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SUMMARY

Analysis of free turbulent shear flows inherently requires the utilizationof con-

ceptual and quantitativeformulations concerning the exchange mechanisms. The effort

has essentiallybeen directed to classes of problems where the phenomenologically

interpreted effectivetransport coefficientscould be absorbed by, and subsequently

extracted from (by comparison with experimental data),appropriate coordinate trans-

formations. The transformed system of differentialequations could then be solved

without further specificationsor assumptions by numerical integrationprocedures.

An attempt has been made to delineate differentregimes for which specific eddy

viscosity models can be formulated. In particular,thiswill account for the carryover

of turbulence from attached boundary layers, the transitory adjustment, and the asymp-

toticbehavior of initiallydisturbed mixing regions. Such models have subsequently

been used in seeking solutionsfor the prescribed two-dimensional test cases yielding

apparently a better insightinto overall aspects of the exchange mechanisms.

Considerable difficultyhas been encountered in the utilizationof computer

programs dealing with axiallysymmetric geometry as they presently exist at the

University of Illinoisat Urbana-Champaign. Consequently, only a brief account of

these methods and programs has been included - mainly in the form of references.

INTRODUCTION

Much progress in understanding flow separation, separated flows, and wakes

has been made since the mutual dependence between viscid and inviscid flow regions

has been properly recognized. Development of an attached boundary layer, its sepa-

ration from solid boundaries fcrming a free shear layer capable of mass entrainment

*This work was partially supported by NASA through Research Grant
No. NsG- 13- 59 and subsequently through NGL- 14-005-140.
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from the wake, and energy transfer to and across individual streamlines have been

related to the recompression process at the ehd of the wake and thus have allowed the

analysis of previously not understood flow problems of practical importance.

Over more than a decade, work at the University of Illinois at Urbana-Champaign

has been focused on propulsion problems relating to base pressure, base heating, and

ejector nozzles for thrust augmentation, and so forth. In support of a comprehensive

systems approach (based on the understanding of constituent flow components) much

attention had to be given to free shear layers which has resulted in both analytical and

experimental programs. These efforts have, however, been clearly guided by, and sub-

ordinated to, practical objectives.

When called to the task of participating in the present effort, the authors were

restricted, naturally, to what had already been developed for serving their own programs.

The response is, therefore, selective inasmuch as some of their computer programs have

not been found flexible enough to handle all the cases submitted to the predictors.

SYMBOLS

C concentration of species

Cp specific heat at constant pressure

C Crocco number

d viscosity index

D energy defect thickness

dimensionless stream function (similarity solution)

function of transformed x-coordinate

h enthalpy

k

integrals defined in reference 6

thermal conductivity

L reference length
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M molecular weight or Mach number

Prt

r

R

Re x

Sc t

T

U

W

X

X o

Y

77

turbulent Prandtl number

radius

gas constant

Reynolds number based on x, UaX/v a

turbulent Schmidt number

temperature

longitudinal velocity component

transverse velocity component

dimensionless center-line velocity defect

longitudinal coordinate

shifted origin position

transverse coordinate

boundary-layer thickness

momentum thickness of boundary layer

energy thickness of boundary layer

eddy diffusivity

where r a is the radius of the central jet

similarity variable

static temperature ratio
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A stagnation temperature ratio

dynamic viscosity

laminar kinematic viscosity

dimensionless x- coordinate

transformed coordinate

P density

spread rate parameter

spread rate parameter for incompressible flow

dimensionless velocity

stream function

dimensionless stream function

Subscripts:

a faster free stream

asy asymptotic condition

b slower free stream

center-line value

d particular viscosity index value, or the dividing streamline

error function

laminar state

stagnation state
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RA large value of

turbulent or transitional state

1,2,4 integrals in reference 6

ANALYSIS

This analysis is restricted at the outset to constant-pressure mixing. Any addi-

tional assumptions, as they will affect the mathematical rigor or impose physical restric-

tions on the solution, will be discussed as they are introduced.

It will be useful to differentiate between kinematic and dynamic similarity when

single-independent-variable solutions are utilized. The former refers to nonasymptotic

mixing profiles which can be related to similarity profiles by accounting for initial dis-

turbances through appropriate coordinate shifts. Normally, such profiles will not exhibit

dynamic similarity as the initial exchange mechanism is not consistent with that of the

"matched" solution. On the other hand, when the initial profile of the mixing region

results from a strong expansion of an attached boundary layer, there may be nearly

dynamic similarity within a newly started shear region at the very edge of the expanded

profile, while the growth of the dissipative shear regions occurs within a vortex layer

and thus does not exhibit kinematic similarity.

