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SYMBOLS

Cs

CE

constant prefixing diffusion term in

constant prefixing diffusion term in

models

Cel,Ce2

CU

C_I

C_2

D

constants appearing in transport equation for e

viscosity constant

constant appearing in first part of pressure-strain simulation

constant appearing in second part of pressure-strain simulation

diameter of jet or of wake-generating body

Di diameter of inner nozzle

Do

Dij

g

diameter of outer nozzle

net diffusion flux of uiu---_

a function of P/e (see table 4)

h

k

lm

specific enthalpy of fluid

turbulence energy, (_ + v-'_ + w'2)/2

length scale of turbulence

mixing length
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M Mach number

m mass fraction of chemical species

P

Pij

r

production rate of turbulence energy

production rate of Reynolds stress uiu---_

radial coordinate

r o

To

t

radius of nozzle exit

stagnation temperature

stagnation temperature at nozzle exit

time

U mean velocity in streamwise direction

Ue

AU

velocity of free stream

change in mean velocity across shear flow

Ui,Uj

Umin

Uo

mean velocity components

minimum velocity

initial (uniform) value of streamwise mean velocity

U_V_W fluctuating velocities in x,y,z directions

UV kinematic shear stress

m

uiuj

X

kinematic Reynolds stresses

coordinate in streamwise direction

xi,xj general Cartesian coordinates
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Y

YG

Yl,Y2

yJ

C_

k

_kS

_t

P

(Y

%

Subs cripts:

coordinate in cross-stream direction

effective width of shear flow

values of y at which effective internal and external edges of the shear

flow occur

coordinate in cross-stream direction where j is 0 for plane flows and is

1 for axisymmetric flows

normalized mass fraction

Kronecker delta

turbulence energy dissipation rate

momentum deficit (or excess) thickness of wake (or jet)

constant in mixing length model

proportionality constant relating length scale 1 to YG in

k model of turbulence

effective turbulent viscosity

density

reciprocal of spreading rate of mixing layer

value of a when one stream is at rest

effective turbulent Prandtl/Schmidt number (where subscript _b

stands for h, k, m, or e and denotes the diffused quantity)

pressure strain term in equation for uiu'--_

value prevailing along center line of a symmetric flow
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E external boundary of shear flow

internal boundary of shear flow

high-velocity edge of shear layer

low-velocity edge of shear layer

Bar over symbol indicates time average of turbulence correlation.

THE TURBULENCE MODELS CONSIDERED

The authors' work for the NASA Conference on Free Shear Flows has led to the

exploration of the performance of three distinct classes of turbulence model. These

classes are

(1) turbulent-viscosity models 1 in which the length scale of turbulence is found

by way of algebraic formulas

(2) turbulent-viscosity models in which the length scale of turbulence is found

from a partial differential equation of transport

(3) models in which the shear stress itself is the dependent variable of a partial

differential conservation equation

In the context of the group's work on this subject, these classes might equally be,

respectively, labeled "yesterday's" models, "today's" models, and "tomorrow's" models.

At the time of the AFOSR-IFP-Stanford Conference in 1968, detailed exploration had been

confined to models of class (1). In the intervening years, the development and application

of models of class (2) has commanded the major part of the group's attention and, although

models of class (3) have been in use since 1969, they have not yet been refined sufficiently

to achieve the level of universality of which they are believed to be capable.

Two models have been examined in each class; thus, six different models have been

tested. A complete mathematical statement of these models is provided in tables 1 to 6;

a brief commentary on the models now follows.

Tables 1 and 2 detail the group's versions of two of Prandtl's turbulence models

(refs. 1 and 2), namely, his 1925 mixing-length hypothesis (m/h) and his 1945 turbulence

1A turbulent-viscosity model is one in which the shear stress is taken to be pro-

portional to the local gradient of time-average velocity. The proportionality factor may
vary from point to point in the flow and is usually calculated by reference to local turbu-
lence quantities. It is not implied that the effective viscosity of the fluid is uniform
across the mixing region.
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kinetic energy model (k). For each model, the lengthscale is taken as proportional to
the width of the shear flow althougha different constantof proportionality is adoptedfor
plane and axisymmetric flows. Table 1 reveals howthe width of flow is defined.

