

CASE FILE COPY

CAVITATION IN LIQUID CRYOGENS III - Ogives

by J. Hord

Prepared by NATIONAL BUREAU OF STANDARDS Boulder, Colo. 80302 for Lewis Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . MAY 1973

1. Report No.	2. Government Acces	sion No.	3. Recipient's Catalog	g No.		
4. Title and Subtitle	4. Title and Subtitle					
CAVITATION IN LIQUID CRY	OGENS		May 1973	······································		
III - OGIVES			6. Performing Organi:	zation Code		
7. Author(s)			8. Performing Organiz	ation Report No.		
J. Hord			None			
9. Performing Organization Name and Address	# <u></u>	[10. Work Unit No.			
National Bureau of Standards			11 Contract or Grant	No		
Boulder, Colorado 80302			C-39004B			
			13. Type of Report ar	nd Period Covered		
12. Sponsoring Agency Name and Address			Contractor R	leport		
National Aeronautics and Spac	e Administration	-	14. Sponsoring Agency	- / Code		
Washington, D.C. 20546						
Project Manager, Werner R. Research Center, Cleveland,	Britsch, Fluid Sy Ohio	stem Components I	Division, NASA	Lewis		
 This document constitutes the cavitation studies. Experiment Both desinent and developed carity detained by the developed cavity data indit the vaporous cavities. These NASA CR-2156 (volume II of the improves data correlation for future predictive applications. are shown to vary with specifit from knowledge of the noncavitation knowledge of the noncavitation or future or future from knowledge of the noncavitation of	third of four volu ntal results for the avity data, using it a consistent og y ogive size; B-f cated that stable data were correl nis report series) the ogives, hydro The cavitation of c equipment-fluid tating pressure c	 Immes to be issued or uree, scaled, quarter liquid hydrogen and ive size effect, but actor increases with thermodynamic equated by using the exol. The new correlator of oil, and venturi and coefficient K_c, min a coefficient is suggestioned by a suggestimation of the suggesti	the results of or er-caliber ogive liquid nitrogen, the developed ca h increasing ogi ilibrium exists the tended theory de ting parameter, and equipment method of estimated.	continuing s are given. are reported. avity data ve diameter. throughout erived in MTWO, ctive for size effects ating K _c , min		
Nucleation		×				
19. Security Classif, (of this report)	20. Security Classif 4		21 No. of Pages	22 Price*		
Unclassified	Incla	ssified	21, NO. OT Pages 944	\$3.00		
			LII	ψυ.00		

÷

* For sale by the National Technical Information Service, Springfield, Virginia 22151

CONTENTS

.

_ _

													Page
1.	Summa	ry		•••	• •	•	•			•	•	•	1
2.	Introdu	ction .		•••	• •	•	•	• •		•	•	•	3
3.	Experi	mental Ap	paratus	•••	• •	•	•	• •		•	•	•	8
	3.1	Ogives, '	Tunnels,	and S	Sting-	Mou	nt A	Asse	em	bly	7	•	8
		3.1.1	Design	Const	iderat	ions	5.	• •		•	•	•	9
		3.1.2	Details	s of Fa	brica	tion		• •		•	•	•	25
	3.2	Ogive Co	ntours a	nd Pr	essur	e Di	stri	ibut	ior	S	•	•	27
4.	Data A	nalysis		• •		•	•	•	•	•	•	•	31
	4.1	Correlat	ion of De	esinen	t Cavi	itati	on l	Data	L	•	•	•	31
	4.2	Discussi	on of De	sinent	Cavit	tatio	n D	ata		•	•	•	51
	4.3	Correlat	ion of De	evelop	ed Ca	vita	tion	Da	ta	•	•	•	60
	4.4	Discussi	on of De	velope	d Cav	vitat	ion	Dat	a.	•	•	•	79
		4.4.1	Cavity	Visua	lizati	on a	ind	App	ea	rai	nce	•	79
		4.4.2	Graphi	ical Di	splay	of '	Гур	ical	-				
			Develo	oped C	avity	Data	a	•	•	•	•	•	80
		4.4.3	Mathe	matica	l Cor	rela	tive	e Re	esu	lts	5.	•	82
		4.4.4	Variat	ion of	K	nin ^V	With	n Ge	on	net	ry,		
			Fluid,	Size,	Etc.	•	•	•	•	•	•	•	89
	4.5	Develope	ed Cavity	7 Shap	es.	•	•	•	•	•	•	•	93
5.	Conclu	ding Rem	arks .	• •		•	•	•	•	•	•	•	95
6.	Nomen	clature			• •	•	•	•	•	•	•	•	97
7.	Refere	nces .			• •	•	•	•	•	•	•	•	102
Append	lix A: 1	Experime	ntal cavi	tation	data-	-nit	rog	en	and	l			
	hydrog	enfor o	gives .		• •	•		•	•	•	•	•	106

LIST OF FIGURES

		Page
Figure 3.1	Photograph of 0.420-inch and 0.210-inch	
	diameter ogives ready for installation in test	
	facility	10
Figure 3.2	Photograph showing optical distortion attribut-	
	able to plastic tunnel, as fabricated, for the	
	0.210-inch ogive	11
Figure 3.3	Photograph showing optical distortion attribut-	
	able to plastic tunnel, as fabricated, for the	
	0.357-inch ogive	12
Figure 3.4	Photograph showing optical distortion attribut-	
	able to plastic tunnel, as fabricated, for the	
	0.420-inch ogive	13
Figure 3.5	Sketch of instrumented ogive and sting	
	assembly	14
Figure 3.6	Photographs showing typical appearance of	
	vaporous hydrogen cavities on the 0.210-inch	
	ogive	15
Figure 3.7	Photographs showing typical appearance of	
	vaporous hydrogen cavities on the 0.357-inch	
	ogive	16
Figure 3.8	Photographs showing vaporous hydrogen	
	cavities on the 0.420-inch ogivebottom two	
	photographs show typical appearance	17
Figure-3.9	Details of 0.210-inch diameter ogive	18
Figure 3.10	Details of 0.357-inch diameter ogive	19

	Page
Details of 0.420-inch diameter ogive	20
Details of plastic tunnel for 0.210-inch diameter	
ogive	21
Details of plastic tunnel for 0.357-inch diameter	
ogive	22
Details of plastic tunnel for 0.420-inch diameter	
ogive	23
Contour of the quarter-caliber rounded nose of	
the 0.210-inch ogive	28
Pressure distributions on the quarter-caliber	
ogives, for noncavitating flow	29
Effects of tunnel inlet velocity and liquid tem-	
perature on required inlet pressure for desinent	
cavitation in liquid hydrogen0. 210-inch ogive:	
$(1) = P_{v} @ 37.5 R; (2) = P_{v} @ 39.5 R;$	
$(3) = P_v @ 41.5 R$	39
Effects of tunnel inlet velocity and liquid tem-	
perature on required inlet pressure for desinent	
cavitation in liquid hydrogen0. 357-inch ogive:	
$(1) = P_v @ 37 R; (2) = P_v @ 39R;$	
$(3) = P_v @ 41 R $	40
Effects of tunnel inlet velocity and liquid tem-	
perature on required inlet pressure for desinent	
cavitation in liquid hydrogen0. 420-inch ogive:	
$1 = P_v @ 37.5 R; 2 = P_v @ 39.25 R;$	
$(3) = P_v @ 41 R $	41
	Details of 0, 420-inch diameter ogive Details of plastic tunnel for 0, 210-inch diameter ogive

Figure 4. 4Desinent cavitation parameter for liquid hydrogen as a function of tunnel inlet velocity and liquid temperature0, 210-inch ogive.42Figure 4. 5Desinent cavitation parameter for liquid hydrogen as a function of tunnel inlet velocity and liquid temperature0, 357-inch ogive.43Figure 4. 6Desinent cavitation parameter for liquid hydrogen as a function of tunnel inlet velocity and liquid temperature0, 420-inch ogive.44Figure 4. 7Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid nitrogen0. 210-inch ogive: (1) = P_v @ 141 R; (2) = P_v @ 151 R; (3) = P_v @ 161 R; (4) = P_v @ 166 R			Page
hydrogen as a function of tunnel inlet velocity and liquid temperature0, 210-inch ogive	Figure 4.4	Desinent cavitation parameter for liquid	
and liquid temperature0, 210-inch ogive 42 Figure 4. 5 Desinent cavitation parameter for liquid hydrogen as a function of tunnel inlet velocity and liquid temperature0, 357-inch ogive 43 Figure 4. 6 Desinent cavitation parameter for liquid hydrogen as a function of tunnel inlet velocity and liquid temperature0, 420-inch ogive 44 Figure 4. 7 Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid nitrogen0, 210-inch ogive: $(1) = P_v @ 141 R; (2) = P_v @ 151 R;$ $(3) = P_v @ 161 R; (4) = P_v @ 166 R 45$ Figure 4. 8 Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid nitrogen0, 357-inch ogive; $(1) = P_v @ 140 R; (2) = P_v @ 150 R;$ $(3) = P_v @ 160 R $		hydrogen as a function of tunnel inlet velocity	
Figure 4. 5Desinent cavitation parameter for liquid hydrogen as a function of tunnel inlet velocity and liquid temperature0. 357-inch ogive.43Figure 4. 6Desinent cavitation parameter for liquid hydrogen as a function of tunnel inlet velocity and liquid temperature0. 420-inch ogive.44Figure 4. 7Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid nitrogen0. 210-inch ogive: (1) = P _v @ 141 R; (2) = P _v @ 151 R; (3) = P _v @ 161 R; (4) = P _v @ 166 R 45Figure 4. 8Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid nitrogen0. 357-inch ogive; (1) = P _v @ 140 R; (2) = P _v @ 150 R; (3) = P _v @ 160 R		and liquid temperature0.210-inch ogive	42
hydrogen as a function of tunnel inlet velocity and liquid temperature0.357-inch ogive	Figure 4.5	Desinent cavitation parameter for liquid	
and liquid temperature0. 357-inch ogive. 43 Figure 4. 6 Desinent cavitation parameter for liquid hydrogen as a function of tunnel inlet velocity and liquid temperature0. 420-inch ogive. 44 Figure 4. 7 Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid nitrogen0. 210-inch ogive: $1 = P_v @ 141 R; (2) = P_v @ 151 R;$ $3 = P_v @ 161 R; (4) = P_v @ 166 R$		hydrogen as a function of tunnel inlet velocity	
Figure 4. 6Desinent cavitation parameter for liquid hydrogen as a function of tunnel inlet velocity and liquid temperature0. 420-inch ogive.44Figure 4. 7Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid nitrogen0. 210-inch ogive: $1 = P_v @ 141 R; (2) = P_v @ 151 R;$ $(3) = P_v @ 161 R; (4) = P_v @ 166 R$		and liquid temperature0.357-inch ogive.	43
hydrogen as a function of tunnel inlet velocity and liquid temperature0. 420-inch ogive	Figure 4.6	Desinent cavitation parameter for liquid	
and liquid temperature0, 420-inch ogive		hydrogen as a function of tunnel inlet velocity	
Figure 4.7Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid nitrogen0.210-inch ogive: $1 = P_v @ 141 R; 2 = P_v @ 151 R;$ $3 = P_v @ 161 R; 4 = P_v @ 166 R 45Figure 4.8Effects of tunnel inlet velocity and liquidtemperature on required inlet pressure fordesinent cavitation in liquid nitrogen0.357-inchogive; 1 = P_v @ 140 R; 2 = P_v @ 150 R;3 = P_v @ 160 R $		and liquid temperature0.420-inch ogive.	44
temperature on required inlet pressure for desinent cavitation in liquid nitrogen0.210-inch ogive: $1 = P_v @ 141 R; 2 = P_v @ 151 R;$ $3 = P_v @ 161 R; 4 = P_v @ 166 R$	Figure 4.7	Effects of tunnel inlet velocity and liquid	
$\begin{array}{rcl} \text{desinent cavitation in liquid nitrogen0.210-inch} \\ \text{ogive:} (1) = P_v @ 141 R; (2) = P_v @ 151 R; \\ (3) = P_v @ 161 R; (4) = P_v @ 166 R & \dots & 45 \\ \end{array}$ Figure 4. 8 Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid nitrogen0.357-inch $\text{ogive}; (1) = P_v @ 140 R; (2) = P_v @ 150 R; \\ (3) = P_v @ 160 R & \dots & \dots & \dots & 46 \\ \end{array}$ Figure 4. 9 Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid nitrogen0.420-inch $\text{ogive}; (1) = P_v @ 140 R; (2) = P_v @ 150 R; \\ (3) = P_v @ 160.5 R; (4) = P_v @ 150 R; \\ (3) = P_v @ 160.5 R; (4) = P_v @ 165.5 R & \dots & 47 \\ \end{array}$ Figure 4. 10 Desinent cavitation parameter for liquid		temperature on required inlet pressure for	
ogive: $1 = P_v @ 141 R; 2 = P_v @ 151 R;$ $3 = P_v @ 161 R; 4 = P_v @ 166 R$		desinent cavitation in liquid nitrogen0.210-inch	
$(3) = P_v @ 161 R; (4) = P_v @ 166 R 45$ Figure 4.8 Figure 4.8 Figure 4.8 Figure 4.8 Figure 4.9 Figure 4.9 Figure 4.9 Figure 4.9 Figure 4.9 Figure 4.10		ogive: $1 = P_{v} @ 141 R; (2) = P_{v} @ 151 R;$	
Figure 4.8Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid nitrogen0.357-inch ogive; $1 = P_v @ 140 R; 2 = P_v @ 150 R;$ $3 = P_v @ 160 R $		$3 = P_{v} @ 161 R; (4) = P_{v} @ 166 R$	45
temperature on required inlet pressure for desinent cavitation in liquid nitrogen0.357-inch ogive; $(1) = P_v @ 140 R; (2) = P_v @ 150 R;$ $(3) = P_v @ 160 R $	Figure 4.8	Effects of tunnel inlet velocity and liquid	
$\begin{array}{rcl} \text{desinent cavitation in liquid nitrogen0.357-inch} \\ & \text{ogive;} & 1 = P_v @ 140 R; & 2 = P_v @ 150 R; \\ & 3 = P_v @ 160 R & & & & & & & & & & & & & & & & & & $		temperature on required inlet pressure for	
Figure 4. 9 $\begin{array}{rcl} & \text{ogive;} & 1 &= & P_v @ 140 \text{ R;} & 2 &= & P_v @ 150 \text{ R;} \\ & 3 &= & P_v @ 160 \text{ R} & & & & & & & & & & & & & & & & & & $		desinent cavitation in liquid nitrogen0.357-inch	
$(3) = P_v @ 160 R $		ogive; $1 = P_{u} @ 140 R; (2) = P_{u} @ 150 R;$	
Figure 4.9 Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid nitrogen0.420-inch $ogive; 1 = P_v @ 140 R; 2 = P_v @ 150 R;$ $3 = P_v @ 160.5 R; 4 = P_v @ 165.5 R 47$ Figure 4.10 Desinent cavitation parameter for liquid		$(3) = P_{v} @ 160 R $	46
temperature on required inlet pressure for desinent cavitation in liquid nitrogen0.420-inch ogive; $1 = P_v @ 140 R; 2 = P_v @ 150 R;$ $3 = P_v @ 160.5 R; 4 = P_v @ 165.5 R$	Figure 4.9	Effects of tunnel inlet velocity and liquid	
desinent cavitation in liquid nitrogen0.420-inch ogive; $1 = P_v @ 140 R; 2 = P_v @ 150 R;$ $3 = P_v @ 160.5 R; 4 = P_v @ 165.5 R 47$ Figure 4.10 Desinent cavitation parameter for liquid		temperature on required inlet pressure for	
ogive; $1 = P_v @ 140 R; 2 = P_v @ 150 R;$ $3 = P_v @ 160.5 R; 4 = P_v @ 165.5 R 47$ Figure 4.10 Desinent cavitation parameter for liquid		desinent cavitation in liquid nitrogen0.420-inch	
$3 = P_v @ 160.5 R; 4 = P_v @ 165.5 R 47$ Figure 4.10 Desinent cavitation parameter for liquid		$give; 1 = P_{u} @ 140 R; 2 = P @ 150 R;$	
Figure 4.10 Desinent cavitation parameter for liquid		$3 = P_{u} @ 160.5 R; (4) = P @ 165.5 R$	47
•	Figure 4.10	Desinent cavitation parameter for liquid	
nitrogen as a function of tunnel inlet velocity		nitrogen as a function of tunnel inlet velocity	
and liquid temperature0.210-inch ogive		and liquid temperature0.210-inch ogive.	48

İ.

Ì

		Page
Figure 4.11	Desinent cavitation parameter for liquid	
	nitrogen as a function of tunnel inlet velocity	
	and liquid temperature0.357-inch ogive	49
Figure 4.12	Desinent cavitation parameter for liquid	
	nitrogen as a function of tunnel inlet velocity	
	and liquid temperature0.420-inch ogive	50
Figure 4.13	Desinent cavitation parameter for liquid	
	hydrogen as a function of V_0 , T_0 , and D_m .	54
Figure 4.14	Desinent cavitation parameter for liquid	
	hydrogen as a function of (We) ^{0.5} , T and	
	$\mathbf{p}_{\mathbf{m}}$	55
Figure 4.15	Desinent cavitation parameter for liquid	
	nitrogen as a function of V_0 , T_0 , and D_m .	56
Figure 4.16	Desinent cavitation parameter for liquid	
	nitrogen as a function of (We) $^{0.5}$, T and	
	$\mathbf{D}_{\mathbf{m}}$	57
Figure 4.17	Pressure depressions within cavities in	
	liquid hydrogen	62
Figure 4.18	Pressure and temperature depressions	
	within cavities in liquid hydrogen	63
Figure 4.19	Pressure and temperature depressions	
	within cavities in liquid hydrogen	64
Figure 4.20	Pressure depressions within cavities in	
	liquid hydrogen	65
Figure 4.21	Pressure and temperature depressions within	
	cavities in liquid hydrogen	66

Page

Figure 4.22	Pressure and temperature depressions within		
	cavities in liquid nitrogen	•	67
Figure 4.23	Pressure and temperature depressions within		
	cavities in liquid nitrogen	•	68
Figure 4.24	Pressure and temperature depressions within		
	cavities in liquid nitrogen	•	69
Figure 4.25	Pressure and temperature depressions within		
	cavities in liquid nitrogen	•	70
Figure 4.26	Pressure and temperature depressions within		
	cavities in liquid nitrogen	•	71
Figure 4.27	Minimum cavitation parameter, $\overline{K}_{c, \min}$, as a		
	function of minimum noncavitating pressure		
	coefficient, C_{p} , for various hydrodynamic		
	bodies	•	92

viii

LIST OF TABLES

. _ . _ _ _

		Page
Table 4.1	Temperature-compensated desinent data	
	(Hydrogen: 0.210-inch (0.533 cm) ogive)	33
Table 4.2	Temperature-compensated desinent data	
	(Hydrogen: 0.357-inch (0.907 cm) ogive)	34
Table 4.3	Temperature-compensated desinent data	
	(Hydrogen: 0.420-inch (1.067 cm) ogive)	35
Table 4.4	Temperature-compensated desinent data	
	(Nitrogen: 0.210-inch (0.533 cm) ogive)	36
Table 4.5	Temperature-compensated desinent data	
	(Nitrogen: 0.357-inch (0.907 cm) ogive)	37
Table 4.6	Temperature-compensated desinent data	
	(Nitrogen: 0.420-inch (1.067 cm) ogive)	38
Table 4.7	Correlative results for developed cavity	
	data using equation (4-8)ogives	74
Table 4.8	Correlative results for developed cavity	
	data using equation (4-9)ogives	75
Table 4.9	Summary of correlative results for developed	
	cavity dataogives, hydrofoil, and venturi	76
Table 4.10	Summary of developed cavity shape data	94
Table A-la.	Experimental cavitation data for 0.210-inch	
	ogive using liquid nitrogen (English Units).	106
Table A-lb.	Experimental cavitation data for 0.210-inch	
	ogive using liquid nitrogen (SI Units)	113
Table A-2a.	Experimental cavitation data for 0.210-inch	
	ogive using liquid hydrogen (English Units)	120

-

LIST OF TABLES (Continued)

		Page
Table A-2b.	Experimental cavitation data for 0.210-inch	
	ogive using liquid hydrogen (SI Units)	128
Table A-3a.	Experimental cavitation data for 0.357-inch	
	ogive using liquid nitrogen (English Units)	136
Table A-3b.	Experimental cavitation data for 0.357-inch	
	ogive using liquid nitrogen (SI Units)	151
Table A-4a.	Experimental cavitation data for 0.357-inch	
	ogive using liquid hydrogen (English Units)	166
Table A-4b.	Experimental cavitation data for 0.357-inch	
	ogive using liquid hydrogen (SI Units)	182
Table A-5a.	Experimental cavitation data for 0.420-inch	
	ogive using liquid nitrogen (English Units)	198
Table A-5b.	Experimental data for 0.420-inch ogive using	
	liquid nitrogen (SI Units)	209
Table A-6a.	Experimental cavitation data for 0.420-inch	
	ogive using liquid hydrogen (English Units)	220
Table A-6b.	Experimental cavitation data for 0.420-inch	
	ogive using liquid hydrogen (SI Units)	228

х

CAVITATION IN LIQUID CRYOGENS

III - OGIVES

J. Hord

1. SUMMARY

This document constitutes the third of four volumes to be issued on the results of continuing cavitation studies. The first volume dealt with venturi experiments, and the second volume treated 0.5-caliber hydrofoil experiments and extended the theory for correlating developed cavitation data. This third volume documents experimental results for three, scaled, quarter-caliber ogives.

Details of the ogive-tunnel configurations, cavity instrumentation, data analysis, and correlative techniques are discussed.

Experimental data resulting from this study are presented in their entirety in tabular form. Selected data are also presented in graphical form. Both desinent and developed cavity data were acquired, using liquid hydrogen and liquid nitrogen test fluids. A mathematical technique was used to correlate the ogive desinent cavity data. The desinent data tend toward a narrow range of K_{iv} values, at the maximum fluid velocities, irrespective of fluid or fluid temperature. Similar results were previously obtained with the venturi and hydrofoil. Comparison of our desinent data with that of others--for higher boiling-point liquids --shows that cryogenic liquids require less subcooling to avoid cavitation, i. e., less Net Positive Suction Pressure (NPSP) is required for the cryogens.

Our ogive desinent data do not reflect a consistent size effect, although the ogive diameters varied by a factor of two. For hydrogen, K increases with ogive diameter, but an opposite trend is noted for nitrogen. Use of the Weber and Reynolds numbers, as correlating parameters, does not improve correlation of these desinent data. It is also apparent from these data that correlation of desinent cavity data, to account for variation of K_{iv} with fluid temperature, will require development of new correlating parameters. New parameters for correlating size effects in desinent cavity data may also be required.

Developed cavity data, consisting of pressure and temperature measurements within fully developed hydrogen and nitrogen cavities, indicated that stable thermodynamic equilibrium prevails throughout the vaporous cavities. These data were correlated using the extended theory derived in Volume II of this report series and the new correlating parameter, MTWO; MTWO is a liquid phase velocity ratio, derived from twophase flow considerations. These correlative expressions are also suitable for predicting the cavitating performance of a particular piece of equipment from one fluid to another. In certain instances, data correlation is improved by using liquid kinematic viscosity as a correlating parameter. Maximum benefit, in data correlation, is obtained by using the new MTWO parameter. When MTWO is used it appears that only two other correlating parameters, cavity length and equipment size, are required. Use of MTWO, to correlate or predict the performance of cavitating equipment, is recommended in all future work. It is significant that the parameters which satisfactorily correlated the venturi and hydrofoil data also work quite well for these ogive data. Thus, these correlating parameters are proven applicable to a variety of body geometries (two-dimensional and axisymmetric) that encompass internal and external cavitating flows.

The developed-cavity data obtained with the ogives exhibited a consistently strong size effect. The cavity pressure-depressions increased with increasing ogive diameter; consequently, B-factor increased with increasing ogive diameter. For these data, we found that B-factor increases almost linearly with increasing ogive diameter--if the cavity

length-to-ogive-diameter ratio is held constant. Comparison of our data with those of others indicates that size effects vary with specific equipment and equipment-fluid combinations.

This study demonstrates that $K_{c, \min}$ can vary widely with fluid, flow conditions, and equipment size, although the equipment geometry is fixed. $K_{c,\min}$, of course, varies widely with equipment geometry and our ogive data show that $K_{c,\min}$ increases with increasing ogive size. This information, coupled with that of others, indicates that current predictive techniques must be used with prudence, i. e., the techniques that rely upon constant $K_{c,\min}$ admit an additional source of error for some equipment geometries. This study also indicates that $K_{c,\min}$, for a specific piece of equipment, is not currently predictable prior to testing of that equipment. It is suggested that extensive experimental data relating the cavitating pressure coefficient, $K_{c,\min}$, to the noncavitating pressure coefficient, C_{p} , may alleviate this situation.

Photographic studies, performed during this experiment, indicate that the cavities formed on the ogives have an elliptical shape. The front halves of these cavities are adequately represented by a simple algebraic expression of parabolic form.

2. INTRODUCTION

Vaporous cavitation is the formation of the vapor phase within a flowing liquid, due to a reduction in pressure. Since the formation and collapse of vapor cavities alters flow patterns, cavitation may reduce the efficiency of pumping machinery [1]¹ and reduce the precision of flow measuring devices. Collapse of these vapor cavities can also cause serious erosion damage [2] to fluid-handling equipment. While the noncavitating performance of hydraulic equipment may be predicted from established similarity laws, cavitating performance is much more

Numbers in brackets indicate references at the end of this paper.

difficult to predict from fluid-to-fluid. Recent advances in this area have been made by NASA-LeRC personnel [3-6] and others [7-9], but additional work is required to improve the current technique for predicting cavitating performance of equipment from fluid-to-fluid. The effects of fluid properties on cavitation performance are well recognized [10-19] and require more understanding to develop improved similarity relations [19] for equipment behavior. Much more knowledge is needed to extend this predictive capability from one piece of equipment to another, i. e., a more general predictive technique, applicable to equipment design, must include the effects of equipment geometry and size in addition to fluid properties.

NASA has undertaken a program [1] to determine the cavitation characteristics of various hydrodynamic bodies and the thermodynamic behavior of different fluids, in an effort to obtain improved design criteria to aid in the prediction of cavitating pump performance. The study described herein was conducted in support of this program.

Liquid hydrogen and liquid nitrogen were chosen as test fluids for this study for the following reasons: (1) the ultimate goal of this program is to acquire sufficient knowledge to permit intelligent design of pumps for near-boiling liquids, and (2) predictive analyses indicated [1] that the physical properties of hydrogen and nitrogen make them particularly desirable test fluids. The objectives of this study were 1) to experimentally determine the flow and thermodynamic conditions required to induce desinent (or incipient) and developed cavitation on various hydrodynamic bodies, 2) to improve existing correlative expressions for the prediction of cavitating performance of hydraulic equipment, and 3) to establish, if possible, a technique for predicting the fluid-handling capability of different cavitating equipment using different fluids. The latter two items are extensions of the state-of-the-art and the last objective is highly optimistic, i. e., accounting for the effects of equipment geometry and size in the predictive expressions.

This report covers the work performed on three cylindrical bodies with quarter-caliber rounded heads. Such bodies are commonly called 'ogives' and 'quarter-caliber' indicates that the curve that is tangent to the cylinder nose and the cylindrical body has a radius that is 1/4 of the diameter of the cylindrical body. The three quarter-caliber ogives had diameters of 0.210-inch (0.533 cm), 0.357-inch (0.907 cm), and 0.420-inch (1.067 cm). This two-to-one variation in size was provided to permit the study of size effects. Cavitation data, pertaining to a transparent plastic venturi and a half-caliber hydrofoil, were presented in Volumes I and II of this report series [20, 21].

Both desinent and incipient cavitation data were acquired with hydrogen and nitrogen test fluids. In this report, desinence (or incipience) refers to barely visible cavities. Preliminary tests indicated that the incipient data were not repeatable; consequently, very little effort was expended in acquiring incipient data--only two incipient data points are reported in the tabulated data given in appendix A. In the desinent cavity studies, the range of attainable test section inlet velocities varied with the size of the ogives as follows: For the 0.210-inch ogive, the velocity varied from 120 to 255 ft/s (36.6 to 77.7 m/s) with hydrogen, and from 30 to 90 ft/s (9.1 to 27.4 m/s) with nitrogen; for the 0.357-inch ogive, the velocity varied from 113 to 230 ft/s (34.4 to 70.1 m/s) with hydrogen, and from 25 to 83 ft/s (7.6 to 25.3 m/s) with nitrogen; for the 0.420-inch ogive, the velocity varied from 110 to 158 ft/s (33.5 to 48.2 m/s) with hydrogen, and from 27 to 70 ft/s (8.2 to 21.3 m/s) with nitrogen. Inlet fluid temperatures were varied from approximately 37 to 42 R (20.56 to 23.33 K) with hydrogen, and from 138 to 166 R (76.67 to 92.22 K) with nitrogen.

Pressure and temperature profiles, within fully developed cavities, were measured and are referred to herein as developed cavitation data. The bulkstream vapor pressure exceeds the measured cavity pressure and the saturation pressure corresponding to the measured cavity tem-

perature; therefore, the measured pressure depressions, and the pressure depressions corresponding to the measured temperature depressions, within the cavity, are called "pressure depressions." Alternatively, the pressure depression may be expressed in terms of its equivalent equilibrium "temperature depression." Contrary to the venturi tests [20, 22], no thermodynamic metastability was detected within the vaporous hydrogen or nitrogen cavities developed on the hydrofoil [21] or the ogives; i.e., measured temperatures and pressures within the cavitated regions appeared to be in thermodynamic equilibrium.

Test section inlet velocity range, inlet liquid temperatures, and cavity lengths varied with ogive size; fluid velocities and temperatures were approximately the same as those listed for the desinent data. Slightly higher velocities were required to develop long cavities on the ogives, and maximum inlet velocities were attained with the 0.210-inch ogive. Maximum inlet velocities were:

1) <u>0.210-inch ogive</u> -- 304 ft/s (92.7 m/s) with hydrogen and 111.6 ft/s (34.0 m/s) with nitrogen,

2) <u>0.357-inch ogive</u>-- 263.3 ft/s (80.3 m/s) with hydrogen and 90.6 ft/s (27.6 m/s) with nitrogen,

3) <u>0.420-inch ogive</u>-- 169.1 ft/s (51.5 m/s) with hydrogen and 72.0 ft/s (21.9 m/s) with nitrogen.

Cavity lengths varied as follows:

1) <u>0.210-inch ogive</u>--0.22 to 0.96 inches (0.56 to 2.44 cm) with hydrogen and from 0.20 to 1.52 inches (0.51 to 3.86 cm) with nitrogen,

2) <u>0.357-inch ogive</u>-- 0.40 to 1.50 inches (1.02 to 3.81 cm) with hydrogen and from 0.40 to 1.75 inches (1.02 to 4.45 cm) with nitrogen,

3) <u>0.420-inch ogive--</u> 0.44 to 1.48 inches (1.12 to 3.76 cm) with hydrogen and from 0.32 to 1.80 inches (0.81 to 4.57 cm) with nitrogen.

A similarity equation, based upon the B-factor concept of Stahl and Stepanoff [11], has been developed [19] for correlating cavitation data for a particular test item from fluid-to-fluid; this correlation is also useful in extending the velocity and temperature range of data for any given fluid. Thermal boundary layer considerations and two-phase mass flux limiting concepts were used [21] to improve this correlative expression. A new correlating parameter, MTWO, was developed [21] and has proven to be a valuable correlating parameter for our venturi, hydrofoil [21], and ogive data. The MTWO parameter is the ratio of V_o/V_{ℓ} --where V_{ℓ} is proportional to the two-phase liquid-vapor sonic velocity across the cavity interface, see reference [21]. The correlative expressions [21] developed in the course of this study are used to correlate the experimental data for the ogives. A comparison of the correlative results for the venturi, hydrofoil, and ogives is also provided.

The developed cavitation number, $K_{c,min}$, is a vital parameter in current formulations for predicting [3-5] the cavitating performance of liquid pumps. $K_{c,min}$, for a specific piece of equipment, is currently obtained from experimental performance tests. To apply existing predictive techniques, $K_{c,min}$ must remain essentially constant, thus requiring the use of similar or identical equipment. Existing predictive techniques could be generalized, and possibly materially improved, if $K_{c,min}$ were predictable from one piece of equipment to another. This study indicates that it may be possible to predict $K_{c,min}$ from known fluid flow and equipment geometry considerations. It will be shown that $K_{c,min}$ can be related to the non-cavitating minimum pressure coefficient for cavitating bodies, such as the venturi [20], hydrofoil [21], and ogives used in this study. A similar approach may be possible with rotating machinery such as liquid pumps and inducers.

3. EXPERIMENTAL APPARATUS

The experimental apparatus used in this study was explained in detail in the first volume [20] of this report series. The experimental facility, instrumentation, error statements, visual and photographic aids, and test procedures are fully described in that document [20]. One additional error statement--concerning uncertainty in pressure measurement for nitrogen test fluid--was needed and given in section 5.2 of Volume II [21]. Only the test section (tunnel) and ogive details need to be discussed here. The tunnel was located between the supply and receiver dewars of a blowdown flow system, see reference [20].

3.1 Ogives, Tunnels, and Sting-Mount Assembly

The quarter-caliber ogives, used in this experiment, were chosen so that developed cavitation test data could be obtained for external flow over axisymmetric bodies. These data may ultimately be correlated with similar data for external flow over a hydrofoil [21] and for internal flow through a venturi [20]. Also, the ogives offer an opportunity to study the effects of cavity shape on the correlative formulae, i.e., the cavity thickness, as a function of length, velocity, etc., may be determined.

The three ogives used in this experiment consisted of cylindrical bodies with quarter-caliber rounded noses. The diameters of the cyl-indrical bodies were 0.210-inch (0.533 cm), 0.357-inch (0.907 cm) and 0.420-inch (1.067 cm). The length-to-diameter ratio of the ogives is 8:1, and the ogives are instrumented with pressure and temperature sensors over a length of ~ 3.5 diameters.

Transparent plastic tunnels, and rigid metallic sting-mounts, were designed to experimentally complement the quarter-caliber ogives. The ogives were designed to mate directly with the sting-mount used in the hydrofoil tests [21]--this sting design was fully described in the hydrofoil report [21] and will not be discussed herein. Initially, the tunnels were

designed so that the internal passages were constant-diameter cylindrical ducts; however, difficulties were encountered with tunnel cavitation, and it was necessary to enlarge the tunnel diameters downstream of the ogive noses.

A photograph of the 0.210-inch and 0.420-inch ogives, ready for installation in the test facility, is shown on figure 3.1. Optical distortion photographs of the three plastic tunnels, as fabricated, are shown on figures 3.2 through 3.4. A sketch of an instrumented ogive and sting assembly is given on figure 3.5, and figures 3.6 through 3.8 show photographs of the ogives as viewed during tests. Details concerning the ogives and tunnels are given below and on figures 3.9 through 3.14.

3.1.1 Design Considerations

The ogives were initially designed to be situated within constantdiameter cylindrical tunnels. A tunnel blockage factor, $(D_m/D_0)^2$, of approximately 10 percent was selected to cause the ogives to cavitate readily; however, preliminary tests indicated that cavities, developed on the ogives, were sufficiently thick to cause tunnel cavitation. The tunnel (test section) cavitation is attributed to the pressure reduction that accompanies the acceleration of liquid between the cavity and tunnel walls. Machining a bell-contoured diffuser into the plastic tunnel alleviates this Bernoulli effect in the vicinity of the cavity, but simultaneously decreases the ogive cavitation number, K_{iv} --resulting in lower magnitudes of subcooling, $P_0 - P_v$, in the tunnel inlet liquid and therefore enhancing cavitation in the inlet of the tunnel. Thus, to perform experiments within the pressure and flow limitations of the existing facility, it was necessary to machine bell-contoured diffusers into each of the plastic tunnels, see figures 3.12 to 3.14. These contours provided sufficient relief to avoid tunnel cavitation, without detachment of the cavity on the ogive, i.e., the cavity developed on the ogive adhered to the ogive--all tests were monitored via remote closed-circuit TV and motion picture cameras.

Photograph showing optical distortion attributable to plastic tunnel, as fabricated, for the 0. 210-inch ogive. Figure 3.2

Photograph showing optical distortion attributable to plastic tunnel, as fabricated, for the 0.420-inch ogive. Figure 3.4

Figure 3.6 Photographs showing typical appearance of vaporous hydrogen cavities on the 0.210-inch ogive.

Figure 3.7 Photographs showing typical appearance of vaporous hydrogen cavities on the 0.357-inch ogive.

Figure 3.8 Photographs showing vaporous hydrogen cavities on the 0.420-inch ogive --bottom two photographs show typical appearance.

Figure 3.11 Details of 0.420-inch diameter ogive.

ALL DIMENSIONS IN INCHES (Unless otherwise noted)

ł

1

Details of plastic tunnel for 0, 210-inch diameter ogive. Figure 3.12 _ _ _ _

ALL DIMENSIONS IN INCHES (Unless otherwise noted)

ALL DIMENSIONS IN INCHES (Unless otherwise noted)

Figure 3, 14 Details of plastic tunnel for 0, 420-inch diameter ogive,

Several experiments were performed to determine the optimum configuration of the diffuser contour. Conical tapers of 3.5 degrees (half-angle taper) and 4.94 degrees were tested before the bell-contour was tried. Neither of these conical diffusers provided sufficient pressure recovery, far enough upstream, to avoid tunnel cavitation in the vicinity of the cavity attached to the ogive. Calculations indicated that conical diffusers with steeper half-angles would promote flow separation at the diffuser entrance, thus promoting cavitation at that point. Consequently, bell-contours were designed and the configuration indicated on figures 3.12 to 3.14 was finally selected. This contour was located so that the ogive cavitation number, K_{iv} , was not drastically lowered, and a blockage factor of 9.5 percent was found to be optimum. Thus, to avoid tunnel cavitation, the tunnel design was compromised by the addition of a bell-contour diffuser--simultaneously, this diffuser demanded the use of a 9.5 percent blockage factor and dictated the axial position of the ogive nose, relative to the diffuser. This axial position is clearly indicated on figures 3.12 to 3.14.

One of the primary objectives of this study was to experimentally determine cavity shapes, thicknesses, etc.; therefore, photographs were taken, using rectangular grid paper, to evaluate the optical distortion caused by the bell-contours. Figures 3.2 to 3.4 indicate the magnitude of this optical distortion--cavity dimensions, obtained from cavity photographs, were corrected to account for this tunnel induced optical distortion. The plastic tunnels were designed to provide noncavitating uniform flow at the ogive nose. Uniformity of static pressure at the wall of the tunnel inlet was experimentally verified by diametrically-opposed static pressure measurements in the tunnel inlet, see figures 3.12 to 3.14

The thermocouple junctions and pressure sensing ports, used to measure temperatures and pressures within the cavities developed on the ogives, were located as shown in figures 3.9 to 3.11. The pressure

and temperature sensors were spaced to provide a well-defined continuous pressure profile, as obtained from the pressure and temperature measurements within the cavity. The cavities developed on the ogives appeared symmetrical in all tests, see figures 3.6 to 3.8.

The ogive test assembly was installed in the same space allocated for the plastic venturi [20] and the hydrofoil [21] in the experimental apparatus.

3.1.2 Details of Fabrication

The tunnels were constructed from annealed, cast acrylic rod; they were easily machined by conventional means. The bell-contours were cut by grinding special lathe tools with the exact contours as indicated on figures 3.12 to 3.14. The contours of the tool bits were verified by 50 X magnification on an optical comparator. After machining, the internal dimensions and contours of the tunnels were checked by using the tunnels as molds for dental plaster plugs; the plugs were then removed and measured. The internal passages of the tunnels were then carefully polished to a high lustre, using plastic polishing compound.

With the critical machining and polishing completed, the tunnel exteriors were machined and polished. Tunnel dimensions and the location of pressure taps are shown on figures 3.12 to 3.14. Maximum effort was devoted to polishing the interior and exterior surfaces of the tunnel walls, so that cavities on the ogives could be observed with maximum optical resolution. Scribe marks on the tunnel exteriors were used to estimate developed cavity lengths, see figures 3.2 to 3.4 and 3.6 to 3.8.

Construction of the ogives is quite intricate; therefore, one must carefully study figures 3.9 to 3.11 and figure 3.5 to fully appreciate the finer details. The hollow ogives and ogive mandrels were easily machined by conventional means. The quarter-caliber ogival nose

was lathe-cut by using a special tool that was shaped by grinding. The mandrel portion of each ogive was designed to accommodate ten stainless steel tubes [0.040-inch (0.102 cm) diameter with 0.005-inch (0.013 cm) wall thickness], see figures 3.9 to 3.11. Each tube was plugged with silver solder on the end nearest the leading edge of the ogive, see figure 3.11. With the tubes in place, the mandrel and tubes were tinned with soft solder. The hollow ogive, as shown on figure 3.11, was puddled full of soft solder. The mandrel and hollow ogive were then carefully assembled, while the solder was liquid.

Upon completion of this assembly, holes were drilled through the ogive into each of the ten small tubes as indicated on figures 3.5 and 3.11. Each of the holes, so drilled, are isolated from the others by the soft solder that fills all voids between the mandrel and hollow ogive. Five of these holes became pressure sensing stations, while the other five were used for thermocouples. This entire assembly was then attached, by soldering, to the sting socket using a special alignment fixture, see figure 3.5. The small tubes must be threaded through the sting, hollow strut, etc., to mate the ogive and sting. Also, the five tubes used as thermocouple conduits were extended through a tube support, at the rear of the sting, and soft soldered to this support. Later, during thermocouple fabrication, this support was epoxied to the sting.

Five pressure transmitting tubes were routed from the ogive, through the hollow sting, and up through one of the hollow elliptical struts. Then, the tubes pass through a slot in the flange and extend through a short length of 0.25-inch (0.64 cm) diameter tube that was located outside of the flange. The smaller tubes were collectively soldered inside this larger tube, to form a seal, and then the larger tube was sealed to the flange with a commercial compression fitting. Similar fittings were provided for the pressure sensing stations on the
plastic tunnel. The small pressure transmitting tubes terminate outside of the flange, in the vacuum insulation space, see figures 3.1 and 3.5. These tubes were then solder-connected to larger tubes which penetrate the vacuum barrier and were attached to pressure transducers.

The other hollow elliptical strut was used to guide thermocouple wires into the vacuum space, see figures 3.1 and 3.5. Details of the thermocouple fabrication, installation, epoxy seals, etc., are given in appendix B of reference [21]. Following this installation, the thermocouple sensors extend through small mounds of epoxy on the ogives. These epoxy bumps must be removed so that 1) the bare thermocouple junction is flush with the surface of the ogive and 2) the thermocouple junction is surrounded by epoxy that electrically and thermally isolates the thermocouple while sealing it to the ogive. This installation technique assures rapid response of the thermocouples, while electrically and thermally isolating the junctions from the metal ogive. The epoxy bumps were finished flush with the ogive, by using Swiss files and then fine-grit sandpaper; during this hand-finishing operation, the entire ogive was tapemasked, exposing only the epoxy bumps. Following this finishing operation, the entire ogive was carefully polished, measured, and installed in the test apparatus.

A detailed description of assembly procedures and instrumentation techniques was provided for the hydrofoil [21]--identical procedures and techniques were used for the ogives and the reader is referred to the earlier work [21] for further details.

3.2 Ogive Contours and Pressure Distributions

The actual and theoretical contours of the 0.210-inch quartercaliber ogive are shown on figure 3.15. This plot is typical for all of the ogives tested; i.e., the machined contours coincided almost perfectly with the theoretical contours. The actual contours were verified

Figure 3.15 Contour of the quarter-caliber rounded nose of the 0.210-inch ogive.

by using an optical comparator (shadowgraph) with 31.25 X magnification. The theoretical noncavitating pressure profiles for these ogives, with and without bounding walls, are shown on figure 3.16; experimental data from this study are also plotted for comparison. The theoretical pressure profiles were computed using existing computer programs [23, 24]. Figure 3.16 indicates good agreement between experimental and calculate data upstream of the third pressure tap, P_3 . Further downstream, the experimental data lie below the theoretical curve, suggesting that pressure recovery in the belled diffuser is less efficient than indicated by the idealized computations.

The calculated data on figure 3. 16 are for the cases of 1) an infinite flow field (without tunnel [24]), 2) a constant-diameter cylindrical passage with 9.5 percent tunnel blockage (without diffuser), and 3) the 9.5 percent tunnel blockage ogive-tunnel configuration selected for this study (with diffuser). Figure 3. 16 indicates that the minimum pressure point occurs at about 74 degrees of arc, measured from the stagnation point of the ogive. This minimum pressure location is indicated on the contour shown on figure 3. 15. The value of 74 degrees corresponds favorably with the pressure coefficient data developed by Rouse and McNown [25], for cylindrical bodies with quarter-caliber rounded heads. Note from figure 3. 16 that tunnel bounding wall configurations have negligible influence on the location of the minimum pressure point; however, the tunnel configuration does influence the minimum pressure coefficient, $\overset{V}{C}$, and the shape of the C curve downstream of the minimum pressure point.

It is comforting to note that the tunnel blockage correction factor, normally applied to pressure coefficients and cavitation numbers, agrees well with the calculated data shown on figure 3.16. This tunnel blockage

correction factor [21] is simply $\left\{1 - \left(\frac{D_m}{D_0}\right)^2\right\}^2$. For our ogives $\left(\frac{D_m}{D_0}\right)^2 \approx 0.095$ and $\frac{V}{p} = -1.47$ for 9.5 percent constant tunnel blockage, see figure 3.16. Correcting for tunnel blockage, we estimate that $\frac{V}{p}$ for an unbounded ogive is $(1 - 0.095)^2$ (-1.47) = -1.20, in good agreement with the computerized solution plotted on figure 3.16. The bell-contour diffuser produces a minimum pressure coefficient ($\frac{V}{p}$ = -1.38) intermediate to the unbounded ($\frac{V}{p}$ = -1.21) and constant-diameter bounded ($\frac{V}{p}$ = -1.47) ogives, as would be expected.

4. DATA ANALYSIS

The desinent (incipient) and developed cavitation data, for liquid hydrogen and liquid nitrogen, are given in complete detail in appendix A. These tabulated data are given in English and metric units and no attempt has been made to separate the desinent and developed cavity data; however, the desinent (or incipient) cavity data are clearly marked by the attachment of asterisks to the run numbers. The desinent and developed cavity data are correlated and discussed separately in this section.

4.1 Correlation of Desinent Cavitation Data

With the blow-down facility used in this experimental study, it was impossible to maintain a constant fluid temperature while varying the inlet velocities and pressures to obtain desinent cavities. Consequently, it was necessary to develop a mathematical technique for correlating the desinent data. This was accomplished by using a least-squares surfacefitting computer program. Once an equation is obtained, to fit the experimental surface (P_0 , V_0 , T_0 coordinates), the conventional isotherm data for desinence are readily calculated. Complete details concerning this correlating technique, and the computer program, are given in appendix C of reference [21]. Polynomial expressions were derived to correlate the desinent hydrogen and nitrogen data for each of the three ogives.

These expressions were used to compute the desinent data presented in tables 4.1 to 4.6. These same data are plotted on figures 4.1 to 4.12. The algebraic expressions used to correlate the desinent data for the individual ogives are as follows:

Hydrogen (0.210-inch ogive);
$$P_0 = 0.08720 V_0$$

-2.29920 $T_0 + 0.00028 V_0^2 + 0.06500 T_0^2$, (4-1)

Hydrogen (0.357-inch ogive);
$$P_0 = 0.01427 V_0$$

-1.80390 $T_0 + 0.00067 V_0^2 + 0.05525 T_0^2$, (4-2)

Hydrogen (0. 420-inch ogive);
$$P_0 = -4.29106 T_0$$

+ 0. 75224 $V_0 = 0.01529 T_0 V_0 + 0.11418 T_0^2$, (4-3)

Nitrogen (0. 210-inch ogive); $P_o = -0.02306 V_o$ + 1.96230 $T_o + 0.00634 V_o^2 - 0.03268 T_o^2 + 0.0001393 T_o^3$, (4-4)

Nitrogen (0. 357-inch ogive); $P_o = -1.31363 T_o$ + 0.98429 $V_o = 0.00778 T_o V_o + 0.01022 T_o^2 + 0.00802 V_o^2$, (4-5)

Nitrogen (0. 420-inch ogive); $P_o = 0.39412 V_o$ + 2.14806 $T_o + 0.00168 V_o^2 - 0.03482 T_o^2 + 0.0001418 T_o^3$. (4-6)

TO DEG R	VO FT/SEC	PO PSIA	KIV	PO N/CM/CM	VO M/SEC	TO DEG K
37.50	120.0	19.69	0.35	13.58	36.6	20.83
37.50	140.0	22.89	0.60	15.79	42.7	20.83
37.50	160.0	26.32	0.74	18.15	48.8	20.83
37.50	180.0	29.97	0.83	20.67	54•9	20.83
37.50	200.0	33.85	0.87	23.34	61•0	20.83
37.50	220.0	37.95	0.90	26.17	67•1	20.83
37.50	240.0	42.28	0.91	29.15	73•2	20.83
37.50	260.0	46.83	0 •92	32.29	79•2	20.83
39.50	140.0	28.31	054	19.52	42•7	21•94
39.50	160.0	31.73	0.70	21.88	48.8	21.94
39.50	180.0	35.39	0.80	24.40	54.9	21.94
39.50	200.0	39.26	0.86	27.07	61.0	21.94
39.50	220.0	43.36	0.89	29.90	67.1	21.94
39.50	240.0	47.69	0.91	32.88	73•2	21.94
39.50	260.0	52.24	0.92	36.02	79•2	21.94
41.50	160.0	37.67	0.59	25.97	48•8	23.06
41,50	180.0	41.32	0.71	28.49	54.9	23.06
41.50	200.0	45.19	0.79	31.16	61•0	23.06
41.50	220.0	49.29	0.84	33.99	67•1	23.06
41.50	240.0	53.62	0.87	36.97	73.2	23.06
41.50	260.0	58.17	0.89	40.11	79•2	23.06

Table 4.1 Temperature-compensated desinent data (Hydrogen: 0.210-inch (0.533 cm) ogive).

то	VO	PO	KIV	PO	VO	
DEGR	FIZEC	PSIA		N/CM/CM	MISEC	DEG K
37.00	110.0	18.52	0•44	12.77	33.5	20.56
37.00	130.0	22.00	0.75	15.17	39.6	20.56
37.00	150.0	26.02	0.94	17.94	45•7	20.56
37.00	170.0	30.56	1.06	21.07	51.8	20.56
37.00	190.0	35.64	1.14	24.57	57.9	20•56
37.00	210.0	41.26	1.20	28.44	64•0	20.56
37.00	230.0	47.40	1.25	32.68	70•1	20.56
39.00	130.0	26.79	0.64	18.47	39•6	21.67
39.00	150.0	30.81	0.87	21.24	45•7	21.67
39.00	170.0	35.35	1.01	24.38	51.8	21.67
39.00	190.0	40.43	1.11	27.88	57.9	21.67
39.00	210.0	46.05	1.18	31.75	64•0	21.67
39.00	230.0	52.19	1.23	35•98	70•1	21.67
41.00	130.0	32.02	0.42	22.08	39•6	22.78
41.00	150.0	36.04	0.70	24.85	45•7	22•78
41.00	170.0	40.59	0.89	27.98	51.8	22•78
41.00	190.0	45.67	1.02	31.49	57.9	22.78
41.00	210.0	51.28	1.11	35.35	64•0	22.78
41.00	230.0	57.42	1.18	39.59	70.1	22.78

Table 4.2 Temperature-compensated desinent data (Hydrogen: 0.357-inch (0.907 cm) ogive).

TO DEG R	VO FT/SEC	PO PSIA	KIV	PO N/CM/CM	VO M/SEC	TO DEG K
		10.02		10.00	22 E	20 82
37.50	110.0	19.32	0.35	13.52	55.5	20.03
37 .5 0	120.0	21.11	0.56	14.55	30.00	20.03
37•50	130.0	22.90	0.70	15.79	39+6	20.83
37.50	140.0	24.68	0.80	17.02	42•1	20.83
37.50	150.0	26•47	0.86	18.25	45•7	20.83
37.50	160.0	28.26	0•90	19.49	48•8	20.83
39.25	110.0	24.20	0.30	16.69	33.5	21.81
39.25	120.0	25.72	0•48	17•74	36•6	21.81
39.25	130.0	27 .2 4	0.60	18.78	39.6	21.81
39.25	140.0	28 .76	0.68	19.83	42•7	21.81
39.25	150.0	30.29	0.74	20.88	45•7	21.81
39.25	160.0	31.81	0.78	21.93	48•8	21.81
41.00	110.0	29.79	0.18	20.54	33.5	22.78
41.00	120.0	31.04	0.34	21.40	36•6	22•78
41.00	130.0	32.29	0.45	22.26	39•6	22•78
41.00	140.0	33.54	0.53	23.13	42•7	22 •78
41.00	150.0	34.80	0.58	23.99	45•7	22•78
41.00	160.0	36.05	0.62	24.86	48•8	22.78
			÷ • • =			

Table 4.3 Temperature-compensated desinent data (Hydrogen: 0.420-inch (l.067 cm) ogive).

_

35

٠

то	VO	PO	κιν	PO	VO	то
DEG R	FT/SEC	PSIA		N/CM/CM	M/SEC	DEG K
141.00	30.0	22.56	1.26	15.56	9.1	78.33
141.00	40.0	26.77	1.19	18.46	12.2	78.33
141.00	50.0	32.24	1.17	22.23	15.2	78.33
141.00	60.0	38.99	1.16	26-88	18.3	78.33
141.00	70.0	46.99	1.15	32.40	21.3	78.32
141.00	80.0	56.27	1,15	38.80	24.4	78.33
141.00	9 0.0	66.82	1.15	46.07	27.4	78.33
						10000
151.00	30.0	35.89	1.31	24.75	9.1	83.89
151.00	40.0	40.10	1.24	27.65	12.2	83.89
151.00	50.0	45.57	1.21	31.42	15.2	83-80
151.00	60.0	52.31	1.20	36.07	18.3	83.89
151.00	70.0	60.32	1.19	41.59	21.3	83.89
151.00	80.0	69.60	1.19	47.99	24.4	83.89
151.00	90.0	80.15	1.19	55.26	27.4	83.89
						,
161.00	30.0	55.31	1.23	38.13	9.1	89.44
161.00	40.0	59.51	1.21	41.03	12.2	89.44
161.00	50.0	64.99	1.21	44.81	15.2	89.44
161.00	60.0	71.73	1.21	49.46	18.3	89.44
161.00	70.0	79.74	1.21	54.98	21.3	89.44
161.00	80.0	89.02	1.22	61.37	24•4	89.44
161.00	90.0	99•56	1.22	68.64	27•4	89.44
166.00	40.0	71.76	1.13	49.48	12.2	92.22
166.00	50.0	77.24	1.16	53.25	15.2	92.22
166.00	60.0	83.98	1.19	57.90	18.3	92.22
166.00	70.0	91.99	1.20	63.42	21.3	92.22
166.00	80.0	101.27	1.21	69.82	24•4	92.22

Table 4.4 Temperature-compensated desinent data (Nitrogen: 0.210-inch (0.533 cm) ogive).

Table 4.5 Temperature-compensated desinent data (Nitrogen: 0.357-inch (0.907 cm) ogive).

- - - ---

TO	VO	PO	KIV	PO	VO	TO
DEG R	FT/SEC	PSIA		N/CM/CM	M/SEC	DEG K
140.00 140.00 140.00 140.00 140.00 140.00 140.00	25.0 35.0 45.0 55.0 65.0 75.0 85.0	18.83 22.59 27.97 34.94 43.52 53.71 65.49	1.00 1.08 1.14 1.19 1.22 1.25 1.28	12.98 15.58 19.28 24.09 30.01 37.03 45.16	7.6 10.7 13.7 16.8 19.8 22.9 25.9	77•78 77•78 77•78 77•78 77•78 77•78 77•78 77•78
150.00 150.00 150.00 150.00 150.00 150.00	35.0 45.0 55.0 65.0 75.0 85.0	36•38 40•97 47•17 54•97 64•38 75•39	1.28 1.21 1.20 1.21 1.23 1.24	25.08 28.25 32.52 37.90 44.39 51.98	10.7 13.7 16.8 19.8 22.9 25.9	83.33 83.33 83.33 83.33 83.33 83.33 83.33
160.00	35.0	52•20	0.78	35.99	10.7	88 • 89
160.00	45.0	56•02	0.84	38.62	13.7	88 • 89
160.00	55.0	61•44	0.92	42.36	16.8	88 • 89
160.00	65.0	68•47	0.98	47.21	19.8	88 • 89
160.00	75.0	77•09	1.04	53.15	22.9	88 • 89
160.00	85.0	87•33	1.09	60.21	25.9	88 • 89

2

	VO ET (CEC	PO	KIV	PO	VO	то
DEGR	FIJSEC	PSIA		N/CM/CM	M/SEC	DEG K
140.00	25.0	18.11	0.79	12.49	7.6	77.79
140.00	30.0	20.55	1.05	14.17	9.1	77.78
140.00	35.0	23.06	1.15	15.90	10.7	77.78
140.00	40.0	25.66	1.18	17.69	12.2	77.78
140.00	45.0	28.34	1.18	19.54	13.7	77.78
140.00	50.0	31.11	1.16	21.45	15.2	77.78
140.00	55.0	33.96	1.13	23.42	16.8	77.78
140.00	60.0	36.90	1.10	25.44	18.3	77.78
140.00	65 •0	39.92	1.07	27.52	19.8	77.78
140.00	70.0	43.02	1.04	29.66	21•3	77•78
150.00	35.0	33-01	0.76	22 76	10.7	
150.00	40.0	35.61	0.00	24.55	10.7	83.33
150.00	45.0	38.29	0.96	24.00	12•2	83.33
150.00	50.0	41.06	0.90	20.40	13•/	83.33
150.00	55.0	43.01	0.00	20.00	15•2	83.33
150.00	60.0	46.85	0 99	22 20	10+8	83.33
150.00	65.0	49.87	0.98	24 29	10.0	83.33
150.00	70.0	52.97	0.97	24 52	17.0	03.33
			0	50.52	2103	دد وه
160.50	40•0	52.31	0•46	36.07	12•2	89.17
160.50	45.0	54.99	0.63	37.92	13.7	89.17
160.50	50.0	57.76	0.73	39.82	15.2	89.17
160.50	55.0	60.61	0.79	41.79	16.8	89.17
160.50	60.0	63.55	0.82	43.81	18.3	89.17
160.50	65.0	66•57	0.84	45.90	19•8	89.17
160.50	70.0	69.67	0.85	48.03	21•3	89.17
165.50	45.0	65.47	0.40	45.14	12.7	01.0/
165.50	50.0	68.24	0.55	47.05	15.7	71+74
165.50	55.0	71.09	0.65	49.02	16.8	71+94 01 04
165.50	60.0	74.03		51.04	18.3	91.94
165.50	65 .0	77.05	0.75	53,12	19.8	01 04
165.50	70.0	80.15	0.77	55 24	21 2	71 974
			0.00	22020	6103	∀ ⊥∎∀4

Table 4.6 Temperature-compensated desinent data (Nitrogen: 0.420-inch (1.067 cm) ogive).

Figure 4.1 Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid hydrogen--0.210-inch ogive: (1) = P_v @ 37.5 R; (2) = P_v @ 39.5 R; (3) = P_v @ 41.5 R.

Figure 4.2 Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid hydrogen--0.357-inch ogive: (1) = P_v @ 37 R; (2) = P_v @ 39R; (3) = P_v @ 41 R.

Figure 4.3 Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid hydrogen--0.420-inch ogive: 1 = P @ 37.5 R;
(2) = P @ 39.25 R; (3) = P @ 41 R.

Figure 4.4 Desinent cavitation parameter for liquid hydrogen as a function of tunnel inlet velocity and liquid temperature--0.210-inch ogive.

Figure 4.5 Desinent cavitation parameter for liquid hydrogen as a function of tunnel inlet velocity and liquid temperature--0.357-inch ogive.

Figure 4.6 Desinent cavitation parameter for liquid hydrogen as a function of tunnel inlet velocity and liquid temperature--0.420-inch ogive.

Figure 4.7 Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid nitrogen--0.210-inch ogive: 1 = P @ 141 R;
2 = P @ 151 R; 3 = P @ 161 R; 4 = P @ 166 R.

Figure 4.8 Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid nitrogen--0.357-inch ogive; 1) = P @ 140 R; 2) = P @ 150 R; 3) = P @ 160 R.

Figure 4.9 Effects of tunnel inlet velocity and liquid temperature on required inlet pressure for desinent cavitation in liquid nitrogen--0.420-inch ogive; 1) = P @ 140 R;
2) = P @ 150 R; 3 = P @ 160.5 R; 4) = P @ 165.5 R.

Figure 4.10 Desinent cavitation parameter for liquid nitrogen as a function of tunnel inlet velocity and liquid temperature--0.210-inch ogive.

Figure 4.11 Desinent cavitation parameter for liquid nitrogen as a function of tunnel inlet velocity and liquid temperature--0.357-inch ogive.

Figure 4.12 Desinent cavitation parameter for liquid nitrogen as a function of tunnel inlet velocity and liquid temperature--0.420-inch ogive.

In the foregoing expressions, the units of P_0 , V_0 , and T_0 are psia, ft/s, and degrees Rankine, respectively.

The experimental values of K_{iv} are tabulated under the heading, KV, in appendix A, along with the experimental values of K_{v} for developed cavities. The K_{iv} parameter as given in appendix A, and used herein, is not corrected for tunnel blockage. Multiplying K_{iv} by the square of the appropriate area ratio, A_{1}/A_{2} , corrects for tunnel blockage, i.e.,

corrected
$$K_{iv} = (Experimental K_{iv}) (A_1/A_2)^2$$
, (4-7)

where A_1 = blocked cross sectional flow area and A_2 = unblocked (inlet) cross sectional flow area. This correction factor evolves from consideration of steady volumetric flow, C_p , and Bernoulli's equation, and is derived in detail elsewhere [26, 27]. This correction factor assures that the minimum static pressure is the same for blocked and unblocked flows, when the freestream static pressures are identical. Thus, tunnel constraint is easily accounted for, so that the results of this study may be readily compared with other experimental data. For the quartercaliber ogives, the correction factor has a numerical value of 0.82.

4.2 Discussion of Desinent Cavitation Data

Figures 4.1 to 4.3 are conventional P_0 , V_0 , T_0 plots for hydrogen test fluid, i.e., P_0 increases with increasing V_0 and T_0 in a conventional manner. The incipient (desinent) cavitation parameter, K_{iv} , for hydrogen also behaves in a conventional manner, see figures 4.4 to 4.6. On all of these figures, the boundaries of the experimental data are indicated by the solid lines, i.e., the broken-line curves are extrapolations of the experimental data. Mathematical extrapolation, by correlative expressions, of experimentally-determined surfaces is rather risky; therefore, the broken-line extrapolations must be used with great caution. Only within the boundaries of the experimental data are the mathematically

derived data--as presented in tables 4.1 to 4.6 and on figures 4.1 to 4.12--considered totally valid.

Due to test facility limitations it was impossible to obtain desinent hydrogen data at very low values of V_0 with the 0.210-inch ogive, and at very high values of V_0 with the 0.420-inch ogive. Flow control instabilities were experienced with the smaller body only at the lowest velocities and test duration was too short with the larger body only at the highest velocities. Referring to figures 4.4 and 4.6, we see that the inlet velocities for the 0.210-inch and the 0.420-inch ogives barely overlap, except for the 37.5 R isotherm; however, use of the 0.357-inch ogive data, figure 4.5, permits a reasonably good comparison of $K_{iv} - V_0 - T_0$ data with both the 0.210-inch and the 0.420-inch ogives.

Similar comments may be made about the nitrogen data shown on figures 4.7 to 4.12, except that the K data on figures 4.10 and 4.11 do not consistently show conventional temperature dependency. Similar nitrogen K data were obtained with the hydrofoil [21] and were attributed to 1) a relatively weak temperature dependence with nitrogen fluid, 2) amplification of instrument error in the K parameter, and 3) mathematical correlation of the experimental data. Nonconventional behavior of the hydrogen K data was not encountered because of a stronger temperature dependence and lower instrument error [21].

The ogive desinent cavity data are quite similar to the data obtained for the venturi [20] and hydrofoil [21]. For those two bodies, the hydrogen and nitrogen data tended toward a single-valued K_{iv} , for each fluid, at the maximum velocities. The ogive data presented herein display similar tendencies. The water data of Rouse and McNown [25] indicate a maximum value of $K_{iv} \approx 1.3$ for quarter-caliber ogives. To compare these data with our data, we must first multiply our K_{iv} data by 0.82 to correct for tunnel blockage. The maximum value of K_{iv} on figures

4.4 to 4.6 and 4.10 to 4.12 does not exceed 1.3; therefore, it is apparent that our K data is at least 20 percent lower than that of Rouse and McNown. Similar results were noted upon comparison [21] of our hydro-foil and venturi data with the data of others for non-cryogenic fluids. Thus, as previously concluded [21], it is apparent that these cryogens require less subcooling--relative to higher boiling-point liquids--for desinent cavitation to occur.

The data plotted on figures 4.1 to 4.12 were derived to represent the experimental data at the nominal experimental isotherms (for each ogive). In order to compare the desinent data for the scaled ogives, we must derive $K_{iv} - V_{o} - T_{o}$ data at identical isotherms. Using the expressions given in eqs (4-1) to (4-6), the data plotted on figures 4.13 to 4.16 were generated. These graphs provide a direct comparison of ogive size effect at a specified fluid temperature.

Referring to figure 4.13, we note that K_{iv} for the 0.210-inch ogive is generally lower than K_{iv} for the larger ogives at the lower values of V_o in hydrogen; however, at the highest values of V_o this trend is reversed for the 0.210-inch and 0.420-inch ogives. These hydrogen data indicate that K_{iv} for the 0.357-inch ogive is consistently larger than K_{iv} for the 0.210-inch and 0.420-inch ogives. Interpretation of these data could imply that the 0.357-inch ogive has a less streamlined contour and consequently a higher K_{iv} . Such is not the case, because all three ogives were carefully machined to fabrication tolerances as verified by measurements. Also, the K_{iv} data for nitrogen behave differently, see figure 4.15.

With nitrogen, the K_{iv} for the 0.210-inch ogive is larger than K_{iv} for the 0.420-inch ogive. The K_{iv} data for the two smaller ogives do not differ much at the lower temperatures but vary appreciably at the highest temperature ($T_0 = 160$ R). From figure 4.15, it appears that

Figure 4.13 Desinent cavitation parameter for liquid hydrogen as a function of V_0 , T_0 , and D_m .

Figure 4.14 Desinent cavitation parameter for liquid hydrogen as a function of $(We)^{0.5}$, T and D m.

Figure 4.15 Desinent cavitation parameter for liquid nitrogen as a function of V_0 , T_0 , and D_m .

Figure 4.16 Desinent cavitation parameter for liquid nitrogen as a function of $(We)^{0.5}$, T and D m.

size effect is more pronounced at the higher nitrogen temperatures. No such effect is apparent in the hydrogen data shown on figure 4.13. For the nitrogen data, it appears that K_{iv} generally decreases with increasing size. No such conclusion can yet be drawn from the hydrogen data.