TWO-DIMENSIONAL MIXING

Fundamental Equations

The conservation equations for a pure substance 1 are

8 (_V _

tp

pUcpST 8T 8_ 8a_yy) _2_- + pVCp ay = _'_ t + _t

The stream function is now introduced

og, a-k =--P-v
0"7 = + _a u 0x Pa

(1)

(2)

(3)

1An extension for gas mixtures
account, see Hurt (ref. 1).

is discussed subsequently. For a more detailed
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and new dimensionless variables defined

gb= u x _=_ 8- T _Pa (4)
_aa _ = E uaL T a P

where _, related to the stream function @, is to be used as an independent variable in

the Von Mises plane. Accordingly, after introducing the free-stream Crocco number,

Ca 2 - Ua 2
2CpTo a

and accounting for the transport mechanisms by the kinematic viscosity

effective Prandtl number Prt, the following equations are obtained:

(5)

et = _t and the
P

(6)

A far

7 2c 2_'_ _ _ rtLua _ + L"_al-Cq20-_-_/

reaching simplification of the analysis can be achieved by setting (ref. 2)

(v)

gt p(1-d) = f(_) (8)

where d = 1 - w (w being the exponent of the Sutherland equation for the dynamic vis-

cosity of a gas) corresponds to the laminar mixing problem.

The transformation

d_= 1 et d} (9)

ReL u _o2-d

then produces a pair of parabolic simultaneous partial differential equations which can be

solved without reference to any specific assumption concerning exchange mechanisms

(except d and Pr O. These equations are

1 8 (_._ ___) 2Ca 2 ___/_8_._2_= P-rt _ +1-Ca 2 0--_8-_)
(11)
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For given initial conditions, step-by-step integrations using implicit iterative pro-
ceduresfor better convergence(see ref. 3) canbe carried out with the help of high-speed
digital computers.

in the form of _(_,_) and 0(_,_) and the coordinate y/L isResults appear

found from

(12)

Similarity Solutions

"Exact solutions".- By starting with equation (10) and following the development for

nonisoenergetic mixing of two uniform streams having identical compositions (ref. 4), an

effective Prandtl number of unity, and satisfying the boundary conditions

leads to

y -*-_, u - Ub, TO - Tob

y -* +_, u --Ua, T O --Ton

f'" IA- Ca2f'2_d ff"- d(A'- 2Ca2f'f '') f" -0 (13)
+L1- J A-ca2,'2

-_,
where f(7/) - g-_ f'0/) = _,

77 is the independent similarity variable defined by

_] -- -_g' (14)
_1 rg

and primes

From the assumption of similarity, it follows that one may set

so that

_ = _ (15)

indicate differentiation with respect to the respective independent variable.

gg' = 1 _,

g(_')= _2"_ (16)
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and the transformation to physical coordinates canbe accomplishedwith

1

By adoptingC_ertler's formulation (ref. 5) of

(17)

et _ 1 Re L _ (18)
v_ 2"d 4ad 2

one obtains

2a d Y =,_" _ d_ (19)

where the origin of y is placed at the zero streamline where f(l)rT}" = 0. aThe notation
ad has been introduced to stress the fact that the similarity paramet= depends not

only on the procedure of matching between an experimental and an analytical profile but

also on the choice (if one is needed or indicated) of the analytical formulation (ref. 4).

An extension to analyze the mixing of two streams having different gas constants

R a and Rb is easily accomplished for Prandtl and Lewis numbers of unity by the

expression

Pa=p 1-1Ca2 _ Tv/2 _2C a (20)

(See discussion of test case 3, also.)

Error function solution.- Proposed as a first-order approximation for solving equa-

tion (10) under the conditions of incompressible flow with d = 0 by GSertler (ref. 5), the

error function distribution for the velocity profile is

1 - q_b err 7? (21)_b = 1(1+ _bb)+ m

where _ = ae(Y ). The error function solution has been widely used for momentum inte-

gral methods devised to deal with compressible, diabatic (ref. 6), and even reactive

(ref. 7) free shear layers. Auxiliary integrals for determining mass, momentum, and

energy transfer, as well as shear stress, dissipation rates, and property distributions,

have been tabulated (ref. 6) or made subroutines of more comprehensive programs deal-

ing with propulsion problems (ref. 8). A discussion of differences between spread rate

parameters (_e, ad, etc.) has been included in reference 4.
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Initially Disturbed Mixing Region

Similarity solutions are reachedasymptotically as the influence of initial distur-
bances (in velocity andproperty profiles andin the exchangemechanism)decreases.
The gradual approachto similarity profiles canbe represented in its latest stagesby a
lateral shift of mixing profiles, that is, by satisfying the momentumintegrals. This still
leaves openthe questionof how to interpret properly similarity parameters suchas a
whenthe exchangemechanism is to be evaluatedat other than far-downstream locations.
Attention will be givento the latter problem in the section on "Eddy Viscosity Concepts."