The models of class (2), described in tables 3 and4, employ a differential equation
for the decay rate of turbulence energy e as well as one for the turbulence energy. By

introduction of this second turbulence transport equation, the need to prescribe the length

scale is removed. The same two turbulence variables have been used in similar models

by Harlow and Nakayama (ref. 3) and by Jones and Launder (ref. 4); other models having

just two differential equations have also been used and described by Rodi and Spalding

(ref. 5), Ng and Spalding (ref. 6), and Spalding (ref. 7). In the kel model set out in

table 3, the viscosity constant C_ differs according to whether the flow is plane or axi-

symmetric. The more elaborate ke2 model, detailed in table 4, has been adapted from

that presented by Rodi (ref. 8). Rodi found that C_ did not, in fact, assume a constant

value but varied significantly with the distortion rate of the turbulence; the local rate of

turbulence production divided by the rate of dissipation may be taken as a dimensionless

measure of this quantity. Figure 1 shows Rodi's proposal for the dependence of C/! on

the ratio of production to dissipation at any station; the same variation is adopted in the

ke2 model.

In the two-equation class, attention has been confined to models employing k and

e as variables because extensive research at Imperial College has shown that, for free

turbulent flows, the models of references 5, 6, and 7 produce almost identical results.

Indeed, it can be shown that the identity is exact whenever the length scale of turbulence

is uniform across the mixing region, and this condition is very nearly fulfilled for all free

shear flows. Further, e is preferable to the second variables of the other models when

walls are present, for the ke model alone can dispense with a wall-effect correction of

the empirical constants.

The models set out in tables 5 and 6 are ones which do not involve the effective-

viscosity concept. Table 5 presents the model of Hanjali_ and Launder (ref. 9), which

has been applied by its originators to predict a number of boundary layers and free shear

flows. Besides the differential equations for k and e, it embodies one for the kine-

matic shear stress u'W as well. Lastly, model 6 presented in table 6 is an orthodox

Reynolds stress closure of the kind first proposed by Rotta (ref. 10); it provides transport

equations for all the Reynolds stresses uiu--"_ and for the energy dissipation rate. If the

turbulence Reynolds number is assumed high enough for the dissipative motions to be iso-

tropic, only two processes remain to be simulated in the Reynolds stress equations:

those of diffusional transport and of energy redistribution, the latter arising from corre-

lations between fluctuating pressures and ir_stantaneous --^'^v_vc._'*....._,,_,_,_.,_.A_""+__,,....... approxi-

mations have been explored for the first process and three for the second. In thb flows
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considered for this conference, only four of the Reynolds stresses are nonzero; the model

thus entails the solution of five transport equations for turbulence quantities.

DETAILS CONCERNING THE PREDICTIONS

Method of Solving the Equations

The systems of differential and auxiliary equations governing the development of

the mean and turbulent flow field have been solved by means of the finite-difference pro-

cedure of Patankar and Spalding (ref. 11). The main features of the method - that is,

the use of normalized stream function as cross-stream independent variable and the

employment of a grid-control system to fit the width of the grid to that of the shear flow -

are perhaps sufficiently well known not to require further elaboration here. For the

readers who are unfamiliar with the procedure, reference 11 documents the method in

full and provides a listing of the basic computer program, GENMIX, from which codes

used in the present work have been adapted.

The number of cross-stream nodes employed has varied from 20 to 40 according to

the complexity of the initial profiles; grid nodes have been concentrated in regions where

velocity gradients were steepest. A Control Data 6600 computer system was used.

Typically, with 25 cross-stream nodes, the programs executed 70 forward steps per sec-

ond for calculations employing the mixing-length hypothesis, where differential equations

were solved for the mean-flow field (x-momentum, species, and stagnation enthalpy); with

the Reynolds stress turbulence model and with the same number of nodes, about 35 for-

ward steps per second were taken for isothermal, single-species flows. This number

could certainly have been increased substantially, for to save human time many redundant

instructions were not removed. No attempt has been made to include the influence of

normal-stress gradients in the mean momentum equation since, for the turbulent-

viscosity models, retention of these terms would render the equations elliptic in charac-

ter. Likewise, corresponding terms in the turbulence equations have been neglected.

Initial Profiles

For all models except the mixing-length hypothesis, the initial profiles supplied by

the conference organizers were insufficient to prescribe fully the starting conditions.