To shed some light on this topic, a desinent data correlating technique was sought. An attempt was made to use the method suggested by Parkin and Holl [26]. This technique employs a $K_{iv} - (We)^{0.5}$ plot, where $(We)^{0.5}$ is the essential part of the Weber number. $(We)^{0.5} = V_0 \sqrt{(\rho_0 D_m)/\sigma}$ is plotted against K_{iv} on figures 4.14 and 4.16. Because ρ_0/σ does not vary much in the hydrogen or nitrogen tests (less than 30 percent) the (We)^{0.5} parameter reduces to $\approx V_0 \sqrt{D_m}$. Then the data, for the larger ogives, on figure 4.13 are merely shifted to the right of the 0.210-inch ogive data on figure 4.14 without any substantial change in the shapes of the curves. Similar comments apply to the nitrogen data on figures 4.15 and 4.16. Considering only the 0.210-inch and 0.420-inch ogive data on figure 4.14, we would conclude that K_{iv} decreases slightly with increasing size--a result consistent with the nitrogen K_{iv} data. This result is in direct contrast with those found by Parkin and Holl [26] for 0.5-caliber and 1.5-caliber ogives tested in water. Therefore, the K $_{iv}$ - V $\sqrt{D_{m}}$ plot improved the Parkin-Holl scaled-model data [26], but is of little or no value for our data.

The apparent inconsistency of the hydrogen K_{iv} data, as shown on figures 4.13 and 4.14, may be partially explained by the following observations. Recall 1) that the experimental data are mathematically extrapolated in the regions where the dashed-line curves appear on these figures, 2) that extrapolation of experimental data in this fashion [21] is risky and, 3) that the highest velocity data for the 0.420-inch ogive may reflect slight additional imprecision due to shorter available test duration. Re-examining figure 4.13, with this background information, reveals that the 0.357-inch and 0.420-inch ogive <u>experimental</u> data (solid-line curves) do not differ appreciably. Also, the K_{iv} data (solid-line curves) for the 0.210-inch ogive lie well below those for the two larger ogives-a result consistent with those of Parkin and Holl [26]. This result is also consistent with physical reasoning that the larger bodies should cavitate more readily, thereby identifying with larger values of K_{iv} . While this argument establishes the credibility of the hydrogen K_{iv} data, it does not explain why the hydrogen and nitrogen data display slightly different size effects. As previously explained, the latter is partially attributable to amplification of instrument error in K_{iv} and mathematical correlation of the experimental data.

Considering only the solid-curve data on figures 4.13 and 4.15, we conclude that 1) the hydrogen K_{iv} increases with increasing ogive size and 2) the nitrogen K_{iv} decreases with increasing ogive size. Also, perusal of figures 4.14 and 4.16 reveals that the Weber parameter 1) overcompensates for size effects with these hydrogen data and 2) has little effect on the apparent size dependency of the nitrogen data. Because there are more high quality hydrogen data for the 0.210-inch and 0.357-inch ogives, than for the 0.420-inch ogive, the size trends reflected by the two smaller ogives in figure 4.13 are favored.

Comparison of the Parkin and Holl water data [26] for 0.5-caliber ogives with the data presented herein reveals some interesting trends. As previously explained, the size effects with water and hydrogen are similar but with water and nitrogen they are directly opposed; however, K_{iv} tends to increase with decreasing V_o , at the lower values of V_o , for some of the water and nitrogen data. None of the hydrogen data exhibit this latter characteristic. Similar trends in $K_{iv} - V_o$ data were observed in our hydrofoil-nitrogen data [21]. This effect was most pronounced for the smaller ogives (< 0.50 inch dia.) in the water data [26].

It was suggested [26] that use of (We)^{0.5} may account for temperature effects in desinent cavity data, while correlating size effects. Our data, figures 4.14 and 4.16, indicate that temperature effects still prevail in the K_{iv} - (We)^{0.5} plots. It appears as though a more universal correlating parameter is needed for desinent cavity data. This parameter should simultaneously account for the effects of fluid velocity, temperature and size. This criteria suggests use of the Reynolds number (Re = $\rho V D_m/\mu$)--a parameter of limited value in the data correlated by Parkin and Holl [26]. Use of the Reynolds number would not improve the correlation of our data because we would merely be replacing V or $V_0 \sqrt{D_m}$, in figures 4.13 to 4.16, with $V_0 D_m$. Such a simple substitution results because ρ_0/μ does not vary by more than 35 percent in any of our data; consequently, the V D product dominates the magnitude of the Reynolds number. Use of the Reynolds number would effectively shift the K_{iv} curves, for the larger diameter ogives, farther to the right in figures 4.14 and 4.16. Because desinent cavity data are of limited interest, relative to developed cavity data, no further effort was expended in this direction.

4.3 Correlation of Developed Cavitation Data

The existence of thermodynamic equilibrium within developed cavities was verified by direct measurement of pressure and temperature within the vaporous cavities. Also, fully developed cavity data are correlated [20] by using these experimental values of cavity pressure and temperature to obtain cavity pressure depressions. The pressure depression in the cavitated region is determined by subtracting the measured cavity pressure, in one case, and the saturation pressure associated with the measured cavity temperature, in the other case, from the vapor pressure of the liquid entering the test section. In the hydrogen data reported here, the measured cavity pressure, P_1 , was less than

bulkstream vapor pressure by as much as 13.77 psi (9.50 N/cm²); these pressure-depressions are obtained by subtracting P_1 from P_v in the tabulated data of appendix A. For the nitrogen data, P_v exceeded P_1 by as much as 12.89 psi (8.89 N/cm²).

Typical profiles of measured pressure depression, for liquid hydrogen, are given on figures 4.17 to 4.21; similar profiles, for liquid nitrogen, are plotted on figures 4.22 to 4.26. Similar plots for the venturi and hydrofoil were presented in previous reports [20, 21]. From most of these figures, it can be observed that, within data accuracy, stable thermodynamic equilibrium exists throughout the vaporous cavity. This topic is discussed in greater detail in section 4.4 of this report. Temperature derived data $(P_v - P_{n, T})$ are not shown on figures 4.17 and 4.20--temperature data were omitted on these graphs because cavity temperature measurements were not obtained at the higher velocities with the 0.420-inch ogive. The time interval, during high velocity liquid hydrogen tests with the 0.420-inch ogive, was too short to obtain steady state cavity temperature data; therefore, cavity temperature data for these conditions are not reported for the 0.420-inch ogive. Thus, to avoid confusion, all cavity temperature data are omitted from these two graphs. In appendices A-6a and A-6b--tabulated hydrogen data for the 0.420-inch ogive--the cavity temperature data, T_1 through T_5 , are held constant at T for these higher velocity tests. In this way the reader is instantly alerted that no cavity temperature data were acquired for these specific tests. No such difficulties were encountered with liquid nitrogen and all of the tabulated nitrogen data include cavity temperature data.

It should also be noted that some of the values of P_4 , tabulated in appendix A, are in error. The P_4 data help establish the vaporous cavity pressure profile, but are not directly used to correlate the developed

Figure 4.17 Pressure depressions within cavities in liquid hydrogen.

AXIAL DISTANCE FROM MINIMUM PRESSURE LOCATION, x, in

Figure 4.18 Pressure and temperature depressions within cavities in liquid hydrogen.

Figure 4.19 Pressure and temperature depressions within cavities in liquid hydrogen.

Figure 4.21 Pressure and temperature depressions within cavities in liquid hydrogen.

د ایک می در مارک می ایچ

Figure 4.22 Pressure and temperature depressions within cavities in liquid nitrogen.

Figure 4.23 Pressure and temperature depressions within cavities in liquid nitrogen.

Figure 4.24 Pressure and temperature depressions within cavities in liquid nitrogen.

Figure 4.25 Pressure and temperature depressions within cavities in liquid nitrogen.

Figure 4.26 Pressure and temperature depressions within cavities in liquid nitrogen.

cavity data; thus, the erroneous values of P_4 have no effect on correlation of our developed cavity data. The developed cavity data are correlated using the minimum measured cavity pressure, P_1 (or \overline{P}_1). Thus, an erroneous $P_{\underline{A}}$ merely distorts the 'pressure-depression' profile and complicates estimation of the instrumented cavity length--a minor inconvenience as revealed in the next paragraph. The erroneous data are restricted to the 0.357-inch ogive and Run number series 302 to 371. These P_4 data are in error because of a leak in the P_4 pressure transmitting tubing within the sting assembly. After careful analysis of the 0.357-inch ogive data, this leak was discovered and corrected and tests on the 0.357-inch ogive were repeated. The latter series of tests are recorded in appendix A as Run numbers 507 to 564. The pressure tubing leak caused P_4 to appear too high, resulting in a lower pressure depression at station 4, see figures 4.17, 4.19, and 4.20. Because the measurement of P_A has no direct bearing on the correlation of developed cavity data, or desinent data, all of the data in Run series 302 to 371 were retained and tabulated in appendix A--thereby strengthening the statistical validity of the ogive data.

As indicated in previous reports [20, 21], the instrumented (actual)cavity length is estimated by extrapolating the pressure depression data to zero pressure depression. The actual length of the cavity, and the visual (as observed on film) length, differ because of the irregular trailing edges of the cavity and the difficulty in judging the visual length. Both actual and visual cavity lengths were used to correlate the data, and they produced essentially the same results. The visual cavity lengths, as tabulated in appendix A, were used in the final correlative data fits reported in tables 4.7 to 4.9.

The correlative expressions, developed in a previous report [21], were used to correlate the developed cavity data from this experiment. The two correlative equations are given as follows:

$$B = B_{ref} \left(\frac{\alpha_{ref}}{\alpha}\right)^{E1} \left(\frac{V_o}{V_{o, ref}}\right)^{E2} \left(\frac{x}{x_{ref}}\right)^{E3} \left(\frac{\nu_{ref}}{\nu}\right)^{E4} \left(\frac{\sigma_{ref}}{\sigma}\right)^{E5} \left(\frac{D_m}{D_{m, ref}}\right)^{E6};$$
(4-8)

$$B = B_{ref} \left(\frac{\alpha_{ref}}{\alpha}\right)^{E1} \left(\frac{M TWO}{M TWO}_{ref}\right)^{E2} \left(\frac{x}{x}_{ref}\right)^{E3} \left(\frac{\nu_{ref}}{\nu}\right)^{E4} \left(\frac{\sigma_{ref}}{\sigma}\right)^{E5} \left(\frac{D_{m}}{D_{m, ref}}\right)^{E6}$$
(4-9).

These expressions, along with the correlative technique developed by Gelder, et al. [19], the isentropic BFLASH theory [28], and two leastsquares data-fitting computer programs [20] were used to correlate these ogive data. For convenience, we will refer to these correlative expressions as 'similarity' equations. The similarity equations are used to correlate developed cavitation data in similar test items, and to predict the cavitation performance of a test item from fluid-to-fluid, and from one temperature to another, when limited test data from a single fluid are available. Size effects, for the ogives, are shown to be important.

Complete and detailed descriptions of the correlative technique, computational steps, and computer programs are given in reference [20]. The correlative procedure, as previously described [20], can be followed directly when using eq (4-8). To use eq (4-9), simply substitute MTWO for V_0 in the computer program. Briefly, this correlative procedure ensures that the B values calculated from eq (4-8), or eq (4-9), and the BFLASH values [28] for each data point, are as nearly identical as possible; because both B values, at each data point, are evaluated from

•	Onive die			E	xpònents	*		Ref.	_	
No.	(inches)	Fluids	El	E2	E 3	E4	E6	Run No.	Deviation in B-Factor	K c,min
1	0.210	На	0.47	-0,75	0.40			397B	0.2159	0.412
2	0,210	N ₂	-2.48	0.66	0,46			429B	0.1633	0,419
3	0.357	H ₂	-0.32	-0.28	0.43			338B	0.1943	0,608
4	0, 357	N₂	-1.08	0.10	0.28			557E	0.2111	0.537
5	0, 420	H2	- 3. 94	0,41	0.32			469B	0.1670	0,632
6	0, 420	N ₂	-1.88	0,67	0.37			450C	0.1878	0.525
7	0.210	H ₂ & N ₂	0.07	0.19	0.45	-0.97		397B	0.2686	0.415
8	0.357	H ₂ & N ₂	-0, 22	-0,03	0.35			338B	0.2198	0.568
9	0.420	H ₂ & N ₂	0,88	0.50	0.39	-1.05		450C	0.2308	0.567
10	0,210 & 0,357	H ₂	-0.21	-0.39	0.43		0.15	397B	0.2114	0.531
11	0.210 & 0.357	Na	-1.90	0.23	0.29		0.61	317B	0.2312	0.501
12	0.357 & 0.420	H,	-0.92	-0.13	0.43		0.28	515B	0.2126	0.617
13	0.357 & 0.420	Na	-1.86	0.37	0.36		1.13	450C	0.2402	0.532
14	0.210 & 0.420	H₂	-2,83	-0.13	0.40		0.14	469B	0.2397	0.516
15	0.210 & 0.420	Na	-2.05	0.68	0.39		0.93	450C	0, 1821	0.485
16	0.210 & 0.357									
	& 0.420	На	-0.75	-0.22	0.43		0.17	515B	0.2239	0.557
17	0.210 & 0.357									
	& 0.420	N ₂	-2.08	0,41	0.39		0.88	450C	0.2381	0.509
18	0.210 & 0.357	H ₂ & N ₂	-0.30	-0.05	0.38		0.39	338B	0.2491	0.516
19	U, 357 & 0, 420	H2 & N2	0.43	0.27	0.32	-0.90	1.08	317B	0.2527	0.568
20	0.210 & 0.420	H ₂ & N ₂	0.88	0.50	0.40	-1.10	0.79	450C	0.2597	0, 499
21	0.210 & 0.357									
	& 0.420	H2 & N2	0.32	0.21	0.34	-0.84	0.60	338B	0.2620	0,531

Table 4.7 Correlative results for developed cavity data using equation (4-8)--ogives.

$$* \quad B = B_{ref} \left(\frac{\alpha_{ref}}{\alpha}\right)^{E1} \left(\frac{V_o}{V_o, ref}\right)^{E2} \left(\frac{x}{x_{ref}}\right)^{E3} \left(\frac{v_{ref}}{\nu}\right)^{E4} \left(\frac{\sigma_{ref}}{\sigma}\right)^{E5} \left(\frac{D_m}{D_m, ref}\right)^{E6} \quad \dots \quad eq \quad (4-8).$$

+ Standard Deviation $= \sqrt{\left[\sum (B-B_t)^2\right]/(NPTS-1)}$, where NPTS = number of data points (including "ref" data point).

 $B_t = BFLASH$ and is computed from isentropic-flashing theory [28], and B is computed from eq (4-8).

				Exponen	ts 🔅		Ref.	Standard +	
Line No.	Ogive dia. (inches)	Fluids	El	ΕZ	E3	E6	Run No.	Deviation in B-Factor	K c, min
1	0.210	Нa	-0.48	0.39	0.35		397B	0. 2638	0.412
2	0.210	Nz	1.14	0.51	0.35		429B	0.1213	0.419
3	0.357	H₂	-0.83	-0.03	0.44		338B), 2130	0.608
4	0.357	N₂	-0.53	0.18	0.23		557E	0.1974	0.537
5	0.420	H₂	-1.41	0,53	0,22		469B	0,1274	0.632
6	0.420	N ₂	0.74	0,55	0.30		450C	0.1538	0.525
7	0.210	H ₂ & N ₂	-0,28	0.41	0.34		397 B	0.2129	0.415
8	0.357	H2 & N2	-0.06	0.18	0.31		338B	0.2094	0,568
9	0, 420	H2 & N2	0.05	0,55	0,29		450C	0.1694	0,567
<u></u>	1								
10	0.210 & 0.357	Η₂	-0.79	0.14	0.38	0.26	397B	0.2347	0,531
11	0.210 & 0.357	N₂	-0.45	0.36	0.23	0.67	317B	0.2001	0.501
12	0.357 & 0.420	Н₂	-0.83	0.30	0.30	0.70	515B	0.2017	0.617
13	0.357 & 0.420	Na	-0.12	0,43	0.30	0.82	450C	0.1994	0.532
14	0.210 & 0.420	Ha	-1.06	0.51	0.27	0.52	469B	0.2084	0.516
15	0.210 & 0.420	N2	0.84	0.52	0.31	0.69	450C	0.1375	0.485
16	0.210 & 0.357								
	& 0.420	H₂	-1.07	0,27	0.31	0.42	515B	0.2237	0.557
17	0.210 & 0.357								
	& 0.420	N₂	0.10	0.43	0.31	0.71	450C	0.1903	0.509
							[1	
18	0.210 & 0.357	H2 & N2	-0.09	0.36	0.28	0.53	338B	0.2228	0.516
19	0.357 & 0.420	H2 & N2	0,01	0.39	0.23	0.87	317B	0,2081	0.568
20	0.210 & 0.420	H2 & N2	-0.09	0.52	0.29	0.61	450C	0,1915	0, 499
21	0.410 & 0.357								
	& 0.420	H2 & N2	-0.05	0.43	0.25	0.59	338B	0.2126	0,531

Table 4.8 Correlative results for developed cavity data using equation (4-9)--ogives.

.

**
$$B = B_{ref} \left(\frac{\sigma_{ref}}{\sigma}\right)^{E1} \left(\frac{MTWO}{MTWO}_{ref}\right)^{E2} \left(\frac{x}{x_{ref}}\right)^{E3} \left(\frac{v_{ref}}{v}\right)^{E4} \left(\frac{\sigma_{ref}}{\sigma}\right)^{E5} \left(\frac{D_m}{D_{m,ref}}\right)^{E6} - -eq (4-9)$$

† Standard Deviation = $\sqrt{\left[\sum (B-B_t)^2\right]/(NPTS-1)}$, where NPTS = number of data points (including "ref" data point),

 $B_t = BFLASH$ and is computed from isentropic-flashing theory [28], and B is computed from eq (4-9).

and
ydrofoil,
gives, h
datao
l cavity
developed
for
results
correlative
of
Summary
Table 4.9

		Table 4.9	Summary of c	orrelative results	for develo	oped cav	ity data	ogives,	hydrofo	il, and ventu	ri.	
l ine	Model	F] iiide	orrelative	Source		н	xponent	s		Reference	Standard +	:
No.			Equation	or Data	EI	E2	E3	E4	E6	Kun No.	B-Factor	c, min
-	Ogives	H _a & N _a	(4-8)*	This Study	0, 32	0. 21	0.34	-0,84	0, 60	338B	0. 2620	0. 531
2	Hydrofoil	H ₂ & N ₂	(4-8)	Reference [21]	0.80	0.64	0.45	-1, 00	1	255B	0. 3717	1, 833
۴	Venturi	H₂	(4-8)	Reference [20]	-1.92	0.74	0. 31		:	071C	0.3466	2. 459
4	V entu ri	H ₂ & F-114	(4-8)	Reference [3]	1.0	0.8	0. 3		-0, 10	2		2.47
2	Ogives	Ha & Na	(4-9)**	This Study	(=0* 05)	0.43	0, 25	-	0. 59	338B	0.2126	0, 531
6	Hydrofoil	H ₂ & N ₂	(4-9)	Reference [21]	(-0.13)	0, 59	0. 27	:	:	255B	0. 2565	1, 833
2	Venturi	Нa	(4-9)	Reference [20]	(0.10)	0. 59	0.18	;	:	071C	0. 2234	2. 459
*	$B = B_{ref} \left(\frac{\alpha}{\frac{1}{2}} \right)$	$\left(\frac{ref}{x}\right)^{E1}\left(\frac{V_{o}}{V_{o, re}}\right)$	$\left(\frac{1}{x}\right)^{E2}\left(\frac{x}{x_{ref}}\right)$	$\left(\sum_{v=1}^{E3} \left(\frac{v_{ref}}{v} \right)^{E4} \right)$	or E5	$\left(\frac{D_m}{D_{m,r}}\right)$	-)E6	eq (4-	8).			
상 산	$B = B_{ref} \left(\frac{\alpha}{c} \right)$	$\left(\frac{\text{ref}}{x}\right)^{\text{EI}}\left(\frac{MTW}{MTW}\right)$	$\left(\frac{2}{2ref}\right)^{E2}\left(\frac{x}{x}\right)$	$- \int E^3 \left(\frac{\sqrt{ref}}{\sqrt{r}} \right)^E$	$\left(\frac{\sigma}{\sigma} \right)$	$E5\left(\frac{D}{D_m}\right)$	$\left(\frac{m}{1, ref}\right)^{1}$	E6eq (4-9).			
+	Standard Dev	viation $= \sqrt{\sum(B)}$	B _t) ²] /(NP7	[S-1], where NPT	S = numbe	r of data	1 points	(includin	g ''ref'' d	ata point),		

Bt = BFLASH and is computed from isentropic-flashing theory [28], and B is computed from eq (4-8) or eq (4-9).

experimental data, this correlative procedure produces the best possible agreement between experiment, the isentropic flashing theory [28], and the correlative expression--eq (4-8) or eq (4-9). This 'best-fit,' of the experimental data, is obtained by selecting appropriate exponents for each of the correlative parameters in the correlative expression-eq (4-8) or eq (4-9). The exponent selecting process is quite complex and is treated in appropriate detail in reference [20]. Exponents for eq (4-8) and eq (4-9) were derived to evaluate the suitability of MTWO as a correlating parameter for the ogive data. Recall that the hydrofoil and venturi data correlations were significantly improved [21] by use of the MTWO parameter; similar improvement was obtained with the ogive data.

In eq (4-8) and eq (4-9) the cavity lengths were evaluated at the visually observed lengths. BFLASH was obtained, for each experimental data point, as follows: 1) the average measured cavity pressure depression ($P_v - \overline{P}_1$), T_o and the calculation method outlined in reference [28] were used, excepting the hydrogen data for the 0.357-inch and 0.420-inch ogives; 2) for the latter two batches of data we used $P_v - P_1$, T_o , and the calculation method of reference [28]. The average minimum cavity pressure, $\overline{P}_1 = (P_1 + P_{1,T})/2$, was used for most of the ogive data because the temperature measurements are considered just as accurate as the pressure measurements; however, the pressure measurements are considered slightly superior with the hydrogen data for the 0.357-inch and 0.420-inch ogives. The minimum cavity pressure, P_1 , was used in those specific cases because test duration was shorter and the response characteristics of the pressure sensors hold a slight advantage over those of the temperature sensors.

In eq (4-8) and eq (4-9), the fluid physical properties are evaluated at P_{o} and T_{o} , with the exception that MTWO is evaluated at the minimum

measured cavity pressure P_1 (or $\overline{P_1}$). The standard deviation in B is computed for each set of exponents; the individual exponents may be held constant or chosen by the computer. The standard deviation in B factor is minimized in the computer programs when one or more of the exponents is selected by the computer; the absolute minimum standard deviation is obtained when all of the exponents are selected by the computer-as in this report. In those cases where the exponents are held constant the standard deviation cannot be minimized and is merely computed. The set of exponents that produces minimum standard deviation in B is selected as the best correlative solution for any particular batch of data; i.e., the standard deviation is a measure of the validity of the similarity and isentropic-flashing theories, as both are evaluated from experimental data.

Because MTWO proved to be a valuable correlating parameter for the hydrofoil and venturi data [21], the ogive data were correlated with and without the MTWO parameter to further evaluate its influence. Correlating the ogive data with eq (4-8), and then eq (4-9), provides direct evaluation of MTWO as a correlating parameter--identical comparisons were prepared for the hydrofoil and venturi data [21]. Correlation of the ogive data, using eq (4-8), is summarized in table 4.7; similarly, table 4.8 was prepared using eq (4-9). Table 4.9 summarizes the correlative results for developed cavitation on all geometries (bodies) tested in this study, i.e., venturi, hydrofoil, and ogives. The results given in tables 4.7 to 4.9 are discussed in the following section of this report.

4.4 Discussion of Developed Cavitation Data

4.4.1 Cavity Visualization and Appearance

Photographs of fully developed vaporous cavities, in liquid hydrogen, are shown on figures 3.6 to 3.8. Inlet velocity and liquid temperature were observed to have very little effect on the appearance of cavitating hydrogen; i.e., the cavities were somewhat ragged but uniformly developed. Only at the highest temperature, and lowest velocities, did the hydrogen cavities exhibit a slightly porous, non-uniform character. Similar, though more pronounced, features were observed in the nitrogen cavities. If a cavity is sufficiently porous, i.e., if it visually resembles vapor streams, erratic developed cavity data may result. This occurs because the pressure and temperature sensing ports are not continuously covered with vapor during a test, but may be intermittently covered with vapor and then liquid. This results in non-steady data that are readily spotted during data analysis and no such data are reported herein.

The photographs in figures 3.6 to 3.8 indicate that the cavity profiles are fairly smooth except in the vicinity of the belled diffusers. Figure 3.6 shows two long cavities with trailing clouds of condensing vapors--scribe lines on the plastic tunnel, used to detect cavity length, are visible in both of these photographs. Figure 3.7 shows hydrogen cavities on the 0.357-inch ogive in various stages of development. Two very interesting photographs are shown in the top half of figure 3.8-these cavities were filmed in the rare act of tearing apart with the rear portion of the cavity collapsing. More typical photographs, for the 0.420-inch ogive, are shown in the bottom half of this figure.

By comparing figures 3.6, 3.7, and 3.8, it becomes apparent that cavity profile irregularities are accentuated with increasing size of the ogives. All of the photographs in these figures were acquired with a three microsecond stroboscopic flash exposure. Thus, these photographs are not representative of what one sees when viewing a test. At much slower exposure rates, that can be accommodated by the eye, the cavity profile irregularities are smeared into a nice smooth continuous elliptical shape.

4.4.2 Graphical Display of Typical Developed Cavity Data

In figures 4.17 to 4.26, the data points representing cavity pressure measurements have been connected with a smooth curve--this facilitates comparison with the data points obtained from the cavity temperature measurements, where the latter are plotted. The pressure depressions obtained from the cavity temperature measurements are, for the most part, in good agreement with those derived from the measured pressures, i.e., within the allowances of instrument error, the cavity vapor is in stable thermodynamic equilibrium. Plots similar to figures 4.18 to 4.26, of all the ogive data, reveal that stable thermodynamic equilibrium exists within the cavity vapor--within data accuracy. Similar results were obtained with the hydrofoil [21] while evidence of metastable vapor was presented in the venturi study [20].

In figures 4.18 to 4.26, the only significant differences in the measured pressure and temperature profiles occur near the trailing edges of the cavities. Similar characteristics were observed in the

hydrofoil and venturi studies. The trailing edges of a cavity are normally irregular and are characterized by randomly-spaced clouds of condensing vapor. It was previously shown [21] that it is inadvisable to attempt to interpret the cavity data in this ill-defined region. Also, an explanation was offered [21] for the apparent discrepancy, in pressure and temperature measurements, near the aft end of the cavities.

Figures 4. 17 to 4. 26 were selected to demonstrate the functional dependency of cavity pressure depression upon various correlating parameters. The primary parameters, as differentiated from derived parameters, at our disposal are cavity length (*l*),fluid temperature (T_o) and velocity (V_o), and ogive diameter (D_m). Comparing figures 4. 17 and 4. 18, we note that ℓ/D_m and T_o are almost constant but V_o varies. Comparing these hydrogen data for the same size ogives, we see that the maximum pressure depression decreases slightly with increasing values of V_o --this conclusion applies only to the 0. 210-inch and 0. 357-inch ogives. This result differs from the venturi [3,20], hydrofoil [21], and zero-caliber ogive [29] tests; however, similar results were obtained in pump inducer performance tests [6] using liquid hydrogen.

The effect of hydrogen temperature upon $P_v - P_n$ is made apparent by comparing figures 4.18 and 4.19--here ℓ/D_m and V_o are nearly constant and T_o varies. Cavity pressure depression increases markedly with increasing hydrogen temperature. Similarly, by comparing figures 4.17 and 4.20 and then figures 4.19 and 4.21, we find that hydrogen cavity pressure depression increases with increasing cavity length. Upon comparison of figures 4.20 and 4.21, we find that increasing V_o , ℓ/D_m , and T_o increases the hydrogen cavity pressure depression. Figures 4.17, 4.18, and 4.20 reveal little size effect at the lower hydrogen temperatures; however, figures 4.19 and 4.21 indicate a definite size effect

exists at higher hydrogen temperatures. The cavity pressure depressions increase with increasing values of D_m.

Similar comparisons and comments apply to the nitrogen data plotted on figures 4.22 to 4.26. Comparison of figures 4.22 and 4.23 reveals that $P_v - P_n$ increases with increasing V_o . Comparing figures 4.23 and 4.24, we note that $P_v - P_n$ increases markedly with increasing T_o . Pairing figures 4.22 and 4.25, and then figures 4.24 and 4.26, we find that $P_v - P_n$ for nitrogen increases with increasing cavity length. For nitrogen, as with hydrogen, the combined effects of increasing V_o , T_o , and ℓ/D_m results in larger values of $P_v - P_n$ (pair figures 4.25 and 4.26 or figures 4.24 and 4.25). Again, we see a definite ogive size effect at the higher velocities and temperatures with nitrogen test fluid-- $P_v - P_n$ increases with increasing ogive size.

The foregoing discussions of figures 4.17 to 4.26 show that cavity pressure depressions generally increase with increasing cavity length, ogive diameter, fluid temperature, and velocity for these tests; however, the pressure depressions decrease with increasing velocity for the 0.210-inch and 0.357-inch ogives in liquid hydrogen.

4.4.3 Mathematical Correlative Results

The foregoing cavity parameter functional dependencies are also shown by simply observing the characteristics of the experimentally derived exponents in table 4.7. In reference [28], it is shown that the pressure depression increases with increasing T_o and B. Referring to line 10 of table 4.7, we observe that B increases with increasing x and D_m , and B decreases with increasing V_o . Then, for hydrogen cavities on the 0.210-inch and 0.357-inch ogives, $P_v - P_1$ must increase with increasing T_o , x, and D_m , and $P_v - P_1$ must decrease with increasing V_o . By inspecting tables 4.7 to 4.9, similar deductions may be drawn for any body-fluid combination.

The 'similarity' equations were fitted with numerical exponents derived from the ogive experimental data. These equations were derived in the course of this study [21] and represent extensions of the work of Gelder, et al. [19]. The exponents given in tables 4.7 to 4.9 were obtained with a least-squares fitting technique and a digital computer; the suitability of the various exponents to the experimental data is indicated by the standard deviation in B-factor as explained previously. In the ogive experiments, the value of B varies with the diameter of the ogive as follows: 1) <u>0.210-inch ogive</u>--B ranges from 0.7 to 2.0 for hydrogen and from 0.5 to 2.3 for nitrogen, 2) <u>0.357-inch ogive</u>--B ranges from 1.2 to 2.6 for hydrogen and from 1.1 to 2.5 for nitrogen, 3) <u>0.420inch ogive</u>--B ranges from 1.1 to 2.8 for hydrogen and from 1.1 to 3.0 for nitrogen. In the hydrogen venturi study, the value of B ranges from 2.0 to 5.0; in the hydrofoil experiments, the value of B ranges from 1.0 to 5.0, for both hydrogen and nitrogen test fluids.

The correlative expressions, used to correlate the experimental data, are given at the bottom of tables 4.7 to 4.9. The mathematical technique, used to derive the exponents, can easily pick an extraneous value for any of the exponents if there does not exist significant variation in the corresponding physical parameter. The lack of variation in α explains why El frequently tends toward a negative number in tables 4.7 to 4.9; this is particularly true when correlating with single fluids as explained in a previous report [21]. For the ogive data, α varied by less than 8 percent with hydrogen and by only 16 percent with nitrogen-the variation in α for hydrogen-nitrogen correlation was about 2:1. Thus, sufficient variation in α exists, for the hydrogen-nitrogen correlations, to provide reliable exponents. There was over 400 percent change in α in the hydrogen-refrigerant 114 data correlated by Moore and Ruggeri [3], and thus the value for El reported in line 4 of table 4.9 is to be preferred when correlating with eq (4-8). It is apparent that

the combined fluid correlations, for any hydrodynamic model or correlative expression, are to be preferred because of the greater variation in physical parameters. We shall soon demonstrate that the α term is insignificant when correlating with the MTWO term--eq (4-9).

In all of our ogive, hydrofoil, and venturi data, use of the \vee and σ terms improved the correlations; however, it is felt that use of these additional correlating parameters is not justified, unless they <u>substantially</u> improve the correlative fit. None of the data were <u>materially</u> improved by the use of σ ; therefore, values for E5 are not included in tables 4.7 to 4.9. Similarly, the \vee term was of value only for some of the combined fluid correlations using eq (4-8)--see values for E4 in tables 4.7 and 4.9. Correlation of the hydrogen-refrigerant 114 data (line 4 of table 4.9) would most likely be improved by using one or both of these terms.

Exponents for the ogive data, using eq (4-8), are given in table 4.7. Again, the viscosity and surface tension terms had little influence on the data correlation for single fluids (lines 1 to 6 and 10 to 17) and were not used; however, the viscosity term significantly improved some of the combined fluid correlations (lines 7, 9, and 19 to 21), and the corresponding exponent, E4, was determined. For these combined fluids, inclusion of the viscosity term reduced the standard deviation by 7 to 25 percent--a substantial reduction.

Inspection of the 0.210-inch ogive data reveals typical variations in α , ν , and σ . In the hydrogen data (line 1 of table 4.7), α varied by only 8 percent, ν varied by 12 percent, and σ varied by 17 percent. In the nitrogen data (line 2), α varied by 16 percent, ν varied by 35 percent, and σ varied by 29 percent. Thus, it is not surprising that the ν and σ terms were of little benefit in the single fluid correlations, nor that the exponent on the α term is somewhat unsteady. In the combined fluid data

(line 7), α varied by almost 100 percent, ν varied by 35 percent, and σ varied more than 300 percent. Then the α exponent, E1, should be quite meaningful, the ν exponent, E4, (though beneficial) is suspect, and the σ exponent, E5, should be beneficial. Because the σ term was of negligible value in the correlative fit, even though it varied by a factor of three, we must conclude that σ is not an important correlating parameter for the cryogens tested; however, it may yet prove to be a valuable correlating parameter for other fluid combinations--with smaller or larger variations in σ . Although the ν term improved the combined fluid correlation, the numerical value of E4 is suspect because of the relatively small variation in ν for these data. Again, ν may be an excellent correlating parameter for other fluid combinations and is of considerable value for the hydrogen-nitrogen combination.

Inspection of the hydrogen data in table 4.7 (lines 1, 3, and 5) indicates that E2 tends toward negative values with decreasing ogive size. This result has already been illustrated graphically, i. e., B decreases with increasing V_0 for the 0.210-inch and 0.357-inch ogives. All of the nitrogen data (lines 2, 4, and 6) produced positive values of E2, but these values appear somewhat inconsistent. The foregoing comments are reflected throughout the remainder of the E2 data in table 4.7 (lines 7 to 21). The cavity length exponent, E3, is observed to be relatively constant for all ogive model-fluid combinations (lines 1 to 21 of table 4.7). The viscosity exponent, E4, is also observed to be relatively constant for those model-fluid combinations where v was found to be beneficial (lines 7, 9, and 19 to 21).

Lines 10 to 21 on table 4.7 were selected to establish the size effect for the ogives, i.e., the value of E6. Perusal of this data indicates considerable variation in E6, depending upon the model-fluid combination. The best set of exponents, using eq (4-8), is considered

to be those given in line 21 of table 4.7. These exponents are derived using all of the available ogive data and are consequently representative of the maximum variation in each of the correlating parameters. The data on line 21 is repeated on line 1 of table 4.9.

Comparison of these best experimental exponents (line 21 of table 4.7) for the ogives, with the exponents predicted from heat transfer considerations [21], is somewhat gratifying. The predicted [21] values of E1, E2, and E3 bracketed the experimental data, but the predicted value of E4 did not. These ogive tests do not reveal that a particular flow mode, and technique for evaluating the thermal boundary layer thickness, are to be preferred. Similar results were obtained in the hydrofoil tests [21].

The ogive data were also correlated using eq (4-9); this was accomplished by substituting MTWO for V_0 in the computer program. These results are shown in table 4.8. It is apparent from the foregoing discussion, and the results shown in table 4.8, that the v and σ terms did not materially improve the correlation. That eq (4-9) is quite superior to eq (4-8), as a correlative expression, is readily shown by a line-to-line comparison of the results given in tables 4.7 and 4.8. A substantial reduction (up to 1/4) in standard deviation in B-factor is achieved, in all but three cases (lines 1, 3, and 10), by substituting MTWO for V_0 . In those three cases where MTWO does not improve the correlation, the 0.210-inch and 0.357-inch ogives and hydrogen fluid are involved. For these three cases, it was found that the standard deviations listed in table 4.7 could be reduced by 10 to 20 percent by using eq (4-9) and evaluating MTWO in a different manner--the homogeneous thermal equilibrium two-phase mass flux limiting model [30] was used to derive an expression for MTWO. All of the data presented in table 4.8

were derived using the expression for MTWO that was developed in a previous report [21]. The fact that a different expression for MTWO works better in some cases implies that we have not yet developed the optimum formulation for evaluating MTWO; however, the use of MTWO, as currently evaluated, is clearly superior to the use of V_0 as a correlating parameter.

In addition to reducing the standard deviation in B-factor, the use of MTWO results in far more consistent values of the exponents E2, E3, and E4 for the various model-fluid combinations (lines 1 to 21 of table 4.8). Careful study of these same data (and comparison with the data in table 4.7) will also show that the importance of the α and x terms is generally lessened when eq (4-9) is used, i.e., the numerical values of El and E3 are reduced. In the combined model-fluid correlations (lines 18 to 21 of table 4.8), the numerical value of El is so small that the α term could be neglected. The α term is undoubtedly diluted somewhat, because of the many thermophysical and thermodynamic fluid properties embodied in the MTWO parameter. It is believed that the slight correlative improvement offered by the v and σ terms, when using eq (4-9), can be attributed to the very strong influence of the MTWO parameter. While the vterm was of considerable benefit (lines 7, 9, and 19 - 21 of table 4.7), when using eq (4-8), it has little effect when the standard deviation is reduced to a much lower value (lines 7, 9, and 19 - 21 of table 4.8), by use of the MTWO parameter. The predominant influence of the MTWO term may also be responsible for the slight reductions in E3, when using eq (4-9). The importance of MTWO, as a correlating parameter, emphasizes that mass transfer plays an important role in the cavitation process. Again, line 21 of table 4.8 represents the best set of exponents for the ogive data using eq (4-9). These data are repeated on line 5 of table 4.9.

Table 4.9 lists the best experimental exponents for the hydrodynamic bodies and fluids used in this study. The best correlative results using eq (4-8) and eq (4-9) are presented. The first four data lines indicate that the exponents, using eq (4-8), vary appreciably with the model-fluid combination -- only E3 and E4 show reasonable constancy. Lines 5 to 7 of table 4.9 indicate that all of the exponents, using eq (4-9), are reasonably constant for the model-fluid combinations available to us. Certainly, it is not expected that the exponents derived from eq (4-8) or eq (4-9), for different bodies, should be the same. Our tests coupled with recent tests [29], on zero-caliber ogives, indicate that the exponents derived from eq (4-8) may vary widely from one hydrodynamic body to another. Yet it is remarkable that the variation in the exponents, using eq (4-9), is so small (lines 5 to 7 of table 4.9). It is apparent that the α term is negligible in lines 5 to 7; thus, it appears that the α term could be eliminated in eq (4-9). Then; only the MTWO, x and D m terms remain as vital correlating parameters.

The importance of MTWO, as a correlating parameter, is readily demonstrated by comparing the standard deviation in B-factor for lines 1 and 5, 2 and 6, 3 and 7 in table 4.9. A significant improvement in data correlation is obtained, in each case, by using eq (4-9).

The diameter (size) terms in eq (4-8) and eq (4-9) produced almost identical values for E6 (lines 1 and 5 of table 4.9). Moore and Ruggeri [3] obtained an exponent value of -0.1 for the diameter term--E6 = -0.1 in eq (4-8)--based on tests using refrigerant 114 in two different venturi sizes. Those tests were performed with a venturi identical to the one used in our study [20], and with a larger (1.414:1) geometrically similar venturi. Billet [29] used water and refrigerant-113 to test 0.24-inch and 0.50-inch diameter zero-caliber ogives. He obtained

values of E1 = 0.60, E2 = 0.30, E3 = 0.58, and E6 = -0.25 for these tests--as derived from a formulation similar to eq (4-8). Thus, it appears that size effects vary with equipment geometry.

It is instructive to consider another aspect of size effect. The $\ell/D_{\rm m}$ ratio is used in a wide variety of geometric scaling problems and has special 'similarity' significance [3]. Substitution of $\ell/D_{\rm m}$ for x in eq (4-8) and eq (4-9) requires that

$$\left(\frac{x}{x_{ref}}\right)^{E3} \left(\frac{D_m}{D_{m,ref}}\right)^{E6} = \left(\frac{\ell/D_m}{(\ell/D_m)_{ref}}\right)^{E3} \left(\frac{D_m}{D_{m,ref}}\right)^{E7}.$$
 (4-10)

The true 'size effect' is then indicated by the value of the new exponent, E7, i. e., for the same cavity length-to-diameter ratio, ℓ/D_m , the size effect is functionally represented by $(D_m/D_m, ref)^{E7}$. Using the E3 and E6 data in lines 1, 4, and 5 of table 4.9 and Billets' data [29], we obtain values of E7 as follows: The Moore and Ruggeri data [3] produce the lowest value of 0.20 (from line 4), Billets' data [29] yields a value of 0.33 and our ogive data requires that E7 = 0.84 (line 5) or 0.94 (line 1). Our ogive data indicate that B increases almost linearly with increasing equipment (body) size--for the same ℓ/D_m . From these limited available data, it appears that size effect must be individually determined for specific equipment-fluid combinations.

The results obtained herein indicate that eq (4-9), rather than eq (4-8), should be used for predictive calculations [4, 5].

4.4.4 Variation of K With Geometry, Fluid, Size, Etc.

The arithmetic mean value of the developed cavitation parameter, $\overline{K}_{c, \min}$, does not vary appreciably for the venturi data presented in table 4.9. This parameter was also relatively constant for the hydrofoil data [21]; this is an important result, because constant $\overline{K}_{c, \min}$, eq (4-8), and the isentropic flashing theory [28] are used to predict [4, 5] the cavitating performance of a particular piece of equipment. The fact that $\overline{K}_{c, \min}$ is different, for different models, curtails the current predictive techniques [4, 5] to a particular piece of equipment, i.e., the geometry (shape) of the cavitating equipment must be identical or similar. Actually, it was anticipated [20] that $\overline{K}_{c, \min}$, for many cavitating bodies, would not remain constant--as with the venturi--for all fluids, cavity lengths, velocities, temperatures, etc. Then, it was neither surprising that $\overline{K}_{c, \min}$ for the hydrofoil varied slightly [21] nor that $\overline{K}_{c, \min}$ varied appreciably with ogive model-fluid combinations, see table 4.7 or 4.8. For the ogive data, $\overline{K}_{c, \min}$ varied by a factor of 1.5:1.

Also, K varied more for the ogives and the hydrofoil than for the venturi; $K_{c,min}$ was within 7 percent of $\overline{K}_{c,min}$ for the venturi and showed 15 percent deviation for the hydrofoil. K_{c,min} for the ogives varied as follows: 1) 0.210-inch ogive -- K varied from 0.33 to 0.51 with hydrogen and from 0.36 to 0.63 with nitrogen, 2) 0.357-inch ogive--K varied from 0.50 to 0.77 with hydrogen and from 0.43 to 0.71 with nitrogen, 3) 0.420-inch ogive--K varied from 0.53 to 0.71 with hydrogen and from 0.45 to 0.63 with nitrogen. From these data and the $\overline{K}_{c,min}$ data given in table 4.7, it is apparent that K c, min increases with increasing ogive size. We note that the 0.24-inch diameter zero-caliber ogive data of Billet [29], for water and refrigerant-113, show similar large variations in K (0.32 to 0.52). Also, significant variations in K have been observed in pump [4] and pump inducer [5,6] performance tests. Then, for a specific piece of equipment K can vary appreciably with fluid and flow conditions, and c, min K for similar equipment can be expected to vary with size.

An attempt was made to determine the functional dependency of $K_{c,\min}^{upon x}$, $V_{o,}^{and T}$; however, these results were somewhat discouraging. It was determined that the hydrofoil $K_{c,\min}^{upon x}$ is nearly

independent of cavity length and velocity and increases very slightly with increasing temperature. With the ogives, $K_{c,min}$ was also found to increase with increasing temperature and is almost independent of cavity length and velocity. Billet obtained different results for zerocaliber ogives [29]--K_{c,min} was nearly independent of T_o, and increased slightly with increasing V_o, and decreased with increasing cavity length. For the venturi [20], $K_{c,min}$ was nearly independent of x, V_o, and T_o. Consequently, the behavior of K_{c,min} for different equipment is not currently predictable prior to testing.

Where $K_{c, \min}$ does not vary appreciably, it is convenient to use $\overline{K}_{c, \min}$ for predictive purposes. With large variations in $K_{c, \min}$, as in our ogive data, this practice will produce relatively crude predictive results; however, in practical applications similar flow conditions can usually be selected [4-6], so that predictions can be made at identical values of $K_{c,\min}$. Data presented herein shows that $K_{c,\min}$, and consequently $\overline{K}_{c,\min}$, varies widely with body or equipment geometry, as does the pressure coefficient, C_p . Thus, it is quite obvious that prediction of cavitation performance, from one piece of equipment to another, will require significant advances in the 'state-of-the art.'

As a preliminary step, we can supply, from this study and others, data that relates $\overline{K}_{c, \min}$ to the noncavitating minimum pressure coefficient, C_p . The definitions of these two parameters are nearly identical, except that $\overline{K}_{c,\min}$ is based upon minimum cavity pressure in cavitating flow and C_p is based upon minimum pressure in noncavitating flow--also, C_p has a negative numerical value, see nomenclature. Experimental data from this study and others are plotted on figure 4.27; neither $\overline{K}_{c,\min}$ or C_p are corrected for blockage in this plot. If a designer can estimate values of C_p from idealized fluid flow solutions, or from model scale-up tests in wind tunnels, a corresponding value of $\overline{K}_{c,\min}$ can be picked from figure 4.27.

It may then be possible to apply the predictive techniques of Ruggeri and Moore [4-6] to estimate cavitation performance from one piece of equipment to another. More data on this topic will be supplied in Volume IV of this report series.

The conventional cavitation parameter for developed cavitation, K_v , also varies with flow conditions for any particular geometry, e.g., see table A-la and Rouse and McNown[25].

4.5 Developed Cavity Shapes

One of the main objectives of the hydrofoil and ogive experiments was to obtain cavity volume- thickness data, in an effort to improve the correlative theory. The hydrofoil-tunnel and ogive-tunnel configurations were designed to provide optimum photographs of the developed cavities. Enlarged photographs of the cavities, for each experimental data point, were carefully studied to determine cavity shape, thickness, and volume. Ogive tunnel distortion, figures 3.2 to 3.4, was taken into consideration in this cavity shape analysis. All of the cavities were elliptically shaped, and the photographed cavities were easily fit with a transparent-plastic elliptical-template. By recording appropriate data from the template, e.g., major and minor axes dimensions, maximum cavity thickness, and angle of projection, it was possible to compute cavity volumes, shapes, etc. We found that cavity thickness and volume increased with increasing cavity length, and were nearly independent of V and T . Because we are primarily interested in the shape of cavities near their leading edge, we restricted our attention to cavity volumes in the fronthalf of the cavity; in this way, the ill-defined trailing regions of the cavity are avoided. The shapes, of all of the cavities, were adequately represented by a simple algebraic expression of the form $\delta_v = C_0 x^p$. Table 4.10 summarizes the cavity shape data.

Model	Fluid	C _o	р			
Hydrofoil	H ₂	0.77	0.37			
Hydrofoil.	N ₂	0.44	0.63			
0.210-inch ogive	H ₂	0.41	0.86			
0.210-inch ogive	N ₂	0.43	0.73			
0.357-inch ogive	H ₂	0.49	0.69			
0.357-inch ogive	N ₂	0.50	0.69			
0.420-inch ogive	H ₂	0.34	0.79			
0.420-inch ogive	N ₂	0.29	0.78			
$\delta_v = C_o x^p$, where δ_v and x are in millimeters and x cannot						
exceed the cavity half-length.						

Table 4.10 Summary of developed cavity shape data.

The expressions for the ogive cavity shapes are observed to be reasonably consistent in the exponent p. These cavity data and shape analyses substantiate the assumption of the existence of parabolic-shaped cavities in a previous analysis [21]. These data also support the selection of a mean value for $p \approx 0.65$ in that analysis [21].

Because of its application in the pumping machinery field, pressurehead has been included in the data tabulated in appendix A. Mathematical conversion of pressure to pressure-head merely requires evaluation of the liquid density at the point of measurement; however, selection of the appropriate liquid density can be a bit perplexing. Figures 4. 17 to 4. 26 indicate that the measured pressures and temperatures, within the cavities, are not in perfect agreement. Also, due to the thermal expansivity of liquid hydrogen, the bulkstream temperature does not remain perfectly constant as the liquid flows over the ogives. The following methods were used to calculate pressure head from the cavity measurements: (1) Head (h_n) was calculated from measured cavity pressure by using the saturation density at the measured pressure. (2) Head $(h_{n,T})$ was calculated from measured cavity temperature by using the saturation density at the measured cavity temperature by using the saturation density at the measured temperature. Both values of head are given in the tabulated data in appendix A.

5. CONCLUDING REMARKS

Desinent cavity data, for three quarter-caliber ogives, were acquired for vaporous hydrogen and nitrogen cavities; the results for these scaled ogives are given in appendix A and on figures 4.1 to 4.16. Correlation of the desinent data is treated in appendix C of reference [21]. The desinent data tend toward a narrow range of K_{iv} values, at the maximum velocities, irrespective of fluid or fluid temperature. The hydrogen data indicate that K_{iv} increases slightly with increasing body size, while the nitrogen data imply an opposite trend. Neither the Weber or Reynolds numbers appear attractive as correlating parameters for these ogive desinent cavity data. These ogive data, for cryogenic liquids, substantiate a previous observation [21] that these liquids require less subcooling--relative to higher boiling-point liquids--for desinent cavitation to occur.

Pressure and temperature profiles were measured within fully developed, vaporous hydrogen and nitrogen cavities; these results, for the ogives, are given in appendix A and on figures 4.17 to 4.26. Within data accuracy, these pressure and temperature depressions were in stable thermodynamic equilibrium. These data were correlated using a previously described [20] technique, and the extended theory developed

in a previous report [21]. Using the conventional correlating technique, eq (4-8), it was found that α , V_0 , x, and ν , were valuable correlating parameters for combined fluids, see table 4.7. Using the new MTWO parameter, only MTWO and x were of value, see table 4.8. If the MTWO correlation is not used, the results may be degraded by approximately 25 to 50 percent (as based on standard deviation in B), see table 4.9. Because MTWO is such an influential parameter, its use is highly recommended in future work, for both correlative and predictive purposes.

The ogive developed cavity data revealed a strong size dependency-for the same ℓ/D_m ratio the B-factor increases almost linearly with increasing size (diameter). Thus, for liquids that possess nearly linear relationships between B and pressure-depression, such as water [28], the pressure-depression will increase almost linearly with increasing body (ogive) size. The ogive size effect is clearly indicated in tables 4.7 to 4.9 and through the use of eq (4-10). Comparison of our data with those of others [3, 29] indicates that size effects vary with specific equipment-fluid combinations.

The parameters used in this study to correlate ogive, hydrofoil, and venturi data are obviously suitable for a variety of body geometries (and sizes) with two-dimensional and axisymmetric cavitating flows (internal and external). Correlation of developed cavitation data from one cavitating body to another (of different geometry) requires further development.

 $K_{c, \min}$ was found to vary by a factor of approximately two for the ogives; however, relatively small deviations in $K_{c, \min}$ were experienced with the venturi and hydrofoil tests [21]. Variations, in $K_{c, \min}$, of 1.65:1 were found in tests on zero-caliber ogives [29] in water. Our data also show that $K_{c, \min}$ increases with increasing ogive size. It is quite apparent that $K_{c, \min}$ will vary with equipment geometry, size, fluid, velocities,

temperatures, etc. Then, the current predictive technique [4, 5], which relies on constant $K_{c, \min}$ (or $\overline{K}_{c, \min}$), must be used with appropriate caution.

It appears that the behavior of $K_{c, \min}$ for different equipment is not currently predictable prior to testing of that equipment. With sufficient experimental data, it may be possible to estimate a range of values for $\overline{K}_{c,\min}$ from knowledge of the noncavitating pressure coefficient, C_{p} . Such knowledge may permit us to predict cavitating performance, from one piece of equipment to another, under certain limiting conditions. A typical $\overline{K}_{c,\min} - {\stackrel{v}{C}}_{p}$ plot is shown on figure 4.27. The final volume of this report series will cover this subject in detail.

The cavity-shape data, acquired during this study, indicate that the cavities can be described by a simple expression of the form $\delta_v = C_o x^p$; this expression is valid only in the frontal regions of the cavity.

6. NOMENCLATURE

- В
- = ratio of vapor to liquid volume associated with the sustenance of a fixed cavity in a liquid

BFLASH = B derived from isentropic flashing theory (Ref. [28])

 $B_{\pm} \equiv BFLASH$

C_o = constant or numerical coefficient in various algebraic expressions

С _р	=	pressure coefficient $\left[= (h_x - h_0) / (V_0^2 / 2g_c) \right]$
č _م	= ,	minimum pressure coefficient $\left[= (h - h_0) / (V_0^2 / 2g_c) \right]$
D m	=	diameter of axisymmetric model (body)in this
		study, the diameter of the cylindrical body with a
		quarter-camper rounded nose (ogive)
Do	=	test section (tunnel) inlet diameter
^g c	=	conversion factor in Newton's law of motion (gravita-
		tional acceleration)
h	=	(n = 1, 2, 3, 4, or 5): head corresponding to cavity
		pressure, measured at a particular instrument port
		on the ogive
h _{n T}	=	(n = 1, 2, 3, 4, or 5): head corresponding to the
<i>11, 1</i>		saturation pressure at the cavity temperature,
		measured at a particular instrument port on the
		ogive
h	=	tunnel inlet head corresponding to absolute inlet
Ū		pressure
h_	=	head corresponding to saturation or vapor pressure
v		at the tunnel inlet temperature
h	=	head corresponding to absolute pressure, measured
x		on the ogive at distance x, downstream of the mini-
		mum pressure pointfor noncavitating flow
v		
n	=	nead corresponding to the minimum absolute pressure
		on the leading edge of the ogive, computed from
		expression for C

98

Ť
K c. min	=	developed cavitation parameter, based on minimum
·		measured cavity pressure $[\equiv (P_0 - P_1)/(\rho_0 V_0^2/2g_c)]$
K _{c, min}	. =	arithmetic mean value of K for a complete set $c. min$
		of data points for a particular hydrodynamic body-
		fluid combination
K _{iv}	=	cavitation parameter, K_v , evaluated at incipient
		(desinent) conditions [= $(P_o - P_v)/(\rho_o V_o^2/2g_c)$]
K _v	=	developed cavitation parameter [= $(P_0 - P_v)/(\rho_0 V_0^2/2g_c)$]
ł	=	length of cavities developed on ogives, used inter-
		changeably with x in eq's $(4-8)$, $(4-9)$, and $(4-10)$
MTWO	=	liquid phase velocity ratio [= V_{ρ}/V_{ρ}], see
		reference [21]
Pn	=	(n = 1, 2, 3, 4, or 5): absolute cavity pressure,
		measured at a particular station or instrument port
		on the ogive
Р _{л, Т}	=	(n = 1, 2, 3, 4, or 5): saturation pressure cor-
		responding to the measured cavity temperature at
		a particular station or instrument port on the ogive
Po	=	tunnel absolute inlet pressure
Pv	=	saturation or vapor pressure at tunnel inlet
		temperature
Re	=	Reynolds number $\begin{bmatrix} \equiv \rho & V & D \\ 0 & 0 & m \end{bmatrix}$
Tn	=	(n = 1, 2, 3, 4, or 5): measured cavity temperature
••		at a particular station or instrument port on the ogive

i

Т _о	=	bulkstream temperature in degrees Rankine (Kelvin), of liquid entering the tunnel
ve	=	characteristic liquid velocity component, normal to cavity liquid-vapor interface, see reference [21]
vo	=	velocity of test liquid at inlet to tunnel
We	=	Weber number $\left[= \rho_0 V_0^2 D_m / \sigma \right]$
x	= .	axial distance measured from minimum pressure point on ogiveused interchangeably with cavity length, ℓ , in eq's (4-8), (4-9), and (4-10)
Greek		
α	H	thermal diffusivity of liquid, evaluated at tunnel inlet
δ _v	Ξ	thickness of the developed vaporous cavity
μ	=	absolute viscosity of liquid, evaluated at tunnel inlet
ν	Ξ	kinematic viscosity of liquid, evaluated at tunnel inlet $[= \mu / \rho_0]$
ρ _ο	=	density of liquid, evaluated at tunnel inlet
σ	=	surface tension of liquid in contact with its vapor, evaluated at tunnel inlet
Subscripts		
0	=	denotes tunnel inlet location
ref	=	reference run (data point), or test conditions, to

l

ļ

which a computation is being referenced when attempting to correlate cavitation performance via eq (4-8) or eq (4-9)

Superscripts

El	=	exponent on thermal diffusivity ratio in eq (4-8) and eq (4-9)
E2	Ξ	exponent on tunnel inlet velocity ratio in eq (4-8) and also used as an exponent on the MTWO ratio in eq (4-9)
E3	=	exponent on cavity length ratio in eq $(4-8)$ and eq $(4-9)$
E4	=	exponent on kinematic viscosity ratio in eq (4-8) and eq (4-9)
E5	=	exponent on surface tension ratio in eq (4-8) and eq (4-9)
E6	=	exponent on (characteristic dimension) cavitating body diameter (or thickness) ratio in eq (4-8) and eq (4-9)
E7	. =	exponent on cavitating body diameter ratio in eq (4-10)used to determine true size effect for the same ℓ/D_m ratio
р	Ξ.	exponent in algebraic expression for cavity shape $(\delta_v = C_o x^p)$

7. REFERENCES

- Pinkel, I., Hartmann, M. J., Hauser, C. H., Miller, M. J., Ruggeri, R. S., and Soltis, R. F., Pump technology, Chap. VI, pp. 81-101, taken from Conference on Selected Technology for the Petroleum Industry, NASA SP-5053 (1966).
- Erosion by Cavitation or Impingement, STP-408, 288 pages (1967), available from ASTM, 1916 Race Street, Philadelphia, Pa., 19103.
- Moore, R. D., and Ruggeri, R. S., Prediction of thermodynamic effects of developed cavitation based on liquid hydrogen and freon-114 data in scaled venturis, NASA Tech. Note D-4899 (Nov. 1968).
- Ruggeri, R. S., and Moore, R. D., Method for prediction of pump cavitation performance for various liquids, liquid temperatures, and rotative speeds, NASA Tech. Note D-5292 (June 1969).
- Moore, R. D., Prediction of pump cavitation performance, Proc. Int. Symp. on the Fluid Mechanics and Design of Turbomachinery, Pennsylvania State Univ., University Park, Pa., Aug. 30 - Sept. 3, 1970.
- 6. Moore, R. D., and Meng, P. R., Comparison of noncavitation and cavitation performance for 78°, 80.6°, and 84° helical inducers operated in hydrogen, NASA Tech. Note D-6361 (May 1971).
- Spraker, W. A., Two-phase compressibility effects on pump cavitation, Symposium on Cavitation in Fluid Machinery, presented at winter meeting, Chicago, Ill., Nov. 7-11, 1965, pp. 162-171 (ASME, New York, N.Y.).

- Jakobsen, J. K., On the mechanism of head breakdown in cavitating inducers, Trans. ASME, Ser. D, <u>86</u>, No. 2, 291-305 (June 1964).
- Chivers, T. C., Cavitation in centrifugal pumps, first and second papers, Proc. Inst. Mech. Engrs. <u>184</u>, Part 1, No. 2, 37-68 (1969-70).
- Fisher, R. C., Discussion of "A survey of modern centrifugal pump practice for oilfield and oil refining services" by N. Tetlow, Proc. Inst. Mech. Engrs. <u>152</u>, 305-306 (Jan. - Dec. 1945).
- Stahl, H. A., and Stepanoff, A. J., Thermodynamic aspects of cavitation in centrifugal pumps, Trans. ASME <u>78</u>, No. 8, 1691-1693 (Nov. 1956).
- Jacobs, R. B., Prediction of symptoms of cavitation, J. Res. Nat. Bur. Stand. (U.S.), <u>65C</u> (Eng. and Instr.), No. 3, 147-156 (July - Sept. 1961).
- Hollander, A., Thermodynamic aspects of cavitation in centrifugal pumps, ARS J. <u>32</u>, 1594-1595 (Oct. 1962).
- Stepanoff, A. J., Centrifugal and Axial Flow Pumps, pp. 256-265 (John Wiley and Sons, Inc., New York, N. Y., 1957).
- Stepanoff, A. J., Cavitation properties of liquids, ASME J. of Engr. for Power <u>86</u>, No. 2, 195-200 (Apr. 1964).
- Saleman, Victor, Cavitation and NPSH requirements of various liquids, ASME J. of Basic Engr. <u>81</u>, No. 2, 167-180 (June 1959).
- Wilcox, W. W., Meng, P. R., and Davis, R. L., Performance of an inducer-impeller combination at or near boiling conditions for liquid hydrogen, Book, Advances in Cryogenic Engineering <u>8</u>, Ed. K. D. Timmerhaus, pp. 446-455 (Plenum Press, Inc., New York, N. Y. 1963).

- Spraker, W. A., The effects of fluid properties on cavitation in centrifugal pumps, ASME J. of Engr. for Power <u>87</u>, No. 3, 309-318 (July 1965).
- 19. Gelder, T. F., Ruggeri, R. S., and Moore, R. D., Cavitation similarity considerations based on measured pressure and temperature depressions in cavitated regions of freon-114, NASA Tech. Note D-3509 (July 1966).
- 20. Hord, J., Anderson, L. M., and Hall, W. J., Cavitation in liquid cryogens, Volume I: Venturi, NASA Rept. CR-2054 (May 1972).
- Hord, J., Cavitation in liquid cryogens, Volume II: Hydrofoil, NASA Rept. CR-2156 (Jan. 1973).
- 22. Hord, J., Edmonds, D. K., and Millhiser, D. R., Thermodynamic depressions within cavities and cavitation inception in liquid hydrogen and liquid nitrogen, NASA Rept. CR-72286 (March 1968). Available from NASA, Office of Scientific and Technical Information, AFSS-A, Washington, D. C.
- Stockman, N. O., and Lieblein, S., Theoretical analysis of flow in VTOL lift fan inlets without crossflow, NASA Tech. Note D-5065 (Feb. 1969).
- 24. Smith, A. M. O., and Pierce, J., Exact solution of the Neumann Problem. Calculation of non-circulatory plane and axially symmetric flows about or within arbitrary boundaries, Douglas Aircraft Co., Inc., Rept. ES-26988 (Apr. 1958).
- Rouse, H., and McNown, J. S., Cavitation and pressure distribution on head forms at zero angle of yaw, State Univ. of Iowa, Bulletin 32 (Aug. 1948).

- 26. Parkin, B. R., and Holl, J. W., Incipient cavitation scaling experiments for hemispherical and 1.5-caliber ogive-nosed bodies, Report No. NOrd 7958-264, Ordnance Research Laboratory, Pennsylvania State Univ., (May 1953).
- 27. Parkin, B. R., Scale effects in cavitating flow--a preliminary report, Report No. 21-7, Hydrodynamics Laboratory, California Inst. of Tech., (Dec. 1951).
- Hord, J., and Voth, R. O., Tabulated values of cavitation
 B-factor for helium, H₂, N₂, F₂, O₂, refrigerant 114, and
 H₂O, Nat. Bur. Stand. (U.S.), Tech. Note 397 (Feb. 1971).
- Billet, M. L., Thermodynamic effects on developed cavitation in water and freon-113 (M.S. Thesis, Pennsylvania State Univ., Dept. of Aerospace Engr., University Park, Pa., Mar. 1970).
- 30. Smith, R. V., Choking two-phase flow literature summary and idealized design solutions for hydrogen, nitrogen, oxygen, and refrigerants 12 and 11, Nat. Bur. Stand. (U.S.), Tech. Note 179 (Aug. 1963).

APPENDIX A: Experimental cavitation data--nitrogen and hydrogen--for ogives.

Table A-1a. Experimental cavitation data for 0.210-inch ogive using liquid nitrogen (English Units).