Origin-shift methods.- Utilization of similarity solutions for initially disturbed

profiles by origin-shift methods has been suggested in different forms by various authors,

and the work of Hill and Page (ref. 9) and Kessler (ref. 10) may be consulted for further

details. Use of the momentum integral for determining lateral and longitudinal coordi-

nate shifts will, however, become unfeasible when wakes or mixing between streams of

nearly equal velocity in the presence of relatively large initial disturbances have to be

considered. It should be noted that virtual origins for exchange coefficient growth have

been found useful in connection with eddy viscosity models employed in finite-difference

integrations of the fundamental equations (see the section "Eddy Viscosity Concepts").

Local similarity.- The restriction on the type of viscosity models consistent with

the longitudinal coordinate transformation expressed by equation (9) will be found most

unrealistic for cases where a relatively thick boundary layer undergoes a rapid expan-

sion (such as in base flows) before the onset of constant-pressure mixing. This can lead

to effective quenching of the turbulence level in the expanded profile (which is then rota-

tional but not strongly dissipative) while the dissipative exchange mechanism remains

confined to a much narrower shear region (refs. 11 and 12). This shear region exhibits

features of local similarity and is initially laminar before undergoing transition. Growth

of such transitional shear regions, for single-stream mixing, has been analyzed in some

detail by Gerhart (ref. 13), and there seems to be confirmation that the similarity param-

eter _ retains its qualitative relevance and quantitative value. Since turbulent mixing

now appears to originate well downstream of the "expansion corner," agreement with

origin-shift methods concerning the energy levels of the dividing streamline is surprising

but can be supported by detailed calculations.

Numerical integrations.- Computer programs have been developed to perform the

step-by-step numerical integration of the system of equations (refs. 1 and 2), and an

implicit iterative method of integration is utilized which improves the economy of the

calculations while retaining accuracy and assuring numerical stability.

The integration uses initial and boundary conditions given in physical coordinates

x and y b,,t proceeds with calculations in the transformed _h-plane. Dimensionless

velocity (_P = _a), temperature (O = _-a), or density (p//Pa) distributions are then found as
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functions of _ (or y/L) for parametric values of the variable 7. Location of the

value with the x-scale depends upon the viscosity law as contained in the transforming

equation (eq. (9)) which can be written

- 1 f e d x
= Re---_ v_82-d L

Attempts have been made to gain information on the integrand by matching of calculated

and experimentally determined profiles, for example, by the dissipation integral (ref. 2)

or other unique features (such as minimum velocity in wakes). (See section concerned

with determination of the eddy viscosity.)

_o_- t.ke problems at hand, however, one needs this information as input, and cer-

tain speculative assumptions on the behavior of the turbulent eddy viscosity still are to

be specified in the section "Eddy Viscosity Concepts" in order to explain their use for

obtaining solutions to the test cases.

AXIALLY SYMMETRIC MIXING REGIONS

An extension of the theoretical analysis and the resulting computer program for jet

mixing dealing with axisymmetric geometries and nonhomogeneous gases has been made

by Hurt (ref. 1). Like many others (e.g., refs. 14 and 15), he utilizes the system of global

conservation equations as well as conservation of species without chemical reactions.

