	$\stackrel{\square}{\circ}$	\bigcirc
-0	$\stackrel{-}{-1}$	\cdots	$\bigcirc \dot{\circ}$	$\stackrel{-1}{-1}$	$\stackrel{-}{\sim}$	$\stackrel{\circ}{\circ}$	$\stackrel{+}{\square}$	

Table A-4b. (cont'd)

TO	VO	PO	PV	HO	HV
DEG K	M/SEC	N/CM/CM	N/CM/CM	M	M
22.80	59.4	33.09	19.97	496.8	301.0
22.84	67.0	22.86	20.17	344.5	304.1
22.89	68.1	39.27	20.42	589.8	308.2
23.13	75.9	26.07	21.63	394.9	328.0
20.89	38.9	16.00	12.12	232.6	176.4
20.90	42.8	12.10	12.15	176.1	176.9
20.88	42.4	12.94	12.09	188.3	175.9
20.90	39.2	16.03	12.15	233.1	176.9
21.80	45.4	21.53	15.51	317.8	229.4
21.81	51.1	15.60	15.55	230.6	230.0
21.84	50.3	17.15	15.68	253.6	232.0
21.88	46.6	21.55	15.84	318.6	234.6
22.98	68.7	40.49	20.86	609.0	315.5
23.10	77.8	25.52	21.47	386.5	325.5
20.87	58.5	26.86	12.05	389.4	175.3
20.87	65.9	16.29	12.05	236.7	175.3
20.91	58.5	27.16	12.19	394.1	177.4
20.86	67.0	31.36	12.02	454.3	174.8
20.91	74.6	19.23	12.19	279.5	177.4
20.94	57.2	31.85	12.29	461.9	179.0
20.80	66.5	30.88	11.82	446.9	171.7
20.88	74.8	19.35	12.09	281.1	175.9
20.91	67.1	31.35	12.19	454.5	177.4
22.66	44.7	23.86	19.30	358.0	290.0
22.79	44.2	24.90	19.93	374.7	300.2

[^11]| RUN | CAVITY |
| :---: | :---: |
| NO. | |
| 524A** | |
| 5248 | 1.52 |
| 526A** | |
| 526B | 1.52 |
| 528A** | |
| 528 B | 2.03 |
| 528 C | 1.02 |
| 5280** | |
| 529A** | |
| 529B | 2.54 |
| 529 C | 1.02 |
| 5290** | |
| 530A** | |
| 530 B | 2.29 |
| 531A** | |
| 5318 | 3.30 |
| 531C** | |
| 532A** | |
| 532B | 2.54 |
| 532C** | |
| 533A** | |
| 533B | 2.29 |
| 533C** | |
| 534A** | |
| 534C** | |

$T 12$	T	T	T	T
TEG				

$\dot{\infty}$
$\dot{\sim}$ \pm
N
\dot{N}
N On
$\stackrel{N}{N}$
$\stackrel{N}{N}$
\sim N
$\dot{\infty}$
$\dot{\sim}$
U．
N
N
NT
©
Ni
N $\begin{array}{ll}\stackrel{n}{\text { º }} & 8 \\ \dot{\sim} & \dot{\sim}\end{array}$ $\stackrel{+}{0}$
$\stackrel{1}{\circ}$
i DEG $^{\top}{ }^{4} K$
 $\stackrel{\infty}{\sim}$ N N
N
N N
$\stackrel{N}{n}$
$\stackrel{-1}{n}$
22.76 Hi
Ni
N 22.46
22.91 ∞
$\stackrel{\infty}{\sim}$
$\stackrel{\sim}{N}$ DEG ${ }^{3} K$
 Fi ก
$\stackrel{\sim}{n}$ \circ
+
\vdots
\sim

22.16 | N |
| :--- |
| |
| |
| NO | ∞

$\stackrel{\circ}{\sim}$
N a
a
-
-
$\operatorname{DEG}^{1} K \quad \operatorname{DEG}^{2} K$ 20.02
0.04
式 0
0
-1
-1 $\stackrel{\circ}{i}$

$\stackrel{-1}{\sim}$ 응 | N | N |
| :--- | :--- |
| $\dot{\sim}$ | 0 |
| | | \ddagger

∞
\vdots
-1 $⿱ 艹$
$\underset{\sim}{u}$ Ni 21.08
21.21 21.64
21.67 21.19 21.92 20.08
19.99 21.71

21.96 | \circ |
| :--- |
| ∞ |
| - | KV

0.71
0.80
 1.04
0.17
0.28 0.93
-0.00
0.10 $\stackrel{n}{0}$ $\stackrel{0}{\stackrel{\circ}{\circ}}$ $\begin{array}{r}7 \\ \hdashline \\ \hdashline\end{array}$ ∞

 $\because \stackrel{n}{n}$ Table A－4b．（cont＇d）

T0	vo	PO	PV	HO	HV
DEG K	M／SEC	N／CM／CM	N／CM／CM	M	M
22.74	44.0	24.39	19.68	366.6	296.2
22.88	43.8	25.59	20.37	385.7	307.4
20.83	50.3	21.32	11.92	309.3	173.3
20.85	56.2	14.31	11.98	207.9	174.3
20.88	55.6	15.07	12.09	219.0	175.9
21.67	52.6	24.99	14.99	367.8	221.1
21.74	59.7	17.32	15.27	255.7	225.5
21.76	59.2	18.77	15.35	277.0	226.8
22.71	51.3	27.92	19.54	419.0	293.9
22.74	59.3	19.66	19.68	295.9	296.2
22.76	58.8	20.99	19.78	316.0	297.8
21.69	60.0	28.26	15.07	415.7	222.4
21.74	66.4	19.19	15.27	283.1	225.5
22.85	59.6	33.61	20.22	505.1	304.9
22.93	68.4	22.49	20.61	339.6	311.4
20.86	41.5	16.91	12.02	245.6	174.8
20.89	46.9	12.56	12.12	182.8	176.4
20.85	46.6	13.00	11.98	189.0	174.3
20.34	$42 \cdot 0$	17.66	11.95	256.5	173.8
22.95	71.1	40.07	20.71	602.4	313.0
22.99	80.2	26.42	20.91	395．0	316.3
22.85	69.5	39.90	20.22	598.6	304.9
22.92	79.0	25.63	20.56	386.5	310.6
22.93	69.5	39.80	20.61	598．1	311.4
20.73	66.5	29.59	11.58	427.9	168.1
20.82	$73 \cdot 6$	18.58	11.88	269.7	172.7

RUN $535 \mathrm{~A} * *$
$535 \mathrm{C} *$ $535 C^{*} *$ $*$
$*$
$*$
\vdots
0
n

n | ∞ |
| :--- |
| ∞ |
| in |
| \sim | － $537 \mathrm{~A} *$

537 B
537 C $538 \mathrm{~A} * *$
538 B $539 \mathrm{~A} * *$
539 B 540A＊＊ $540 \mathrm{~A} *$
54 OF
541 A $541 A * *$
541 e $5410^{* *}$ $542 A * *$
5420 $543 r * *$
$543 日$
$543 C * *$ $544 A^{*}$
5448

[^12]DEG $^{5} K$
20.50

$\begin{array}{cc} & \stackrel{\rightharpoonup}{\bullet} \\ \vdash \underset{\sim}{\sim} & \dot{\sim}\end{array}$

Tabl: A-4b. (cont'd)

$\geq^{\text {² }}$	
$\frac{\sum}{2}$	のN N ¢ ¢ -
$\circ \sum_{i}^{\sum}$	号
oư	

* DENOTES AN INCIPIENT RUN
** DENOTES A DESINENT RUN
Table A-4b. (cont'd)

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	$\stackrel{\mathbf{P}}{\mathrm{N} / \mathrm{CM}^{1} / \mathrm{CM}}$	$\stackrel{P}{\mathrm{~N} / \mathrm{CM} / \mathrm{CM}}$	$\begin{gathered} p{ }^{3} \\ \mathrm{~N} / \mathrm{CM}^{2} / \mathrm{CM} \end{gathered}$	$\begin{gathered} P 4 \\ N / C M / C M \end{gathered}$	$\stackrel{P}{ } \quad{ }_{N / C M}^{5} / C M$	$\begin{gathered} P 1, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 2, T \\ N / C M / C M \end{gathered}$	$\begin{aligned} & \mathrm{P} 3, \mathrm{~T} \\ & \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{aligned}$	$\begin{gathered} P 4 i^{T} \\ N / C M / C M \end{gathered}$	$\begin{gathered} \mathrm{P} 5 ; \mathrm{T} \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$
331 B	6.76	7.32	6.83	8.92	8.85	7.28	7.14 6.70	8.14	8.72	$\begin{aligned} & 9.01 \\ & 8.82 \end{aligned}$
331 C	6.78	7.40	7.21	9.43	9.90	6.68				
332B	8.97	9.07	9.38	14.21	15.18	11.03	10.23	10.97	12.99	13.69
334B	7.79	7.79	8.09	11.45	10.90	7.61	7.25	7.91	8.96	9.93
335B	10.60	10.65	10.95	15.96	17.22	13.17	11.92	12.78	15.72	16.68
337A	7.69	7.80	8.00	13.62	11.11	8.32	7.47	7.76	9.18	9.41
338B	12.39	12.58	13.18	18.39	19.86	13.57	12.71	14.68	17.20	18.23
341 B	11.45	11.28	11.80	17.86	20.62	13.10	12.05	13.57	15.88	16.34
342B	12.52	12.38	12.69	18.93	20.42	15.15	13.87	15.39	19.30	20.66
344B	6.51	6.51	7.07	9.11	9.26	6.97	6.97	7.91	8.58	9.01
345B	6.52	6.59	7.04	9.31	10.31	6.40	6.29	7.49	8.09	8.34
346B	6.99	7.59	9.69	11.56	12.02	8.48	8.88	9.72	9.64	9.67
347e	7.78	8.14	10.19	15.59	16.51	9.75	9.78	10.87	11.06	10.97
3488	6.82	6.92	7.23	10.22	9.74	7.79	7.40	8.14 8.37	9.04 9.21	9.96 9.72
348 C	7.21	7.45	7.80	11.00	12.31	7.56	7.18			
349B	9.67	10.22	11.90	19.95	21.72	11.95	11.62	13.21	13.76	13.54
351B	8.69	8.83	9.25	13.52	14.35	10.84 8.80	10.20 8.29	10.94 9.13	13.24 10.26	13.72 11.68
351 C	8.07	8.14	8.45	12.90	10.97	$8 \cdot 80$			10.26	
352 E	10.94	11.00	11.60	15.02	17.02	12.22	11.52	13.24	14.87	15.88
3538	11.14	11.85	14.82	18.61	19.48	14.14	14.29	16.17	16.01	16.30
354B	8.89	9.00	9.21	14.89	15.02	9.96	9.96	10.94	13.28	13.72

Table A-4b. (cont'd)

$\begin{gathered} \mathrm{P} 1, \mathrm{~T} \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{gathered} \mathrm{P} 2, \mathrm{~T}^{\top} \\ \mathrm{N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{gathered} P 3 \cdot T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 4, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 5, T \\ N / C M / C M \end{gathered}$
12.60	12.43	13.95	17.55	19.35
14.68	15.23	18.37	19.97	20.32
8.45	8.53	9.99	12.15	12.67
13.69	13.80	15.84	18.83	19.54
16.85	17.55	20.56	20.86	20.86
16.94	17.16	19.49	19.78	19.93
12.19	11.22	13.03	15.88	17.87
14.60	13.76	15.80	16.90	17.20
14.06	13.72	15.84	16.38	16.47
13.28	12.50	13.28	16.77	17.20
11.68	11.10	12.02	15.07	16.77
13.54	13.03	15.19	16.05	15.96
12.02	11.32	12.57	14.91	16.17
11.48	10.84	11.65	14.33	15.72
11.92	11.39	12.89	14.79	15.23
9.24	9.13	11.16	11.55	11.35
9.78	10.11	11.78	11.42	11.13
9.27	8.93	10.94	11.62	
9.55	9.84	11.52	11.19	10.84
9.44	9.18	11.58	12.60	12.15
9.64	9.44	12.26	12.46	12.15
8.74	8.56	10.41	11.06	10.62
8.82	8.93	11.22	10.59	11.13

Table A-4b. (cont'd)

$$
\begin{array}{lccccc}
\text { RUN } & \mathrm{P} 1 & \mathrm{P} 2 \\
\text { NO. } & \mathrm{N} / \mathrm{CM} / \mathrm{CM} & \mathrm{~N} / \mathrm{CN} / \mathrm{CM} & \mathrm{~N} / \mathrm{CM} / \mathrm{CM} & \mathrm{~N} / \mathrm{CM} / \mathrm{CM} & \mathrm{~N} / \mathrm{CM} / \mathrm{CM}
\end{array}
$$

P 5, ${ }^{\text {P/ }}$
11.03
12.05
11.29
15.27
14.48
18.55
17.47
15.59
19.21
11.22
10.44
18.32
20.97
11.29
10.84

$$
\begin{aligned}
& H \quad 5 . T \\
& M \\
& 290.8 \\
& 306.5 \\
& 184.9 \\
& 293.9 \\
& 315.5 \\
& 300.2 \\
& 266.9 \\
& 256.2 \\
& 244.5 \\
& 256.2 \\
& 249.3 \\
& 236.5 \\
& 239.8 \\
& 232.6 \\
& 224.9 \\
& 164.6 \\
& 161.2 \\
& 168.6 \\
& 156.8 \\
& 176.9 \\
& 176.9 \\
& 153.5 \\
& 161.2
\end{aligned}
$$

Table A-4b. (cont'd)
Table A-4b. (cont'd)

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	$H_{M} 1$	H_{M}^{2}	H_{M}^{3}	$\mathrm{H}_{\mathrm{M}}{ }^{4}$	H_{M}^{5}	$\begin{aligned} & \mathrm{H} \\ & M \end{aligned}$	$\begin{gathered} H 2, T \\ M \end{gathered}$	$\begin{gathered} H 3, T \\ M \end{gathered}$	$\begin{gathered} H 4, T \\ M \end{gathered}$	$\mathrm{H}_{\mathrm{M}}^{5, T}$
512 B	126.5	130.4	137.7	173.8	263.7	143.8	144.7	153.9	172.7	170.2
513 B	127.2	131.0	139.3	176.5	258.6	131.6	134.1	167.6	169.7	165.6
5148	152.3	156.1	163.9	193.7	238.8	162.6	164.6	195.5	218.7	215.0
514 C	163.5	170.9	191.8	247.5	275.5	162.1	169.2	218.7	215.6	206.5
5150	187.9	191.1	203.5	247.5	329.1	205.4	208.3	248.6	286.9	286.9
515 C	213.7	252.5	343.9	406.8	432.1	238.5	269.1	309.0	299.4	285.4
517日	158.7	166.1	188.5	259.7	299.7	194.9	191.0	217.4	236.5	226.8
518 B	195.4	205.6	228.4	291.3	329.1	$237 \cdot 2$	226.2	276.4	298.6	291.6
518 C	209.4	236.3	295.6	344.7	$362 \cdot 6$	250.7	252.0	298.6	290.8	285.4
520B	208.3	219.2	256.9	321.1	346.2	241.2	251.4	281.6	302.5	294.7
521 A	129.2	131.0	$137 \cdot 2$	173.3	294.5	146.5	139.8	152.5	172.7	172.2
522A	166.3	174.8	227.5	378.0	433.3	183.3	194.9	224.3	228.7	221.1
523B	203.7	210.5	227.5	291.2	$426 \cdot 7$	235.2	218.0	253.4	280.9	283.9
524B	206.2	214.1	251.2	351.9	398.9	$230 \cdot 0$	252.7	268.3	292.3	288.5
526R	216.8	220.2	244.8	341.0	449.3	235.2	228.1	258.3	283.9	289.2
5288	119.5	121.3	129.9	158.1	186.0	142.9	137.2	$164 \cdot 1$	169.7	162.6
528 C	124.9	133.9	166.2	196.9	205.2	147.0	150.7	172.7	166.6	162.1
5298	147.3	148.6	158.1	185.0	230.7	183.9	172.7	207.1	224.3	223.7
. 5296	162.0	175.8	222.5	266.4	276.4	199.5	202.4	232.0	225.5	218.0
$530 R$	199.3	202.5	213.9	262.5	383.1	210.7	179.6	243.2	245.9	$270 \cdot 5$
5318	110.7	110.3	114.4	127.8	149.1	138.5	131.6	154.4	170.2	171.7
532B	118.6	118.9	125.8	145.6	203.3	121.8	119.4	129.1	145.1	148.8