•

T 5 DEG R		140•11	140•26	140.85			139.95	139•81				140.06	150.16		150.97		د/ •04T		150.64	150.71	66•04T		151+02		149.60	150•46		91.161
T 4 DEG R		139.75	140.09	140.62			139•32	139•41				139•66	150.23		150.97	4 1 1	16.041		150.26	150.39	29•0¢1		150.75		149•00	149.92		61•16T
T 3 DEG R		139.84	139.97	140.45			139•48	139•30				139•34	149•51		150.68		150.19		149.92	150.03	120041		150.84		148.79	149•53		16.041
T 2 DEG R		140.04	140.22	140.47			139•63	139•45				139•30	149.45		150.30		149.98		149.89	149.87	150.10		150.46		149.06	149•44		84°041
T 1 DEG R		139.86	140.08	140.36			139•36	139.27				139•03	149.20		150.10		149 . 80		149•67	149.71	149 . 90		150.21		148.86	149•27		150.32
> Y	1•22 1•22	0.33	1.51	0.34	1.07	1•13	0.33	0.32	1•22	1•14	1.17	0•33	0.23	1.21	0.33	1.09	0.26	1.11	0.21	0.22	0.21	1.24	0.38	1.23	0.23	0.26	1.13	0.39
HV FT	46。8 47。9	47 . 4	41.00 47.9	47.9	48•0	47.9	46.8	46.9	47.1	46.4	46.6	46.7	87.0	87.8	88.1	88.5	88.4	89.1	89.2	89.3	90 . 4	89•0	88.7	88.7	88,9	89.0	89.2	89 . 2
H0 F1	61.7 62.7	59.6	59.4	60.5	76.3	76.2	70.6	70.6	105.3	136.0	137.8	85.7	95.6	115.4	99 • 5	115.0	6*16	115.4	91.0	97.2	98•0	146.9	115•3	146.4	107.1	109.4	144.6	117.6
PV PSIA	16•31 16•65	16.50	16.65 16.65	16.67	16.69	16.65	16.31	16.35	16,38	16,18	16.23	16.27	29.32	29.58	29.67	29.78	29.75	29 . 99	30.02	30.05	30•38	29•96	29.84	29.84	29.90	29•96	30.02	30.02
P0 PSIA	21 . 48 21.82	20.75	20.67	21.03	26.53	26•52	24.59	24.59	36.66	47.40	48.04	29•86	32.20	38.88	33.49	38+70	32.94	38.84	32.63	32.70	32•95	49•44	38.82	49.30	36.06	36.80	48.68	39.5 8
V0 FT/SEC	27•9 28•0	49.0	38•5 49•6	48.7	41.3	40•2	68•0	69.1	55.4	71.2	70.8	86.8	48•9	38•3	47.1	39•5	48•3	39.1	48•9	48.0	49•0	54.8	67.3	55.0	71.1	70.5	56.1	68•2
TO DEG R	140 . 87 141.19	141-05	141.19	141.21	141.23	141.19	140.87	140.90	140.94	140.74	140.80	140.83	150.75	150.91	150.97	151.04	151.02	151.16	151.18	151.20	151.40	151.15	151-07	151-07	151-11	151.15	151.18	151.18
CAVITY INCHES		1.00	1 17	0 60			1.03	0.95				0.86	0.59	•	0.28	••••	0.46		0.61	0.62	0.57		0.25		1 20	0.66	•	0.22
RUN NO.	415A** 415H**	416A	416D** 4165	4165	4166**	4 16H**	4174	417F	417F**	4188**	4180**	418D	419A	4198**	4190	4190**	419E	4195**	4196	419H	419J	4204**	4.201	42004	4 200	4 20 F	4205**	4206

AVITY VCHES		TO DEG R	V0 FT/SEC	P0 PSIA	PV PSIA	HO FT	нн 712 712	> ¥ 0	T 1 DEG R	T 2 DEG R	T 3 DEG R	T 4 DEG R 148.68	T 5 DEG R
1.10 150.73 88.9 41 150.80 68.3 6C	150•73 88•9 41 150•80 68•3 60	88•9 41 68•3 60	41 60	•12	29•29 29•40	122•0 179•9	86•9 87•3	0•29 1•28	1 c • 8 + 1	140.02	CC • 0 + T	0000	
161.69 35.5 59	161.69 35.5 59	35.5 59	59	•84	51.42	184•8	158.9	1•33					
161.71 36.7 59	161.71 36.7 59	36.7 59	5	• 54	51.47	183.9	159.0	1•19					, L , L
0 49 161•71 49•9 51	161.71 49.9 51	49.9 51	5	• 55	51.47	159.3	159.0	0.01	159.53	160•04	160.56	201.01	101-00
0.22 161.71 47.4 53	161.71 47.4 53	47.4 53.	53	• 78	51.47	166.2	159.0	0.20	16001	160 . 96	16.101	0/ • TOT	11.101
161.73 37.5 59.	161.73 37.5 59.	37.5 59.	59	64	51.51	184•2	159•2	1.14					
0.52 161.77 51.1 51.	161.77 51.1 51.	51.1 51.	51.	43	51.60	159•0	159.5	-0.01	159•55	159.88	160•29	101.03	161.32
161.75 35.9 60.	161.75 35.9 60.	35.9 60.	60.	72	51.56	187.6	159.3	1•41	,				
0 34 161.73 50.2 52.	161.73 50.2 52.	50.2 52.	52.	54	51.51	162.4	159.2	0.08	159.89	160.25	160.92	161.46	161•53
0.42 161.73 51.1 52.	161.73 51.1 52.	51.1 52.	52.	03	51.51	160.8	159.2	0.04	159.53	159.89	160.49	161.08	161•30
161.78 36.7 59.9	161.78 36.7 59.9	36.7 59.9	59°	1	51.64	185.3	159.6	1•22					
			0	ŗ		1 201	160.3	0-34	159.98	160.94	161.78	162.05	161.91
0.21 161.0 67.00					07 12	101.50		1.24			1		
				<u>_</u>		V 071			158.69	158.94	158.80	159.26	160.25
1.02 I61.75 (6.5 54.	161.75 (6.5 24.	16.0 24.	54.	N B	96.16	107.01		11.0					
161.73 57.2 71.8	161.73 57.2 71.8	57.2 71.8	71.8	ŝ	51.51	221.9	159.2	I•23		00 031	07 071	06 [7]	141 63
0.38 161.73 73.7 57.1	161.73 73.7 57.1	73.7 57.1	57.1	2	51.51	176.5	159•2	0.20	40 • 40 T	00 • 4CT	60.00T		CC. TOT
161.77 56.6 71.9	161.77 56.6 71.9	56.6 71.9	71.9	0	51.60	222.1	159.5	I•26					
161.80 57.2 71.2	161.80 57.2 71.2	57.2 71.2	71.2	2	51.69	220•0	159.8	1.19					
0.81 161.82 75.9 55.	161.82 75.9 55.	75.9 55.	с С	48	51.73	171.5	159.9	0.13	158.83	159•28	01.4441	20•7CT	100.001
161.86 59.2 70.	161.86 59.2 70.	59.2 70.	-01	17	51.82	218•7	160.2	1•07					
161.41 73.4 83.	161.41 73.4 83.	73.4 83.	83.	14	50.72	256.3	156.5	1.19					
0 35 161.39 93.4 62.	161.39 93.4 62.	93.4 62.	62.	51	50.68	192.8	156.4	0.27	159.32	1/ •661	160.001	76°00T	00•T0T
161.35 74.6 82.	161.35 74.6 82.	74.6 82.	82	43	50.59	254.1	156.1	1.13					
0.47 161.39 93.5 61.	161.39 93.5 61.	93.5 61.	61.	76	50.68	190.5	156.4	0.25	159.10	159.89	160.56	14 .1 01	14.101
0.73 161.37 95.0 60.	161.37 95.0 60.	95.0 60.	60.	48	50.63	186•6	156.2	0.22	158•44	158.60	158•71	48•94T	16.001
165•53 44•7 72•	165.53 44.7 72.	44.7 72.	72.	16	61.50	228•6	192.9	1.15					
165.42 72.5 91.	165.42 72.5 91.	72.5 91.	91 .	25	61•19	285•8	191 . 9	1•15 0-27	162.58	163.10	163.85	164.97	165.29
0.37 165.44 90.7 72. 165.47 69.8 93.	165.47 69.8 93.	90 1 1 1 2 • 1 2 • 1 4 \bullet	93.	58 18	61.54 61.34	293.1	192.4	1•33					

DENOTES AN INCIPIENT RUN
 ** DENOTES A DESINENT RUN

T 5 DEG R	164•70 164•61	165•33 165•24	161.14 159.28 159.10 159.10 161.64	149.45 148.23 149.60	139•50 138•87
T 4 DEG R	164•03 163•76	165•37 165•22	160.36 157.86 157.61 160.74 161.71	148.34 147.44 148.73	139•09 138•38
T 3 DEG R	163.01 162.79	164•84 164•74	159.70 157.45 157.32 160.11 161.59	148.57 147.17 148.41	138.78 138.26
T 2 DEG R	162.50 162.40	163•94 163•73	159.26 157.91 157.72 159.55 160.79	148•54 147•62 148•54	138•67 138•64
T I DEG R	158.40 161.91	163•33 163•19	157.48 157.48 157.34 157.34 159.28	148.23 147.33 149.11	138.47 138.35
× K	0.25 1.08 0.22	1.22 0.35 0.34	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 • 19 0 • 33 0 • 30 • 32	1.014 1.017 1.0135 1.035 1.035 1.15 1.15
HV F1	191 . 9 191 . 9 191 . 9	190.9 191.2 191.7 191.0	157 157 157 157 157 159 159 160 160 160 160 160 160 160 160 160 160	85.7 87.1 87.3 88.0 87.9	4 4 4 6 0 4 4 4 6 0 4 4 4 4 6 0 4 4 4 4 4 6 0 4 4 4 4 4 6 0 4 4 6 0 4 6
H0 F1	224•3 283•7 220•5	232•0 208•6 209•5 233•6	301.5 215.9 205.7 305.7 205.5 205.5 215.5 237.9 237.9 237.9	225•2 144•6 140•1 227•8 144•1	176.7 178.7 104.1 176.9 172.9
PV PSIA	61.19 61.19 61.19	60 .89 60.99 61.14 60.94	50.94 51.11 51.11 51.07 51.66 51.66 51.96	28,91 29,34 29,40 29,64	16.03 15.97 15.97 15.99 16.10 16.61
P0 PSIA	71.56 90.58 70.35	74•07 66•56 66•82 74•55	97.81 69.38 66.72 66.72 66.56 69.67 77.03 8.04	76.02 48.75 47.20 76.78 48.53	61.65 62.37 36.30 61.72 35.88 62.50
V0 FT/SEC	91•6 91•6	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	88.6 108.8 111.0 87.2 111.6 109.0 104.2 86.1	86.8 106.3 107.1 85.9 106.9	85. 85. 85. 103. 86. 106. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.
TO DEG R	165•42 165•42 165•42	165.31 165.35 165.40 165.40	161.50 161.57 161.57 161.55 161.65 161.78 161.77 161.77	150.50 150.77 150.80 150.95 150.93	140.60 140.54 140.54 140.56 140.67 141.16
CAVITY INCHES	0.44 0.52	0.20 0.20	0.52 1.06 1.01 0.15 0.15	0.72 1.41 0.98	0.98 1.52
RUN NO.	426D 426E** 4266	427A** 427C 427D 427D 427E**	4288 4288 4288 42885 42885 42885 4281 4281 4281 4281 4281	4 29A * 4 29B 4 29D 4 29D 4 29F 4 29F	4 308 * * 4 308 * * 4 308 * 4 308 * 4 308 * 4 308 *

DENOTES AN INCIPIENT RUN
 ** DENOTES A DESINENT RUN

_ _ _

z	с с	с С	с С	Р 4	P 2	P 1.1	P 2,T	P 3,T	P 4, T	P 5.1
	PSIA	PSIA	PSIA	PSIA	PSIA	PSIA	PSIA	PSIA	PSIA	PSIA
	15.72	15.62	15-52	15.39	15•70	15.29	15.46	15.27	15.18	15.54
	15.70	15.51	15.38	15.24	15.43	15.50	15•65	15•39	15+52	15.68
	16.12	16.02	15.89	15.87	16.73	15.79	15.90	15•88	16•05	16•29
	14.98	14-90	14.98	14.92	15.40	14.79	15.06	14.92	14.76	15.38
.	14.86	14.80	14.83	14.77	15.22	14.71	14.88	14.74	14•85	15•23
~	14.58	14.72	14,92	14.88	15.78	14.48	14.74	14.78	15.09	15.48
	TC.TC	12-72	27.15	27.65	30.22	26.89	27.27	27•36	28•48	28.37
r 1	28 - 3 C	28-28	28 99	32 84	40.65	28•28	28.59	29•20	29•67	29.67
2.0		7.98	28.05	29.08	33.13	27.80	28.08	28.42	29•02	29•32
ιv	27.79	27.70	27.67	28.19	30.30	27.61	27.94	28•00	28•54	29.14
) T	27.92	27.85	27.77	28.25	30.37	27.66	27.91	28.17	28.74	29.26
. –	28.19	28.12	28,06	28•67	31.57	27.97	28•28	28•45	29•11	29•61
0	28.16	28.30	29.48	36.62	48.82	28°45	28.85	29•46	29•32	29.75
	26.36	26.27	26.17	26.13	26.76	26.37	26.67	26•27	26.59	27.49
ЪЦ	26.86	26.90	27.18	27.58	29.72	27.00	27.24	27.38	28.00	28 •85
112	28.48	28.63	30,60	40•46	49.58	28.62	28•88	29•67	29•96	29•99
٩	25.87	25 . 85	25.75	25•69	26.62	25 . 94	26•32	25•92	26.10	27•38
c	45.67	45.53	46.55	49.77	55.25	46.31	47.47	48•69	50.68	51.03
۱ L	47.10	47.83	51.97	55.20	62.78	48.56	49•63	50.98	51•64	51.60
115	45.27	45.33	46.17	49.07	54.32	46.36	47.10	48•06	49.81	50.50
	46.10	46.40	48.68	53.30	62.10	47.14	47.97	49.55	50.85	51.03
. –	45.75	45.86	47,13	50°95	57.26	46.31	47.14	48.52	46•64	50.46
4	46-40	47.79	55,00	63.42	70.07	47.35	49•59	51.64	52.31	51.96
c.	43.87	43.67	43.75	44.37	46.20	44.42	44.98	44•66	45.70	47.97
) LL	45.44	45.66	47.22	52.44	67.12	46.44	47.10	48.99	50.68	51.03
ιT	44.62	44.37	44 • 67	45.55	48.05	44•74	45.74	45.34	46.64	48.78
ď	45.40	45.48	47.03	52.93	72.51	45.83	46.73	48.14	49.55	49.89
	44.86	45.04	46.00	49.04	61.96	45.34	47.14	48•69	50.72	50.98
۲u	43.76	43.80	44.03	45.05	48•43	43.87	44•22	44•46	45.91	48.10

P 5,T PSIA	60.84 59.21 58.96	60•94 60•69	50•07 45•74 45•34 50•41	51.29 27.27 25.44	27•49 14•93 14•33
P 4.T PSIA	59.95 57.41 56.70	61•04 60•64	48•23 42•62 42•08 49•12	51.47 25.60 24.31	26.18 14.53 13.88
P 3.T PSIA	56.93 54.73 54.17	59 •6 0 59 •3 1	46.68 41.74 41.48 47.64	51.16 25.94 23.93	25•71 14•24 13•76
P 2,T PSIA	54•96 53•44 53•17	57 .1 7 56 .6 0	45°70 42°74 42°31 46°36	49.25 25.89 24.56	25.89 14.14 14.11
P 1.T PSIA	53.62 43.79 51.96	55•56 55•19	45.26 41.82 41.52 45.74	48.06 25.44 24.16	26.75 13.96 13.84
P 5 PSIA	82.18 73.42 65.81	76 . 56 76.82	56.82 44.71 44.61 62.63	87.03 29.68 24.62	27.23 15.41 13.98
P 4 PSIA	62.77 59.97 57.94	68•15 68•63	48•72 43•40 43•21 50•53	77.03 26.95 24.09	26.12 14.38 13.78
P 3 PSIA	57 . 66 56 . 55 55.42	63 23 63 48	46•95 43•06 42•85 47•95	65.63 26.50 24.27	26.19 14.66 14.08
P 2 PSIA	55•81 55•35 54•42	58.75 59.01	46.25 43.01 42.80 47.09	50.51 26.30 24.29	26.09 14.38 14.20
P 1 PSIA	55•80 55•32 54•52	57.68 57.85	46.05 43.21 43.03 46.93	48.53 25.90 24.36	26.01 13.92 14.04
NO.	426B 426D 426G	427C 427D	4288 4280 428F 428F	4281 4298 4290	429F 430C 430E

.

H 5,T FT	7.4		46.8		44•0	43.6	44 • 3	à	84•0	88.1	87.0	86.5	86.8	87.9		88.4	81.3	85.5	89.1	80•9	-	157.6	159.5	155.8	157.6	155.7		O	147.44	157.6	150.1		153.8	157.4	147.8
H 4+T FT	4254	44.5	46.0		42.2	42.4	43.2	7 70	04•t0	1.88	86.1	84•6	85•2	86.4	t t	81.0	78.4	82.9	89•0	76•9		120•4	159•6	153.5	157.0	153 . 9	0 [7]	C . T D T	137•4	156.4	143•0		0•7cT	156.5	140•6
Н 3 , Т FT	43.7	44	45.5		9°74	42.1	42•2	0 00		0000	84.2	82.9	83.4	84.3	r t	8 (• Þ	77.44	80.9	88.1	76.3		14700	157.44	147.7	152.6	149•2	150.6		6001	150.8	138.7	0.01		147•8	135.8
H 2,T FT	44 - 3	44.8	45.6	- C V	1004	42.5	42•1	BULK			83•I	82.7	82•6	83.7	2 20		78.7	80.5	85•6	77.6	5 27 5		6 • 7 C T	144.5	147.4	144•6	152.8	127.5		144°5	140.0	2,21			130.0
H 1, 1 FT	43•8	4 • 4	45.3	6-04		42•0	41.3	79.4	1 - E 8		7470	81•6	81•8	82.8	84.2		11.8	19.7	84•8	76.4	0,141	7 07 F	1+7+4	14201	144•6	141•9	145.3	135.7			136.7	140-3	128.7		¥+001
H 5 FT	45.0	44.2	48.1	44.1		4040	45°2	89.9	123.4	- 00		1006	506	94.1	150.2			00.00	1.241	78.5	171.7	197.3		0.001	0°44T	C•8/T	222+5	141.5	212.2		1 • I • T	231.0	194.5	148.0	
H F T	44.]	43.6	45•5	42.7		7 • 7 +	42.5	81.8	98.2	86.2			1.50	85.0	110.3				1 • 7 7 1	75.6	153.4	171.6	151.0			5•/CT	199.5	135.5	162.3	120.4	+• A C T	163.9	150.9	137.8	
H 3 FT	44•5	44•0	45.6	42.8			42.7	80.2	86.0	83.0	a . La		1070	1 • 5 p	87.5	1.77			T • T 6	75.8	142.7	160.7	141.4				170.9	133.5	144.9	136.5	1.0011	144.3	140.9	134 4	
н 2 F1	44 • 8	44.4	46.0	42.6	47.3		42 . 1	80.4	83.7	82.8	81.9	82.4	, c , c , c , c , c , c , c , c , c , c	7.00	83•8	77.4	79.4	84.98	•	76.1	139.3	146.9	138.7	142.2			146.8	133.2	139.8	135.5		139.2	137.7	133.6))
н F1	45.1	4 0 0	40 • 3	42.8	42.5	1	41•6	80•6	83.8	83.2	82.2	82.6		•	83.4	7.7	79.3	7-78	•	76.2	139.8	144.5	138.5	141.2	140.1		142.2	133.9	139.0	136.3		138.9	137.1	133.5	
RUN NO•	416A	4 10E	4101	417A	417F)	418D	419A	419C	419E	4196	419H	4191	0	420B	420D	420F	4206		421A	422D	422E	4226	4221	4221		423A	423C	423E	423H		424B	424D	424E	

H 5.T FT	190.7 185.1 184.3	191•0 190•2	154•4 140•0 138•7	155•5 158•4	80.6 74.9 81.3	42•7 40•9
H 4, T FT	187•6 179•0 176•6	191•4 190•0	148•2 129•8 128•0	151•2 159•0	75.4 71.3 77.2	41•5 39•5
Н 3 , Т FT	177.4 170.0 168.1	186•5 185•5	143•1 126•9 126•0	146•3 158•0	76•4 70•2 75•7	40 •6 39 • 2
H 2,T FT	170.7 165.6 164.7	178•2 176•3	139•9 130•2 128•8	142.1 151.6	76.3 72.1 76.3	40•3 40•2
H 197 FT	166•3 133•6 160•7	172•8 171•5	138.4 127.2 126.2	140•0 147•7	74•9 70•9 79•0	39•8 39•4
H F T	265.1 234.2 207.7	245•2 246•1	177•0 136•6 136•3	196•8 282•4	88.2 72.3 80.4	44•1 39•8
H 4 FT	197.3 187.7 180.8	215•8 217•5	149•9 132•3 131•7	155 . 9 246 . 8	79.6 70.7 77.0	41•0 39•2
н F13	179.9 176.1 172.3	198.9 199.7	144•0 131•2 130•5	147•3 207•1	78•2 71•2 77•2	41•9 40•1
H 2 FT	173.6 172.1 168.9	183 . 6 184 . 4	141.7 131.1 130.4	144•5 155•8	77.5 71.3 76.9	41•0 40•5
H I FT	173.6 172.0 169.3	179 . 9 180 . 5	141•0 131•7 131•1	144•0 149•3	76.3 71.5 76.6	39•7 40•0
RUN NO.	426B 426D 426G	427C 427D	428B 428D 428F	428H 428I	429B 429D 429F	430C 430E

<u></u>
nit
D
(SI
Ę
80
ĨŤ
luid
liq
ng
us.
0
ogi
Ą
ine
10-
5
ř.
fo
ata
ρ Γ
tior
itat
a vi
l c
nta
Be
eri
хþ
ш
lb.
A-1
le .
ab
F

T 5 DEG K		77.84	77.02	78.25			77.75	77.67				77.81	83•42		83•87		83.75		60.00 82.72	83.85		83.90		83.11	83.59		83.98
T 4 DEG K		77.64	77,83	78.12			77.40	77.45				77.59	83.46		83.87		83.65	07 00	83. FC	83.68		83.75		82.78	83.29		83.97
T 3 DEG K		77.69	77.76	78.03			77.49	77.39				77.41	83•06	•	83•71		83•44	00 00	00.00 00.05	83.45		83.80		82.66	83.07	•	83.87
T 2 DEG K		77.80	77.90	78-04			77.57	77.47				77.39	83•03		83•50		83,32	75 60	83.26	83•39	•	83.59		82.81	83.02	1	83•60
T I DEG K		77.70	77.82	77.98			77.42	77.37				77.24	82.89		83•39		83,22	83 1E	83.17	83.28		83.45		82.70	82.93		83.51
> ¥	1•22 1•22	0.33	1.2.1	0.34	1.07	1.13	0.33	0.32	1.22	1.14	1.17	0.33	0.23	1.21	0.33	1.09	0.26		0.22	0.21	1.24	0.38	1.23	0.23	0.26	1.13	0.39
>Σ H	14.6 14.6	14.4	14.6	14.6	14.6	14.6	14.3	14.3	14.3	14.2	14.2	14.2	26.5	26.8	26.9	27.0	26.9	21.2	27.2	27.5	1.10	27.0	27.0	27.1	27.1	27.2	27.2
οrΣ	18•8 19•1	18•2 23.6	18.1	18.4	23•2	23•2	21•5	21.5	32.1	41.4	42.0	26•1	29•1	35•2	30.3	35.0	29•8	35•25	29.6	29.9	44.8	35.1	44.6	32.7	33.3	44.1	35•9
PV N/CM/CM	11•24 11•48	11.37	11.48	11.49	11.51	11.48	11.24	11.27	11.30	11.15	11.19	11.22	20.21	20.39	20.45	20.54	20.52	20.58	20.72	20.95	20.66	20.58	20.58	20.62	20.66	20.70	20•70
P0 N/CM/CM	14•81 15•04	14•31 18.50	14.25	14.50	18.29	18•28	16.95	16.95	25•28	32•68	33.12	20.59	22•20	26.81	23.09	26.68	22•71	20.50	22.55	22.72	34•09	26.77	33.99	24.86	25.37	33.56	27.29
V0 M/SEC	80 80 80 10 10	14.9	15.1	14.8	12.6	12•3	20.7	21.1	16.9	21.7	21•6	26•5	14•9	11.7	14•4	12.0	14•7	6•11 14•9	14.6	14.9	16.7	20.5	16.8	21.7	21.5	17.1	20.8
TO DEG K	78•26 78•44	78.36 78.43	78.44	78.45	78.46	78•44	78.26	78.28	78.30	78.19	78.22	78.24	83.75	83。84	83.87	83 . 91	83.90	83.998	84.00	84.11	83,97	83.93	83.93	83.95	83.97	83.99	83 • 99
CAVITY CM		2.54	2.97	1.52			2.61	2.41				2.18	1.49		0.71	`` ·	1.16	1.54	1.57	l.44		0.63		3.04	1.67		0.55
RUN •	415A** 415H**	416A 4160**	416E	416F	4166**	416H**	417A	417E	4]7F**	4188**	418C**	418D	4194	4198**	419C	419D**	419E	419544	419H	419J	4204**	4 20B	420C**	420D	420E	420F**	4206

* DENOTES AN INCIPIENT RUN
 ** DENOTES A DESINENT RUN

1 5 DEG K	83.07			1		89.81		20.48	t oo	89.44	89.61		89.95		89•03		89.74			89 . 22				87.48		89.13	89.06			69 10		
T 4 DEG K	82.60				89.60	89.88		89.40		0/•68	89.49		90.03		88•48		89•66			88.71				89.40		89.67	88.53			91 FE	CO+14	
T 3 DEG K	82•53				89•20	89.73		40 • 68		89.40	89.16		89•88		88.22		89.27			88.39				89•07		89•20	88.17			50.50	C0.14	
T 2 DEG K	82•68				88•9I	89•42		88•82		89.03	88•83		89.41		88.30		88•82			88.49				88•73		88•83	88.11				10.04	
T 1 DEG K	82.54				88•63	89.17		88•64		88 . 83	88•63		88.88		88.16		88•66			88.24				88.51		88•39	88•02				90.32	
Κ	0.29	1•28	1•33	1.19	0.01	0.20	1.14	-0.01	1.41	0.08	0.04	1.22	0.34	1.24	0.11	1.23	0.20	1.26	1.19	0.13	1-07		1.19	0.27	1.13	0.25	0.22		1.15	1.15	0.27	1•33
₹₹	26.5	26.6	48•4	48.5	48 • 5	48.5	48.5	48.6	48 . 6	48.5	48.5	48.7	48.6	48.6	48.6	48.5	48.5	48.6	48.7	48.7	8.81		47.7	47.7	47.6	47.7	47.6		58 •8	58.5	58.5	58.6
οr	37•2	54.8	56.3	56.1	48•6	50.6	56.2	48.4	57.2	49•5	49•0	56.5	56.6	67.5	51.6	67.6	53.8	67.7	67.1	50.3	56.5 56.5	0.00	78.1	58 . 8	77.4	58.1	56.9		69•7	87.1	69•0	89•3
PV N/CM/CM	20.19	20.27	35.45	35.49	35.49	35.49	35.52	35.58	35.55	35+52	35.52	35.61	35.55		35.55	35.52	35.52	35.58	35.64	25.67			34.97	34.94	34.88	34.94	19.42		42.40	42.19	42.23	42.30
PO N/CM/CM	28•35	41.82	41.26	41.05	35.54	37.08	41.12	35.46	41.86	36.23	35.87	41.35	41.42	10.46	37.80	49.54	39.38	49.57		10 10 10		48.14	57.32	43.10	56.83	42.58	02.14	0/014	50.27	62.91	49.77	64.52
V0 M/SEC	27.1	20.8	10.8	11.2	15•2	14.5	11.4	15.6	10.9	15.3	15.6	11.2	71.6				 	17.2		- t - 0 	1.02	1841	22.4	28.5	7.00	78.5		6007	13•6	22.1	27.7	21•3
T0 DEG K	83.74	83.78	89•83	89-84	89.84	89.84	89.85	89.87	89.86	89.85	89.85	89.88	78 08		80 86	00 8 0 8 P	00.00 250 25		10.40		04•48	89.92	89-67	89.66	89-64	80.66		69.48	91•96	91.90	91.91	91.93
CAVITY CM	2 79	1			1 24		•	1.32	•	0.86	1.06	•	0 53		C 11 C	40.7	70.0	00		50 6	c0.2			0 88	•••	01 1	1.17	c8.I			0.94	•
RUN NO.	471A	421D**	4724**	4 2 2 2 **	4220	4225	4226**	4226	4 2 2 4 * *	4221	4221	4225		4 2 3 A	4 2004	4250	4 2 3 0 7 7	4 20E	4 2 3 5 4 4	4 236**	423H	4231**	444707	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1010	4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	4 440	424E	425A**	4264**	426B	426C**

DENOTES AN INCIPIENT RUN
 ** DENOTES A DESINENT RUN

T 5 DEG K	91•50 91•45	91.85 91.80	89,52 88,49 88,39 89,60 89,80	83•03 82•35 83•11	77.50 77.15
T 4 DEG K	91•13 90•98	91.87 91.79	89.09 87.70 87.56 89.30 89.84	82•41 81•91 82•63	77。27 76。88
T 3 DEG K	90 •56 90•44	91 . 58 91.52	88.72 87.47 87.47 88.95 89.95	82•54 81•76 82•45	77.10 76.81
T 2 DEG K	90•28 90•22	91.08 90.96	88.48 87.73 87.62 88.64 89.33	82.52 82.01 82.52	77.04 77.02
T 1 DEG K	88•00 89•95	90 •7 4 90 •6 6	88,37 87,49 87,41 88,49 89,05	82 •35 81 • 85 82•84	76•93 76•86
κ	0.25 1.08 0.22	1•22 0•35 0•34 1•31	1.18 0.25 0.25 0.25 0.25 1.25 1.23	1.19 0.33 0.33 0.32 0.32	1.14 1.14 0.35 1.13 1.13 1.15
žΣ	ນ ຫ ຍ ຍ ຍ ຍ ຍ ຍ ຍ ບ ມ ບ	588 588 • 4 28 28 28 28 28 28 28 28 28 28 28 28 28	4444444 9699999 96944 9694 9694 9694 96	26 • 1 26 • 5 26 • 8 26 • 8 26 • 8	444444 • • • • • • • • 0 • • • • • • • • 0 0 0 0 0
οŗΣ	68•4 86•5 67•2	70.7 63.6 63.8 71.2	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	68•6 44•1 42•1 43•9	533 54 54 54 54 54 54 54 54 54 54 54 54 54
PV N/CM/CM	42.19 42.19 42.19	41。98 42。05 42。16 42。02	35,12 35,12 35,24 35,24 35,58 35,58 35,61 35,88	19•93 20•23 20•27 20•43 20•41	11.05 11.01 11.01 11.03 11.10 11.45
PO N/CM/CM	49•34 62•45 48•50	51.07 45.89 46.07 51.40	67 67 68 68 68 68 64 64 64 60 67 60 60 60 60 60 60 60 60 60 60 60 60 60	52.41 33.61 32.54 33.64 33.64 33.46	42.51 42.51 25.00 42.50 44.55 44.74 43.09
V0 M/SEC	27•9 22•5 27•9	14•2 17•2 13•9	、287066870 6194669994 799970669994 799970669970 7997069970 799706970 799706970 799706970 799706970 799706970 799706970 799706970 799706970 799706970 799706970 799706970 799706970 7997070 700000000	60044 900 900 900 900 900 900 900 900 900	26.1 26.0 31.5 26.4 31.7 26.2
TO DEG K	91.90 91.90 91.90	91.84 91.86 91.89 91.85	89,72 89,75 89,76 89,76 89,88 89,88 89,87 89,87 89,87	83•61 83•76 83•78 83•86 83•85	78.11 78.08 78.08 78.09 78.15 78.15
CAVITY CM	1.11 1.32	0.50	1.32 2.69 2.56 1.14 0.38	1.82 3.58 2.48	2.48 3.86
RUN NO.	426D 426E** 426G	427A** 427C 427C 427D 427E**	42844 42888 42888 42888 42888 42881 42882 428882 42882 428882 42882 42882 42882 42882 42882 42882 42882 42882 4288	429A* 429R 429D 429F 429F	4 8 0 0 5 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

•

DENOTES AN INCIPIENT RUN
 ** DENOTES A DESINENT RUN

T P 5,T CM N/CM/CM	7 10.71 0 10.81 7 11.23	8 10•60 4 10•50	0 10.68	4 19-56	5 20.45	1 20.21	7 20.09	1 20.17	17 20.41	1 20.52	18.96	0 19.89	6 20•68	0 18•88	4 35.18	1 35.58	4 34.82	6 35.18	3 34•79	7 35.82	1 33.08	4 35.18	6 33•63	6 34.40	17 35.15	5 33.16
N/CM/	10 • 4 10 • 7 11 • 0	10•1 10•2	10.4	19•6	20.4	20.0	19•6	19•8	20.0	20•2	18•3	19.3	20•6	18•0	34•9	35.6	34.3	35.0	34•4	36•0	31.5	34•9	32•1	34•1	34.5	31•6
P 3.T N/CM/CN	10.53 10.61 10.95	10.28 10.16	10.19	18.86	20.13	19•60	19•30	19•42	19•62	20.31	18.11	18.88	20.45	17.87	33.57	35.15	33.13	34.16	33•45	35•61	30.79	33.78	31•26	33.19	33.57	30.65
P 2.T N/CM/CM	10•66 10•79 10•96	10.38 10.26	10.16	18.80	19•71	19.36	19•26	19•25	19.50	19•89	18.39	18.78	19•91	18.15	32.73	34.22	32.47	33.08	32•50	34•19	31.01	32•47	31.54	32•22	32.50	30.49
P 1+T N/CM/CM	10•54 10•69 10•89	10.20 10.14	66*6	18.54	19:50	19.17	19.03	19.07	19•28	19•62	18.18	18.61	19•73	17.89	31.93	33.48	31.96	32.50	31•93	32.64	30.63	32.02	30.85	31.60	31.26	30.24
P 5 N/CM/CM	10.82 10.64 11.53	10.62 10.49	10.88	20.84	28.03	22 • 84	20.89	20.94	21.77	33 • 66	18.45	20.49	34.18	18•35	38.09	43 . 29	37.45	42.82	39 . 48	48.31	31.85	46.28	33.13	49 ° 66	42 . 72	33 • 39
P 4 N/CM/CM	10.61 10.51 10.94	10.29 10.18	10.26	19.06	22.64	20.05	19.44	19.48	19.77	25•25	18.02	19.02	27.90	17.71	34.32	38,06	33.83	36.75	35,13	43.73	30.59	36.16	31.41	36.49	33.81	31.06
P 3 N/CM/CM	10.70 10.60 10.96	10.33 10.22	10.29	18•72	19,99	19,34	19,08	19.15	19,35	20.33	18,04	18.74	21.10	17.75	32,10	35 83	31,83	33.56	32.49	37.92	30.16	32.56	30.80	32.43	31.72	30.36
P 2 N/CM/CM	10.77 10.69 11.05	10.27 10.20	10.15	18.76	19.50	19.29	19.10	19.20	19,39	19.51	18,11	18.55	19.74	17.82	31,39	32.98	31.25	31.99	31.62	32,95	30.11	31.48	30.59	31.36	31.05	30.20
P I N/CM/CM	10•84 10•82 11•11	10.33 10.25	10.05	18.80	19.51	19.37	19.16	19.25	19,44	19.42	18.17	18.52	19.64	17.84	31.49	32.47	31.21	31.78	31.54	31,99	30.25	31.33	30.76	31.30	30.93	30.17
NON •	416A 416E 416F	417A 417E	418D	4194	4190	419E	4196	419H	419J	420B	420D	4 2 0 F	4206	421A	422D	422F	4226	4221	422J	423A	423C	423F	423H	474R	4240	424E

•

_

P 5 T N/CM/CM	41.95 40.82 40.65	42•02 41•85	34.52 31.55 31.56 31.26 35.36 35.36	18•80 17•54 18•96	10•30 9•88
P 4.T N/CM/CM	41•33 39•58 39•09	42•09 41•81	33.25 29.39 29.02 33.87 35.49	17.65 16.76 18.05	10•02 9•57
P 3.T N/CM/CM	39•26 37•73 37•35	41•09 40•89	32.19 28.78 28.60 32.85 35.27	17.89 16.50 17.72	9•82 9•49
P 2.4T N/CM/CM	37•89 36•85 36•66	39•42 39•03	31.51 29.47 29.17 31.96 33.95	17.85 16.94 17.85	9.75 9.73
P 1.T N/CM/CM	36.97 30.19 35.82	38•31 38•05	31.20 28.68 28.68 31.55 31.55 31.55 31.55	17.54 16.66 18.44	9.62 9.54
P 5 N/CM/CM	56.66 50.62 45.37	52•79 52•97	39.18 30.83 30.76 43.18 60.01	20•46 16•97 18•77	10•62 9•64
P 4 N/CM/CM	43•28 41•35 39•95	46•99 47•32	33.59 29.92 29.79 34.84 53.11	18.58 16.61 18.01	9•91 9•50
P 3 N/CM/CM	39.76 38.99 38.21	43 . 60 43 . 77	32,37 29,69 29,54 33,06 45,25	18.27 16.73 18.06	10.11 9.71
P 2 N/CM/CM	38•48 38•16 37•52	40•51 40 •69	31•89 29•65 29•51 32•47 34•83	18•13 16•75 17•99	9•91 9•79
P I N/CM/CM	38•47 38•14 37•59	39.77 39.89	31•75 29•79 29•67 32•36 33•46	17.86 16.80 17.93	9•60 9•68
NUN •00	426B 426D 426G	427C 427D	428B 428D 428F 428F 428H 4281	429B 429D 429F	4 30C 4 30E

:ont'd)
ق ف
A-1
Table

н Х.	13.6	1.5.1	0 • 1 1	13.4	13•3	13•5	25•6	26.9	26•5	26.4	26.5	26.8		26.9	24.8	26.1	27-2	 	24•7	48•0	48•6	47.5	48.0	47.4	•	49.0	44•9	48•0	45+7		46.9	48.0	45•1
н 4.Т М	13•2	13.5	14•0	12.9	12.9	13•2	25.7	26.9	26•2	25.8	26.0	26.3	1	26•5	23.9	25.3	7.1	1 - -	23.4	47.7	48.7	46.8	47.8	46.94		49 • 3	42•6	47.7	43.6		46.5	41.01	42.8
н 3 . Т	13•3	13.4	13•9	13.0	12,8	12.9	24.6	26.4	25.7	25.3	25.4	25.7		26.7	23.6	74.7	26.0		23.3	45.7	48.0	45.0	46.45			48.7	41.6	46.0	47.3		45.1	45.7	41.4
H 2, T M	13•5	13.7	13.9	13.1	13.0	12.8	24.6	25.8	25.3	25.2	25.2	0 2 0 0 0 0 0 0		26.1	24.0	24.5	24.12	7 0 7	23.7	44.44	46.6	44-0	0.44		•	46•6	41.9	44 • 0	42.7	•	43•7	44•1	41.2
н 1,1 М	13•3	13.5	13•8	12.9	12.8	12•6	24•2	25.55	25.1	24.9	24.9	25.2	7.77	25.7	73.7	2443		6.07	23•3	43.3	45.5	43.3	C • C • C • C • C • C • C • C • C • C •		0 • 0 1	44.3	41.4	43.4	7.1.7	~ • • • • • • • • • • • • • • • • • • •	42•8	42•3	40.8
₹ ₩2	13.7	13.5	14.7	13.4	13.3	13.8	27.4	37.6	0 - 0 K	27.5	21 E		1.07	45.8	24-1		6 • Q 7	46.0	23.9	Б Э . З	50-1 50-1			94°4	54.4	67.8	43.]	64.7		0.44	70.4	59.3	45.4
τ 4 Σ	13.4	13.3	13.9	13.0	12.9	13•0	24.20		5 9 5 0		10 10 10	0 • 0 • 0	6.42	32.6			24.9	37.4	23.1	L 7.	- • 0			50°3	47•9	60.8	41.3	9 07		42.5	50.0	46.0	42.0
° ₹	13.6	13.4	13.9	ן כן	12.9	13•0	4.40	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	20•2	0 0 0 0 0 0 0 0 0 0 0 0	24.9	25.0	25•3			2 2 2 0 2 1 2 0	24.5	27.8	23•1		n c • n • t		43.1	45•6	44.1	52.1			1 • + +	41.6	44.0	0.01	41.0
×2 ₹	13.6	13.5	14.0	0 6 6	12.9	12•8	u 7 c	0.44°	20.02	2.02	0.04	25.1	25.4			23•0	24•2	25.9	23•2		4 4 • 5	44• Q	42.3	43 . 3	42 . 8	<u>۲</u> . 44			9 e 2 4	41•3	42.44		-1- +0 +
ĨΣ	19.7	13.7	14.1	-	13•1 12•9	12.7	č	24.6	25.5	25.4	25•1	25•2	25.4		20.44	23.7	24•2	25.7	23•2		42.6	44•0	42.2	43•0	42.7	7 7		40•0	42.4	41.6	6 7		41•α 40•1
NU - 00		410A 416F	416F		411A 417F	418D		419A	419C	419E	4196	4 1 9H	419J		4 2 0 B	4 20D	420E	4206	421A		422D	422E	4226	4221	422J		4 2 3 A	423C	423E	423H		4 2 4 5	424F 424F

Н 5.Т М	58.1	56.4	56•2	58•2	58•0	47.0	42.7	42.3	47.4	48•3	24•6	22.8	24•8	13.0	12.5
н 4 н М	57.2	54.6	53•8	58•3	57.9	45•2	39.6	39•0	46.1	48•5	23•0	21.7	23•5	12•6	12•1
Н 3 • Т М	54.1	51.8	51•2	56.8	56.5	43.6	38.7	38.4	44.6	48•2	23•3	21.4	23•1	12.4	11.9
Н 2,Т М	52.0	50.5	50.2	54.3	53 . 7	42.6	39.7	39•3	43.3	46•2	23•2	22.0	23•2	12.3	12.3
н 1 . т	50.7	40.7	49•0	52.7	52.3	42•2	38.8	38•5	42.7	45.0	22 • 8	21.6	24.1	12.1	12.0
л С	80.8	71.4	63•3	74.7	75.0	54.0	41.6	41.5	60.0	86.1	26.9	22.0	24•5	13.5	12.1
4 π	60 . I	57.2	55.1	65 . 8	66•3	45.7	40.3	40.1	47.5	75•2	24.3	21.5	23+5	12.5	12.0
π ∞ Σ	54.8	53.7	52.5	60•6	60•9	43•9	40.0	39.8	44.9	63•1	23.8	21.7	23•5	12.8	12•2
×2 ₩	52.9	52.4	51.5	56.0	56•2	43.2	39.9	39.7	44.0	47.5	23.6	21.7	23.4	12.5	12.3
Г¥ ±×	52.9	52.4	51•6	54.8	55•0	43•0	40.1	40.0	43°ò	45+5	23•3	21.8	23.4	12.1	12•2
RUN NO.	4268	426D	4266	427C	427D	428B	428D	428F	428H	4281	429B	429D	429F	430C	430E

Table A-2a. Experimental cavitation data for 0.210-inch ogive using liquid hydrogen (English Units).

T 5 DEG R	37•76 38•07	37•76 37•58	37.62 37.80 38.16	36•97 37•03 36•86	38•36 38•05 38•70	38 .86 38 .90 39.08
T 4 DEG R	37•76 37•84	3 €. 87 37.06	37.24 37.71 37.80	36•50 36•40 36•85	37.71 37.37 38.61	38.29 38.61 39.04
T 3 DEG R	37•51 37•76	37•64 36•83	36•90 37•28 37•55	36•56 36•31 36•92	37.66 37.31 38.54	38.03 38.21 38.92
T 2 DEG R	36•97 37•26	37•15 36•47	36•59 36•86 36•94	36•14 36•31 36•22	37.04 36.81 37.73	37.58 37.71 38.16
T I DEG R	36.79 36.92	36.76 36.20	36•36 36•65 36•92	35.87 35.82 35.91	36.70 36.59 37.57	37.39 37.42 37.78
ĸ	0.23 -0.06 0.37 -0.06	0.09 0.69 0.03 0.74	0.03 0.73 0.05 0.05 0.04 0.14	0.16 0.15 0.88 0.21	0.73 0.05 0.05 0.12 0.12	-0-0- 0-03 0-67 0-03 0-03
НV FT	601•4 592•6 596•1 594•4	606.8 608.6 606.8 606.8	590 . 9 592.6 596.1 587.4 597.9 577.0	590.9 590.9 597.9	771.7 767.4 767.4 769.6 773.9 773.9	773 . 9 773 . 9 773.9 773.9 791.2
НО ГТ	654•3 575•2 673•7 576•0	656•0 874•4 624•4 887•7	607.3 852.7 622.4 840.1 619.3 847.4	715.7 709.5 1074.7 764.8	1143.6 803.5 1129.5 802.4 857.7 1170.2	750.6 757.6 1027.0 811.7 1028.2
PV PSIA	18.23 17.98 18.08 18.03	18 38 18 43 18 38 18 38	17•93 17•93 18•08 17•83 18•13 17•53	17.93 17.93 17.93 18.13	23•03 22•92 22•92 22•97 23•09 23•58	23•09 23•09 23•22 23•58 23•58
P0 PSIA	19.84 17.45 20.44 17.47	19.88 26.52 18.92 26.93	18 43 25 90 18 88 25 53 18 78 25 78	21•73 21•54 32•68 23•21	34.20 24.00 33.79 25.61 25.61 34.96	22.40 22.61 30.68 30.68 30.68
V0 FT/SEC	120.4 137.8 116.3 140.1	186•7 157•5 192•6 156•4	184. 151. 152. 152. 184. 152. 9	222•8 223•5 188•0 225•0	175.4 175.4 178.9 217.2 214.9 175.4	192•4 191•6 154•5 188•0 155•6
TO DEG R	37.84 37.75 37.78 37.76	37.89 37.91 37.89 37.89	37.73 37.75 37.75 37.69 37.69 37.69	37.73 37.73 37.73 37.80	39.40 39.37 39.37 39.43 39.42 39.42	39 42 39 42 39 442 39 445 39 442 39 442
CAVITY INCHES	0.29 0.32	0.35 0.72	0.62 0.50 0.56	0.60 0.76 0.33	0.63 0.70 0.34	0.67 0.60 0.34
RUN • 0N	386A 386R 386R 86F	3876 3876 3870* 3876*	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	で の の の の の の の の の の の の の	00000 00000 00000 00000 00000 00000 0000	3918 3918 3916 3916 3916*

* DENOTES AN INCIPIENT RUN ** DENOTES A DESINENT RUN

•

T 5 DEG R	,	37.49		37.39			40.22	37.04	20 02	76.60		0000	39.85	40.28				40.410	40.59	10 04	40.04 40.64		40 - 70		14.04	74-04		- C • O †
T 4 DEG R		37•26		36.83			40-16		38,00				0 + • • • •	40.03		76 07			40+52	40.73	30.60		40.73		19.61	40.87		C7.04
T 3 DEG R		36.88		36.49			40-36		39-02	30.00		20 00		39•33		20 70	20.05		40.54	40.46	39.56		40.59		39-65	40-82	40.10	KT • 0+
T 2 DEG R		36.40		36.31			39.38		38.57			30 46		38 •86		30.37	20,046		39 • 58	39.87	39.44		39.82		39.62	40-41	30.64	
T 1 DEG R		36.07		36.05			38.88	•	38.36			38.05		38.52		38,00	38.66		39.20	39-56	39.17		39.65		39-02	39.47	39.40	
ĸ	0.81	-0.02	0.60	-0•01	0.54	0.74	0.08	0.74	-0.00	0.65	9950		0.62	00.00-	0.81	0.08		0.82	0.16	0.20	0.16	06•0	0.22	0.78	0.15	0.22	0.17	0.88
FT FT	773.9	578.7	583.9	1.685	592.6	1019.0	1024.3	1027.0	1029.7	1027.0	7.8101	1013.7	1013.7	1008.4	1019.0	1029.7	1021.7	1021.7	1032.4	1024.3	1013.7	1021.7	1035.1	1098.7	1032.4	1029.7	1059.6	1090.2
HO FT	1066•3	570.1	10401	99666	753.3	1411•4	1087.9	1427.8	1028.2	1388•2	1354-0	1001-8	1349.9	1004.7	1540.8	1108-4	1147.4	1559.4	1185.0	1260.6	1215.5	1792.2	1297.9	1776.7	1210.2	1286.2	1259.7	1788.5
PV PSIA	23•09	17.58	5/ • / T	7 / • 8 8	17.98	29.83	29.97	30.04	30.12	30.04	29-68	29.68	29.68	29.54	29 . 83	30.12	29.90	29.90	30.19	29.97	29.68	29.90	30.26	31.97	30.19	30.12	30.92	31.74
P0 PSIA	31.87	17.32	77 07	10•78	22.87	41•40	31.84	41.86	30.07	40•69	39.72	29.33	39.60	29.43	45.23	32.43	33.60	45.77	34•68	36•93	35•63	52.67	38.00	51.90	35.42	37.67	36.80	52.28
V0 FT/SEC	152.3	167•2		C • A 0 T	137.7	184•4	224•0	186.2	229.3	189.8	181•6	225.5	186.2	226.9	203.2	252.3	248.7	205.6	246.1	278.8	283.9	234.4	279.3	237.1	277.7	272.0	274.8	225+5
TO DEG R	39.42	37.60 37.66	10.00		31.15	41.26	41.29	41.31	41.33	41•31	41.22	41.22	41.22	41.18	41.26	41.33	41.27	41.27	41•35	41.29	41.22	41.27	41.36	41 . 78	41.35	41.33	41.53	41.72
CAVITY INCHES		0.45	0 72	31.00			0.34		0.70			0.75		0.72		0.69	0.39		0.28	0.42	0.88		0.33		0.96	0.36	0.50	
NUN.	392C * *	3938 3930**	2000	2000	5 Y JE * *	3954**	3958	3 9 5 0 * *	3950	395E**	3966***	396B	3960**	396D	397A**	3979	3975	397E**	397F	398E	398D	3985**	398F	3 98°s*	399B	399D	3995	3990**

* DENOTES AN INCIPIENT RUN
** DENOTES A DESINENT RUN

T 5 DEG R	40•45 40•93	40•66 40•66	37.57	36•63	38•81 39•28	39•06	38•92 38•90	38•95	38 •81	36.97 37.08 37.42
T 4 DEG R	39 . 53 40.82	40.57 40.66	37•35	36•74	38•45 39•37	38 . 86	38•56 38•66	39•04	38.09	36.97 37.31 37.31
T 3 DEG R	39 . 69 40.86	40•43 40•64	37.06	36•74	38•21 39•35	38 . 66	38•45 38•41	39•22	38.00	37•31 37•44 37•24
T 2 DEG R	39 . 51 40.16	39.91 39.98	36•90	36•14	38•09 38•74	38 . 25	38•25 38•02	38•61	37.96	36•76 36•92 36•97
T 1 DEG R	39.06 39.71	39 . 53 39.78	36.68	35.77	37•73 38•36	38,03	37•66 37•76	37.91	38.00	36•22 36•49 36•67
K۷	0•21 0•26	0 • 91 0 • 26 0 • 88 0 • 88	0.88 0.23 0.84	0.24	0•19 0•27	0•22 0•23 0•93	0•20 0•20 0•94	0.92 0.29	0.87	0•36 0•38 0•32
HV FT	1016.3 1037.8	1000.5 1021.7 1043.2 1081.8	603•2 606•8 601-4	603.2 601.4	776.0 776.0	797.8 797.8	778.2 793.4 804.5	782.5 786.9	802.03 824.6 873.2	592.6 601.4 599.7
НО FT	1322•1 1390•8	1911.3 1384.6 1428.6 1942.5	1278•6 850•0	1290.8	986•5 1067•5	1486.0 1030.8 1512.1	988.4 1019.1 1519.6	1665•9 1166•1	1650•4 1125•5 1685•4	971.7 992.9 938.6
PV PSIA	29•75 30•33	29,32 29,90 30,48 31,52	18,28 18,38	10.23 18.28 18.23	23 .1 5 23 .1 5	23 .1 5 23 .4 6 23 .76	23•22 23•64 23•95	23•34 23•46	23•89 24•51 25•85	17.98 18.23 18.18
P0 PSIA	38•77 40•73	56.30 40.60 41.83 56.87	38 . 87 25 . 78	38.68 26.03 39.25	29.47 31.90	44.50 30.77 45.20	29•52 30•40 45•40	49•90 34•83	49•35 33•50 50•10	29 •53 30•15 28•50
v0 FT/SEC	304 •0 296 • 4	253.9 299.1 298.1 251.3	222•6 260•5	226•4 260•4 222•6	266.8 262.4	223•5 266•3 222•2	261•7 266•3 220•8	248•4 290•4	251•3 296•6 244•6	259•5 258•4 262•1
TO DEG R	41 . 24 41.38	41.13 41.27 41.67 41.67	37 . 85 37 . 89	37.84 37.85 37.84	39•44 39•44	39•44 39•53 39•62	39•46 39•58 39•67	39.49 39.53	39.65 39.83 40.21	37•75 37•84 37•82
CAVITY INCHES	0.91 0.37	0.51 0.32	0.71	0.51	0.78 0.26	0.48	0.64 0.53	0.35	0.91	0.30 0.22 0.45
RUN NO	400B 400D	401A* 4018 4010 4010 4016*	402A* 402B	4020** 4020* 4020	403B 403B	* * * * * 0 00 0 • 0 0 0 • 0 •	* + 0 4 B + 0 4 C +	405A** 405R	40000 4000 4000 4000 4000 8	4068 4060 4060

DENOTES AN INCIPIENT RUN
 DENOTES A DESINENT RUN

(cont'd)
A-2a.
Table

ъ

T 5 DEG R	37 . 30 37 . 35	38 . 16	40.72	39 • 98	40•72
T 4 DEG R	37•21 37•39	37.49	40•79	39•26	40.54
T 3 DEG R	37•10 37•48	37.78	40.90	39•26	40•45
T 2 DEG R	36.85 36.86	37.53	40.12	38 - 95	39.73
T 1 DEG R	36•52 36•63	37.26	39•64	38•48	39•46
κν	0.32 0.39	0.91 0.80 0.15 0.83	0.23	0.13	0.84 0.17 0.87
HV F1	601.4 587.4	763•2 763•2 769•6 763•2	1016.3	1021.7	1019•0 1027•0 1048•7
Н0 F1	1010.9 1060.9	1259.9 1230.7 893.0 1247.3	1231.7	1623•6 1150•8	1607•4 1199•8 1642•2
PSIA	18•23 17•83	22.80 22.80 22.97 22.80	29.75	29 . 68 29 . 90	29•83 30•04 30•63
PO PSIA	30•70 32•27	37.73 36.85 26.68 37.35	36.10	47•70 33•70	47.20 35.13 48.12
V0 FT/SEC	284•8 280•3	187•7 194•5 230•4 193•7	248•0	209•6 256•2	212•0 254•8 209•0
TO DEG R	37•84 37•69	39 39 39 33 33 33 33 33 33 33 33 33 33 3	41.24	41•22 41•27	41.26 41.31 41.45
CAVITY INCHES	0.44 0.22	06.0	0.30	0.72	0.39
NON •	407B 407D	4080 4080 4080 4080 4080 4080	4098	4000**	* * * ± * ± * ± * ± * ± * ± * ±

* DENOTES AN INCIPIENT RUN
** DENOTES A DESINENT RUN

P 5,T PSIA	18•03 18•90	18•03 17•53	17.63 18.13 19.16	15.91 16.05 15.64	19 •74 18•84 20•78	21•29 21•40 21•97	17•28 16•99 26•24	24.44	26•11 26 • 91	25•46 27•24	28•48 27•11 27•65
P 4.T PSIA	18•03 18•23	18•33 16•14	16•61 17•88 18•13	14•75 14•49 15•59	17•88 16•94 20•50	19•53 20•50 21•86	16•66 15•55 25•65	21•68 23•22	25•20 26•31	24•76 26•97	27•79 24•01 27•79
P 3+T PSIA	17•33 18•03	17•68 15•55	15.73 16.70 17.43	14.88 14.27 15.77	17.73 16.80 20.28	18•79 19•31 21•46	15•68 14•70 26•37	21.34	22•80	24.57	26 •77 23•58 27•24
P 2.T PSIA	15•91 16•66	16•37 14•66	14.97 15.64 15.82	13.89 14.27 14.06	16.09 15.50 17.93	17.53 17.88 19.16	14•49 14•27 22•97	20.39	21•29	21.51	24•63 23•15 24•44
P 1.T PSIA	15•46 15•77	15•37 14•02	14.40 15.10 15.77	13.28 13.16 13.36	15•23 14•97 17•48	16.99 17.09 18.08	13•73 13•68 21 <u>-</u> 34	19.74 18.84	20•23 21-40	22.38	23•58 22•26 23•89
P 5 P S I A	21 . 35 21 . 67	30•08 17•82	18.15 21.72 19.78	18.73 16.14 46.31	22.92 21.41 46.81	21.97 24.06 36.93	20.75 16.18 54.84	27.63	27 . 53 28.96	56.70 85.28	48 .53 24.93 104.90
P_4 PSIA	18.03 17.97	19.91 14.35	14.60 16.18 15.01	14.63 13.74 22.35	18.28 17.38 25.87	18•27 19•23 24•76	15.95 13.35 32.21	23.52 23.32 22.53	22.50	34.83	29.33 22.36 34.47
P 3 PSIA	16.07 15.82	15.25 12.75	12.75 13.36 13.01	13•23 12•81 15•09	16.18 15.73 19.13	15.83 16.48 20.23	13.02 11.95 25.77	21.22	20.40	23.90 23.60 26.60	24•46 21•83 25•87
P 2 PSIA	13.75 13.42	12.78 11.95	11.90 12.18 11.95	12•66 12•27 13•57	15•28 14•96 16•15	14.97 15.38 16.96	11.92 11.21	20.24 20.24 19.13	19.30	21.55 21.55 22.23	22•60 20•93 23•03
P 1 PSIA	12•42 12•17	11•45 11•15	11.53 11.70 11.35	12.13 11.74 12.63	14.34 13.96 14.73	14•10 14•48 15•66	11.15 10.51	19.39 19.39	1 00 00 1 00 1 00 1 00	20.17 20.17 20.48	21.70 20.70 21.73
NON • •	386 Г 386 Г	387B 387D	388B 388D 388F	3895 3890 389F	3908 3906 390F	3918 3910 391F	393B 393D	395C 395C 395C	3960	3975 3976 397F	3985 3985 3985

4,T P 5,T SIA PSIA	•40 26•57 •13 27•45 •91 27•17	•46 26•70 •13 28•55	•11 21•51 •51 27•51	• 32 15.05	•01 21•12 •92 22•62 •29 21•92	•34 21•46 •67 21•40	•86 21•57 •95 21•12	.91 15.91 .80 16.19 .80 17.09	•52 16•75 •99 16•90	•28 19•16	•99 27•72 •56 25•01 •04 27•72
P 3.T P	23.89 23 28.13 28 25.78 25	24•01 23 28•27 28	26•64 21 27•45 27	16•14 16 15•32 15	19•31 20 22•86 22 20•67 21	20•01 20 19•90 20	22•44 21 18•69 18	16.80 15 17.14 16 16.61 16	16•23 16 17•23 16	18•08 17	28•41 27 22•56 22 26•70 27
P 2,T	23•76 26•57 23•82	23•40 25•65	24•76 25•01	15•73 13•89	18•95 20•89 19•42	19•42 18•74	20•50 18•59	15.37 15.77 15.91	15•59 15•64	17.38	25.52 21.57 24.13
P 1.T PSIA	21.80 23.28 23.03	21.92 24.07	23•46 24•32	15•19 13•04	17.93 19.74 18.79	17•73 18•03	18•43 18•69	14.06 14.70 15.14	14.079 15.05	16.66	23.82 20.12 23.22
P 5 PSIA	23•52 71•77 36•47	23•94 55•33	40 . 00 119 . 13	17.28 22.28	20 •94 81•00 30•60	23•18 27•37	45•23 20•20	69.93 94.15 25.20	27•20 52•27	18•95	83.60 27.43 51.63
P 4 PSIA	22.14 33.04 27.50	22.81 31.40	28•05 35•73	14•73 16•05	18.17 30.50 21.80	19.02 20.63	25•53 18•70	25.10 29.45 17.20	17•37 29•57	17.45	35•82 23•43 30•66
P 3 PSIA	22•06 25•94 24•47	22•84 26•20	25•70 27•26	14•13 14•60	17.54 21.73 19.10	18,16 18,80	20 . 73 18.53	16.78 18.10 15.85	16.20 18.00	17•33	26.85 22.43 24.73
P 2 PSIA	21•36 23•67 22•73	22•17 24•63	24•23 25•03	13•50 13•73	16.70 18.32 17.87	17•32 17•47	19.23 17.87	15.83 15.95 14.95	15.00 15.77	17•23	23.82 21.83 23.00
P I PSIA	21•22 23•24 22•30	21•84 24•00	23•40 24•40	12•83 12•90	16.00 16.75 17.40	16.88 16.63	18•55 17•23	15•58 15•80 14•25	14•07 15•34	17.03	22•77 21•67 22•70
RUN •	3998 399D 399F	400B	4018 4010	402B 402D	4038 4038 4035	404B 404F	4058 405F	406P 406P 406E	4078 407D	408D	4098 4098 4095

H 5,T FT	594•4 624•8	594•4 577•0	580•4 597•9 634•0	520•8 525•6 511•3	654•6 623•0 691•3	709.3 713.3 733.8	568•4 558•3 887•5	836•0 822•4 882•7	911.7 859.1 924.0	969•3 919•1 938•9
H 4, T FT	594•4 601•4	605•0 528•8	545.0 589.1 597.9	480.7 471.7 509.7	589•1 556•6 681•5	647•0 681•5 729•6	546•7 508•2 866•1	723•5 778•2 849•8	889.9 833.7 914.2	943•9 806•7 943•9
H 3,T FT	570.1 594.4	582•1 508•2	514•4 548•3 573•5	485•2 464•4 516•0	583•9 551•6 673•7	621•2 639•6 715•3	512•9 479•2 892•3	727•6 711•3 763•2	817.9 826.9 916.6	906.8 791.2 924.0
H 2,1 FT	520.8 546.7	536•8 477•7	488.2 511.3 517.6	451•4 464•4 457•1	527•2 506•6 590•9	577.0 589.1 634.0	471.•7 464.•4 769.•6	677•6 664•1 709•3	767.4 717.4 793.4	829•2 776•0 822•4
H 1.T FT	505.1 516.0	502•0 455•7	468•8 492•8 516•0	430•4 426•2 433•1	497•4 488•2 575•3	558•3 561•7 596•1	445•7 444•3 711•3	654•6 623•0 671•8	713•3 687•4 748•3	791.2 744.2 802.3
H 5 FT	711.6 723.0	1028•4 587•2	598•7 724•7 656•0	619.0 528.7 1650.9	767.6 713.7 1670.8	733.6 808.5 1285.8	690.3 530.1 1995.8	950.6 938.2 934.5	987.0 2072.7 3337.4	1739•5 839•9 4313•3
H FT	594•5 592•4	660.6 467.1	475 •6 530•1 489•7	476.7 446.2 747.2	603•2 571•8 874•0	602•9 636•6 833•8	522•2 432•9 1107•6	781.9 753.6 752.6	795.6 1046.5 1206.1	1000.7 747.6 1192.5
н F1	526.3 517.7	498•0 412•5	412•5 433•2 421•3	428•8 414•5 492•5	530•1 514•6 633•1	518•0 540•5 671•9	421•6 385•3 870•4	706.9 673.6 677.9	728•7 802•8 900•6	823•0 728•7 874•0
H 2 FT	446 . 5 435.3	413 . 5 385 . 3	383•7 393•1 385•3	409 •4 396 •2 440 •4	499•0 488•0 529 •1	488•4 502•5 557•2	384•3 360•4 712_3	672.2 633.1 639.1	688.5 718.7 742.9	756.1 696.7 771.5
H F T	401.3 392.8	368•5 358•4	371.2 376.9 365.1	391•4 372•3 408•4	466•7 453•7 480•1	458•5 471•5 512•1	358•4 336•9 639•4	642.2 610.3 613.8	674•3 669•7 680•7	724•0 688•5 725•1
RUN NO.	386B 386F	387B 387D	388B 388D 388F	389Р 389Р 389Р	3908 3905 390F	3918 3916 391F	393B 393D 395B	3950 3968 3968	397B 397D 397F	3988 3980 398F

H 5.T FT	899•5 931•4 921•5	904•4 971•9	933•9 933•9	575.3 491.2	703.3	731.7	715.3 713.3	719•4703•3	520•8 530•4 561•7	550•0 555•0	634•0	941.4 842.9 941.4
H 4.1 FT	784•7 956•6 875•6	786•9 956•6	921•5 933•9	555•0 500•4	664•1	709•3	675•7 687•4	729•6 626•7	520.8 551.6 551.6	541•7 558•3	568•4	951•5 754•7 916•6
H 3,T FT	802.3 956.6 870.9	806.7 961.6	902•0 931•4	528•8 500•4	639.6	765•3 687•4	664•1 660•3	750•4 617•6	551 .6 563.4 545.0	532•0 566•7	596 . I	966.7 754.7 904.4
Н 2,Т FT	797.8 899.5 800.0	784•7 866•1	833•7 842•9	514.4 451.4	626.7	695•3 643•3	643.3 619.4	681•5 613•9	502•0 5 16 •0 520•8	509•7 511•3	571.8	861•5 719•4 811•2
H 1, T FT	727•6 780•3 771•7	731•7 808•9	786•9 817•9	495•8 422-2	590.9	654•6 621•2	583.9 594.4	608•6 617•6	457.1 479.2 494.3	482•2 491•2	546.7	800•0 667•9 778•2
H 5 F1	789.1 2719.1 1268.3	804•2 2016•0	1403.7 5093.4	568 • 3 76 • 3	144•1 697•0	3137•3 1047•7	776 . 9 928 . 7	1608.1 670.8	2637•9 3766•0 849•7	922•5 1890•6	626.7	3258•3 930•9 1864•6
Н 4 4 F 7	739•7 1138•7	763.7	953.6	480.1	9.62c	1044.0	629•2 686•0	851•7 618•0	846•1 1005•1 565•5	571•5 1009•5	574.3	1243•6 785•9 1049•9
н F1	736.9 876.6	764•7	867.8 867.8	459.5	475•6 577•4	725.1	599•0 621•5	689•6 612•0	550•9 596•9 518•7	530•8 593•5	570.1	909•7 750•1 832•7
H 2 FT	711.9 794.5	740.8 740.8	829•1 814•7	0.540 438.0	445•8 548.2	604•6 588•9	569 . 7 574 . 9	636•6 588•9	518•0 522•2 487•7	489•4 515•9	566.6	799.9 728.7 770.5
H 1 FT	779.1	729•0	806•4 784•8	820.8 415.2	417.6	549.9 572.5	554.4 545.7	612.7 566.6	509•4 517•0 463•6	457 •5 501•1	559•6	762.2 723.0 759.7
RUN NO•	399B 399D	399F 400R	400D 401B	401D 402B	402D	4030 4030 403F	404F	4058 4058	4 0 6 B 4 0 6 B 4 0 6 F	407B	408D	4604 6604 604

Table A-2b. Experimental cavitation data for 0.210-inch ogive using liquid hydrogen (SI Units).