The simplifying assumptions are consistent with boundary-layer approximations but, in

addition, he assumes a turbulent Lewis number of unity which implies that the turbulent

Schmidt and Prandtl numbers are equal to each other yet not necessarily equal to unity

individually. Also, specific heats at constant pressures are assumed to be functions of

concentrations but not of temperature, which limits his analysis to moderate temperature

variations even though it attempts to cope with compressibility. In this sense, and with

regard to improved numerical integration procedures, Hurt's work is an extension of that

by Donovan and Todd (ref. 15). The resulting set of equations is in analogy with those of

the preceding sections except for the accounting for species and the use of a dimensionless

enthalpy rather than temperature in the energy equations:

0 _ 8c.i_l
= _"_.F_';:'_.L'''t _2_:2_

a4 _-Ji=l (22)

ah = _2_a.._..._L_ a_

a_ a5 rt
+

,N

1 - Ca 2
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Here,
m n

_u 1 _ v__= la_
P Waa= _ _ _ Ua - _"o"_"

C a is the Crocco number of the internal stream, and _ = _ were r a is a reference.Uara

radius of the coaxial stream, _ = p_ and h = h, ha"

In addition, the perfect gas law for isobaric mixing of a multispecies mixture

= ! _ (23)
yT

was utilized, where

N

N

i_l ca_i•= Mi

T = m.T The static temperature
Ta

m

M i is the molecular weight of the ith species, and

ratio T was evaluated from the energy equation and then the stagnation temperature

ratio was found by using the following formulation developed from the relationship

between stagnation and static enthalpy:

(24)

(25)

where

N

_ CiCpi

_= i=l (26)
N

CaiCpa i
i=l

and A is the local stagnation temperature ratio. In contrast to the two-dimensional

case, the transformation of the streamwise coordinate _ (to eliminate the eddy viscosity

from the equation) was not included in Hurt's analysis. This was due to evidence that the

effective turbulent exchange coefficient could not be considered, with sufficient accuracy,

to be a L,.,ct .... of the streamw_,_ rnordinate only. His n_'n_rrnrn, thu_, can n.e.enmmodate

as input suitable eddy viscosity models. At this stage, however, there do not appear to be
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sufficient experimental data and insight into controlling mechanisms to expect a simple

yet universal formulation for a phenomenological eddy viscosity model.

It is of interest to note the efforts of Spalding and his coworkers at Imperial College

(e.g., ref. 16) and others to gain a better insight into turbulent exchange mechanisms by

use of multiparameter models involving the kinetic energy of turbulent motion.

EDDY VISCOSITY CONCE PTS

Within the restrictions imposed by the coordinate transformation (eq. (9)) and the

resulting coupling of the viscosity to the density for two-dimensional mixing problems,

there is still the possibility of coping with fully laminar, fully turbulent, and transitional

cases. The initial conditions have first to be examined.

INITIAL CONDITIONS RELATED TO APPROACHING BOUNDARY LAYER

A mixing region can be the result of flow separation associated with

(i) Constant pressure (wake behind a flat plate)

(ii) An acceleration (as in the supersonic base pressure problem)

(iii) A pressure rise (due to an adverse pressure gradient)

In any one of these cases, the attached boundary layer will cause an initial disturbance

for the mixing region. Each case, however, will be different in its kinematic and dynamic

effects.

The constant-pressure case appears to be the simplest. One would expect that both

the flow profile and the viscous structure remain virtually unchanged. The acceleration

causes a change in the velocity profile (which could possibly be accounted for by a stream-

line expansion method), but it also tends to quench the turbulent mechanism (refs. 11

and 12). This can lead to the situation discussed in the section "Local Similarity" which

produces a transitional problem in a "mixing sublayer" imbedded in a vortex layer.

Separation associated with a pressure rise presents the most complicated problem

and points to the need for a momentum integral approach (ref. 17) and origin-shift treat-

ment of the mixing zone (e.g., ref. 10).

INITIAL EXCHANGE MECHANISMS

It is evident that a mere description of velocity, temperature, and concentration pro-

files will, in the turbulent case, generally not be sufficient to solve the problem of comput-

ing the development of the mixing region. What is missing could be most important - at
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least for the early stagesof the mixing process - namely, its initial mechanisms. Only
case (i) does provide such information if one usesthe work of Maise and McDonald
(ref. 18). Case (ii), on the other hand, generates local similarity - provided the expan-

sion is sufficiently "strong" - first in the laminar (or "laminarized") mixing sublayer

and then in its turbulent continuation where one depends on information on transition

Reynolds numbers, such as given by Chapman, Kuehn, and Larson (ref. 19). Case (iii),

because of its complexity, raises special interest for exploring how quickly initial condi-

tions become submerged in the mechanisms generated by the mixing process itself. In

the next section a tentative model for developing turbulent shear layers is projected.

FULLY TURBULENT MIXING BETWEEN TWO STREAMS ORIGINALLY

SEPARATED BY A FLAT PLATE

As each stream approaches the trailing edge of the plate, it possesses its individual

boundary layers having thickness, momentum thickness, and energy thickness, the corre-

sponding shape factors, and an eddy viscosity distribution as given by Maise and McDonald

(ref. 18) or determined with more precision by extensions of their method (e.g., to account

for heat transfer).