Table A-4b. (cont'd)

${ }_{I}^{n} \Sigma$	$\begin{aligned} & N \\ & \dot{N} \\ & \sim \end{aligned}$	$\begin{array}{cc} 0 & 0 \\ -1 & \vdots \\ 0 & \ddagger \end{array}$	$\begin{aligned} & \sim \\ & \sim \\ & \dot{f} \\ & \dot{f} \\ & \sim \\ & N \end{aligned}$		$\begin{aligned} & \text { r } \\ & \dot{\infty} \\ & \infty \\ & N \end{aligned}$	$\begin{aligned} & \bullet \\ & \stackrel{0}{+} \\ & \stackrel{+}{m} \end{aligned}$	$\begin{aligned} & \pm \infty \\ & \bullet \bullet \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \rightarrow 0 \end{aligned}$	$\begin{aligned} & 0 \\ & - \\ & -1 \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & \infty \\ & \infty \\ & m \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	- - \sim N
I^{Σ}	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \sim \end{aligned}$	$$	$\begin{aligned} & \sim \\ & \sim \\ & \infty \\ & \infty \\ & \alpha \\ & \sim \\ & \sim \end{aligned}$		$\begin{aligned} & \text { - } \\ & \dot{\alpha} \\ & \sigma \\ & - \end{aligned}$	$\begin{aligned} & n \\ & \stackrel{n}{n} \\ & \sim \end{aligned}$	$$	$\begin{aligned} & -1 \\ & \dot{N} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{0} \\ & \dot{0} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & m \\ & \stackrel{m}{n} \\ & \stackrel{m}{n} \end{aligned}$	+ 0 0 - -1
I^{m}	$\begin{aligned} & \underset{\sim}{n} \\ & \dot{m} \\ & \stackrel{n}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{\sim} \\ & \dot{m} \dot{\sim} \\ & \underset{\sim}{ \pm} \end{aligned}$	$\begin{aligned} & \because \infty \\ & \dot{\infty} \dot{0} \\ & \stackrel{0}{0} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{gathered} \infty \sim \\ 0 \\ \alpha \infty \\ \alpha \\ \cdots \\ \sim \end{gathered}$	$\begin{aligned} & \text { N } \\ & 0 \\ & \text { H } \\ & 0 \\ & n \end{aligned}$	$\begin{aligned} & \text { N} \\ & \dot{0} \\ & 0 \\ & \sim \end{aligned}$		$\begin{aligned} & \text { m } \\ & \dot{N} \\ & N \\ & N \end{aligned}$	$\begin{aligned} & a \\ & \vdots \\ & \stackrel{ \pm}{\sim} \end{aligned}$	$\begin{aligned} & \sim \\ & \bullet \\ & \infty \\ & \sim \\ & \sim \end{aligned}$	0 0 0 n 0

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	CAVITY INCHES	$\begin{gathered} T O \\ D E G \end{gathered}$	$\begin{aligned} & \text { Vo } \\ & \text { FT/SEC } \end{aligned}$	$\begin{aligned} & \text { PO } \\ & \text { PSIA } \end{aligned}$	$\begin{gathered} \text { PV } \\ \text { PSIA } \end{gathered}$	$\begin{aligned} & \text { HO } \\ & \text { FT } \end{aligned}$	$\begin{aligned} & \text { HV } \\ & \text { FT } \end{aligned}$	KV	$\operatorname{DEG}_{R}^{1}$	$\operatorname{DEG}^{T} Z^{2}$	$\text { DEG }^{\top}{ }_{R}^{3}$	$\text { DEG }^{\top}{ }^{4}$	$\mathrm{DEGG}_{\mathrm{R}}^{\mathrm{T}}$
431A**		140.45	28.6	20.15	15.88	57.8							
4318	1.80	140.56	30.2	16.52	15.99	47.4	45.9	0.96					
431C	1.05	140.62	29.8	16.96	16.05	48.7	46.0	0.19	138.82 139.21	138.76 139.39	138.85 139.75	$\begin{aligned} & 139.10 \\ & 140.18 \end{aligned}$	$\begin{aligned} & 139.37 \\ & 140.47 \end{aligned}$
432 A	0.92	140.83	29.6	17.12	16.27	49.2	46.7	0.18	139.52				
432 B	1.18	140.76	29.5	16.95	16.20	48.7	46.5	0.16	139.52	139.43	140.06 139.72	140.53	140.80 140.54
432 C	0.72	140.90	29.3	17.37	16.35	49.9	46.9	0.12	139.77	139.43 140.00	139.72 140.44	140.22 140.85	140.54 140.81
4320	0.32	140.89	28.8	18.07	16.33	51.9	46.9	0.39	140.17	140.63	140.90	140.99	140.81 141.07
432F**		140.87	28.0	20.05	16.31	57.6	46.8	0.88			140.90	140.9	
433A**		140.17	38.8	24.45	15.59	70.0	44.7	1.08					
433 C	0.63	140.13	41.1	18.77	15.56	53.8	44.6	0.35	139.01	139.28	139.86	140.35	140.36
433D	1.18	140.18	41.3	18.16	15.61	52.0	44.7	0.28	138.56	138.62	139.07	139.61	
433E	0.52	140.18	41.1	19.07	15.61	54.6	44.7	0.38	139.05	139.39	139.93	140.29	140.31
434 C	0.72	139.99	56.3	21.98	15.41	62.9	44.1	0.38	137.59	137.99			
434 D	1.06	140.13	55.9	21.58	15.56	61.8	44.6	0.36	137.50	137.81	138.37	139.25	139.28
434F**		140.17	53.1	31.55	15.59	90.4	44.7	1.04		137.81	13.37	138.94	139.37
435A**		150.41	40.3	35.96	28.77	106.6	85.3	0.84					
435 B	0.78	150.55	42.4	29.78	29.00	88.3	86.0	0.08	148.07	148.63	149.53	150.23	
435 C	0.64	150.55	42.1	30.37	29.00	90.1	86.0	0.15	148.41	149.17	150.05	150.50	150.39
4350	0.40	150.59	41.5	31.40	29.05	93.1	86.2	0.26	148.90	149.89	150.44	150.68	150.55
435E**		150.55	39.8	36.13	29.00	107.1	86.0	0.86			150.44	150.68	150.64
435 F	0.64	150.64	41.8	30.30	29.14	89.9	86.5	0.13	148.36	149.02			
435G	0.80	150.66	41.9	29.83	29.17	88.5	86.5	0.07	147.94	148.48	149.36	150.12	$\begin{aligned} & 150.50 \\ & 150.34 \end{aligned}$
436A	0.52	150.01	56.9	33.37	28.14	98.8	83.3	0.31	147.53	148.36	149.45	149.98	
436 B	0.70	150.01	57.2	32.58	28.14	96.4	83.3	0.26	147.13	147.80	148.91	149.76	149.83
436C**		149.98	54.7	42.25	28.08	125.0	83.1	0.90					149.83
4360	1.16	150.12	57.8	31.72	28.31	93.9	83.8	0.19	146.72	146.88	147.78	148.70	149.42
436F**		150.26	54.0	44.53	28.54	131.9	84.6	1.05					149.42
437A**		149.69	63.5	47.30	27.63	139.8	81.7	0.93					
437c	0.94	149.71	66.4	33.79	27.66	99.9	81.8	0.26	146.66	147.08	148.16	149.26	149.51
4370	1.56	149.74	66.5	32.83	27.72	97.1	82.0	0.22	145.84	145.96	146.75	147.55	148.51

$\dagger 1$	12	13		T 5
DEG R	DEG R	DEG R	DEG R	DEG R
158.94	160.38	160.88	161.08	161.06
157.09	158.63	160.00	160.61	160.83
157.93	159.64	160.54	160.85	160.90
158.80	160.42	160.99	161．17	161．23
161.86	164.00	164.84	165.24	165.28
155.18	156.40	158.45	159.73	160.13
156.20	158．13	159.77	160.34	160.40
146.36	146.59	147.58	148.55	149.29
146.92	148.09	149.20	149.54	149.44
137.12	137.39	138.04	138.67	138.98
137.45	138.02	138.69	139.07	139.03
137.52	137.52	138.06	138.67	139.09
138.24	138.60	139.27	139.63	139.59
137.56	137.97	138.56	139.05	139.23
138.06	138.85	139.14	139.50	139.88
139.32	139.97	$140 \cdot 11$	140.24	140.27

Table A－5a．（cont＇d）

主ち	ッロッのクロッ Ninninini	きさがふ	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{\sim} \end{aligned}$		$\underset{\infty}{n} \underset{\infty}{\sim} \underset{\infty}{\sim} \underset{\infty}{\sim}$			サ－
오난			$\begin{aligned} & \text { y } \\ & \underset{\sim}{\circ} \\ & \text { N } \end{aligned}$				$\begin{aligned} \sim \\ \dot{0} \dot{0} \dot{\theta} \dot{\circ} \dot{0} \\ 0 \end{aligned}$	へ－m
2			？			の゙きた ずすす。		さささ
8			$\begin{gathered} m \\ \dot{j} \\ \dot{f} \end{gathered}$		n n n 0	CMN ¢ñ añ	Nosmos	ざへべm
$8 \stackrel{u}{\sim}$	inmonos －o oroobi numinininin		$\stackrel{\rightharpoonup}{\circ}$	mincu	－	\wedge \bullet 0 0 0 0 0	HNoN	\cdots
	べNずの「ボさの －○○○ロージー 	$\infty \infty$ in o un in in 	$\begin{gathered} n \\ n \\ 0 \\ 0 \\ n \end{gathered}$					
			$\stackrel{\infty}{\stackrel{\infty}{\circ}}$	$\begin{aligned} & \infty 0 \\ & 0.0 \\ & 00 \end{aligned}$	$\begin{aligned} & \bullet \stackrel{0}{m} \\ & =\stackrel{0}{0} \end{aligned}$	$\begin{aligned} & n \\ & \stackrel{n}{c} \\ & \therefore 0 \end{aligned}$	$\begin{array}{cc} \text { No 융 } & \text { n } \\ -0 \\ -0 & 0 \end{array}$	$\begin{array}{r}9 \\ \hline\end{array}$
			$\stackrel{\leftrightarrow}{\ddagger}$					

[^13]Table A－5a．（cont＇d）

$\mathrm{DEG}^{\mathrm{T}} 1$	${ }_{D E G}^{2} R$	$\operatorname{DEG}^{3} R$	$\begin{gathered} \text { TEG } 4 \\ R \end{gathered}$	${ }_{D E G}^{5} R$
139.12	139.50	139.95	140.24	140.27
138.06	138.22	138．73	139．18	139．50
138．33	138．76	139．45	139．88	139．79
138．26	138．44	139．00	139．66	140.04
138．80	$139 \cdot 36$	$140 \cdot 04$	$140 \cdot 54$	$140 \cdot 47$
147．24	147．65	148．59	149．29	149．72
147．29	147．91	148.95	149．51	149．71
146．99	147．28	147．94	148．66	149.47
147．22	$147 \cdot 65$	148.63	149．63	150．25
147．55	148．25	149.40	$150 \cdot 30$	$150 \cdot 46$
$147 \cdot 74$	148．95	150．03	150．34	150．32
158．26	159．44	159．95	160．20	160.43
158．36	159．52	159．95	$160 \cdot 16$	160.29
158．74	159．59	159．95	160.06	160．18

\geq				$m \omega N m n$ $00 \mu 00$ $0000-1$		NmmNu oOOrr $000^{\circ} 0$	$\begin{aligned} & \boldsymbol{r} \\ & \dot{0} \end{aligned}$
$\geq \text { i }$	$\begin{aligned} & \text { No } \\ & \text { ing } \\ & \text { it } \end{aligned}$	$\begin{array}{lll} \infty & \infty & \infty \\ + \\ + & + & + \\ + & + & \end{array}$	$\begin{array}{lll} -10 & 0 \\ t & 0 & 0 \\ t & t & \end{array}$			－$-\infty 010$ oonoo $\boldsymbol{r r r r r}$	$\begin{aligned} & \boldsymbol{r} \\ & \cdots \\ & \cdots \\ & \underset{\sim}{n} \end{aligned}$
온	$\begin{array}{ll} \infty & 0 \\ \infty & 0 \\ \infty & 0 \\ * & n \end{array}$	$\begin{aligned} & 0 \\ & 0 \end{aligned} 000$	$\begin{array}{llll} \mu & 0 & + \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$		$\begin{array}{lllll} N & \infty & n & \infty & N \\ N & \ddots & \bullet & \bullet \\ N & 0 & 0 & 0 & 0 \\ n & 0 & 0 & m \end{array}$		N 0 0 \cdots
$\geq<$	$\begin{aligned} & n 0 \\ & H 0 \\ & n \\ & n \end{aligned}$	$\begin{aligned} & n \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned} \infty$	$\begin{array}{lll} a & n & 0 \\ m & 0 \\ n & 0 & 0 \\ 0 & 0 & 0 \\ \text { in in } & \text { in } \end{array}$	Nomms ＋in in $\infty \infty \infty \infty \infty$ NNNNN	$\cdots N N N$ nN $\wedge \uparrow \infty \infty \infty$ $\infty \infty+\infty+\infty+\infty$ $\mathrm{N} N \sim N N N$	$\infty \infty \mathrm{m}$ a ト个人かの $\infty \infty+\infty+\infty$ がながす	10 0 0 0
$\begin{aligned} & 0 \leftrightarrow \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \pm \\ & 0 \\ & \bullet \\ & \sim \\ & \sim \end{aligned}$			$+\infty$ nN Nm 0 mm 000 0 $m N N m m$	NNNN N \sim N $00 \mathrm{mN}=\mathrm{N}^{\circ}$ $\rightarrow \bullet \bullet \circ$ $t m m m m *$	$\infty \infty \infty+ \pm$ $0+0$ N \div＊o a いますぎが	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
			$\begin{array}{llll} n & 0 & 0 \\ 0 & 0 & 0 \\ n & 0 & n \\ n & n \end{array}$		mNNount －•••• $\pm+\infty \rightarrow r+$ in in in un in		ra 0 0 0
${ }^{0}$	$\begin{array}{ll} m & \\ n & \\ 0 & 0 \\ 0 & + \\ n & m \end{array}$	NONN NNNN		a ∞ un 0 HNNMm 00000 un in in in がのncm	$r m+t 0 \mathrm{~m}$ mytytin 000000 in in in in un $\boldsymbol{H} \boldsymbol{H} \boldsymbol{H} \boldsymbol{r l}$	0000 m ○ 0 n in 0 $\circ \circ 0^{\circ} \circ$ 00000 	un 0 0 0 0 -1
	$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{ll} N \\ \forall & N \\ \hdashline 0 \\ -0 \end{array}$	$\begin{gathered} 0 \\ m \\ \sim \\ \sim \end{gathered}$	$\begin{aligned} & \text { nin } \\ & 0 \text { N } \\ & 0 . \end{aligned}$	$\begin{aligned} & 000 \\ & 0 \sim H \\ & -00 \\ & -00 \end{aligned}$	$\begin{aligned} & n n_{n}^{n} \\ & \sim \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
$\frac{z}{5} 0$							$*$ $*$ $*$

＊DENOTES AN INCIPIENT RUN
＊＊DENOTES A DESINENT RUN

$\dagger 1$	T 2	T 3	T 4	T 5
DEG R	DEG R	DEG R	DEG R	DEG R
161.80	163.76	164.88	165.60	165.67
162.25	164.30	165.11	165.74	165.60
162.97	164.79	165.26	165.69	165.40
161.42	163.19	164.48	165.46	165.49
162.95	164.88	165.49	$166 \cdot 14$	165.89
156.56	158.24	159.57	160.09	$160 \cdot 27$
156.26	156.91	158.62	160.07	160.45
155.86	156.44	158.13	159.68	160.25
155.34	155.72	157.32	158.90	159.80
146.57	146.74	147.47	148.25	149.06
147.38	148.09	149.26	150.12	150.12
147.82	149.13	149.92	150.16	150.10
147.22	147.80	148.82	149.71	149.98
137.83	137.99	138.44	139.09	139.43