T 5 DEG K	20•98	21 •15 20 ,98	20.88	20•90	21.00	21•20	20•54 20•57	20•48	21•31	21•14 21•50	21.59 21.61	21.71
T 4 DEG K	20•98	21•02 21•04	20.59	20•69	20+95	21.00	20•28 20•22	20.47	20.95	20•76 21•45	21•27 21•45	21.69
T 3 DEG K	20•84	20•98 20•91	20.46	20.50	20.71	20.86	20.31 20.17	20.51	20.92	20•73 21•41	21•13 21•23	21.62
T 2 DEG K	20•54	20•70 20•64	20•26	20.33	20•48	20.52	20•08 20•17	20+12	20.58	20•45 20•96	20•88 20•95	21.20
T I DEG K	20.44	20•51 20•42	20.11	20.20	20•36	20.51	19 . 93 19.90	19.95	20•39	20•33 20•87	20.77 20.79	20.99
х К	0.23 -0.06 0.37	90 • 0 0 • 0	0.69 0.03 0.74	0•03 0•73	0•05 0•68	0.04	0.16 0.15	0.21	0•78 0•05 0•73	0.04	1 - 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0 • 0	0.63
Σ	183.3 180.6 181.7	184.9 184.9	184.9 184.9 184.9	180.1 180.6	181.7 179.0	182.2 175.9	180.1 180.1	182•2 182•2	235•2 233•9 233•9	234.6 235.9 241.2	235 . 9 235 . 9 237.2	235•9 241•2
ο¥	199•4 175•3 205•3	200.00	2000-3 190-3 270-6	185•1 259•9	189.7 256.1	188•8 258•3	218.2 216.2	233.1	348 6 244 • 9 344 • 3	244•5 261•4 356•7	228•8 230•9 313•0	247•4 313•4
PV N/CM/CM	12.57 12.39 12.46	12.67 12.67	12.67 12.67	12•36 12•39	12.46 12.29	12•50 12•09	12,36 12,36 12,36	12.50	15.88 15.80 15.80	15.84 15.92 16.26	15.92 15.92 16.01	15•92 16•26
PO N/CM/CM	13.68 12.03 14.09	13.71	13.04 18.57	12•71 17•86	13•C2 17•60	12.95 17.77	14.98 14.85 22.53	16.00	23•58 16•55 23•30	16.52 17.66 24.09	15.44 15.59 21.15	16•71 21•15
V0 M/SEC	96 • 7 95 • 7 95 • 4	56.9 48.0	58.7	56•3 46•1	55. 50. 100 100	56•3 46•6	67.9 68.1 57.3	68•6	53.4 66.0 54.50	66•2 55 53 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	58•7 58•4 47•1	57•3 47•4
TO DEG K	21.02 20.97 20.99 20.99	21.05	21.05	20.96 20.97	20.94	21•00 20•88	20•96 20•96 20•96	21.00	21•89 21•87 21•87	21•88 21•90 21•98	21.90 21.90 21.92	21•90 21•98
CAVITY CM	0.73 0.81	0.88	1.82	1.57	1.61	1.46	1.52 1.93	0.83	1.60	1.77 0.86	1.70 1.52	0.86
NO.	386∆ * 386∆ * 3860 * 86∩ *	3875 387C**	387D 387E * *	388B 3880 880 80 80 80 80 80 80 80 80 80 80 80	* 10000 10000 10000	0 0 0 T 0 8 9 G ★ ★	3899 3895 3895	389F	390A** 3908 390C**	390F 390F 390G**	3918 3910 291E**	391F 391G**

* DENOTES AN INCIPIENT RUN
** DENOTES A DESINENT RUN

T 5 DEG K		20•83	20.77			22.40		22.18			22.12	1	22 • 38		22.50	22 • 28	}	22.55	22.73	22.53		22.61		22.45	22.58	22.54	
T 4 DEG K		20.70	20.46			22.31		21.66			21.92		22 • 24		22.41	22.17		22.51	22.63	22.05)	22.63		21.95	22.68	22.35	k
T 3 DEG K		20.49	20.27			22.42		21.68			21.60		21.85		22.10	22.14		22.52	22.48	21.98		22.55		22.03	22.68	22 33	F
T 2 DEG K		20.22	20.17			21.88	1	21.43			21.36		21.59		21.87	21.63		21.99	22.15	21.91		22.12		22.01	22.45	22.02	
T 1 DEG K		20.04	20-03			21.60		21.31			21.14		21.40		21.61	21.48		21.78	21.98	21.76		22.03		21.68	21.93	21.89	
> ¥	0.81	-0.02	0.00	0.54	0•74	0.08	0.74	-0•00	0.65	0.66	-0.02	0.62	-0.00	0.81	0.08	0.13	0.82	0.16	0.20	0.16	0 • 0	0.22	0•78	0.15	0.22	0.17	0.88
Σ	235.9	176.4	179.6	180.6	310.6	312.2	313.0	313.9	313.0	309.0	309.0	309.0	307.4	310.6	313.9	311.4	311.4	314.7	312.2	309.0	311.4	315.5	334.9	314.7	313.9	323.0	332,3
opΣ	325•0	173.8	170.6	229•6	430.2	331.6	435.2	313.4	423.1	412.7	305.3	411.4	306.2	469•6	337.8	349.7	475.3	361.2	384.2	370.5	546.3	395•6	541.5	368•9	392.0	384.0	545.1
PV N/CM/CM	15.92	12.12	12.32	12•39	20.56	20.66	20.71	20.76	20.71	20.47	20.47	20.47	20.37	20•56	20.76	20.61	20.61	20.81	20.66	20.47	20.61	20.86	22.04	20.81	20.76	21.32	21.89
PO N/CM/CM	21.97	11.94 16.01	11.71	15.77	28.54	21.95	28.86	20.73	28.05	27.39	20.22	27.30	20.29	31.18	22.36	23,17	31.56	23.91	25.46	24.57	36.31	26.20	35.78	24*42	25.97	25.37	36.05
V0 M/SEC	46.4	51•0	51.6	42•0	56.2	68•3	56.8	69•6	51.9	55.4	68.7	56.7	69•1	61.9	76.9	75.8	62.7	75.0	85•0	86.5	71.4	85.1	72.3	84.6	82.9	83•8	68.7
TO DEG K	21.90	20.89 20.93	20.95	20.97	22.92	22.94	22.95	22.96	22 • 95	22 • 90	22.90	22.90	22 • 88	22 • 92	22.96	22.93	22.93	22.97	22.94	22.90	22.93	22.98	23.21	22.97	22.96	23.07	23.18
CAVITY CM		1.14	1.82			0.86		1.77			1.90		1.82		1.75	0.99		0.71	1.06	2.23		0.83		2.43	0.91	1.27	
NON •	392C**	393B 393C**	3930	393E**	395A**	395B	3950**	395D	395E**	3964**	396B	3960**	396D	397A**	397B	397D	397E**	397F	398B	398D	398E**	398F	398G**	399 <u>B</u>	399D	399F	3996**

* DENOTES AN INCIPIENT RUN
** DENOTES A DESINENT RUN

T 5 DEG K	22•47 22•74	22• 5 9 22•59	20•87 20•35	2 1 • 56 2 1 • 82 21 • 70	21•62 21•61	21•64 21•56	20•54 20•60 20•79
T 4 DEG K	21 •96 22•68	22•54 22•59	20 .75 20 .41	21•36 21•87 21•59	21•42 21•48	21•69 21•16	20•54 20•73 20•73
T 3 DEG K	22 •0 5 22•70	22•58 22•58	20.59 20.41	21•23 21•86 21•48	21•36 21•34	21•79 21•11	20•73 20•80 20•69
T 2 DEG K	21 .95 22 . 31	22•17 22•21	20•50 20•08	21•16 21•52 21•25	21•25 21•12	21•45 21•09	20•42 20•51 20•54
T I DEG K	21•70 22•06	21.96 22.10	20•38 19•87	20.96 21.31 21.13	20•92 20•98	21.06 21.11	20.12 20.27 20.37
×	0.21 0.26	0 • 91 0 • 26 0 • 28 0 • 88	0.88 0.23 0.84 0.24 0.90	0.19 0.27 0.91 0.93	0•20 0•20 0•94	0 • 92 0 • 29 • 22 • 87	0 • 36 0 • 38 0 • 32
₹z	309 . 8 316.3	304.9 311.4 318.0 329.7	183•9 184•9 183•9 183•9 183•3	236•5 236•5 236•5 239•8 243•8 243•2	237•2 241•8 245•2	238•5 239•8 244•5 251•5 266•2	180.6 183.3 182.8
οΣ	403•0 423•9	582•6 422•0 435•4 592•1	389.7 259.1 387.8 261.5 393.4	300.7 325.4 452.9 314.2 460.9	301•3 310•6 463•2	507.8 355.4 503.1 513.7	296•2 302•6 286•1
PV N/CM/CM	20 .51 20 .9 1	20.22 20.61 21.02 21.73	12.60 12.67 12.57 12.57 12.57	15.96 15.96 15.96 15.96 16.17 16.38	16.01 16.30 16.51	16.09 16.17 16.47 16.90 17.82	12•39 12•57 12•53
PO N/CM/CM	26•73 28•08	38•82 27•99 28•84 39•21	26.80 17.77 26.67 17.95 27.06	20•32 21•99 30•68 21•22 31•16	20•35 20•96 31•30	34•40 24•01 34•03 23•10 34•54	20•36 20•79 19•65
V0 M/SEC	92•6 90•3	77.4 91.2 90.9 76.6	67•9 79•4 68•9 79•4 67•8	81.3 80.0 81.3 81.2 67.7	79.8 81.2 67.3	75•7 88•5 76•6 74•5	79•1 78•8 79•9
TO DEG K	22•91 22•99	22.85 22.93 23.01 23.15	21.03 21.05 21.05 21.02 21.02	21.91 21.91 21.91 21.95 21.96	21•92 21•99 22•04	21.94 21.96 22.03 22.13 22.34	20•97 21•02 21•01
CAVITY CM	2.31 0.94	1.29 0.81	1.80 1.29	1.98 0.66 1.21	1.62 1.34	0.88 2.31	0.76 0.55 1.14
RUN NO•	400B 400D	401A** 4018 4010 4015**	402A* 402B 402C 402C 402C 402C	4038 4038 4037 4037 4037 4036	4048 4046 4046	4005A 4005A 40057777 40057777 4005777 400577	406B 4060 406E

* DENOTES AN INCIPIENT RUN
 ** DENOTES A DESINENT RUN

T 5 DEG K	20•72 20•75	21•20	22•62 22•21	22 • 62
T 4 DEG K	20•67 20•77	20•83	22•66 21•81	22•52
T 3 DEG K	20 •61 20 • 82	20•99	22•72 21•81	22•47
T 2 DEG K	20•47 20•48	20.85	22•29 21•64	22.07
T 1 DEG K	20•29 20•35	20.70	22•02 21•38	21.92
אר גע	0•32 0•39	0.91 0.80 0.15 0.83	0.23 0.89 0.13	0 • 84 0 • 17 0 • 87
şΣ	183.3 179.0	232 6 232 6 234 6 232 6	309.8 309.0 3 11. 4	310•6 313•0 319•6
οr	308•1 323•4	384•0 375•1 272•2 380•2	375•4 494•9 350•8	489.9 365.7 500.5
PV N/CM/CM	12.57 12.29	15.72 15.72 15.84 15.72	20 .51 20 .47 20 .6 1	20.56 20.71 21.12
PO N/CM/CM	21 •17 22•25	26.01 25.41 18.40 25.75	24•89 32•89 23•24	32•54 24•22 33•18
V0 M/SEC	86•8 85•4	57.2 59.3 70.2 59.0	75.6 63.9 78.1	64•6 77•7 63•7
TO DEG K	21•02 20•94	21.85 21.85 21.88 21.88	22•91 22•90 22•93	22 . 92 22.95 23 . 03
CAVITY CM	1.11 0.55	2.28	0.76 1.82	0.99
RUN NO.	407B 407D	408A* 408C* 408C 408D 408E	4098 409C** 409D	4095** 4095 4096**

DENOTES AN INCIPIENT RUN
 ** DENOTES A DESINENT RUN

RUN NO.	P 1 N/CM/CM	P 2 N/CM/CM	P 3 N/CM/CM	P 4 N/CM/CM	P 5 N/CM/CM	P 1.T N/CM/CM	P 2.T N/CM/CM	P 3.T N/CM/CM	P 4.T N/CM/CM	P 5+T N/CM/CM
			15 31	16 76	16.22	15.03	16•38	16.47	16.13	18.32
399B	14.63	14.13		07 07	40.48	16.05	18•32	19.40	19•40	18.92
399D	16•02	16.32	1 / 0 0 7 5	0/ 977	26.15	15.88	16.43	17.78	17.87	18.74
399F	15•38	15.67	16.81	10.40	61.62					
		00 30	16 76	15.73	16.51	15.11	16.13	16.55	16.17	18.41
400B	15.06	42 ° CT				16.60	17.69	19.49	19.40	19.68
400D	16.55	16.98	18.06	21•65	50.02)]	
		i	, L L	76 01	27.58	16.17	17.07	18.37	18.74	18.97
4018	16.13	16•/1	7/0/7	10 • A T		77 75	40-11	18.92	18.97	18.97
401D	16.82	17•26	18,80	24•63	82•14	10.01	t 3 • • •			
,			71 0	21.01	19,11	10.47	10.84	11.13	11.65	12.05
402B	8 . 85	76°4	t • • •			00 a	9.58	10.56	10.56	10.38
402D	8•89	9.47	10.07	10.11	12.00))))		
			00 01	10 62	14.44	12.36	13.06	13.32	13.80	14•56
403B	11.03	14.11	40°71	CC • 7 T		13.61	14.40	15.76	15.80	15•59
403D	11•55	12•63	14 º 70	C0+17		10 01	12.30	14.25	14.68	15.11
403F	12.00	12•32	13.17	15•03	21.10	12.070				
		70 L L	12 63	11-51	15.98	12.22	13•39	13.80	14•02	14.79
404B	11.64	11034	70971			12.43	12.92	13.72	14.25	14.75
404F	11•47	12.05	12.96	14•22	18.81	61.07	7/077			
	0 7	30 01	06 71	17-60	31.18	12.71	14.14	15.47	15.07	14.87
4058	12.19	12•20	14023			12.80	12-61	12.89	13.06	14.56
405F	11.88	12.32	12.78	12.899	64.CI	6n + 7 T	10.11			
			11 67	17.31	48-22	9 • 69	10.59	11.58	10.97	10.97
406B	10 • / 4	16°01			54.91	10.14	10.87	11.82	11.58	11.16
406D	10.89	00.11			72 71	10.44	10.97	11.45	11.58	11.78
406E	9 • 83	10.31	5401	00 • 1 1						
ļ	r o		11.17	11,08	18.75	10.20	10.75	11.19	11•39	11.55
407B	01 • 6				36.04	10.38	10.78	11.88	11•72	11•65
407D	10.98	10.01	T t + 7 T	A C + O 7						
408D	11.74	11.88	11,95	12.03	13.07	11.48	11.98	12•46	11.92	13•21
			וא פו	24.70	57.64	16.43	17.60	19.59	19•30	19.11
409B	0/ • 41		1001	16-15	18.91	13.87	14.87	15.55	15.55	17.24
409D	14.94	CD • CT	5 t = n = 1	11001	1/ 1/	16.01	16-64	18.41	18•64	19.11
409F	15•65	15.86	cu• / I	21•14	00.00	+ + + + + + + + + + + + + + + + + + + +	•			

Н 5,1 М	181.2 190.4	181.2 175.9	176.9	182•2 193•2	158.7	160.2	155•8	199.5	189.9	210.7	216.2	2012	223.7	173.3	170.2	270.5	254.8	250.7	269.1	277.9	261.9	281.6	295.4	280.1	286•2
н 4 , Т М	181•2 183•3	184•4 161•2	166.1	179•6 182•2	146.5	143.8	155•4	179.6	169.7	207.7	197.2	207.7	222.4	166.6	154.9	264.0	220.5	237.2	259•0	271•2	254.1	278.6	287.7	245.9	287.7
н 8.4	173.8 181.2	177•4 154•9	156.8	167.1 174.8	147.9	141.5	157•3	178.0	168.1	205.4	189.3	194.0	218.0	156.3	146.1	272-0	221.8	216.8	232.6	249•3	252.0	279.4	276.4	241.2	281.6
Н 2,Т М	158.7 166.6	163•6 145•6	148.8	157.8	137.6	141.5	139•3	160.7	154.4	180.1	175.9	179.6	193.2	143.8	141.5	234•6	206.5	202.4	216.2	233.9	218.7	241.8	252.7	236.5	250.7
н Т.Т М	153.9 157.3	153•0 138•9	142.9	157.3	131.2	129.9	132•0	151.6	148.8	175.3	170.2	171.2	181.7	135.9	135.4	216.8	199.5	189•9	204•8	217.4	209•5	228.1	241.2	226.8	244.5
Ξ×	216•9 220•4	313•5 179•0	182.5	199.9	188.7	161.2	503.2	234.0	217.5	509 . 3	223.6	246.4	391.9	210.4	161.6	608.3	289•8	286.0	284.8	300.8	631.8	1017.2	530.2	256.0	1314 . 7
4 ₹₹	181.2 180.6	201•3 142•4	145.0	149.3	145.3	136.0	227.7	183.9	174.3	266.4	183.8	194.0	254.1	159.2	131.9	337.6	238•3	229.7	229.4	242.5	319•0	367•6	305.0	227.9	363.5
π Σ	160•4 157•8	151•8 125•7	125.7	128.4	130.7	126.3	1.061	161•6	156.8	193.0	157.9	164.8	204.8	128.5	117.5	265.3	215•5	205.3	206.6	222.1	244.7	274•5	250.8	222.1	266•4
× ≖Σ	136 . 1 132 . 7	126•0 117•5	116.9 119.8	117.5	124.8	120.8	70461	152.1	148.7	161.3	148.9	153.2	169.8	117.1	109.8	217.1	204.9	193.0	194.8	209.9	219.1	226.4	230.5	212.3	235.2
ŢΣ	122.3 119.7	112•3 109•2	113.1	111.3	119.3	115.3	16402	142.3	138.3	140.3	139.8	143.7	156.1	109.2	102.7	194.9	195•7	186.0	187.1	205.5	204.1	207.5	220.7	209.9	221.0
RUN NO.	386B 386F	387B 387D	3888 388D	388F	389B	389D 380F		390B	3900	306C	391B	391D	391F	393B	393D	395B	395D	396B	396D	397B	397D	397F	398B	398D	398F

н С. Т.	274•2 283•9 280•9	2 75 •7 296•2	284•7 284•7	175.3 149.7	214•4 230•7 223•0	218•0 217•4	219 . 3 214.4	158.7 161.7 171.2	167•6 169•2	193.2	286.9 256.9 286.9
н 4 .Т М	239•2 291•6 26 6 •9	239.8 291.6	280•9 284•7	169.2 152.5	202•4 233•9 216•2	205•9 209•5	222•4 191•0	158.7 168.1 168.1	165.1 170.2	173.3	290•0 230•0 279•4
н 3 , 1 М	244•5 291•6 265•4	245•9 293•1	274•9 283•9	161.2 152.5	194•9 233•3 209•5	202.4 201.3	228.7 188.2	168.1 171.7 166.1	162.1 172.7	181.7	294•7 230•0 275•7
Н 2 , Т М	243•2 274•2 243•9	239•2 264•0	254•1 256•9	156.8 137.6	191.0 211.9 196.1	196.1 188.8	207.7 187.1	153.0 157.3 158.7	155•4 155•8	174.3	262•6 219•3 247•2
н 1 . Т М	221•8 237•8 235•2	223•0 246•6	239•8 249•3	151•1 128•7	180•1 199•5 189•3	178•0 181•2	185•5 188•2	139•3 146•1 150•7	147•0 149•7	166.6	243.9 203.6 237.2
σĩ	240 • 5 828 • 8 386 • 6	245•1 614•5	427•9 1552•5	173•2 227•0	212•4 956•2 319•3	236•8 283•1	490•2 204•5	804•0 1147•9 259•0	281•2 576•3	191.0	993.1 283.7 568.3
т 4 х	225•5 347•1 284•5	232•8 328•4	290•7 378•0	146•3 160•2	182.7 318.2 221.8	191.8 209.1	262•6 188•4	257•9 306•4 172•4	174.2	175.0	379•0 239•5 320•0
н Ж	224•6 267•2 250•9	233•1 270•1	264•5 281•8	140•1 145•0	176•0 221•0 192•6	182•6 189•4	210•2 186•5	167•9 182•0 158•1	161•8 180•9	173.8	277•3 228•6 253•8
×4 ×4	217•0 242•2 231•9	225•8 252•7	248•3 257•1	133•5 135•9	167.1 184.3 179.5	173.7 175.2	194•0 179•5	157•9 159•2 148•6	149.2 157.3	172.7	243.8 222.1 234.8
ΞΣ	215.5 237.5 227.2	222•2 245•8	239•2 250•2	126•5 127•3	159.7 167.6 174.5	169•0 166•3	186.8 172.7	155•3 157•6 141•3	139.4 152.7	170.6	232•3 220•4 231•6
RUN NO.	399В 399Б 399F	4008 400D	4018 401D	402B 402D	4038 4030 403⊺	404B 404F	405B 405F	4068 406D 406E	407B 407D	408D	409B 409D 409F

135

Table A-3a. Experimental cavitation data for 0.357-inch ogive using liquid nitrogen (English Units).

T 5 DEG R	137•27 137•63 137•77	139•93	140.45	140•00 139•54 139•52	148 . 82 149.33	150 •16 149 • 83	149.27
T 4 DEG R	137•05 137•61 137•65	139.79	140•42	139•84 139•54 139•27	147 .89 149.29	149.99 149.87	149.20
T 3 DEG R	136.69 137.38 137.23	139.37	140.35	139•25 139•36 138•74	146.99 149.22	149.20 149.67	148,28
T 2 DEG R	136•55 136•93 136•96	139•01	139.86	138.85 138.65 138.65 138.31	146.36 147.98	148•39 148•79	147.42
T 1 DEG R	136.57 136.78 137.00	138,80	139.63	138•76 138•46 138•20	146.38 147.31	148•07 148•10	147.06
۲۷	1.13 0.32 0.44 0.99 1.10	1.22 0.34 1.06	1•14 0•49 1•13	1.12 0.42 0.51 1.09 1.09	1.20 0.32 0.47 1.26	1•24 0•26 0•41 1•16	1.19 0.29
HV F T		45°3 45°6 45°8	45°4 45°9 46°0	444 444 444 444 444 444 444 444 444 44	83 • 7 83 • 7 83 • 7 83 • 3	88888 999 899 899 899 899 899 899 899 8	82•6 82•1
H0 FT	50000000000000000000000000000000000000	64•8 52•8 63•9	64 •4 55 •4 64 •4	88 - 7 65 - 5 68 - 3 64 - 4 91 - 5	145.1 104.5 112.1 145.3	118•4 94•9 98•6 116•7	114•9 92•2
PV PSIA	13,39 13,45 13,45 13,47 13,47 13,47	15.81 15.90 15.97	15.85 16.01 16.05	15.36 15.66 15.66 15.52 15.57 15.57 15.59	28 .14 28 .25 28.28 28.14	28.85 28.94 28.77 28.94	27•91 27•74
P0 PSIA	18,25 15,10 15,63 17,83 17,83	22•60 18•40 22•28	22•47 19•30 22•45	31.00 22.85 23.85 30.85 22.60 31.95	49.03 35.30 37.86 49.10	39.93 32.00 33.26 39.35	38.84 31.18
v0 FT/SEC	2801 3108 2800 2800 2701 2701	32•0 37•1 33•1	32 • 8 35 • 8 32 • 4	50 55 55 50 50 50 50 50 50 50 50 50 50 5	57•7 64•6 62•4 56•3	41.2 47.0 45.6 41.4	41•8 47•3
TO DEG R	137.84 137.92 137.93 137.93 137.93 137.84	140.38 140.47 140.54	140°42 140°58 140°62	139.93 140.24 140.09 140.15 139.99 140.17	150.01 150.08 150.10 150.01	150.46 150.52 150.41 150.52	149.87 149.76
CAVITY INCHES	1.50 0.60 0.80	1.00	0•50	1.00 0.60 0.90	1 • 50 0 • 45	0•90 0•45	0•75
RUN NO.	302A* 302B * 302D * 302F * 302F *	303A** 303B 303C**	304A** 304D 304E**	3058* 3058* 3056* 3056* 3056*	306A** 306B 306D 306E**	307A** 3078 307C 307C	308A** 308B

(cont'd)
A-3a.
Table

ۍ ۲	17	24 54 03		81	6 4 8 0 0 0 9 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9	24 84 82
T DEG	149.	158. 158. 159.		157. 158.	148. 148. 148. 148. 137. 137.	140 139 139
T 4 DEG R	148.81	157.50 158.33 158.99		156.44 158.02	148.84 147.78 148.79 148.79 136.80 137.63 137.63	140•18 139•55 139•43
T 3 DEG R	147.85	155.93 157.50 158.76		154.64 157.16	147.85 146.79 148.23 136.48 136.48 137.12 137.47	139 •66 139 • 12 139 • 07
T 2 DEG R	147.06	154.69 155.74 157.18		153•79 155•25	146.97 145.89 147.04 136.33 136.33 136.76 137.05	139.25 138.69 138.67
T I DEG R	146.90	154.37 154.87 155.90		153•68 154•49	146.65 145.65 146.52 146.52 136.35 136.89 136.89	139•12 138•58 138•62
× K	0.24 1.15	1.09 0.14 0.19 1.10 0.26	1•03 1•00	1•11 0•29 0•34 1•18	00000000000000000000000000000000000000	1.49 0.34 0.33 11
HV FT	82•4 82•0	140.2 139.9 140.4 139.6 139.9	142.1 143.3	138°0 138°8 139°5 138°3	0001888 0000 000180 0000 0000 0000 0000 0000 0000 0000 0000	4 4 4 6 • • • 0 • • • 0 • • • •
НО FT	90 .8 112 .9	192.6 148.8 152.2 192.7 155.6	174.8 176.5	242.9 173.1 179.1 245.1	129.0 124.7 124.7 123.1 123.1 50.9 17 50.9 4.1.9 4.1.9 4.2.9 50.1 50.1	68 53 53 6 6 7 6 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7
PV PSIA	27 •86 27 • 72	45.78 45.70 45.87 45.87 45.70	46•36 46•73	45°14 45°38 45°58 45°22	27,19 27,19 27,22 27,19 27,38 15,07 13,32 13,32 13,32 13,32 13,32 13,32 13,32	15.96 16.14 16.01 16.12
P0 PSIA	30.70 38.18	62.95 48.60 49.70 50.85	57.06 57.58	79.52 56.60 58.56 80.21	43.70 42.22 41.70 55.95 60.16 17.87 14.75 15.07 15.07 15.42 17.62 17.62	23.92 18.62 18.50 18.40
V0 FT/SEC	47•7 41•7	55.6 63.1 62.5 62.7	45°3 46°3	77.9 87.3 86.4 76.4	88 9900100 900000 900000 900000 90001000 90001000 90001000 90001000 90001000 90001000 90001000 90001000 90001000 90001000 900010000 900010000 900010000 900010000 9000100000 9000100000 90001000000 9000100000000	31•4 36•8 37•0 37•0
TO DEG R	149.83 149.74	159.30 159.26 159.34 159.23 159.23	159.55 159.71	159.01 159.12 159.21 159.05	149.40 149.42 149.42 149.53 149.53 137.77 137.77 137.77 137.77 137.77 137.77 137.77	140.53 140.71 140.58 140.69
CAVITY INCHES	06•0	1.50 0.75 0.50		1•20 0•60	0.90 1.20 0.60 0.80 0.50 0.50	1.00 1.30 1.50
RUN NO.	308C 308D**	309A * 309B * 309C 309C *	310F** 310F**	311A** 3118 311C 311E**	3120 3120 3120 3120 3150 3150 ** 3151 **	316A** 316B 316C 316C

.

T 5 DEG ·R	149.87 149.83	159•10 158•31 '	158•90 158•49		158.69	158•38 158•31	148•88		149•49 149•22	149•96
T 4 DEG R	149.18 149.69	158•56 158•04	158•51 158•06		157.86	157.46 158.13	148•81		148•81 149•20	149•49
T 3 DEG R	148.16 149.04	157•09 156•76	157•07 156•87		156.15	155•81 158•36	148.81		147 . 92 149 . 22	148.52
T 2 DEG R	147.55 147.80	155•75 155•34	155.70 155.25		155•38	154.89 156.69	147.64		147•10 148•00	147.73
T 1 DEG R	147•44 147•40	155•41 154•80	155•23 154•75		155•32	154.75 155.50	147.15		146.92 147.15	147.67
κν	1•25 0•32 0•37	1•14 0•13 0•16 1•14	0.17 0.18	1•14 1•08	1•18 0•32 1•09	0 • 33 0 • 44	1•29 0•51 1•18	1•22	1 • 26 0 • 35 1 • 25 1 • 25	1•10 0•21
HV FT	82。8 86。4 87。0	142.5 144.0 .142.7 .143.5	141.2 140.7	140.8 143.0	142 . 7 142.3 143.1	140.4 141.0	81•2 82•3 82•8	80.4	83.7 83.8 84.9 34.9	86•0 86•3
H0 F1	146.6 107.1 110.5	196•5 152•3 152•2 196•6	151.8 151.9	176•9 176•6	251.4 179.1 242.3	178•3 190•5	205.9 141.6 194.7	202.0	150.9 107.4 113.7 145.5	116•5 93•6
PV PSIA	27.97 29.11 29.32	46.48 46.93 46.56 46.81	46 .]] 45 . 95	45•99 46•64	46•56 46•44 46•68	45 . 87 46.03	27.47 27.83 27.97	27.22	28.25 28.31 28.25 28.45	29•00 29•08
P0 PSIA	49.57 36.10 37.25	64。16 49。65 49。65 64。15	49.55 49.62	57.77 57.62	82.09 58.45 79.12	58•25 62•22	69.72 47.89 65.85	68.44	50.98 36.28 38.42 49.14	39•28 31•57
V0 FT/SEC	57•3 64•8 63•7	55.3 63.1 54.7 54.7	63•5 62•7	45•0 44•7	77.1 86.0 76.5	86•4 84•6	79•0 86•4 78•1	80.0	58.6 65.6 62.7 56.0	42•3 48•1
TO DEG R	149.90 150.62 150.75	159.61 159.80 159.64 159.75	159•44 159•37	159•39 159•68	159 .64 159.59 159.70	159•34 159•41	149•58 149•81 149•90	149.42	150.08 150.12 150.08 150.21	150•55 150•61
CAVITY INCHES	1•50 0•90	1•50 1•20	1.20 1.00		1.20	1.30 0.40	0•50		1•30 0•45	1.50
RUN NO.	317A** 3178 317C	318A** 318B 318D 318D 318E**	319B 319C	320A** 320D**	321A** 321B 321F**	3228 322E	323A** 323D 323E**	3244**	325A** 325B 325D 325F**	326B * * 326C

T 1 T 2 T 3 1 4 L 7 DEG R DEG R DEG R DEG R	147.71 147.91 148.79 149.60 149.60 148.34 148.86 149.87 150.21 150.30 148.10 148.46 149.56 150.14 150.26 147.78 147.96 148.86 149.72 150.07	137.77 137.79 138.20 138.78 139.07 137.32 137.45 138.11 138.51 138.87 138.01 138.35 139.19 139.21 139.25	138.82 138.64 138.96 139.09 139.23 139.03 139.09 139.61 139.93 140.08	139.36 139.43 139.75 140.20 140.38 139.19 139.27 139.70 140.06 140.27	139.98 139.12 139.75 140.09 140.17 138.89 139.09 140.11 140.13 140.00	138.47 138.73 139 .16 139.48 139.8 2
	0.23 0.36 0.28 0.28 1.03	1.31 1.34 1.34 0.42 0.42 0.53 1.23	0.97 0.19 0.24	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 • 33 1 • 05 0 • 45 0 • 41	1.12 0.32
<u>-</u>	86.6 87.1 87.6 87.7 89.8	0.0 0.1 m 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	466.1 466.1 466.1	466 466 466 466 466 466 466 466 466 466	46°4 46°4 46°4	46•7 46•7
FT	94.7 98.8 96.8 95.8 117.2	168.1 168.1 96.0 644.8 644.8 90.7 90.7 92.5	50•00 50•00 51•0	62.0 50.9 61.6	52.4 84.0 61.3 33.3	85.1 0.00 0.00
PSIA	29.20 29.34 29.55 30.20	15.43 15.43 15.43 15.48 15.68 15.68 15.29	16.23 16.07 16.07	16.16 16.10 16.14 16.12	16.14 16.18 16.23	16.23 16.23 16.27
PSIA	31.92 33.28 32.59 32.25 30.42	58.74 58.76 33.54 222.652 233.55 31.64 31.64	32.42 21.68 17.42	21.60 21.60 17.75 21.47	18.25 29.27 21.35	22•05 29•64 20-87
FT/SEC	447 455 455 41 45 41 45 45 45 45 45 45 45 45 45 45 45 45 45	78.0 77.1 555.9 493.8 50.6 50.6 50.6 50.6	48•5 36•3	99999999999999999999999999999999999999	518 54 518 54 519 54	51•2 47•1 51-2
TO DEG R	150.68 150.77 150.86 150.89 151.29	140.00 140.00 139.95 140.00 140.00 140.17 140.26 139.86	140.80 140.63 140.63	140.65 140.72 140.67 140.67 140.71	140.71 140.74 140.80	140.83 140.80
CAVITY INCHES	1.00 0.50 0.75 1.00	1•60 1•30 0•50	1.75	1.00 0.90 1.10	0•50 0•90	0•60
N.O	3260 3266 3266 3266 3266	3276* 3280** 3280** 32898 3290 3295 3295 3295 4*	3300** 547A** 547B	547C 547D** 547E 547E	5476** 547H 548A** 548B	548C 548D**

 ^{*} DENOTES AN INCIPIENT RUN
** DENOTES A DESINENT RUN

T 5 DEG R	150.37	150.39	150.53	150.68	150.84		150-03	149.87		150.07			160 01	120 22 120 25	C0+007	140.20	160.29									160.20
T 4 DEG R	149.94	21.041	150.34	150.64	150.86		149-90	149.81	4	149.63			150.41	150,87	70.07	160-00	160.25								160 63	159.97
T 3 DEG R	149.18	149.441	149.51	150.37	150.37		149.24	149.58		148.88			158.02	159.34		159.03	159.80								158 26	158.87
T 2 DEG R	148.50	00.00+1	148.73	149•42	149.54		148.36	148.45		148.19			157-10	157.86		157.86	158.45								157.37	157.72
T 1 DEG R	148.37	070041	148.39	148.79	148.95		147.92	147.82		147.80			156.82	157.21		157.32	157.63								157.23	157.32
κν	1•06 0•05	1.01	0.08	6T•0	0.16	0•98	0.27	0.31	0•98	0.24	1.12	10-1	0.07	0.16	0.89	0.11	0.17	0.74	0.60	0.73	0.73	0.77	0.74	0.95	0.18	0.20
HV FT	87.3 88.1 87 0	87.9	88 0 88	00°.2	88.6	86•6	86.7	86.7	86.6	86.9	87.1	149.9	151.2	151.1	151.5	151.9	152.2	154.2	154.2	154.8	154.8	154.1	154.9	153.5	153.3	153.8
HO FT	112.7 89.6 90.6	111.8	90 • 5	109.7	93.1	135.2	102.8	104.4	134.6	100.6	138•2	201.8	155.8	161.3	198.6	158.8	163.0	179.1	174.7	178.3	180.0	180.4	180.2	231.6	171.6	173•6
PV PSIA	29.40 29.67 29.61	29.61	29.64	29.73	29,81	29.20	29.23	29 . 23	29.20	29.29	29 . 34	48.73	49.12	49.08	49.20	49.33	49 . 42	50.02	50.02	50.20	50.20	49.98	50.24	49.81	49.76	4 9 •89
P0 PSIA	37.98 30.17 30.52	37.64	30.47	36.95	31.34	45.60	34.64	35•20	45.39	33.90	46.58	65 . 62	50.62	52.42	64.54	51.56	52.92	58.10	56.68	57.85	58.40	58.54	58•44	75.23	55.68	56.35
V0 FT/SEC	39°2 44°5 44°0	39.0	43.04 43.04	38.5	42.5	56.4	61.4	61.1	56.0	60 . 8	54•3	57.5	64•9	64•2	58.4	64.6	63 . 9	46.4	46.8	45.7	47.2	46.8	46•9	72.9	80.5	80•2
TO DEG R	150.80 150.97 150.93	150.93	150.08	151.00	151.06	150.68	150.70	150.70	150.68	I50.73	150.77	160.58	160.74	160.72	160.78	160,83	160.87	161.12	161.12	161.19	161.19	161.10	161.21	161.03	161.01	161.06
CAVITY INCHES	1.10 0.90		1.00 0.50		0•60		06.0	0.00		1•10			1.30	0.75		06•0	0.60								1.30	1•00
RUN NO.	549A** 549B 549C	549D##	5495	549G**	549H	550A**	9066	2000	5500**	30CC	550F**	551A**	551B	551C	551D**	551E	551F	552A**	552C**	552E**	553A**	5530**	553G**	554A**	554B	554C

.

T 5 DEG R	160.36 161.01			CO.101	160.63		160.65	160•/8			160.72	160.36		161.14	161.21			150.91	150.52	150.73	150.89		150.68	150.80	151.00	151.02			150.62
T 4 DEG R	160.34 160.29			100•/4	159.91		10.041	160•54			159.95	160.33	1	160.70	161.26			150.61	150.50	150.25	150.93	:	150.10	150.68	150.93	46.041		1	150.14
T 3 DEG R	160.13 159.32			68•6CT	159.05		159.00	160.31			158.94	159.82		159.64	161.05			150.05	150.34	149.58	150.80		149.54	150.26	150.32	150.79			149•62
T 2 DEG R	158 .83 158.38			19.841	158•04		158.13	159.16			158.08	158.45		158.74	159.75	•		149.27	149.36	149.08	149.90		149.00	149.47	149.74	149.99			148•95
T I DEG R	157 . 97 157 . 99			158.54	157.79		157.82	158.17			158.00	157.91	I	158.47	158.90			148.97	148.82	148.75	149•22		148.99	149.22	149•40	149.60			148.90
K۷	0.28 0.21	0.97	0•98	0.25	0.22	0.98	0.19	0.29	0.93	0•94	0.24	0.29	1.01	0.23	0.31	1.01	1.18	0.32	0.38	0.31	0.38	1.19	0.37	0++0	0.39	0.43	1•22	1•20	0.37
H Z H	153 . 6 153 . 9	154.5	154.9	155.4	154 . 9	153 . 8	154.5	153.9	154.5	155.7	155.7	154 . 9	155.2	158.0	158.6	159.2	88 . 6	89.4	88 9	89.4	89 ° 9	88•5	88.6	88.8	89.3	90.2	91•4	87.7	88.1
F10	181•6 174•8	235.8	252•6	183.9	179.0	236.5	173.3	180.4	226.1	248.4	183.1	187.1	249.2	183.2	191.8	250.2	183.9	120.8	124.8	119.1	125.5	213.7	135.4	138.9	138.0	143.1	214.5	214.2	134.9
PV PSIA	49 . 85 49 . 94	50.11	50.24	50.37	50.24	49.89	50.11	49•94	50.11	50.46	50.46	50.24	50.33	51.16	51.33	51.51	29,81	30.08	29.90	30.08	30.23	29.78	29.81	29.87	30.05	30.32	30.71	29.52	29.67
P0 PSIA	58.95 56.73	76.54	81.99	59°65	58.07	76.80	56.23	58.55	73.40	80.59	59.36	60.69	80.89	59 . 32	62.12	81.06	61•95	40-63	42.01	40.08	42.23	72.01	45.60	46.75	46.45	48.15	72.15	72.23	45.43
V0 FT/SEC	79•6 80•4	73.3	80.1	85.0	83.9	73.8	79.8	77.1	70.2	79.5	85.8	84.5	77.5	84.7	83.2	76.1	72.0	79.1	78.3	79.6	77.8	82.1	90.1	89.6	89.7	88•8	80•6	82•5	9.06
TO DEG R	161.05 161.08	161.15	161.21	161.26	161.21	161.06	161.15	161.08	161.15	161-30	161-30	161-21	161.24	161-59	161.66	161.73	151-05	151.22	151.11	151.22	151.31	151.04	151.06	151.09	151.20	151.36	151.60	150.88	150.97
CAVITY INCHES	0•50 0•90			0.00	1.10	•	1.00	0.50			00.1	02.00		1-00	0.50			1,00		1-30	0.50		1.30	0.60	0.75	0.50			1.30
RUN • 0	554D 554F	5546**	5554**	555B		5555**	555F	555E	5556**	5564##			5560**	5565	5561	5566**	5570**			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	557F	5584**	558B	5580	553F	558F	5586**	5.50∧**	559B

i

T 5 Deg r	150•53	150.91	50 63			50.50	50.71				61.04		t0 • M0	30.87			CT • 0+	27 07						
T 4 DEG R	150.46	150.89]	150.44	150-44		150.16 1	150.61				140-00	130.05		139.55]	139.90		-	140.47						
T 3 DEG R	150.05	150.43	149.76	150.23		149.40	150.21	149.17			139.66	138.01		139.23	139.52	139.86		140.08						
T 2 DEG R	149.15	149.76	148.82	149.26		148.64	149.20	148.39			139.05	138.40		138.91	139.05	139.30		139.63						
T I DEG R	148.90	149.44	148-48	148.63		148•32	148.64	148.12			139.05	138.55		138.94	139.00	139-18		139.50	•					
× K	0•40 1•14	0 • • 0	0.07	0.17	0.80	0.04	0.10	0.00	06•0	0.97	0.22	0.18	0.92	0.19	0.22	0.27	0.89	0.25	0.93	1.24	1.23	1.25	1.22	1•32
FT FT	87 . 9 88.3	0,48	87.8	87.6	88•2	88.4	89.1	89.5	90°7	45 . 9	46.1	46.0	45.9	46.0	46.1	46.1	46.1	46.4	46.5	45.2	45.5	43.9	45.5	44.3
HO FT	138•3 208•8	1.001	0.06	92.7	108.5	89.7	92.1	89.7	112.1	63•1	50.8	49•9	61.8	50.0	50.6	51.4	61.2	51.3	61.9	130.9	131.2	174.8	171.8	178.8
PV PSIA	29.61 29.73 20.05	29.32	29.58	29 . 49	29.70	29.75	29 . 99	30.11	30.47	15,99	16.07	16.05	16.01	16.05	16.07	16.07	16.07	16.16	16.20	15.77	15.86	15.32	15.86	15 . 48
P0 PSIA	46.60 70.36 46.60	36.85	30.30	31.22	36.52	30.21	30.99	30.16	37•68	22.00	17.72	17.40	21.55	17.42	17.64	17.92	21.34	17.87	21.57	45.70	45.79	61.10	59°95	62+50
V0 FT/SEC	90•0 82•3 80•3	40.2	44•6	43.9	40•4	44.4	43•9	44•3	39.2	33.7	37.0	36.8	33.4	36•6	36•2	35•9	33•0	35.7	32•6	66.8	66.8	82•0	81.6	80.8
TO DEG R	150.93 151.00 151.15	150.75	150.91	150.86	150.98	151.02	151.16	151.24	151.45	140.56	140.63	140.62	140.58	140.62	140.63	140.63	140.63	140.72	140.76	140.35	140.44	139.90	140.44	140.06
CAVITY INCHES	0•70		0.75	0.50		06.0	0.60	1.00			06.0	1.50		1.30	0.00	0.60		0.75						
RUN NO.	5590 5590 559F	560A**	5608	5600	560D**	200E	200F	5094	560H**	561A**	561B	56IC	561D**	561E	561F	5616	561H**	561I	561J**	562A**	562C**	563A**	563E**	5648**

* DENOTES AN INCIPIENT RUN** DENOTES A DESINENT RUN

142

P 5.1	19.90	13.19	13+32	15•36	15.88		15.43	14.97	14.95	1	26•32	27.08		28.37	27.86	00.70	26.83		43.44	44.10	45.18		42.51	43.91	73 26		01.02	76.02	12.40	21021		12007	15.66	15.27	15.25
P 4.T PSIA	12.69	13.18	13•21	15•21	15.85		15.27	14.97	14.71		24•42	27•02		11.82	27.91	26.80	26.29		41.86	43.63	45.10		39•66 *2 03	16074	76.35	20.00	C	17.07	12.48		12.10		15.61	14.99	14.86
P 3,T PSIA	12.39	12.97	12.85	14•81	15.77		14.69	14.79	14•21		20°C7	26.92		20 • 87	70.12	25.62	24.90		38.65	41 . 86	44.58		51.05	+	74.90	23.11	25.44		12.20	12.75	13.05		15.09	14.57	14.52
P 2,T PSIA	12.26	12.58	12.62	14•47	15•29		14.31	14.13	13.61	20.02		00.00	76.60	26.07	17.07	24•28	23.78		36.23	38.25	41.18	34.66	37.30		23.66	22.20	23.76		12.09	12.45	12.69		14•69	14.16	14.14
P 1,T PSIA	12.28	12.46	12.65	14•26	15.06		14•23	13.94	1,001	22.RG	24.13		25.21	25.26		23.78	23 • 56		20.02	86.95	38 " 58	36-26	35.86		23.21	21.90	23.04		12.10	12•39	12.55	 	14•57	14.06	14°09
P 5 Psia	12.90	16.40	14.77	18.10	20.73	07 21	11.000 27 45	17-44		27.50	44.66		33.90	36.32		32.06	30.00	06 30			06•94	45.15	69.22		36.45	28 . 47	48.80		13.03	15.57	16.18		/6*/1		CK • CT
P 4 PSIA	13.75	15.10	14+20	16.98	19.80	18.05	23,05	18.44	•	28.34	39.59		31.25	34.16	ı	29.82	28•44	44 82			G0 • 7 c	43.45	53.29		31.30	28.97	33.10		13.82	14.19	15.50	17 33	16.87	16 40	00.01
P 3 PSIA	12,25	12 683	t + • • • •	14.60	16.07	14.45	15.55	14.34	,	23.80	28 . 73		26,35	28.83		25•28	76+42	37.60	40.74	10 10		35,25	39.76		C1.42	23.07	25.10		12.40	12.44	13.24	14.92	14.77	14.65	
P 2 PSIA	12.40	12,50		14.56	15.14	14.25	14.75	14.27		23•70	25.70		81.62	26.56		24.80	16042	36.78	38.44	39.40		34.10	37.40	37 66		79.77	24•IU		12,38	12+04	12 • 84	14.77	14.65	14.55	1 1 1
P I PSIA	12.35	12.44		14.32	14.57	14.10	14.25	13.94		23.74	25.40		87.67	25.90		24.36	07.47	36.55	38.00	38.95		34.45	37.16	72.60			00.00		12.18		96.91	14.52	14.40	14.30	>
NO.	302B 302D	302F		3038	304D	3058	3050	305F		3069	306D	1 F O F	200	20105		308B 308C	2	309B	309C	309F		3118	311C	312B	0 1 0 0	2120	7770		1510	2150	01771	316B	3 1 6C	316D	

143

P 5,T PSIA	27•91 27•86	45°34 43°59	44•90 43•98	44.42	43•75 43•59	26.40	27•33 26•92	28•05	28.17	20°22 78,54	28.22	14.52	14.33	14.69	14.67	15.50	15.81	15.70	15•99	15.59	15.43	15•25	15•43
P 4,T PSIA	26•86 27•63	44 .1 4 43.01	44•02 43•05	42•62	41.78 43.20	26•29	26•29 26•89	27•33	27.61	28•45 28-24	27.69	14•24	13.99	14•65	14•53	15•36	15.63	15.48	15.96	15•52	15.56	14.92	15.45
P 3.T PSIA	25•34 26•64	40•99 40•32	40 •95 40 • 54	39 • 08	38•40 43•71	26•29	25•00 26•92	25•87	26.27	16-12	26.37	13.71	13.63	14•64	14.41	15.04	15.18	15.13	15•74	15.18	15.54	14.60	15.50
P 2.T PSIA	24•46 24•82	38•29 37•48	38.18 37.30	37.55	36.61 40.17	24.59	23.83 25.10	24•72	24.97	26•31 75-70	25.05	13•34	13.04	13.84	14.11	14•53	14.86	14•71	15•34	14.57	14•53	14.19	14.78
P 1ºT PSIA	24.31 24.26	37•62 36•44	37•27 36•34	37.44	36 . 34 37.79	23.91	23•58 23•91	24.64	24•69 25	25.25	24.79	13•32	12.93	13•53	14.28	14.48	14.79	14•64	15•13	14•43	14.35	14.14	14.45
P 5 PSIA	28•35 39•22	4 9 •02 50•40	50•28 50•67	47 . 95	47 . 88 70.92	56 . 14	30.68 43.17	30.22	30.92	30.61 24 52	32.62	15.22	15.98	27•27	14.72	17.14	16.72	17.06	19.25	18.10	23.95	15.72	24.32
P 4 PSIA	28•78 32•08	46•58 47•07	47•62 47•82	46.20	45.21 65.02	48.01	29.85 40.22	29.97	30.29	34•11 22 61	30.65	17.47	17.02	24•92	14.87	15.70	15.58	15.44	18•43	16.15	20.42	15,34	24.00
P 3 PSIA	25•07 26•92	39•58 40•25	39.88 40 . 12	38 . 50	38•07 47•72	27.77	24 .98 29 . 32	25.65	26.09	28.52	26.58	13,97	14.08	15.77	14.34	14.78	14.85	14.82	15,62	15,20	15.87	14.67	16,57
P 2 PSIA	24•60 25•88	38•18 38•27	38•08 38•17	37.60	36•87 40•02	25.07	24•28 25•87	25.22	25.49	26•68 26 36	26•02	13.87	14.02	14.87	14.29	14.56	14.58	14.64	15.10	14.80	15.20	14.47	15.24
P I PSIA	24•62 25•88	38•42 38•57	38•22 38•22	37.60	36•75 38•82	24.59	24•45 25•52	24.87	25.22	26.02	25,72	13.67	13.89	14.57	14.12	14.32	14.38	14.36	14.80	14.35	14.65	14.14	14.77
RUN NO.	3178 317C	3188 3180	3198 319C	3218	322B 322E	323D	325B 325D	326C	326D	326E	326G	3298	329D	329F	547B	547C	547E	547F	547H	548B	548C	548E	548F

P 5.T	PSIA		28.71	28.74	28.97	29•20	29.46		28.17	27.91	28.22		47.18	48.90			40.06	l	47.64	47.85	48.23	49.76		40.85			48.90	49.20		49.08	48-23	50-07	50.24		79.58	28.04		62.62	29•55		29.20	29.40	29.73	100	C1 • K7
P 4.T	PSIA		20.02	28.31	28.65	29.14	29 . 49		27.97	27.83	27.55		46.03	46.97	47-60	47.07			40.31	41.30	48.18	48.06		49.12	47.18		66•14	48•65		47.26	48.14	49.03	50.37		29.08	28.91	28.61		10.42		28.2 8	29•20	29.61	29.64	
P 3,T	PSIA	26.05		00.010		28•71	28.71		26•94	27.47	26•40		42.97	45.87	45.18	46.93		1. 6.		78+1+	47.68	45.83		47.14	45.22	46.22	77074	48.10		44.98	46.97	46.56	49 . 85		28.19	28.65	74.77		c 7 e 4 U		14012	28.54	28.62	29.37	
P_2,T	PSIA	25.84	25.84	26.18		77.17	14 ●12		20.03	25.76	25.39		41.03	42.62	42.62	43.91		41.50	40-21		t/•tt	43.75		44.70	43.01	43.20		40.40		43.09	43.91	44.54	46.81		27.00	27.13	26.70	79-76		36 60		21.30	27.72	28.11	-
P 1.T	A101	25.65	25.52	25.68	20 JC		10.07	36 00		C0+47	24•82		40.43	41 • 25	41.48	42.12		41.29	41.48	47.85		46.04		44.10	42.47	42.54	43.78		60 CV			43.95	44•90		50.02	26,32	26.21	26.92	1	26.56	26 00	24.02	21°77	27 . 49	
P 5 Pc1A		29.32	31,12	31.20	33.08	32.74		35.82	37.20		06.02	40.37			24.54	54.96		46.43	54.40	58.65	55. BB		60 26		16.10	59.80	63 . 55	1	49.03	61.04			61.40	34.72		4C = 14	29 • 83	41.53		28.95	48.21	47.42		42 • /0	
P 4 P 1 A		27.07	28.58	28.59	32.28	31.78	•	29.30	33.40	27.58		45.00	10,1			24•12		43.53	45.45	60.72	46.5.8		48.72	45.47		40.00	61.70		45.01	54.20	0 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			28.78	38 20		124-17	43 .]]		27.45	32.25	31.45	44.2E	n9•++	
P 3 PSIA		25 . 84	06.92	26.57	28,94	28.58		26.68	27.37	26.04	•	41.62	45.57	43.40				41.10	42 . 30	47.65	42.98		43.78	42.60	12.60		49.20		42,53	45 . 34	43.75	48.59		26.65	28.08	75 OF		68.82		26.20	27.85	27.68	29.35		
P 2 PSIA		25•14 25 14		61 • 67	20.62	26.50	1	25,36	25.65	25.28		39 . 92	42.07	41.50	47.58		00 07			41°95	41.68		42.32	41.37	41-36		46.40		41.21	42 . 86	42.45	43.72	1	25.75	26.36	25.01		20.00	i i i	19.62	26.51	26.52	27.38)) 	
P I PSIA		24•89 25 30	10000000000000000000000000000000000000		20.00	26.04		00.42	25.17	24.86		39.57	40.72	40.62	41.18)	40-78			40.62	41.10		41 . 22	40.94	40.33	40.55			40.86	42 . 04	41.59	42.45		25.00	25.46	24.35	75.15	r 1 • 1 J		21.12 21.12	14.62	25.48	26.42		
NON • • •	6100	047B	2075	1075		04VH		8000	2099	550E	1	5518	551C	551E	551F		554R				1900		555B	5550	555E	5555	-		0.00B		396E	556F		557B	557C	557E	557F	-	200			JACC	558F		

P 5.T PSIA	29.11 28.97 29.58	29•11 28•91 28•91 29•26 28•65	15.56 14.78 15.25 15.46 15.57 15.57
P 4.T PSIA	28•34 28•85 29•55	28.82 28.85 28.37 29.08 27.97	15.43 14.50 14.99 15.32 15.50 15.90
P 3.T PSIA	27•52 28•19 28•79	27.74 28.48 27.19 28.45 26.83	15.09 14.36 14.67 15.29 15.50
P 2,T PSIA	26•51 26•81 27•74	26.32 26.97 26.05 26.89 25.68	14.50 13.89 14.50 14.50 14.50 15.06
P 1.T PSIA	26•43 26•43 27•24	25.81 26.02 25.02 25.05 25.05 25.29	900 9444 9444 96440 900 900 900 900 900 900 900 900 900
P 5 PSIA	30 .7 3 47 . 60 47 . 87	31.30 32.84 35.04 32.53 30.00	17.09 15.14 15.38 17.16 18.79 18.57
P 4 PSIA	28.00 33.02 33.71	28,92 32,02 28,08 31,19 27,52	15.55 14.86 14.88 15.48 16.67 16.37
P 3 PSIA	26.40 27.88 27.99	26.16 28.35 26.03 27.49 25.84	14.74 14.74 14.40 14.46 15.02 15.02
P Z PSIA	25.83 26.56 26.61	25.22 25.99 25.33 25.93 25.14	14.52 14.32 14.38 14.60 14.84 14.79
P 1 PSIA	25•13 25•52 25•66	24.60 25.12 24.58 25.09 24.64	14.30 14.22 14.22 14.55 14.55 14.55 14.55
RUN NO.	5598 559C 559E	5608 5600 5606 560F	5618 5616 5616 5616 5616

H 5,T FT	36•6 37•5	37.9	45°5	44.2	42.8	42.7			80.00	84.0	82.4	79.7	79.2	132.4		134.0	120.4	134.0	101	- 0 - 1 - 0 - 1	77.6	1.75	1 1 1	37.6	0-44	444	43.6
H 4,1 FT	36•0 37•5	37•6 43 5	45.4	43.7	42.8	42.0	72.2		0 • 4 1	83•2	82.6	79.4	77.5	127.3	1.221	137.9	120.1	130.9	ר-רר	72.8	77.4	35.4	37.1	37.5	44.7	42.0	42.5
H 3,T FT	35•1 36•8	36•5 4, 2, 2	45•2	42.0	42.3	40.5	40.4			79.4	81.6	75.1	73.2	116.8	107.2	136.2	108.7	124.9	73.2	68°5	74.9	34.6	36.2	37.1	43.7	41.6	41.4
H 2,T FT	34•7 35•7	35•8 41.3	43 . 8	40.8	40•3	39 . 3	66.7	73.7		75.6	77.4	71.3	69•7	109.1	115.6	125.1	103.7	112.5	69.3	64.8	69•6	34.2	35.3	36.0	42.0	40.4	40•3
H 1,T FT	34 • 8 35 • 3	35•9 40-7	43.1	40•6	39.7	39•0	66.8	70.8		74.1	74.3	69•7	69•0	107.1	110.2	116.6	103.0	107.9	67.9	63.9	67•4	34•3	35.1	35•6	41•6	40.1	40•2
H 5 FT	36•6 47•1	42°2 52°3	60.3	50.7	81.8	50.3	81.3	136.5		101.6	109.3	95 . 7	89 . 2	142.1	165.6	177.3	138.1	219.5	109.8	84.3	150.1	37.0	44.6	46.4	50.6	47.4	45.8
H FT F	39°2 43°2	40.5 48.9	57.4	52.1	69°9	53 . 3	83.9	119.9		93 • 1	102.4	88 . 6	84•2	137.0	150.8	161.0	132.5	165.1	93.3	85.0	0•66	39.4	40.5	44.4	49 . 9	48.4	47.
H F13	34•7 36•4	6.00 41.7	46.1	41.2	44.5	40•9	69•8	85.2	1	1.1.1	85•5	74.4	72.1	113.5	123.6	133.5	105.9	120.5	70.8	67.5	73.8	35•1	36•2	37•6	42.7	42.2	41.8
H 2 FT	35•1 36•2	41.6	43•3	40.4	42.1	40.4	69•4	75.7	C F	4•c1	78•4	72.9	5•1V	110.8	116.2	119.3	102.2	112.8	68•7	66.1	70.7	35.1	35.9	36•5	42.2	41.8	41.5
H 1 F 1	999 999 999 999	0°04	41.6	40.2	40. 1 -	1.45	69•6	74.7	1 1 1		16.3	71.5	1.01	110.1	114.8	117.8	103.3	112.0	68•8	65.8	69.1	34.5	35•0	35•6	41.5	41.1	40•8
RUN NO.	302B 302D 302D	303B	304D	305B	0000		306B	306D	3070		20105	308B)00c	309B	3090	309E	3118	3110	3128	312C	3 1 Z D	3158	3150	315D	3168	3160	316D

H 5•T FT	82•6 82•4	138•7 133•0	137•3 134•3	135.7	133•5 133•0	77.8	80•8 79•5	83•0	83.4	84.7	84•6	83•6		41.4	42.0		41•9	• • •	n c • u • t	4 v • c • c		44.7	44•2	43.6	44.2	
H 4.9T FT	79•3 81•7	134•8 131•0	134•4 131•2	129.8	127•0 131•7	77.5	77•5 79•4	80.8	81•6	84•3	83.9	81.9		40•6	41.9		41•5 ** 0		0 • • • • • •	44 • 17	40.04	44.5	44.6	42.6	44.2	-
H 3,1 FT	74•5 78•6	124•5 122•3	124•3 123•0	118.2	116•0 133•3	77.5	73•5 79•5	76.2	7.01	82.6	81.1	77.8		39•0	41.8 8		41.1	0.04	43.44	43.3	40.1	4254	44 5	41.7	44.4	
H 2,T FT	71.8 72.9	115•7 113•1	115.3 112.5	113.3	110.3 121.8	72.2	69.9 73.8	77.6	73.4	1.0	75.9	73.6		37.9	100	r • • • •	40.2	41•5	42•5	42.0	43.9	7.1.4	41.5		0 0 0 V	101
H 1,1 FT	71•3 71•2	113•5 109•7	112•4 109•4	113•0	109•4 114•1	70.1	69•1 70•1	, ct	10.0	75.4	74.3	72.8		37.9	- • 0 C	0	40.7	41.3	42•3	41.8	43•3	C [7	7 • 7 •			7 • 7 •
H 5 F1	84•0 118•7	150 • 9 155 • 5	155.1 156.4	147.3	147.1 225.4	174.7	91•3 131•6		89.9	1.26	1.01	04.01		43.6	45 . 8	80•6	42.1	49•3	48.1	49.1	55 . 8		52.0	7.01	45.1	71.44
Н FT	85•3 95•8	142.8 144.4	146.2	141.5	138•3 205•0	147.5	88•7 122•0		89.1	100	102.2	96•8 01 2	7 • T 4	50.3	49•0	73•2	42•5	45.0	44.6	44.2	53.3		46.4	59 • 3	43.9	70.4
H F13	73•7 79•5	119.9 122.0	120.8	116.4	115•0 146•6	82•1	73•4 87•0		75.5	76.9	84•5	80.2	18.4	39 8	40.1	45•2	40.9	42.2	40.4	40 4	44.8		43•5	45.5	41•9	47.6
н 2 FT	72.2 76.2	115.3 115.6	115.0	113.5	111.1 121.3	73.7	71.2 76.2		74.2	75.0	78.7	77.3	16.1	39.5	40.0	42.5	4 U ~ B	41-6	7 1 4	41•0	43.7		42.3	43.5	41.3	43•6
H 1 1	72.3 76.2	116.1 115.5	115.5	113.5	110.7 117.4	72.2	71•8 75•1		73.1	74.2	76.7	75.8	75.7	38.9	39.6	41•6	6 - U V			0.14	4100		41.0	41.8	40•3	42.2
RUN NO•	317B 317C	3188	319B	319C 321B	322B 322B	3230	3258 3258	2	3260	326D	326E	326F	326G	3.79R	3290	329F		04-CC	540	547E	1 4 7 F	H/ +C	5488	5480	5485	548F

H 5,T FT	85.1	85•2	85.9	86.6	87.5	83.4	4.00	83.6	0 771	0 4 • 0 • 1 • 1		147.7		140.5	147.0	148•2	153•3	153.6	150.4	150.5	151.5	1 1 1 1		156.4	154•9	010			87.7		86.6	87•3	88.9	88.4
H 4,T FT	82.9	83•8	84.9	86.5	87•6	82.8	82.3	81•5	0-141		146.2	147.4			145.2	148•1	147.7	151.2	144 8	146.0	149.6	ויפיו		150.0	155.4	96.2	2 - 5 A	3448	87.9		83.1	86•6 67 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000
H 3,T FT	79.3	80.8	80.8	85.1	85.1	79.5	81.2	77.8	130.0	140.4	138.2	144.0		0.201	137.0	140•4	140•3	144.6	138.3	138.3	147.8	137.5		142.7	153.6	83.5	84.0	81.2 2	87.3		0.1.5	84°6		7010
H 2,1 FT	76.1	76.1	77.2	80.4	81.0	75.4	75.8	74.7	124.6	129.8	129.8	134.0	1 261		128.8	1.00T	C•551	136.6	131.0	131.7	139.1	131.3	134.0	136-1	143.5	7.97	80.2	78.8	82.8	0 7		80° /		1 • n
H 1.T FT	75.5	1-51	75.6	77.4	78•2	73.5	73.0	72.9	122.6	125.3	126.0	128•2	125.4		120-5		1.061	134•6	129.3	129.5	131.9	130.8	130.2	134.1	137.3	78.3	77.6	77.3	79.5	101		2 • 7 • 7 8 • • 0	81.2	
н F1	87.0	92.7	93.0	0°66	6 * 16	107.7	112.5	88•9	152.0	169.3	165.9	170.7	142.3	0 0 7 1	182.7	7900T	7 • C 1 T	188.7	160.7	187.1	199.9	150.9	191.4	170.3	184•9	104.2	128.4	88.6	126.2	85.0	C.841	145.6	130.0	
H F F	79 • 9	84.7	84.7	96.4	94•8	87.0	100.0	81.5	138•3	163.2	149.5	167.9	132.8	130.1			C • 7 + T	149.9	139.3	139.3	193 . 6	137.6	168.5	142.8	205.4	85.03	115.0	81•2	131.4.	81.5		69.0	135.5	
н ЕТ	76.1	18.2	78•4	85•8 	84•1	78.7	8C • 9	76.7	126•5	139.5	132.3	142.7	124•8	128.7	146.3			133•6	129.7	129.7	151.5	129.5	138•7	133.5	149•5	78.6	83•1	76.4	85.5	2.77	82.4	81.9	87.1	
H F T	73.9	4°0/	6°0/	C 8/	7.81	74.6	75.5	74.4	121.0	128.0	126.1	129.6	121.9	124.1	127.6	126.7		128.8	125.7	125.7	129.2	125.2	130.6	129.2	133.4	75.8	7.7	73.5	76.6	75.6	78.2	78.2	80.9	
H H H	73.1	t t - t	- + + - F		1001	73.5	74•0	73•0	119.8	123.6	123.3	125.1	122.1	122.2	123.3	124.8		125.2	124•3	122.3	123.0	124.0	127.9	126.4	129•2	73.5	74.9	71.5	73.9	73.9	74.9	75.0	77.9	
NO.	549B 540B		л 4 УП М 2 1	747	1440	550B	5500	550E	5518	551C	551E	551F	554B	5540	554D	554F		555B	5550	555E	555F	556B	556C	556E	556F	557B	557C	557E	557F	558B	558C	·558E	558F	

~
•
-
1
-
•
••
ت
-
- at
-
60
-
ч.
•
÷
_
.
_
_

-

H 5+T FT	86•4	85.9	87•8	86•4	85.7	85.7		000	84.9		44•6	42.2	43.6		44•3	44.6		40.0
H 4•T FT	83•9	85.5	87•7	85.5	85.5	84.0		80.0	82•8		44.2	41.4	0.04		43.9	44.4		0.04
H 3,T FT	81.4	83.5	85•4	82•1	84.4	80.3		84.3	79.2		43.2	41.0	0 [7		42.7	43.8	•	44•4
H 2,T FT	78.2	79.1	82.1	77.6	79.6	76.8		79.4	75.6	•	41.4	39.6	0 17	4100	41.4	42.1		43.1
H 1, T FT	17.9	77.9	80.5	76•0	76.7	75.2		76.8	74.4		41.4	40.0		4101	41.2	A.1.8		42.7
H 5 FT	91.5	146.2	147.1	93.3	98.7		ZOCAT	97.2	89.2		49 . 2	43.3		44.0	49.4		24.44	53.7
H 4 FT	82•9	98•8	101.0	85.8	05.4		0.501	92.9	81.4		44.5	42.5		42 • 5	44.3		4 / • 4	47.0
н FT	77.9	82.5	82.8	1.77			1991	81.3	1.47		42.1	41.1		41•3	47.7		43•0	43•2
H FT	76.1	78.4	78.5	74.2	7 7 7		14•2	76.4	7.0 0	100	41.5	0 07		41.0	41.7		42°4	42.3
н 1	73.9	75.1	75.5	C . CT		ו01	72 • 2	73.8		12.44	8 07			40.7	6.14	7974	41.5	40.9
RUN NO.	559B		559E	0073	0000	2094	560E	5 6 D C		5006	6610		2010	561F		JT0C	5616	5611

150

Table A-3b. Experimental cavitation data for 0.357-inch ogive using liquid nitrogen (SI Units).

_ __

.