Initial Level of Eddy Viscosity

If conditions in the two streams are very dissimilar, the eddy viscosity level in one

of them may be dominating at the point of confluence. As the restraint on fluctuations

imposed by the wall is removed, it seems logical to assume that the peak value of the

eddy viscosity will originally prevail. It is of interest to note that such peak values can

be correlated, for a wide range of Mach numbers, by the simple relation

et I Re50"896 (27)
F peak = 120

Filling of the Wake

Breakup of the laminar sublayer and the large velocity gradient generated in the

attached boundary layer control the next phase. If this process can be considered Cat

least for that portion of the profile where the mixing mechanism is most effective) to be

reasonably close to the asymptotic single-stream jet mixing condition,

f-=4-_ReL_v (28)

may be selected where a is related to the flow conditions in the faster stream, and the

origin for x is at the point of confluence. (This scheme is akin to the concept of local

similarity.)
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Approachingthe Asymptotic Solution

With the jet mixing mechanismthus building up, it will eventually approach the
asymptotic case for both the kinematic and dynamic aspects.

At thematching conditions, after selecting anappropriate similarity profile, one
has to accountfor both the momentumand energy defects at x = 0.

This can be achieved by applying an origin shift x o and by utilizing the concept

of equivalent bleed (ref. 6). By using the integrals defined and tabulated in reference 6

for the error function profile, one relates the mechanical energy defect in the approach-

6a*** + _bb35b***
ing streams at x = 0, D = 2 through

(-Xo)Ua3pa2_D= _I(_/RA)- ii@d_(1 - _b2) - I4(_RA )
(29)

while the momentum defect is accommodated through the concept of equivalent bleed

which determines

where

I1( d)1 (30)

5b**
Ab = p_ _b 2 (-Xo)

and

Combining equations (29) and (30) yields, for the origin shift,

The similarity parameter _ refers here to the two-stream case (ref. 6).

It is necessary to comment on the manner in which the asymptotic case is

"approached." If the "filling of the wake" (in the sense of the preceding section) becomes

pronounced due to _b > 0, the increase in eddy viscosity described by equation (28) will

initially prevail over that related to the asymptotic solution. Hence, an overshoot will be
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experienced so that the approach to the asymptotic profile occurs in the sense of relaxa-

tion rather than amplification of the mixing mechanism.

For the case where _b = 0, such an overshoot should be less pronounced. The

energy defect integral, as utilized for determining the origin shift Xo, differs from the

dissipation integrals defined in reference 2)

or

j.+o DI = (1- ¢)C_b- _bb)d_ (33)

only by a constant value (due to the fact that the momentum of the mixing streams is pre-

served once external forces such as wall shear friction are not present). The dissipation

integral has been evaluated and presented in graphical form as shown in figure 1 for a

variety of flow conditions.

Use of both forms (eq. (32) for the experimental profile and eq. (33) for the analyti-

cal solution) is then convenient for establishing the relation between x/L and [ and

E/v(x/L).

Wake Problem - Both Streams Having Identical Velocities

and Initial Boundary Layers

For wake flows, the asymptotic solution shall be represented by a constant level of

the eddy viscosity (Schlichting (ref. 5)) so that, with reference to the momentum thickness

of one approaching boundary layer,

6a**
_-v= 0"0888ReL L (34)

Proposed Models for Turbulent Eddy Diffusivity

A schematic presentation of eddy viscosity models as used in the present study is

shown in figure 2.

RELATION BETWEEN THE STREAMWISE COORDINATES x AND

The proposed eddy viscosity model establishes a relation between the transformed

coordinate _ and the physical coordinate x, and thus allows identification and location

of the calculated mixing profiles
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_=_ e 1 d(__)+Constant (35)
v82-d Re L

DETERMINATION OF THE EDDY VISCOSITY FROM MATCHING OF

EXPERIMENTAL AND ANALYTICAL PROFILES

The concepts developed for e/v in the preceding sections are essentially conjec-

tures. Indeed, the analytical model and the calculation procedures have been worked out

in such a way as to remove the need for depending on a specific viscosity law. Actually,

one can utilize equation (9) for determining the viscosity law.

To accomplish this, it is necessary to define the matching of profiles for value

pairs of x and _, which leads to a unique "_ = :_(x) relationship which then can yield,

for d = 2

_'=-_]vd( x ReL (36)
Ex

Obviously, only single parameters can be matched for both the calculated and the experi-

mental profiles.