RUN
NO.
453A**
453 B
453 C
453 D
$453 \mathrm{E} *$
$454 A^{* *}$
454 B
454 C
$454 \mathrm{D}^{* *}$
$455 A^{* *}$
455 B
$455 \mathrm{C}^{*} *$
$456 A^{*}$

* DENOTES AN INCIPIENT RUN
** DENOTES A DESINENT RUN
$\begin{array}{ccc}T 3 & T{ }^{3} 4 & T{ }^{3} \\ \text { DEG } R & \text { DEG } R & \text { DEG } R\end{array}$ n
n
0
0
0
+1

N
$\boldsymbol{\infty}$
$\boldsymbol{\sigma}$
$\underset{\sim}{m}$

$\begin{array}{cc}\text { T } 3 & \text { T } 4 \\ \text { DEG R } & \text { DEG R } \\ 139.61 & 140.24\end{array}$
$\begin{array}{lll}a & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ m & j & f\end{array}$
\circ
$\stackrel{\circ}{\circ}$
$\stackrel{\circ}{-}$
$\stackrel{1}{-}$

$$
\mathrm{T}_{\text {DEG }} 1 \quad T^{2}
$$

$\begin{array}{ll}n & n \\ 0 & 0 \\ \infty & \infty \\ m & m \\ m & n\end{array}$

4 n
$\stackrel{n}{0}$
\vdots
$\underset{\sim}{1}$

$$
\begin{aligned}
& N \\
& +N \\
& \infty \\
& \infty \\
& \infty \\
& n \\
& n \\
& n
\end{aligned}
$$

$138.04 \quad 138.28$

Table A-5a. (cont'd)

то	vo	PO	PV	H0	HV
DEG R	FT/SEC	PSIA	PSIA	FT	FT
140.06	64.0	25.26	15.48	72.3	44.3
140.15	64.0	24.68	15.57	70.7	44.6
140.60	60.8	37.93	16.03	108.8	46.0
139.93	65.7	41.01	15.36	117.4	44.0
139.97	67.4	25.92	15.39	74.2	44.1
140.15	66.2	24.68	15.57	70.7	44.6
140.08	64.5	26.47	15.50	75.8	44.4
140.11	60.8	36.81	15.54	105.4	44.5
139.81	66.0	43.39	15.23	124.1	43.6
139.86	68.0	25.41	15.29	72.7	43.8
140.08	61.6	38.17	15.50	109.3	44.4
140.29	28.6	19.80	15.72	56.7	45.1
140.44	30.0	17.16	15.86	49.2	45.5
140.47	28.1	19.65	15.90	56.4	45.6
140.67	28.9	16.92	16.10	48.6	46.2
140.81	27.3	19.77	16.25	56.8	46.7

[^14]Table A-5a. (cont'd)

RUN NO.	P 1 PSIA	P 2 PSIA	$\begin{aligned} & P \quad 3 \\ & P S I A \end{aligned}$	$\begin{aligned} & P 4 \\ & \text { PSIA } \end{aligned}$	$\begin{aligned} & P 5 \\ & \text { PSIA } \end{aligned}$	$\begin{aligned} & \text { PI:T } \\ & \text { PSIA } \end{aligned}$	$\begin{array}{r} P 2, T \\ \text { PSIA } \end{array}$	$\begin{array}{r} \text { P 3,T } \\ \text { PSIA } \end{array}$	$\begin{array}{r} \text { P } 4: T \\ \text { PSIA } \end{array}$	$\begin{array}{r} P 5, T \\ \text { PSIA } \end{array}$
					14.84	14.28	14.23	14.31	14.55	14.81
431 B	14.29	14.35	14.50 14.94	14.55 15.64	14.84 17.00	14.65	14.83	15.18	15.61	15.90
431 C	14.68	14.64	14.94	15.64	17.00	14.65	14.83	15.18		
	14.80	14.87	15.20	16.00	17.52	14.95	15.14	15.48	15.96	16.23
432 A	14.80 14.73	14.73	14.98	15.40	16.50	14.69	14.86	15.14	15.65	15.97 16.25
$432 B$ $432 C$	14.92	15.12	15.50	16.65	18.19	15.20	15.43	15.86	16.29	16.25
4320	15.27	15.65	17.22	18.49	19.07	15.59	16.07	16.35	16.44	16.52
			14.80	16.50	20.12	14.47	$14 \cdot 72$	15.29	15.77	15.79
433 C	14.27	14.37 13.85	14.80 14.09	14.68	15.75	14.04	14.09	14.52	15.04	15.45
4330 $433 E$	13.81 14.35	13.85 14.60	14.09 15.15	14.68 18.40	20.79	14.50	14.83	15.36	15.72	15.74
433 E	14.35	14.60	15.15	18.40						
			14.51	15.68	20.21	13.16	13.52	14.14	14.69	14.72
$434 C$ 4340	13.95 13.78	14.11 13.83	14.15	14.98	16.28	13.08	13.35	13.86	14.40	14.81
						25.21	26.02	27.38	28.48	28.74
4358	24.90	25.24	26.12	29.08 30.80	31.14 32.24	25.71	26.83	28.19	28.91	29.00
435 C	25.27	25.70	27.27	30.80 32.50	32.24 33.50	26.43	27.94	28.82	29.20	29.14
435 D	26.00	26.77	29.87 27.30	32.50 30.70	33.50 32.10	25.63	26.62	28.03	28.77	28.91
435 F 435 G	25.40 24.98	25.82 25.28	27.30 26.08	30.70 28.90	32.10 30.81	25.03	25.81	27.13	28.31	28.65
		24.87	26.84	32.94	36.80	24.44	25.63	27.27	28.08	28.05
436 A	24.20	24.87 24.28			34.88	23.88	24.82	26.45	27.74	27.86
4368 4360	23.95 23.28	24.28 23.50	25.45 24.08	29.48 25.88	39.12	23.31	23.53	24.79	26.13	27.22
4360	23.28	23.50	24.08	25.88	29.12	23.31				
		22.79	23.79	26.09	32.36	23.24	23.81	25.34	26.97	27.36
$437 C$ 4370	22.29 21.50	21.78	22.30	23.55	25.65	22.13	22.30	23.36	24.46	25.76
					57.17	44.98	48.27	49.46	49.94	49.89
439 B	41.31	46.09			57.17 51.42	40.99	44.30	47.39	48.82	49.33
439 C	38.62	40.26 43.58	45.18 48.76	48.74 53.04	51.42 55.39	42.78	46.56	48.65	49.38	49.50
439 D	40.06	43.58 46.70	48.76 50.70	53.04 54.64	55.39 56.96	44.66	48.35	49.72	50.15	50.28
439F	41.20	46.70	50.70	54.64						
441 A	49.67	55.23	61.10	65.79	68.93	51.82	57.32	59.60	60.69	60.79
						37.16	39.59	43.91	46.77	47.68
4428 $442 C$	36.60 37.91	37.57 39.91	40.30 45.81	47.93 53.61	57.57	39.19	43.20	46.85	48.18	48.31
442C	37.91	39.91	45.81	53.61						
		22.60	23.46	25.16	28.81	22.83	23.14	24.51	25.92	27.02
443 B	22.10 23.59	22.60 24.65	28.92	40.81	44.31	23.58	25.23	26.89	27.41	27.24

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	$\begin{aligned} & P I \\ & \text { PSIA } \end{aligned}$	$\begin{aligned} & P 2 \\ & \text { PSIA } \end{aligned}$	$\begin{aligned} & \text { P } 3 \\ & \text { PSIA } \end{aligned}$	$\begin{aligned} & P 4 \\ & \text { PSIA } \end{aligned}$	$\begin{aligned} & P 5 \\ & \text { PSIA } \end{aligned}$
4448	12.77	13.43	13.87	14.77	18.67
444 C	13.40	14.12	15.20	23.95	31.84
445 A	12.90	13.15	13.35	13.97	14.92
445 B	13.51	14.16	15.03	22.21	28.80
4450	13.35	13.82	14.35	15.58	22.42
4468	13.94	14.02	14.26	14.58	15.40
446C	14.60	14.77	16.00	17.82	18.49
4460	14.41	14.68	15.08	16.38	18.04
4478	13.58	13.66	13.94	14.40	15.18
447C	14.02	14.22	14.74	16.74	20.69
448B	13.46	13.62	14.00	14.42	15.32
448 C	14.22	14.57	15.32	19.85	26.67
449B	24.06	24.36	25.02	27.16	29.64
449 C	24.52	24.80	25.82	28.84	31.45
450 B	23.07	23.32	23.97	24.92	26.67
4500	23.47	23.82	24.57	26.30	29.47
4500	24.09	24.69	25.76	29.09	35.48
450 E	24.68	25.48	28.68	35.78	39.94
4518	41.62	44.82	46.99	48.99	50.94
451 C	42.70	46.28	47.92	50.28	52.22
4510	43.42	47.52	49.04	51.29	53.16
453B	49.26	53.56	58.96	63.47	68.44
453 C	50.65	56.82	61.37	66.54	71.52
4530	52.14	59.47	63.67	68.81	73.94
4548	48.62	51.62	57.75	62.28	66.84
454 C	51.14	57.91	62.71	68.04	73.37
455B	38.65	40.54	45.37	49.72	53.59

Table A-5a. (cont'd)

in			a $\stackrel{\text { a }}{ }$ in			$\stackrel{0}{\stackrel{-}{+}}$	－
+		ancm No ño Nod	－			－0．	－
m			－			$\xrightarrow{\text { m }}$	
N		Nin N min NNN	a 0 \sim \sim			in \cdots	－
$-\frac{a}{y}$	TO min min		$\stackrel{\bigcirc}{\sim}$	$\infty_{\infty}^{\infty} \cos _{\substack{n \\ f}}$ ベッツ		$\stackrel{\infty}{\stackrel{\sim}{\sim}}$	

Table A-5a. (cont'd)										
RUN	H 1	H 2	H 3	H 4	H 5	H 1, ${ }^{\text {r }}$	H 2,T	H 3.T	H 4, T	H 5, T
NO.	FT									
431 B	40.8	41.0	41.4	41.5	42.4	40.7	40.6	$\begin{aligned} & 40.8 \\ & 43.4 \end{aligned}$	$\begin{aligned} & 41.6 \\ & 44.7 \end{aligned}$	$\begin{aligned} & 42 \cdot 3 \\ & 45 \cdot 6 \end{aligned}$
$431 \mathrm{C}$	41.9	41.8	$42 \cdot 7$	44.8	48.9	41.9	42.4	43.4	44.7	45.6
432A	$42 \cdot 3$	42.5	43.5	45.9	50.5	42.7	43.3	44.3	45.8	46.6
432 B	42.1	42.1	42.8	44.1	47.4	$42 \cdot 0$	42.5	43.3	44.8	45.8
432 C	42.7	43.3	44.4	47.9	52.5	43.5	44.2	45.5	46.8	46.7
432 D	43.7	44.8	49.6	53.4	55.2	44.7	46.1	46.9	47.2	47.5
433 C	$40 \cdot 7$	41.0	42.3	47.4	58.4	$41 \cdot 3$	42.1	43.8	45.2	45.3
433 D	39.3	39.5	$40 \cdot 2$	41.9	45.1	40.0	40.2	41.4	43.0	44.2
433 E	41.0	41.7	$43 \cdot 3$	53.2	60.5	41.4	42.4	44.0	45.1	45.1
434 C	39.8	$40 \cdot 2$	$41 \cdot 4$	44.9	58.7	$37 \cdot 4$	38.5	$40 \cdot 3$	42.0	$42 \cdot 1$
434D	39.2	39.4	40.4	42.8	46.7	37.2	38.0	39.5	41.1	$42 \cdot 3$
435 B	73.2	74.2	77.0	86.3	92.8	74.1	76.7	80.9	84.4 85.7	85.2
435 C	74.3	$75 \cdot 7$	80.6	91.7	96.3	75.7	79.2	83.5	85.7	86.0
4350	76.6	79.0	88.8	97.1	100.3	77.9	82.7	85.5	86.6	86.5
435 F	74.7	76.0	80.7	91.4	95.8	75.4	78.5	82.9	85.3	85.7
435 G	73.4	74.4	76.8	85.7	91.7	73.6	76.0	80.2	83.8	84.9
436 A	71.0	73.1	79.2	98.5	110.9	71.7	75.4	80.6	83.1	83.0
436 B	70.2	71.2	74.9	87.5	104.7	$70 \cdot 0$	72.9	78.0	82.1	82.4
436 D	68.1	68.8	70.6	76.2	86.4	68.2	68.9	72.8	77.0	80.4
437 C	65.1	66.6	69.7	76.9	96.7	68.0	69.8	$74 \cdot 5$	79.6	80.8
4370	62.6	63.5	65.1	69.0	75.5	64.6	65.1	68.4	71.8	75.8
439 B	125.5	141.2	158.0	170.8	178.2	137.5	148.4	152.3	153.9	153.8
439 C	116.8	122.1	138.2	150.0	158.9	124.5	135.3	145.5	150.2	151.9
4390	121.4	132.9	$150 \cdot 0$	164.3	172.2	$130 \cdot 3$	142.7	149.6	152.1	152.5
439 F	125.1	143.2	156.5	169.7	177.5	136.5	148.7	153.2	154.6	155.1
441 A	153.0	171.7	191.6	207.6	218.5	160.2	178.7	186.5	190.2	190.5
442 B	110.2	113.4	122.2	$147 \cdot 3$	165.5	112.1	119.9	134.0	143.4	$146 \cdot 4$
442 C	114.5	120.9	140.3	166.2	179.6	118.6	131.7	143.7	148.1	148.5
443 B	64.5	66.0	68.7	74.0	85.4	66.7	67.7	72.0	$76 \cdot 3$	79.8
443 C	69.1	72.4	85.8	123.9	135.3	69.1	74.2	79.4	81.0	80.5

$\begin{aligned} & \text { int } \\ & \text { in } \\ & \text { a } \end{aligned}$			$\dot{\dot{\infty}}$		$\begin{array}{r} 7 n \\ \dot{j} \dot{j} \\ j \end{array}$	¢	0 0 0 n
$\begin{aligned} & \text { Ft } \\ & \text { It } \\ & \text { In } \end{aligned}$			$\stackrel{\infty}{\infty} \underset{\infty}{\infty}$			N	$\begin{aligned} & a r \\ & \dot{j} \\ & j 0 \\ & j \end{aligned}$
$\begin{aligned} & \text { 「ュレ } \\ & \text { mit } \\ & \text { I } \end{aligned}$			$\stackrel{\bullet}{\stackrel{ }{\gtrless}}$			$\begin{aligned} & \infty \\ & \dot{0} \\ & \dot{f} \end{aligned}$	$\begin{aligned} & \text { Mo } \\ & 0 \\ & 0 \\ & j \\ & j \end{aligned}$
$\begin{aligned} & \text { 「. } \\ & \text { NL } \\ & \text { I } \end{aligned}$		$\begin{aligned} & M \\ & \cdots \circ \\ & \infty \\ & \infty \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\dot{N}}{\stackrel{1}{2}}$			$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{2} \end{aligned}$	$$
			$\stackrel{\rightharpoonup}{\stackrel{~}{~}}$			$\begin{aligned} & 0 \\ & \dot{\infty} \\ & \underset{m}{0} \end{aligned}$	$$
nit_{x}	$\begin{aligned} & \text { ~N } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\underset{\ddagger}{\ddagger}$	$\begin{aligned} & 00 \infty \\ & -7 \dot{0}-\infty \end{aligned}$	$\begin{aligned} & \infty \infty+ \\ & 0 \\ & \infty \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{gathered} \text { N } \\ \text { in } \end{gathered}$	$\begin{aligned} & \text { Qon } \\ & \text { oir } \\ & \text { inin } \end{aligned}$
ェー			$\stackrel{0}{\infty}$			$\begin{aligned} & \dot{M} \\ & \dot{J} \end{aligned}$	¢
$\begin{gathered} m \leftarrow \\ I^{\prime} \end{gathered}$			$\stackrel{\rightharpoonup}{\sim}$			$\stackrel{?}{0}$	「ざ
N^{N}		$\begin{aligned} & 90 n \\ & 0000 \\ & 000 \end{aligned}$	$\begin{aligned} & \text { t } \\ & \text { oi } \end{aligned}$			$\begin{aligned} & \pm \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	～
		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & n \\ & : \\ & : \end{aligned}$	$\begin{aligned} & 0 \times m \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & n 0_{n}^{n} \\ & \text { nin mo } \end{aligned}$	$\begin{aligned} & \dot{9} \\ & \dot{m} \end{aligned}$	が
$\underset{\alpha}{z} \stackrel{\dot{1}}{\mathbf{2}}$	$\begin{aligned} & \infty u u_{0} \\ & 000 \\ & 0 \\ & \text { on on } \\ & j \end{aligned}$		$\begin{aligned} & \infty \\ & \infty \\ & 0 \end{aligned}$			$\begin{aligned} & \text { m } \\ & \stackrel{0}{5} \end{aligned}$	$\begin{aligned} & \text { MO } \\ & \text { No } \\ & \text { O } \end{aligned}$

Table A-5b. Experimental data for 0.420 -inch ogive using liquid nitrogen (SI Units).