Therefore, some of the profiles of the turbulence energy, of the Reynolds stress, and of

the energy-dissipation rate had always to be estimated. This section explains the group's

practices for generating the profiles.

(1) When the initial shear-stress profile was not supplied, a number of trial calcu-

lations were made based on a constant effective viscosity. The value of the constant was

adjusted until the predicted development in the vicinity of the starting point agreed with

the measured; this value of the effective turbulent viscosity was then used to determine
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the initial shear-stress profile from the given velocity profile. The values adopted for

each test case are given in table 7; they have been normalized by the product of the den-

sity p, the velocity change across the shear flow AU, and the diameter of the jet (or the

diameter of the obstacle giving rise to the wake) D. In some cases the local value of

density has been used, in others the values prevailing in the external stream; the third

column of the table contains l or e as appropriate to identify the practice.

(2) Where the initial turbulence energy was not available, it was estimated from the

shear-stress profile (either measured or determined as in practice (i)) by use of the fol-

lowing relation:

k :
0.3

Close to an axis of symmetry, this formula gives an unrealistically low value of energy;

in this region the k profiles are adjusted to apparently reasonable values based on

turbulence data of other similar flows.

(3) In none of the test cases is the profile of energy dissipation rate directly avail-

able. It is calculated by inverting the viscosity formula

e = -_pk2
_t

where _t is taken as the value of effective viscosity found in practice (1) or, when

shear-stress data are available, is calculated from

uv

(4) For the ke2 model, the initial value of the function g(P--_) must be specified.

For this inquiry, the usual practice has been to take this ratio as unity; however, for two

of the wakes values greater than 1 have been assumed, and for two mixing layers values

less than unity have been adopted. These test cases are identified in the fourth column

of table 7.

DISCUSSION OF THE PREDICTIONS

Preliminary Remarks

Predictions have been made with the four models of classes (1) and (2) of all the

24 test flows except test case 24. The last of the flows was omitted from this inquiry

because over much of its development the flow appeared not to be fully turbulent and

because these models have not yet been adapted to the prediction of low Reynolds hum-
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ber phenomena. 2 For the shear-stress models of class (3), predictions have been

confined to the isothermal, single-species plane flows, that is, to test cases 1, 4, 13,

and 14.

The results of the calculations are shown in the figures of the appendix, which pro-

vide standard comparisons of predictions with experimental data for the four models of

classes (1) and (2), and in figures 2 to 7 which display further aspects of particular pre-

dictions referred to in this discussion section. Also included in this section are a dis-

cussion of the relative success of the models in predicting the test flows, an examination

of the models in ascending order of complexity (beginning with the Prandtl energy model)

to discover in what respects a particular model is superior to the immediately preceding

one, and a discussion of those features of the measurements which are not well predicted

by any of the models and the possible reasons for the discrepancies.

The Prandtl Kinetic Energy Model (k)

Our experience of predicting wall boundary layers had led us to believe that there

were scarcely any advantages in using Prandtl's kinetic energy model rather than his

earlier mixing-length hypothesis; Mellor and Herring (ref. 12) reported a similar con-

clusion. Therefore, it should be emphasized that for free shear flows, the k model

performs consistently better than the m/h hypothesis. This fact is well brought out by

reference to the jet predictions of cases 8, 12, and 18 and the wake-flow predictions of

cases 13 to 16.

In concept, the k model represents a substantial advance over the m/h hypoth-

esis. That it is also superior in practice may be attributed to the fact that, in free shear

flows but not in wall boundary layers, the convective transport and diffusive transport of

kinetic energy are usually important terms in the energy-balance equation.

The foregoing remarks, however, are nearly the only ones that can be made in favor

of the k model, inasmuch as reference to the cases noted indicates that there are still

large discrepancies between the measured and calculated development of the flow. Invari-

ably, over the initial region of a jet, the predicted rate of decay is too rapid; whereas,

far downstream, the decay rate is too slow. The behavior over the initial region could,

of course, be improved by choosing the length scale to be a smaller fraction of the flow

width, but such a move would make the far-region predictions worse than ever.