Two possible choices are

(i) The minimum velocity, as it is well defined in wake problems

(ii) The dissipation integral given by equations (29), (32), and (33)

An illustration of this procedure is given in the section "Test Case - Solutions."

EDDY VISCOSITY IN AXIALLY SYMMETRIC MIXING REGIONS

Much uncertainty exists concerning suitable turbulent exchange coefficient formula-

tions for axially symmetric flow. The appearance of the transverse coordinate r in the

conservation equations also complicates the situation since it would restrict the possibili-

ties of a transformation (e.g., eq. (9) for the two-dimensional case) to the unattractive

form where a singularity in the exchange coefficient could occur as r -- 0. Empirical

relations, therefore, still are favored in dealing with individual cases (ref. 1) but appar-

ently cannot be expected to give satisfactory results when applied to widely different flow

conditions. (See discussion of test case 11.)
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TEST CASE - SOLUTIONS 2

TEST CASE 1: TWO-DIMENSIONAL SHEAR LAYER

Spreading Parameter for a Fully Developed Incompressible Free Shear

Layer (Influence of _b)

The effect of the free-stream velocity ratio ub = the spreading parameter
Ua 4_o on

for similarity mixing profiles has recently been reviewed by Yule (ref. 20). Shown in

figure 3 is the relation

as presently used in computer programs at the University of Illinois and which also has

been utilized for calculations of asymptotic mixing regions in the discussion of test

case 4.

TEST CASE 2: TWO-DIMENSIONAL SHEAR LAYER

Spreading Parameters for a Fully Developed Turbulent Free Shear Layer With

Zero Velocity Ratio (Influence of Mach Number)

Much uncertainty exists as to the effects of Mach number on the mixing mechanism,

as can be illustrated by the large discrepancies for observed or predicted values for a

(ref. 9). Shown in figure 4 is the simple linear relationship

a=12 +2.76M a

as proposed for use in the lower Mach number range Ma < 3 (ref. 6).

TEST CASE 3: TWO-DIMENSIONAL SHEAR LAYER

Spreading Parameter for a Fully Developed Low-Speed Free Shear Layer With

a Velocity Ratio of 0.2 and Density ratios pb/p a o£ 14, 1/2, 1/7, and 1/14

It is the judgment of the authors that conclusions concerning spread parameters

must be based on more extensive and reliable experimental data than appears to be pres-

ently available. Evaluation of earlier experiments by Pabst (ref. 21) conducted for a sin-

gle temperature ratio of 2.3 did not show an appreciable effect on a. To facilitate future

correlations, theoretical calculations for ad(AY/X) based on the procedure outlined in

the section "Similarity Solutions" with a selected value for d = 2 are presented in fig-

ure 5. The abscissa in figure 5 represents either the ratio of Tb/T a or pa/p b since

2 d = 2 for all calculations presented.
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low-speed flows are being considered. According to equation (20), the effects of the

stagnation temperature ratio and gas constant ratio should be equivalent.

TEST CASE 4: TWO-DIMENSIONAL SHEAR LAYER

Influence of Initial Boundary Layers, Incompressible Flow, (bb = 0.35

As requested, results of theoretical calculations for the velocity profiles are shown

in figure 6. The corresponding shear stress distributions are given in figure 7. The

correlation procedure between the physical and transformed dimensionless streamwise

coordinates x/L and _ is illustrated by the use of the dissipation integrals according

to equations (32) and (33) in figures 8 and 9. The extracted information on the effective

turbulent eddy viscosity e/v is shown in figure 10.

This figure also compares these viscosity coefficients with those resulting from

the concepts developed in the section "Eddy Viscosity Concepts." A strong overshoot as

a continuation of the wake-filling mechanism over the asymptotic solution is clearly
evidenced.

TEST CASE 5: TWO-DIMENSIONAL SHEAR LAYER

Initial Development of a Turbulent Compressible Free Shear Layer

The requested theoretically calculated velocity profiles are shown in figure 11.

One must note that the y-scale in figure 11 reflects conservation of momentum, while

the experimental data require a translation to satisfy this physical constraint. Fig-

ures 12 and 13 have been added to show the degree of agreement between the eddy vis-

cosity distributions based on the dissipation integral correlation and the concepts pro-

posed in the section "Eddy Viscosity Concepts." Again, an overshoot is noted, but it is

rather moderate since no wakelike contribution exists for _bb = 0.