RUN	CAVITY	T0	vo	Po	PV	HO	HV	KV	T 1	T 2	T 3	14	T 5
NO.	CM	DEG K	M/SEC	N/CM/CM	N/CM/CM	M	M		DEG K				
431A**		78.03	8.7	13.89	10.95	17.6	13.9	0.96					
431 B	4.57	78.09	9.2	11.39	11.03	14.4	14.0	0.11	77.12	77.09	77.14	77.28	77.43
431 C	2.66	78.12	9.1	11.69	11.07	14.8	14.0	0.19	77.34	77.44	77.64	77.88	78.04
432 A	2.33	78.24	9.0	11.80	11.22	15.0	14.2	0.18	77.51	77.62	77.81	78.07	78.22
432 B	2.99	78.20	9.0	11.69	11.17	14.8	14.2	0.16	77.36	77.46	77.62	77.9 C	78.08
432 C	1.82	78.28	8.9	11.98	11.27	15.2	14.3	0.22	77.65	77.78	78.02	78.25	78.23
432 D	0.81	78.27	8.8	12.46	11.26	15.8	14.3	0.39	77.87	78.13	78.28	78.33	78.37
432F**		78.26	8.5	13.82	11.24	17.5	14.3	0.88					
433A**		77.87	11.8	16.86	10.75	21.3	13.6	1.08					
433 C	1.60	77.85	12.5	12.94	10.72	16.4	13.6	0.35	77.23	77.38	77.70	77.97	77.98
433 D	2.99	77.88	12.6	12.52	10.76	15.9	13.6	0.28	76.98	77.01	77.26	77.56	77.79
433 E	1.32	77.88	12.5	13.15	10.76	16.7	13.6	0.38	77.25	77.44	77.74	77.94	77.95
434 C	1.82	77.77	17.2	15.15	10.63	19.2	13.5	0.38	76.44	76.66	77.04	77.36	77.38
434 D	2.69	77.85	17.0	14.88	10.72	18.8	13.6	0.36	76.39	76.56	76.87	77.19	77.43
434F**		77.87	16.2	21.75	10.75	27.5	13.6	1.04					
435A**		83.56	12.3	24.79	19.83	32.5	26.0	0.84					
435B	1.98	83.64	12.9	20.53	19.99	26.9	26.2	0.08	82.26	82.57	83.07	83.46	83.55
435 C	1.62	83.64	12.8	20.94	19.99	27.5	26.2	0.15	82.45	82.87	83.36	83.61	83.64
435 D	1.01	83.66	12.6	21.65	20.03	28.4	26.3	0.26	82.72	83.27	83.58	83.71	83.69
435E**		83.64	12.1	24.91	19.99	32.7	26.2	0.86					
435 F	1.62	83.69	12.7	20.89	20.09	27.4	26.4	0.13	82.42	82.79	83.30	83.56	83.61
435 G	2.03	83.70	12.8	20.57	20.11	27.0	26.4	0.07	82.19	82.49	82.98	83.40	83.52
436A	1.32	83.34	17.3	23.01	19.40	30.1	25.4	0.31	81.96	82.42	83.03	83.32	83.31
436B	1.77	83.34	17.4	22.46	19.40	29.4	25.4	0.26	81.74	82.11	82.73	83.20	83.24
436C**		83.32	16.7	29.13	19.36	38.1	25.3	0.90					
4360	2.94	83.40	17.6	21.87	19.52	28.6	25.6	0.19	81.51	81.60	82.10	82.61	83.01
436F**		83.48	16.5	30.70	19.67	40.2	25.8	1.05					
437A**		83.16	19.4	32.61	19.05	42.6	24.0.	0.93					
437 C	2.38	83.17	20.2	23.30	19.07	30.5	24.9	0.26	81.48	81.71	82.31	82.92	83.06
4370	3.96	83.19	$20 \cdot 3$	22.64	19.11	29.6	25.0	0.22	81.02	81.09	81.53	81.97	82.47

$\begin{aligned} & n \\ & \sim \underset{\sim}{u} \\ & -\underset{\sim}{2} \end{aligned}$		$\begin{aligned} & \text { in } \\ & \dot{0} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { N } \\ & \infty \\ & 0 \\ & -1 \\ & \alpha-1 \end{aligned}$	$\begin{aligned} & 0 . \\ & 0 . \\ & 0 . \\ & \infty \\ & \hline \end{aligned}$	$\begin{array}{ll} \pm & N \\ 0 & 0 \\ \sim \\ \infty & 0 \\ \infty & \infty \end{array}$	$$		$\begin{aligned} & n \\ & \stackrel{n}{*} \\ & \stackrel{N}{*} \end{aligned}$	$\begin{aligned} & \text { №m } \\ & \stackrel{\circ}{N} \end{aligned}$
$\begin{aligned} & 4 \\ & \leftarrow \underset{\sim}{u} \end{aligned}$		$\begin{aligned} & \text { 士 } \\ & \text { in } \\ & \text { oi } \\ & \infty \end{aligned}$	$\begin{array}{r} 0 \\ \infty \\ -\dot{\theta} \end{array}$	$\begin{aligned} & \mathbf{N}_{\infty}^{\infty} \\ & 0 \\ & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$		$$	$$	$\begin{aligned} & N \\ & N \\ & N \end{aligned}$	응 － N－
$\begin{gathered} m^{2} \\ -\underset{\sim}{w} \end{gathered}$		$\begin{aligned} & \pm \\ & \pm \\ & 0 \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \stackrel{-}{2} \end{aligned}$	$\begin{aligned} & m \times \\ & o r \\ & \infty \end{aligned}$		$\begin{aligned} & 015 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \sim \end{aligned}$	$\begin{aligned} & \text { 우 } \\ & \text { 운 } \end{aligned}$	∞ 0 0 0	OL \cdots \cdots
		$\begin{aligned} & \underset{\sim}{1} \\ & \stackrel{0}{0} \\ & \infty \end{aligned}$	$\begin{aligned} & \underset{\sim}{-1} \\ & \ddot{-1} \end{aligned}$	$\begin{array}{lll}\infty & n \\ \infty & \infty \\ 0 & \infty \\ 0 & - \\ \infty & \infty\end{array}$		$\begin{aligned} & m \infty \\ & \underset{\sim}{\infty} \\ & \dot{0} \\ & \underset{\sim}{0} \\ & \sim \end{aligned}$	0% ＋ － ¢	n 0 0 \sim	± 0 \sim \sim
-		$\begin{aligned} & \text { N } \\ & \mathbf{N} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & N \\ & \alpha \\ & \dot{\infty} \\ & \infty \end{aligned}$	$\begin{aligned} & \overrightarrow{-1} \infty \\ & N \\ & 0 \\ & 0 \\ & \infty \\ & \infty \\ & 0 \end{aligned}$		$$	$\begin{aligned} & 00 \\ & 40 \\ & 00 \\ & 0 \end{aligned}$	N + + \sim	

$\begin{array}{ll} n & n \\ \sim \\ -\underset{0}{u} & \stackrel{y}{n} \end{array}$	$\begin{aligned} & \text { in : } \\ & \text { ì } \\ & \end{aligned}$				
	$\begin{aligned} & \text { NN } \\ & \stackrel{y}{*} \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \sim_{n}^{\infty} \\ & \stackrel{\infty}{0} \\ & \dot{\sim} \dot{\sim} \end{aligned}$	$\begin{aligned} & \ddagger . \\ & \dot{0} \\ & \dot{\sim} \dot{\infty} \\ & \infty \\ & \infty \end{aligned}$	amon $\dot{\sim} \dot{\sim} \dot{M} \dot{m}$ $\infty \infty \infty$	
$\begin{array}{ll} m \stackrel{n}{r} & \stackrel{n}{\circ} \\ \vdash \underset{\sim}{\sim} & \stackrel{y}{r} \end{array}$	$\begin{aligned} & \text { YN } \\ & \text { Hi } \\ & \text { Nr } \end{aligned}$	$\begin{aligned} & \text { NO } \\ & \text { ㅇ } \\ & \text { Ni } \end{aligned}$	$\begin{aligned} & n \sim n \\ & \sim \end{aligned}$		
	$\begin{aligned} & \stackrel{0}{i} \\ & \dot{8} \\ & \stackrel{i}{r} \end{aligned}$	$\begin{aligned} & \text { an } \\ & \text { iN } \end{aligned}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$		为N0

Table A－5b．（cont＇d）

\pm
∞
∞
$\infty$$M \sim \infty$
\sim
\sim
∞
∞
∞
∞
∞
∞
∞
∞

$\infty$$\underset{\sim}{\sim}$| N |
| :---: |
| |
| |

88.65$\begin{array}{ll}\infty & \overrightarrow{0} \\ 0 & \dot{0} \\ \dot{\infty} & \dot{0} \\ \infty\end{array}$$-\quad$
$\stackrel{0}{0}$
$\stackrel{0}{2}$
\square

$$
\begin{array}{lll}
\alpha & \pm & 0 \\
\infty & 4 & 0 \\
0 & 0 & 0 \\
\infty & 0 & 0
\end{array}
$$Table A－5b．（cont＇d）456A＊＊$456 A * *$

456 B
456 C
456 D
$456 \mathrm{E} *$5570
$457 \mathrm{E} *$

$$
\begin{aligned}
& 89.68 \\
& 90.53
\end{aligned}
$$

$$
86.98
$$

$$
\begin{aligned}
& 81.43 \\
& 81.88 \\
& 82.12
\end{aligned}
$$

$$
\text { DEG }{ }^{K} K
$$

$$
\text { DEG }^{T}{ }^{2}
$$

$$
\begin{aligned}
& 0: 8 \\
& 0: 8 \\
& \dot{\circ} \dot{8}-1
\end{aligned}
$$

$$
87.91
$$

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{array}{ll}
\overrightarrow{-} & ! \\
\dot{\infty} & ! \\
\infty & !
\end{array}
$$

$$
\begin{array}{lll}
-1 & 0 & 0 \\
\infty & 0 \\
0 & 0 \\
0 & 0 \\
\infty & \infty & 0 \\
\infty & \infty & \infty
\end{array}
$$

$$
\begin{array}{ll}
a & i \\
\vdots & n \\
i & i
\end{array}
$$$\stackrel{\text { ñ }}{0}$

T0	vo	PO	PV	HO	HV
DEG K	M／SEC	N／CM／CM	N／CM／CM	M	M
91.98	19.3	52.37	42.47	72.6	58.9
92.02	20.1	43.74	42.61	60.7	59.1
92.00	19.8	44.48	42.54	61.7	59.0
91.96	19.6	45.67	42.40	63.3	58.8
92.02	18.9	52.35	42.61	72.6	59.1
92.05	19.4	51.81	42.71	71.9	59.3
92.03	20.5	43.35	42.64	60.2	59.2
92.07	20.1	45.12	42.78	62.6	59.4
92.00	19.0	52.33	42.54	72.6	59．0
89.26	16.9	41.15	33.75	56.0	45.9
89.24	17.7	33.94	33.69	46.2	45.8
89.30	16.6	40.97	33.87	55.7	46.1 ．
89.14	19.7	44.68	33.40	60.7	45.4
89.17	20.8	34.64	33.48	47.1	45.5
89.18	20.7	34.34	33.51	$46 \cdot 7$	45.6
89.20	20.7	34.06	33.57	46.3	45.7
89.27	19.6	43.26	33.78	58.8	46.0
83.22	19.1	33.66	19.17	44.0	25.1
83.29	20.2	23.04	19.30	30.1	25.3
83.37	20.2	23.96	19.46	31.4	25.5
83.39	19.9	25.81	19.50	33.8	25.5
83.46	19.0	32.78	19.64	42.9	25.7
83.18	20.8	36.05	19.09.	47.1	25.0
83.33	21.8	25.09	19.38	32.8	25.4
83.51	20.5	36.38	19.73	47.6	25.9
77.72	18.9	26.05	10.56	33.0	13.4
77.76	19.8	16.49	10.61	20.9	13.4

	85	$\underset{\sim}{\sim}$	N゙ロ	$\bigcirc \times \infty$	\cdots
$\therefore-\dot{\circ}$	\therefore－	\because	NNM	$\dot{m}-\dot{\circ}$	\sim

RUN
NO． $453 A * *$
453 B
453 C
453 D
$453 \mathrm{E} *$ $454 \mathrm{~A} * *$
454 B 4540＊＊ $455 A * *$
$455 B$
$455 C^{*}$458A＊＊$*$
$\underset{\infty}{*}$
$\underset{\sim}{\infty}$
$\underset{\sim}{*}$$459 \mathrm{~A} * *$
459 B
＊DENOTES AN INCIPIENT RUN
＊＊DENOTES A DESINENT RUN

$\underline{\square}$	-10	へへす	9	－
0	\because	$\because 0$	0	0
هِ	NN	へへへ	\cdots	$\stackrel{ }{*}$

	in m	우ำ	\pm	0	0
	－		$\stackrel{-}{\bullet}$	\bigcirc	
0	$\underset{\sim}{*}$	NNN	N	N	

\checkmark	OO	ONN	0	0
0		∞	0	\cdots
－山	ャッ	－\％	$\stackrel{0}{0}$	

U	in in n	Onnrun	\rightarrow－	－\sim_{0} m
¢		$\bigcirc \dot{\circ}-\dot{\circ}$		
\checkmark	\cdots	NNNH？	NN＋	－

[^15]Table A-5b. (cont'd)

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} p 1 \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 2 \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{gathered} \mathbf{P}^{3} \\ \mathrm{~N} / \mathrm{CM}^{2} / \mathrm{CM} \end{gathered}$	$\begin{gathered} P 4 \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 5 \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{gathered} P 1, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 2, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 3, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 4, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 5 \cdot \mathbf{T} \\ N / C M / C M \end{gathered}$
431 B	9.85	9.89	10.00	10.03	10.23	9.84	9.81	9.87	10.03	10.21
431 C	10.12	10.09	10.30	10.78	11.72	10.10	10.22	10.47	10.76	10.96
432A	10.20	10.25	10.48	11.03	12.08	10.31	10.44	10.68	11.00	11.19
432B	10.16	10.16	10.33	10.62	11.38	10.13	10.25	10.44	10.79	11.01
432C	10.29	10.42	10.69	11.48	12.54	10.48	10.64	10.94	11.23	11.21
432D	10.53	10.79	11.87	12.75	13.15	10.75	11.08	11.27	11.34	11.39
433 C	9.84	9.91	10.20	11.38	13.87	9.97	10.15	10.54	10.88	10.89
433D	9.52	9.55	9.71	10.12	10.86	9.68	9.72	10.01	$10 \cdot 37$	10.65
433 E	9.89	10.07	10.45	12.69	14.33	10.00	10.22	10.59	10.84	10.85
434 C	9.62	9.73	10.00	10.81	13.93	9.08	9.32	9.75	10.13	10.15
434 D	9.50	9.54	9.76	10.33	11.22	9.02	9.21	9.56	9.93	10.21
$435 B$	17.17	17.40	18.01	20.05	21.47	17.38	17.94	18.88	19.64	19.81
435 C	17.42	17.72	18.80	21.24	22.23	17.72	18.50	19.44	19.93	19.99
435 D	17.93	18.46	20.59	22.41	23.10	18.22	19.26	19.87	20.13	20.09
435 F	17.51	17.80	18.82	21.17	22.13	17.67	18.35	19.32	19.83	19.93
435 G	17.22	17.43	17.98	19.93	21.24	17.26	17.80	18.71	19.52	19.75
436 A	16.69	17.15	18.51	22.71	25.37	16.85	17.67	18.80	19.36	19.34
436 B	16.51	16.74	17.55	20.33	24.05	16.47	17.11	18.24	19.13	19.21
436D	16.05	16.20	16.60	17.84	20.08	16.07	16.23	17.10	18.02	18.77
437 C	15.37	15.71	16.40	17.99	22.31	16.02	16.41	17.47	18.60	18.86
437D	14.82	15.02	15.38	16.24	17.69	15.26	15.37	16.11	16.87	17.76
439B	28.48	31.78	35.28	37.90	39.42	31.01	33.28	34.10	34.43	34.40
439 C	26.63	27.76	31.15	33.61	35.45	28.26	30.54	32.67	33.66	34.01
439D	27.62	30.05	33.62	36.57	38.19	29.49	32.10	33.54	34.04	34.13
439 F	28.41	32.20	34.96	37.67	39.27	30.79	33.34	34.28	34.58	34.67
441 A	34.25	38.08	42.13	45.36	47.53	35.73	39.52	41.09	41.85	41.92
442 B	25.23	25.90	27.79	33.05	36.81	25.62	27.29	30.27	32.24	32.87
442 C	26.14	27.52	31.58	36.96	39.69	27.02	29.79	$32 \cdot 30$	33.22	33.31
443B	15.24	15.58	16.18	17.35	19.86	15.74	15.96	16.90	17.87	18.63
$443 C$	16.26	17.00	19.94	28.14	30.55	16.26	17.40	18.54	18.90	18.78