2 Jones and Launder (ref. 4) have in fact provided a low Reynolds number version
of the kel model; however, at several points in its derivation, the assumption is made
that the low Reynolds number region is adjacent to a rigid surface as in wall boundary-
layer flows. The model is thus not immediately applicable to free-shear-flow transition
phenomena.
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The Energy-Dissipation Model of Turbulence (ke1)

The introduction of a transport equationfor the dissipation rate removes the need
to prescribe the length scale and leadsto a modelof turbulence possessing a much
greater degree of universality than Prandtl's energymodel, inasmuch as the length scale
of turbulence is by no meansa universal fraction of the width of the shear flow. Specifi-
cally, it is notedthat, for manyof the jet flows, the correct behavior is predicted both in
the vicinity of the nozzle and manydiameters downstream(cases 6, 9, 11, and 12). The
kel predictions of cases 13, 14, 15, 16, and 17are also in distinctly better agreement
with the data than are the k predictions.

The Extended Energy-Dissipation Model (ke2)

When there is just one significant component of the velocity-gradient tensor and

when the energy p,-oduction and dissipation rates are approximately in balance, the kel

model nearly always gives acceptable predictions. The second condition is always met in

wall boundary layers, in mixing layers, and also in many jet-like flows. When, however,

the shear flow is weak (that is, when the excess or defect of the shear flow is but a small

fraction of the velocity of the external stream), the model predicts too slow a decay rate

of the shear flow; this behavior is exemplified in the predictions for cases 13, 15, 16,

and 17 (the data for case 13 and for other similar but currently unpublished flows mea-

sured by Bradbury are shown replotted in fig. 2 in the format that the organizers adopted

for the other weak shear flows).

Reference to the same test cases shows that much better agreement with data is

achieved with the ke2 model. Distinct improvements may also be seen in the predic-

tions of cases 11, 12, and 19. The result is particularly encouraging in that Rodi (ref. 8)

determined the Cp function without reference to the data considered at this conference.

The Stress Models of Turbulence (u_e and uv-'v'ke)

Models of this class have been applied to only four of the flows so that inferences

drawn must be more tentative than those for the models already discussed. Moreover,

when this set of computations was made, little time remained before the conference dead-

line and, consequently, only a preliminary adjustment of the constants was possible.

Predictions for all models gave results for case 1 scarcely distinguishable from

those obtained with the ke viscosity models. For case 4 (standard comparisons shown

in fig. 3), however, the stress models do give a small but definite improvement; the fact

emerges clearly in figure 4 which shows the development of the minimum velocity with
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distance downstream. The stress models3 follow the measureddevelopmentvery closely,
whereas the ke2 predictions show initially too steepa rise and, later, a too gradual
disappearanceof the wake.

The other two sets of predictions are for flows which, superficially at any rate, are
very similar; yet they would lead oneto draw different conclusions aboutthe relative cor-
rectness of the models. It is seenfrom figures 5 and 6that the models which are best at
predicting case13are worst for case 14and vice versa.4 The experimental data from

bothsets of investigations seemadmirably consistent. Perhaps, therefore, the differ-
encesin the developmentof the two flows may be traced to the different initial shear
flows from which they develop,namely, a mixing layer for case 13and a wall boundary
layer for case14. Certainly it is knownfrom parallel research at Imperial Collegethat
noneof the pressure-strain approximations so far employedpredict the normal-stress
profiles well close to a wall; thus, possibly there is someresidual influence of the wall
in the initial region of case 14.

The profiles of the lateral and streamwise energy componentsfor case 14 are com-
pared with the experimental data in figure 7. Agreement with the data may be thought
reasonablygood. It is not believed possible, on the basis of the calculations madeso far,
to determine which of the approximations for the diffusion andpressure-strain correla-
tions is the best. The proposal of Naot and coworkers (ref. 13)andReynolds (ref. 14) for
the pressure-strain correlation is simple and, for the four test casesexamined,not dis-
cernibly worse than the other two. It seems likely, however, that a more elaborate form,
akin to stress-model versions B and C, will be neededif the axisymmetric and plane flows
are to be well predicted with _ single set of constants.

Aspects of the Flows Which are Poorly Predicted

The most serious disagreements betweenthe ke2 predictions and measurements
arise in flows where there are appreciable density gradients. Cases 5 and 7 both suggest
that compressibility effects reduce, somewhat,the rate of spread of a mixing layer,
whereas the ke2 model indicates no significant variation with Machnumber. This trend
is not uniform over all the flows. However, the predictions of the jets of cases 19and 12
bothdisplay reasonableagreementwith the experimental data; whereas, the experiments
of cases 10and 21exhibit a jet decaymuch faster than the predictions herein would
indicate.