T 5 DEG K	76•26 76•46 76•54	77•74 78•03	77•78 77•52 77•51	82 •6 8 82•96	83•42 83•24	82.93
T 4 DEG K	76 •1 4 76•45 76•47	77•66 78•01	77.69 77.52 77.37	82.16 82.94	83•33 83•26	82•89
T 3 DEG K	75•94 76•32 76•24	71. 97	77.36 77.42 77.08	81•66 82•90	8 2. 89 83.15	82•38
T 2 DEG K	75•86 76•07 76•09	77.23 77.70	77 . 14 77.03 76.84	81 •31 82•21	82•44 82•66	81•90
T 1 DEG K	75.87 75.99 76.11	77.57	77.09 76.92 76.78	81.32 81.84	82•26 82•28	81.70
٨٧	1.13 0.32 0.99 1.10 1.10	1 - 22 0 - 34 1 - 06 - 414 - 414	1.13 0.42 1.05 1.09 1.09 1.21	1•20 0•32 0•47 1•26	1•24 0•26 0•41 1•16	1•19 0•29
ΣI	11.6 11.7 11.7 11.8 11.8 11.6	113 123 123 123 123 123 123 123	0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	888 888 888 888 888 888 888 888 888 88	26.1 26.2 26.2 26.2	25•2 25•0
ο <mark>ν</mark>	15°5 113°5 113°5 113°5 15°5 15°5	19.7 16.1 19.5 19.6 16.9	27.0 20.0 26.9 26.9 27.9	44 • 2 34 • 2 44 • 2 44 • 3	36.1 28.9 35.6 35.6	35•0 28•1
PV N/CM/CM	9 8 2 3 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	10.90 10.96 11.01 10.93 11.01 11.04	10.59 10.59 10.70 10.74 10.63 10.75	19.40 19.48 19.50 19.40	19.89 19.95 19.83 19.95	19•25 19•13
PO N/CM/CM	12.58 10.41 10.78 12.29 10.55 12.27	15.58 12.69 15.36 15.49 13.31	21.97 21.97 115.75 216.44 15.58 22.03	33•80 24•34 26•10 33•85	27.53 22.06 22.93 27.13	26.78 21.50
V0 M/SEC	800808 9998 9998 9990 9990 9990 9990 99	9.98 1001 1001 100.0 9.9 9.9	1175 1175 1156 1156 156 156 156 156 156 156 156	17•6 19•7 19•0 17•2	12•6 14•3 13•9 12•6	12•7 14•4
TO DEG K	76.58 76.62 76.63 76.63 76.63 76.63	77.99 78.04 78.08 78.01 78.11 78.12	77 - 74 77 - 91 77 - 83 77 - 86 77 - 77 77 - 87	83,34 83,34 83,38 83,38 83,34	83•59 83•62 83•56 83•62	83.26 83.20
CAVITY CM	3.81 1.52 2.03	2•54 1•27	2.54 1.52 2.29	3.81 1.14	2.29 1.14	1.90
RUN NO.	302А* 302В * 302D 302E 302E 302F 3026 *	303A * 303A * 303C * 304A * 304D * 304D *	90557 3058 3058 305577 305577 305577 305577 305577 305577 305777 305777 305777 3057777 3057777 3057777777777	306A** 306B 306D 306E**	307A** 3078 307C 307C	308A* * 308B

T 5 DEG K	82•87	87•91 88•08 88•35	87•67 88•03	82.77 82.46 82.68 82.68 76.16 76.44 76.47	77.91 77.69 77.68
T 4 DEG K	82.67	87.50 87.96 88.33	86•91 87•79	82.69 82.10 82.66 82.66 76.38 76.46	77.88 77.53 77.46
T 3 DEG K	82.14	86•63 87•50 88•20	85•91 87•31	82.14 81.555 82.35 82.35 75.82 76.18 76.37	77.59 77.29 77.26
T 2 DEG K	81.70	85•94 86•52 87•32	85•44 86•25	81.65 81.05 81.69 81.69 75.74 75.98 76.14	77.36 77.05 77.04
T I DEG K	81.61	85.76 86.04 86.61	85•38 85•83	81.47 80.92 81.40 81.40 75.75 75.94 76.05	77.29 76.99 77.01
۲ ۲	0•24 1•15	1.09 0.14 0.19 1.10 0.26	1.03 1.00 1.00 0.29 1.18	0.45 0.45 0.45 1.25 1.28 1.28 1.28 1.28 1.28 1.28 1.21 1.17	1•49 0•34 0•33 1•55
₹₹	25•1 25•0	42°6 42°6 42°6 42°6 42°6	43°3 42°5 42°5 42°5 42°5 42°5	0000000 - 20000 - 20000 2000	1440 1440 1440 1440
οŗΣ	27•7 34•4	586 586 586 586 586 586 586 586 586 587 587 587 587 587 587 587 587 587 587	533 533 544 5524 553 744 56 744 56	00000 00000000000000000000000000000000	20.9 16.3 16.2 16.1 21.5
PV N/CM/CM	19 .21 19 .11	31.57 31.51 31.62 31.62 31.51	31.96 32.22 31.12 31.43 31.43	18.75 18.75 18.75 18.88 10.39 9.19 9.13 9.22 9.22 9.20 9.19	11.00 11.13 11.04 11.04 11.12
PO N/CM/CM	21•17 26•32	43 •40 33•51 34•27 43•44 35•06	39.34 39.34 54.83 39.02 55.30	30.13 29.11 28.75 38.58 41.48 41.25 12.32 10.17 10.17 12.15 12.24	16.49 12.84 12.76 12.69 16.96
V0 M/SEC	14•5 12•7	17.0 19.2 19.1 17.0 19.1	13 14 26 26 26 29 29 29 29 29 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	255.4 24.7 20.1 20.1 24.5 20.1 24.5 20.1 24.5 20.1 24.5 20.1 24.5 20.1 24.5 20.1 24.5 20.1 24.5 20.1 24.5 20.1 24.5 20.1 24.5 20.1 24.5 20.1 24.5 20.1 24.5 20.1 24.5 20.1 24.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20	9.6 11.2 11.3 11.3 9.6
T0 DEG K	83 . 24 83 . 19	88 50 88 55 88 52 88 52 88 52 88 52 88 52 88 52	88.64 88.73 88.73 88.34 88.34 88.40 88.45 88.36	83.00 83.00 83.00 83.00 83.00 76.54 76.53 76.53 76.53	78.07 78.17 78.10 78.10 78.16 78.22
CAVITY CM	2•29	3.81 1.90 1.27	3•05 1•52	2, 29 3, 05 1, 52 3, 8 1, 52 2, 03 1, 27	2 • 54 3 • 30 3 • 81
RUN NO.	308C 308D**	309А** 309В 309С 309С** 309Е	310A** 310F** 311A** 311B 311C 311E**	33120 3120 3120 3150344 33155344 44 331553 44 44 44 44 44 44 44 44 44 44 44 44 44	316A** 3168 316C 316C 316G*

T 4 T 5 DEG K DEG K	82.88 83.26 83.16 83.24	88•09 88•39 87•95 87•95	88•06 88•28 87•81 88•05		87.70 88.16	87•48 87•99 87•85 87•95	82•67 82•71		82•67 83•05 82•89 82•90	23 OF 23.21
T 3 DEG K	82•31 82•80	87.27 87.09	87•26 87•15		86.75	86•56 87•98	82.67		82•18 82•90	87.51
T 2 DEG K	81.97 82.11	86•53 86•30	86•50 86•25		86.32	86•05 87•05	82•02		81•72 82•22	82.07
T 1 DEG K	81 . 91 81 . 89	86•34 86•00	86•24 85•97		86•29	85•97 86•39	81.75		81.62 81.75	82.04
۲ ۲	1.25 0.32 0.37	1•14 0•13 0•16 1•14	0.17 0.18	1•14 1•08	1•18 0•32 1•09	0.33 0.44	1.29 0.51 1.18	1 • 22	1.26 0.35 0.49 1.25	1.10
≥₽Σ	25•2 26•3 26•5	43 43 43 43 85 43 43 85 43 85 44 45 45 45 45 45 45 45 45 45 45 45 45	43 . 1 42 . 9	42 • 9 43 • 6	443 443 445	42 8 43 0	24	24•5	25°5 25°5 25°5 25°5	26•2 26.3
οĦ	44•7 32•6 33•7	50 50 50 50 50 50 50 50 50 50 50 50 50 5	46•3 46•3	53•9 53•8	76•6 54•6 73•9	54•3 58•1	62•7 59•3 59•3	61•6	46•0 32•7 34•7 44•3	35•5 28,5
PV N/CM/CM	19.28 20.07 20.21	32.05 32.36 32.10 32.27	31.79 31.68	31.71 32.16	32.10 32.02 32.19	31.62 31.74	18•94 19•19 19•28	18.77	19•48 19•52 19•62 19•62	19.99 20.05
PO N/CM/CM	34 .18 24.89 25.68	44•24 34•23 34•23 44•23	34 . 16 34.21	39 . 83 39 . 73	56.60 40.30 54.55	40 .16 42.90	48.07 33.02 45.40	47.19	35,15 25,01 26,49 33,88	27•08 21-77
V0 M/SEC	17•5 19•8 19•4	16.9 19.2 19.0 16.7	19•4 19•1	13.7 13.6	23•5 26•2 23•3	26•3 25•8	24•1 26•3 23•8	24•4	17.9 20.0 19.1 17.1	12•9 14•7
TO DEG K	83.28 83.68 83.75	88.67 88.78 88.69 88.75	88 • 58 88•54	88•55 88•71	88 • 69 88 • 66 88 • 72	88•52 88•56	83.10 83.23 83.28	83.01	83,38 83,40 83,45 83,45	83•64 83•67
CAVITY CM	3 . 81 2.29	3.81 3.05	3.05 2.54		3•05	3.30 1.02	1.27		3•30 1•14	3.81
RUN NO.	317A** 317B 317C	318A** 3188 3180 318E**	3198 319C	320A** 320D**	321A** 3218 321F**	322B 322E	323A** 323D 323E**	324A**	325A** 3258 3256 3256	326B * * 326C

:ont'd)
.ບ.
<u> </u>
ó
5
A -3
6
Ē.
_
E

T 5 DEG K	83 • 35 83 • 50 83 • 48 83 • 37		77•26 77•15 77•36		77.35 77.82	77.99 77.93 78.09	77 • 87 77 • 78 77 • 58 77 • 68
T 4 DEG K	83•15 83•45 83•41 83•18	·	77•10 76•95 77•34		77•27 77•74	77.89 77.81 78.07	77.83 77.85 77.49 77.79
T 3 DEG K	82.66 83.26 83.09 82.70		76•78 76•73 77•33		77.20 77.56	77.64 77.61 77.95	77•64 77•84 77•31 77•82
T_2 DEG K	82.17 82.70 82.48 82.48		76.55 76.36 76.86		77•02 77•27	77.46 77.37 77.73	77.29 77.27 77.07 77.41
T I DEG K	82.06 82.41 82.28 82.10		76•54 76•29 76•67		77.12 77.24	77.42 77.33 77.61	77.21 77.16 77.04 77.22
K K	0 • 23 0 • 36 0 • 28 1 • 03 1 • 03	1.31 1.34	1•31 0•42 0•53 1•20	1.23 1.27 0.97	0•19 0•24 0•94	0 • 24 0 • 23 • 38 • 38 • 38	1.05 0.35 0.41 1.12 0.42 1.045
žΣ	26.4 26.5 26.7 26.7 21.4	13•5 13•5	13•5 13•5 13•5 13•5	13.3 14.2 14.1		1111 444 1111 1111	90000000000000000000000000000000000000
o₽ ₽	28•9 30•1 29•5 35•7	51.2 51.2	29•3 19•7 20•9 27•6	28•2 28•4 19•0	15•2 15•6 18•9	15 15 16 16 0	25.6 19.3 25.9 19.3 19.3 25.9 25.1
PV N/CM/CM	20 •1 3 20 • 23 20 • 33 20 • 37 20 • 82	10.64 10.64	10.60 10.64 10.68 10.75 10.81	10.54 11.19 11.08	11.08 11.09 11.14	11.10 11.13 11.12 11.13	11.15 11.15 11.22 11.22 11.22 11.22 11.22
PO N/CM/CM	22.01 22.95 22.47 22.24 22.24 27.18	40•50 40•51	23•13 15•60 16•49 21•82	22•28 22•35 14•95	12.01 12.26 14.89	12•24 12•19 14•80 12•58	20.18 15.20 15.20 20.44 15.39 15.39
V0 M/SEC	144 144 144 124 124 124 124 124 124 124	23•8 23•5	15.4 17.0 16.9 15.4	15•4 14•8 10•0	11.11	10•9 10•7 9•7	4 4 4 4 4 4 4 4 4 4 4 4 4 4
T0 DEG K	83 • 71 83 • 76 83 • 81 83 • 83 84 • 05	77.78 77.78	77.75 77.78 77.81 77.87 77.92	77.70 78.22 78.13	78.14 78.14 78.18	78.15 78.17 78.16 78.17	78.19 78.22 78.24 78.24 78.22 78.22 78.23 78.23
CAVITY CM	2.54 1.27 2.54 2.54		4•06 3•30 1•27		4•44 2•54	2.29 2.79 1.27	2.29 1.52 3.30 1.27
RUN NO.	326D 326E 326F 3266 3266	327E** 328D**	329A ** 329B 329D 329F 329F	330A** 330D** 547A**	5478 5470 5470	547E 547F 547G** 547H	55555 55555 55558 55558 5558 5558 55888 558888 55888 55888 55888 55888 55888 558888 55888 55888 55888 558

.

- ----

T 5 DEG K	83•54 83•55	83.63 83.71	83.80	83•35 83•26	83.37	88•84 89•25	89•05 89•05			88•95 89•00
T 4 DEG K	83•30 83•40	83 . 52 83 .6 9	83.81	83•28 83•23	83.13	88•56 88•79	88•94 89•03			88•63 88•87
T 3 DEG K	82•88 83•06	83•06 83•54	83.54	82 . 91 83 . 10	82.71	87.79 88.52	88•35 88•78			87•92 88•26
T 2 DEG K	82•50 82•50	82,63 83,01	83.08	82•42 82•47	82.33	87•28 87•70	87•70 88•03			87•43 87•62
T 1 DEG K	82•43 82•38	82•44 82•66	82.75	82.18 82.12	82.11	87.12 87.34	87•40 87•57			87.35 87.40
×	1•06 0•05 0•09	1.01 0.08 0.19	0•93 0•16	0.98 0.27 0.31	0.24 1.12	1.01 0.07 0.16 89	0.17	0•74 0•60 0•73	0.77 0.77 0.74	0.95 0.18 0.20
>Σ Τ	26 26 26 8 8	26.8 26.8 26.9	26.9 27.0	444 000 000 000	000 000 000 000 000	45.7 46.1 46.0	40°1	47•0 47•0 47•2	41•2 47•0 47•2	46 . 8 46 . 7 46 . 9
ο¥	34•4 27•3 27•6	34•1 27•6 28•5	33•4 28•4	41•2 31•3 31•8	41•0 20•7 42•1	661 494 60 60 60 60 60 60 60 70 70 70 70 70 70 70 70 70 70 70 70 70	480 490 490	54 • 6 53 • 6 • 4 • 7	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	70.6 52.3 52.9
PV N/CM/CN	20.27 20.45 20.41	20•41 20•43 20•47	20•49 20•56	20.13 20.15 20.15	20.13 20.19 20.23	333.60 333.60 33.84 33.94	34•01 34•07	34•49 34•49 34•61	34•61 34•46 34•64	34•34 34•31 34•40
PO N/CM/CM	26•19 20•80 21•04	25.95 21.01 21.73	25•48 21•61	31•44 23•88 24•27	32•12 32•12	45.24 34.90 36.14 44.50	35.55	40•06 39•08 39•89	40•27 40•36 40•29	51•87 38•39 38•85
V0 M/SEC	12•0 13•6 13•4	11.9 13.3 13.0	11•7 13•0	17•2 18•7 18•6	1 (• 1 18•5 16•5	17•5 19•8 19•6	19•7	14•2 14•3 13•9	14•4 14•3 14•3	22•2 24•5 24•5
TO DEG K	83.78 83.87 83.85	83.85 83.85 83.86	83 89 83 92	83•71 83•72 83•72	83•76 83•76 83•76	89.21 89.30 89.29 89.29	89•37 89•37	89•51 89•51 89•55	89•55 89•50 89•56	89•46 89•45 89•48
CAVITY CM	2.79 2.29	2.54 1.27	1.52	2•29 1•52	2.79	3.30 1.90	2•29 1•52			3 • 30 2 • 54
RUN NO.	549A** 549B 549C	5490** 549E 549F	549G** 549H	550A**	5500 550 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	551A** 551B 551C 5510	551E 551F	552A 552CA 52CC * * *	553A** 5530** 5536**	554A* 554B 554C

T 5 DEG K	89•09 89•45	89•47 89•24	89•25 89•32	89•29 89•09 89•52 89•56	83 •84 83 •62 83 •62 83 •74	83.71 83.78 83.89 83.90	83•68
T 4 DEG K	89•08 89•05	89•30 88•84	88 . 93 89 . 19	88•86 89•07 89•28 89•59	83.67 83.61 83.47 83.45	83•39 83•71 83•85 83•86	83.41
T 3 DEG K	88•96 88•51	88•83 88•36	88 . 36 89.06	88,30 88,79 88,69 88,69	83.36 83.52 83.10 83.78	83•08 83•48 83•51 83•77	83.12
T 2 DEG K	88•24 87•99	88•23 87•80	87.85 88.42	87•82 88•03 88•19 88•75	82,93 82,93 82,88 83,82 83,28	82.78 83.04 83.19 83.33	82.75
T 1 DEG K	87•76 87•77	88•08 87•66	87•68 87•87	87, 78 87, 78 87, 73 88, 04 88, 28	82。76 82。68 82。64 82。90	82.77 82.90 83.00 83.11	82.72
κ	0.28 0.21 0.97	0.98 0.25 0.98 0.98	0•19 0•29 0•93	0 0 044 0 244 0 244 0 29 0 23 1 01	1•18 0•32 0•38 0•31 0•31	1 • 19 0 • 37 0 • 40 0 • 39 1 • 23	1•20 0•37
×Σ	46 . 8 46 . 9 47 . 1	47°2 47°4 46°9	47.1 46.9 47.1	23353555555555555555555555555555555555	27.0 27.3 27.1 27.1 27.4	27.0 27.0 27.1 27.5 27.5 27.5 27.9	26•7 26•9
ο¥	55.4 53.3 71.9	77.0 56.1 54.6 72.1	52.8 55.0 68.9	75. 75. 75. 75. 85. 88. 75. 88. 75. 88. 75. 88. 75. 88. 75. 88. 75. 75. 75. 75. 75. 75. 75. 75. 75. 75	56.1 36.8 36.8 38.0 38.0 38.0 38.3 38.3 38.3 38.3 38	++++++++++++++++++++++++++++++++++++++	65•3 41•1
PV N/CM/CM	34•37 34•43 34•55	34°64 34°73 34°64 34°64	34•55 34•43 34•55	944.79 944.79 94.679 94.70 95.03 95.95.93 95.95 95.95	20.56 20.74 20.62 20.74 20.82 20.84	20.54 20.556 20.650 20.72 20.90 21.17	20•35 20•45
PO N/CM/CM	40.64 39.11 52.77	56.53 41.13 52.95	38•77 40•37 50•61	55.55 40.84 41.84 55.77 42.83 42.83 55.83	42.71 28.01 28.96 27.63 29.12	49.65 31.44 32.03 32.03 49.75 49.75	49•80 31•32
V0 M/SEC	24•5 24•5 22•3	25 • 9 25 • 9 25 • 6 25 • 6	24•3 23•5 21•4	256 25 25 25 25 25 25 25 25 25 25 25 25 25	21.9 24.1 23.9 24.0 23.7	25.0 27.5 27.3 27.3 24.6	25•1 27•6
T0 DEG K	89•47 89•49 89•53	89.56 89.56 89.56 89.48	89•53 89•49 89•53	89.61 89.61 89.56 89.58 89.77 89.81 89.85	83•92 84•01 84•01 84•01 84•01	83,91 83,92 83,94 84,00 84,00 84,00 84,00	83•82 83•87
CAVITY CM	1•27 2•29	2•29 2•79	2•54 1•27	2.54 1.78 2.54 1.27	2•54 1•52 3•30 1•27	3.30 1.52 1.90 1.27	3•30
RUN NO.	554D 554F 554G**	555A * 5558 * 5550 5550	555E 555F 555G**	556A * * 556A * * 5566T * * 5566T *	557A** 5578 5576 5576 5577	55888 5588 55880 5588 588 588 588 588 58	559A** 559B

ļ

į

T 5 DEG K	83.63	83.84			83.68	83.61		83.61	83.73	83.57				1 1 1		14.1		17.68	77.80	77.86		70 OL									
T 4 DEG K	83.59	83.83	•		83.58	83•59		83.42	83.67	92.28				5 7 7		62.11	1	77.53	77.72	77.82		70 07	±0.01								
T 3 DEG K	83•36	83.57			83.20	83.46		83.00	H3-45		10.70				66.11	71.17		77.35	77.51	01-11			70 • 1 1								
T 2 DEG K	82 . 86	00 00	07.00		82.68	82.92		87.58	82.80		11.0				62.11	76.89		77.17	77.25	77 . 20	~ ~ • • •	, , ,	10.11								
T 1 DEG K	82,72	C 0 0 0	20.000		82.49	82.57		07-08			82028				77.25	76.97		77.19	77.22	11 22	26.11		17.50								
> Y	0++0	1•14	0.40	0.89	0.07	0.17	0.80			01-0	00•0	06•0		0.97	0.22	0.18	0.92	0.19	0.00		12.0	0.89	0.25	0.93	1-24		1•23	1•25	1•22		1.32
žΣ	26.8	26.9	27.1	26.5	26.8	26.7	26.9		6°07	21.2	27.3	27.6		14.0	14.1	14.0	14.0	14.0			14.1	14.1	14.1	14•2	9 21		13•9	13.4	13.9		13•5
ęΣ	42.2	63•6	42•3	33•3	27.4	28.3	22.1		21.04	28.1	27•3	34.2		19.2	15.5	15.2	18.8	16.2		10°4	15•7	18.7	15.6	18•9	0.00	7 • 7 C	40.0	53•3	52.4	1	54+5
PV I/CM/CM	20.41	20.49	20.66	20.21	0,30	20.22			20.52	20.68	20.76	21.01		11.03	11.08	11.07	11-04			11.08	11.08	11.08	11.14	11.17		10.88	10.94	10.56	10.94		10.68
PO N/CM/CM N	32.13	48.51	32•19	25.41				Q1 • C7	20.83	21.37	20.79	25.98		15.17	12.22	12.00	14.86		12.01	12.16	12.36	14.71	12.32	14.87		31.51	31.57	42.13	65-14		43•09
V0 M/SEC	27.4	25.1	27.4	12.3			1 0 • 1 •	LZ • 5	13.5	13.4	13.5	12.0		10.3	5.11				1.1.1	11•0	10.9		0-01	6.6		20.4	20.4	25.0	0,40		24•6
TO DEG K	83.85	83 89	83.97	83.75		00°04	19.58	83.88	83.90	83.98	84.07	84-14		78.09	70.12	01.07			78.12	78.13	78.13	78.13	78.18	78.20		77.97	78.02	<i>27.77</i>		7000	77.81
CAVITY CM	1.78		1.52			1.90	1.27		2.29 .	1.52	2.54					7.0 2 10 2	1000		3.30	2.29	1.52		00	06 • T							
RUN NO•	2507	**2055	559E		**V094	560B	5600	560D**	560F		2001	5000	* *HOBC	***		561B	21010	561D**	561E	561F	5616			561J**		567A##	**1044			5635**	5648**

,

ĺ

P 5.T N/CM/CM	8•88 9•10 9•19	10.59	10.95	10.64	10.32	10.31	18.15	18•67	19.56	19.21	18.61	18•50	29 • 95	30.41	31.15	29.31	30+27	18.31	17.74	18,15	8 • 77	9.08	9•11	10.80	10.53	10.51
P 4.1 N/CM/CM	8•75 9•09 9•11	10.49	10.93	10.53	10.32	10.14	17•20	18•63	19•38	19•25	18•54	18.13	28•86	30.08	31•09	27•34	29•63	18•16	17.10	18.11	8•60	9.01	9.10	10.76	10.33	10.25
P 3.T N/CM/CM	8•54 8•94 8•86	10.21	10.88	10.13	10.20	9•80	16.33	18.56	18.54	19•03	17.60	17.17	26.65	28.86	30.74	24.91	28•36	17.17	16.14	17•54	8•41	8•79	00 • 6	10.40	10.04	10.01
P 2.T N/CM/CM	8•46 8•68 8•70	76•6	10.54	9.87	9.74	9.52	15.74	17.29	17.71	18.11	16.74	16.40	24•98	26.38	28.39	23•83	25.72	16•31	15.31	16•38	8•33	8.58	8.75	10.13	9.76	9.75
P 1.T N/CM/CM	8•47 8•59 8•72	9 . 83	10.38	9.81	9.61	9 • 45	15.75	16.64	17.38	17.42	16.40	16.24	24.56	25.22	26.60	23.69	24.72	16.01	15.10	15.89	8.34	8.54	8•66	10.04	9 ° 69	9.72
P 5 N/CM/CM	8.89 11.31 10.18	12.48	14•29	12.13	19.06	12.02	18.96	30.79	23.37	25.04	22.10	20.68	31.98	36•84	39•23	31.13	47 . 73	25.13	19.63	33•65	8.98	10.74	11.16	12.11	11.38	11.00
P 4 N/CM/CM	9.48 10.41 9.79	11.71	13.65	12.45	16.44	12.71	19.54	27.30	21.55	23.55	20.56	19•61	30.91	33.78	35 . 89	29•96	36.74	21.58	19.97	22•82	9•53	9.78	10.69	11.94	11.60	11.45
P 3 N/CM/CM	8 • 45 8 • 85 • 58 8 5	10.07	11.08	9 ° 96	10.72	9.89	16.41	19,81	18,17	19,88	17.43	16,94	25.92	28 . 09	30,16	24.30	27.41	16.65	15.91	17.31	8.55	8.78	9,13	10,29	10.18	10.10
P 2 N/CM/CM	8•55 8•80 8•62	10.04	10.44	9•83	10.17	9.84	16.34	17.72	17.77	18•31	17.10	16.80	25.36	26.50	27.17	23.51	25.79	16.17	15.60	16.62	8•54	8.71	8 . 85	10.18	10.10	10.03
P 1 N/CM/CM	8•52 8•73 8•58	9.87	10.05	9.72	9.83	9.61	16.37	17.51	17.43	17.86	16.80	16.62	25.20	26.20	26.86	23.75	25•62	16.20	15.53	16.27	8.40	8.51	8.66	10.01	9 . 93	9.86
NON •	302B 302D 302F	3038	304D	305R	3050	305F	3068	306D	307B	307C	308B	308C	309B ·	309C	309E	3118	311C	312B	312C	312D	315B	315C	3150	316B	3160	316D

+.T P 5.T 1/CM N/CM/CM	.52 19.25 .05 19.21	•44 31•26 •65 30•06	•35 30•96 •68 30•33	.39 30.63	•81 30•16 •79 30•06	•13 18•20	•13 18•84 •54 18•56	84 19-34	03 19.42	.62 19.71	.54 19.67	•09 19•46	.82 10.01	• 65 9.88	•10 10•13	•02 10•12	•59 10•69	•77 10•90	•68 10•82	•00 11•03	• 70 10•75	•72 10•64	•28 10•51	
3.T P 4 M/CM N/CM	•47 18• •37 19•	•26 30• •80 29•	•24 30• •95 29•	•94 294	.47 28. .14 29.	•13 18•	•24 18• •56 18•	.83 18.	11 19	•25 19•	•92 19•	•18 19•	•45 9•	•6 07•	•09 10•	•94 10•	•37 IO·	•47 10.	•43 10•	•85 ll•	•47 10•	•71 10.	•07 10.	
2.T P	.87 17 11 18	40 28 84 27	-33 28 -72 27	•89 26	• 24 26 • 70 30	.95 18	.43 17 .31 18	17	22 18	18 19	•78 18	•27 18	• 20 9	• 66 •	•54 10	• 73 9	•02 10	•25 10	•14 10	•58 10	•04 10	•02 10	•79 10	
I T P	76 16.	94 26.	70 26. 05 25.	.82 25.	05 25.	,48 16,	26 16. 48 17	71 00	17	,65 1.8	42 17	10 17.	,19 9,	,91 B.	•33 9.	,84 9,	,99 10.	•20 10	.09 10	•43 10	.95 10	,89 10	• 75 9	
P 1 N/CM	16. 16.	25• 25•	25• 25•	25.	25• 26•	16.	16. 16.	16.	27	17.	17.	17.	• 6	8.	• 6	•6	•6	10.	10.	10.	6	. 6	•6	
P 5 N/CM/CM	19.55 27.04	33 .8 0 34 . 75	34 . 67 34 . 94	33•06	33 01 48 90	38•71	21•15 29•76	70 00		24.55	23.80	22.49	10.49	11.02	18.80	10.15	11.82	11.53	11.76	13.27	12.48	16.51	10-84	
P 4 N/CM/CM	19.84 22.12	32•12 32•45	32.83 32.97	31.85	31•17 44•83	33.10	20 •58 27•73			50.50 23.52	22,35	21.13	12.05	11.73	17.18	10.25	10.82	10.74	10.65	12.71	11.14	14.08	10.58	
P 3 N/CM/CM	17•29 18•56	27.29 27.75	27•50 27•66	26.54	26•25 32•90	19,15	17.22 20.22		40°/1	19.66	18.73	18.33	9-63	6.71	10.87	9 89	10.19	10.24	10.22	10.77	10.48	10.94		
P 2 N/CM/CM	16.96 17.84	26•32 26•39	26•26 26•32	25•92	25•42 27•59	17•29	16.74 17.84		70°71	16-11	18.09	17.94	9-56	9-67	10.25	9.85	10.04	10.05	10.09	10.41	10.20	10.48		
P 1 N/CM/CM	16.97 17.84	26•49 26•59	26.35 26.35	25.92	25•34 26•77	16.95	16.86 17.60		61.1	11.054	17.75	17.73	6420	0.58	10.05	9.74	9.87	6.91	06.0	10.20	0,80			
RUN NO.	3178 317C	318B 318D	319B 319C	321R	322B 322E	3230	3258 325D		3260	3260	3265	3266	3 7 G D	3 2 0 0	329F	5470		5475	5476	547H	5480) 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	

T

P 5.T N/CM/CN	19.79	19-81	10.07	20.13	20.31	C7 01		19•46		32.53	33.72	33.13	33.13	37_86		24.44	G7 • 5 5	34.31	76.45	33.60	23.70 77	33.92	19.85	10 10 10 10 10	24.50	34 • 64	20.39	19.95	20.19	20.37	CL 0C		12.02	20•49 20•52
P 4.T N/CM/CM	19.32	19.52	19.75	0000	20.33	10. J 8	10.10	18.99		31.74	32•39	32.82	33.08	31.03		20.00	22.55	33.13	33 87	37.63	32.79	33.54	37.54	33.10	33.81	34.73	20.05	19.93	19.66	20.41	10 60			20•41 20•43
P 3.T N/CM/CM	18.52	18.86	18-86	19.79	19.79	18.58		18.20		29.63	31.62	31.15	32.36	79.97			10.70	31.60	32.50	31.18	31-18	33.16	10-15	37.30	32.10	34.37	19.44	19.75	18.94	20.27	10 00	04 0 1 1 0 - 1 0		17•13 20•25
P 2,T N/CM/CM	17.82	17.82	18.05	18.77	18.90	17.67	17.76	17.51		28.29	29.39	29.39	30.27	28.68	20.02	20 0E		30.16	30.82	29.65	29.79	31•34	17-95	30.27	30.71	32.27	18.61	18.71	18•41	19.28	18.33	10°.01		17•11 19•38
P 1.T N/CM/CM	17.69	17.60	17.71	18.11	18.28	17.24	17.13	17.11		27.88	28.44	28.60	29. 04	28.47	28.60	20 55 20 55		29.57	30.41	29.28	29.33	29.84	29-60	29.47	30.30	30.96	18•30	18.15	18.07	18.56	18.31	18.56	10 75	18.96
P 5 N/CM/CM	20.22	21.46	21.51	22,81	22.57	24.70	25.72	20.62		34.04	37.59	36.90	37.89	32.01	37.51	40.44		38•53	41.54	35.83	41.23	43.82	33.80	42.09	37.80	40.78	23.95	29.09	20.57	28.63	19.06	33.74	37.60	29.44
P 4 N/CM/CM	18.66	19.71	19.71	22.26	21•91	20-20	23.03	14.02		31.18	36.35	33.51	37•31	30.01	31.34	41.86		32.12	33•59	31.49	31.48	42.54	31.03	37.43	32.12	44°92	19.84	26.26	18,95	29.72	18.93	22.24	21.70	3(.58
P 3 N/CM/CM	17.82	18.27	18,32	19,95	19.71	18.40	18.87	17,95		28.10	31.42	29 . 92	32,10	28,34	29.16	32.85		29.63	30,19	29,37	29.37	33,92	29 . 32	31.26	30.16	33 . 50	18,37	19.36	17.89	19.89	18.06	19.20	19.08	20.24
P 2 N/CM/CM	17.33	17•66	17.78	18,35	18•27	17.49	17.69	17.43	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	76 • 17	29.01	28.61	29•36	27.72	28.18	28.92	76 00	51 • Q 7	29.18	28.52	28.52	29.27	28.41	29.55	29.27	30.14	17.75	18.17	17.24	17.93	17-70	18.28	18.28	18.88
P 1 N/CM/CM	17.16	17.44	17.51	17.93	17.95	17.24	17.35	17.14	06 26	87.17	28•08	28.01	28.39	27.77	27.79	28.01	20 24	20034	28.42	28.23	27.81	27.96	28.17	28.99	28•68	29.27	17.24	17.55	16.79	17•34	17.34	17.56	17.57	18.22
RUN NO.	549B	5490	549E	549F	549H	5508	550C	550E	5510	9166		551E	551F	554B	5540	554D	1771	1+100	555 B	5550	555E	555F	5568	556C	556E	556F	557B	557C	557E	557F	558B	558C	558F	558F

P 5.T N/CM/CM	20•07 19•97 20•39	20.07 19.93 19.93 20.17 19.75	10.72 10.19 10.51 10.66 10.74
P 4.T N/CM/CM	19•54 19•89 20•37	19.87 19.89 19.56 20.05 19.28	10.64 10.00 10.33 10.56 10.69
P 3.T N/CM/CM	18•98 19•44 19•85	19•13 19•64 18•75 19•62 18•50	10.40 9.90 10.12 10.31 10.69
P 2.T N/CM/CM	18•28 18•48 19•13	18.15 18.60 17.96 18.54 17.71	10.00 9.55 9.90 10.00 10.16
P 1.T N/CM/CM	18•22 18•22 18•78	17.80 17.694 17.63 17.63 17.63	10.00 9.67 9.93 9.96 10.08 10.30
P 5 N/CM/CM	21.19 32.82 33.01	21.58 22.64 24.16 22.43 20.68	11.78 10.44 10.60 11.83 12.96 12.80
P 4 N/CM/CM	19.31 22.77 23.24	19.94 22.08 19.36 21.50 18.97	10.72 10.25 10.25 10.26 11.49 11.29
P 3 N/CM/CM	18.20 19.22 19.30	18.04 19.55 17.95 18.95 17.82	10.16 9.93 9.97 10.19 10.36 10.41
P 2 N/CM/CM	17.81 18.31 18.35	17.39 17.92 17.40 17.88 17.33	10.01 9.87 9.91 10.07 10.23 10.23
P 1 N/CM/CM	17.33 17.60 17.69	16.96 17.32 16.95 17.30 16.99	9.86 9.86 9.83 9.83 9.94 10.02 9.87
RUN NO.	559B 559C 559E	560B 560C 560E 560F	5618 5616 5615 5615 5616 5611

161

黨

н 5 . Т М	11•1 11•4 11•5	13.4	13•9	13.5	13.0	23.7	24•4	25•6	25•1	24•3	24•1	40•4	41.0	42.1	39•4	40•8	23.9	23.1	23•7	11•0	11.4	11•4	13.7	13.3	13•3
H 4 •T	11.0 11.0 4.11 4.4	13•3	13•8	13.0	12.8	22•3	24•3	25.4	25•2	24•2	23•6	38 •8	40•6	42•0	36•6	39 •9	23.7	22•2	23•6	10.8	11•3	11•4	13.6	13.1	12.9
н 3.т М	10.7 11.2 11.1	12.9	13.8	12.8	12.4	21.1	24•2	24•2	24•9	22.9	22•3	35•6	38 . 8	41.5	33•1	38.1	22•3	20.9	22.8	10.5	11.0	11•3	13.2	12.7	12.6
Н 2,Т М	10•6 10•9 10•9	12.6	13•3	12.4	12.0	20.3	22+5	23•0	23•6	21.7	21•2	33•2	35.2	38•1	31•6	34•3	21.1	19.8	21•2	10.4	10.8	11•0	12.8	12.3	12.3
н 1,1	10•6 10•8 10•9	12•4	13.1	12.4	11.9	20.4	21•6	22•6	22•6	21.2	21•0	32•6	33•6	35•5	31.4	32•9	20.7	19•5	20.5	10.4	10.7	10.9	12.7	12•2	12•2
т Х	11•2 14•4 12•9	15.9	18.4	15.5	15.3	24.8	41.6	31.0	33•3	29•2	27•2	43•3	50.5	54.0	42.1	66.9	33.5	25.7	45 . 8	11.3	13.6	14•2	15.4	14.5	13.9
4 [∞] Τ	11•9 13•2 12•3	14.9	17.5	15•9 21.3	16.2	25.6	36•5	28•4	31•2	27•0	25.7	41.8	46.0	49 . 1	40.4	50.3	28.4	26•2	30•2	12.0	12.3	13•5	15•2	14.7	14.5
ω ΈΣ	10•6 11•1 10•7	12.7	14.1	12.6	12.5	21•3	26•0	23.7	26•1	22.7	22•0	34•6	37.7	40•7	32•3	36.7	21.6	20•6	22•5	10.7	11.0	11•5	13•0	12.9	12.8
ж Ж	10•7 11•0 10•8	12.7	13.2	12.4	12.4	21.2	23.1	23.1	23 . 9	22.2	21.8	33•8	35.4	36.4	31.2	34.4	20.9	20.1	21•5	10.7	10.9	11.1	12.9	12.8	12.7
ΞΣ	10•7 10•9 10•7	12.5	12.7	12.3	12•1	21•2	22•8	22.7	23•3	21.8	21•5	33.6	35+0	35•9	31.5	34•2	21.0	20.1	21.1	10.5	10.7	10.9	12.6	12.5	12.4
RUN NO.	302B 302D 302F	3038	304D	305B 305B	305F	3068	306D	307B	307C	3088	308C	309B	309C	309E	3118	311C	312B	312C	312D	3158	315C	3150	316B	316C	316D

Í

н 5 , Т М	25•2 25•1	42•3 40•5	41•8 40•9	41.4	40•7 40•5	23.7	24•6 24•2	25.3	25.4	25.8	25.8	25•5	12•6	12.5	12•8	12.8	13.5	13.8	13.7	14•0	13•6	13.5	13.3	13.5
1 4 Ω	24•2 24•9	41•1 39•9	41•0 40•0	39•6	38•7 40•1	23.6	23•6 24•2	24•6	24.9	25.7	25.6	25•0	12.4	12•2	12•8	12.6	13.4	13.6	13.5	14•0	13•5	13.6	13•0	13.5
н 3 , Т м	22•7 24•0	37•9 37•3	37•9 37•5	36•0	35•4 40•6	23.6	22°4 24°2	23•2	23.6	25.2	24.7	23.7	11.9	11.8	12.7	12.5	13.1	13.2	13•2	13.7	13•2	13.6	12.7	13.5
Н 2,Т М	21•9 22•2	35•3 34•5	35•2 34•3	34•5	33•6 37•1	22.0	21•3 22•5	22.1	22.4	23.7	23.1	22.4	11.6	11•3	12•0	12.3	12.6	12.9	12.8	13•4	12.7	12.6	12.3	12.9
Н 1 , Т М	21•7 21•7	34•6 33•4	34•3 33•3	34•4	33•3 34•8 34•8	21.4	21•1 21•4	22.1	22.1	23•0	22•6	22•2	11.5	11•2	11.7	12.4	12.6	12.9	12.7	13•2	12.6	12.5	12.3	12.6
т З	25•6 36•2	46°0 47°4	47•3 47•7	44.9	44•8 68•7	53+3	27.8 40.1	27.4	28.1	32.6	31•6	29.7	13.3	14.0	24•6	12.8	15.0	14.7	15.0	17.0	15.9	21.4	13.7	21.8
τ 7 7	26•0 29•2	43 • 5 44 • 0	44•6 44•8	43.1	42•1 62•5	45•0	27•0 37•2	27.2	27.5	31.2	29.5	27.8	15+3	14.9	22.3	13.0	13.7	13.6	13.5	16•2	14.1	18.1	13.4	21.4
μΣ	22•5 24•2	36•5 37•2	36•8 37•1	35•5	35•0 44•7	25.0	22•4 26•5	23•0	23.4	25•8	24•5	23•9	12.1	12.2	13•8	12•5	12.9	12.9	12• ⁹	13•6	13•3	13•9	12.8	14.5
×2 ₹	22•0 23•2	35•2 35•2	35•1 35•1	34•6	33•9 37•0	22.5	21.7 23.2	22.6	22.9	24•0	23.6	23.4	12.0	12.2	13.0	12.4	12.7	12.7	12.7	13•2	12.9	13•3	12.6	13.3
Ξ×	22•0 23•2	35•5	35•2 35•2	34•6	33•7 35•8	22.0	21•9 22•9	22•3	22.6	23•4	23.1	23.1	11.9	12.1	12•7	12•3	12.5	12.5	12.5	12•9	12.5	12.8	12•3	12.9
RUN NO.	317B 317C	318B 318D	319R 319C	3218	322B 322E	323D	3258 3250	326C	326D	326E	326F	3266	329B	329D	329F	547B	547C	547E	547F	547H	548B	548C	548E	548F

H 5,1	Σ	25.9	26.0	26.2	2.0- 2.6-4	26.7		25.4	25.2	25.5	1 - 27	7 .	n c n u t s	45•0				40.7		46.8	45.8	45.9	46•2	46-0	45.0	47.0	47.2	26.8	26.2	26.5	26.7	, , , , , , , , , , , , , , , , , , ,	1 • 0 V		7.07 7.07	20.2
H 4•T	Σ	25.3	25.6	25.9	26.4	26.7		25•2	25.1	24.8	0-84	0.01		44.0	C 67			45•0		46.1	44.1	44.5	45•6	44.7	45.1	46.0	47.4	26.3	26.1	25.7	26.8	76.6			0.40	0.07
H 3,T	Σ	24.2	24.6	24-6	25.9	25.9		24.2	24.7	23.7	30.0	0.07		43.9		τ. α. τ. τ.	444	42.8		44.1	42.2	42.2	45.1	41.9	43.9	43.5	46.8	25.4	25.9	24.7	26.6	L 7C			25.47	0007
H 2,T	Σ	23.2	23•2	23.5	24.5	24.7		23.0	23.1	22.8	38.0	39.66	30.00	40.8	38.5		41.7	40.7	, , ,	41.6	39.9	40.1	42.4	40-0	40.8	41.5	43.8	24.3	24.4	24.0	25•2	0.80	24.6	0 C 4	0 0 0 0 0 0 0 0 0 0 0 0	
H 1.T	Σ	23•0	22.9	23.0	23.6	23.8		22•4	22•3	22+2	37.4	38.2	38.4	39.1	38.7	38.4	39.8	39.8		4100	39•4	39•5	40•2	39•9	39.7	40.9	41.8	23•9	23.7	23•5	24•2	23.9	24.2	24.5	24.8	
Н 5	Σ	26.5	28.3	28.3	30.2	29 . 8		32.8	34•3	27.1	46.3	51.6	50.6	52.0	43.4	51.5	55.8	53.0	7 7		49.0	57.0	60.9	46.0	58.3	51.9	56.4	31.8	39.1	27.0	38•5	26.2	45.0	44.44	30.6	
H 4	Σ	24.4	25.8	25.8	29.4	28.9		6.02	30.5	24.9	42.2	49 . 8	45.6	51.2	40-5	42.4	58.0	43.5	7 37		42.6	42.6	59 • 0	41.9	51.4	43.5	62.6	26.0	35.1	24.8	40.0	24.7	29.4	28.4	4 - 0 - 1	
н	Σ	23•2	23.8	23.9	26.2	25•8		2 4 • C	24•7	23.4	38•6	42.5	40.3	43.5	38.0	39•2	44.6	39.9	2 07		6•6 5	39•5	46•2	39•5	42.3	40.7	45•6	24•0	25•3	23•3	26.1	23•5	25.1	25.0	26.6	
H 2	Σ	22 • 5	23.0	23.1	23 . 9	23.8	7 66	1 • 7 7	23•0	22.7	36.9	39.0	38.4	39 • 5	37.2	37.8	38.9	38.6	5,95		50°50	0.00	39.4	38•2	39.8	39.4	40•7	23.1	23.7	22.4	23.3	23.0	23.8	23.8	24.7	
H I	Σ	22•3	22.7	22.8	23.3	23.4	1.00	+ • • • •	22.6	22.3	36•5	37.7	37.6	38.1	37.2	37.3	37.6	38.0	38.7		5 • - C	5.02	37•5	37.8	39•U	38•5	39.4	22.4	22.8	21.8	22•5	22 • 5	22.8	22.9	23.7	
RUN	NO.	549B	549C	549E	549F	549H	5508		2044	550E	551B	551C	551E	5 51F	554B	554C	554D	554F	555R			1000 1111	555F	556B	556C	5565	556F	557 B	557C	557E	557F	558B	558C	558F	1.00	-

164

•

н 5 , Т м	26.3	26•2	26•8	26•3	26.1	26.1	26.5	25•9	13•6	12.9	13.3	13,5	13.6	13.9
H 4.T M	25•6	26.1	26.7	26•0	26.1	25.6	26.3	25•2	13.5	12.6	13.1	13.4	13•5	13.9
н 2.1 2	24.8	25.4	26.0	25.0	25.7	24.5	25.7	24.1	13•2	12.5	12.8	13.0	13.3	13.5
н 2 , Т М	23.8	24.1	25.0	23.7	24.3	23.4	24•2	23.0	12.6	12.1	12.5	12.6	12.8	13.1
H I,T	23•8	23.8	24•5	23•2	23.4	22.9	23.4	22•7	12.6	12•2	12.5	12.6	12.7	13•0
ε Έ	27.9	44.6	44.8	28•4	29 . 9	32.1	29•6	27•2	15.0	13•2	13.4	15.1	16.6	16.4
4 Σ. Η Σ.	25•3	30.1	30.8	26.1	29.1	25.3	28•3	24.8	13•6	12.9	13.0	13.5	14.6	14.3
μΣ	23.7	25.1	25.2	23•5	25+6	23.4	24.8	23•2	12.8	12•5	12.6	12.9	13.1	13•2
ж Н	23•2	23.9	23.9	22.6	23.3	22.6	23.3	22 • 5	12.6	12.5	12.5	12.7	12.9	12.9
ΪΣ	22 • 5	22.9	23•0	22•0	22.5	22.0	22.5	22•1	12.4	12•4	12.4	12.5	12.7	12.5
RUN NO.	559B	559C	559E	5608	560C	560E	560F	560G	561B	561C	561E	561F	5616	5611

165

Table A-4a. Experimental cavitation data for 0.357-inch ogive using liquid hydrogen (English Units).

T 5 DEG R	35•78 35•66	38•39	36•36	39.74		36•04	40•37			39.60	41.29	35 • 78
T 4 DEG R	35•59 35•46	38•05	35.75	39 . 33	i.	35•89	39 • 96			39.40	40•79	35•50
T 3 DEG R	35•19 35•15	36.97	35•03	37.94		34.92	38•86			38.34	39.19	35•03
T 2 DEG R	34•45 34•11	36•54	34.54	37.49		34•70	37.91			37.57	38•48	34.33
T I DEG R	34•56 34•09	37•01	34.81	38.14		35•32	38,34			38,11	39.08	34•33
KV	0.78 -0.15 -0.10 0.81	1.05 0.27 0.20	0.97 0.21 1.12	0.17	0•14 0•20	0.37	1•00 0•04	0•56	0•92	0•30	0.16	-0.11
HV FT	486.7 500.4 491.2 517.6	667.9 673.7 1035.1	589 . 1 596.1 626.7	847.5	1029.7 1032.4	582.1	1011.0 1021.7	1035.1	800.0	833.7	1065.1	479.2
H0 FT	643 • 6 460 • 9 465 • 3 678 • 7	1292.8 874.6 1087.8	1042.7 717.4 1125.4	967•2	1067•0 1084•2	912.7	1525•7 1046•9	1240.6	1260.0	1110.0	1223•2	451.7
PV PSIA	14.92 15.32 15.82 15.82	20 .12 20.28 30.26	17.88 18.08 18.95	25.14	30.12 30.19	17,68	29•61 29•90	30.26	23.82	24.76	31.07	14•70
P0 PSIA	19•75 14•11 14•26 20•76	39.06 26.36 31.81	31.71 21.77 34.11	28.71	31•21 31•71	27.76	44•81 30•64	36.31	37.61	33.01	35.71	13.86
V0 FT/SEC	113•7 129•9 129•2 113•2	195•9 216•9 128•8	173•1 191•3 169•2	213.8	130.8 130.3	240.9	182•2 207•8	153.1	179.8	244.9	251•5	125.9
TO DEG R	36.58 36.74 36.63 36.94	38.48 38.54 41.36	37•71 37•78 38•09	10.04	41•33 41•35	37.64	41.20 41.27	41.36	39.64	39 • 91	41.56	36.49
CAVITY INCHES	1•50 1•00	1.00	1.30	1.20		1.50	1.30			06•0	1.30	1.30
RUN NO.	331A* 3318 3316 3310*	332A** 332B 333A*	334A** 334B 334D**	335B	336A* 336B**	337A	338A* * 338B	3394**	340A**	3418	342B	344B

T 5 DEG R	35 • 33	36•20	36.97	36•38 36•23	38•32		38•41 37•37	39•40	39 • 58	38•41
T 4 DEG R	35.15	36.18	37•03	35•80 35•91	38•43		38 . 18 36 . 56	38 . 95	39 . 46	38•20
T 3 DEG R	34.72	36.23	36.92	35•19 35•35	38.16		36 • 95 35 • 86	38.18	39 - 53	36•95
T 2 DEG R	33.77	35•69	36.27	34•65 34•49	37.33		36•52 35•30	37.28	38•68	36•38
T 1 DEG R	33•86	35.42	36•25	34•94 34•78	37.51		36•90 35•64	37•66	38.61	36.38
ĸ۷	0.64 -0.03 0.73	0.81 0.13 0.78	1•11 0•36 1•06	0•19 0•20	1•13 0•38 1•20	0.57	1•22 0•28 0•25 1•01	0.85 -0.01 0.82	0.81 0.13	0.33
HV FT	473.2 480.7 491.2	476。2 474。7 476。2	508.2 516.0 519.2	522.4 533.6	652.7 658.4 664.1	800.0	643 3 654 6 654 6 660 3	817.9 833.7 852.1	786 . 9 789 . 1	662 . 2
H0 F1	626•8 472•9 667•0	672•4 509•3 649•7	947•0 683•5 929•6	617.1 630.9	1299•8 915•3 1334•1	973.9	1324.3 848.3 828.5 1227.7	1123•5 828•0 1158•6	1098.1 848.2	963.8
PV PSIA	14•53 14•75 15•05	14.62 14.57 14.62	15.55 15.77 15.86	15 . 96 16 . 28	19.69 19.85 20.01	23.82	19•42 19•74 19•74	24.32 24.76 25.27	23•46 23•52	19.96
P0 PSIA	19•26 14•51 20•46	20•66 15•64 19•96	29•03 20•91 28•46	18.86 19.26	39.33 27.63 40.33	29.03	40.11 25.61 25.01 37.11	33•46 24•59 34•41	32 . 79 25.29	29 ,09
V0 FT/SEC	124•0 138•1 124•7	124•6 131•8 119•7	159•5 174•1 158•0	179•0 178•7	192•2 209•8 189•9	139.9	189•5 212•5 212•6 189•7	152•2 172•9 155•5	157.0 172.7	241.2
T0 DEG R	36.41 36.50 36.63	36.45 36.43 36.45	36 . 83 36.92 36.95	36 . 99 37 . 12	38•34 38•39 38•45	39.64	38 25 38 36 38 36 38 45 41	39•78 39•91 40•05	39.53 39.55	38.43
CAVITY INCHES	06•J	0•50	0 s o	1•30 1•00	0•60		1•00 1•30	1.20	0•50	1.20
NON • 00	345A** 3458 345C**	346A** 346B 346C**	347A** 347R 347C**	348B 348C	349 A** 349B 349C**	350A**	351A** 3513 351C 351D**	952A 952B 952C*	253A** 353B	354B

cont'd
\sim
A-4a.
0
Ē
H

T 5 DEG R	40.81 41.17		37•89	40.88	41•36				41.02	40.23	39•96	39•65	39•96 39•78	39•44
T 4 DEG R	40•10 41•04		37.62	40.61	41.36				40.97	39.40	39 • 83	39.62	39.78 39.04	39.47
T 3 DEG R	38•52 40•43		36•40	39 • 38	41.26				40.86	38.07	39.37	39•38	38•20 37•55	39.10
T 2 DEG R	37 . 76 39 . 11		35.46	38•45	40•10				39 . 94	37.12	38•43	38•41	37•80 37•04	38.07
T 1 DEG R	37•85 38•86		35.41	38 . 39	39 •82				39 • 85	37.64	38.83	38•57	38.20 37.37	38.32
۲ ۲	1•04 0•12 0•22	1.09	0.44	0.05	0•92 0•20	0.52	0.71	0•71 0•55	0.09	1.13 0.28	0.38	0.22	0.23 0.17	1•06 0•34
HV FT	1021.7 1037.8 1027.0	1045.9	658 . 4	1037.8	1032.4 1037.8	1035.1	1024.3	1054.1 1090.2	1032.4	815•6 863•8	811.2	800.0	838 . 3 880 . 3	813•4 824•6
H0 FT	1740•3 1140•7 1208•6	1770.6	1059.0	1070.4	1491.7 1163.5	1201.6	1255.8	1321•3 1303•9	1075.7	1610.5 1107.8	1141.8	921.5	1010.0 1005.2	1468.6 1080.7
PV PSIA	29•90 30•33 30•04	30.55	19.85	30•33	30 . 19 30 . 33	30•26	29.97	30 . 77 31 . 74	30.19	24.26 25.59	24,13	23.82	24•88 26•04	24 . 19 24 . 51
PO PSIA	51•13 33•36 35•39	51.93	31.99	31.29	43•73 34•03	35.16	36.79	38•63 38•01	31•46	48•09 32•86	34.03	27.46	30•01 29•76	43.83 32.16
V0 FT/SEC	211.1 237.9 231.4	207.2	240.9	200.7	179.6 199.7	143.8	145.3	155.8 157.9	179.0	212.6 237.6	236.2	188•6	217•2 218•3	199.8 219.4
TO DEG R	41.27 41.38 41.31	41.44	38•39	41.38	41 . 35 41.38	41.36	41.29	41 . 49 41.72	41.35	39 .76 40 . 14	39.73	39.64	39 . 94 40.27	39 . 74 39 . 83
CAVITY INCHES	1•50 1•00		0.70	1.30	0•60				0•60	1.30	0•70	0.60	1•00 1•50	0•60
RUN NO.	355A** 3558 355C 355C	356A**	357B	3588	359A** 359B	3604**	361A**	362A** 362C**	3638	364A** 364B	365B	366B	367B 367C	368A** 368B

T 5 DEG R	39.53	39•33	39.11		37•19 37•06	37•33 36•90	37•62 37•62	36•77 37•06	37.39
T 4 DEG R	38•97	38.70	38•92		37•30 37•22	37•33 37•10	37.85 37.78	37•03 36•76	37.48
T 3 DEG R	37.84	37.35	38•00		37•08 37•42	36 •95 37•28	37 . 31 37 . 67	36.65 37.12	36•79
T 2 DEG R	37.17	36•90	37•21		35 . 86 36.47	35•73 36•31	35•89 36•05	35•48 35•73	36•43
T 1 DEG R	37.55	37.26	37•49		35 . 93 36 . 27	35•95 36•13	36•05 36•18	35•60 35•66	36•40
KV	1•04 0•12 1•10	1•18 0•29 1•26	1•02 0•16 1•09	0+•0	0 • 0 6 8 0 • 0 6 8 0 • 0 6 0 • 0 6 0 • 0 6 0 • 6 9	0•56 0•10 0•06 0•56	0.93 0.16 0.19	0.90 0.15 0.88 0.88	1•13 0•28
нv FT	831.5 838.3 840.6	800.0 802.3 826.9	784•7 797•8 838•3	561.7	582。1 585。6 587。4 585。6	589•1 590•9 585•6 596•1	589.1 594.4 596.1	582.1 583.9 585.6 589.1	583.9 590 . 9
H0 F1	1329•5 908•8 1347•9	1628.9 1063.6 1672.5	1260•0 892•3 1327•6	646.1	781.7 572.8 608.1 787.8	748.7 558.3 605.7 753.2	992•0 679•2 694•1	970.7 664.7 709.8 959.2	1220.3 787.9
PV PSIA	24.70 24.88 24.95	23.82 23.89 24.57	23•40 23•76 24•88	17,09	17.68 17.68 17.83 17.83	17.88 17.93 17.78 18.08	17.88 18.03 18.08	17.68 17.73 17.78 17.88	17•73 17•93
P0 PSIA	39.59 26.99 40.11	48.71 31.71 49.91	37•66 26•59 39•51	19.67	23.76 17.39 18.46 23.94	22•74 16•94 18•39 22•86	30 .16 20 .61 21.06	29.53 20.19 21.56 29.16	37•16 23•93
V0 FT/SEC	175•4 195•3 172•6	212.9 239.0 207.7	173.3 193.4 169.7	116•3	137•6 151•5 149•2 137•5	134•9 148•2 144•9 134•7	167•3 185•1 183•1	166•3 183•2 181•0 164•8	190•4 211•9
TO DEG R	39 89 39 94 39 96	39 . 64 39 . 65 39 . 85	39.51 39.62 39.94	37.42	37•64 37•67 37•69 37•67	37.71 37.73 37.67 37.78	37•71 37•76 37•78	37.64 37.66 37.67 37.71	37•66 37•73
CAVITY INCHES	1•20	1.30	1.00		0•60 0•40	0•90 0•40	0 • 00	1•00 0•50	0•75
RUN NO.	369A** 369B 369C**	370A** 370B 370C**	371A** 3718 371C**	507A**	508A** 5083 5080 5080	509A* 509B 509C 509D*	510A** 510B 510C	511A** 511B 511C 511D**	512A** 512B

T 5 DEG R	37.22	38•83 38•57	40•72 40•68	39.17	40•82 40•68		40•90 37•46	39•01	40 • 64
T 4 DEG R	37.37	38•93 38•84	40.72 41.00	39.44	40•99 40•81		41.08 37.48	39.22	40.57
T 3 DEG R	37•30	38•23 38•93	39 . 76 41.22	38.90	40•46 40•99		40•59 36•74	39.10	39•89
T 2 DEG R	36.00	37•19 37•35	38•63 40•28	38.09	39•15 39•85		39 •83 36•23	38•21	38•92
T 1 DEG R	35•89	37•12 37•10	38°54 39°49	38•21	39•46 39•82		39 • 56 36 • 50	37.84	39•40
× V	1•24 0•28	0.95 -0.02 0.01 0.91	1.13 0.08 0.25 0.71	0•93 0•13 0•84	0.77 -0.03 0.08 0.80	0.69 0.86	0.33	0•35 1•14	1•14 0•21
ΗΛ	580.4 587.4	756.8 771.7 776.0 786.9	995.2 1008.4 1013.7 1013.7	773 . 9 778 . 2 773 . 9	995.2 1003.1 1005.7 1003.1	1008.4 1008.4	1013.7 597.9	773 . 9 795 . 6	997.8 1016.3
H0 FT	1223•2 773•2	1080.3 764.8 803.8 1097.1	1640.1 1066.8 1192.8 1231.7	1193•3 853•0 1164•7	1322.2 988.3 1046.2 1337.3	1229•5	1016•4 928•3	1108•2 1681•3	1918•6 1236•1
PV PSIA	17.63 17.83	22.62 23.62 23.15 23.46	29•18 29•54 29•68 29•68	23 . 09 23 . 22 23 . 09	29 .1 8 29 . 40 29.47 29.47	29•54 29-54	29.68 18.13	23•09 23•70	29•25 29•75
P0 PSIA	37•26 23•49	32•34 22•83 23•99 32•76	48.26 31.26 34.96	35•69 25•46 34•83	38.84 28.96 30.66 39.26	36•06 40-09	29.76 28.19	33•13 50•31	56•53 36•23
V0 FT/SEC	182. 3 205.2	148•0 169•6 167•0 148•2	191.8 218.9 213.0 140.8	170.6 190.5 172.5	165.3 184.8 182.7 164.4	143•4 162 ₋ 8	185.4 252.3	249•5 223•2	228•1 259•3
TO DEG R	37•62 37•69	39•28 39•40 39•44 39•44	41.09 41.18 41.22 41.22	39•42 39•46 39•42	41.09 41.15 41.17 41.17	41.18 41 18	41.22 41.22 37.80	39•42 39•60	41.11 41.24
CAVITY INCHES	0.75	1•00 0•60	1 • 00 0 • 40	0•60	0•75 0•50		0•00 0•90	0•50	0.75
RUN NO.	513A** 513B	514A** 514B 514C 514C	515A** 515B 515C 515C 516A**	517A** 517A** 5178	518A** 5188 518C 518C	519A**	5 2 0 B	522A 522B * *	523A** 5238
T 5 DEG R	40•75	40•77	37.12 37.10	39•08 38•92	40.32	37•44	36•59	37•01	
------------------	----------------------------------	------------------	----------------------------------	------------------------------------	------------------	----------------------------	--------------------------------	---------------------------	-------------------------
T 4 DEG R	40•84	40•64	37•37 37•26	39.10 39.13	39 • 69	37•39	36.45	36.97	
T 3 DEG R	40.27	40.01	37•17 37•48	38•59 39•31	39 • 62	36•81	35.78	36•36	
T 2 DEG R	39.87	39.20	36•13 36•67	37•48 38•45	37.71	35•89	35•35	36•43	
T 1 DEG R	39.26	39.40	36•36 36•52	37 . 85 38 . 36	38.70	36•18	35 . 46	35•75	
×	1•09 0•18	1.19 0.22	0•73 -0•01 0•14 0•72	0.84 0.00 0.17 0.76	1•22 0•20	1 • 23 0 • 28 1 • 24	1.22 0.36 1.23	1.22 0.37 1.21	0.67 0.75
HV FT	987.44 997.8	1011.0 1076.2	578.7 580.4 577.0 580.4	752.6 754.7 761.0 769.6	1035.1 1067.9	575.3 575.3 582.1	573.5 582.1 587.4	563.4 577.0 582.1	951 . 5 984.8
H0 F1	1630.0 1130.3	1935.1 1295.7	763•0 577•8 617•6 764•8	1042•6 756•6 832•1 1045•2	1997.9 1268.0	1277•7 776•5 1292•9	1490.6 917.0 1515.5	1466•3 922•4 1491•2	1174.6 1229.2
PV PSIA	28.97 29.25	29.61 31.37	17.58 17.63 17.53 17.63	22.50 22.56 22.74 22.97	30.26 31.14	17.48 17.48 17.68	17.68 17.68 17.83	17.14 17.53 17.68	27 . 99 28.90
P0 PSIA	47.99 33.16	56.96 37.81	23•20 17•55 18•77 23•25	31.22 22.62 24.87 31.25	58•72 37•02	38•95 23•62 39•39	45•49 27•89 46•19	44°79 28°07 45°47	34•60 36•12
V0 FT/SEC	194•9 219•9	223•4 252•4	127•6 140•6 139•1 128•8	149•1 167•8 165•0 152•8	225•4 255•3	191.8 216.3 192.0	219.8 244.8 220.5	218•3 245•3 220•1	146.8 145.1
TO DEG R	41 . 04 41 . 11	41.20 41.63	37.60 37.62 37.58 37.62	39•24 39•26 39•31 39•33	41.36 41.58	37.57 37.57 37.64	37•55 37•64 37•69	37•44 37•58 37•64	40•79 41•02
CAVITY INCHES	0•60	0•60	0 • 80 0 • 40	1 • 00 0 • 40	06•0	1.30	1.00	06•0	
RUN •00	524A** 524B	526A** 526B	528A** 528B 528C 528C	529A** 529B 529C 529D**	530A** 530B	531A** 5318 531C**	532A** 532B 532C**	533A** 533B 533C**	534A** 534C**

*

T 5 Deg r		37•57 37•15	39•13 38•77	40•50 40•07	39•28	40•75	37.12 36.67	40.41	41.40	37.15
T 4 DEG R		37 . 55 37 . 31	39•20 38•86	40•93 40•63	39•46	40•97	37•28 36•97	40•43	41.24	36•68
T 3 DEG R		37•01 37•30	38•54 39•19	39 . 69 40.32	38 •52	39 . 89	36•58 36•85	39.74	40.52	35•98
T 2 DEG R		36•04 36•07	37•64 38•02	38 • 90 39•19	37.96	39•06	36 •1 8 36•09	38•74	39.73	35.71
T 1 DEG R		36.41 36.52	37 . 94 38.18	38 . 95 39.01	38.14	39.46	36 .1 4 35 . 98	39•08	39.53	35.64
κ	0.71 0.80	1•05 0•21 0•27	1•04 0•17 0•28	0.93 -0.00 0.10	1•05 0•26	1•11 0•12	0.81 0.06 0.13 0.92	1•12 0•25	1•19 0•24 1•17	1•15 0•35
HV F1	971 . 9 1008.4	568.4 571.8 577.0	725 5 740 0 744 2	964.2 971.9 977.0	729•6 740•0	1000.5 1021.7	573.5 578.7 571.8 570.1	1027.0 1037.8	1000.5 1019.0 1021.7	551.6 566.7
H0 F1	1202•6 1265•4	1014.8 682.2 718.7	1206.7 838.8 909.0	1374•6 970•9 1036•7	1364•0 928•9	1657.3 1114.1	805.9 599.7 619.9 841.6	1976.5 1309.1	1964.0 1268.2 1962.2	1403•8 884•8
PV PSIA	28.55 29.54	17.28 17.38 17.53	21.74 22.15 22.26	28•34 28•55 28•69	21.86 22.15	29•32 29•90	17•43 17•58 17•38 17•33	30 . 04 30 . 33	29.32 29.83 29.90	16.80 17.23
P0 PSIA	35•37 37•12	30.92 20.75 21.85	36•25 25•12 27•22	40•49 28•52 30•45	40•99 27•83	48•75 32•62	24.52 18.22 18.85 25.62	58 . 12 38.32	57.87 37.17 57.72	42•92 26•95
V0 FT/SEC	144•3 143•9	165•2 184•5 182•5	172.7 195.9 194.1	168•5 194•4 193•0	196.9 217.9	195•5 224•3	136.2 153.9 152.8 138.0	233•4 263•3	227•9 259•1 227•9	218•3 241•6
TO DEG R	40 .93 41.18	37.53 37.53 37.58	39.01 39.13 39.17	40.88 40.93 40.97	39.04 39.13	41.13 41.27	37.55 37.60 37.53 37.51	41.31 41.38	41.13 41.26 41.27	37•31 37•48
CAVITY INCHES		1•00 0•60	0*90 0*50	1•00 0•60	06 • 0	06•0	06 0	06•0	1.00	1.30
RUN •00	535A** 535C**	536A** 536B 536C	537A** 5378 537C	538A** 538B 538C	539A** 539B	540A** 540B	541A** 541B 541C 541D**	542A** 542B	543A** 543E 543C**	544A** 544B

T 5 DEG R	36•90	
T 4 DEG R	37.06	
T 3 DEG R	36•31	
T 2 DEG R	35•39	
T I DEG R	35•77	
× <	1.17 0.30	1•21
HV F1	715.3 740.0	737.9
HO FT	1596.4 1024.9	1704•6
PV PSIA	21•46 22•15	22•09
P0 PSIA	48•09 30•72	51.27
V0 FT/SEC	220•2 247•0	227•0
TO DEG R	38•92 39•13	39.11
CAVITY INCHES	1.00	
RUN • 0	545A** 545B	546A**

* DENOTES AN INCIPIENT RUN** DENOTES A DESINENT RUN

P 5 J PSIA	13•08 12•80	19.85	14•40	24.19	13.64	26•44	23•70	29•97	13.08	12.10	14•02	15•91	14•44 14•10	19.63	19.90 16.94	23•03	23 • 64	19•90
P 4, T PSIA	12•64 12•37	18•84	13•00	22•80	13•32	24•95	23•03	27•99	12.45	11.73	13•98	16.05	13•12 13•36	19•96	19•21 14•88	21.57	23•22	19•26
P 3,T PSIA	11.80 11.73	15•91	11.47	18•53	11.26	21•29	19•69	22•32	11.47	10.87	14.10	15.77	11•80 12•14	19.16	15•86 13•24	19•21	23.46	15.86
P 2,T PSIA	10•35 9•72	14•83	10.52	17.28	10.83	18•43	17.48	20.12	10.12	9.12	12.88	14.19	10•73 10•42	16.85	14•79 12•03	16.70	20•72	14.44
P 1.T PSIA	10.55 9.69	16.00	11.04	19.10	12.06	19•69	19.00	21.97	10.12	9.28	12.29	14.14	11.29 10.97	17.33	15.73 12.76	17.73	20.50	14.44
P 5 PSIA	12•84 14•36	22.01	15.81	24.98	16.11	28,81	29.91	29.61	13.43	14.96	17.44	23.94	14.13 17.86	31.50	20.81 15.91	24.69	28.25	21.79
P 4 PSIA	12•94 13•68	20.61	16.61	23,15	19.76	26.67	25.91	27.46	13.21	13•51	16.77	22,61	14.83 15.96	28 . 93	19.61 18.71	21.79	56°99	21.59
P 3 PSIA	9 •91 10•46	13.61	11.74	15,88	11.61	19,11	17.11	18,41	10,26	10.21	14.06	14.78	10.49 11.31	17.26	13.41 12.26	16,82	21.49	13,36
P 2 PSIA	10.61 10.74	13.16	11.30	15.45	11.31	18.24	16.36	17.96	9•44	9•56	11.01	11.81	10.03 10.81	14.83	12.81 11.81	15.96	17.19	13.06
P 1 PSIA	9•81 9•83	13.01	11.30	15,38	11.16	17.97	16.61	18.16	9•44	9 * 46	10.14	11.28	9.89 10.46	14.03	12.61 11.71	15.86	16.16	12,89
RUN NO.	331B 331C	3 32B	334B	335B	337A	338B	341B	342B	344B	3458	3468	347B	348B 348C	3498	351B 351C	352B	353B	354B