TEST CASES 6 TO 13, 15, AND 17 TO 23: AXIALLY

SYMMETRIC FLOW CASES

Considerable difficulty has been encountered in attempts to obtain numerical com-

puter solutions by using the approach and programs of reference 1. This situation has

been caused primarily by communication problems (Dr. Hurt had left the University of

Illinois) and by difficulties encountered in switching to a different computer system with

limited storage capacity. Consequently, attention is directed to reference 1 as containing

specific examples for program capabilities. In addition, calculated center-line velocity

distributions as they apply to test case 11 are shown in figure 14.
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TEST CASE14: TWO-DIMENSIONALWAKE - LOWSPEED

Shownin figure 15 is the center-line velocity developmentas a function of the
transformed coordinate _. Figure 16 illustrates the use of the presently proposed
viscosity model for the three regimes described previously. This produces the plot
of 1/W2 as a function of X/Sa** (fig. 17),which is the required answer to this test
case. Agreement with experimental datawas foundto be reasonably good.

TEST CASE 16: TWO-DIMENSIONAL WAKE - SUPERSONIC

ADIABATIC FLOW

With transition at station 1, the present viscosity model assumes the form shown

in figure 18 with experimental e/v values (obtained with the help of dissipation function

correlation) also presented. A strong overshoot along the trough-concept-rise is noticed

with subsequent relaxation towards the asymptotic (constant e) solution. It must be noted

that the theoretical calculations for 1/W 2 as a function of x/D (fig. 19 (required))

and Tc/T a as a function of x (fig. 20) have been obtained by following the trough-rise

portion. The difference between the "relaxing" and the "rising" e/v branch should, how-

ever, not produce significant differences, especially in view of the rather large scatter of

experimental data. Overshoot and subsequent relaxation of e/v is experimentally -

albeit indirectly - evidenced by figure 1 of reference 22. Computer results (_bc and

Tc/T a as a function of _) are presented in figure 21.

TEST CASE 24: TWO-DIMENSIONAL WAKE - COMPRESSIBLE

DIABATIC FLOW (TRANSITIONAL)

Prandtl number for this case has been selected as 0.72 throughout. This is con-

sistent with the expectation of a significantly long laminar mixing region followed by

transition and turbulent mixing for which Pr t = 0.72 is incidentally a reasonable

approximation. Based on theoretical calculations, and with the use of information on

transition in free shear layers (ref. 19), one arrives at a transition location of 7.01 cm

(2.76 in.) corresponding to Re x = 180000 where

Re x = ReL(Xt/L)t

The resulting relation between e/v and

between

lations (_c,

x/L is shown in figure 22. Correlation

and x/L by the integration of equation (9) and the finite-difference calcu-

function of _ in fig. 23') then produce figure 24 which showsTc/Ta as a
/
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1/W2 as a function of x/D and figure 25which is a comparison of calculated and mea-
sured center-line temperature ratios. It is of interest to note the effects of transition
as they appear in both the calculated and experimentally determined data.
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Figure 2.- Viscosity model.
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212



yA-

3.0

2.0

L = 2.54 cm (l in.)

x = 76.2 cm (30 in.)

X _

l.O

0.0

f 20 40

12.7 cm (5 in.)

60 80 lO0 x lO"4

-l.0
I

2

U!

v

-2.0

Figure 7.- Calculated shear stress profiles at specified downstream

locations for test case 4.

213



0
0

,-4

0

J i i I I
0

I , I , I I I i I I I

0

0

0

m 0

i

0_,._

o

o
ow,-4

ow,-d

0

'_ 0

o

o

!

°_,,I

214



o
p-)

.0

o
c_j

o

--I

><

_.. i l I I i ,I o

• • , •

0

t==-4

c
0

.,=.4

.,-4

o
C
o

•:..=i

°_.=_
,.='.4

• °f=4

o

Q_

0
C.)

!

215



E
0 Obtained from experimental data by matching

dissipations

3oooi

• , Y : _ Re(sa ** ('_]*)*-I

XoI_,'_l_1----I° IOO 200 300

Figure 10.- Presentations of e/u for test case 4.

216



Y/L

l.O

0.75

O.50

L = 2.54 cm (I in.)

x = 5.56 cm (2.19 in.)

x = 20.96 cm (8.25 in.)

= 0.005

--0.0505

0.25
x = 5.56 cm

0.0 | I
0 0.4 0.6 0.8 1.0

-0.25

X = 20,96 cm

-0.50

-1.00

Figure 11.- Calculated velocity profiles at specified downstream

locations for test case 5.