3The letter and number ascribed to the uiu'--]emodels denotethe versions of the
diffusion andpressure-strain hypotheseswhich were employed. (Seetable 6.)

4The only reason that the ke2 model gave goodpredictions for both flows was
that the initial value of g_-_) was raised to 1.2 for case 14.
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At least someof these contradictions may beattributed to the difficulty of prescrib-

ing adequately the initial conditions, particularly for the hydrogen jets of cases 10 and 21

where calculations start nearly 3 diameters downstream from the exit. An additional

prediction of these flows has been made, in which the initial values of k and /_t across

the jet have been doubled. The resultant predictions shown on the standard comparison

are in much closer agreement with experimental data than those previously obtained with

the ke2 model. Moreover, if the turbulent Prandtl/Schmidt number had been taken

as 0.5 rather than 0.7 (the former value was adopted with the k and m/h models), the

prediction of the velocity decay would have been further improved.

Apparently, little success has been had with any of Chriss and Paulk's data inas-

much as their air/air jet (case 20) also decays much faster than the ke2 predictions

herein show. Since computations are begun right at the jet lip, initial conditions have

little effect on the flow for case 20. The rate of spread is, however, quite sensitive to

the presence of turbulence in the core region. Included in the standard comparison for

this flow is a prediction where the initial turbulence intensity (_o) was about 5 per-

cent. It may be seen that this curve follows more closely the experimental data over the

first 8 diameters or so.

Predictions are also in poor agreement with experimental data for the hydrogen jet

of case 22. The flow is interesting because, through the presence of boundary layers on

the nozzle walls, the "jet" actually has a momentum deficit. This discrepancy may be

attributable to (1) the initial value of Pt being too high (the effect of halving it is shown)

and (2) the initial velocity profile having too small a momentum deficit.

For the uniform-density flows, disagreement between experiment and prediction is

much less. The following discrepancies however are to be noted:

Case 4: The predicted shear stress at the downstream station is only half the measured.

In view of the excellent predictions of the velocity profiles achieved by the stress

models, it is difficult to accept that the predicted shear-stress profile can be

much in error.

Case 14: It seems that the momentum deficit of the wake measured at x = 1.5 m may

be rather more than that at the other stations.

Case 15: The near-wake behavior is not well predicted for this case, probably because of

the pressure gradient across the boundary layer. In the calculations herein,

zero cross-stream pressure variation is presumed.

Case 18: The predictions of the turbulence energy show a flatter top to the profile than do

the standard data. It is seen that Rodi's (ref. 15) recent measurements, employ-

ing what is claimed to be a more accurate signal-processing technique, are in

closer agreement with the prediction.
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Case 23: For this case, the experimental data showa progressive loss of momentumas
theflow developsdownstream.

CONCLUSIONS

The following main conclusions canbedrawn from this work:

1. Turbulence models which determine the length scale of turbulence from the trans-
port equationfor energy dissipation rate (or from someother length-scale-containing
variable) cangive correct predictions over a wider range of flows than is possible with
models embodyingalgebraic prescriptions of 1.

2. The ke2 model, which incorporates the dependence of C_ on (_'_), leads to

reasonable predictions of both strong and weak free shear flows.

3. The versions of the Reynolds stress models which were tested already give, on

the average, predictions for the four cases considered which are slightly superior to

those of the kel model. There is, however, evident need for further refinement, par-

ticularly with respect to the pressure-strain approximation.

4. More experiments are needed on flows with density variation in order to resolve

the question of whether or not there is a systematic influence of density variation for

which the present models do not account.