Table A.5b. (cont'd)

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	$\begin{gathered} p 1 \\ N / C M / C M \end{gathered}$	$\begin{gathered} \mathrm{P} \underset{\mathrm{~N} / \mathrm{CM} / \mathrm{CM}}{2} \end{gathered}$	$\begin{gathered} P 3 \\ N / C M / C M \end{gathered}$	$\begin{gathered} \mathrm{P}_{4} \\ \mathrm{~N} / \mathrm{CM}^{2} / \mathrm{CM} \end{gathered}$	$\begin{gathered} P 5 \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{gathered} P 1: T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 2, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 3, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 4 ; T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 5 \cdot T \\ N / C M / C M \end{gathered}$
444B	8.80	9.26	9.56	10.18	12.87	8.79	8.96	9.35	9.75	9.95
444C	9.24	9.74	10.48	16.51	21.95	8.99	9.34	9.76	10.01	9.99
445A	8.89	9.07	9.20	9.63	10.29	9.03	9.03	9.36	9.75	10.02
445B	9.31	9.76	10.36	15.31	19.86	9.48	9.71	10.14	10.38	10.36
445D	9.20	9.53	9.89	10.74	15.46	9.05	9.31	9.68	10.00	10.12
446 B	9.61	9.67	9.83	10.05	10.62	9.36	9.87	10.06	10.30	10.55
446 C	10.07	10.18	11.03	12.29	12.75	10.18	10.61	10.71	10.80	10.82
446 D	9.94	10.12	10.40	11.29	12.44	10.04	10.30	10.60	10.80	10.82
4478	9.36	9.42	0.61	9.93	10.47	9.36	9.47	9.79	10.08	10.30
447C	9.67	9.80	10.15	11.54	14.27	9.53	9.81	10.26	10.55	10.49
448 B	9.28	9.39	9.65	9.94	10.56	9.49	9.60	9.96	10.40	10.66
448 C	9.80	10.05	10.56	13.69	18.39	9.83	10.20	10.66	11.01	10.96
4498	16.59	16.80	17.25	18.73	20.44	16.57	16.97	17.91	18.63	19.09
449C	16.91	17.10	17.80	19.88	21.68	16.62	17.22	18.28	18.86	19.07
4508	15.91	16.08	16.53	17.18	18.39	16.33	16.60	17.26	17.98	18.82
450 C	16.18	16.42	16.94	18.13	20.32	16.55	16.97	17.94	18.99	19.66
4500	16.61	17.02	17.76	20.06	24.46	16.87	17.56	18.75	19.71	19.89
450 E	17.0?	17.57	19.77	24.67	27.54	17.06	18.28	19.42	19.75	19.73
451 B	28.70	30.90	32.40	33.78	35.12	29.97	31.79	32.59	32.99	33.37
451 C	29.44	31.91	33.04	34.67	36.00	30.14	31.90	32.59	32.93	33.13
4510	29.94	32.76	33.81	35.36	36.65	30.71	32.02	32.59	32.76	32.96
453B	33.96	36.93	40.65	43.76	47.19	35.64	39.09	41.16	42.54	42.68
453 C	34.92	39.18	42.31	45.88	49.31	36.41	40.08	41.61	42.82	42.54
453D	35.95	41.00	43.90	47.44	50.98	37.67	40.99	41.88	42.71	42.16
454 B	33.52	35.59	39.82	42.94	46.08	35.00	38.05	40.42	42.26	42.33
454 C	35.26	39.93	43.24	46.91	50.59	37.64	41.16	42.33	43.59	43.10
455B	26.65	27.95	31.28	34.28	36.95	27.52	29.95	31.99	32.82	33.11

$\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$	$\stackrel{P 1}{N / C M / C M}$	$\stackrel{P}{N / C M / C M}$	$\begin{gathered} P 3 \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{gathered} P 4 \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{gathered} \text { P5 } 5 \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$	$\begin{gathered} P \underset{N}{1, T} / C M \end{gathered}$	$\begin{gathered} P 2, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 3 \cdot T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 4, T \\ N / C M / C M \end{gathered}$	$\begin{gathered} P 5, T \\ N / C M / C M \end{gathered}$
4568	25.24	26.00	27.97	32.14	36.66	27.09	28.00	30.52	32.79	33.40
456 C	25.03	25.76	27.21	30.81	35.20	26.55	27.34	29.79	$32 \cdot 16$	33.08
456D	24.68	25.13	26.37	29.16	32.68	25.84	26.35	28.60	30.96	32.36
457B	15.04	15.32	15.75	16.54	17.92	15.94	16.09	16.80	17.56	18.39
457 C	15.71	16.24	17.25	20.28	26.63	16.71	17.40	18.60	19.52	19.52
457 D	16.10	17.24	21.46	27.74	31.37	17.13	18.46	19.30	19.56	19.50
458B	15.69	16.33	17.16	19.02	26.19	16.55	17.11	18.15	19.07	19.36
459B	8.88	9.11	9.31	9.61	9.91	9.22	9.32	9.60	10.02	10.25
459 C	9.36	9.94	10.40	12.43	20.33	9.59	9.91	10.37	10.80	10.75
4590	9.27	9.76	10.09	11.43	16.65	9.47	9.74	10.16	10.60	10.72
4608	9.09	9.85	10.24	11.89	20.17	9.48	9.72	10.18	10.63	10.61
460 C	8.98	9.40	9.60	10.02	11.47	9.50	9.64	10.07	10.50	10.71
4600	9.34	9.84	11.29	19.77	23.56	9.84	10.14	10.61	10.84	10.76
461 B	8.95	9.31	9.74	10.21	12.25	9.35	9.50	9.87	10.40	10.51
462 B	10.09	10.25	10.29	10.94	12.11	10.13	10.27	10.53	10.80	10.96
462D	9.98	10.09	10.22	11.20	12.27	10.28	10.47	10.74	10.98	11.10

$\stackrel{F}{\sin }$	$\begin{array}{ll} 0 & a \\ \stackrel{y}{c} \\ \underset{\sim}{1} & \dot{n} \end{array}$		$\begin{aligned} & \infty \\ & \dot{m} \dot{n} \dot{m} \dot{n} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{0}{\dot{N}} \\ & \underset{\sim}{\sim} \end{aligned}$		$\begin{aligned} & M \sim n \\ & i n \\ & \sim N \sim \\ & N \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{4} \\ & \stackrel{4}{N} \\ & \end{aligned}$	$\begin{aligned} & 0 m i n m \\ & 000 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & - \\ & \dot{\infty} \\ & i \end{aligned}$	$$	$$
$\begin{aligned} & \leftarrow \\ & \pm \\ & \pm \end{aligned}$	$\begin{aligned} & \sim 0 \\ & \stackrel{0}{\sim} \underset{\sim}{9} \end{aligned}$		$\begin{aligned} & \infty \rightarrow r \\ & \dot{m} \underset{\sim}{\infty} \dot{\sim} \end{aligned}$	$\begin{aligned} & \infty \text { n } \\ & \stackrel{\bullet}{\sim} \stackrel{1}{N} \\ & \sim \end{aligned}$		$\begin{aligned} & n 0 i n \\ & \dot{n} \stackrel{n}{\sim} \stackrel{\bullet}{n} \end{aligned}$	$\begin{array}{ll} m & 0 \\ \bullet \\ \stackrel{4}{n} & - \end{array}$		$\begin{aligned} & 0 \\ & 0 \\ & \text { in } \\ & \text { in } \end{aligned}$		$\begin{aligned} & \because N \\ & \stackrel{\sim}{n} \\ & \underset{\sim}{\sim} \end{aligned}$
$\stackrel{r}{n} \Sigma$	$\begin{aligned} & \pm N \\ & \stackrel{y}{*} \stackrel{+}{\sim} \\ & \sim \rightarrow 1 \end{aligned}$		$\begin{aligned} & m \backsim \pm \\ & \dot{m} \sim \underset{\sim}{n} \underset{\sim}{n} \end{aligned}$	$\begin{gathered} M O \\ \stackrel{0}{\sim} \\ \sim \sim \end{gathered}$			$\begin{aligned} & \sim \infty \\ & \underset{\sim}{\infty} \dot{\sim} \end{aligned}$		$\begin{aligned} & \infty \\ & \bullet \\ & 0 \\ & \text { in } \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{\infty} \\ & \dot{0} \\ & \dot{y} \\ & \hline \end{aligned}$	
$\begin{aligned} & \leftarrow \\ & \stackrel{\sim}{N} \\ & \pm \end{aligned}$	$\begin{aligned} & \pm 0 \\ & \stackrel{\rightharpoonup}{\dot{N}} \underset{\sim}{2} \end{aligned}$			$\underset{\sim}{\sim}$			$\begin{aligned} & m \\ & \ddot{\infty} \\ & \stackrel{\infty}{n} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { n } \\ & 0 \\ & \text { in } \end{aligned}$	$\begin{aligned} & n \\ & \dot{0} \\ & 0 \\ & m \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \underset{N}{N} \end{aligned}$
$\stackrel{\leftarrow}{\sim}$	$\begin{gathered} \stackrel{\infty}{\infty} \\ \stackrel{\sim}{\sim} \\ \sim \sim \end{gathered}$	$\begin{array}{ccc} 0 \infty & \infty \\ \dot{\sim} \dot{\sim} \dot{\sim} & \dot{\sim} \\ \dot{\sim} \end{array}$	$\begin{aligned} & 0 N 0 \\ & \dot{N} \dot{\sim} \dot{\sim} \end{aligned}$	$\begin{aligned} & \pm \\ & \hdashline \\ & \hdashline \end{aligned}$	ロッかOけ $\dot{\mathrm{N}} \dot{\mathrm{m}} \dot{\mathrm{m}} \mathrm{N}$ NNNN	$\begin{aligned} & 0 m \infty \\ & \stackrel{\circ}{\sim} \underset{\sim}{i} \dot{0} \end{aligned}$			$\begin{aligned} & \infty \\ & \dot{\infty} \\ & \dot{+} \end{aligned}$	$\begin{aligned} & N H \\ & \dot{4} \dot{0} \\ & m \mathrm{~m} \end{aligned}$	$\begin{array}{ll} n \\ 0 \\ \dot{N} & \ddot{N} \end{array}$

${ }_{I}^{n} \sum^{n}$	$\begin{aligned} & a \\ & \stackrel{y}{0} \\ & \sim \\ & \sim \\ & \sim \end{aligned}$	$\begin{aligned} & \pm 0 \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned} 0$			mmono かロ゚ーが NNMNN		$\begin{array}{ll} n & 0 \\ \dot{0} & \dot{n} \\ \sim \end{array}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \pm r \\ & 0 \\ & \text { in } \end{aligned}$	$\begin{aligned} & 0 N \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
${ }_{ \pm}^{ \pm}$	$\begin{aligned} & \sim r \\ & \stackrel{y}{n} \\ & \underset{\sim}{n} \end{aligned}$				$\begin{aligned} & \text { MOMO} \\ & 0 \\ & 0 \\ & 0 \\ & N \end{aligned}$	$\begin{aligned} & 0 N N \\ & 0 \dot{0} \dot{N} \\ & m \sim n \end{aligned}$	$\begin{aligned} & \pm 0 \\ & \stackrel{0}{N} \\ & \underset{N}{N} \end{aligned}$		$\begin{aligned} & n \\ & i \\ & n \end{aligned}$	$$	$\begin{aligned} & n \infty \\ & \dot{N} \dot{\sim} \\ & \stackrel{n}{n} \end{aligned}$

Table A-5b. (cont'd)

${ }_{I}^{n}=$	$\begin{aligned} & n 0 \\ & 00 \\ & 00 \\ & 0 \end{aligned}$	$\begin{aligned} & 000 \\ & \dot{O} 0 \\ & \cdots N O \end{aligned}$	$\begin{aligned} & \ddagger M a \\ & \dot{m} \dot{\sim} \dot{\sim} \\ & \cdots \end{aligned}$	$\begin{gathered} n \\ \dot{n} 0 \\ n \rightarrow 0 \\ n \end{gathered}$	$\begin{aligned} & \pm 0 \\ & \dot{\sim} \dot{\sim} \\ & \underset{\sim}{4} \end{aligned}$	$\begin{array}{ll} \infty & 0 \\ 0 & 0 \\ 0 & \infty \\ N & N \end{array}$			$\begin{aligned} & \because M \\ & \hdashline 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { fon } \\ & \text { fir } \end{aligned}$
${ }_{I}^{T} \Sigma$	$\begin{aligned} & a \pm \\ & \dot{N} \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \sim \infty \\ & \dot{\sim} \dot{0} \dot{\sim} \\ & \sim \end{aligned}$			$\begin{aligned} & n \\ & \dot{0} 0 \\ & N \\ & \rightarrow-1 \end{aligned}$	N-1	$m \omega m \infty$ $\dot{\mathrm{n}} \dot{\mathrm{m}}$ NNNM	$$	$\begin{array}{lll} 0 & -1 & n \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 \end{array}$	$\begin{aligned} & 0 r \\ & \text { an } \\ & \text { in } 0 \end{aligned}$

Endith Units）． T 4

$$
\begin{array}{ll}
\underset{m}{n} & \stackrel{0}{2} \\
\stackrel{j}{m} & \dot{m}
\end{array}
$$

$$
\begin{aligned}
& N \\
& \dot{0} \\
& \dot{0}
\end{aligned}
$$

$$
\begin{array}{ll}
0 \\
n & 0 \\
\dot{n} & 0 \\
m & m
\end{array}
$$

$$
\begin{aligned}
& n \\
& 0 \\
& 0 \\
& m
\end{aligned}
$$

$$
\begin{array}{ll}
n & n \\
0 & \stackrel{n}{+} \\
\dot{m} & \stackrel{n}{n}
\end{array}
$$

$$
\begin{array}{ll}
n & m \\
\vdots & 0 \\
& \stackrel{0}{m}
\end{array}
$$

$k V$
0.44
-0.18
0.40
-0.23
0.54
-0.05
0.44

$$
\begin{aligned}
& T^{\top} l^{1} R \\
& 36.27 \\
& 36.09 \\
& 36.13
\end{aligned}
$$