P 5.1	28°06			28•34	30•26 28 00	26.01	24.95	23.89	24.95	31.50		23•40	22,00	16.47	16.85 16.85	15•73 17•63	17.63 15.41 16.14
P 4.1	25•46 28•97	17.62		10.12	07.80	23.03	24.51	23.76	24•32 21-86	23_28	21.62	60.12 20.78	21.46	16•75 16•75	16.85	16•23 18•28	18•08 16•05 15•37
P 3,T PSIA	20•23 26•64	14-40	70.07	29,83	28.27	18.90	22.92	22.97	19.26 17.43	22.03	18.23	05-01	18.69	16•19 17.00	15.86	16•70 16•80	17.78 15.10 16.28
P 2,T PSIA	18•03 22•09	12.37	20-01	25-46	24•88	16•28	19.96	19•90	18.13 16.09	18.90	16.42	15.73	16.52	13•24 14•66	12.96	13.32	13.68 12.41 12.96
P 1.T PSIA	18•28 21•29	12,25	19.85	24.44	24.57	17.68	21.17	20.39	19.26 16.94	19.63	17.43	16.66	17.28	13•40 14•19	13.44 13.85		12.80 12.68 12.80
P 5 PSIA	26•06 37•96	34 • 84	28.59	37.00	33 . 96	26.51	37.36	29•96	25•56 22•76	35•61	23.69	23.61	26.32	19•22 20•71	17.97 20.56	21.26 24.55	20.52 25.06
P 4 PSIA	24•91 33•19	28•64	26.06	35.40	32.66	24.11	32,43	27.96	23•01 21•86	32,91	21.39	22,81	22.69	16•72 19•51	15.19 19.39	15.86 21.56	15.22 23.21
P 3 PSIA	17•31 22•06	16.09	19•42	26.66	27,06	16.41	19,53	19•21	16•46 15•26	20,21	16,02	15,21	16,42	13.79 17.26	12.61 17.09	13.41 14.91	12.92 16.91
P 2 PSIA	16•76 20•59	14.69	18.52	22•23	22.19	15,81	17.66	17.16	15.86 14.86	17.82	15.56	14.66	15.56	11.79 13.76	11.71 13.69	12•71 13•09	12.16 13.26
P 1 PSIA	16•56 20•02	14.14	18•22	21.00	20.33	15.46	16.93	16.56	15.56 14.61	17.01	15,29	14.46	15.22	11.12 11.81	11 .19 12 . 02	12.18 12.39	11.79 12.26
RUN NO.	355B 355C	3578	358B	359B	363B	364B	365B	3668	367B 367C	368B	369B	370B	3718	508B 508C	509B 509C	510B 510C	5118 511C

P 5.T PSIA	16.99	16.56	21•17 20•39		27.72	00-17	22•26	28.13 27.58		28.41	17.19	21.74	27.45	27•86	27•92	16•28 16•23	21.97	21.46	26.24	17.14	14.97
P 4.T PSIA	17.23	16.94	21•51 21•23		27.72	28.83	23.15	28•76 28-06	00.007	29.11	17•23	22•44	27.17	28•20	27.45	16•94 16•66	22.03	22.15	24.01	16.99	14.62
P 3.T PSIA	15.46	16.75	19-37	• • •	24.26	29 •6 8	21.40	26.77	01 027	27•24	15•32	22•03	24•70	26•04	25.14	16•42 17•23	20.45	22•74	23•76	15.50	13•08
P 2.T PSIA	14.57	13.56	16.47	00.01	20.56	26•11	18•95	22•21	16042	24.51	14.10	19•31	21.46	24.63	22.38	13•85 15•14	17.23	20.01	17.88	13•32	12.14
P 1.T PSIA	14.49	13•32	16.28	67 • 0 T	20.28	23•34	19,31	23•22	24•44	23.58	14.75	18•23	23.03	22.56	23.03	14•40 14•79	18.28	19.74	20.78	13.98	12.37
P 5 PSIA	25•63	25.16	23.36	20.69	31.46	40•36	28.86	31.46	34•39	32.96	28 . 39	40.46	39.90	37.53	41.81	18•48 20•27	22.62	26.77	36.17	14.99	20.09
P 4 PSIA	17•33	17.59	19.20	24.16	24.16	38.21	25•26	28.11	32 . 83	30.76	17.29	35.73	28.10	33.46	32.51	15.85 19.50	06 91	25.87	25.52	12,95	14.66
P 3 PSIA	13.90	14.06	16.40	19,02	20.11	32.76	18.71	22.41	28 . 49	25 . 01	13,86	22,33	22,33	24.49	23.91	13.15 16.62		21.87	21.07	11.65	12.76
P 2 PSIA	13.20	13.26	15.66	17.06	18.96	24.61	16.61	20.31	23.13	21.56	13.26	17.43	20.76	21.09	21•66	12.32		14• 45	20.02	11.25	12.09
P I PSIA	12.83	12.89	15.30	16,36	18.66	21.06	15.91	19.36	20.66	20.56	13.09	16.63	20.13	20.36	21•34	12.15		14.82 16.22	19.72	11.29	12.06
RUN NO.	5128	5138	514B	514C	6160	5150	517B	5186	518C	5208	521A	522A	5 23B	524B	5268	5288	7076	529B 529C	530R	5318	532B

RUN NO.	P I PSIA	P 2 PSIA	P 3 PSIA	P 4 PSIA	P 5 PSIA	P 1,T PSIA	P 2,T PSIA	P 3,T PSIA	P 4,T PSIA	P 5,T PSIA
533B	12.37	12.72	13.47	15.92	24.67	13.00	14.57	14:40	15.91	16.00
536B 536C	11.58 12.75	11.75 12.98	12•55 14•42	14•52 20•18	18•95 23•65	14•53 14•79	13•64 13•73	16•00 16•75	17•43 16•80	17.48 16.37
5378 537C	15 . 07 16.02	15•32 16•92	16.32 20.79	19•62 28•25	25•72 29•32	18•53 19•21	17•68 18•74	20•28 22•32	22•38 21•29	22.15 21.00
538B 538C	17.52 19.42	18.17 20.52	19 . 77 24.22	24.07 30.78	28 . 87 32 . 52	21.57 21.74	21•40 22•32	24•01 26•24	28•55 27•38	26.91 25.33
539B	15.06	15,53	16.43	19.70	27.70	19.10	18•59	20•23	23.22	22.62
540B	18.79	19.29	20.69	25.05	33 • 09	23+22	21•92	24.70	28•69	27.86
541B 541C	12.15 12.35	12•45 12•88	12 . 99 14.38	14.99 19.51	18•42 20•42	13•89 13•52	13•98 13•77	14•92 15•59	16•70 15•91	16•28 15•14
542B	19.87	20.37	22.22	27.37	38.62	21.97	20.89	24619	26 •6 4	26.57
543B	19.47	19.72	21.17	25•62	36.67	23.46	24.13	26.97	29.75	30.41
544B	11.72	11.52	12,05	13.48	16.55	12.76	12•92	13•52	15.19	16.37
545B	14.89	15.12	15.65	17.95	25.39	13.04	12.22	14•27	16.14	15.73

,

660.	637.7	519•2	470.3	470.3	727.2	720.1	. 433.2	423.0	417.2
793.	778.2	635•9 786.9	548•3 489.4	583•9 481.6	831•3	727•2	552.3	522.5	
		42700	388.0	412•1	520.8	618.3	395.8	380.6	
660.	635.9	519.2	482.2	514.4	692 . 4	650.0	434.9	414.5	~
650.	662.2	634•0	553 . 3	570.1	1081.1	985.9	567.6	483.5	
• • • • • • • • • • • • • • • • • • • •	+ • •	0 ° 7 6 C	5 - 5 - 5	352.	588•6	522.5	363•8	346.9	\sim
470	424•9	380.4	344.1	363.1	459.5	483.5	336•2	320.8	
520.	525•6	516.0	461.5	460•0	804.2	756.5	481.8	380.6	~
455.	454•3	458.6	416.8	397•0	573.9	550.6	457.1	353.7	5
390•	377•9	348•8	290•6	295•8	488•0	438•3	326•8	305.1	80
423	402•2	369•2	323.7	323•7	435•6	428.1	328.5	301.1	•1
1024.	951.5	746.2	667.9	733.8	1011.0	932.0	607.8	592 . 1	c.
195.1	771.7	652.7	575.3	628•5	1022.1	875 • 5	562•4	536.4	0
894.	840.6	709.3	608•6	652.7	981.5	903.1	632.4	601.8	4
442.	431•7	361•9	347•6	389•2	527.7	655•3	373.9	363.8	2
813.4	763.2	612.1	568.4	632•2	841.7	775.8	519.7	504.9	5
468•ł	420•8	369•2	337•2	354.7	517.3	545.0	378.3	363.4	4
658.4	623.0	520 . 8	483.7	524•0	735.1	685.3	441.7	426.4	3
423•5 414•]	408•7 399•5	380•4 377•9	331•5 310•6	338•4 309•5	415.5 467.4	418•9 444•1	316.8 335.2	340 • 2 344 • 6	۲
H 5.] FT	H 4•T FT	H 3,T FT	H 2,T FT	H 1•T FT	H 5 F T	H F T F	H F T 3	H FT	

-

H 5,T FT	954•0 1005•7	606.8	964.2	1035.1	984.8	875.6	840•6	802.3	840.6 817.9	776•0	786•9	763.2	737.9	540•1 528•8	553•3 514•4	580•4 580•4	503•5 528•8
H 4,•T FT	859•1 987•4	580.4	926.5	1035.1	0•176	771.7	824•6	797.8	817.9 729.6	780•3	721.4	691.3	715.3	550•0 543•4	553.3 532.0	603•2 596•1	525•6 502•0
H 3,T FT	671•8 902•0	471.7	769.6	1019•0	961.6	624 . 8	767.4	769•6	637 . 7 573 . 5	735•8	601.4	555.0	617.6	530.4 561.7	519•2 548•3	551•6 585•6	492.8 533.6
H 2.T FT	594•4 737•9	399 • 5	664.1	859.1	838,3	533.6	662.2	660.3	597.9 527.2	624.8	538 . 5	514.4	541.7	429•0 477•7	419•4 464•4	431.7 444.3	400•9 419•4
н 1•Т FT	603•2 709•3	395.7	658.4	822•4	826•9	582.1	705.3	677.6	637•7 556•6	650•8	573.5	546.7	568•4	434•5 461•5	435•9 450•0	444•3 454•3	410•1 414•1
H 5 F T	880•9 1325•2	1206.5	973.4	1288.5	1173.3	897.3	1302.2	1023.9	862•8 761•9	1235•6	795.2	792.4	890.4	636•2 688•9	592•4 683•5	708•4 826•6	682•1 844•6
H FT H	839•2 1144•3	975.3	880.9	1227.7	1124.4	810.3	1115.8	950.3	770.8 729.7	1133.8	713.0	763.7	759.4	548•8 646•4	495•9 642•2	519.0 719.0	497•0 778•0
н 13	569•4 736•9	527.0	643•3	902.8	917.3	538.1	647•2	635 . 9	539.8 498.3	671•2	524.6	496•6	538•4	447.9 567.6	407.7 561.7	434•9 486•3	418•2 555•5
H 2 F T	550.2 684.6	478.7	611.7	742.9	741.5	517.3	581•6	564.1	519•0 484•6	587.2	508.7	477.7	508.7	379 . 9 446 . 9	377•2 444•5	411.1 424.0	392•5 429•8
H 1 F 1	543•3 664•4	459.9	601.1	699 . 1	675.4	505•2	556.1	543.3	508•7 476•0	558•9	499 . 4	470.8	497.0	357•4 380•6	359•7 387•7	393.1 400.2	379•9 395•8
RUN NO.	355B 355C	3578	3588	359B	3638	3648	3658	3668	3678 367C	368B	369B	370B	371B	508B 508C	509B 509C	510B 510C	5118 511C

H 5.T FT	558.3	543.4	705•3 677•6	941•4 936•4	744•2	956•6 936•4	966.7	565•0	725.5	931.4	946.4	949•0	533•6 532•0	733•8 715•3	887.5	563.4	488•2
H 4, T FT	566•7	556•6	717•4 707•3	941•4 982•2	776.0	979•6 954•0	992•6	566.7	750.4	921.5	959.1	931.4	556•6 546•7	735•8 740•0	806.7	558.3	476.2
Н 3 , Т FT	505.1	550.0	641.4 717.4	815.6 1013.7	713.3	906.8 979.6	924•0	500 . 4	735.8	831.5	880.3	847.5	538 . 5 566.7	679•6 761•0	797.8	506.6	423.5
H 2, T FT	474.7	440•1	540.1 555.0	683 . 5 882.7	626.7	742.1 826.9	824•6	458.6	639•6	715.3	829•2	748•3	450•0 494•3	566.7 664.1	589.1	431.7	391.8
Н 1,1 FT	471.7	431.7	533•6 532•0	673•7 782•5	639•6	778•2 822•4	791.2	480.7	601.4	771.7	754•7	771.7	468•8 482•2	603•2 654•6	691•3	454•3	399•5
H 5 FT	865.3	848•3	783•4 903•8	1079.6 1417.6	983•3	1079•6 1189•5	1135.7	966.1	1421.5	1399.9	1308.7	1473.9	610.3 673.3	756.9 906.8	1256.9	489.0	666.9
H F 7	570.1	579.1	635.5 812.1	812•1 1334•8	851.9	955•8 1130•8	1053.6	568.7	1240•2	955.4	1154.5	1118.8	518.7 646.1	607•1 874•0	861.3	419.3	477.7
Н F Т	451.7	457.1	537•7 629•2	667•6 1128•2	618•3	749•4 969•7	842.8	450•3	746.5	746.5	824•0	803.1	426•1 545•4	518•7 730•1	701.6	375.2	412.8
н F12	427.8	429 . 8	512.1 560.7	627.1 828.4	545.0	674.7 775.1	719.0	429.8	573.6	690.6	702.3	722.6	397 . 9 439 . 4	. 487.7 576.7	664 . 4	361.7	390.1
н 1	415.2	417.2	499•7 536•4	616.6 701.3	520.8	641•2 687•1	683•5	424.0	545.7	668•3	676.5	711.2	392.1 409.7	483.2 531.5	653°9	363•1	389.1
RUN NO.	5 1 2 B	5138	514B 514C	5158 5156	517B	518B 518C	5208	521A	522A	5238	5248	526B	528B 528C	529B 529C	530B	5318	532B

H 5.T FT	524•0	575•3 536•8	740•0 740•0	911.7 854.5	756.8	946•4	533•6 494•3	899.5	1040.5	536.8	514.4
H 4,0T FT	520.8	573•5 551•6	748•3 709•3	971•9 928•9	778.2	977.0	548•3 520•8	902•0	1016.3	495.8	528•8
Н 3 , Т FT	468•8	524•0 550•0	673.7 746.2	806.7 887.5	671.8	831.5	486.7 509.7	813.4	914.2	438.7	464.4
H 2, T FT	474.7	442 • 9 445 • 7	582.1 619.4	713.3 746.2	613.9	731.7	454.3 447.1	695 . 3	811.2	418.1	394.4
H 1,1 FT	420•8	473•2 482•2	612.1 635.9	719•4 725•5	632•2	778.2	451•4 438•7	733.8	786•9	412.7	422•2
H 5 FT	830.5	626.7 793.8	868•6 1000•3	983•7 1119•2	940.8	1140.6	608.2 678.6	1350.5	1275.9	542.9	856.6
н Н Т т	521.1	472 .9 670 .1	650•3 960•9	808 .9 1054.3	653•1	844•3	489•0 646•4	928.7	864•9	437.3	591.7
н 713	437•0	405•7 469•5	535•0 691•7	655.6 814.3	538 . 8	688 . 1	420•6 468•1	742.6	705•2	388.7	511.8
H 2 FT	411.4	378.6 420.3	500 . 4 555 . 8	599.4 682.1	507.7	638.7	402 . 3 416.9	676.8	653 . 9	370.8	493 . 5
H I F T I	399 . 6	372.9 412.5	491.8 524.6	576.7 643.3	491•5	621.1	392•1 398•9	659.1	645.0	377.6	485•6
NON •	533B	536B 536C	537B 537C	538B 538C	539B	540B	541B 541C	542B	5438	544B	545B

T 5 DEG K	19•88 19•81	21•33	20.20	22.08		20.02	22•43			22.00	22 • 94	19.88
T 4 DEG K	19•77 19•70	21.14	19.86	21.85		19•94	22•20			21.89	22.66	19•72
T 3 DEG K	19•55 19•53	20•54	19.46	21.08		19.40	21•59			21.30	21.77	19•46
T 2 DEG K	19 •14 18•95	20•30	19.19	20.83		19.28	21.06			20.87	21.38	19•07
T 1 DEG K	19•20 18•94	20.56	19.34	21.19		19.62	21•30			21.17	21.71	19•07
ĸ	0.78 -0.15 -0.10 0.81	1•05 0•27 0•20	0.97 0.21 1.12	0.17	0.14 0.20	0.37	1•00 0•04	0.56	0•92	0•30	0.16	-0.11
≻Σ T	148.3 152.5 149.7 157.8	203 .6 205.4 3 15.5	179.6 181.7 191.0	258 . 3	313.9 314.7	177.4	308•2 311•4	315.5	243.9	254.1	324.7	146.1
ę¥	196•2 140•5 141•8 206•9	394•0 266•6 331•6	317.8 218.7 343.0	294.8	325•2 330•5	278.2	465•0 319•1	378.1	384•0	338•3	372.8	137•7
PV N/CM/CM	10.29 10.56 10.38 10.91	13•87 13•98 20•86	12 . 32 12.46 13.06	17.33	20•76 20•81	12.19	20.42 20.61	20 . 86	16.43	17.07	21.42	10.14
PO N/CM/CM	13.62 9.73 9.83 14.31	26.93 18.17 21.93	21.86 15.01 23.52	19.79	21•52 21•86	19.14	30•90 21•13	25.03	25.93	22•76	24.62	9•56
V0 M/SEC	34•7 39•6 39•4 34•5	59.7 66.1 39.3	52.8 58.3 51.6	65•2	39•9 39•7	73.4	55•5 63•3	46.7	54.8	74.6	76.7	38•4
TO DEG K	20.32 20.41 20.35 20.35	21.38 21.41 22.98	20.95 20.99 21.16	22.23	22•96 22•97	20.91	22.89 22.93	22•98	22.02	22.17	23 •09	20.27
CAVITY CM	3•81 2•54	2.54	3•30	3•05		3.81	3.30			2.29	3•30	3.30
RUN NO.	331A** 3318 331C 3310**	332A** 332B 333A*	334A** 334B 334D**	335B	336A* 336B**	337A	338A** 3388	3394**	3404**	341R	342B	344B

Table A-4b. Experimental cavitation data for 0.357-inch ogive using liquid hydrogen (SI Units).

DENOTES AN INCIPIENT RUN
 DENOTES A DESINENT RUN

Υ.

	CAVITY CM	TO DEG K	V0 M/SEC	P0 N/CM/CM	PV N/CM/CM	ο¥	žΣ	X X	T 1 DEG K	T 2 DEG K	T 3 DEG K	T 4 DEG K	T 5 DEG K
	2•29	20•23 20•28 20•35	37•8 42•1 38•0	13•28 10•00 14•11	10.02 10.17 10.38	191•0 144•1 203•3	144.2 146.5 149.7	0.64 -0.03 0.73	18.81	18.76	19•29	19•53	19•63
 .	1.27	20•25 20•24 20•25	38•0 40•2 36•5	14.24 10.78 13.76	10,08 10,05 10,08	204•9 155•2 198•0	145°1 144°7 145°1	0.81 0.13 0.78	19•68	19•83	20.13	20.10	20.11
	1•27	20•46 20•51 20•53	48•6 53•1 48•2	20°02 14°42 19°62	10.72 10.87 10.94	288•7 208•3 283•3	154.9 157.3 158.2	1•11 0•36 1•06	20.14	20.15	20.51	20.57	20•54
	3•30 2•54	20.55 20.62	54•6 54•5	13•00 13•28	11.00 11.22	188•1 192•3	154.2 162.6	0.19 0.20	19.41 19.32	19.25 19.16	19.55 19.64	19•89 19•95	20•21 20•13
* *	1.52	21•30 21•33 21•36	58•6 63•9 57•9	27.12 19.05 27.81	13.57 13.69 13.80	396•2 279•0 406•6	198.9 200.7 202.4	1•13 0•38 1•20	20.84	20.74	21.20	21.35	21.29
		22•02	42•6	20.02	16•43	296.9	243.9	0•57					
	2 • 54 3 • 30	21.25 21.31 21.31 21.34	57•8 64•8 64•8 57•8	27.65 17.65 17.24 25.59	13•39 13•61 13•61 13•72	403•6 258•6 374•2	196.1 199.5 199.5 201.3	1.22 0.28 0.25 1.01	20•50 19•80	20•29 19•61	20•53 19•92	21•21 20•31	21•34 20•76
	3•05	22 .1 0 22.17 22.25	46•4 52•7 47•4	23.07 16.95 23.72	16.77 17.07 17.42	342•4 252•4 353•1	249.3 254.1 259.7	0.85 -0.01 0.82	20.92	20+71	21•21	21.64	21.89
	1.27	21•96 21•97	47•9 52•6	22•61 17•44	16.17 16.22	334.7 258.5	239 8 240 • 5	0.81 C.13	21.45	21.49	21•96	21•92	21.99
	3•05	21+35	73•5	20.06	13•76	293•8	201.8	0.33	20•21	20•21	20+53	21.22	21.34

ъ.
٠.
R
0
ũ
ت
-
~
<u> </u>
T
•
<
•
—
<u>_</u>
Ē

RUN NO.	CAVITY CM	T0 DEG K	V0 M/SEC	PO N/CM/CM	PV N/CM/CM	οΣ	ŞΣ	× X	T 1 DEG K	T 2 DEG K	T 3 DEG K	T 4 DEG K	T 5 DEG K
355A** 3558 3558	3 . 81 2 . 54	22•93 22•99 22•95	64•3 72•5 70•5	35.25 23.00 24.40	20.61 20.91 20.71	530 •4 347 • 7 368 •4	311.4 316.3 313.0	1•04 0•12 0•22	21•03 21•59	20•98 21•73	21•40 22•46	22•28 22•80	22•67 22•87
356A**		23•02	63•1	35.80	21.07	539.7	318.8	1•09					
357B	1.78	21.33	73.4	22.06	13.69	322.8	200.7	0•44	19•67	19•70	20.22	20•90	21.05
3588	3.30	22•99	61•2	21.57	20.91	326•2	316,3	0.05	21.33	21•36	21.88	22.56	22.71
359A ** 359B	1.52	22 . 97 22 . 99	54•7 60•9	30 . 15 23.46	20.81 20.91	454•7 354•6	314•7 316•3	0•20 0•20	22•12	22•28	22-92	22+98	22•98
360A**		22.98	43•8	24.24	20.86	366•2	315.5	0.52					
361A**		22.94	44.3	25,37	20.66	382.8	312+2	0.71					
362A** 362C**		23•05 23•18	47•5 48•1	26•63 26•21	21•22 21•89	402•7 397•4	321•3 332•3	0•71 0•55					
363B	1.52	22.97	54•6	21.69	20.81	327.9	314.7	0•09	22.14	22.19	22.70	22.76	22•79
364A** 364B	3•30	22•09 22•30	64•8 72•4	33 •16 22•66	16•72 17•64	490.9 337.7	248 . 6 263 . 3	1•13 0•28	20.91	20•62	21.15	21•89	22 • 35
3658	1.78	22.07	72•0	23•46	16.64	348•0	247.2	0.38	21.57	21.35	21.87	22.13	22•20
3668	1.52	22,02	57.5	18,93	16.43	280.9	243.9	0.22	21.43	21.34	21.88	22.01	22•03
367B 367C	2•54 3•81	22 . 19 22 . 37	66•2 66•6	20.69 20.52	17.16 17.96	307.9 306.4	255•5 268•3	0.23 0.17	21•22 20• 76	21 •00 20 •58	21•22 20•86	22•10 21•69	22•20 22•10
368A** 368B	1.52	22•08 22•13	60•9 66•9	30.22 22.17	16•68 16•90	447•6 329•4	247 . 9 251 . 4	1•06 0•34	21.29	21 . 15 `	21.72	21.93	21.91

ъ

N •	CAVITY CM	TO DEG K	V0 M/SEC	PO N/CM/CM	PV N/CM/CM	οv	ž	N X	T I DEG K	T 2 DEG K	T 3 DEG K	T 4 DEG K	T 5 DEG K
9A * 9B 9C * *	3 • 05	22 .16 22 .1 9 22 . 20	53•5 59•5 52•6	27.30 18.61 27.65	17.03 17.16 17.20	405•2 277•0 410•8	253•4 255•5 256•2	1•04 0•12 1•10	20.86	20•65	21.02	21.65	21•96
0A * * 0B * * 0C *	3•30	22.02 22.03 22.14	64•9 72•8 63•3	33•58 21•86 34•41	16•43 16•47 16•94	496.5 324.2 509.8	243.9 244.5 252.0	1•18 0•29 1•26	20•70	20.50	20.75	21.50	21•85
1A * 1B * 1C*	2.54	21•95 22•01 22•19	52.8 59.0 51.7	25•97 18•33 27•24	16.13 16.38 17.16	384•0 272•0 404•7	239°2 243°2 255•5	1•02 0•16 1•09	20•83	20•67	21•11	21•62	21.73
7A**		20.79	35.5	13.56	11.78	196•9	171.2	0+0					
888 867 80 80 80 80	1.52 1.02	20 .91 20 .93 20 .94 20 .9 3	41•9 46•2 41•95	16•38 11•99 12•73 16•51	12.19 12.26 12.29 12.26	238.3 174.6 185.3 240.1	177.4 178.5 179.0 178.5	0 - 0 - 0 4 0 0 0 - 0 6 0 € 0	19 .96 20 .1 5	19 .92 20 .26	20 •6 0 20•79	20•72 20•68	20•66 20•59
98 * 98 90 *	2•29 1•02	20•95 20•96 20•93 20•99	41. 45.2 44.2 41.2	15•68 11•68 12•68 15•76	12.32 12.36 12.26 12.46	228•2 170•2 184•6 229•6	179.6 180.1 178.5 181.7	0 • 56 0 • 10 0 • 06 0 • 56	19.97 20.07	19 .85 20 .17	20.53 20.71	20•74 20•61	20•74 20•50
00 00 00 00	2•29 1•52	20•95 20•98 20•99	51•0 56•4 55•3	20.79 14.21 14.52	12.32 12.43 12.46	302.4 207.0 211.6	179.6 181.2 181.7	0•93 0•16 0•19	20•03 20•10	19•94 20•03	20•73 20•93	21•03 20•99	20•90 20•90
10** 10**	2.54 1.27	20 • 91 20 • 92 20 • 93 20 • 95	50 • 7 55 • 4 50 • 2	20.36 13.92 14.87 20.11	12.19 12.22 12.26 12.32	295.9 202.6 216.3 292.4	177 •4 178 • 0 178 • 5 179 • 6	0 • 90 0 • 15 0 • 24 88	19 . 78 19 . 81	19.71 19.85	20•36 20•62	20•57 20•42	20•43 20•59
2A** 2R	1.90	20.92 20.96	58•0 64•6	25 •62 16•50	12•22 12•36	372•0 240•2	178.0 180.1	1•13 0•28	20•22	20•24	20•44	20.82	20•77

185

7 5 DEG K	20.68	21•57 21•43	22•62 22•60		21•76	22•68 22•60		22.72	20•81	21.67	22.58
T 4 Deg k	20.76	21•63 21•58	22•62 22•78		21.91	22 •77 22 •67		22.82	20.82	21.79	22 • 54
T 3 DEG K	20.72	21•24 21•63	22•09 22•90		21.61	22•48 22•77		22.55	20.41	21.72	22.16
T 2 DEG K	20.00	20.66 20.75	21•46 22•38		21.16	21•75 22•14		22.13	20.13	21.23	21.62
T I DEG K	19.94	20 •6 2 20 •61	21•41 21•94		21.23	21 . 92 22.12		21.98	20.28	21.02	21•89
κ	1•24 0•28	0.95 -0.02 0.06 0.91	1•13 0•08 0•25	0.71	0 • 93 0 • 13 0 • 84	0•77 -0•03 0•08 0•80	0•69	0•86 0•01	0.33	0.35 1.14	1•14 0•21
₹₹	176.9 179.0	230.7 235.2 236.5 239.8	303•3 307•4 309•0	309.0	235.9 237.2 235.9	303.3 305.7 306.5 305.7	307.4	307.4 309.0	182.2	235.9 242.5	304•1 309•8
ο¥	372.8 235.7	329•3 233•1 245•0 334•4	499•9 325•2 363•6	375.4	363•7 260•0 355•0	403•0 301•2 318•9 407•6	374•8	416•3 309•8	282•9	337.8 512.5	584•8 376•8
PV N/CM/CM	12.15 12.29	15.59 15.88 15.96 16.17	20.12 20.37 20.47	20.47	15.92 16.01 15.92	20.12 20.27 20.32 20.27	20.37	20 . 37 20 . 47	12.50	15.92 16.34	20.17 20.51
PO N/CM/CM	25•69 16•20	22.30 15.74 16.54 22.59	33.27 21.55 24.10	24.90	24•61 17•55 24•01	26.78 19.97 21.14 27.07	24.86	27 •64 20•52	19•44	22•84 34•69	36,98 24,98
V0 M/SEC	55•6 62•6	45. 51.7 45.0	58•5 66•7 64•9	42.9	52•0 58•1 52•6	50 • 4 56 • 3 50 • 1	43.7	49•9 56•5	76•9	76•0 68•0	69•5 79•0
TO DEG K	20.90 20.94	21.82 21.89 21.91 21.96	22.83 22.88 22.90	22.90	21.90 21.92 21.90	22.83 22.86 22.87 22.86	22 • 88	22 88 22 90	21.00	21•90 22•00	22 • 84 22 • 91
CAVITY CM	1.90	2•54 1•52	2•54 1•02		1.52	1•90 1•27		1.52	2.29	1.27	1.90
RUN NO.	513A ** 513B	514A** 514B 514C 514D**	515A** 515B 515C	516A**	517A** 517B 517C**	518A** 518B 518C 518C	5194**	520A** 520B	521A	522A 522B**	523 A* * 5238

r

ŝ

T 5 DEG K	22.64	22+65	20•62 20•61	21•71 21•62	22.40	20.80	20•33	20•56	
T 4 DEG K	22.69	22+58	20 •76 20•70	21•72 21•74	22•05	20.77	20.25	20.54	
T 3 DEG K	22.37	22.23	20•65 20•82	21•44 21•84	22.01	20.45	19.88	20.20	
T 2 DEG K	22.15	21.78	20•07 20•37	20•82 21•36	20.95	19•94	19.64	20.24	
T 1 DEG K	21.81	21.89	20•20 20•29	21.03 21.31	21.50	20.10	19.70	19 . 86	
× V	1•09 0•18	1•19 0•22	0.73 -0.01 0.14 0.72	0.84 0.00 0.17 0.76	1•22 0•20	1•23 0•28 1•24	1•22 0•36 1•23	1•22 0•37 1•21	0•67 0•75
>Σ I	301•0 304•1	308•2 328•0	176.4 176.9 175.9 176.9	229•4 230•0 232•0 234•6	315•5 325•5	175.3 175.3 177.4	174•8 177•4 179•0	171.7 175.9 177.4	290 . 0 300 . 2
οΣ Η	496 . 8 344 . 5	589•8 394•9	232•6 176•1 188•3 233•1	317.8 230.6 253.6 318.6	609•0 386•5	389•4 236•7 394•1	454•3 279•5 461•9	446•9 281•1 454•5	358•0 374•7
PV N/CM/CM	19.97 20.17	20•42 21•63	12.12 12.15 12.09 12.15	15.51 15.55 15.68 15.88	20.86 21.47	12•05 12•05 12•19	12•02 12•19 12•29	11.82 12.09 12.19	19.30 19.93
P0 N/CM/CM	33•09 22•86	39.27 26.07	16.00 12.10 12.94 16.03	21•53 15•60 17•15 21•55	40•49 25•52	26.86 16.29 27.16	31•36 19•23 31•85	30•88 19•35 31•35	23•86 24•90
V0 M/SEC	59•4 67•0	68•1 75•9	38 428 39 39 39 39 39 30 39 30 30 30 30 30 30 30 30 30 30 30 30 30	45 45 45 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	68•7 77•8	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	67•0 74•6 67•2	66•5 74•8 67•1	44•7 44•2
70 DEG K	22 . 80 22 . 84	22•89 23•13	20.89 20.90 20.88 20.88	21.80 21.81 21.84 21.88	22 .98 23 . 10	20•87 20•87 20•91	20•86 20•91 20•94	20•80 20•88 20•91	22•66 22•79
CAVITY CM	1.52	1.52	2•03 1•02	2•54 1•02	2.29	3.30	2•54	2.29	
RUN •00	524A** 524B	526A** 526B	528A* 528B 528C 528C*	529A** 529B 529C 529D**	530A** 530B	531A** 5318 531C**	532A* 532B 532C*	533A** 533B 533C**	534A** 534C**

T 5 DEG K		20•87 20•64	21•74 21•54	22•50 22•26	21•82	22.64	20•62 20•37	22•45	23•00	20•64
T 4 DEG K		20•86 20•73	21•78 21•59	22•74 22•57	21•92	22.76	20•71 20•54	22.46	22+91	20.38
T 3 DEG K		20•56 20•72	21•41 21•77	22•05 22•40	21.40	22.16	20 •32 20•47	22.08	22.51	19,99
T 2 DEG K		20•02 20•04	20.91 21.12	21.61 21.77	21.09	21.70	20•10 20•05	21.52	22.07	19.84
T I DEG K		20.23 20.29	21.08 21.21	21.64 21.67	21.19	21.92	20•08 19•99	21.71	21.96	19.80
> ¥	0•71 0•80	1•05 0•21 0•27	1•04 0•17 0•28	0•93 -0•00 0•10	1•05 0•26	1•11 0•12	0.81 0.06 0.13 0.92	1.12 0.25	1•19 0•24 1•17	1•15 0•35
ŞΣ	296.2 307.4	173.3 174.3 175.9	221.1 225.5 226.8	293.9 296.2 297.8	222•4 225•5	304 •9 311•4	174.8 176.4 174.3 173.8	313•0 316•3	304.9 310.6 311.4	168.1 172.7
ο¥	366•6 385•7	309.3 207.9 219.0	367•8 255•7 277•0	419•0 295•9 316•0	415.7 283.1	505•1 339•6	245•6 182•8 189•0 256•5	602•4 395•0	598•6 386•5 598•1	427•9 269•7
PV N/CM/CM	19.68 20.37	11.92 11.98 12.09	14.99 15.27 15.35	19.54 19.68 19.78	15.07 15.27	20•22 20•61	12.02 12.12 11.98 11.95	20•71 20•91	20.22 20.56 20.61	11•58 11•88
P0 N/CM/CM	24•39 25•59	21•32 14•31 15•07	24•99 17•32 18•77	27•92 19•66 20•99	28•26 19•19	33.61 22.49	16.91 12.56 13.00 17.66	40•07 26•42	39.90 25.63 39.80	29•59 18•58
V0 M/SEC	44•0 43•8	50 • 3 56 • 2 55 • 6	52•6 59•7 59•2	51•3 59•3 58•8	60•0 66•4	59•6 68•4	4 4 1 • 5 4 6 • 6 4 6 • 6 4 2 • 6	71.1 80.2	69•5 79•0 69•5	66•5 73•6
TO DEG K	22•74 22•88	20•83 20•85 20•85	21•67 21•74 21•76	22 • 71 22 • 74 22 • 76	21.69 21.74	22•85 22•93	20 .86 20 .89 20.85 20.85	22 .95 22 . 99	22•85 22•92 22•93	20.73 20.82
CAVITY CM		2•54 1•52	2.29 1.27	2•54 1•52	2.29	2.29	2 • 2 °	2.29	2•54	3.30
RUN NO.	535A** 535C**	536A** 536B 536C	537A** 537B 537C	538A** 538B 538C	539A** 539B	540A** 5468	541A* 541A* 541C 541C 5410*	542A** 5428	5432* 5433 5436	544A** 5448

•

RUN NO.	CAVITY CM	T0 DEG K	V0 M/SEC	PO N/CM/CM	PV N/CM/CM	οv	ŞΣ	κv	T 1 DEG K	T 2 DEG K	T 3 DEG K	T 4 DEG K	T 5 DEG K
545A** 5458	2.54	21.62 21.74	67•1 75•3	33.16 21.18	14.79 15.27	486•6 312•4	218.0 225.5	1.17 0.30	19•87	19.66	20.17	20.59	20•50
546A**		21•73	69•2	35•35	15•23	519•5	224•9	1.21					

* DENOTES AN INCIPIENT RUN
 ** DENOTES A DESINENT RUN

.

P 5.T N/CM/CM	9•01 8•82	13•69	9•93	16.68	9•41	18.23	16.34	20+66	9•01	8•34	9•67	10.97	9•96 9•72	13•54	13.72	11.68	15•88	16•30	13.72
P 4.T N/CM/CM	8•72 8•53	12.99	8•96	15•72	9•18	17•20	15.88	19•30	8•58	8•09	9•64	11.06	9•04 9•21	13•76	13•24	10•26	14•87	16•01	13•28
P 3.T N/CM/CM	8•14 8•09	10.97	16•1	12.78	7.76	14.68	13•57	15•39	16•1	7•49	9.72	10.87	8.14 8.37	13•21	10.94	9.13	13•24	16•17	10.94
P 2.T N/CM/CM	7.14 6.70	10.23	7.25	11•92	7.47	12•71	12.05	13•87	6•97	6•29	8•88	9•78	7.40 7.18	11.62	06201	8.29	11•52	14.29	9 •96
P 1.T N/CM/CM	7•28 6•68	11.03	7.61	13.17	8.32	13.57	13.10	15.15	6.97	6.40	8 • 4 8	9.75	7.79 7.56	11.95	10 84	8•80	12.22	14.14	96•6
P 5 N/CM/CM	8•85 9•90	15.18	10.90	17.22	11.11	19.86	20.62	20.42	9•26	10.31	12.02	16•51	9.74 12.31	21.72		10.97	17.02	19•48	15.02
P 4 N/CM/CM	8•92 9•43	14.21	11.45	15.96	13.62	18,39	17.86	18.93	9.11	9•31	11.56	15.59	10.22	19.95		13•52 12•90	15.02	18.61	14.89
P 3 N/CM/CM	6.83 7.21	9 • 38	8 . 09	10,95	8,00	13,18	11.80	12.69	7.07	7.04	9•69	10.19	7.80 7.80	11_90		9•25 8•45	11.60	14.82	9.21
P 2 N/CM/CM	7•32 7•40	9.07	7.79	10.65	7.80	12.58	11.28	12.38	6•51	6•59	7.59	8•14	6.92 7.45	10.22		8.83 8.14	11.00	11.85	00 •6
P 1 N/CM/CM	6.76 6.78	8.97	7.79	10.60	7.69	12.39	11.45	12.52	6.51	6.52	66•9	7.78	6 82 7 31	1701		8.69 8.07	10°ŏ4	11.14	8.89
RUN NO•	331B 331C	332R	334R	335B	337A	3388	3418	3428	3448	3458	346B	347E	3488	3480		351B 351C	3528	353B	3548

Table A-4b. (cont'd)

RUN N. P. 1. N. P. 1. P. 2. N. P. 1. P. 2. N. P. 1. P. 2. N. P. 2. N. C. C. C. C. M. N. C. C. C. M. N. C. C. C. C. M. N. C. C. C. C. M. C.
NO.W. N/CM/CM N/CM/CM N/CM/CM N/CM/CM N/CM/CM N/CM/CM N/CM/CM 512B 8.88 9.10 9.458 11.95 17.67 9.99 10.055 514B 10.55 10.469 12.13 13.524 11.112 11.125 11.655 514B 10.55 11.060 11.11 13.524 15.169 9.435 9.435 514C 11.287 13.07 23.817 16.666 21.699 14.17 5156 12.287 13.07 23.817 16.666 13.332 13.06 5178 10.97 11.45 12.690 17.42 19.97 13.36 14.17 5188 10.97 13.644 21.21 17.42 19.97 13.96 14.17 5188 14.418 17.424 19.43 17.42 21.21 21.26 13.32 13.66 5218 13.58 14.413 17.242 21.21 22.75 16.017 13.32
NOUN N/C/M_C N/C/M/C N/C/M/C N/C/M/C N/C/M/C 512B 8.885 9.110 9.558 11.955 17.67 9.995 513F 8.899 9.114 9.695 11.315 17.35 9.18 514B 11.265 11.311 15.666 18.440 11.125 514C 11.28 11.756 13.311 15.666 11.355 9.398 515G 14.52 16.97 22.559 26.34 27.883 11.60 518E 13.357 13.407 13.387 16.666 13.338 16.605 518E 13.355 14.600 15.45 19.38 11.60 13.35 518E 14.31 17.24 22.64 27.833 16.605 518E 14.416 17.24 21.21 22.733 16.605 5218 14.418 14.464 21.4192 16.405 16.616 5228 11.4145 17.246 21.643 22.751 16.16
NUN NUCMICANNUCMICAN NUCMICANNUCMICAN NUCMICANNUCMICAN NUCMICANNUCMICAN NUCMICANNUCMICAN NUCMICANNUCMICAN NUCMICAN51288.8859.1109.55811.95517.6575146110.556111.73511.3113.2416.111514710.57510.80011.3113.2416.111514810.97713.80713.81716.66621.659515614.60011.3113.2416.11113.24517810.97713.87722.55926.34427.833518710.97711.45512.90017.42219.900518814.1814.60015.44519.3821.699518713.35514.60015.44519.3821.699518814.1814.60715.44522.64423.713520814.1814.60715.44019.3727.5152149.03814.49115.44019.3727.51522814.7114.6415.44023.47128.8852888.749.34410.93727.5152888.749.34911.46513.44613.44652888.749.34019.0719.9327.5152888.749.34411.46513.44413.46652888.749.34711.46513.44413.466529110.23110.93110.9313.56815.666529111.1812
RUNPTIN/CM/CMN/CM/CMN/CM/CM512B8.859.109.5811.95513B8.859.109.56912.13514B10.55510.8011.3115.66514C11.2811.7613.1116.66514C11.2811.7613.1116.66514C11.2813.0713.8716.66514B10.9711.7613.1116.66517B12.8713.0713.8716.66517B13.3514.0015.4519.38517B13.3514.0015.4519.38518C14.2415.9519.6421.21520E14.1814.8717.2421.21521A9.039.149.5611.92522A11.4712.0215.4024.63522B13.8814.3115.4024.63522B14.7114.9316.4923.07522B14.7114.9316.4923.07528C14.7114.9316.4923.07528B8.749.3411.4619.37528C8.749.3411.4619.37528C8.749.3411.4619.93528C8.749.3411.4619.93528C10.2210.3110.9317.60529B10.2210.3110.9317.66530A13.6013.9014.5317.66531B7
RUNPIPIPZ512B8.859.109.58513B8.859.149.69514B10.5510.8011.31514C11.28713.0713.87514B10.9711.7613.11515C14.5216.9722.59515C14.5215.9713.87515B12.8713.0713.87515C14.5215.9713.87515B12.8713.0713.87517B10.9711.4512.90518C14.2415.9519.64518C14.1814.8717.24520E14.1412.0215.40521A9.039.1417.24522A11.4712.0215.40522B13.8814.7115.02522B14.7114.9316.49522B14.7114.9316.49522B14.7114.9316.49522B14.7114.9316.49522B14.7114.9316.49522B14.7114.9316.49522B14.7114.9316.49522B14.7114.9316.49522B14.7114.9316.49523B13.6013.9016.49529B10.1210.3110.93529C11.1812.0819.06531B7.787.768.03
RUN P.I. N.C.M.CM 5128 8.85 9.10 5138 8.85 9.14 5138 8.89 9.14 5146 11.28 11.76 5147 11.28 11.76 5148 10.955 10.80 5146 11.28 11.76 5158 12.87 13.07 5178 12.87 13.07 5188 14.52 16.97 5186 14.52 16.97 5186 14.54 15.95 5208 14.18 14.87 5224 11.47 12.02 52248 14.71 14.93 5228 14.71 14.93 5228 14.71 14.93 5288 8.74 9.34 5298 14.71 14.93 5298 14.71 14.93 5298 10.22 10.31 5298 10.22 10.31 5298 11.18 12.03 5291 13.46 9.34
RUN P I 5128 8.85 5138 8.85 5148 10.55 5145 11.28 5156 14.52 5157 11.28 5156 14.52 5178 10.97 5188 13.35 5188 13.35 5188 14.24 5208 14.18 5224 11.47 5238 13.88 5228 14.71 5228 14.71 5228 14.71 5228 14.71 5238 13.88 5239 13.88 5238 14.71 5238 14.71 5238 14.71 5288 8.74 5291 13.60 5291 13.50 5318 7.78
RUN NO. 5128 5128 5156 5156 5156 5188 5188 5228 5228 5228 5228 5228 5228

RUN NO.	P 1 N/CM/CM	P 2 N/CM/CM	P 3 N/CM/CM	P 4 N/CM/CM	P 5 N/CM/CM	P 1.T N/CM/CM	P 2,T N/CM/CM	P 3,T N/CM/CM	P 4.T N/CM/CM	P 5.T N/CM/CM
533B	8.53	8.77	9.29	10.98	17.01	8.96	10.05	9•93	10.97	11.03
536R 536C	7.98 8.79	8•10 8•95	8 . 65 9 . 94	10.01 13.91	13•07 16•31	10.02 10.20	9•41 9•46	11•03 11•55	12•02 11•58	12•05 11•29
537B 537C	10.39 11.05	10.56 11.67	11.25 14.33	13•53 19•48	17.73 20.22	12•78 13•24	12•19 12•92	13•98 15•39	15•43 14•68	15•27 14•48
538R 538C	12•08 13•39	12.53 14.15	13.63 16.70	16.60 21.22	19.91 22.42	14.87 14.99	14•75 15•39	16•55 18•09	19•68 18•88	18•55 17•47
539R	10.38	10.71	11,33	13.58	19.10	13.17	12.81	13.95	16•01	15.59
540B	12.96	13.30	14.27	17.27	22.81	16.01	15.11	17.03	19.78	19.21
541B 541C	8•38 8•52	8•58 8•88	8•96 9•91	10•34 13•45	12.70 14.08	9•58 9•32	9•64 9•49	10•29 10•75	11•52 10•97	11•22 10•44
542B	13.70	14.04	15.32	18.87	26.63	15.15	14.40	16.68	18.37	18.32
5438	13.42	13.60	14.60	17.66	25•28	16.17	16•64	18.60	20•51	20.97
544B	8.08	7•94	8,31	9.29	11.41	8 • 80	8•91	9.32	10.47	11.29
545p	10.27	10.42	10.79	12.38	17.51	8,99	8•42	9.84	11.13	10.84

н 5 , Т М	129•1 126•2	200.7	142.9	247•9	135•0	272.7	242.5	312.2	129.1	119.0	138•9	158.7	143•3 139•8	198.4	201•3 169•7	235.2	241.8	201.3
Н 4. М	124•6 121•8	189•9	128•3	232•6	131•6	256•2	235•2	290•0	122.6	115•2	138•5	160.2	129•5 132•0	201.8	193.8 147.9	219.3	237•2	194.4
н 3 , 1	115•9 115•2	158.7	112.5	186•6	110.3	216•2	198.9	227.5	112.5	106.3	139.8	157.3	115.9 119.4	193•2	158•2 130•8	193.8	239.8	158.2
H 2,1 M	101.0 94.7	147.4	102.8	173.3	106.0	185.5	175.3	203.6	98•7	88•6	127.0	140.7	104.9 101.7	168•6	147.0 118.2	167.1	210.1	143.3
Η 1•T	103•1 94•3	159.7	108.1	192.7	118.6	198.9	191.6	223.7	98.7	90•2	121.0	140.2	110•7 107•4	173.8	156.8 125.8	178.0	207•7	143•3
Ξ	126.6 142.5	224•0	157.7	256.6	160.8	299.2	311.5	308.2	132.8	148•7	174.9	245.1	140 •1 179 • 4	329.5	211•0 158•7	253.4	292.9	221.7
4 ¥ H	127 . 7 135 . 4	208.9	166.1	236.5	199.7	275.3	266.8	284.1	130.5	133•6	167.8	230.6	147•4 159•3	300.5	198•1 188•5	221.7	278.8	219.5
ξ	96•6 102•2	134•6	115•3	158.4	114.0	192.7	171.4	185.3	100.1	9•66	139•3	146.9	102.5 110.9	173.0	132•6 120•7	168•3	218•4	132.0
ж Н	103.7 105.0	130.0	110.8	153.9	110.9	183.4	163.5	180.5	91.8	93•0	107.8	116.0	97.8 105.7	147.4	126•3 116•0	159.3	172.3	128.9
цт Т	95•5 95•7	128.4	110.8	153.2	109.3	180.6	166.1	182.6	91.8	92.0	98•9	110.6	96.4 102.2	139•0	124•3 115•0	158.2	161.4	127.2
RUN NO.	3318 331C	332B	334B	335B	337A	338B	341B	342B	344B	345B	346B	347B	3485 3480	3498	351P 351C	3528	3538	3548

н 5.Т Ж	290•8 306•5	184.9	293.9	315•5	300•2	266•9	256•2	244•5	256•2 249•3	236•5	239.8	232•6	224•9	164•6 161•2	168•6 156•8	176.9 176.9	153•5 161•2
τ 1 1	261•9 301•0	176.9	282•4	315•5	297.8	235•2	251.4	243•2	249•3 222•4	237.8	219•9	210.7	218•0	167•6 165•6	168•6 162•1	183•9 181•7	160.2 153.0
Н 3.Т М	204•8 274•9	143.8	234•6	310•6	293.1	190.4	233.9	234•6	194•4 174•8	224•3	183.3	169•2	188.2	161.7 171.2	158•2 167•1	168.1 178.5	150•2 162•6
н 2 , Т М	181•2 224•9	121.8	202.4	261.9	255.5	162.6	201.8	201.3	182.2 160.7	190.4	164.1	156.8	165.1	130.8 145.6	127.8 141.5	131•6 135•4	122•2 127•8
н 1.Т М	183•9 216•2	120•6	200.7	250.7	252•0	177.4	215•0	206•5	194•4 169•7	198•4	174.8	166•6	173.3	132•4 140•7	132•9 137•2	135•4 138•5	125•0 126•2
т З	268•5 403•9	367.7	296.7	392.7	357.6	273•5	396•9	312•1	263•0 232•2	376•6	242.4	241.5	271.4	193•9 210•0	180•6 208•3	215•9 25 1 •9	207.9 257.4
τ 7 τ	255•8 348•8	297.3	268•5	374.2	342.7	247.0	340.1	289.6	234 . 9 222.4	345.6	217.3	232•8	231.5	167•3 197•0	151•2 195•7	158•2 219•2	151•5 237•1
т _∞ ″ъ	173.5 224.6	160.6	196.1	275.2	279.6	164•0	197•3	193.8	164•5 151•9	204•6	159.9	151.4	164.1	136•5 173•0	124•3 171•2	132•6 148•2	127•5 169•3
× ₹	167•7 208•7	145.9	186.4	226.4	226.0	157.7	177.3	172.0	158•2 147•7	179.0	155.0	145.6	155.0	115•8 136•2	115•0 135•5	125•3 129•2	119•6 131•0
۲×	165.6 202.5	140.2	183•2	213.1	205.9	154.0	169.5	165•6	155•0 145•1	170.4	152.2	143.5	151.5	108•9 116•0	109•6 118•2	119•8 122•0	115.8 120.7
NUN • ON	355B 355C	357B	358B	359B	363B	364B	3658	366B	367B 367C	3688	369B	370B	3718	508B 508C	509B 509C	510B 510C	5118 5116

•Τ Η 5•Τ Μ	•7 170•2	•7 165•6	•7 215•0 •6 206•5	•9 286•9 •4 285•4	•5 226•8	•6 291•6 •8 285•4	•5 294•7	•7 172•2	•7 221•1	• 9 283 9	•3 288•5	• 9 289•2	•.7 162.6 •.6 162.1	••3 223•7 ••5 218•0	••9 270•5	1.2 171.7	•1 148•8
Γ Ι 4Σ	9 172	69I 69	5 218 7 215	6 286) 299	4 236	4 298 5 290	5 302	5 172	3 228	4 280	3 292	3 283	1 169 7 166	1 224 0 225	2 245	4 170	1 145
τ «Σ	153•5	167•6	195.5 218.7	248•6 309•0	217.4	276•4 298•6	281•6	152.5	224•3	253.4	268•3	258•3	164. 172.	207.	243•	154.	129.
н 2 , Т М	144•7	134.1	164•6 169•2	208•3 269•1	191.0	226•2 252•0	251.4	139.8	194.9	218.0	252.7	228.1	137.2 150.7	172•7 202•4	179.6	131.6	119.4
H 1.T	143•8	131•6	162•6 162•1	205•4 238•5	194.9	237•2 250•7	241•2	146.5	183•3	235•2	230.0	235.2	142•9 147•0	183•9 199•5	210.7	138•5	121.8
Ξ×	263.7	258•6	238•8 275•5	329•1 432•1	299.7	329 . 1 362.6	346.2	294•5	433•3	426.7	398.9	449•3	186. 0 205.2	230•7 276•4	383.1	149.1	203.3
4 Σ Τ	173.8	176.5	193.7 247.5	247•5 406•8	259.7	291•3 344•7	321.1	173.3	378.0	291•2	351•9	341•0	158.1 196.9	185•0 266•4	262.5	127.8	145•6
т×	137.7	139•3	163•9 191•8	203•5 343•9	188•5	228•4 295•6	256.9	137•2	227.5	227.5	251•2	244.8	129.9 166.2	158.1 222.5	213.9	114.4	125.8
ч Ч	130.4	131.0	156.1 170.9	191.1 252.5	166.1	205•6 236•3	219.2	131.0	174.8	210.5	214.1	220.2	121.3 133.9	148.6 175.8	202.5	110.3	118.9
ĽΣ	126•5	127.2	152•3 163•5	187.9 213.7	158.7	195.4 209.4	208.3	129.2	166.3	203.7	206.2	216.8	119•5 124•9	147.3 162.0	199.3	110.7	118.6
RUN NO.	5128	513B	514B 514C	515B 515C	517B	518B 518C	5 2 0 B	521A	522A	5238	524B	526B	528B 528C	5298 5290	530R	5 31 R	532B

н 5 •1 М	159•7	175.3 163.6	225•5 213•1	277•9 260•4	230.7	288•5	162•6 150•7	274•2	317.1	163•6	156.8
н 4 , 1 м	158.7	174•8 168•1	228•1 216•2	296•2 283•1	237•2	297.8	167.1 158.7	274•9	309•8	151.1	161.2
н 8.1	142.9	159•7 167•6	205•4 227•5	245.9 270.5	204.8	253.4	155•4 155•4	247.9	278•6	133.7	141.5
Н 2 , Т М	144.7	135•0 135•9	177.4 188.8	217•4 227•5	187.1	223.0	138•5 136•3	211.9	247.2	127.4	120.2
H 1.T	128•3	144•2 147•0	186•6 193•8	219•3 221•1	192.7	237.2	137•6 133•7	223•7	239.8	125•8	128.7
۲ گ	253.2	191.0 241.9	264•7 304•9	299.8 341.1	286.7	347.6	185•4 206•8	411.6	388.9	165.5	261.1
τ Έ	158.8	144•1 204•2	198•2 292•9	246.6 321.4	199.1	257.3	149.1 197.0	283.1	263•6	133.3	180.4
u ₹	133.2	123•6 143•1	163.1 210.8	199•8 248•2	164•2	209.7	128•2 142•7	226.3	214.9	118.5	156.0
ч Ж	125.4	115•4 128•1	152•5 169•4	182.7 207.9	154.7	194.7	122.6 127.1	206.3	199.3	113.0	150.4
Ξ	121.8	113•6 125•7	149.9 159.9	175.8 196.1	149.8	189•3	119.5 121.6	200•9	196•6	115.1	148.0
RUN NO.	533B	536B 536C	537B 537C	538B 538C	539B	540B	541B 541C	542B	5438	544B	5458

Table A-5a. Experimental cavitation data for 0.420-inch ogive using liquid nitrogen (English Units).

RUN NO.	CAVITY INCHES	TO DEG R	V0 FT/SEC	P0 PSIA	PV PSIA	НО F T	HV FT	ĸv	T I DEG R	T 2 DEG R	T 3 DEG R	T 4 DEG R	T 5 DEG R
431A** 4318	1.80	140.45 140.56	28•6 30•2	20 .15 16.52	15.88 15.99	57.8 47.4	45 • 5 45 <u>•</u> 9	0.96	138,87	120.76	90 0CL		
431C	1.05	140.62	29.8	16.96	16.05	48.7	46.0	0.19	139.21	139.39	139.75	140.18	140.47
432A	0.92	140.83	29•6	17.12	16.27	49.2	46.7	0.18	139.52	139.72	140-06	140-53	140-80
4328	1.18	140.76	29•5	16.95	16.20	48.7	46.5	0.16	139.25	139.43	139.72	140.22	140.54
4320	0.72	140.90	29•3	17.37	16,35	4 6 *0	46.9	0.22	139.77	140.00	140.44	140.85	
0264	0.32	140.89	28.8	18.07	16.33	51.9	46.9	0.39	140.17	140.63	140.90	140.99	141-07
4-36F##		140.87	28•0	20.05	16•31	57.6	46.8	0 • 88		ŀ		1 1 2 1	
433A**		140.17	38•8	24.45	15.59	70.0	44.7	1.08					
433C	0.63	140.13	41.1	18.77	15.56	53.8	44 6	0.35	139-01	139.28	139.86	140.35	140 36
433D	1.18	140.18	41.3	18.16	15.61	52.0	44.7	0.28	138.56	138.62	139.07	139.61	140.02
400E	75.0	140.18	41.1	19.07	15.61	54.6	44.7	0.38	139.05	139.39	139.93	140.29	140.31
434C	0.72	139.99	56.3	21.98	15.41	62.9	44.1	9.28	137.59	137.00	130 47	120 JE	
434D	1.06	140.13	55.9	21.58	15.56	61.8	44.6	0.36	137.50	137-81	138.37	138.94	120.27
4346**		140.17	53.1	31.55	15.59	90 • 4	44.7	1.04					
435A##		150.41	40•3	35•96	28,77	106.6	85.3	0.84					
435B	0.78	150.55	42.4	29.78	29.00	88.3	86.0	0.08	148.07	148.63	149.53	150.23	150.30
4350	0.64	150.55	42.1	30.37	29.00	90.1	86.0	0.15	148.41	149.17	150.05	150.50	150.55
4350	0.40	150.59	41.5	31.40	29.05	93.1	86.2	0.26	148.90	149.89	150.44	150.68	150.64
4356##		150.55	39.8	36.13	29•00	107.1	36 . 0	0.86			1		
4.00F	0.04	150.64	41.8	30.30	29 •1 4	89.9	86.5	0.13	148.36	149.02	149.94	150.41	150.50
900+	0.80	00°06T	41•7	29°83	29.17	88 . 5	86.5	0.07	147 . 94	148.48	149.36	150.12	150.34
436A	0.52	150.01	56.9	33.37	28.14	98.8	83.3	0.31	147.53	148 - 36	149.45	140.08	140.04
4368	0.70	150.01	57+2	32.58	28.14	96.4	83.3	0.26	147.13	147.80	148.91	149.76	149-83
4360##		149.98	54.7	42.25	28.08	125.0	83.1	0.00					
436D	1.16	150.12	57.8	31.72	28.31	93.9	83.8	0.19	146.72	146.88	147.78	148-70	149.42
436F##		150.26	54•0	44.53	28.54	131.9	84.6	1.05					
437A**		149.69	63•5	47.30	27.63	139.8	81.7	0•93					
437C	0.94	149.71	66.4	33.79	27.66	6°66	81.8	0.26	146.66	147.08	148.16	149.26	149.51
437D	1.56	149.74	66•5	32,83	27.72	97.1	82.0	0.22	145。84	145.96	146.75	147.55	148.45

RUN NO.	CAVITY INCHES	TO DEG R	V0 FT/SEC	PO PSIA	PV PSIA	H0 FT	HV FT	> Y	T I DEG R	T 2 DEG R	T 3 DEG R	T 4 DEG R	T 5 DEG R
439A** 4398	0.34	160.87 160.92	56•5 58•6	60•66 52•84	49.42 49.55	186.8 162.8	152.2 152.6	0.70 0.19	158.94	160.38	160.88	161.08	161.06
439C	0.90	160.94	59•3 50-0	49.72 51.21	49.59 49.63	153.2 157.8	152.8	0.01	157.09	158.63	160.00 160.54	160.61	160.83
430544	01.0	160-97		61.71	40.68		152.1	0.74					
439F	0.40	161.24	59.0	52.68	50.33	162.5	155.2	0.13	158.80	160.42	160.99	161.17	161.23
439G**		161.39	55•6	62•59	50.68	193.1	156.4	0•76					
4404**		165.58	49.4	68•30	61.65	214.3	193.4	0.55					
440D**		165.58	48.7	68.18	61.65	213.9	193.4	0.55					
440F**		165.67	48•8	69°63	61.90	218+5	194.3	0.65					
441A	0.48	165.53	66.7	64.13	61.50	201.2	192.9	0.12	161.86	164•00	164.84	165.24	165.28
4428**		160.58	66•3	68•64	48.73	211.0	149.9	0.89					
442B	0.81	160.58	70.5	50.73	48.73	156.1	149.9	0.08	155.18	156.40	158.45	159.73	160.13
442C	0.60	160.74	69•8	52,31	49.12	161.0	151.2	0.13	156.20	158,13	159.77	160.34	160.40
442D**		161.06	65°4	68•43	49.89	210.8	153.8	0.86					
4434**		149.65	69•0	53.35	27.58	157.6	81•5	1.03					
443B	1.16	149.81	72.0	35.66	27.83	105.5	82,3	0.29	146.36	146.59	147.58	148.55	149.29
443C	0.39	149.78	70.1	38 . 55	27.77	114.0	82 . 2	0.42	146 . 92	148.09	149.20	149.54	149.44
**8444		139,25	66.7	39.70	14.69	113.4	42.0	1•03					
444B	0.75	139.27	69•4	25.53	14.71	72.9	42.0	0.41	137.12	137,39	138.04	138.67	138.98
444C	0.35	139.27	68•8	26.97	14.71	77•0	42 。 0	0.48	137.45	138.02	138.69	139.07	139.03
445A	1.26	139.54	63.1	23.17	14.97	66.2	42 . 8	0.38	137.52	137,52	138.06	138.67	139.09
445B	0.40	139.57	62.2	24.68	15.00	70.6	42 . 9	0.46	138.24	138.60	139.27	139.63	139.59
4450**		139.55	57.9	34.84	14.99	9 0	42.9	1•09					
445D	0.65	139.57	60.2	23•08	15.00	66•0	42 . 9	0.41	137.56	137.97	138.56	139•05	139.23
446A**		140•31	28.1	19.44	15.74	55.7	45.1	0.87					
4468	1.40	140.31	30.0	16.34	15.74	46.8	45.1	0.12	138.06	138.85	139.14	139.50	139.88
446C	0.40	140.31	28•9	17.37	15.74	49 . 8	45 . 1	0•36	139•32	139.97	140.11	140.24	140.27

199

· _ _ _

^{*} DENOTES AN INCIPIENT RUN ** DENOTES A DESINENT RUN

RUN NO.	CAVITY INCHES	TO DEG R	V0 FT/SEC	P0 PSIA	PV PSIA	НО F1	ΗΛ	ΚV	T 1 DEG R	T 2 DEG R	T 3 DEG R	T 4 DEG R	T 5 Deg R
446D 446E**	0.65	140.33 140.27	29•0 27•5	17.04 19.74	15.75 15.70	48•8 56•6	45°2 45°0	0.28 0.98	139.12	139•50	139.95	140.24	140.27
447A** 447B 447C 447C	1.42 0.62	140°22 140°26 140°22 140°22	38•7 41•5 41•4 38•6	24.38 18.10 18.84 24.04	15.65 15.68 15.68 15.65	69°9 51•9 68•9	44 44 44 6 8 8 8 8 8 8 8 8 8 8	1•07 0•26 0•34 1•04	138•06 138•33	138. 22 138.76	138.73 139.45	139.18 139.88	139.50 139.79
4488 4488 4488 4480 4480	1.30 0.45	139。97 140。09 140。24 140。47	53 • 2 56 • 6 52 • 9	33.77 21.64 23.07 33.64	15.39 15.52 15.66 15.90	96.7 62.0 66.1 96.4	444 444 544 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.19 0.35 0.44 1.17	138•26 138•80	138•44 139•36	139•00 140•04	139•66 140•54	140•04 140•47
**************************************	0.95 0.75	150.19 150.28 150.25 150.35 150.39	444 944 944 944 944 944 944 94 94 94 94	36.24 29.16 29.65 36.37 37.32	28.42 28.56 28.51 28.68 28.68 28.68	107.3 86.4 87.8 107.8 110.6	88888 9662 9662 9662 98888 9888 997 997 997 997 997 997 997	0.93 0.06 0.12 1.05 1.05	147•24 147•29	147.65 147.91	148•59 148•95	149.29 149.51	149 .7 2 149 . 71
450A 4508 4500 4500 4500 4500 4500	1.66 1.16 0.76 0.44	150°37 150°41 150°44 150°44 150°44 150°53	5 5 4 5 5 4 5 5 4 5 5 5 4 5 5 5 5 4 5	44.62 31.92 32.32 34.68 45.28	28.71 28.82 28.82 28.82 28.85 28.85 28.97	132.2 94.6 95.8 98.2 102.8 134.2	œ œ œ œ œ œ v v v v v v u w v v v v v u w v v v v v	1.03 0.18 0.20 0.24 1.05	146.99 147.22 147.55 147.74	147.28 147.65 148.25 148.95	147.94 148.63 149.40 150.03	148.66 148.66 150.30 150.34	149.47 150.25 150.46 150.32
4518 4518 4516 451C 451E 451E **	0.75 0.55 0.35	160.60 160.60 160.58 160.58 160.55 160.55		55.06 55.06 55.06 55.08 55.08 55.06 70 55.06	48,78 48,78 48,73 48,69 48,69 48,69 61,55 61,55	168.2 159.2 151.0 171.5 219.7	150.1 150.1 149.8 159.8 150.5 193.1	0.62 -0.03 0.03 0.12 0.75 0.71	158•26 158•36 158•74	159.44 159.52 159.59	159,95 159,95 159,95	160.20 160.16 160.06	160.43 160.29 160.18

* DENOTES AN INCIPIENT RUN
** DENOTES A DESINENT RUN

160.45 160.25 159.80 149.06 150.12 150.10 ° ۳ 165•49 165•89 149.98 139.43 165•67 165•60 165•40 160.27 T 5 DEG 139.09 160•07 159•68 158•90 148.25 150.12 150.16 149.71 165.60 165.74 165.69 165•46 166•14 160.09 ¢ 4 T 4 DEG 158.62 158.13 157.32 147.47 149.26 149.92 137.99 138.44 164.48 165.49 148.82 164•88 165•11 165•26 159.57 ≃ ŝ DEG ⊢ 146.74 148.09 149.13 156.91 156.44 155.72 2 R 163.19 164.88 147.80 163.76 164.30 164.79 158.24 DEG ⊢ 156.26 155.86 155.34 146.57 147.38 147.82 137.83 161.42 162.95 147.22 161.80 162.25 162.97 156.56 œ T 1 DEG F 1.08 1.02 0.24 0.28 0.41 0.93 1.00 0.31 1.01 0.66 0.05 0.16 0.74 0.77 0.07 0.05 0.03 0.66 0•69 0•02 0•69 0.72 0.08 0.13 0.23 0.74 ≥ 81.9 83.2 84.8 43**.**9 44**.**1 148.9 149.4 149.5 149.8 150.8 82.2 82.9 83.6 84.4 150.6 150.4 151.2 194.5 194.1 194.8 193.6 193.3 194.0 193.6 192.9 192.9 ΞĒ 144.3 98.9 102.9 110.8 140.8 154•5 107•7 156•3 108•1 68•5 183.6 151.5 182.9 199.2 154.5 153.2 152.0 193.0 238.2 199.1 202.4 207.8 238.2 235.8 197.4 205.4 238.0 오는 15**.**32 15**.**39 27.69 28.11 28.62 48**.61** 48.69 48.99 27.80 28.00 28.22 28.28 28.28 48•44 48•56 61.95 61.85 62.05 61.70 48.95 48.86 49.12 61.60 61.80 61.70 61.50 61.80 PV PSIA 48.82 33.42 34.75 37.43 47.55 37.78 23.91 52•29 36•39 52•76 64.80 50.24 49.80 62.75 59.69 49.22 59.42 75.15 62.88 65.44 75.90 PO PSIA 75.95 63.44 64.52 66.24 75.93 61•9 64•9 V0 FT/SEC 62•6 66•2 65•2 62•4 68•2 71•5 67•3 55.5 58.1 54.4 64.7 68.4 67.8 67.8 64.2 63•2 66•0 64•9 62•2 63•5 67•2 66•1 62•3 139.90 139.97 149.80 149.92 150.07 150.10 150.23 149.72 149.99 150.32 165.56 165.64 165.60 165.53 165.53 165.69 165.65 165.73 165.60 160.67 160.63 160.74 160.45 160.51 160.52 160.56 160.69 TO DEG R CAVITY INCHES 1.65 0.84 $1.56 \\ 0.72 \\ 0.35 \\ 0.35$ 0.70 $\begin{array}{c} 0.88 \\ 1.08 \\ 1.34 \end{array}$ 0.75 0.40 0.64 0.42 0.32 4578 4578 4576 4570 4570 4576 458A** 458B 458C** 459A** 459B 4568 4568 4568 4560 4560 4560 453A* 453A 4538 4530 4530 4530 4544 4548 4548 4540 4540* 4558 455C****** 455A** RUN.