5. It is very desirable that experimenters should measure and report the distribu-

tions of turbulence quantities at the upstream boundaries of the flows, as well as just the

time-mean velocities, temperatures, and compositions.
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APPENDIX

PREDICTIONS OF TEST CASES 1 TO 23

This appendix contains, in order, predictions of test cases 1 to 23, obtained with

the aid of the four turbulent-viscosity models. (See pages 697 and 698 for index to test

cases.)
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TABLE 1.- THE MIXING-LENGTH HYPOTHESIS (m/h)

OU (aU_
Zm2

where

and

l m = XyG

X = 0.11 (Axisymmetric flows)

= 0.125 (Plane flows)

For a monotonically increasing/decreasing velocity profile, the characteristic shear

width of the flow is defined by

YG = Y2 - Yl

where at Yl

and at Y2

U - U I

U E - U I

U - U I

UE - UI

=0.1

= 0.9

Ii I = Axial velocity at \

internal boundary

E = Axial velocity at /

external boundary//

For velocity profiles without a maximum or minimum at either boundary:

At Yl

or at Yl

U - UI
For region flow,inner of

i.e., between the internal

boundary and the point of

occurrence of the minimum/

maximum velocity U)

U-U =0.9
U E - U

(For outer region of flow)

At Y2

U=U

For diffusion of enthalpy a_d species,

_h = am = 0.5
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TABLE 2.- THE PRANDTL ENERGY MODEL (k)

where

and

__'_ = c_kl/2/l_ )

l = ksy G (With YG determined as in table 1)

k s = 0.625 (Axisymmetric flows)

= 0.875 (Plane flows)

Equation solved for conservation of kinetic energy Of turbulence is

Dk ____1a (y'] gt ak_ /aU\ 2 _ek 3/2

where

CU = 0.08

For diffusion of enthalpy and species,

ah=am=0.5
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TABLE 3.- THE ENERGY-DISSIPATIONMODEL (ke1)

where

m _U
-puv = gt

vy

- pe

De ___1a (y'Pt_)1 e /aU_ 2 pe 2PD-[=yj ay _'e-- + Celkut_'] -Cc2 k

For plane flows:

CU

0.09

Ce2 Cel ak a e

1.92 1.43 1.0 1.3

For axisymmetric flows:

The same as plane flows except

Cp = 0.09 - 0.04f

Ce2 = 1.92 - 0.0667f

where

f -- iy_ ld c ]0.2

For diffusion of enthalpy and species,

am = _h = 0.7
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TABLE 4.- THE EXTENDEDENERGY-DISSIPATIONMODEL (ke2)

The dataare the same as in table 3 except as noted below.

For plane flows:

C_ Ce2 Cel ak a e

* 1.94 1.40 1.0 1.3

* C_ = 0.09gC_ )

where

andthefunction_(_) isshownin_i_ure1

For axisymmetric flows:

The same as plane flows except

C_= 0.09g(P-_)- 0.0534f

Ce2 = 1.94 - 0.1336f
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TABLE 5.- THE HANJALIC-LAUNDER u-_'keMODEL

The Reynolds shear stress

D___W_cs ±(k_2
Dt ay \e

-pu-V is found from

,._1_-7- c. k _)

D__k_0.gCs±[_._), _ a___Dt _ \e ay

D.__e
Ce a---i----_j- Cel Ce2 _'-Dt _r\e k

where

C s C¢1 C# C e

0.1 2.8 0.09 0.07
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TABLE6.-RE O .DSSTRESSMODELS
Reynolds stresses -pu_ calculated from

D_-_ / _Uj _Ul'_ o2eOiJ- vlj+®ij-_ _ +_) -
PtJ

1. Simple version for Dij

C s :, 0.25

2. Tensor invariant Dij

D,j._,_ _\-i-_-_- ÷uju,-_-÷UkU,-_)
C s = 0.10

A. Rotta-Wolfshtein-Reynolds, Oij

C_l = 2.8 C02 ffi 0,4 P s Total production rate of k

B. Rotta-Hanjali_-Launder, _ij

2 8ijk ) + (_ij + _ji)-%1 k(U-_- _

. where

aU1 _i

V(UmUjUiUz + UmUlUiUj) (u--_4 u--_ /
4 "+C

k 42 k

_=
-8C_2 ( - O) -(4-12C_b2) 6- 18C_b 2I0 .'2 8c2" _,- ,Tffi
11 11 55 55

_, = -C_b 2 C_l = 2.5 C_2 = 0.3

C. Rotta-Launder, 4'i] (present work)

_ ]]Oi'k_+ +_Ji)-%1
where

aUl ami

% "_'zl

mi .0miU_ + _(0m/U-_ + 0mju_ + 8iZu--_ + 0iju--_) + 7O, j_--'_ + [.SmiS, j + _(0mZ0i, + OmjO._k_,j =