0
n
$\dot{n} \stackrel{m}{0}$
0
0.71
$\stackrel{n}{ \pm}$
0.69
0.57
0.26
$\stackrel{n}{\square}$
0.53 N
0
0
$\pm \begin{gathered} \pm \\ 0 \\ 0 \\ 0 \\ 0\end{gathered}$
ㄹ
563.4 50
nin
nin
$a-1$
$\dot{\circ}-0_{0}$
∞
∞
in

n
\sim
\sim
\sim
∞
$\stackrel{+}{\infty}$
in
in Or
号
in

 -
$\stackrel{\rightharpoonup}{0}$
$\underset{-1}{0}$ 995.2

PV
SIA
17.14
17.58
17.14 n
$\stackrel{n}{n}$
$\stackrel{n}{n}$
n
17.73
17.88 ∞
$\underset{N}{N}$
$\underset{N}{N}$ 21.68
22.44 17.38
17.78 N
N
N 23.03 22.15 $\underset{\sim}{\sim}$
$\underset{\sim}{\infty}$
$\underset{\sim}{*}$ 0
$\stackrel{0}{+}$
$\underset{\sim}{~}$ $\stackrel{\infty}{\stackrel{\infty}{\sim}}$ $\stackrel{+}{N}$

PO
PSIA

 25.42 25.68 23.22
17.88 26.90
21.52∞
$\stackrel{\infty}{+}$
$\stackrel{0}{m}$$N$
N

m\begin{tabular}{l}
N

\multirow{2}{n}{}

\multirow{2}{n}{}

\pm

\multirow{1}{N}{}

\sim

\sim

m
\end{tabular}

TO	VO
DEG R	$F T / S E C$
37.44	111.3
37.60	116.2
37.44	113.6
37.58	121.1
37.66	130.5
37.71	136.2
39.20	121.2
38.99	123.8
39.22	126.4
37.53	131.3
37.67	140.0
39.31	138.1
39.40	146.7
39.13	135.1
39.31	136.7
41.04	128.0
41.15	126.2
41.09	137.2
40.88	153.5
41.00	153.1
41.15	153.9

INCHES $\begin{array}{lll}\therefore & \circ & N \\ \dot{O} & \dot{0} & \dot{0}\end{array}$ RUN RUN
NO． 463A＊＊ $463 \mathrm{~A} * *$
463 B $464 \mathrm{~A} * *$
464 R 465 A ＊＊
465 B 466A＊＊ 467A＊＊ 467B＊＊ 468＊＊＊ 470A＊＊ 470R＊＊ 471A＊＊ 472B＊＊ 4728＊＊ 475A＊＊ 476A兹 476月＊＊

$$
\begin{array}{ll}
468 A * * \\
468 \mathrm{R} & 0.55 \\
469 A * * & \\
469 \mathrm{~B} & 0.86
\end{array}
$$

$$
\stackrel{T}{T}{ }_{D E G R}^{D E G}{ }^{2}
$$

$\stackrel{T}{U E G}^{1} R$	$\operatorname{TEG}^{2} R$	$\operatorname{TEG}^{T} R$	$\begin{gathered} \text { T } 4 \\ \text { UtG } R \end{gathered}$	$\text { TEG }{ }^{5}$
35.98	36.25	37.17	37.26	$37 \cdot 33$
37.84	37.84	37.84	37.84	37.84
37.55	37.55	37.5	37.55	37-35
35.39	36.45	36.99	37.24	27.19
30.61	37.12	38.50	38.88	38.90
34.33	39.33	39.33	34.33	39.33
39.29	39.29	34.24	34.29	39.29
41.18	41.18	41.18	41.18	41.13
39.74	40.81	40•by	4U.31	40.72
37.84	37.84	37.84	37.84	37.34
37.66	37.66	37.06	37.60	27.56
37.60	37.60	37.60	37.60	37.60
34.37	39.37	39.37	34.37	39.37
39.33	39.33	39.33	39.33	39.32
37.78	38.86	38.74	38.93	38.92
39.20	39.29	39.29	39.29	39.29
34.26	39.26	30.26	\% 26	$35 \cdot 2 t$
36.95	38.03	38.57	36.77	3J. 77

Table A-6a. (cont'd)

RUN	CAVITY	TO	vo	PO	PV	HO	HV
NO.	INCHES	DEG R	FT/SEC	PSIA	PSIA	FT	FT
477A**		37.42	152.0	26.39	17.09	866.1	561.7
477 R	0.62	37.51	162.6	18.79	17.33	617.9	570.1
478 A	1. 36	37.84	163.6	17.62	18.23	581.3	601.4
478B	1.45	37.55	164.5	17.19	17.43	$565 \cdot 6$	573.5
478 C	0.60	37.44	162.4	18.65	17.14	612.8	563.4
479A**		39.29	154.2	31.05	22.68	1037.6	758.9
479R**		39.53	153.0	31.22	23.46	1045.8	786.9
480 B	0.74	39.17	166.2	21.82	22.26	729.3	744.2
481 A	0.90	39.33	136.2	20.62	22.80	690.5	763.2
4818	0.76	39.29	135.9	21.02	22.68	$703 \cdot 6$	758.9
4816**		39.26	128.6	25.74	22.56	860.6	754.7
482 A	0.60	41.18	169.1	29.39	29.54	1003.4	1008.4
483 A	0.64	41.13	152.9	28.49	29.32	972.2	1U0U. 5
483R**		41.22	146.3	33.67	29.68	1149.0	1013.7
484 A	0.80	37.84	144.3	17.12	18.23	564.9	601.4
484B	0.93	37.66	145.5	16.45	17.73	541.9	勺83.9
484 C	0.54	37.60	143.6	17.39	17.58	572.4	勺78.7
485 A	0.72	39.37	150.1	22.12	22.92	740.8	767.4
485 B	1.09	39.33	151.0	21.16	22.80	708.5	763.2
485 C	0.46	39.28	149.1	22.92	22.62	766.8	756.8
4850**		39.38	142.5	27.90	22.97	933.7	769.6
486 A	0.82	39.29	168.5	21.79	22.68	729.3	758.9
4868	1.06	39.26	169.1	21.42	22.56	$716 \cdot 6$	754.7
486 C	0.50	39.11	166.6	22.89	22.09	764.5	737.9
4860**		39.44	157.4	29.92	23.15	1001.5	776.0

* DENOTES AN INCIPIENT RUN
** DENOTES A DESINENT RUN

11	12	13	T 4	
DEG R	DEG R	DEG R	DEG R	DEG R
36.27	36.99	37.40	37.13	37.08
37.01	37.01	37.01	37.01	37.01
37.28	37.28	37.28	37.28	37.28
37.31	37.31	37.31	37.31	37.31
37.28	37.28	37.28	37.28	37.28
37.42	37.42	37.42	37.42	37.42
37.19	37.19	37.19	37.19	37.19
37.60	37.60	37.60	37.60	37.60
35.42	36.47	36.76	36.99	36.97
37.37	38.56	38.83	38.83	38.83
39.44	39.44	39.44	39.44	39.44
38.29	39.04	38.92	38.95	38.88
39.42	39.42	39.42	39.42	39.42
37.69	38.81	39.01	38.97	38.99

HO	HV	FV
FT	FT	

0
$?$
0
0
1

$\stackrel{m}{\stackrel{m}{+}}$ | $\stackrel{+}{+}$ |
| :--- |
| \bullet | 오는 N

©
in
in
in

 n
\sim
\sim
\sim -
0
in
in

「
$\stackrel{\circ}{0}$
$\stackrel{0}{0}$ N
0
0
0
0 546.6
682.3
555.5
504.5
501.4
530.7
898.4
674.1
521.6
536.8
711.3 538.9
550.7
753.8 712.4
879.9 730.7
778.9
919.5
 1050.0 1046.4

17.28
17.83
$\stackrel{\text { コ }}{\stackrel{~}{7}}$

∞
$\dot{\sim}$
$\stackrel{\sim}{\sim}$
$\underset{\sim}{*}$
16.47

22.44
22.56

 ${ }^{-}$ $\stackrel{+}{m}$
$\stackrel{\infty}{\sim}$
$\stackrel{1}{n}$ PO

PSIA | N |
| :--- |
| $0 N$ |
| 00 |
| \mathbf{N} |

 26.85 20.57 NNN
m
n
Nin
 21.30
26.32 $0 N$
$\dot{1}$
\dot{N}
 م
$\dot{\infty}$
\dot{m} N
$\stackrel{\circ}{\mathrm{B}}$
N
N
N
N
-
117.5
115.2
$\stackrel{\infty}{\stackrel{\infty}{\sim}}$

N
\bullet
∞
∞
$\underset{\sim}{\infty} \underset{\sim}{\infty}$
$\underset{\sim}{\infty}$

 \(\wedge\)
 $\dot{\sim}$
$\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty}$
$\underset{\sim}{\infty}$
$a 0$
$\stackrel{0}{\sim} \underset{\sim}{\sim}$
$\underset{\sim}{\sim}$

$\underset{\sim}{\sim}$
$\underset{\sim}{\sim}$
TO
DEG R
37.49
37.69
37.44
さ
39.35
37.19
37.42
37.19
37.13
37.60
37.15
37.10
39.22
39.26
39.44
39.33
39.29
No
N N
NiN
N
40.90
40.88
CAVITY
INCHES
$\begin{array}{ll}0 & 088 \hat{n} \\ 0 & 0-120\end{array}$
Nूㅡ․
$8 i n$
$-i 0$
$\stackrel{0}{\circ}$
$\stackrel{\infty}{\circ}$
$\stackrel{7}{\circ}$
$N 0$
\sim
\sim
RUN
NO
$487 A$
$487 B * *$
$488 A$
$488 B$
$48 B C$
488D
489R**
490A**
491 A
491 B
$491 \mathrm{C} *$
492 A
492 B
$492 \mathrm{C} *$
493B
493 C*
494A
494 B
$494 \mathrm{C} *$
496B**
497A**
＊DENOTES AN INCIPIENT RUN
＊＊DENOTES A DFSINENT RUN
Table A-6a. (cont'd)

RUN	CAVITY	${ }_{\text {DEG }}^{\text {TO }}$ R		$\begin{gathered} \text { P0 } \\ \text { PSIA } \end{gathered}$	$\begin{gathered} \text { PV } \\ \text { PSIA } \end{gathered}$	$\begin{aligned} & \text { HO } \\ & \text { FT } \end{aligned}$	$\begin{aligned} & \mathrm{HV} \\ & \mathrm{FT} \end{aligned}$	KV	$\operatorname{TEG}^{\mathrm{l}} \mathrm{R}$	$\operatorname{DEG}^{T} 2^{2}$	$\operatorname{DEG}^{\top}{ }^{3}$	$\text { TEG }{ }^{T}$	$\text { DEG }{ }^{T}{ }^{5}$
NO.	INCHES	DEG R	FT/SEC										
498A	1.25	39.37	162.5	21.50	22.92	720.1	767.4	-0.12	39.37 39.22	$\begin{aligned} & 39.37 \\ & 39.22 \end{aligned}$	39.37 39.22	$\begin{aligned} & 39.37 \\ & 39.22 \end{aligned}$	$\begin{aligned} & 39.37 \\ & 39.22 \end{aligned}$
498 B	0.61	39.22	$160 \cdot 9$	22.56	22.44	754.3 1007.0	750.4 733.8	0.79					
498C**		39.08	148.9	30.20	21.97	1007.0							
499B**		41.15	132.7	31.80	29.40	1084.7	1003.1	0.30					
5008**		40.84	130.1	32.45	28.20	1102.8	959.1	0.55					
501 A	1.21	39.22	161.8	21.23	22.44	710.0	750.4	-0.10 0.02	39.22 37.12	$\begin{aligned} & 39.22 \\ & 38.30 \end{aligned}$	39.22 38.61	39.22 38.77	39.22 38.66
501 B	0.62	39.11	160.2	22.35	22.09	$746 \cdot 5$	725.5	- 0.78					
501C**		39.01	149.6	29.87	21.74	995.3	725.5					40.91	40.91
502 A	0.82	40.91	162.9	27.56	28.48	938.2	969.3	-0.08 0.81	$40 \cdot 91$	40•91	$40 \cdot 91$	40.91	$40 \cdot 91$
502B**		40.86	148.8	36.53	28.27	1240.8	961.6						
503A	0.66	40.84	161.0	28.00	28.20	952.3	959.1	-0.02	40.84	$40 \cdot 84$	$40 \cdot 84$	$40 \cdot 84$	$40 \cdot 84$
$503 \mathrm{~B}^{* *}$		40.73	14.4	35.77	27.79	1.213 .4	943.9	19					
504B**		40.81	121.3	31.22	28.06	1060.8	954.0	0.47					
				17.40	17.19	572.0	565.0	0.02	37.46	37.46	37.46		
505A	1.40	37.46 37.24	163.4	17.70	16.61	$580 \cdot 6$	545.0	0.09	37.24	37.24	37.24	36.94	37.24 36.68
505 B	1.16	37.24 37.24	162.4 159.1	18.46	16.61	605.5	545.0	0.15	35.71	36.22	36.65	36.90	36.60
505 C	0.65	37.24 37.37	146.3	25.76	16.94	845.0	556.6	0.87					
5050**					16.94	576.4	556.6	0.05	37.37	37.37	37.37	37.37	37.37 36.94
506A	1.48	37.37 37.26			16.66	611.1	546.7	U. 15	35.59	36.07	36.58	37.01	
506B	0.70	37.26 37.31	163.9 150.9	28.00	16.80	917.7	551.6	1.03					

6T•9
$00 \cdot 12$
$95 \cdot 22$
89・で
9ヶ＊「て
$08 \cdot 22$
$26^{\circ} \mathrm{Z2}$
$85^{\circ} \mathrm{LT}$
$\varepsilon L^{\circ} \angle T$
2L•LZ
$75 \cdot 62$
89•2て
$08 \cdot 22$
0ャ・てて
しヵ・9て
とけ゚゙く
を乙•8
$\varsigma 8$
29＊2
06.9
82^{*}
¢！
$\rightarrow{ }^{\text {• }}$
\forall
$1 \cdot \mathrm{G}$

$$
\begin{aligned}
& \circ \\
& \stackrel{\circ}{\infty} \\
& \stackrel{\sim}{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& N \\
& N \\
& N \\
& N \\
& N
\end{aligned}
$$

$$
\begin{aligned}
& \infty \\
& 0 \\
& \dot{\sim} \\
& \underset{\sim}{0}
\end{aligned}
$$

$$
\begin{aligned}
& ⿳ ⺈ ⿴ 囗 十 一 \\
& \stackrel{0}{0} \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& \dot{a} \\
& \dot{0} \\
& \dot{0} \\
& -1
\end{aligned}
$$

$$
\begin{aligned}
& \circ \\
& \ddot{\sim} \\
& \dot{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& \sim \\
& \stackrel{~}{\bullet} \\
& \stackrel{-}{1}
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\sim}{+} \\
& \dot{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& 0_{\infty}^{\infty} \\
& 0 \\
& 0 \\
& \dot{\sim} \dot{\sim} \\
& \dot{N}
\end{aligned}
$$

$$
\begin{aligned}
& {\underset{N}{m}}_{m}^{\infty} \\
& \stackrel{\infty}{\infty} \underset{\sim}{\infty} \underset{\sim}{-}
\end{aligned}
$$

$$
\begin{aligned}
& N \circ 0 \\
& \sim \infty \\
& \dot{\sim} \dot{\sim} \dot{N} \dot{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{J}{0} \\
& \stackrel{\rightharpoonup}{i}
\end{aligned}
$$

$$
\begin{aligned}
& \infty \\
& \stackrel{\infty}{\circ} \\
& \stackrel{-}{\dashv}
\end{aligned}
$$

$$
\begin{gathered}
\stackrel{ \pm}{-} \\
\stackrel{+}{ \pm}
\end{gathered}
$$0

∞
$\stackrel{\infty}{N}$
$\underset{\sim}{N}$
$\sim$$\infty 00$
$\stackrel{0}{0} \sim$
$\underset{\sim}{\sim} \sim$
\sim P $1, T$ T
PSIA
14.19 13.77 13.85 13.40 16.05 13.52 18.23
17.43
12.22 15.01 22.80
22.68 24.19 22.92
22.80

$$
\begin{aligned}
& \text { P } 2, T \mathrm{~T} \\
& \text { PSIA } \\
& 15.77
\end{aligned}
$$

$$
\begin{aligned}
& 14.88 \\
& 15.05
\end{aligned}
$$

$$
15.10
$$

$$
16.28
$$

$$
\begin{aligned}
& 22.80 \\
& 22.68
\end{aligned}
$$

$$
29.54
$$

$$
28.06
$$

$$
\begin{array}{r}
\text { P 3, T } \\
\text { PSIA } \\
17.53
\end{array}
$$

$$
16.37
$$

$$
29.54
$$

$$
27.24
$$

$$
\begin{array}{r}
\text { P4.T } \\
\text { PSIA } \\
16.70 \\
16.70 \\
16.52 \\
17.04 \\
22.50 \\
16.66 \\
18.23 \\
17.43 \\
16.61
\end{array}
$$$N$