DENOTES AN INCIPIENT RUN DENOTES A DESINENT RUN

* *

<u>م</u>
ىب
8
•
Ũ
\sim
đ
S.
◄
•
_
, D
್
H

.

t Τ5 R DEG	24 140.1 95 140.1	99 139.9 31 140.1 29 140.1	56 139 . 8.	24 140•4
T 4 DEG	140•2 139•5	139.5 139.6 140.2	139.6	140.2 140.4
T 3 DEG R	139•61 139•30	139 . 32 139 .16 139 . 97	138,85	139.84 140.15
T 2 DEG R	138.92 138.65	138•62 138•69 139•27	138.28	139 .46 139.75
T 1 DEG R	138•42 138•22	138,24 138,28 138,82	138.04	139•25 139•48
KV	0•44 0•41 1•09	1 • 09 0 • 43 0 • 43 0 • 49 1 • 06	1.19 0.40 1.10	0.92 0.27 0.87 0.18 0.87
ΥF	44 44 6 6 6 7 7	4444 4444 4444 01040 0440 0440 0440 044	43 6 43 8 44 6	45 45 45 45 45 45 45 45 45 45 45
Н0 F1	72•3 70•7 108•8	117.4 74.2 70.7 75.8 105.4	124•1 72•7 109•3	56 56 56 56 56 56 56 56 56 56 56 56 56 5
PV PSIA	15.48 15.57 16.03	15.36 15.39 15.57 15.50 15.54	15•23 15•29 15•50	15.72 15.86 15.90 16.10 16.25
P0 PSIA	25•26 24•68 37•93	41.01 25.92 24.68 26.47 36.41	43.39 25.41 38.17	19.80 17.16 19.65 16.92 19.77
V0 FT/SEC	64 • 0 64 • 0 60 • 8	65.7 67.4 66.2 60.8 60.8	66•0 68•0 61•6	28.6 30.0 28.1 28.9 27.3
TO DEG R	140.06 140.15 140.60	139.93 139.97 140.15 140.08 140.11	139.81 139.86 140.08	140°29 140°44 140°47 140°67 140°81
CAVITY INCHES	0.52 0.64	0.55 1.05 0.36	0.90	0.82 0.75
RUN NO.	459C 459D 459E**	460A** 460B 460C 460D 460D 460F	461A** 461B 461C**	462A** 462B 462C 462C 462C 462E

* DENOTES AN INCIPIENT RUN
 ** DENOTES A DESINENT RUN

RUN	- d	۲ د	6	4 0	v 0	1.1	L C Q	۲ م 2	F V C	ן ע ע
NO.	PSIA	PSIA	PSIA	PS1A	P 1 A	Del A		- • · · ·		
									K101	Alc'
4448	12.77	13.43	13,87	14.77	18.67	12.75	12•99	13.56	14.14	14.43
0444 0	13.40	14.12	15.20	23.95	31.84	13.04	13.55	14.16	14•52	14.48
445A	12.90	13,15	13,35	13.97	14.92	13.10	13-10	13.58	וליול	14.53
4458	13.51	14.16	15.03	22.21	28.80	13.74	14.08	14.71	15.06	15.02
445D	13,35	13•82	14,35	15.58	22.42	13.13	13.50	14.04	14.50	14.67
4468	13.94	14.02	14,26	14.58	15.40	13.58	14•31	14.59	14.93	15.30
446C	14.60	14.77	16,00	17.82	18.49	14.76	15.39	15.54	15.66	15.70
4460	14.41	14.68	15,08	16,38	18.04	14.57	14.93	15.38	15.66	15.70
4478	13,58	13.66	13,94	14.40	15.18	13.58	13.73	14.19	14.62	14.93
447C	14.02	14.22	14.74	16.74	20.69	13,83	14.23	14.88	15.30	15.21
448B	13.46	13.62	14.00	14.42	15-32	13.76	13.93	14.45	15.09	15.46
448C	14.22	14.57	15,32	19.85	26.67	14.26	14.79	15.46	15.97	15.90
449B	24.06	24.36	25.02	27.16	29.64	24.03	74.61	25.07	27.03	27.60
449C	24.52	24.80	25.82	28.84	31.45	24.11	24.97	26.51	27.36	27.66
450B	23.07	23,32	23,97	24.92	26.67	23.68	24.08	25.03	26.08	27-30
450C	23.47	23.82	24.57	26.30	29.47	24.01	24.61	26.02	27.55	28.51
450D	24.09	24.69	25.76	29 • 09	35 . 48	24.46	25.47	27.19	28.59	28.85
450E	24.68	25.48	28 . 68	35.78	39.94	24.74	26.51	28.17	28.65	28.62
451B	41.62	44.82	46,99	48 . 99	50.94	43.47	46•11	47.26	47.85	48•40
451C	42.70	46.28	47 . 92	50.28	52,22	43.71	46.27	47.26	47.76	48.06
451D	43.42	47.52	49°04	51.29	53.16	44°24	46.44	47.26	47.51	47.81
453B	49 . 26	53.56	58 . 96	63.47	68.44	51.69	56.70	59.70	61.70	61-90
453C	50.65	56.82	61,37	66.54	71.52	52.81	58.14	60-34	62.10	61-70
453D	52.14	59.47	63 . 67	68.81	73.94	54.63	59.45	60.74	61.95	61.14
454B	48,62	51.62	57.75	62.28	66 . 84	50.76	55.19	58.62	61.29	61.40
454C	51.14	57.91	62.71	68•04	73.37	54.59	59.70	61-40	63•23	62.51
4558	38 . 65	40•54	45,37	49.72	53.59	39 . 92	43.44	46.40	47•60	48.02

H 5+T	FT	42•3	45•6	46•6	45•8	46.7	47.5	45.3	44•2	45 ° 1	42.1	42•3	85•2	86•0	86.5	85.7	84•9	83•0	82.4	80.4	80 • 8	75.8	153.8	151.9	152.5	155.1	190•5	146•4	148•5	79.8	80•5
144 H	FT	41.6	44.7	45.8	44•8	46.8	47.2	45.2	43 • 0	45 . 1	42.0	41.1	84.4	85.7	86•6	85.3	83•8	83•1	82.1	77.0	79•6	71.8	153.9	150.2	152.1	154•6	190.2	143.4	148.1	76.3	81.0
H 3,T	FT	40.8	43.4	44.3	43•3	45.5	46.9	43.8	41.4	44•0	40•3	39 •5	80.9	83 . 5	85.5	82.9	80.2	80.6	78.0	72.8	74.5	68 . 4	152.3	145.5	149.6	153•2	186.5	134.0	143.7	72.0	79.4
H 2,T	FT	40•6	42.4	43.3	42.5	44.2	46.1	42.1	40.2	42°4	. 38•5	38•0	76.7	79.2	82.7	78.5	76.0	75.4	72.9	68•9	69•8	65.1	148.4	135•3	142.7	148.7	178.7	119.9	131.7	67.7	74•2
H 1.T	FT	40.7	41•9	42.7	42.0	43.5	44.7	41•3	40.0	41.4	37.4	37•2	74.1	75.7	77.9	75.4	73.6	71.7	70.0	68•2	68+0	64•6	137.5	124.5	130.3	136•5	160.2	112.1	118•6	66.7	69•1
Н 5	FT	42.4	48.9	50.5	47.4	52.5	55•2	58 . 4	45.1	60.5	58.7	46.7	92.8	96.3	100.3	95.8	91.7	110.9	104.7	86.4	96.7	75.5	178.2	158.9	172.2	177.5	218.5	165.5	179.6	85.4	135.3
Н 4	FT	41.5	44.8	45.9	44.1	47.9	53.4	47.4	41.9	53 . 2	44.9	42.8	86.3	91.7	97.1	91.4	85.7	98 • 5	87.5	76•2	76.9	69•0	170.8	150.0	164.3	169.7	207.6	147.3	166.2	74.0	123.9
H 0	FT	4].4	42.7	43.5	42.8	44.4	49°6	42.3	40•2	43 . 3	41.4	40.4	77.0	80.6	88.8	80.7	76.8	79.2	74.9	70.6	69.7	65.1	158•0	138.2	150.0	156.5	191.6	122•2	140.3	68.7	85.8
н 2	FT	41-0	41.8	42.5	42.1	43.3	44.8	41.0	39.5	41.7	40.2	39.4	74.2	75.7	79.0	76.0	74.4	73.1	71.2	68.8	66 . 6	63.5	141.2	122.1	132.9	143.2	171.7	113.4	120.9	66.0	72.4
- 1	L J	40-8	41.9	42.3	42.1	42.7	43.7	40.7	39.3	41.0	39.8	39•2	73.2	74.3	76.6	74.7	73.4	71.0	70-2	68.1	65.1	62.6	125.5	116.8	121.4	125.1	153.0	110.2	114.5	64.5	69.1
NIN	•ON	4318	431C	432A	432R	4320	4320	433C	433D	433E	434C	434D	4358	4 350	4350	4355	4356	436A	436R	436D	437C	437D	439R	4390	4390	439F	4418	442R	442C	4430	4430
Table A.5a. (cont'd)

H 3,T H 4,T H 5,T FT FT FT FT	38.6 40.3 41.2 40.4 41.4 41.3		40.0 41.4 41.9 41.9 42.0 43.0 43.0 43.0 43.0 43.0 41.9	41.0 44.0 44.0 44.0 44.5 44.9 44.9 45.0 45.0 45.0	42.0 42.0 42.0 42.0 42.0 41.7 41.4 41.7 42.5 42.9 42.0 42.5 42.5 42.5 42.5 42.7 45.0 45.0 45.0 45.0 45.0 45.0 45.0 45.0	42.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41	40.5 40.5 41.5 42.0 43.1 43.0 41.7 42.7 43.8 41.7 42.7 43.8 44.6 44.9 45.0 44.6 44.9 45.0 44.6 44.9 45.0 44.6 44.9 45.0 40.5 41.8 42.7 42.5 43.8 43.2 41.2 43.2 44.3 41.8 43.2 44.3 41.8 43.2 44.3 41.8 45.6 44.3 76.5 79.8 81.9 76.5 79.8 81.9	40.0 40.0 41.0 40.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 44.0 41.0 41.0 40.5 41.0 41.0 40.5 41.0 45.0 40.5 41.0 45.0 40.5 41.0 45.0 42.5 41.0 42.7 42.5 41.0 42.0 41.2 43.0 45.0 41.2 43.0 45.0 41.2 43.0 45.0 41.2 43.0 45.0 41.2 43.0 45.0 76.5 80.0 811.0 76.5 81.0 81.0 83.4 84.0 84.0	40.0 41.0 42.0 41.0 40.0 41.0 41.7 42.7 44.5 44.9 44.6 41.0 40.5 41.0 40.5 41.0 40.5 41.0 40.5 41.0 40.5 41.0 40.5 41.0 40.5 41.0 40.5 41.0 40.5 41.0 42.5 43.0 42.6 45.6 42.6 45.6 42.8 43.2 42.8 43.0 42.8 43.0 42.8 43.0 42.8 43.0 42.8 43.0 42.8 43.0 42.8 43.0 44.9 45.6 76.8 80.7 76.8 80.8 73.6 76.8 83.4 84.9 84.9 84.9 84.9 84.9 84.9 84.8 84.9 84.8 145.1 144.9 145.1 144.7 145.1 144.9	42.0 43.0 41.0 40.0 41.0 41.0 41.7 42.7 43.0 44.6 41.0 41.0 44.6 41.0 41.0 44.6 41.0 41.0 44.6 41.0 41.0 40.5 41.0 45.0 40.5 41.0 45.0 40.5 41.0 45.0 40.5 41.0 45.0 41.2 43.2 45.6 41.2 43.2 45.6 41.2 43.2 45.6 41.2 43.2 45.6 76.5 79.8 81.9 76.7 81.6 81.6 80.3 84.7 84.6 76.6 84.9 80.7 76.1 145.0 148.6 81.6 84.9 84.6 81.6 84.9 84.6 81.6 84.9 84.6 81.6 84.9 84.6 81.6 84.9 84.6 81.6 84.9 84.6 81.6 84.9 84.6 81.6 84.9 84.6 81.6 144.6 144.7 145.6 145.9
36.9	38•6	37.2 40.1 38.4	40•8 44•1 42•7	39.1 40.6	42.3	72.3 73.4	70•6 72•3 74•9 78•2	141.2 141.8 142.3	176.6 181.5 186.0	171.5 186.8 132.4
FT	36•2 37•0	37•2 39•1 37•3	38•7 42•2 41•6	38•7 39•4	2 • 6 • 7	70•5 70•7	69.4 70.4 71.8 72.7	132.6 133.3 136.1	159.8 163.5 169.7	156.7 169.5 121.0
\ #	54•0 95•0	42•7 85•4 65•5	44 . 1 53 . 4 52 . 1	43°4 60°2 2	78.7	88•0 93•8	78.7 87.5 106.6 121.0	157.3 161.6 164.7	216.8 227.5 236.0	211.3 234.0 166.1
FT	42•2 70•2	39.8 64.8 44.6	41.6 51.4 47.0	41.1 48.1 48.1	57.6	80•2 85•5	73.2 77.5 86.3 107.6	150.8 155.1 158.4	199.7 210.2 218.1	195.6 215.4 153.2
L L	39•5 43•5	38•0 43•0 41•0	40•7 45•9 43•1	39.7 42.1 30.0	43•9	73.5 76.0	70.3 72.1 75.9 85.0	144•2 147•2 150•9	184.3 192.5 200.4	180•2 197•1 138•8
	40.3 40.3	37.4 40.4 39.4	40•0 42•2 41•9	38•9 40•6 38 8	41.6	71.5 72.9	68 3 69 8 72 5 75 0	137.0 141.8 145.9	166.0 177.0 186.0	159.5 180.7 123.0
F 1	36•2 38•1	36•6 38•4 38•0	39.7 41.7 41.1	38•7 40•0	40.0 40	70.6 72.0	67.5 68.7 70.7 72.5	126•5 130•0 132•4	151.7 156.3 161.3	149.6 157.9 116.9
•0N	0 U 4 4 4 4 4 4	4458 4458 4458	4 4 6 B 4 4 6 C 4 4 6 D	4478 4476 4480	0011	449B 449C	4508 4500 4500 4500	451B 451C 451D	4538 4530 4530	454B 454C 455B

H 5.T FT	148°9 147°4 144°0	78•7 83•8 83•7	83•1	42°5 44°7	44•6	44.1 44.5	44.7	43.6	45•6 46•2
H 4.1 FT	146.0 143.0 137.3	74•9 83•8 84•0	81•8	41•5 44•9	44•0	44°1 43•6	45.1	43•2	44 • 9 45 • 7
H 3,T FT	135.2 131.7 126.0	71•5 79•6 82•9	77.6	39.7 43.0	42.1	42•2 41•7	1.44	40 . 8	43 • 7 44 • 6
H 2,1 FT	123•2 120•1 115•5	68 •3 74•2 79•0	72.9	38•5 41•0	40.3	40,2 39.8	42.0	39 •2	42•6 43•4
H 1•T FT	118•9 116•4 113•1	67.6 71.1 73.0	70•4	38•0 39•6	39.1	39 . 1 39.2	40.7	38•6	42•0 42•6
Н 5 FT	164.7 157.7 145.5	76.6 116.8 139.2	114.7	41.0 87.6	70.8	86•8 47•8	102.4	51.2	50.6 51.3
H F T 4	142.9 136.5 128.7	70.3 87.3 122.0	81.6	39•7 52•0	47.7	49.7 41.5	85•0	42•3	45 • 5 46 • 6
н FT 3	123•1 119•5 115•6	66•8 73•5 92•7	73.1	38•4 43•1	41.8	42•4 39•7	47.0	40•3	42•7 42•4
H 2 FT	113.8 112.7 109.8	64•9 69•0 73•5	69.4	37.6 41.1	40•4	40 8 38 8	40•7	38.4	42.5 41.8
н 1	110•3 109•3 107•7	63 • 6 66 • 6 68 • 4	66.5	36•6 38•7	38 • 3	37•5 37•0	38•5	36•9	41•8 41•3
RUN NO.	456B 456C 456D	4578 457C 457D	4588	4598 459C	4590	460B 460C	460D	461B	462B 462D

Table A-5b. Experimental data for 0.420-inch ogive using liquid nitrogen (SI Units).

T 5 DEG K	77•43 78•04	78.22 78.08 78.23 78.33	77.98 77.79 77.95	77.38 77.43	83.55 83.664 83.669 83.661 83.52	83•31 83•24 83•01	83•06 82•47
T 4 DEG K	77.28 77.88	78.07 77.90 78.25 78.33	77.97 77.56 77.94	77 . 36 77 . 19	883.46 833.61 83.71 83.71 83.46 83.40 83.40	83,32 83,20 82,61	82•92 81•97
T 3 DEG K	77 . 14 77 . 64	77.81 77.62 78.C2 78.28	77•70 77•26 77•74	77•04 76•87	833.07 833.58 833.58 83.58 82.93 82.93 82.93	83•03 82•73 82•10	82•31 81•53
T 2 DEG K	77 . 09 77 . 44	77.62 77.46 77.78 78.13	77.38 77.01 77.44	76.66 76.56	82.57 82.87 83.27 83.27 82.49	82.42 82.11 81.60	81•71 81•09
T 1 DEG K	77.12 77.34	77.51 77.36 77.65 77.87	77.23 76.98 77.25	76•44 76•39	82.26 82.45 82.45 82.45 82.42 82.42	81•96 81•74 81•51	81•48 81•02
× ×	0.96 0.11 0.19	0.18 0.16 0.22 0.39 0.88	1•08 0•35 0•28 0•38	0.38 0.36 1.04	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.31 0.26 0.90 0.19 1.05	0•93 0•26 0•22
> Σ Η	13•9 14•0 14•0	1 1 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	13.6 13.6 13.6 13.6	13.5 13.6 13.6	266 266 266 266 266 266 266 266 266 260 260	25 • 4 25 • 8 25 • 8 25	24 • 9 24 • 9 25 • 0
οĦ	17•6 14•4 14•8	15.0 14.8 15.2 17.5	21•3 16•4 15•9 16•7	19•2 18•8 27•5	32.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5	30•1 29•4 28•1 28•6	42.6 30.5 29.6
PV N/CM/CM	10.95 11.03 11.07	11.22 11.17 11.27 11.26 11.26	10.75 10.72 10.76 10.76	10.63 10.72 10.75	19.83 19.99 19.99 20.03 20.03 20.09 20.11	19•40 19•40 19•36 19•52 19•67	19.05 19.07 19.11
PO	13.89 11.39 11.69	11.80 11.69 11.98 12.46 13.82	16.86 12.94 12.52 13.15	15•15 14•88 21•75	24.79 20.53 21.65 21.65 24.91 20.89 20.57	23.01 22.46 29.13 21.87 30.70	32.61 23.30 22.64
V0 M/SEC	8•7 9•2 9•1	0,0 8 8 8 • • • • • • • • • •	11.8 12.5 12.6 12.5	17.2 17.0 16.2	21122 200 200 200 200 200 200 200 200 20	17. 17. 16.7 16.7 16.5 16.5	19•4 20•2 20•3
TO DEG K	78.03 78.09 78.12	78•24 78•20 78•28 78•28 78•27	77.87 77.85 77.88 77.88	77•77 77•85 77•87	833 • 56 833 • 56 833 • 56 833 • 56 833 • 56 833 • 56 833 • 56 70 9	833 833 833 833 833 833 833 833 833 833	83.16 83.17 83.17
CAVITY CM	4.57 2.66	2.33 2.99 1.82 0.81	1.60 2.99 1.32	1.82 2.69	1.98 1.62 1.01 2.03	1.32 1.77 2.94	2.38 3.96
RUN NO.	431A** 4318 431C	432A 432B 432C 432C 432F 432F	433A 4330 4330 4330 4336	4340 4340 4346**	4 4 9 9 9 4 4 9 9 9 4 4 9 9 9 9 4 4 9 9 9 9 4 4 4 9 9 9 9 4 4 4 4 9 9 9 4	436A 436B 436C* 4366* 4366*	437A** 437C 437D

RUN	CAVITY CM	TO DEG K	V0 M/SEC	P0 N/CM/CM	PV N/CM/CM	ο¥	> ∑ H	> ¥	T 1 DEG K	T 2 DEG K	T 3 DEG K	T 4 DEG K	T 5 DEG K
	;	89.37	17•2	41.82	34.07	56.9	46 • 4 2 • 5	0.70	88-30	89.10	89,38	89.49	89.48
40444	n Rh	89.40	17.9	36.43	34.16	49.6			87.27	88.13	88 . 89	89. 23	89.35
4070)) 0	89.41	18.1	34.28	34.19	46.	40°0		87.74	88.69	89.19	89,36	89.39
4340	07.7	00 4.2	18-0	35.31	34.22	48.1	0 • 0 • 0						
439D	12.1			42.55	34.25	57.9	46•7	42.00	<i>(</i> , 00	80.17	89-44	89.54	89.57
439E**		01 00 01 00		36.37	34.70	49.5	47.3	0.13	77 00	1			
439F	1.01	07•70 99-68	17.0	43.15	34.94	58.9	47.7	0.76					
4396**			-					L L (
		00.00	16.0	47-09	42.50	65•3	59 ° 0	0.55					
440V**		71 97			42.50	65•2	59.0	0.55					
440D**		91•99 92-06	14.0	48.01	42.68	66•6	59 . 2	0.65					
440644									00 00	11,10	91.58	91.80	91.82
4 L 4 4	1 21	91.96	20•3	44.22	42.40	61•3	58 . 8	0.12	07.42	TT • T /			
1111				c c r	33 60	6443	45.7	0•89			20 00	47.99	88.96
440070		89.21	20•2	41.33			45.7	0.08	86.21	86•89	60•88		
	2 05	89.21	21.5	34.98	33.60	+ - • • •	46.1	0.13	86.78	87.85	88.76	80.68	11.070
1440		90.30	21.3	36.07	33.87	47.4							
442C	1. JC	89.48	19.9	47.18	34.40	64•2	46.9	0.00					
444022							0 	1.03					
****		83.14	21+0	36.78	19.01		25.1	6C U	81.31	81.44	81,99	82.53	82.94
44044	, 0, 1	83.23	22.0	24.59	19.19	32•1		0.42	81.62	82.27	82.89	83.08	83.02
447B	66 U	83.21	21.4	26.58	19.15	34 • /	0.00						
)));;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	•					34.6	12.8	1.03					10.44
*****		77.36	20•3	27.91			12.8	0.41	76.18	76.33	16.69		
	1.90	77.37	21•2	17.60	10.14	79.22	12.8	0.48	76.36	76.68	40•11	07.11	
	0.88	77.37	21.0	18.60	10.14	r • c 7					, 1	10 11	70 22
						C - UC	13.0	0.38	76.40	76.40	76.70		- J =
4.4.5.A	3.20	77.52	19.2	15,98	76°01			0.46	76.80	77.00	11.31	10.11	
	10 1	77.54	19•0	17.02	10.34			00.1					
4408	10.1	77 53	17.7	24.02	10.33	30.4	1001	14-0	76.42	76.65	76.98	77.25	17.35
440C**	1.65	77.54	18•4	15.91	10.34	1.02	1 • <i>C</i> 1						
11	F I					17-0	13.7	0.87				77 60	17.77
44664*		77.95	8•5	13.40		5 • J I	13.7	0.12	76.70	77.14	77.30		11.01
1944	3.55	77.95	9•1	11.27			13.7	0.36	77.40	77.76	+20-11	T 2 • 1 1	
0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1.01	77 . 95	8.8	11.98	TO O D	•							

RUN NO.	CAVITY CM	T0 DEG K	V0 M/SEC	PO N/CM/CM	PV N/CM/CM	ο¥	Σ F	kv	T 1 DEG K	T 2 DEG K	T 3 DEG K	T 4 DEG K	T 5 DEG K
446D 446E**	1.65	77 . 96 77 . 93	8 • 8 8 • 4	11.75 13.61	10.86 10.82	14•9 17•2	13.8 13.7	0•28 0•98	77.29	77.50	77.75	16.11	77 . 93
447A** 4478 4478 4470 4470 4470	3.60 1.57	77 . 90 77.92 77.92 77.90	11.8 12.6 12.6 11.8	16.81 12.48 12.99 16.57	10.79 10.81 10.79 10.79	21•3 15•8 16•5 21•0	13.7 13.7 13.7 13.7	1•07 0•26 0•34 1•04	76.70	76•79 77•09	77•07 77•47	77 . 32 77 . 71	77•50 77•66
448A** 448B 448C 4480**	3.30 1.14	77.76 77.83 77.91 78.04	16.2 17.3 17.1 16.1	23•28 14•92 15•91 23•19	10.61 10.70 10.80 10.96	29.5 18.9 20.1 29.4	13.4 13.5 13.9 13.9	1•19 0•35 1•17	76.81 77.11	76.91 77.42	77.22 77.80	77•59 78•08	77•80 78•04
*** 4490 4490 4490 4490 4490 4490 4490 4	2.41 1.90	83•44 83•49 83•47 83•53 83•53	12•2 13•1 13•1 13•1 12•1 12•1	24.99 20.11 20.44 25.08 25.73	19.60 19.69 19.66 19.77 19.81	32.7 26.3 22.9 32.9	25.7 25.8 25.9 25.9 26.0	0.93 0.06 0.93 1.05	81.80 81.83	82•03 82•17	82•55 82•75	82•94 83•06	83.18 83.17
4508 4508 4500 4500 4500 4500	4.21 2.94 1.93 1.11	833. 833. 933. 933. 933. 933. 933. 933.	16.6 17.6 17.6 17.7 16.6 16.6	30,76 22,01 22,28 22,88 22,84 23,91 31,22	19.79 19.83 19.87 19.87 19.87 19.89	40•3 29•8 29•2 29•9 29•9 40•9	25.9 26.0 26.0 26.1 26.1 26.1	1.03 0.18 0.20 1.034 1.054	81.66 81.79 81.97 82.08	81.82 82.03 82.36 82.36	82.19 82.57 83.00 83.35	82•59 83•13 83•50 83•52	83•04 83•47 83•59 83•51
451A* 451B 451C 451C 451D 451E* 452A*	1.90 1.39 0.88	89.22 89.22 89.21 89.20 89.25 89.25	13.9 13.9 13.6 13.0 13.0 15.0	37.70 33.643 33.84 34.43 38.43 38.43 48.43 48.43	233.63 233.663 233.663 233.663 233.653 233.653 4 233.653 4 233.653 4 233.653 4 233.653 6 233.653 6 233.653 6 233.653 6 233.653 6 233.653 6 233.653 6 233.653 6 233.653 7 6 6 33.653 6 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 7 6 7	0 980 0 br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.62 -0.03 0.03 0.12 0.75 0.71	87。92 87。98 88。19	88 58 88 62 88 66	888 886 886 886 886 886	89.00 88.98 88.92	89•13 89•05 88•99

DENOTES AN INCIPIENT RUN
 ** DENOTES A DESINENT RUN

91.98 92.37 42.41 72.6 58.9 0.072 89.8 91.46 91.46 92.00 92	VITY CM	T0 DEG K	V0 M/SEC	PO N/CM/CM	PV N/CM/CM	θĩ	>∑ I	٨٧	T 1 DEG K	T 2 DEG K	T 3 DEG K	T 4 Deg k	T 5 DEG K
72.000 19.6 44.46 47.54 61.7 59.6 0.13 90.14 91.73 22.06 91.92 91.92 91.92 91.92 72.00 19.4 51.81 42.61 72.65 59.1 0.74 90.55 91.66 91.92 91.92 91.92 22.07 19.4 51.81 42.61 71.9 59.4 0.016 90.55 91.60 91.92 91.92 91.92 22.07 19.1 45.12 42.74 72.6 59.4 0.016 90.55 91.60 91.92 91.92 22.07 19.1 45.12 42.54 72.6 59.4 0.016 90.55 81.69 81.05 88.94 99.0 22.07 19.1 40.7 45.1 0.07 86.98 87.91 88.49 99.0 99.14 19.7 33.46 0.71 45.4 0.05 86.91 87.91 88.94 99.0 99.17 20.7 34.64 40.1 45.7 0.05 86.91 87.91 88.12 89.13 99.18 20.7 34.64 40.1 45.4 0.05 86.91 87.91 88.94 89.19 99.17 20.7	0.0	1.98	19•3	52.37 43.74	42.47 42.61	72.6	58•9 59•1	0.72 0.08	89 8 9	90.98	91.60	92•00	92.04
77.06 19.6 55.7 42.640 63.3 59.8 0.23 90.54 91.55 91.91 92.05 91.91 22.02 19.4 51.81 42.71 71.9 59.1 0.74 90.55 91.94 92.30 91.92 91.92 91.92 91.92 22.07 19.4 51.81 42.64 62.6 59.4 0.16 99.53 91.60 91.94 92.30 92.61 22.07 19.0 52.33 42.54 62.6 59.4 0.16 90.55 91.60 91.94 92.30 22.07 19.0 52.33 42.564 62.6 59.4 0.16 91.94 92.30 91.92 91.92 29.24 116.6 41.15 53.75 56.0 45.8 0.065 86.98 87.01 86.91 86.90 99.24 119.7 44.06 55.7 45.1 0.07 86.91 87.17 86.91 89.02 99.17 20.0 34.66 33.40 60.7 45.4 0.077 86.91 86.91 89.7 89.0 99.18 20.7 34.06 33.40 60.7 45.4 0.077 86.91 86.91 87.40 89.		20.00		4	42.54	61.7	59.0	0.13	90.14	91.28	91.73	92.08	92.00
97.02 18.9 52.35 42.61 72.6 59.1 0.74 92.05 19.4 51.81 42.71 71.9 59.4 0.166 99.68 91.94 91.92 91.92 91.92 91.93 92.00 19.0 52.33 42.64 60.2 59.4 0.16 90.553 91.60 91.94 92.30 92.30 91.92 91.92 91.93 92.00 16.6 41.15 33.75 56.0 45.8 0.065 89.68 87.91 88.65 88.91 89.01 99.0 99.0 89.26 16.6 41.15 33.75 56.0 45.8 0.002 86.91 87.17 89.01 89.0 89.26 16.6 41.15 33.46 47.11 45.5 0.007 86.91 87.17 89.01 89.1 89.01 89.17 20.77 34.46 60.77 45.5 0.007 86.91 87.41 88.71 89.01 89.17 20.77 34.46 33.46 47.11 45.5 0.005 86.91 87.41		90.10	19.6	45.67	42.40	63.3	58.8	0.23	90.54	91.55	91.81	40 •26	68¶16
92.05 19.4 51.81 42.71 71.9 59.2 0.066 99.68 90.66 91.94 91.92 91.92 92.07 10.0 52.33 42.78 60.2 59.4 0.16 90.653 91.66 91.94 92.30 92.07 19.0 52.33 42.78 60.02 59.4 0.16 90.653 91.66 91.94 92.30 92.07 19.0 52.33 42.78 60.02 45.9 0.05 86.98 87.91 88.69 89.0 89.26 16.9 41.15 33.75 56.0 45.8 0.02 86.91 87.01 88.91 89.0 89.18 16.6 91.65 55.7 46.1 0.05 86.91 87.01 88.71 89.0 89.17 20.81 33.46 60.77 45.4 0.07 86.91 87.01 88.71 89.0 89.17 19.61 47.1 45.5 0.07 86.91 87.01 88.71 89.01 89.27 19.61 47.1 45.5 0.07 86.91 87.01 88.71 89.71 89.27 19.6 47.1 45.5 0.07 86.91 87.05 88.71		92.02	18.9	52.35	42.61	72.6	59 . 1	0.74					
92.07 20.5 43.35 42.64 60.2 59.4 0.05 89.68 90.66 91.94 92.30 92.10 92.00 19.0 45.12 42.64 60.2 59.4 0.16 90.53 91.60 91.94 92.30 92.10 92.00 19.0 45.12 42.64 62.6 59.0 0.16 90.53 91.60 91.94 92.30 92.30 89.26 16.7 45.6 56.0 45.9 0.069 86.91 86.11 88.65 89.0 89.14 19.7 44.68 33.40 60.7 45.6 0.077 86.81 87.91 88.65 89.91 89.17 20.8 33.40 60.7 45.6 0.077 86.81 87.91 88.65 89.91 89.17 20.8 34.64 33.40 60.7 45.6 0.077 86.81 87.91 88.65 88.71 89.18 20.7 34.64 94.05 0.055 86.59 86.51 87.95 89.71 89.0 89.18 20.7 34.64 0.71 45.5 0.077 86.81 87.91 88.28 89.71 89.12 19.6 47.1 45.5 <td></td> <td>92.05</td> <td>19-4</td> <td>51.81</td> <td>42.71</td> <td>71.9</td> <td>59.3</td> <td>0.66</td> <td></td> <td></td> <td></td> <td></td> <td></td>		92.05	19-4	51.81	42.71	71.9	59.3	0.66					
92.07 20.1 45.12 42.78 52.6 59.4 0.16 90.53 91.60 91.94 92.30 92.40 92.		50.09	20.5	43.35	42.64	60.2	59 . 2	0.05	89.68	90.06	06 • T ×	74°76	+
92.00 19.0 52.33 42.54 72.66 59.0 0.74 89.26 16.9 41.15 33.75 56.0 45.9 0.69 86.98 87.91 88.65 88.94 99.0 89.26 16.6 41.15 33.75 56.0 45.9 0.69 86.91 87.91 88.65 88.91 89.01 89.26 16.6 40.97 33.61 46.2 45.5 0.07 86.59 86.91 88.91 89.01 89.17 20.8 34.64 33.40 60.7 45.5 0.077 86.59 86.51 88.71 88.71 89.0 89.17 20.7 34.64 58.6 0.077 86.59 86.51 87.41 89.0 88.71 89.27 19.6 47.1 45.5 0.056 86.51 87.41 88.71 88.71 89.27 19.6 47.1 45.7 0.05 86.51 87.41 88.71 88.71 88.71 89.27 19.6 47.4 55.4 0.05 86.55 86.51 87.45 </td <td></td> <td>92.07</td> <td>20.1</td> <td>45.12</td> <td>42.78</td> <td>62.6</td> <td>59.4</td> <td>0.16</td> <td>90.53</td> <td>91.60</td> <td>91.94</td> <td>92.30</td> <td>91•26</td>		92.07	20.1	45.12	42.78	62.6	59 . 4	0.16	90.53	91.60	91.94	92.30	91•26
89.2616.941.1533.7556.045.90.6986.9887.9188.6588.9489.089.2417.733.9433.6746.245.80.0286.9887.9188.6588.9389.189.1419.744.6633.4460.7745.10.6745.550.07786.8187.1788.1288.9389.189.1720.834.6433.4447.1145.550.07786.8187.1788.1288.9389.189.1720.734.6433.5746.745.550.07786.5186.5188.7189.089.2020.7734.6433.5746.745.550.07686.5187.1788.2889.7189.2719.633.5746.745.60.07686.5187.1788.2888.7189.2719.633.5746.00.6645.50.02886.5187.4588.7189.2719.643.2633.7858.8846.00.6681.4982.2783.2483.2720.223.0419.4031.425.50.2481.4982.2783.4283.383.3720.223.0419.4025.40.0386.5182.2683.4083.4283.383.3720.223.0419.4025.50.2481.4982.1282.2883.4283.383.3720.223.0419.4025.50.24 <td></td> <td>92.00</td> <td>19•0</td> <td>52.33</td> <td>42.54</td> <td>72•6</td> <td>59•0</td> <td>0•74</td> <td></td> <td></td> <td></td> <td></td> <td></td>		92.00	19•0	52.33	42.54	72•6	59 • 0	0•74					
89.14 17.7 33.94 33.69 46.2 45.8 0.002 86.98 87.91 88.65 88.94 99.14 89.14 19.7 44.68 33.40 60.7 45.4 0.77 86.98 87.91 88.03 89.11 89.14 19.7 44.68 33.40 60.7 45.4 0.77 86.59 86.791 88.12 88.91 89.91 89.11 20.7 34.64 33.57 46.1 0.65 86.59 86.51 87.11 89.01 89.11 89.01 89.11 89.01 89.11 89.01 89.11 89.01 89.11 89.01 89.11 89.01 89.11 89.01 89.11 89.01 89.11 89.01 89.11 89.01 89.11 89.01 89.11 89.01 89.11 89.11 89.11 89.11 89.11 89.11 89.11 89.11 89.11 89.13 89.11 89.13 89.11 89.13 89.13 89.14 89.14 89.14 89.14 89.14 89.14 89.14 89.16 89.14 89.14 <		89.76	16.9	41.15	33.75	56.0	45 • 9	0.69					
89.10 16.6 40.97 33.87 55.7 46.1 0.69 89.14 19.7 44.68 33.40 60.7 45.4 0.77 86.81 87.17 88.12 88.93 89.1 89.17 20.07 34.64 33.40 60.7 45.4 0.77 86.55 86.51 87.17 88.71 89.0 89.17 20.07 34.64 33.57 46.7 45.5 0.077 86.59 86.51 87.14 88.71 89.0 89.27 19.6 33.57 46.7 45.5 0.03 86.81 87.17 88.23 88.71 89.0 89.27 19.6 43.26 19.17 44.0 25.1 1.02 81.43 81.52 81.93 83.34 83.34 83.27 19.1 33.66 19.17 44.00 25.1 0.02 86.81 82.36 82.36 83.34 83.35 83.34 83.34 83.34 83.34 83.34 83.34 83.34 83.34 83.34 83.34 83.34 83.34 83.34 83.34 <		80.24	17.7	49.65	33.69	46•2	45.8	0.02	86•98	87.91	69.88	46.88	40.00
89-1419-744.6833.4060-745.50.07786.8187.1788.1288.9389.1389.1720.834.6433.4060.745.50.07786.69187.1788.1288.9389.189.1820.734.6433.5146.745.50.00586.59187.4088.7189.089.2020.734.6433.5146.745.50.00586.59187.4088.7189.089.2020.734.0633.5746.00.06686.5187.4088.2888.7189.2719.647.2633.7858.846.00.6681.4381.4382.3682.3683.2719.133.6619.1744.025.11.00281.4882.2783.4983.4283.2720.223.0419.3030.1125.50.4181.4882.2783.4283.383.29199025.81190225.81190233.4725.50.4182.1282.3683.4283.3320.223.0419.5030.1725.50.4182.1282.2683.4783.383.3320.819.0519.5625.470.9310.0081.4381.4382.2683.4083.4083.3320.819.0519.5629.0925.50.4182.2782.9583.4083.1783.383.3320.825.0319.0347.		89.30	16•6	40.97	33.87	55•7	46.1.	0•69					
89.17 20.8 34.64 33.48 47.1 45.5 0.077 86.81 87.17 88.712 88.712 89.793 89.71 89.17 20.7 34.64 33.57 46.7 45.5 0.077 86.59 86.51 87.40 88.71 89.0 89.27 19.6 43.26 33.57 46.3 45.7 0.03 86.59 86.51 87.40 88.71 89.0 89.27 19.6 43.26 33.57 46.3 45.0 0.66 86.51 87.40 88.71 89.0 89.27 19.6 43.26 19.17 446.0 25.1 1.02 81.43 81.52 81.93 82.36 83.45 83.23 20.2 23.04 19.30 30.11 25.5 0.244 81.43 81.52 81.42 83.42 83.3 83.33 20.2 23.04 19.30 33.48 25.5 0.41 82.12 82.23 83.40 83.42 83.42 83.42 83.43 83.42 83.42 83.42 83.42 83.42 83.42		80.14	19.7	44.68	33.40	60.7	45.4	0.77					
89.18 20.7 34.34 33.51 46.7 45.6 0.05 86.59 86.51 87.85 88.71 89.74 89.20 20.7 34.06 33.57 46.3 45.7 0.03 86.59 86.51 87.40 88.28 88.71 89.74 89.20 20.7 34.06 33.57 46.3 45.7 0.03 86.51 87.40 88.28 88.71 89.74 89.22 19.1 33.66 19.17 44.0 25.1 1.02 81.43 81.52 81.93 82.36 82.36 83.37 20.2 23.96 19.46 31.4 25.5 0.241 81.43 81.52 83.42 83.34 83.37 20.2 23.96 19.46 31.4 25.5 0.41 82.12 82.27 82.95 83.42 83.34 83.33 20.6 19.46 31.4 25.5 0.41 82.12 82.29 83.42 83.34 83.33 83.33 21.8 25.61 19.09 25.4 0.31 81.47 83.42 8		21.08	20.8	34 - 64	33.48	47.1	45.5	0.07	86.81	87.17	88.12	88.93	47°50
89.20 20.7 34.06 33.57 46.3 45.7 0.03 86.30 86.51 87.40 68.524 68.40 68.524 68.40 68.524 68.51 87.40 68.524 68.51 87.40 68.524 88.24 82.25 82.35 83.42 83.33 83.35 82.35 83.42 83.33 83.342 83.342 83.33 83.42 83.342 83.342 83.342 83.342 83.33 83.42 83.342 83.342 83.342 83.342 83.342 83.342 83.342 83.342 83.342 83.3		80.18 81.08	20.7	34.34	33.51	46.7	45 ° 6	0.05	86.59	86.91	87.85	88./1	89.00
89.27 19.6 43.26 33.78 58.8 46.0 0.66 83.22 19.1 33.66 19.17 44.0 25.1 1.02 81.43 81.52 81.93 82.36 82.36 83.22 19.1 20.2 233.04 25.1 1.02 81.48 82.27 82.92 83.40 83.4 83.29 20.2 233.06 19.46 31.4 25.5 0.24 81.48 82.27 82.92 83.40 83.4 83.37 20.2 23.91 19.66 31.4 25.5 0.41 82.12 82.82 83.42 83.3 83.33 19.0 32.78 19.64 47.1 25.5 0.41 82.12 82.81 83.42 83.3 83.42 83.18 20.8 36.05 19.64 47.1 25.0 1.00 81.77 82.01 82.40 83.42 83.3 83.43 83.43 83.42 83.42 83.42 83.43 83.42 83.42 83.42 83.43 83.42 83.42 83.42 83.43 83.42		89.20	20.7	34.06	33.57	46.3	45 . 7	0.03	86.30	16.98	04•18	07 • 20	01 • 00
83.22 19.1 33.66 19.17 44.0 25.1 1.02 81.43 81.52 81.93 82.36 82.37 83.34 83.33 83.34 83.34 83.		89.27	19•6	43.26	33 . 78	58•8	46.0	0.66					
83.29 20.2 23.04 19.30 30.1 25.3 0.24 81.43 81.52 81.93 82.45 83.46 83.45 83.		83.22	19.1	33.66	19.17	44•0	25.1	1.02					
83.37 20.2 23.96 19.46 31.4 25.5 0.28 81.68 82.27 82.92 83.40 83.44 83.43 83.44 83.		82 20	20.2	23.04	19.30	30.1	25.3	0.24	81.43	81.52	6.6.18	06.20	10•70
83.39 19.0 25.81 19.50 33.8 25.5 0.41 82.12 82.85 83.29 83.42 83.42 83.43 83.46 19.0 32.78 19.64 42.9 25.7 0.93 82.12 82.85 83.29 83.42 83.43 83.43 83.18 20.8 36.05 19.09 47.1 25.0 1.00 81.79 82.11 82.68 83.17 83.3 83.33 21.8 25.09 19.09 47.1 25.0 1.00 81.79 82.11 82.68 83.17 83.3 83.51 20.5 36.38 19.73 47.66 25.9 1.01 81.79 82.11 83.61 83.2 83.51 20.5 36.38 19.73 47.66 25.9 1.01 81.79 82.01 83.61 77.2 77.75 18.9 26.05 10.61 20.9 13.4 0.37 76.56 76.91 77.2 77.4		23.00		23.96	19.46	31.4	25.5	0.28	81.88	82•27	82 . 92	83.40	83.40
83.46 19.0 32.78 19.64 42.9 25.7 0.93 83.46 19.0 32.78 19.64 42.9 25.7 0.93 83.18 20.8 36.05 19.09 47.1 25.0 1.00 83.33 21.8 25.09 19.38 32.8 25.4 0.31 81.79 82.11 82.68 83.17 83.3 83.51 20.5 36.38 19.73 47.6 25.9 1.01 77.72 18.9 26.05 10.56 33.0 13.4 1.08 76.57 76.66 76.91 77.27 77.4			0.01	25.81	19-50	33.8	25.5	0.41	82.12	82.85	83•29	83.42	45 • E A
83.18 20.8 36.05 19.09. 47.1 25.0 1.000 81.79 82.11 82.68 83.17 83.33 83.33 21.8 25.09 19.38 32.8 25.4 0.31 81.79 82.61 83.17 83.33 83.33 21.8 25.09 19.73 47.6 25.9 1.01 82.61 83.63 83.51 20.5 36.38 19.73 47.6 25.9 1.01 81.77 82.61 83.17 83.3 77.72 18.9 26.05 10.56 33.0 13.4 1.08 76.57 76.65 77.27 77.4 77.76 19.8 16.49 10.61 20.9 13.4 0.37 76.57 76.65 77.27 77.4		83.46	19•0	32.78	19.64	42•9	25.7	0•93					
83.33 21.8 25.09 19.38 32.8 25.4 0.31 81.79 82.11 02.00 03.11 03.11 02.00 03.11 02.00 03.11 02.00 03.11 02.00 03.11 02.00 03.11 02.00 03.11 02.00 03.11 02.00 03.11 02.00 03.00 13.4 1.08 76.57 76.66 76.91 77.27 77.4 77.4		83.18	20.8	36.05	19•09.	47.1	25.0	1.00			0, 00	71 60	62.20
83.51 20.5 36.38 19.73 47.6 25.9 1.01 77.72 18.9 26.05 10.56 33.0 13.4 1.08 77.76 19.8 16.49 10.61 20.9 13.4 0.37 76.57 76.66 76.91 77.27 77.4		83.33	21.8	25.09	19.38	32.8	25 . 4	0.31	81.79	11-28	80•78	11.00	10.00
77.72 18.9 26.05 10.56 33.0 13.4 1.08 77.76 19.8 16.49 10.61 20.9 13.4 0.37 76.57 76.66 76.91 77.27 77.4		83.51	20•5	36.38	19.73	47.6	25 . 9	1.01					
77,76 19,8 16,49 10,61 20,9 13,4 0,37 76,57 76,66 76,91 77,4		ζ <u>Γ</u> . ΓΓ	18.9	26.05	10.56	33•0	13.4	1.08					ŗ
		77.76	19.8	16.49	10.61	20.9	13.4	0.37	76•57	76.60	16-91	17•11	5++

T 5 DEG K	77.87 77.85	77 .76 77 .84 77 .8 8	77.68	78.04 78.15
T 4 DEG K	77 . 91 77.75	77。77 77。67 77。94	77.59	77.91 78.05
T 3 DEG K	77 . 56 77 . 39	77.40 77.31 77.76	77.14	77 . 69 77.86
T 2 DEG K	77.18 77.03	77.01 76.94 77.37	76.82	77•48 77•64
T I DEG K	76 . 90 76.79	76.80 76.82 77.12	76.69	77 . 36 77.49
K	0•44 0•41 1•09	1•09 0•43 0•38 0•49 1•06	1.19 0.40 1.10	0.92 0.27 0.87 0.18 0.87
≥ £	13•5 13•6 14•0	13°6 13°6 13°5 13°5	13°3 13°3	13°9 13°9 14°1
ęΣ	22•0 21•5 33•2	35.8 22.6 21.5 23.1	37•8 22•2 33•3	17.3 15.0 17.2 14.8 17.3
PV N/CM/CM	10.68 10.74 11.05	10.59 10.61 10.74 10.71	10.50 10.54 10.654	10.84 10.94 10.96 11.10 11.21
P0 N/CM/CM	17.42 17.02 26.15	28•28 17•87 17•02 18•25 25•38	29 •92 17•52 26•32	13.65 11.83 13.55 11.67 13.63
V0 M/SEC	19•5 19•5 18•5	20.0 20.5 20.2 19.7 18.5	20•1 20•7 18•8	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TO DEG K	77.81 77.86 78.11	77。74 77。76 77。86 77。82 77。82	77•67 77•70 77•82	77.94 78.02 78.04 78.15 78.23
CAVITY CM	1.32 1.62	1.39 2.66 0.91	2,28	2.08 1.90
RUN NO.	459C 459D 459E**	460A** 460B 460C 460C 460D 460E**	461A** 461B 461C**	462A * 462B 462C * 462C * 462C * 462E *

RUN NO.	P 1 N/CM/CM	P 2 N/CM/CM	P 3 N/CM/CM	P 4 N/CM/CM	P 5 N/CM/CM	P 1.T N/CM/CM	P 2.T N/CM/CM	P 3.T N/CM/CM	P 4.T N/CM/CM	P 5.T N/CM/CM
4318	9°85	9•89	10,00	10.03	10.23	9.84	9.81	9.87	10.03	10.21
431C	10.12	10.09	10.30	10.78	11.72	10.10	10•22	10.47	10•76	10•96
432A	10.20	10•25	10.48	11.03	12.08	10.31	10.44	10.68	11.00	11.19
432B	10.16	10.16	10,33	10.62	11.38	10.13	10.25	10.44	10•79	11.01
432C	10.29	10.42	10.69	11.48	12.54	10.48	10.64	10.94	11•23	11.21
432D	10.53	10.79	11.87	12.75	13.15	10.75	11.08	11.27	11•34	11.39
433C	9.84	16*6	10.20	11.38	13.87	79 . 97	10.15	10.54	10.88	10.89
4330	9.52	9.55	9.71	10.12	10.86	9•68	9.72	10.01	10•37	10.65
433E	9 • 89	10.07	10.45	12.69	14.33	10.00	10.22	10.59	10•84	10.85
745	9.62	9.73	10.00	10.81	13.93	9.08	9•32	9.75	10.13	10.15
434D	9.50	9.54	9.76	10+33	11.22	9•02	9.21	9•56	9•93	10.21
4350	17.17	17.40	18.01	20-05	21.47	17,38	17.94	18.88	19•64	19.81
4357	17.42	17.72	18 80	21.24	22.23	17.72	18.50	19.44	19.93	19.99
4350	17.93	18.46	20.59	22.41	23.10	18.22	19.26	19.87	20.13	20.09
4.35F	17-51	17.80	18.82	21.17	22.13	17.67	18,35	19.32	19.83	19.93
4356	17.22	17.43	17,98	19.93	21.24	17.26	17.80	18•71	19•52	19•75
4364	16.69	17.15	18.51	22.71	25-37	16.85	17.67	18.80	19•36	19•34
	16.51	16.74	17.55	20.33	24.05	16.47	17.11	18•24	19.13	19.21
436D	16.05	16.20	16.60	17.84	20.08	16.07	16•23	17.10	18•02	18•77
4375	15.37	15-71	16.40	17.99	22.31	16.02	16.41	17.47	18.60	18.86
437D	14.82	15.02	15,38	16.24	17.69	15.26	15•37	16.11	16.87	17.76
4398	28.48	31.78	35.28	37.90	39.42	31.01	33•28	34•10	34•43	34•40
	26.63	27.76	31.15	33.61	35.45	28.26	30.54	32.67	33.66	34.01
1064	27.62	30.05	33.62	36.57	38.19	29.49	32.10	33.54	34.04	34.13
439F	28.41	32.20	34.96	37.67	39.27	30.79	33•34	34•28	34•58	34.67
441A	34•25	38.08	42,13	45.36	47.53	35.73	39+52	41•09	41.85	41.92
4478	25.23	25.90	27.79	33.05	36.81	25.62	27•29	30•27	32•24	32.87
442C	26.14	27.52	31.58	36•96	39.69	27.02	29•79	32•30	33•22	33•31
4438	15-24	15.58	16.18	17.35	19,86	15.74	15.96	16.90	17.87	18.63
1644	16.26	17.00	19.94	28.14	30.55	16.26	17.40	18.54	18.90	18.78

RUN	Ρ1	P 2	Р Э	P 4	Р 5	P 1.T	P 2.T	D 3.T	D 4.T	D 5.T
•0N	N/CM/CM	N/CM/CM	N/CM/CM	N/CM/CM	N/CM/CM	N/CM/CM	N/CM/CM	N/CM/CM	N/CM/CM	N/CM/CM
444B	8 80	9•26	9°20	10,18	12,87	8.79	8•96	9.35	9.75	9.95
0444	9 . 24	9 • 74	10,48	16.51	21.95	8,99	9.34	9.76	10.01	66*6
445A	8.89	9.07	9.20	9.63	10.29	9.03	9 • 03	9-36	9.75	10.02
445B	9.31	9.76	10,36	15.31	19.86	9 • 4 B	9.71	10-14	10.38	10.36
445D	9.20	9 • 53	9 ° 86	10.74	15.46	9.05	9•31	9•68	10.00	10.12
446B	9•61	9•67	9 . 83	10.05	10.62	9•36	9.87	10.06	10•30	10.55
446C	10.07	10.18	11.03	12.29	12.75	10.18	10.61	10.71	10.80	10.82
446D	96*6	10.12	10,40	11.29	12.44	10.04	10.30	10.60	10.80	10.82
4478	9•36	9.42	9 . 61	9 * 93	10.47	9•36	9.47	9.79	10.08	10.30
447C	9•67	9•80	10,16	11.54	14.27	9.53	9.81	10.26	10.55	10.49
448B	9.28	6 •36	9.65	9•94	10-56	9449	9-60	90-96	10-40	10.66
448C	9.80	10.05	10.56	13.69	18.39	9.83	10.20	10.66	11.01	10.96
449B	16.59	16.80	17,25	18.73	20.44	16.57	16.97	17.91	18.63	19.09
449C	16•91	17.10	17.80	19.88	21.68	16.62	17.22	18.28	19.86	19.07
4508	15,91	16.08	16,53	17.18	18.39	16.33	16.60	17.26	17.98	18.82
450C	16.18	16.42	16,94	18.13	20.32	16.55	16.97	17.94	18.99	19.66
450D	16.61	17.02	17.76	20.06	24.46	16.87	17.56	18.75	19.71	19.89
450E	17.02	17.57	19.77	24.67	27 . 54	17.06	18•28	19.42	19•75	19.73
4518	28.70	30 - 90	32.40	33.78	35.12	29.97	31.79	32•59	32•99	33.37
451C	29•44	31.91	33.04	34.67	36.00	30.14	31.90	32.59	32+93	33•13
451D	29.94	32.76	33,81	35•36	36•65	30.71	32.02	32•59	32.76	32.96
453B	33.96	36,93	40.65	43.76	47.19	35.64	39•09	41.16	42.54	42.68
453C	34.92	39,18	42.31	45.88	49.31	36.41	40-08	41-61	42.82	42.54
453D	35•95	41.00	43 . 90	47.44	50.98	37.67	40.99	41.88	42.71	42.16
454B	33.52	35.59	39 . 82	42.94	46.08	35.00	38•05	40.42	42.26	FF.04
454C	35.26	39 •93	43.24	46.91	50.59	37.64	41.16	42.33	43.59	43.10
4558	26.65	27.95	31.28	34.28	36.95	27.52	29 - 95	31.99	32.82	33.11

N/CM/	CM N/CM/Ch	M N/CM/CM	P 4 N/CM/CM	P 5 N/CM/CM	P 1.T N/CM/CM	P 2.T N/CM/CM	P 3.T N/CM/CM	P 4.T N/CM/CM	P 5.T N/CM/CN
	.4 26.00	27.97	32.14	36.66	27.09	28.00	30+52	32.79	33.40
	13 25.76	27.21	30,81	35.20	26.55	27.34	29.79	32•16	33.08
	8 25.13	26.37	29.16	32.68	25 . 84	26•35	28•60	30•96	32.36
	14 15.32	15.75	16.54	17.92	15.94	16.09	16.80	17.56	18.39
5	1 16.24	17.25	20.28	26.63	16.71	17.40	18.60	19.52	19.52
	0 17+24	21.46	27.74	31.37	17.13	18•46	19•30	19•56	19.50
5.6	9 16.33	17.16	19•02	26.19	16.55	17.11	18.15	19•07	19,36
8 8	11 9.11	9,31	9•61	9.91	9.22	9•32	9•60	10.02	10.25
9 6	16 9.94	10.40	12.43	20.33	6 *26	0 •91	10.37	10.80	10.75
6.2	9.76	10,09	11.43	16.65	6.47	9 . 74	10.16	10-60	10.72
0.0	9.85	10.24	11.89	20.17	9•48	9•72	10.18	10•63	10.61
о •	9.40	9•60	10.02	11.47	9.50	9•64	10.07	10.50	10.71
9•3	34 9.84	11.29	19.77	23•56	9.84	10.14	10.61	10-84	10•76
8°5	15 9.31	9•74	10.21	12.25	9•35	9•50	9•87	10•40	10.51
0.0	10•25 8 10•09	10.29 10.22	10 . 94 11.20	12.11 12.27	10.13 10.28	10•27 10•47	10•53 10•74	10.80 10.98	10.96 11.10

RUN NO.	Ĩ₽ ₽	х Ч	Ξ	4 π 4	а Х Г	н 1.Т М	Н 2,Т М	н 3.Т М	H 4, T M	н 5.Т М
4448	11-0	11.6	12•0	12.9 21.4	16•5 29•0	11•0 11•3	11.2 11.8	11•8 12•3	12•3 12•6	12•6 12•6
0444	0 • 1 1					11.3	11.3	11.8	12•3	12•6
445A	11.2	11.4	11.6	12.1	0.51	11.9	12.2	12.8	13.1	13.1
445B	11.7	12.3	13•1	8•6T		4-11	11.7	12.2	12•6	12•8
445D	11.6	12.0	12. 5	13.0	0.02		1			
		6-61	12.4	12.7	13.4	11.8	12.4	12.7	13.0	13.4
4408	7 0 7 T	12.0	14.0	15.7	16.3	12.9	13.4	13.6		
446D	12.5	12.8	13.1	14.3	15.9	12.7	13•0	13.4		
1						11.8	11.9	12.3.	12.7	13.0
447B	11.8	11.9	12•1	12.	7901	12.0	12.4	13.0	13.4	13•3
447C	12.2	12.4	12.8	14•7	18•3	0.77	•			
I		0	6.01	12.5	13.4	11.9	12.1	12.6	13•2	13.5
4488	11.7	12.7	7071	17.6	24.0	12.4	12.9	13.5	14•0	13.9
4480	1204						0 7 7	5.50	54.3	25.0
4044	21.5	21.8	22.4	24.5	26.8	C+12			24.40	24.0
449C	21.9	22 • 2	23•2	26•1	28.6	21•6	22.4	8.62	0.17	
						1.10	21.5	22.4	23.4	24.6
450B	20.6	20.8	21.4	22 • 3			22-0	23.4	24.8	25.7
450C	20.9	21.3	22.0	23.6	1.02	0110	22.8	24.5	25.8	26.1
4500	21.5	22.1	23.1	26.3	24.5		23.8	25.4	25.9	25.9
450E	22.1	22.9	25.9	32.8	36.9	7•77				
	,	•	0 0	0.34	47.9	40.4	43.1	44•2	44.8	45.4
4518	38•6	41.60	4347	0 0 0 0 1 4	40.7	40.6	43.2	44.2	44.7	45.0
451C	39 . 6	43•2 44	44•7 46•0	4 - 4 4 - 9 - 9	50.2	41.5	43.4	44•2	44•5	44•8
d1c4	t •0+)))		1			60.03	59.2
	46.7	50.6	56.2	60.9	66.1	48.1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			
4000 1001 1001	40.4	54.0	58.7	64.1	69.3	49•8	55.0		- 0 - 0 - 1	
1001 1001	0.04	56.7	61.1	66.5	71.9	51.7	1.96	0.90		
1 t		1			•	9 - 7 - 4	52.3	55 . 8	58.6	58.7
454B	45.6	48•6	54.9	9 . 66	0 † • †	5.1.2	56.9	58.7	60•6	59.5
454C	48.1	5 5 • 1	60 . 1	1.00	C • T I					
4558	35•6	37.5	42.3	46.7	50.6	36•9	40.4	43 . 3	44•5	45•(

cont'd)
ت ا
•
A-5
e
-
P
a
Η

H 5,T	Σ	45.4	44.9	43•9	24•0	25•6	25•5	25.3	12.9	13•6	13.6	13.4	13.6	13•6	13•3	13.9	14•1
H 4.T	Σ	44•5	43.6	41•8	22 • 8	25.6	25•6	24.9	12.6	13.1	13.4	13.5	13•3	13•7	13•2	13.7	13.9
Н 3,Т	Σ	41.2	40.1	38.4	21.8	24.3	25.3	23.7	12.1	13•1	12.8	12.9	12.7	13.4	12.4	13.3	13.6
H 2,T	Σ	37.6	36.6	35•2	20.8	22.6	24.1	22•2	11.7	12.5	12.3	12.2	12.1	12•8	12•0	13•0	13.2
H 1.T	Σ	36•3	35.5	34 • 5	20•6	21.7	22•3	21•5	11.6	12.1	11.9	11.9	12•0	12•4	11.8	12+8	13•0
т С	Σ	50.2	48.1	4 * 4	23.3	35.6	42.4	35.0	12.5	26.7	21.6	26.5	14.6	31.2	15.6	15.4	15.6
H 4	Σ	43.6	41.6	39.2	21.4	26.6	37.2	24.9	12.1	15.9	14.5	15.1	12.6	25.9	12•9	13.9	14.2
н	Σ	37.5	36.4	35.2	20.4	22.4	28.3	22.3	11.7	13.1	12.7	12.9	12•1	14.3	12•3	13•0	12.9
Н 2	Σ	34.7	5.46	33 • 5	19.8	21.0	22.4	21.2	11.4	12.5	12,3	12.4	11.8	12.4	11.7	12.9	12.7
Н	Ξ	33.6		32.8	19.4	20.3	20.9	20•3	11.1	11.8	11.7	11.4	11.3	11.7	11.2	12.7	12.6
NUA	•ON	456B		4560	457B	0-0+ 724	457D	4588	459B	459C	4590	460B	4600	4600	4613	462B	462D

.