217



.._1

X

o o c; o o c;

co

0

r/l

0

[/l

b_

0
0_

0
°p,d

L_
0_

*'6

.o

t_

0
o

i

e4

ID

218



,,_J

x

0

0

0

oO

\ II

×oi_

c: xl..J

°i---

•_ aJr,,e"
0

•I,,) II
_,.

\ _

\
" \

°\\

I
o

X

I I

0 cO

.,1.

l'l
0_

V

E
U

II

,.,=J

O_ _'--
•r- II

"'-- 0

0

\ \\
\

I I I

\
\

U

0

0
,p,,_

!

0p,d

0

o

219



X

ol.•'..l -.=l

I

0

rl=

l

i
I

,I
O

..a

..,1
Q.

Q
0

0

II

W

0 O

I I

II II

I I I I_

e- c-
o o

•_ "o

I I I

@,4
('_

C"J

CO

0

C_

O)
C_

f_
0

°_,-4

0
p,-4

I

I

'r'-4

220



\
\.

I I I I I i ,I I,
Q br_

r=..,

i

r--,

Q

Q
I

m

m

w

u

m

p==
o

_ o

- o

o

cQ
Q;

0

0
,F-t

0

Q;
p.

°F-I

!

Q;

Q;

Q;

I

Q_

221



r.O m

X

I
0
r--

O_
O_

¢xJ

I
0
r--

,-- C_

¢xJ
0

+

0

.- ?

X
c,o I

_.) cO

w L_ t_

cd 0

_4
r-,

V V A

I lu
X X

v

_4

0 0 0 Q

0
0

r/l

0

o

c,J 0
C;

!

0
0

0

222



-Ic
4c

X

I.,') _1" (',') L'M P"

223



¢-.

0 ,_..-_

4J 0

•_, "_

0r-

5

+

II

X

e.-
.p-

E
U

0

..I

I
0
0

e

+ _

xl._ ",- 0

U
Xl.--J e_ "_

1,_ I_ o

II n i_

,,,I_ _ •
0

• •

I

O

-m

t_

!

+
!
8

I

Q

224



I/W 2

1500

1200

900

600

300

• Experimental Data

D = 0.00909 cm

@

01 I I I

200 400 600 800 1000

Figure 19.- Predicted and experimental center-line velocity

defect for test case 16.

1200 x/D

225



T
c

T-
a

1.7

1.6

1.5

1.4

1.3

1.2

l.l

1.0

• Experimental data

I I ! I I

0 2 4 6 8 10

Figure 20.- Predicted and experimental center-line temperature

ratio for test case 16.

v

x, cm

226



I

/
//

\
\

\

0

\
\

I

CO

I I

227



=.I

X

0

W

!
0

0

+

Xl_ X _

V I

×.-!

r.- X

e_

X *,j X *_

v A

X X

228



ii

i... Q

c_J

Oh

0

CO

rm

kO

rm

_q

co

r---

C_J

r--.

rm

o

c_

o

o

o

c)

c_

O

O

c_

O
°p,,I

Q;

c_

O
P-,I

'T

C.)
!

c_

229



x

%

•r- O

X

It

• ""

0

I I I I

o

o

O O O O
O O O O

O

CD

o
CD

CD

O

O

g

o

O
O

o

CJ
CD

"O

O

_D

CD

I

CD

CD

CD

(D

CD

°F-4
"o
CD

I

CD

bD

230



E
U

I I I I

c)

r,-.

q_

0

r_
0

q,)

q_

q_

°l,..d

_4

'el

"CS

°r.,4

"0

I

b_
.i,-.f

231



DISCUSSION

Professor Goldschmidt: I am sorry, I must not have understood very well. How did you

define your shift in the origin - this x o - is it completely arbitrary or is it computed

somehow?

W. L. Chow: No, first I said it is a matching of energy defect of the mean flow of the

actual mixing profile to a fictitious one with a shifted origin, and meanwhile we have to

also apply an equivalent bleed concept. In other words, if we have an initial boundary-

layer flow, we always have a developing flow even far downstream. The flow looks sim-

ilar, still shifted somewhat, so we have to use the initial boundary-layer effect to corre-

late it and we call that an equivalent bleed concept. It is described in the paper and it is

long so I would rather not go into it at this time. If you would like to discuss anything

else I would be glad to answer your question in detail, in private.
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