$\underset{\sim}{N}$
0
$\stackrel{n}{n}$
$\stackrel{n}{n}$ 29.54

$$
29.54
$$

Table A-6a. (cont'd)

RUN	P 1	P 2	P 3	P 4	P 5
NO.	PSIA	PSIA	PSIA	PSIA	PSIA
488 A	12.05	13.95	16.05	17.45	18.25
4888	11.00	11.47	12.70	14.97	16.60
488 C	10.82	11.35	12.55	15.00	16.42
4880	11.47	12.54	14.74	15.67	17.64
491A	10.67	11.07	12.57	15.42	17.27
4918	10.80	12.04	13.77	15.74	17.17
492A	10.84	11.30	12.64	14.97	16.74
492R	10.93	12.00	14.63	17.47	18.62
4938	16.03	18.63	20.33	21.97	23.00
494A	15.47	16.60	19.77	22.30	23.60
4948	16.87	20.74	22.40	24.24	25.37
495A	14.93	15.85	18.78	21.25	22.92
4958	15.87	18.57	21.50	23.59	24.82
498A	13.80	14.27	15.10	17.57	20.70
498B	14.76	15.96	19.33	23.32	24.96
501 A	14.17	14.47	15.63	18.83	22.13
501 R	14.60	15.80	18.90	23.05	24.70
502 A	19.20	21.66	25.36	28.29	29.89
503 A	19.75	22.80	26.30	28.95	30.40
505A	10.44	10.67	11.04	12.30	15.30
505B	10.55	10.65	11.90	13.95	16.80
505C	11.23	11.83	14.00	$18 \cdot 86$	20.72
506A	10.55	10.45	10.65	11.40	14.10
5068	11.30	11.77	13.23	18.30	20.89

 Table A－6a．（cont＇d）

	\ldots	－	∞		∞	$\stackrel{\infty}{\sim}$	－	¢	¢	$<$		$\varangle \infty \cup$	$<$	U	
－	0	0	$\stackrel{n}{0}$	$\begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}$	0	$\stackrel{N}{*}$	$\stackrel{\infty}{\sim}$	\bigcirc	\cdots	\cdots		ざ	い心边	0	「
$\square \geq$	\checkmark	\checkmark	\checkmark	\pm	\checkmark	\pm	けけ	$\stackrel{+}{+}$		∞	$\stackrel{+}{+}$	\cdots			∞

	0 m	$\cdots \sim$	$\cdots \infty$	m	Om	0	\pm	\pm	m	\rightarrow	－0	00
	－			$\stackrel{+}{*}$		$\cdots \dot{m}$	トO	－	a	\cdots	unin	0 －
－		$\xrightarrow{-1}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{0}$	－	\cdots	¢	\bigcirc	0	0	－${ }^{0}$	－
エ	緼的	in in	in	\cdots	r－	－N	N下	－	σ	α	¢がす	ก 10

FI

$$
524 \cdot 0
$$

\[

\]

$$
\begin{aligned}
& N \\
& - \\
& 0 \\
& 0 \\
& \Omega
\end{aligned}
$$

$$
\begin{aligned}
& \vec{i} \\
& \dot{0} \\
& + \\
& \Omega
\end{aligned}
$$

\[

\]

\qquad $969 \cdot 3$

$$
\begin{aligned}
& 524 \cdot 0 \\
& 548 \cdot 3
\end{aligned}
$$

$$
\begin{aligned}
& 240 \cdot 2 \\
& 551 \cdot 6 \\
& 548 \cdot 3
\end{aligned}
$$

$$
675 \cdot 7
$$

$$
\begin{aligned}
& 576 \cdot 7 \\
& 522.4
\end{aligned}
$$

$$
\begin{aligned}
& \text { n} \\
& \dot{0} \\
& \underset{\sim}{n}
\end{aligned}
$$

$$
\begin{aligned}
& n \\
& n \\
& n \\
& \sim
\end{aligned}
$$

$$
561 \cdot 7
$$

$$
540 \cdot 1
$$

$$
\begin{aligned}
& 578.7 \\
& 477.7
\end{aligned}
$$

$$
\begin{aligned}
& 776.0 \\
& 729.6
\end{aligned}
$$

$$
{ }_{\mathrm{F}}^{\mathrm{H}} \underset{\mathrm{~T}, \mathrm{~T}}{ }
$$

$$
\begin{aligned}
& 776.0 \\
& 719.4
\end{aligned}
$$$750 \cdot 4$$750 \cdot 4$

$699 \cdot 3$$969 \cdot 3$$n$
a
n
$n$$\begin{array}{lll}0 & 0 & t \\ 0 & 0 & f \\ 0 & \pm & -1 \\ n & n & n\end{array}$

$$
\begin{array}{cc}
0 & 0 \\
0 & 0 \\
\text { in } & \\
\text { in }
\end{array}
$$

$$
\stackrel{F}{N}
$$

$$
\begin{array}{ll}
n m & \pm \\
m & \ddots \\
m & n \\
N & n
\end{array}
$$

$$
\begin{aligned}
& t o \\
& 0 \\
& 0 \\
& i n \\
& i
\end{aligned}
$$

$$
\begin{aligned}
& n \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
\begin{aligned}
& n \\
& 0 \\
& 0 \\
& n \\
& n
\end{aligned}
$$

$$
\begin{array}{ll}
0 & 0 \\
0 & -1 \\
n & n \\
0 & \ddots \\
n & n \\
i n
\end{array}
$$

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& n \\
& n
\end{aligned}
$$

$$
\begin{array}{ll}
N & - \\
0 & 0 \\
-1 & 0 \\
0 & t \\
n & \text { in }
\end{array}
$$

$$
\begin{aligned}
& N \\
& \infty \\
& \infty \\
& \text { in }
\end{aligned}
$$

$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& \Omega \\
& \Lambda
\end{aligned}
$$ a

\cdots
\cdots
\sim N
 \pm
\circ
0
0
i n
0
$i n$
i $\begin{array}{ccc}0 & 0 & -1 \\ \text { in in } \\ 0 & 0 \\ \text { in } & \text { H }\end{array}$ $0 N$
0∞
in 0
in

n ${ }^{*}$	8	-	¢	$\stackrel{n}{\sim}$
-岗	-	-	$\stackrel{\circ}{\sim}$	$\stackrel{\text { N }}{ }$

T 1	T 2	T 3	T 4
DEG K	DEG K	DEG K	DEG K
20.15	20.51	20.88	20.71
20.05	20.31	20.82	$20 \cdot 71$
20.07	20.35	20.64	20.67
19.96	20.36	20.77	20.78
20.57	20.97	21.68	21.80

$\underset{\alpha}{2} \dot{8}$ $463 A * *$
463 B
$464 \mathrm{~A} * *$
464 B
465 A *
465 B
466 A *
$467 A^{*} *$
467 a** * $468 \mathrm{~A} \% \%$
468 B $\begin{array}{ll}* \\ * & \\ * & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0\end{array}$
$470 \mathrm{~A} * *$
$470 \mathrm{R} * *$
471A**
4729** 473A** 475A**

476 A**
476 P $^{*} *$ 476P** 21.74
21.84 22.80 22.86 22.83 22.71 $98 \cdot 22$
$82 \cdot 22$ * DENOTES AN INCIPIENT RUIT
Table A－6b．（cont＇d）

$\begin{aligned} & n \\ & \sim \stackrel{x}{\sim} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \dot{\sim} \end{aligned}$		$\xrightarrow{\stackrel{-1}{0}}$	$\begin{aligned} & n \\ & \infty \\ & \infty \\ & \infty \\ & - \\ & \sim \\ & \sim \end{aligned}$	∞ ∞ \sim \sim	N			
$\stackrel{*}{*}$	\bigcirc	N000	\bigcirc	\cdots	${ }_{\infty}^{\infty}$	¢	VNo	$\text { io } \cos _{0}^{n}$	$n_{0}^{\sim}-1.5$
－㟔	$\stackrel{\sim}{\sim}$	ה̇NO	$\stackrel{-}{\sim}$	－${ }^{\text {N }}$	$\underset{\sim}{\sim}$	N	－	$\vec{\sim} \vec{N}$	～
$\stackrel{\square}{\square}$	$\stackrel{\sim}{0}$	Noin	$\stackrel{\sim}{9}$	$\overbrace{\infty}^{\infty}$	－	$\xrightarrow{\sim}$	N～か．	$\hat{\infty}_{0} \Omega \text { in }$	${ }_{\infty}^{0}$
1 －	$\stackrel{\circ}{*}$	ה̇＊	\cdots	$\stackrel{\rightharpoonup}{\sim}$	N	N	－	－${ }_{\text {N }}$	$\underset{\sim}{\sim}$
\checkmark	$\stackrel{ \pm}{\square}$	$\sim_{0} 0 \sim \sim$	？	$\stackrel{\sim}{\infty}$	${ }_{\infty}^{\infty}$	¢	N No．	$\operatorname{rin}_{\infty}^{n} \stackrel{n}{0}$	
－晏	$\stackrel{\circ}{\text {－}}$	－	－	～～	N	N	ה№	NスN	ה－
	0	N	$\stackrel{4}{5}$	$\sim_{\infty}^{\infty} \times$	${ }_{\infty}^{\infty}$	－	N～Nの和	ヘin ${ }_{\text {Nog }}$	
	$\stackrel{\square}{\circ}$	$\stackrel{-10}{\circ}$	$\dot{\circ}$	$\stackrel{\square}{i}$	$\stackrel{\sim}{2}$	N	－ioid	式宔全	べv

$T O$ $D E G K$	$V O$ $M / S E C$	$P O$ $N / C M / C M$	$P V$ N／CM／CM
20.79	46.3	18.20	11.78
20.84	49.6	12.96	11.95
21.02	49.0	12.15	12.57
20.86	50.2	11.85	12.02
20.80	49.5	12.86	11.82
21.83	47.0	21.41	15.64
21.96	46.6	21.53	16.17
21.76	50.7	15.04	15.35
21.85	41.5	14.22	15.72
21.83	41.4	14.49	15.64
21.81	39.2	17.75	15.55
22.88	51.5	20.26	20.37
22.85	46.6	19.64	20.22
22.90	44.6	23.21	20.47
21.02	44.0	11.80	12.57
20.92	44.3	11.34	12.22
20.89	43.8	11.99	12.12
21.87	45.8	15.25	15.80
21.85	46.0	14.59	15.72
21.82	45.4	15.80	15.59
21.88	43.4	19.24	15.84
21.83	51.3	15.02	15.64
21.81	51.5	14.77	15.55
21.73	50.8	15.79	15.23
21.91	48.0	20.63	15.96

[^16]| 11 | 12 | T 3 | 14 | T 5 |
| :---: | :---: | :---: | :---: | :---: |
| DEG K | DEG K | DEG K | DEG K | DEG K |
| 20.15 | 20.55 | 20.78 | 20.63 | 20.60 |
| 20.56 | 20.56 | 20.56 | 20.56 | 20.56 |
| 20.71 | 20.71 | 20.71 | 20.71 | 20.71 |
| 20.73 | 20.73 | 20.73 | 20.73 | 20.73 |
| 20.71 | 20.71 | 20.71 | 20.71 | 20.71 |
| 20.79 | 20.79 | 20.79 | 20.79 | 20.79 |
| 20.66 | 20.66 | 20.66 | 20.66 | 20.66 |
| 20.89 | 20.89 | 20.89 | 20.89 | 20.89 |
| 19.68 | 20.26 | 20.42 | 20.55 | 20.54 |
| 20.76 | 21.42 | 21.57 | 21.57 | 21.57 |
| 21.91 | 21.91 | 21.91 | 21.91 | 21.91 |
| 21.27 | 21.69 | 21.62 | 21.64 | 21.60 |
| 21.90 | 21.90 | 21.90 | 21.90 | 21.90 |
| 20.94 | 21.56 | 21.67 | 21.65 | 21.66 |

0.62
0.65
-0.14
-0.01
0.68
-0.13
0.05
0.85
-0.15
0.54
-0.14
0.05
0.57
n
-0.16
-0.00
80
80
0
0
10
$\begin{array}{ll}\stackrel{m}{l} & \stackrel{+}{+} \\ \dot{\circ} & \dot{+}\end{array}$
Table A-6b. (cont'd)