໌ໜີ
.::
F
D
-
-
00
E.
ш
$\mathbf{\nabla}$
E
e
00
2
Ð
Þ
, A
Р
. 3
ē
i.
20
ã
Ē
1
_
ž
- 60
0
P
U
.5
T
2
0
h
5
Р
C
ō
. T
::
Ř
0
g
ē
.5
ē
<u> </u>
щ
đ
Ģ
le
Ā
_

4634** 0.90 37.44 111.3 19.72 17.14 647.9 563.4 0.44 36.27	RUN NO•	CAVITY INCHES	TO DEG R	v0 FT/SEC	PO PSIA	PV PSIA	о Г Н	H K F T	> ⊻	T I DEG R	T 2 DEG R	T 3 DEG R	T 4 DEG 1	œ
4644** 0.90 37.44 113.6 19.61 17.15 524.1 577.0 -0.23 36.09 30.09 37.58 12111 15.92 17.75 524.1 577.0 -0.23 36.09 30.09 30.00 <td< td=""><td>463A** 463B</td><td>0.90</td><td>37•44 37•60</td><td>111•3 116•2</td><td>19•72 16•42</td><td>17.14 17.58</td><td>647•9 540•6</td><td>563•4 578•7</td><td>0•44 -0•18</td><td>36•27</td><td>36•92</td><td>37.58</td><td>37.</td><td>28</td></td<>	463A** 463B	0.90	37•44 37•60	111•3 116•2	19•72 16•42	17.14 17.58	647•9 540•6	563•4 578•7	0•44 -0•18	36•27	36•92	37.58	37.	28
465A** 0.62 37.66 130.5 22.08 17.45 17.88 575.0 589.1 -0.05 36.13 36.13 36.13 36.13 36.13 36.13 36.13 36.13 36.13 36.13 36.13 36.13 36.13 36.13 36.13 36.13 575.0 589.1 -0.05 36.13 <td< td=""><td>464A** 464R</td><td>0.90</td><td>37•44 37•58</td><td>113.6 121.1</td><td>19•61 15•92</td><td>17•14 17•53</td><td>644•3 524•1</td><td>563.4 577.0</td><td>0•40 -0•23</td><td>36.09</td><td>36•56</td><td>37.48</td><td>37.2</td><td>8</td></td<>	464A** 464R	0.90	37•44 37•58	113.6 121.1	19•61 15•92	17•14 17•53	644•3 524•1	563.4 577.0	0•40 -0•23	36.09	36•56	37.48	37.2	8
466A** 39.20 121.2 25.42 22.38 849.4 748.3 0.44 $467A**$ 39.22 123.8 25.68 21.64 856.1 723.5 0.556 $467B**$ 39.22 125.4 24.90 22.44 832.3 750.4 0.333 $468A*$ 0.55 37.67 140.0 17.88 17.78 856.1 723.5 0.71 $468A*$ 0.55 37.67 140.0 17.88 17.78 588.9 585.6 0.011 35.93 36.72 $469A**$ 0.55 37.67 140.0 17.78 17.78 589.7 761.0 0.71 35.93 37.03 $469A*$ 0.86 39.40 146.7 21.52 23.03 721.1 771.7 0.011 35.93 37.03 $469A*$ 0.86 39.40 146.7 21.52 23.03 761.0 0.647 37.03 37.03 $470A*$ 39.13 136.1 28.04 22.74 899.7 761.0 0.657 $471A*$ 41.06 128.0 30.91 28.97 1053.2 987.4 0.256 $471A*$ 41.06 128.0 30.91 28.97 1053.2 987.4 0.256 $470A*$ 41.06 128.0 30.91 28.97 1003.1 0.669 $470A*$ 470.6 0.64 0.66 0.61 0.64 $470A*$ 41.06 137.2 33.72 29.40 1039.9 1003.1 <td>465A** 465B</td> <td>0.62</td> <td>37•66 37•71</td> <td>130•5 136•2</td> <td>22•08 17•45</td> <td>17.73 17.88</td> <td>726•7 575•0</td> <td>583.9 589.1</td> <td>0•54 -0•05</td> <td>36.13</td> <td>36•63</td> <td>37.15</td> <td>37•2</td> <td>н</td>	465A** 465B	0.62	37•66 37•71	130•5 136•2	22•08 17•45	17.73 17.88	726•7 575•0	583 . 9 589 . 1	0•54 -0•05	36.13	36•63	37.15	37•2	н
4674** 38.99 123.8 23.68 21.68 856.1 723.5 0.55 467B** 39.22 120.4 24.90 22.44 832.3 750.4 0.33 468A** 0.55 37.67 140.0 17.88 17.38 763.2 571.8 0.71 35.93 36. 468A** 0.55 37.67 140.0 17.88 17.78 588.9 585.6 0.01 35.93 36. 468A** 0.55 37.67 140.0 17.78 588.9 588.9 587.6 0.01 35.93 36. 469A** 0.86 39.40 146.7 21.52 23.03 721.1 771.7 -0.15 37.03 37. 470A** 0.86 39.31 138.1 28.04 22.15 935.9 740.0 0.65 37.03 37. 470A** 0.86 39.31 136.1 28.04 22.15 935.9 740.0 0.65 37.03 37. 471A** 41.04 128.0 30.91 28.97 761.0 0.65 47.03	466A**		39.20	121•2	25.42	22.38	849•4	748.3	0.44					
4684* 0.55 37.53 131.3 23.22 17.38 763.2 571.8 0.71 35.93 36. 468R 0.55 37.67 140.0 17.88 17.778 588.9 585.6 0.01 35.93 36. 469A* 0.86 39.31 138.1 26.90 22.74 899.7 761.0 0.47 37.03 37. 469A* 0.86 39.40 146.7 21.52 23.03 721.1 771.7 -0.15 37.03 37. 470A** 39.31 135.1 28.04 22.15 935.9 740.0 0.657 37.03 37. 470A** 39.31 135.1 28.04 22.15 935.9 740.0 0.657 37.03 37. 471A** 41.04 128.0 30.91 28.94 1053.2 987.4 0.26 0.51 37.03 37. 475A** 41.04 128.0 30.91 28.94 1053.2 987.4 0.26 0.67 475A** 41.05 126.2 30.40 1039.9 1003.1	467A** 467B**		38•99 39•22	123•8 126•4	25•68 24•90	21•68 22•44	856•1 832•3	723•5 750•4	0•33 0•33	-				
469A**0.8639.31138.126.9022.74899.7761.00.47-0.1537.0337.470A**39.13146.721.5223.03721.1771.7-0.1537.0337.470A**39.13135.121.5223.03721.1771.7-0.1537.0337.470A**39.13135.128.0422.15935.9740.00.657470A**39.31136.727.6822.74925.7761.00.657471A**41.04128.030.9128.971053.2987.40.26472B**41.09128.030.9128.971053.2987.40.55475A**41.09137.233.7229.401039.91003.10.15475A**40.08153.535.6228.341210.3964.20.67476A**41.00153.936.2929.401033.10.630.64476A**41.05153.935.6228.341210.3964.20.65476A**41.05153.936.2929.401236.81003.10.65	468A** 468R	0.55	37•53 37•67	131•3 140•0	23•22 17•88	17•38 17•78	763•2 588•9	571.8 585.6	0•71 0•01	35.93	36•65	37.39	37.4	0
470A**39.13135.128.0422.15935.9740.00.65470B**39.31136.727.6822.74925.7761.00.657471A**41.04128.030.9128.971053.2987.40.26472B**41.15126.230.4829.401039.91003.10.15473A**41.09137.233.7229.401039.91003.10.15475A**40.88153.535.6228.341210.3964.20.653476A**41.00153.135.7428.831210.3964.20.64476A**41.05153.936.2929.401230.3964.20.653476A**41.05153.936.2929.401230.3964.20.64	469A** 469B	0.86	39•31 39•40	138•1 146•7	26.90 21.52	22•74 23•03	899.7 721.1	761.0 771.7	0.47 -0.15	37•03	37.75	39•02	39•2	4
471A** 41.04 128.0 30.91 28.97 1053.2 987.4 0.26 472B** 41.15 126.2 30.48 29.40 1039.9 1003.1 0.15 473A** 41.09 137.2 33.72 29.18 1149.0 995.2 0.53 475A** 40.88 153.5 35.62 28.34 1210.3 964.2 0.67 475A** 41.00 153.5 35.62 28.34 1210.3 964.2 0.67 476A** 41.01 153.9 36.29 29.40 1236.8 1003.1 0.63	4 70A** 4 70B**		39 . 13 39 . 31	135•1 136•7	28•04 27•68	22.15 22.74	935•9 925•7	740.0 761.0	0•57 0					
472B** 41.15 126.2 30.48 29.40 1039.9 1003.1 0.15 473A** 41.09 137.2 33.72 29.18 1149.0 995.2 0.53 475A** 40.88 153.5 35.62 28.34 1210.3 964.2 0.67 476A** 41.00 153.1 35.62 28.83 1216.1 982.2 0.64 476A** 41.015 153.9 36.29 29.40 1236.8 1003.1 0.63	471A**		41.04	128.0	30.91	28.97	1053.2	987.4	0•26					
473A** 41.09 137.2 33.72 29.18 1149.0 995.2 0.53 475A** 40.88 153.5 35.62 28.34 1210.3 964.2 0.67 476A** 41.00 153.1 35.74 28.83 1216.1 982.2 0.64 476B** 41.15 153.9 36.29 29.40 1236.8 1003.1 0.63	4728**		41.15	126•2	30.48	29.40	1039.9	1003.1	0.15					
475A** 40.88 153.5 35.62 28.34 1210.3 964.2 0.67 476A** 41.00 153.1 35.74 28.83 1216.1 982.2 0.64 476A** 41.15 153.9 36.29 29.40 1236.8 1003.1 0.63	4734**		41.09	137.2	33.72	29.18	1149.0	995.2	0•53					
476A** 41.00 153.1 35.74 28.83 1216.1 982.2 0.64 4769** 41.15 153.9 36.29 29.40 1236.8 1003.1 0.63	475∆**		40.88	153•5	35.62	28.34	1210.3	964•2	0.67					
	4 76A * * 4 76B * *		41•00 41•15	153.1 153.9	35•74 36•29	28•83 29•40	1216•1 1236•8	982.2 1003.1	0•64 0•63					

P
.
Ē
ి
_
ġ
9
1
<
0
<u> </u>

۰.

RUN NO•	CAVITY INCHES	T0 DEG R	V0 FT/SEC	P0 PSIA	PV PSIA	H F T O	ΗV FT	ΥX	T 1 DEG R	T 2 DEG R	T 3 DEG R	1 4 DEG R	T 5 DEG R
477A** 477r	0.62	37 . 42 37 . 51	152•0 162•6	26,39 18,79	17.09 17.33	866.1 617.9	561.7 570.1	0.85 0.12	35•98	36•25	37.17	37.26	37•33
4 78A 4 78B 4 78C	1.36 1.45 0.60	37•84 37•55 37•44	163•6 164•5 162•4	17.62 17.19 18.65	18•23 17•43 17•14	581•3 565•6 612•8	601.4 573.5 563.4	-0.05 -0.05 0.12	37•84 37•55 35•39	37•84 37•55 36•45	37.84 27.55 36.99	37•84 37•55 37•24	37•84 57•55 27•19
4798**		39•29 39•53	154•2 153•0	31•05 31•22	22•68 23•46	1037.6 1045.8	758•9 786•9	0•75 0•71					
480B	0.74	39.17	166.2	21.82	22.26	729.3	744.2	-0•03	36.61	37.12	38.50	38.88	38.90
481A 481R 481C**	0.90	39 .3 3 39 .2 9 39 .2 6	136.2 135.9 128.6	20•62 21•02 25•74	22.80 22.68 22.56	690•5 703•6 860•6	763.2 758.9 754.7	-0•25 -0•19 0•41	34 • 33 39 • 29	39 • 33 39 • 29	39•33 39•29 •2	55.95 67.65 67.65	39•33 39•29
482A	0.60	41.18	169.1	29•39	29.54	1003.4	1008.4	-0-01	41.18	41.18	41.18	41.18	41.18
483A 483R**	0. 64	41.13 41.22	152•9 146•3	28•49 33•67	29•32 29•68	972.2 1149.0	1000.5 1013.7	- U • 08 0 • 4 1	39.74	40.81	4 0 •04	40.31	40•72
484A 484B 484C	0.80 0.93 0.54	37 . 84 37 . 66 37 . 60	144 • 3 145 • 5 143 • 6	17•12 16•45 17•39	18•23 17•73 17•58	564.9 541.9 572.4	601.4 583.9 578.7	-0.11 -0.13 -0.02	37.60 37.60	37•84 37•66 37•60	87.84 87.66 87.60	37•84 37•66 37•60	37•34 87•56 87•56
485A	0.72	39.37	150.1	22.12	22.92	740.8	767.4	-0-08	39.37	39.37	39.37	39.37	39.37
485B 4850	1.09 0.46	39 . 28 39 . 28	151•0 149•1	21.16 22.92	22 . 80 22 . 62	708•5 766•8	763•2 756•8	-0.15 U.03	39.33 37.78	39•33 38•86	39•33 38•79	39•33 38•93	39 . 33 58.92 22
4850**		39.38	142.5	27.90	22.97	933.7	769.6	0.52					
4864	0.82	39 . 29	168•5	21.79	22.68	729.3	758.9	-0.07	39.29	39.29	39.29	39.29	39•29
4868	1.06	39.26	169•1	21.42	22.56	716.6	754.7	-0•09	59•26	39•26	39•26	39-26	35•26
4860**	0.50	39.11 39.44	166•6 157•4	22•89 29•92	22•09 23•15	764•5 1001•5	737 . 9 776 . 0	0•06 0•59	36•95	38•03	73.8c	11. ac	34.17

	TO DEG R	V0 FT/SEC	P0 PSIA	PV PSIA	HO FT	HV FT	N N	T I DEG R	T 2 DEG R	T 3 DEG R	T 4 DEG R	T 5 DEG R
37•49 37•69		128•9 121•5	16•62 20•72	17•28 17•83	546•6 682•3	568•4 587•4	-0•08 0•41	36•27	36•99	37.40	37.13	37•08
37.44 37.28 37.31		121•2 124•2	16.90 15.37	17.14 16.70	555.5 504.5 501.5	563.4 548.3 541.2	-0.03 -0.18	37•01 37•28	37.01 37.28	37.01 37.28	37•01 37•28	37•01 37•28
37.28		122.8	16.17	16.70	530.7	548.3	-0.08	37.28	37.28	37.28	37.28	37•28
39 • 35		117.5	26,85	22,86	898.4	765.3	0.62					
37.19		115•2	20.57	16.47	674.1	540.1	0.65					
37.42 37.19 37.13		137.8 138.2 128.8	15•87 16•37 21•72	17•09 16•47 16•33	521•6 536•8 711•3	561.7 540.1 535.2	-0•14 -0•01 0•68	37•42 37•19	37.42 37.19	37.42 37.19	37•42 37•19	37•42 37•19
37.60 37.15 37.10		139•7 138•3 129•2	16•37 16•80 23•03	17•58 16•37 16•23	538•9 550•7 753•8	578 .7 536 . 8 532 . 0	-0.13 0.05 0.85	37 . 60 35 . 42	37•60 36•47	37•60 36•76	37•60 36•99	37•60 36•97
39•22 39•26		129.9 121.6	2 1• 30 26•32	22•44 22•56	712•4 879•9	750 • 4 754 • 7	-0.15 0.54	37.37	38 • 56	38 - 83	38 . 83	38 • 83
39•44] 39•33] 39•29]		44•3 41•5 34•8	21•80 23•27 27•50	23 .15 22.80 22.68	730.7 778.9 919.5	776 . 0 763.2 758.9	-0.14 0.05 0.57	39•44 38•29	39•44 39•04	39•44 38•92	39•44 38•95	39•44 38•88
39•42 39•29 39•20		146•0 143•7 135•0	21•50 22•67 28•17	23•09 22•68 22•38	720•6 758•6 940•9	773 . 9 758 . 9 748 . 3	-0•16 -0•00 0•68	39.42 37.69	39.42 38.81	39.42 39.01	39.42 38.97	39•42 38•99
40.90		112.2	30.87	28.41	1050.0	966.7	0•43					
40•88		114.7	30.77	28.34	1046.4	964•2	0+40					

NUN	CAVITY INCHES	TO DEG R	V0 FT/SEC	P0 PSIA	PV PSIA	H0 FT	HV F T	ĸ	T 1 DEG R	T 2 DEG R	T 3 DEG R	T 4 DEG R	T 5 DEG R
498A 498B 498G	1.25 0.61	39 . 37 39.22 39.08	162•5 160•9 148•9	21•50 22•56 30•20	22.92 22.44 21.97	720.1 754.3 1007.0	767_4 750_4 733_8	-0.12 0.01 0.79	39•37 39•22	39 . 37 39 . 22	39.37 39.22	39 . 37 39.22	39•37 39•22
499B**		41.15	132•7	31+80	29.40	1084•7	1003.1	0•30					
5008**		40•84	130.1	32•45	28•20	1102.8	959.1	0•55					
501A 501B 501C**	1.21 0.62	39.22 39.11 39.01	161•8 160•2 149•6	21•23 22•35 29•87	22•44 22•09 21•74	710•0 746•5 995•3	750.4 737.9 725.5	-0.10 0.02 U.78	39.22 37.12	39•22 38•30	39•22 38•61	39.22 38.77	39•22 38•66
502A 502A	0.82	40 . 91 40 . 86	162•9 148•8	27•56 36•53	28•48 28•27	938.2 1240.8	969.3 961.6	-0.08 0.81	40.91	40•91	40•91	40.91	40.91
503A 503A 503B**	0.66	40.84 40.73	161•0 143•4	28.00 35.77	28•20 27•79	952•3 1213•4	959.1 943.9	-0•02 0•79	40.84	40•84	40.84	40 • 84	40.84
5048**		40.81	121.3	31.22	28•06	1060.8	954.0	0.47				r c	
505A 505B 505C	1.40 1.16 0.65	37.24 37.24 37.34	163•4 162•4 159•1 146•3	17•40 17•70 18•46 25•76	17.19 16.61 16.61 16.94	572.0 580.6 605.5 845.0	565 0 545 0 545 0 556 6	0.02 0.09 0.15 0.87	37.46 37.24 35.71	37•24 37•24 36•22	31.46 37.24 36.65	37 - 24 36 - 90	31•24 37•24 36•68
506A 506A 506C**	1.48 0.70	37.37 37.37 37.31	167•0 163•9 150•9	17.55 18.63 28.00	16•94 16•66 16•80	576.4 611.1 917.7	556.6 546.7 551.6	0.05 0.15 1.03	37•37 35•59	37 . 37 36 . 07	37•37 36•58	37 . 37 37 . 01	37•37 36•94

223

.

18.23 17.58 17.58 22.92 21.466 21.466 21.668 21.006 21.006 21.006	18.23 17.73 17.58 22.92 22.92 21.51 21.50 21.00 21.00	18.23 17.73 17.58 22.92 22.80 21.06 21.06 22.56 20.39 20.39	18.23 17.73 17.58 22.92 21.29 21.29 21.29 18.79 15.96	18.23 17.73 17.58 22.92 22.92 18.08 18.08 15.86 15.86	18 79 17 65 19 29 24 05 24 05 24 05 23 476 25 09 25 09 25 09	17.69 15.73 18.46 23.22 24.25 24.25 24.25 24.32 24.32 24.32 24.32 24.32	14,32 12,63 15,69 15,69 18,49 21,99 215,52 20,295 15,77	12.02 11.33 12.56 12.56 15.66 19.55 14.89 14.35 14.35 14.35 16.16	
0 2 2 3 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		29.54 27.24 17.73 17.73 22.92 22.80 21.06	29.54 28.06 17.73 17.58 22.92 22.92 21.29	29.54 24.19 17.73 17.73 22.92 22.92 18.08	31.69 30.59 118.79 117.65 22.4.05 22.83 24.92 24.92	30.96 29.86 15.73 18.46 23.22 21.59 21.59 24.25	28.12 27.59 14.32 15.63 15.49 18.49 20.69 18.43 21.99		24.02 25.76 12.02 12.56 12.56 17.49 15.66
	22•80 22•68 29•54 28•06	22.80 22.68 29.54 27.24	22.80 22.68 29.54 28.06	22.68 22.68 29.54 24.19	22.05 22.79 31.69 30.59	21.09 22.05 30.96 29.86	19.29 20.05 28.12 27.59		16.79 17.85 24.02 25.76
	17.43 16.61 21.34	15.96 15.96 20.17	16.28 16.28	17.43 12.22 15.01	1/-02 15-32 20-75 23-92	13.67 12.19 19.62 22.49	11•85 10•99 15•05 17•59		10.88 10.42 12.03 14.99
	16.66	16.42	14•14	13.52	20.91	19,99	15.54		12.29
	22.50	21.80	17.98	16.05	23•29	22•22	19.89		17.02
	17.04	16.99	15.10	13.40	19.71	18,95	16.78		14.08
	16•70 16•52	17•23 16•37	14•88 15•05	13•77 13•85	17.32 19.15	16•42 18•65	14 . 99 16.28		13 . 19 13.70
17.	16.70	17.53	15.77	14.19	17.77	17.02	15.77		14.52
۲. ۲. ۲.	P 4.T PSIA	P 3,T PSIA	P 2,T PSIA	P 1,T PSIA	P 5 PSIA	P 4 PSIA	P 3 PSIA		P Z PSIA

Ì

P 5.T PSIA	16.00 16.70 16.80 16.70	17.09 16.47 17.58 15.91	21.17 23.15 21.34	23•09 21•68	22•92 22•44	22.44 20.67 28.48	28•20	17.19 16.61 15.19	16•94 15•82
P 4.T PSIA	16.00 16.70 16.80 16.70	17.09 16.47 17.58 15.96	21•17 23•15 21•57	23•09 21•63	22•92 22•44	22•44 21•00 28•48	28•20	17•19 16•61 15•73	16•94 16•00
P 3,T PSIA	16.00 16.70 16.80 16.80	17.09 16.47 17.58 15.37	21.17 23.15 21.46	23•09 21•74	22•92 22•44	22•44 20•50 28•48	28•20	17.19 16.61 15.10	16•94 14•92
P 2,1 PSIA	16.00 16.70 16.80 16.70	17•09 16•47 17•58 14•66	20•34 23•15 21•86	23•09 21•12	22•92 22•44	22•44 19•58 28•48	28•20	17.19 16.61 14.06	16•94 13•73
P 1.T PSIA	16.00 16.70 16.80 16.70	17.09 16.47 17.58 12.29	16.94 23.15 19.53	23•09 17•83	22•92 22•44	22.44 16.28 28.48	28•20	17.19 16.61 12.92	16•94 12•64
P 5 PSIA	18.25 16.60 16.42 17.64	17.27 17.17 16.74 18.62	23.00 23.60 25.37	22•92 24•82	20•70 24•96	22.13 24.70 29.89	30.40	15.30 16.80 20.72	14•10 20•89
P 4 PSIA	17.45 14.97 15.00 16.67	15.42 15.74 14.97 17.47	21.97 22.30 24.24	21•25 23•59	17•57 23•32	18.83 23.05 28.29	28 . 95	12.30 13.95 18.86	11•40 18•30
P 3 PSIA	16.05 12.70 12.55 14.74	12.57 13.77 12.64 14.63	20•33 19•77 22•40	18.78 21.50	15•10 19•33	15•63 18•90 25•36	26.30	11.04 11.90 14.00	10 .6 5 13 . 23
P 2 PSIA	13.95 11.47 11.35 12.54	11.07 12.04 11.30 12.00	18•63 16•60 20•74	15.85 18.57	14•27 15•96	14.47 15.80 21.66	22.80	10.67 10.65 11.83	10•45 11•77
P I PSIA	12.05 11.00 10.82 11.47	10.67 10.80 10.84 10.93	16•03 15•47 16•87	14•93 15•87	13•80 14•76	14•17 14•60 19•20	19.75	10.44 10.55 11.23	10.55 11.30
RUN NO.	4 888 4 888 4 880 4 880	491A 491R 492A 492R	493R 494A 4948	495A 495B	498A 498B	501A 501R 502A	503A	505A 505B 505C	506A 506B

H 5.T FT	563.4	563.4	568.4	555.0	756.8	553.3		501.04	540.1	713.3	C 072	758.9	1008•4	941.4	401-V		578.7	167.45	763.2	715.3	758.9	754.7	699.3	530.4
H 4.5T FT	548.3	548.3	541.7	560.0	752•6	546.7	5	502404	545.0	711.3	763.7	758.9	1008•4	954•0	601 . 4	583.0	578.7	4-745	763.2	717.4	758.9	754.7	699.3	535•2
н 3,1 FT	577.0	566.7	536.8	558.3	727.6	538•5		500104	522.4	669•9	763.7	758.9	1008.4	924•0	601.4	583.0	578.7	767.4	763.2	701.3	758.9	754.7	677.6	560.0
H 2,1 FT	516.0	485.2	491.2	492.8	592.6	460.0	7 107	573.5	476.2	5 33•6	763-2	758.9	1008.4	954.0	601.4	583.9	578.7	767.4	763.2	709.3	758.9	754.7	621.2	522.4
H 1+T FT	461•5	1•74	450•0	434•5	525•6	438.7	7°LVY	573.5	394.4	489.7	763.2	758.9	1008•4	813.4	601•4	583.9	578.7	767.4	763•2	596.1	758.9	754.7	519.2	461•5
H 5 F1	585 . 4	569.7	633.8	653 . 5	780.9	695 . 9	559.3	500.4	690.3	803.5	736.5	762.9	1088.2	1047.3	621.1	581.2	638.7	808•2	764.4	839.6	7.797	749.7	845.7	601.1
н 4 н Н	559 . 3	538.4	616.2	626.7	742.6	663•4	8-644	393.5	650 . 3	752.2	702.3	736.5	1061.0	1020.2	582.6	514.6	609•6	778.4	720.1	815.4	728.3	636.2	817.9	580.2
H F T 3	515.9	489•0	533•6	550.9	659•8	508.0	382.0	353.0	491.1	579.1	638.7	665•5	956.1	936.7	466.0	408.4	506.3	688.1	608.5	734.4	557•2	507.3	674•0	515.9
н FT	472.9	427.4	444•8	457.8	559 . 3	396•9	348.3	333.9	388.1	489°0	551.3	588.2	807.1	870.0	387.7	364.4	406.0	575.6	512.1	647.9	485.6	467.1	529.4	454•0
н 1 1	386.0	359.7	372.9	384•0	491.1	368.1	334.9	323•8	358•4	461.6	482.2	500.4	668•0	709.4	364.1	351•6	370.8	490.1	465.0	510.8	459.2	45 1 •3	482•2	367.5
NON •	4638	4648	4658	4688	469B	477B	478A	4788	478C	480B	481A	481B	482A	483A	484A	484B	484C	485A	485B	485C	486A	4969	486C	487A

	524•0 524•0 548•3 548•3			c.04c c.04c	561.7 561.7	540.1 540.1	L 0L3 L 3L3	1.010 1.010	612.4 520.8	522.4 520.8	522•4 520•8 705•3 705•3	522.44 520.8 705.3 705.3 776.0 776.0	522.4 520.8 705.3 705.3 776.0 776.0 719.4 711.3	522.4 520.8 705.3 705.3 719.4 711.3 713.9 773.9	522.4 520.8 705.3 705.3 719.4 711.3 713.9 773.9 723.5	522.4 520.8 705.3 705.3 719.4 711.3 773.9 773.9 721.4 723.5 767.4 767.4	522.4 520.8 705.3 705.3 776.0 776.0 719.4 711.3 773.9 773.9 773.9 773.5 773.5 767.4 767.4 750.4	522.4 520.8 705.3 705.3 776.0 776.0 719.4 711.3 773.9 773.9 721.4 711.3 751.4 753.5 767.4 750.4 750.4 750.4	522.4 520.8 705.3 705.3 719.4 711.3 719.4 711.3 773.9 773.9 773.9 773.5 751.4 753.5 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4	522.4 520.8 705.3 705.3 719.4 711.3 713.9 773.9 773.9 773.9 773.9 773.9 767.4 750.4 750.4 750.4 750.4 750.4 750.4 899.3 687.4	522.4 520.8 705.3 705.3 719.4 711.3 773.9 773.9 721.4 723.5 767.4 750.4 750.4 750.4 699.3 969.3 959.1 959.1	522.4 520.8 705.3 705.3 719.4 711.3 773.9 773.9 773.9 773.9 773.9 773.9 767.4 711.3 767.4 750.4 750.4 750.4 750.4 750.4 887.4 969.3 969.3 959.1 959.1	522.4 520.8 705.3 705.3 719.4 711.3 713.9 773.9 773.9 773.9 773.9 773.9 773.9 773.9 773.9 773.9 773.9 773.9 775.4 767.4 757.4 757.4 757.4 757.4 750.4 750.4 750.4	522.4.4 520.8 705.3 705.3 719.4 711.3 776.0 776.0 713.9 773.9 773.9 773.9 773.9 773.9 773.9 773.9 767.4 767.4 767.4 767.4 750.4 753.5 767.4 750.4 769.3 969.3 969.3 969.3 969.3 969.3 959.1 959.1 954.0 565.0 545.0 565.0 545.0 565.0 545.0 565.0	522.44 520.8 705.3 705.3 719.4 711.3 719.4 711.3 773.9 773.9 773.9 773.9 751.4 753.5 751.4 753.5 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.5 545.0 514.4 795.8	522.44 520.8 705.3 705.3 719.4 715.0 719.4 711.3 773.9 773.9 773.4 723.5 721.4 753.5 751.4 753.5 751.4 753.5 751.4 753.5 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 754.0 545.0 514.4 495.8 524.0 514.6
H 3, T FT	524•0 548.3		0.100	548•3	561.7	540.1	1 1 1	1 9 / G	0.4206		705.3	705.3 776.0	705•3 776•0 715•3	705.3 776.0 713.9	705.3 776.0 715.3 773.9	705.3 716.0 715.3 725.5 767.4	705.3 776.0 715.3 773.9 767.4 767.4	705.3 715.0 715.3 725.5 767.4 750.4	705.3 716.0 715.3 725.5 750.4 750.4 750.4 681.5	705.3 776.0 715.3 725.5 750.4 750.4 750.4 681.5 681.5	705.3 715.3 715.3 715.3 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4	705.3 776.0 715.3 715.3 750.4 750.4 750.4 681.5 969.3 969.3 959.1	705.3 715.3 715.3 715.3 750.4	705.3 776.0 715.3 715.5 750.4	705.3 716.0 715.3 715.3 750.4 750.4 750.4 681.5 969.3 969.3 969.3 959.1 959.1 756.6 756.6 756.6	705.3 715.3 715.3 715.3 750.4 750.4 750.4 750.4 750.4 681.5 681.5 681.5 681.5 655.0 492.8 492.8 492.8
H 2.1 FT	524•0 54•0		9.166	548.3	561.7	540.1	1	7.872	41101		675•7	675•7 776•0	675•7 776•0 729•6	675.7 776.0 729.6 77 <u>3</u> .9	675.7 776.0 729.6 773.9 703.3	675.7 776.0 729.6 773.9 703.3	675.7 776.0 729.6 773.9 763.3 767.4	675.7 776.0 729.6 773.9 767.4 767.4 750.4	675.7 776.0 729.6 773.9 763.3 750.4 750.4 750.4	675.7 776.0 729.6 773.9 767.4 750.4 750.4 648.9 969.3	675.7 776.0 729.6 773.9 767.4 767.4 750.4 750.4 648.9 969.3	675.7 7729.6 773.9 767.4 767.4 767.4 767.4 767.4 767.4 767.4 767.4 767.4 767.4 767.4 750.5	675.7 776.0 729.6 773.9 767.4 767.4 750.4 750.4 750.4 648.9 969.3 959.1 959.1 565.0	675.7 7729.6 773.9 773.9 767.4 767.4 750.4	675.7 776.0 729.6 773.9 767.4 767.4 767.4 767.4 767.4 767.4 767.4 767.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 757.0 757.0 757.0 757.0	675.7 776.0 729.6 773.9 767.4 767.4 750.4 750.4 750.4 648.9 959.1 959.0 457.1 256.6 645.0
H 1•T FT	524•0	0400	9•144	548•3	561.7	540.1		578.7	397•0		556•6	556•6 776•0	556•6 776•0 647•0	556•6 776•0 647•0 773•9	556.6 776.0 647.0 773.9 587.4	556.6 776.0 647.0 773.9 587.4 767.4	556.6 776.0 647.0 773.9 587.4 767.4 750.4	556.6 776.0 647.0 587.4 767.4 750.4	556.6 776.0 647.0 587.4 750.4 750.4 750.4 533.6	556.6 776.0 647.0 647.0 587.4 750.4 750.4 533.6 969.3	556.6 776.0 647.0 587.4 750.4 750.4 750.4 533.6 969.3	556.6 776.0 647.0 647.0 587.4 750.4 750.4 750.4 750.4 969.3 959.1 959.1	556.6 773.9 647.0 647.0 587.4 750.4 750.4 750.4 750.4 969.3 969.3 959.1 545.0	556.6 773.9 647.0 647.0 587.4 767.4 750.4 750.4 750.4 750.4 750.4 759.4 959.3 959.1 959.1 959.1 8545.0 718.1	556.6 7750.6 647.0 647.0 587.4 773.9 587.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 750.4 718.1 818.1	556.6 773.9 647.0 647.0 587.4 773.9 587.4 750.4 750.4 750.4 533.6 533.6 555.0 418.1 418.1 418.1
H 5 FT	602.2	544.7	538•4	580.9	568.0	564.5		549.5	615.2		770.5	770.5 792.0	770.5 792.0 855.9	770.5 792.0 855.9 767.6	770.5 792.0 855.9 767.6 836.0	770.5 792.0 855.9 836.0 688.5	770.5 792.0 855.9 836.0 836.0 841.0	770.5 792.0 855.9 856.6 836.0 841.0 841.0	770.5 792.0 855.9 836.0 888.5 841.0 841.0 831.6	770.5 792.0 855.9 856.0 836.0 841.0 841.0 831.6 831.6	770.5 792.0 855.9 856.0 836.0 841.0 841.0 831.6 831.6 1021.4	770.5 792.0 855.9 856.0 836.0 841.0 841.0 841.0 831.6 831.6 1021.4 1040.2 1040.2	770.5 792.0 855.9 855.9 856.0 841.0 841.0 831.6 831.6 831.6 1040.2 1040.2 499.7 551.6	770.5 792.0 855.9 855.0 841.0 841.0 841.0 831.6 831.6 831.6 1021.4 1020.2 499.7 551.6 689.2	770.5 792.0 855.9 855.9 836.0 841.0 841.0 841.0 841.0 831.6 831.6 831.6 1040.2 1040.2 1040.2 689.2 689.2	770.5 792.0 855.9 855.9 836.0 841.0 841.0 831.6 831.6 831.6 831.6 831.6 831.6 831.6 831.6 689.2 689.2 689.2
H F1 F1	574.3	488.4	489.4	547.1	503.0			488•4	574.9		733.6	733•6 745.4	733•6 745•4 815•0	733.6 745.4 815.0 708.0	733.6 745.4 815.0 708.0 791.6	733.6 745.4 815.0 791.6 778.4	733.6 745.4 815.0 791.6 791.6 781.9	733.6 745.4 815.0 791.6 791.6 781.9	733.6 745.4 815.0 701.6 791.6 781.9 622.5 772.3	733.6 745.4 815.0 791.6 791.6 791.9 781.9 622.5 772.3 962.4	733.6 745.4 815.0 791.6 791.6 781.9 781.9 622.5 772.3 962.4 986.7	733.6 745.4 815.0 791.6 791.6 791.9 622.5 772.5 772.3 962.4 986.7 986.7	733.6 745.4 815.0 791.6 791.6 781.9 622.5 772.3 781.9 962.4 986.7 986.7	733.6 745.4 815.0 791.6 791.6 791.6 772.5 772.5 772.5 962.4 986.7 986.7 986.7 986.7 986.7	733.6 745.4 815.0 815.0 791.6 791.6 791.9 962.5 772.5 772.5 772.5 962.4 986.7 986.7 986.7 986.7 986.7 986.7 986.7	733.6 745.4 815.0 791.6 791.6 781.9 622.5 781.9 962.4 962.4 986.7 986.7 986.7 986.7 986.7 986.7 986.7
н FT 3	525•6	410.8	405.7	480.4	5 20%			408.7	476.7		675•4	675•4 655.6	675•4 655•6 749•0	675•4 655•6 749•0 620•8	675.4 655.6 749.0 620.8 716.9	675.4 655.6 749.0 620.8 716.9	675.4 655.6 749.0 620.8 716.9 492.8 640.1	675.4 655.6 749.0 620.8 716.9 492.8 640.1	675.4 655.6 749.0 620.8 716.9 492.8 640.1 511.1	675.4 655.6 749.0 620.8 716.9 492.8 640.1 640.1 625.0 855.5	675.4 655.6 749.0 620.8 640.1 640.1 625.0 855.5 889.6	675.4 655.6 749.0 620.8 640.1 640.1 625.0 855.5 855.5 855.5	675.4 655.6 749.0 749.0 620.8 640.1 640.1 625.0 855.5 889.6 889.6	675.4 655.6 749.0 749.0 620.8 492.8 640.1 640.1 625.0 855.5 855.5 889.6 889.6 889.6	675.4 655.6 749.0 749.0 620.8 640.1 640.1 640.1 625.0 855.5 855.5 889.6 889.6 883.7 455.1	675.4 655.6 749.0 749.0 640.8 640.1 640.1 640.1 640.1 640.1 651.0 889.6 889.6 889.6 889.6 889.6 889.6 341.6 341.0 6
н F1	453.4	369.1	365.1	405.3		1 000	t•000	363.4	387.0		615.5	615•5 615•5	615•5 544•7 689,9	615.5 544.7 689.9	615.5 544.7 689.9 518.7 613.4	615.5 544.7 589,9 613.4 613.4	615.5 544.7 689.9 613.4 613.4 464.3 522.55	615.5 544.7 689.9 613.4 613.4 613.4 613.4 522.6 5	615.5 544.7 589.9 689.9 518.7 613.4 464.3 522.5 522.5 517.0 517.0	615.5 544.7 544.7 689.9 613.4 613.4 613.4 613.4 722.5 522.5 517.0 722.6	615.5 544.7 544.7 689.9 613.4 613.4 613.4 464.3 522.5 517.0 517.0 722.6 723.3	615.5 544.7 544.7 689.9 613.4 613.4 613.4 613.5 522.5 517.0 763.3 763.3	615.5 544.7 544.7 689.9 613.4 613.4 613.4 613.4 722.6 763.3 763.3 763.3	615.5 544.7 544.7 689.9 689.9 613.4 613.4 613.4 722.6 763.3 341.6 381.3 881.3	615.5 544.7 544.7 689.9 689.9 613.4 613.4 613.4 763.3 763.3 763.3 342.6 763.3 341.6 381.3	615.5 544.7 544.7 689.9 613.4 613.4 522.5 522.5 517.0 763.3 763.3 342.2 381.6 381.9 381.9
н 1 F1	388.7	353.3	347.3	369.1		342.2	340.0	347.9	351.0		524.9	524•9	524.9 505.6 554.1	524.9 505.6 554.1	524.9 505.6 554.1 487.0 519.4	524.9 505.6 554.1 519.4 519.4	524.9 505.6 554.1 519.4 519.4 481.2 481.1	524.9 505.6 554.1 487.0 519.4 448.2 448.2 481.1	524.9 505.6 554.1 554.1 481.1 481.1 475.6 475.6	524.9 505.6 554.1 554.1 519.4 481.1 481.1 481.1 475.6 635.5	524.9 505.65 554.1 554.1 487.0 519.4 481.1 481.1 460.9 475.6 635.5 635.5	524.9 505.6 554.1 554.1 519.4 481.1 481.1 481.1 460.9 475.6 635.5 635.5	524.9 505.6 554.1 554.1 519.4 481.1 481.1 481.1 481.1 481.1 481.1 481.3 475.6 635.5 635.5 535.5	524.9 505.6 554.1 554.1 554.1 519.6 481.1 481.1 481.1 481.1 481.1 481.1 481.1 481.1 481.1 481.1 481.1 3334.5 535.5 531.1	524.9 554.9 554.1 554.1 554.1 554.1 519.4 481.1 481.1 460.9 475.6 635.5 635.5 54.9 338.5 561.1 10 10 10 10 10 10 10 10 10 10 10 10 10	524.9 505.6 554.1 554.1 519.4 481.1 481.1 481.1 481.1 455.5 635.5 635.5 635.5 635.5 8334.5 334.5 338.2
RUN NO.	488A	4880	0001	4880		491A	491B	4924	492B		493B	493B	493B 494A 494R	4938 494A 494B	4938 4948 4948 4958 4958	4938 4944 4948 4958 4958	493B 494A 4948 4958 4958 4988 4988	493B 494A 494A 495A 495B 498A 498A	4938 4948 4948 4958 4958 4988 4988 4988 498	4938 4948 4948 4958 4988 4988 4988 4988 498	4938 4944 4944 4954 4958 4988 4988 4988 498	4938 4944 4944 4944 4954 4988 4988 4988 498	4938 4944 4944 4954 4958 4988 4988 4988 498	4944 4944 4944 4944 4988 4988 4988 4988	4938 4948 4948 4948 4958 4988 4988 4988 498	4938 4944 4944 4944 4954 4988 4988 4988 498

-
្ឋ
12
5
5
- Ü
-
- 5
- ÖØ
0
-P
- F
, A
ъ
Ē
- 2
Ē
-
ž
·Ξ
-
Š
- 00
•
4
ğ
4
Ň
4
ö
-
Ы
for
a for
ata for
data for
n data for
on data for
tion data for
ation data for
itation data for
vitation data for
avitation data for
cavitation data for
ul cavitation data for
tal cavitation data for
ntal cavitation data for
ental cavitation data for
mental cavitation data for
rimental cavitation data for
erimental cavitation data for
perimental cavitation data for
xperimental cavitation data for
Experimental cavitation data for
. Experimental cavitation data for
b. Experimental cavitation data for
.6b. Experimental cavitation data for
A-6b. Experimental cavitation data for
A-6b. Experimental cavitation data for
le A-6b. Experimental cavitation data for
ble A-6b. Experimental cavitation data for
Table A-6b. Experimental cavitation data for

RUN • 00	CAVITY CM	T0 DEG K	V0 M/SEC	PO N/CM/CM	PV N/CM/CM	οr	ŞΣ	ĸ	T I DEG K	T 2 DEG K	T 3 DEG K	T 4 DEG K	T 5 DEG K
463A** 463B	2.28	20•80 20•89	33•9 35•4	13•60 11•32	11.82 12.12	197•5 164•8	171.7 176.4	0•44 -0•18	20.15	20.51	20.88	20•71	20.80
464A** 4648	2.28	20•80 20•88	34•6 36•9	13.52 10.98	11.82 12.09	196.4 159.7	171•7 175•9	0•40 -0•23	20.05	20.31	20.82	20.71	20.80
465A** 465B	1.57	20•92 20•95	39.8 41.5	15•22 12•03	12•22 12•32	221•5 175•3	178.0 179.6	0•54 -0•05	20.07	20.35	20•64	20.67	20.83
466A**		21.78	36•9	17.53	15.43	258.9	228.1	0•44					
4679**		21•66 21•79	37•7 38•5	17.71 17.17	14.95 15.47	260•9 253•7	220•5 228•7	0•56 0•33					
468A** 468B	1.39	20.85 20.93	40•0 42•7	16.01 12.33	11.98 12.26	232•6 179•5	174.3 178.5	0.71 0.01	19.96	20.36	20.77	20.78	20.75
469A** 4698	2.18	21•84 21•89	42•1 44•7	18•55 14•84	15•68 15•88	274.2 219.8	232•0 235•2	0.47 -0.15	20.57	20.97	21.68	21.80	21.82
4 70A **		21•74 21•84	41•2 41•7	19.33 19.08	15.27 15.68	285•2 282•1	225•5 232•0	0.69 0.57					
471A**		22.80	39•0	21.31	19.97	321.0	301.0	0•26					
4728**		22.86	38•5	21.02	20.27	317•0	305.7	0.15					
473A**		22•83	41•8	23•25	20.12	350.2	303.3	0.53					
475A**		22.71	46.8	24.56	19.54	368.9	293.9	0.67					
4 76A ** 4 76E * *		22•78 22•86	46•7 46•9	24•64 25•02	19.88 20.27	370•7 377•0	299•4 305•7	0•64 0•63				ţ	

ont'd
<u>ی</u>
A-6b.
Table

RUN NO.	CAVITÝ CM	TO DEG K	V0 M/SEC	PO N/CM/CM	PV N/CM/CM	οž	>Σ I	κ<	T 1 DEG K	T 2 DEG K	1 3 DEG K	1 4 DEG K	T 5 DEG K
477A** 477P;	1.57	20•79 20•84	46•3 49•6	18•20 12•96	11•78 11•95	264•0 188•3	171•2 173•8	0•85 0•12	19.99	20•14	20.65	20.10	20•74
478A 478B 478B	3.45 3.68 1.52	21•02 20•86 20-80	49 50 60 50 50 50 50 50 50 50 50 50 50 50 50 50	12.15 11.85 12.86	12.57 12.02 11.82	177•2 172•4 186•8	183•3 174•8 171•7	-0.05 -0.02 0.12	21.02 20.86 19.66	21•02 20•86 20•25	21•02 20•86 20•55	21•02 20•86 20•69	21•02 20•86 20•66
479B**		21.83 21.96	47•0 46•6	21•41 21•53	15•64 16•17	316•3 318•8	23 1 •3 239•8	0•75 0•71					
480B	1.88	21.76	50.7	15.04	15•35	222+3	226.8	-0-03	20•34	20•62	21.39	21.60	21.61
481A 4819 4817**	2.28 1.93	21.85 21.85 21.83	41•5 41•5 39•2	14.22 14.49 17.75	15•72 15•64 15•55	210•5 214•4 262•3	232.6 231.3 230.0	-0.25 -0.19 U.41	21•85 21•83	21•85 21•83	21•85 21•83	21•85 21•83	21•85 21•83
482A	1.52	22.88	51•5	20.26	20.37	305•8	307.4	-0.01	22•88	22.88	22.88	22.88	22•88
¢83A 483B**	1.62	22.85 22.90	46•6 44•6	19•64 23•∂1	20.22 20.47	296•3 350•2	304 • 9 309 • 0	-0.08 0.41	22•08	22.67	22.55	22.67	22•62
V 10 V 2 0 4 V 2 0 4 0 4 4 0 4 4 4 0 4 4	2.03 2.36	21.02 20.92 20.89	8 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	11•80 11•34 11•99	12.57 12.22 12.12	172.2 165.2 174.5	183.3 178.0 176.4	-0.11 -0.13 -0.02	21•02 20•92 20•89	21•02 20•92 20•89	21•02 20•92 20•89	21•02 20•92 20•89	21•02 20•92 20•89
485A 485A 4850 4850 4850 4850 4850 4850 4850 4850	1.82 2.76 1.16	21.87 21.85 21.85 21.85	2000 2000 2000 2000 2000 2000 2000 200	15.25 14.59 15.80 19.80	15.80 15.72 15.59 15.84	225•8 216•0 233•7 284•6	233.9 232.6 230.7 234.6	-0.08 -0.15 0.03 0.52	21•87 21•85 20•99	21•87 21•85 21•59	21.87 21.85 21.55	21.87 21.85 21.63	21.87 21.85 21.62
4 850** 4 86A 4 868 4 868 4 860 4 860*	2.08 2.69 1.27	21.83 21.83 21.81 21.73 21.73	• • • • • • • • • • • • • • • • • • •	15•02 14•77 15•73 20•63	15.64 15.55 15.23 15.96	222.3 218.4 233.0 305.3	231.3 230.0 224.9 236.5	0 - 0 - 0 - 0 	21.83 21.81 20.53	21.83 21.81 21.13	21.83 21.81 21.43	21.83 21.81 21.54	21.83 21.81 21.54

* DENOTES AN INCIPIENT RUN
** DENOTES A DESINENT RUN

. T2 T3 T4 T5 K DEGK DEGK DEGK	.5 20•55 20•78 20•63 20•60	6 20.56 20.55 20.55 20.56 20.56 20.56 20.56 20.56 20.56 20.56 20.71 20.71 20.71 20.71 20.71 20.71 20.73 20.73 20.73 20.73 20.73 20.73 20.73 20.73 20.73 20.71 20.		•9 20•79 20•79 20•79 20•79 •6 20•66 20•66 20•66 20•66	9 20•79 20•79 20•79 20•79 20•79 6 20•66 20•66 20•66 20•66 19 20•89 20•89 20•89 20•89 8 20•26 20•42 20•55 20•54	9 20.779 20.779 20.779 20.779 16 20.666 20.666 20.666 20.666 19 20.899 20.899 20.899 20.899 18 20.266 20.442 20.555 20.564 18 20.26 20.422 20.555 20.554 18 20.26 20.422 20.555 20.554 18 20.26 20.422 20.555 20.554	9 20.779 20.779 20.779 20.779 20.779 16 20.666 20.666 20.666 20.666 20.666 19 20.899 20.899 20.899 20.899 20.899 18 20.26 20.422 20.555 20.564 10 21.42 21.57 21.57 21.57 21.57 11 21.91 21.691 21.691 21.691 21.691 17 21.69 21.62 21.64 21.66 21.660	9 20.779 20.779 20.779 20.779 20.779 16 20.666 20.666 20.666 20.666 20.666 19 20.899 20.899 20.899 20.899 20.899 18 20.266 20.422 20.555 20.554 10 21.42 21.57 21.57 21.57 11 21.91 21.91 21.91 21.91 21 21.691 21.691 21.91 21.91 21 21.91 21.91 21.91 21.91 21 21.691 21.61 21.691 21.91 21 21.67 21.667 21.666 21.666	9 20.779 20.779 20.779 20.779 20.779 16 20.666 20.666 20.666 20.666 20.666 19 20.899 20.899 20.899 20.899 20.899 18 20.266 20.422 20.555 20.554 10 21.42 21.57 21.57 21.57 11 21.91 21.91 21.91 21.91 21 21.691 21.691 21.91 21.91 21 21.91 21.91 21.91 21.91 21 21.691 21.61 21.90 21.90 21 21.67 21.67 21.66 21.66 21.566 21.667 21.65 21.666 21.666
	20.15 20.	20.56 20. 20.71 20. 20.73 20. 20.71 20.		20•79 20• 20•66 20•	20.79 20. 20.66 20. 20.89 20. 19.68 20.	20.79 20. 20.66 20. 20.89 20. 19.68 20. 20.76 21.	20.79 20. 20.66 20. 20.89 20. 19.68 20. 20.76 21. 21.91 21. 21.27 21.	20.79 20. 20.66 20. 20.89 20. 19.68 20. 20.76 21. 21.21 21. 21.27 21. 21.90 21. 20.94 21.	20.79 20. 20.66 20. 20.89 20. 20.76 21. 21.91 21. 21.27 21. 21.90 21. 20.94 21.
×	-0•08 0•41	-0.03 -0.18 -0.21 -0.08	0.62 0.65	-0•14 -0•01 0•68	0 • 14 - 0 • 01 - 0 • 13 - 0 • 13 - 0 • 13 - 0 • 05 - 0 • 05			0-1- 0-0-0- 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0	0-1- 0-0-0- 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0 0-0
ŞΣ	173.3 179.0	171.7 167.1 168.1 168.1	233•3 164•6	171.2 164.6 163.1	171.2 164.6 163.1 176.4 163.6 162.1	171.2 164.6 163.1 176.4 163.6 162.1 228.7 230.0	171.2 164.6 164.6 163.1 176.4 162.1 228.7 230.0 232.6 232.6 231.3	171.2 164.6 163.1 176.4 162.1 162.1 236.5 232.6 231.3 231.3 231.3 231.3	171.2 164.6 163.1 176.4 163.6 162.1 236.5 231.3 231.3 231.3 231.3 231.3 231.3 231.3 231.3 231.3 231.3
οΣ I	166.6 208.0	169.3 153.8 152.8 161.8	205•5	159•0 163•6 216•8	159•0 163•6 216•8 164•3 729•8	159.0 163.6 216.8 164.3 167.8 217.1 217.1 268.2	159.0 163.6 216.8 164.3 164.3 217.1 223.7 280.3	159.0 163.6 216.8 164.3 164.3 217.1 268.2 283.4 280.3 281.2 280.3 281.2 286.8	159.0 163.6 216.8 164.3 164.3 217.1 268.2 280.3 280.3 280.3 280.3 280.3 280.8 280.8 280.8 280.8 280.8
PV N/CM/CM	11.92 12.29	11.82 11.52 11.58 11.52	15•76 11•35	11.78 11.35 11.26	11.78 11.35 11.26 11.26 11.29 11.19	11.78 11.35 11.26 11.26 11.29 11.19 15.47 15.55	11.78 11.35 11.2.12 11.29 11.29 11.29 15.47 15.47 15.72 15.72	11.38 11.38 11.38 11.26 15.47 15.47 15.47 15.45 15.64 15.64 15.43 15.43	11.38 11.38 11.35 11.25 15.47 15.47 15.45 15.45 15.45 15.444 15.444 15.444 15.444 15.444 15.444 15.4444 15.444411515.4444115 15.444411515.4444115 15.444411515.4444115 15.444411515.4444115 15.444411515.4444115 15.444411515.444411515.444411515.4
PO N/CM/CM	11•46 14•29	11.65 10.60 10.53 11.15	18.51 14.18	10•94 11•29 14•98	10.94 11.29 14.98 11.29 11.58 15.88	10.94 11.29 14.98 11.29 11.58 15.88 14.69 18.15	10.94 11.29 14.98 11.58 15.88 15.88 15.88 18.15 15.03 16.04	10.94 11.29 14.98 15.88 15.88 15.88 15.69 15.03 15.69 19.42 19.42	10.94 11.29 14.98 15.88 15.88 15.88 15.69 115.03 19.42 19.42 19.42
V0 M/SEC	39•3 37•0	36•9 37•9 37•8 37•4	35•8 35•1	42.0 42.1 39.3	42.00 42.000 42.000 42.000 42.000 42.000 42.000 42.0000 42.0000 42.0000 42.0000000000	42. 42. 42. 42. 42. 42. 42. 39. 42. 39. 42. 39. 42. 39. 42. 39. 42. 39. 42. 39. 42. 42. 42. 42. 42. 42. 42. 42. 42. 42	445 1346 1346 1346 1346 1346 1346 1346 1346	1000 1000 1000 1000 1000 1000 1000 100	0 1380 110 122 425 370 0 1380 1100 122 425 0 1380 100 122 425 0 1280 100 120 120 0 1280 100 120 100 0 1280 100 100 100 100 0 1280 100 100 100 100 0 1280 100 100 100 100 100 0 1280 100 100 100 100 100 100 0 1280 100 100 100 100 100 100 100 100 100 1
T0 DEG K	20•83 20 •94	20.80 20.71 20.73 20.73	21•36 20•66	20•79 20•66 20•63	20.79 20.66 20.66 20.63 20.69 20.64	20.79 20.66 20.63 20.89 20.89 20.64 21.79 21.81	20.79 20.666 20.663 20.689 20.64 20.61 20.61 20.61 21.79 21.81 21.81 21.83	20.79 20.666 20.663 20.664 20.664 20.664 20.664 21.891 21.81 21.83 21.83 21.83 21.83 21.83 21.83	20.79 20.665 20.653 20.664 20.61 20.64 21.89 21.81 21.85 21.85 21.83 21.83 21.83 21.83 21.83 21.83 21.73
CAVITY CM	1.67	1.52 2.54 2.54 1.44		2.33 2.41	2.33 2.41 2.54 1.39	2.33 2.41 2.54 1.39 1.93	2.33 2.41 1.39 1.93 2.48 1.11	2.33 2.41 2.54 1.39 1.93 1.11 1.11 2.59 1.52	2.33 2.41 2.54 1.39 1.93 1.11 1.11 1.52
RUN NO.	487A 487E**	4888 4883 4880 4880 4880	489B** 490A**	491A 4918 491C**	491A 4918 491C** 492A 4928 4928	4918 4918 4918 4928 4928 4928 4928 4938 4938	4918 4918 4918 4918 4928 4928 4928 4928 4928 4928 4948 494	49118 49118 49118 49228 49228 49258 49333 49258 49448 49333 49258 49358 495888 495888 495888 495888 495888 495888 495888 495888 495888 4958888 4958888 495888 49588888 4958888 495888888 495888888888 4958888888888	49118 49118 49118 49228 49228 49228 49228 49258 49378 49358 495588 4955888 495588 495588 495588 495588 495588 495588 495588 495588 495588 495588 4955888 495588 495588 495588 495588 4955888 495588 495588 495588 495588 4955888 495588 4955888 4955888 4955888 4955888 495588888 49558888888 49558888888888

* DENOTES AM INCIPIENT RUN
 ** DÉMOTES A DESIMENT RUN

-
_
-
•
-
-
0
•
v
~
-
~
-
•
-
_
•
•
•
_
-
~

T 5 DEG K	21•87 21•79			21•79 21•48	22.73	22•69		20•81 20•69 20•38	20•76 20•52
T 4 DEG K	21.87 21.79			21.79 21.54	22.73	22•69		20.81 20.69 20.50	20•76 20•56
T 3 DEG K	21•87 21•79			21•79 21•45	22.73	22 . 69		20•81 20•69 20•36	20•76 20•32
T 2 DEG K	21•87 21•79			21.79 21.28	22.73	22.69		20•81 20•69 20•12	20∙76 20∙0≙
T 1 DEG K	21.87 21.79			21•79 20•62	22.73	22.69		20•81 20•69 19•84	20•76 19•77
> ¥	-0.12 0.01 0.79	0•30	0.55	-0.10 0.02 0.78	-0.08 0.81	-u.02 0.79	0•47	0.02 0.09 0.15 0.87	U•05 U•15 1•03
ŞΣ	233 . 9 228 . 7 223 . 7	305.7	292.3	228.7 224.9 221.1	295•4 293•1	292.3 287.7	290.8	172.2 166.1 166.1 169.7	169.7 166.6 168.1
οΣ Η	219•5 229•9 306•9	330•6	336.1	216•4 227•5 303•4	286•0 378•2	290•3 369•8	323•3	174•3 177•0 184•5 257•6	175•7 186•3 279•7
PV N/CM/CM	15.80 15.47 15.15	20.27	19.44	15.47 15.23 14.99	19•64 19•49	19.44 19.16	19•35	11.85 11.45 11.45 11.68	11•68 11•48 11•58
PO N/CM/CM	14.82 15.55 20.82	21.93	22.37	14•64 15•41 20•59	19•00 25•19	19•31 24•66	21.53	12•00 12•20 12•73 17•76	12•10 12•84 19•31
V0 M/SEC	40 40 40 40 40 40	40•5	39•6	49 • 3 48 • 8 45 • 6	49•6 45•4	49•1 45•2	37•0	49 49 49 49 49 49 49 49 49 49	50 • 9 50 • 0 46 • 0
T0 DEG K	21.87 21.79 21.71	22.86	22.69	21.79 21.73 21.67	22 . 73 22 . 70	22•69 22•63	22•67	20.81 20.69 20.69 20.76	20.76 20.70 20.73
CAVITY CM	3.17 1.54			3.07 1.57	2.08	1.67		3.55 2.94 1.65	3. 75 1. 77
RUN •00	498A 498B 498C**	4 998**	500F**	501A 5018 501C**	502A 502B**	503A 503₽**	5048**	505A 5055 5055 5050 5050 *	506A 5068 506C *

^{*} DENOTES AN INCIPIENT RUN ** DENOTES A DESINENT RUN

T P 5.T CM N/CM/CM	2 11.82	2 11.82	9 11.92	5 11.65	l 15•59	3 11.62	7 12.57 2 12.02 5 11.35	1 14.75	2 15•72 4 15•64	7 20.37	5 19.11	7 12.57	2 12.12	0 15.80	2 15•72 3 14•79	4 15.64	5 15.55 3 14.48	
P 4.1	11.52	11.52	11-39	11.75	15.51	11.48	12•5 12•0	14•7]	15.72 15.64	20.3	19•35	12.5	12.12	15.8(15•73 14•83	15.64	15.55	
P 3.T N/CM/CM	12.09	11.88	11.29	11.72	15.03	11•32	12•57 12•02 11•00	13.91	15•72 15•64	20.37	18.78	12.57	12.12	15.80	15•72 14•52	15•64	15.55	
P 2.T N/CM/CM	10.87	10.26	10.38	10.41	12•39	9•75	12.57 12.02 10.08	11.22	15.72 15.64	20.37	19.35	12.57	12.12	15.80	15•72 14•68	15.64	15•55 12.06	D (• 7 T
P 1.T N/CM/CM	9.78	6†°6	9 - 55	9 . 24	11.06	9.32	12.57 12.02 8.42	10.35	15.72 15.64	20.37	16.68	12.57	12.12	15.80	15•72 12•46	15.64	15.55	t · • • • • • • • • • • • • • • • • • •
P 5 N/CM/CM	12,25	11.94	13.20	13.59	16.06	14.42	11.73 10.56 14.31	16.49	, 15•20 , 15•71	21.85	21.09	12.96	13.30	16.58	15.74 17.18	16.38	15.46	0C • I T
P 4 N/CM/CM	11.73	11•32	12.86	13.07	15•32	13.78	9•43 8•40 13-53	15.51	14•54 15•20	21.35	20.59	12.20	12.73	16.01	14.89 16.72	15•04	13.25	0 - OT
P 3 N/CM/CM	10.87	10.34	11.22	11.57	13.71	10.71	8.17 7.58 10.38	12,13	13 . 30 13.82	19,39	19,02	9.87 21	00,41 10,68	14.27	12.71 15.16	11.69	10.70	66 O T
P 2 N/CM/CM	10.01	60 • 6	9•45	9•71	11.73	8.47	7.48 7.18 8.29	10.34	11•58 12•31	16.56	17.76	8.29	1•01 8•66	12.06	10.80 13.48	10.27	9°89	11014
P 1 N/CM/CM	8.25	7.72	7 . 98	8.21	10,38	7.89	7.59 6.98 7.69	9.78	10.20 10.56	13.87	14.68	7.80	7.94	10.36	9.85 10.77	9-74	9-58	107 • NT
RUN NO.	463B	464B	465R	468B	469B	477B	478A 478B 478B	4808	481A 481B	482A	483A	484A	4 84H 4 84C	485A	485E 485C	4864	4865	4 800

P 5.T N/CM/CM	11.03	11.58	11.52	11.78	11.35	12.12	10.97	14•60	15•96	14•7Ì	15.92	14.95	15.80	15.47	15.47	14.25	19•64	19.44	11•85	11.45	10.47	11.68	10.91
P 4.T N/CM/CN	11.03	11.58	11.52	11.78	11•35	12.12	11•00	14•60	15.96	14.87	15.92	14•91	15.80	15.47	15.47	14•48	19•64	19.44	11.85	11.45	10•84	11.68	11.03
P 3.T N/CM/CM	11.03	11.58	11.52	11.78	11•35	12.12	10.59	14•60	15•96	14.79	15.92	14.99	15.80	15.47	15.47	14.14	19•64	19•44	11.85	11.45	10•41	11.68	10.29
P 2,T N/CM/CM	11-03	11.58	11.52	11.78	11•35	12.12	10.11	14•02	15•96	15•07	15.92	14 . 56	15.80	15.47	15.47	13•50	19•64	19.44	11.85	11•45	9 •63	11.68	9•46
P 1.T N/CM/CM	11.03	11.58	11.52	11.78	11.35	12.12	8•48	11.68	15.96	13.46	15.92	12.29	15.80	15.47	15.47	11.22	19.64	19.44	11.85	11.45	8.91	11.68	8.72
P 5 N/CM/CM	12.58	11.32	12.16	11.91	11.84	11.54	12.84	15•86	16.27	17.49	15.80	17.11	14.27	17.21	15.26	17.03	20.61	20•96	10.55	11.58	14 . 29	9.72	14.40
P 4 N/CM/CM	12.03	10.34	11.49	10.63	10.85	10.32	12.05	15,15	15.38	16.71	14.65	16.26	12.11	16.08	12.98	15.89	19•51	19•9 <u>6</u>	8•48	9.62	13.00	7.86	12.62
P 3 N/CM/CM	11.07	8.65	10.16	8.67	6**6	8.71	10,09	14.02	13,63	15.44	12.95	14,82	10.41	13.33	10.78	13,03	17.49	18,13	7.61	8,20	9 ° 65	7.34	9.12
P 2 N/CM/CM	9.62 7.01	7.83	8.65	7.63	8.30	7.79	8.27	12.84	11.45	14.30	10.93	12•80	9•84	11.00	9•08	10.89	14.93	15.72	7.36	7.34	8.16	7.21	8.12
P I N/CM/CM	8•31	7-46	16.7	7.36	7.45	7.47	7.54	11.05	10.67	11.63	10.29	10.94	9.51	10.18	6.77	10.07	13.24	13.62	7.20	7.27	7.74	7.27	6L•L
RUN NO.	488A	4881 4887	488D	491A	491B	492A	492B	4933	494A	494B	495A	495B	498A	4 98B	501A	501R	502A	503A	505A	5058	505C	506A	506B

Н 5,Т М	171.7	171.7	173.3	169.2	230•7	168•6	183•3 174•8 164•6	217.4	232•6 231•3	307.4	286•9	183•3 178•0 176-0	232.6	218•0	231.3	230.0	213.1	161.7
Н 4.Т М	167.1	167.1	165.1	170.7	229.4	166•6	183•3 174•8 166•1	216•8	232•6 231•3	307.4	290•8	183•3 178•0	233•9 232•6	218.7	231•3	230.0	213.1	163.1
н 3 . 1 М	175.9	172.7	163.6	170.2	221•8	164•1	183•3 174•8 159•2	204•2	232•6 231•3	307.4	281•6	183•3 178•0	233.9	213.7	231.3	230.0	206.5	170.7
Н 2 . Т М	157.3	147.9	149.7	150.2	180.6	140.2	183•3 174•8 145•1	162.6	232•6 231•3	307.4	290.8	183•3 178•0	233•9 232•6	216•2	231.3	230.0	189•3	159.2
н 1 •Т	140.7	136•3	137•2	132.4	160.2	133•7	183•3 174•8 120•2	149•3	232•6 231•3	307•4	247•9	183•3 176•0	233•9 232•6	181.7	231•3	230.0	158•2	140.7
υ Σ	178.4	173.7	193•2	199•2	238.0	212.1	170.5 152.5 210.4	244.9	224•5 232•5	331.7	319•2	189.3 177.2 194.7	246.3 233.0	255.9	243.2	228.5	257.8	183.2
т х т	170.5	164.1	187.8	191.0	226.3	202.2	135•3 119•9 198•2	229•3	214.1 224.5	323.4	311.0	177.6 156.8 186.8	231.2	248.5	222.0	193.9	249•3	176.8
πr	157•3	149.1	162.6	167.9	201.1	154.8	116•4 107•6 149•7	176•5	194.7 202.8	291.4	285.5	142•0 124•5 154:3	209•/ 185•5	223.8	169.8	154.6	205.4	157.3
× ±	144.1	130.3	135.6	139.5	170.5	121.0	106.2 101.8 118.3	149.1	168•0 179•3	246.0	265•2	118•2 111•1 123.8	د•د/ ۱ 156.1	197.5	148•0	142.4	161.4	138.4
Γ×	117.7	109.6	113.6	117.0	149.7	112.2	102.1 98.7 109.2	140.7	147•0 152•5	203.6	216.2	111•0 107•2	149•4 141•7	155.7	140•0	137.6	147.0	112.0
RUN NO.	463B	464B	465B	468B	469B	477B	478A 478B 478C	480B	481A 481B	482A	483A	484A 484B 484B	485A 485A	485C	486A	486P	486C	487A

r Σ	159.7	10/01	10801	167.1	171.2	164•6	176.4	/ •841	215•0	236.5	216.8	235.9		233.9	7-8-2	228•7	209•5	295.4	292.3	172.2	161.1	T • T C T	169.7	157•8
τ 4 Σ Τ	159.7	16/•1	168•1	167.1	171.2	164•6	176.4	159•2	215•0	236.5	219.3	235•9 239-0	6.677	233.9	228•1	228•7	213.1	295.4	292•3	172.2		0.0CT	169.7	159.7
H Z J	159.7	167.1	168.1	167.1	171.2	164•6	176.4	153•0	215•0	236+5	218•0	235.9	T • + 77	233.9	228•7	228.7	207.7	295•4	292.3	172.2	166•1	2.041	169.7	148•3
Н 2.•Т М	159.7	167.1	168.1	167.1	171.2	1(4•6	176.4	145•6	205.9	236.5	222.4	235.9	∠14•4	233.9	228.7	228.7	197.8	295.4	292.3	172.2	166•1	139•5	169.7	135.9
н 1 , Т М	159.7	167.1	168.1	167.1	171.2	164•6	176.4	121•0	169•7	236.5	197.2	235.9	0.611	233.9	228•7	228•7	162•6	295.4	292•3	172.2	166.1	127•4	169.7	124•6
Ξ×	183.6	166.0	164.1	177.1	173.1	172.1	167.5	187.5	234.8	241.4	260.9	234•0	254.8	209.9	256.3	225.4	253.5	311•3	317.1	152.3	168.1	210.1	139.8	211.9
τ τ	175.0	148.9	149.2	166.8	153.6	156.9	148.9	175.2	223.6	227.2	248•4	215•8	241.3	176.3	238.3	189.7	235.4	293.3	300.7	121.1	138•2	190.1	111.8	184.1
н З	160.2	125.2	123.6	146.4	123.9	136.3	124.6	145.3	205.9	199.8	228.3	189•2	218•5	150•2	195.1	155.8	190.5	260+8	271.2	108.1	116• ⁹	138•7	104.1	130.7
×Σ π	138.2	112.5	111.3	123.5	108.4	118.4	110.8	118.0	187.6	166.0	210.3	158.1	187.0	141.5	159.3	143.6	157.6	220.2	232.7	104.3	104.1	116.2	[.50]	115.6
ΓΣ Η	118.5	107.7	105.8	112.5	104.3	105.6	1.401	107.0	160•0	154.1	168.9	148.4	158.3	136.6	146.6	140.5	145.0	193.7	199.6	102•C	103.1	110.1	1 201	110.8
RUN NO.	4884	4884		4880	4.0.1	4918 4918	4.07A	492B	493B	4 0 4 A	4 0 4 B	495A	495B	4984	498B	~ [~3	501B	502A	503A	505A	505R	5050		506B