,8. _ _' ffi 4_ + 10 _. _ v. 20= +..._6 _ - 0.3 C4,1 - 1.5
11 11 55 55

De C e 8 (ku-7-._. ee_ uu_Ui e 2
_" _k\ _ kl_/ "cel k _ --C'2_"

C e = 0.2 Cel = 1.43 Ce2 = 1.92 (Versions A and B for @i|)

Ce = 0.16 Cel - 1.50 Ce2 = 1.95 (Version C for @iJ)
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TABLE 7.- INITIAL CONDITIONS

Test
case

1, 2, 3

4

Remarks

Arbitrary initial conditions

_t

pD AU
P at-

g,ven; v-V ,
0.3'

test case 14

5 3.68 x l0 -3 e D taken as 2.54 cm

6 u"V and k taken from reference 16

7 3.3 x 10 -3 1

8 6.6 × 10-3 1

9 1.6 x 10-3 1

10 0.72 x 10-3 e

1.25 x 10-3 e g = 0.8

5.5 x 10-3 1

as in

11

12

13

14

15

16

17

18

19

20

21

22

uv and k from self-preserving plane jet (ref. 17);

_/k, v"2/k, w'2/k assumed to be 2/3

0.19 x 10-3 1

12.9 x 10-3

u'-V given; u'_ and _ from reference paper for

test case 14; w 2 from reference 18; g = 1.2

uv given; k from reference paper for test

case 15; computations begun at second station

g= 1.3

23

A continuation of case 6

5 × 10-3 1

0.5 x 10-3 e

2.3 x 10-3

27 x 10 -3

and v'2 given; w2= v 2 assumed; _'V from

reference 19; g = 0.8; computations begun at

second station

e
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DISCUSSION

D. M. Bushnell: I was wondering if you had any thoughts about the importance of the

pressure-velocity correlations at compressible speeds, and how you presently handle

them in your method.

D. B. Spalding: How they are handled at the present is that everything of that kind is

lumped into the energy diffusion term. We simply see how well we can do by choosing

the best constants, such as the effective t>randtl or Schmidt number, for turbulence diffu-

sion, including in our review compressible or density-varying flow.

D. M. Bushnell: We have nothing to compare the diffusion model with at the compressible

conditions. In other words, you are lumping a lot in there, and we are not sure how accu-

rate the lump is.

D. B. Spalding: That is correct. All we see is the final result. We do not have enough

detailed information. For incompressible flows, we can make detailed comparison; for

compressible flows, we need corresponding detailed measurements and comparisons.

D. M. Bushnell: The only thing is, those terms look huge. That's my only comment.

I. E. Alber: With respect to the compressible calculations, I see that you get the results

for the spreading rate for the two-dimensional mixing layer as a function of Mach num-

ber, which is quite similar to what other people have obtained; that is, there is very little

variation of the spreading parameter with Mach number. However, the data, apparently

the high Reynolds number data, indicate that there is a considerable increase in the

spreading parameter with Mach number. Could you comment on what may be the cause

of this discrepancy, and if the pressure velocity correlation effect at high speeds may

come into the picture?

D. B. Spalding: I can't comment from any knowledge or any insight. I have noted the

effect also, and so I wonder.

G. L. Mellor: Yes, I would like to be certain on one point that you made. Your length

scale equation is a dissipation thing, which is energy to the 3/2 power over the length

scale. And we know that Rotta has an equation for the transport of a velocity squared

times the length scale. I think you said that you tried some of that too, and you said that

it made no difference whatsoever? Is that my understanding?

D. B. Spalding: It makes little difference for the kind of flows considered in this confer-

ence, which are free turbulent flows. It is easy to explain. One can formally show that

the transport equation for e can be turned into the transport equation for the product

of k times the length scale, except for an additional term involving the gradient across

the layer of the length scale. -",nere are many models in _'_,,,s _,_l,,_,,,,.,_jthat n_,_..._, only in
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an additional length-scale-gradient term in the equation. That term is very small in all

these flows. Flows near walls are different. There are some crucial experiments to be

carried out which will enable us to distinguish between the models. But, at the practical

level, the distinction between the models lies only in the different value given to the

effective Prandtl number (or Schmidt) of the second turbulence quantity. There is just

one good thing in favor of the e models. You can have a constant value of the Schmidt

number for the diffusion of this quantity, whether you are in a free turbulent flow or near

a wall. All the other models, including the k/ model, require the Schmidt number to

be varied, or they require something else to be done. So the ke model has our favor

for this quite small advantage connected with wall flows.