$H 0$	$H V$
M	M
266.6	173.3
208.0	179.0

233.3
164.6
164.6
171.2
164.6
163.1
163.1
176.4
163.6
162.1
228.7
N
~~~ シ~~235.9
231.3
228.1294.7$\stackrel{a}{\dot{N}} \stackrel{ }{\sim}$
Table A-6b. (cont'd)

| RUN | CAVITY | то | vo | PO | PV |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NO. | CM | DEG K | M/SEC | N/CM/CM | N/CM/CM |
| 487 A | 1.67 | 20.83 | 39.3 | 11.46 | 11.92 |
| 4878** |  | 20.94 | 37.0 | 14.29 | 12.29 |
| 483 A | 1.52 | 20.80 | 36.9 | 11.65 | 11.82 |
| 4883 | 2.54 | 20.71 | 37.9 | 10.60 | 11.52 |
| 488 C | 2.54 | 20.73 | 37.8 | 10.53 | 11.58 |
| 488D | 1.44 | 20.71 | 37.4 | 11.15 | 11.52 |
| 489R** |  | 21.06 | 35.8 | 18.51 | 15.76 |
| 490A** |  | 20.66 | 35.1 | 14.18 | 11.35 |
| 491 A | 2.33 | 20.79 | 42.0 | 10.94 | 11.78 |
| 491 B | 2.41 | 20.66 | 42.1 | 11.29 | 11.35 |
| 4916** |  | 20.63 | 39.3 | 14.98 | 11.26 |
| 492A | 2.54 | 20.89 | $42 \cdot 6$ | 11.29 | 12.12 |
| 4923 | 1. 39 | 20.64 | 42.2 | 11.58 | 11.29 |
| $42^{\text {C*** }}$ |  | 20.61 | 39.4 | 15.88 | 11.19 |
| 493B | 1.93 | 21.79 | 39.6 | 14.69 | 15.47 |
| 493C** |  | 21.81 | 37.1 | 18.15 | 15.55 |
| 494 A | 2.48 | 21.91 | 44.0 | 15.03 | 15.96 |
| 494B | 1.11 | 21.85 | $43 \cdot 1$ | 16.04 | 15.72 |
| 494C** |  | 21.83 | 41.1 | 18.96 | 15.64 |
| 495A | 2.59 | 21.90 | 44.5 | 14.82 | 15.92 |
| 4950 | 1. 52 | 21.83 | 43.8 | 15.63 | 15.64 |
| 495c** |  | 21.78 | 41.1 | 19.42 | 15.43 |
| 4. $9 \in$ P\% $*$ |  | 22.72 | 34.2 | 21.28 | 19.59 |
| $4974 * *$ |  | 22.71 | 35.0 | 21.22 | 19.54 |

[^17]| 11 | T 2 | T 3 | T 4 | 15 |
| :---: | :---: | :---: | :---: | :---: |
| DEG K | DEG K | DEG K | DEG K | DEG K |
| 21.87 | 21.87 | 21.87 | 21.87 | 21.87 |
| 21.79 | 21.79 | 21.79 | 21.79 | 21.79 |
| 21.79 | 21.79 | 21.79 | 21.79 | 21.79 |
| 20.62 | 21.26 | 21.45 | 21.54 | 21.48 |
| 22.73 | 22.73 | 22.73 | 22.73 | 22.73 |
| 22.69 | 22.69 | 22.69 | 22.69 | 22.69 |
| 20.81 | 20.81 | 20.81 | 20.81 | 20.81 |
| 20.69 | 20.69 | 20.69 | 20.69 | 20.69 |
| 19.84 | 20.12 | 20.36 | 20．50 | 20.38 |
| 20.76 | 20.76 | 20.76 | 20.76 | $20 \cdot 76$ |
| 19.77 | 20.04 | $20 \cdot 32$ | 20.56 | 20.52 |







| べ心 | Non | $\stackrel{\circ}{\circ}$ | $\stackrel{\sim}{\circ}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| m－ | றーシ | $\dot{\sim}$ | $\stackrel{\sim}{\circ}$ | ペン |


| $\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$ |
| :---: |
|  |  |
|  |
| 4988 |
| 498C＊＊ |
| 4998＊＊ |
| 500R＊＊ |
| 501a |
| 501R |
| 5016＊＊ |
| 502 A |
| 5028＊＊ |
| 503 A |
| 5038．＊＊ |
| $5048 * *$ |
| 505A |
| 505 F |
| $\begin{aligned} & 5050 \\ & 5050 * * \end{aligned}$ |
|  |  |
|  |
| 5068 |
| 50 |

＊DENOTES AN INCIPIENT RUN
＊＊DENOTES A DESINENT RUN

$$
\begin{gathered}
P 3, T \\
N / C M / C M
\end{gathered}
$$

$$
\begin{aligned}
& 12.09 \\
& 11.88 \\
& 11.29 \\
& 11.72 \\
& 15.03 \\
& 11.32
\end{aligned}
$$

$$
\begin{aligned}
& 13.91 \\
& 15.72 \\
& 15.64 \\
& 20.37 \\
& 18.78
\end{aligned}
$$

$$
\begin{aligned}
& \text { n } \\
& \stackrel{\vdots}{\leftrightarrows}
\end{aligned}
$$

## 


Table A-6b. (cont'd)

| $\begin{aligned} & \text { RUN } \\ & \text { NO. } \end{aligned}$ | $\stackrel{P 1}{M / C M / C M}$ | $\stackrel{p}{N / C M / C M}$ | $\begin{gathered} \mathrm{P} 3 \\ \mathrm{~N} / \mathrm{CM}^{2} / \mathrm{CM} \end{gathered}$ | $\begin{gathered} P 4 \\ N / C M / C M \end{gathered}$ | $\begin{gathered} P 5 \\ N / C M / C M \end{gathered}$ | $\begin{gathered} P / 1, T \\ N / C M / C M \end{gathered}$ | $\begin{gathered} P 2, T \\ N / C M / C M \end{gathered}$ | $\begin{gathered} \mathrm{P} 3, T \\ \mathrm{~N} / \mathrm{CM} / \mathrm{CM} \end{gathered}$ | $\begin{gathered} P 4, T \\ N / C M / C M \end{gathered}$ | $\begin{gathered} p S, T \\ N / C M / C M \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 488 A | 8.31 | 9.62 | 11.07 | 12.03 | 12.58 | 11.03 | 11.03 | 11.03 | 11.03 | 11.03 |
| 488B | 7.58 | 7.91 | 8.76 | 10.32 | 11.45 | 11.52 | 11.52 | 11.52 | 11.52 | 11.52 |
| 488C | 7.46 | 7.83 | 8.65 | 10.34 | 11.32 | 11.58 | 11.58 | 11.58 | 11.58 | 11.58 |
| 4880 | 7.91 | 8.65 | 10.16 | 11.49 | 12.16 | 11.52 | 11.52 | 11.52 | 11.52 | 11.52 |
| 491 A | 7.36 | 7.63 | 8.67 | 10.63 | 11.91 | 11.78 | 11.78 | 11.78 | 11.78 | 11.78 |
| 4918 | 7.45 | 8.30 | 9.49 | 10.85 | 11.84 | 11.35 | 11.35 | 11.35 | 11.35 | 11.35 |
| 492A | 7.47 | 7.79 | 8.71 | 10.32 | 11.54 | 12.12 | 12.12 | 12.12 | 12.12 | 12.12 |
| 492B | 7.54 | 8.27 | 10.09 | 12.05 | 12.84 | 8.48 | $10 \cdot 11$ | 10.59 | 11.00 | 10.97 |
| 4937 | 11.05 | 12.84 | 14.02 | 15.15 | 15.86 | 11.68 | 14.02 | 14.60 | 14.60 | 14.60 |
| 494A | 10.67 | 11.45 | 13.63 | 15.38 | 16.27 | 15.96 | 15.96 | 15.96 | 15.96 | 15.96 |
| 494B | 11.63 | 14.30 | 15.44 | 16.71 | 17.49 | 13.46 | 15.07 | 14.79 | 14.67 | 14.71 |
| 495A | 10.29 | 10.93 | 12.95 | 14.65 | 15.80 | 15.92 | 15.92 | 15.92 | 15.92 | 15.92 |
| 4958 | 10.94 | 12.80 | 14.82 | 16.26 | 17.11 | 12.29 | 14.56 | 14.99 | 14.91 | 14.95 |
| 498A | 9.51 | 9.84 | 10.41 | 12.11 | 14.27 | 15.80 | 15.80 | 15.80 | 15.80 | 15.80 |
| 498B | 10.18 | 11.00 | 13.33 | 16.08 | 17.21 | 15.47 | 15.47 | 15.47 | 15.47 | 15.47 |
| 501A | 9.77 | 9.98 | 10.78 | 12.98 | 15.26 | 15.47 | 15.47 | 15.47 | 15.47 | 15.47 |
| 5018 | 10.07 | 10.89 | 13.03 | 15.89 | 17.03 | 11.22 | 13.50 | 14.14 | 14.48 | 14.25 |
| 502A | 13.24 | 14.93 | 17.49 | 19.51 | 20.61 | 19.64 | 19.64 | 19.64 | 19.64 | 19.64 |
| 503 A | 13.62 | 15.72 | 18.13 | 19.96 | 20.96 | 19.44 | 19.44 | 19.44 | 19.44 | 19.44 |
| 505A | 7.20 | 7.36 | 7.61 | 8.48 | 10.55 | 11.85 | 11.85 | 11.85 | 11.85 | 11.85 |
| 505 P | 7.27 | 7.34 | 8.20 | 9.62 | 11.58 | 11.45 | 11.45 | 11.45 | 11.45 | 11.45 |
| 505 C | 7.74 | 8.16 | 9.65 | 13.00 | 14.29 | 8.91 | 9.69 | 10.41 | 10.84 | 10.47 |
| 506A | 7.27 | 7.21 | 7.34 | 7.86 | 9.72 | 11.68 | 11.68 | 11.68 | 11.68 | 11.68 |
| 506B | 7.79 | $8 \cdot 12$ | 9.12 | 12.62 | 14.40 | 8.72 | 9.46 | 10.29 | 11.03 | 10.91 |


| $\vdash \sim \mathrm{raN} \boldsymbol{\sim}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| い玉 |  | $\cdots$ | $\dot{m}$ | 0 | $\stackrel{\circ}{\circ}$ | $\infty$ | ベが | $\stackrel{+}{*}$ | $\stackrel{-1}{\sim}$ | $\stackrel{+}{*}$ | $\stackrel{\circ}{0}$ | $\dot{m} \times$ | $\dot{m} \sim \infty$ |  |  |
|  | － | $\cdots$ | － | $\bigcirc$ | n | 0 | $\infty \sim 0$ | $-$ | mm | 0 | $\infty$ | $\infty$－ | $\mathrm{mm-r}$ | $\cdots \mathrm{mm}$ | 0 |
| I | $\rightarrow$ | $\rightarrow$ | $\boldsymbol{r}$ | $\rightarrow$ | N | $\rightarrow$ | いいで | N | NN | m | N | －r | $\mathrm{N} N$ | ～NN |  |

$$
5
$$

$$
-1
$$

| $I^{N}$ | $\begin{aligned} & \pm \\ & \infty \\ & \stackrel{\infty}{-1} \end{aligned}$ | $\stackrel{\dot{N}}{\underset{\sim}{n}}$ | $\begin{aligned} & \underset{\sim}{N} \\ & \dot{\sim} \\ & \underset{\sim}{2} \end{aligned}$ | $\begin{aligned} & \sim \\ & \alpha \\ & \alpha \\ & \sim \end{aligned}$ | $\begin{aligned} & 0 \\ & \infty \\ & \underset{N}{N} \end{aligned}$ | $\begin{aligned} & \vec{H} \\ & \stackrel{y}{n} \\ & \underset{N}{2} \end{aligned}$ |  | $\begin{aligned} & 0 \\ & 0 \\ & \pm \\ & \pm \\ & \sim \end{aligned}$ |  | $\begin{aligned} & \underset{m}{n} \\ & \underset{m}{2} \end{aligned}$ | $\begin{aligned} & N \\ & \dot{0} \\ & \underset{m}{n} \end{aligned}$ |  | $$ | $\sim \sim \infty$ $\dot{m}+$ ＊～に NNN | $\sim$ $\sim$ $\infty$ $\sim$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\pm \Sigma$ | $\begin{aligned} & \text { in } \\ & \stackrel{0}{e} \\ & \sim \end{aligned}$ | $\begin{aligned} & -1 \\ & 0 \\ & 0 \\ & -1 \end{aligned}$ | $\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \underset{\sim}{+} \end{aligned}$ | $\begin{gathered} 0 \\ -1 \\ -1 \\ - \end{gathered}$ | $\begin{aligned} & n \\ & 0 \\ & \dot{N} \\ & N \end{aligned}$ | $\begin{aligned} & N \\ & \stackrel{1}{2} \\ & \dot{N} \\ & \end{aligned}$ |  | $\begin{aligned} & m \\ & \dot{\sim} \\ & \underset{N}{N} \end{aligned}$ | $\begin{aligned} & \because \sim \\ & \bullet \\ & \pm \\ & \sim N \\ & \sim \end{aligned}$ | $\stackrel{+}{*}$ <br> $\underset{\sim}{\sim}$ <br>  | $\begin{aligned} & 0 \\ & - \\ & - \\ & m \end{aligned}$ |  | $\begin{aligned} & N \sim \\ & \sim \end{aligned}$ | $\begin{aligned} & \dot{\sim} \dot{\sim} \\ & N \\ & \sim \\ & \sim \end{aligned}$ | $\stackrel{\infty}{\infty}$ |

$$
\boldsymbol{H} \Sigma \stackrel{0}{\wedge}
$$

Table A-6b. (cont'd)

| RUN NO. | $H_{M} 1$ | $\mathrm{H}_{\mathrm{M}}{ }^{2}$ | $\mathrm{H}^{\mathrm{H}}{ }^{3}$ | $H_{M}^{4}$ | $H_{M}^{5}$ | $H \underset{M}{1}, T$ | ${ }_{\mathrm{H}}^{2} \underset{M}{2, T}$ | $\begin{gathered} H \quad 3, T \\ M \end{gathered}$ | $\begin{gathered} 4 \\ M \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 488 A | 118.5 | 138.2 | 160.2 | 175.0 | 183.6 | 159.7 | 159.7 | 159.7 | 159.7 | 159.7 |
| 488 B | 107.7 | 112.5 | 125.2 | 148.9 | 166.0 | 167.1 | $167 \cdot 1$ | 167.1 | 167.1 | 167.1 |
| 488 C | 105.8 | 111.3 | 123.6 | 149.2 | 164.1 | 168.1 | 168.1 | 168.1 | 168.1 | 168.1 |
| 488 D | 112.5 | 123.5 | 146.4 | 166.8 | $177 \cdot 1$ | 167.1 | 167.1 | 167.1 | 167.1 | 167.1 |
| 491 A | 104.3 | 108.4 | 123.9 | 153.6 | 173.1 | 171.2 | 171.2 | 171.2 | 171.2 | 171.2 |
| 491 B | 105.6 | 118.4 | 136.3 | 156.9 | 172.1 | 164.6 | 18.4.6 | 164.6 | 164.6 | 164.6 |
| 492 A | 106.1 | 110.8 | 124.6 | 148.9 | 167.5 | 176.4 | 176.4 | 176.4 | 176.4 | 176.4 |
| 492B | 107.0 | 118.0 | 145.3 | 175.2 | 187.5 | 121.0 | 145.6 | 153.0 | 159.2 | 158.7 |
| 4938 | 160.0 | 187.6 | 205.9 | 223.6 | 234.8 | 169.7 | 205.9 | 215.0 | 215.0 | $215 \cdot 0$ |
| 494A | 154.1 | 166.0 | 199.8 | 227.2 | 241.4 | 236.5 | 236.5 | 236.5 | 236.5 | 236.5 |
| 4948 | 168.9 | 210.3 | 228.3 | 248.4 | 260.9 | 197.2 | 222.4 | 218.0 | 219.3 | 216.8 |
| 495 A | 148.4 | 158.1 | 189.2 | 215.8 | $234 \cdot 0$ | 235.9 | 235.9 | 235.9 | 235.9 | 235.9 |
| 4958 | 158.3 | 187.0 | 218.5 | 241-3 | 254.8 | 179.0 | 214.4 | 221.1 | 219 | 220.5 |
| 498 A | 136.6 | 141.5 | 150.2 | 176.3 | 209.9 | 233.9 | 233.9 | 233.9 | 233.4 | 233.9 |
| 498B | 146.6 | 159.3 | 195.1 | $238 \cdot 3$ | 256.3 | 228.7 | 228.7 | 228.7 | 228.7 | 228.7 |
| 501 A | 140.5 | 143.6 | 155.8 | 189.7 | 225.4 | 228.7 | 228.7 | 228.7 | 228.7 | 228.7 |
| 5018 | 145.0 | 157.6 | 190.5 | 235.4 | 253.5 | 162.6 | 197.8 | 207.7 | 213.1 | 209.3 |
| 502 A | 193.7 | 220.2 | 260.8 | 293.3 | 311.3 | 295.4 | 295.4 | 295.4 | 295.4 | 295.4 |
| 503 A | 199.6 | 232.7 | 271.2 | $300 \cdot 7$ | 317.1 | 292.3 | $292 \cdot 3$ | 292.3 | 292.3 | 292-3 |
| 505 A | 102. | 104.3 | 108.1 | 121.1 | $152 \cdot 3$ | 172.2 | 172.2 | 172.2 | $172 \cdot 2$ | 172.2 |
| 505B | 103.1 | 104.1 | 116.0 | 138.2 | 168.1 | 166.1 | 166.1 | 166.1 | 160.1 | 156.1 |
| 5056 | 110.1 | 116.2 | 138.7 | 190.1 | 210.1 | 127.4 | 139.3 | $150 \cdot 2$ | 156.8 | 151 |
| 506A | 103.1 | 102.1 | $104 \cdot 1$ | 111.8 | 139.8 | 169.7 | 169.7 | 169.7 | 169.7 | 169.7 |
| 5068 | 110.8 | 115.6 | 130.7 | 184.1 | 211.9 | $124 \cdot 6$ | 135.9 | 148.3 | 159.7 | 157.8 |


[^0]:    *For sale by the National Technical Information Service, Springfield, Virginia 22151

[^1]:    Photograph of 0.420 -inch and 0.210 -inch diameter ogives ready for installation in test facility.

[^2]:    ＊DENOTES AN INCIPIENT RUN
    ＊DENOTES A DESINENT RUN

[^3]:    * DENOTES AN INCIPIENT RUN

[^4]:    * DENOTES AN INCIPIENT RUN
    ** DENOTES A DESINENT RUN

[^5]:    ＊DENOTES AN INCIPIENT RUN
    ＊＊DENOTES A DESINENT RUN

[^6]:    * DENOTES AN INCIPIENT RUN
    * DENOTES A DESINENT RUN

[^7]:    ＊DENOTES AN INCIPIENT RUN
    ＊＊DENOTES A DESINENT RUN

[^8]:    * DENOTES AN INCIPIENT RUN
    ** DENOTES A DESINENT RUN

[^9]:    * denotes an incipient run
    ** denotes a desinent run

[^10]:    ＊DENOTES AN INCIPIENT RUN
    ＊＊DENOTES A DESINENT RUN

[^11]:    * denotes an incipient run
    ** denotes a desinent run

[^12]:    ＊DENOTES AN INCIPIENT RUN
    ＊＊DENOTES A DESINEMT RUN

[^13]:    ＊DENOTES AN INCIPIENT RUN
    ＊DENOTES A DESINENT RUN

[^14]:    * DENOTES AN INCIPIENT RUN
    ** DENOTES A DESINENT RUN

[^15]:    ＊DENOTES AN INCIPIENT RUN
    ＊DENOTES A DESINENT RUN

[^16]:    ＊DENOTES AN INCIPIENT RUN
    ＊DENOTES A DESINENT RUN

[^17]:    * DENOTES AN INCIPIENT RUN