M. V. Morkovin: Could I ask for a comparison of your efforts and Donaldson's? In what

respect are they similar and where do they depart?

B. E. Launder: Dr. Donaldson and our group at Imperial College are both developing

turbulence models based on differential equations for the Reynolds stresses. We adopt

in detail different approximations for the pressure-strain term; we use appreciably

more elaborate closures than Dr. Donaldson. I think that he will find it necessary to use

a more complicated closure when he comes to look at some of the shear flows that we

have examined.

C. duP. Donaldson: We use a slightly different dissipation model. We have already

started to put in more complicated pressure-strain terms that we came to from trying

to use this method to study transition. This problem is similar to that of the wall region

of a turbulent boundary layer. In this case, to be more complete, you do have to use

mean gradients in the definition of pressure-strain and isotropy terms. I would like to

make an additional comment while I've got the microphone and emphasize again what can

be learned from these higher order models by setting the transport terms equal to zero

and neglecting diffusion. It is really very interesting that you can see the difference

between plain and axisymmetric jets and, in many cases of complicated flows with body

forces or centrifugal forces, you can begin to see just where you don't want to use con-

ventional methods.

C. E. Peters: I would like to address my question to either Professor Launder or

Professor Spalding. These advanced methods depend greatly on the initial conditions,

particularly in relatively weak shear flows. Your procedure of using either experimental

initial conditions or an eddy viscosity which matches the initial region development only

allows an after-the-fact correlation of an experiment. What is one to do in an engineer-

ing situation where the initial conditions are not well defined? Can you suggest proce-

dures for approximately determining the initial conditions?
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B. E. Launder: I would not entirely accept your assertion that our practices allow only

"after-the-fact correlation." After all, if it were correct, we might expect nearly the

same performance to be turned in by the various models; yet there are, in fact, large

differences between predictions generated by the various models. However, I agree

that when our procedures (or anyone else's for that matter) are used to predict engineer-

ing flows, insufficient experimental data will generally be available to describe the initial

conditions with certainty. If the predictor has thorough acquaintance with experimental

data of turbulent flows, he may well be able to assess with sufficient accuracy the initial

profiles. Otherwise, the safest practice is to begin computations sufficiently far upstream

for the (perhaps badly) guessed initial profiles to have negligible effect on the region of

interest. For example, if one wants to predict a jet development, then computations

might begin at the upstream end of the nozzle(s); or, if the flow is a wake, the calcula-

tions could start upstream of the obstacle generating the wake.

P. A. Libby: I am greatly impressed by the powers of the new methods developed by the

Imperial College group and others when applied to flows with variable density, but I won-

der whether we can expect the carefully selected constants in these methods to carry

over without density effects to the variable density cases. My work in a simple flow

shows that we must make these constants functions of the density.

B. E. Launder: Yes, it may be necessary to amend or extend our present models to

provide consistently good predictions of variable density flows. The pressure-strain

term would be the first term to be examined; others in the dissipation equation need to

be looked at.

S. C. Lee: The turbulence kinetic energy equation consists of convection, diffusion, pro-

duction, and dissipation terms. Why treat the dissipation term more favorably than the

others? If we examine the figure of turbulence energy balance (shown by Professor

Spalding with comparison of Bradbury's data), it appears that all terms are approximately

the same order of magnitude.

B. E. Launder: In the models I have been talking about, based upon differential equations

for the Reynolds stresses, the five processes of generation, dissipation, redistribution,

diffusion, and convection interact to determine the local stress levels. Since we solve

convective transport equations for the stress components, we may say that we account

"exactly" for convection of the stresses. The generation term, too, is one that we treat

without further approximation since it consists simply of the product of Reynolds stresses

and mean velocity gradients. That leaves dissipation, diffusion, and redistribution to be

accounted for; as you say, we solve a differential equation for the first of these but not

for the other two. We could solve transport equations for the diffusion correlations as

well as for the Reynolds stress and dissipation rate (Chou and a number of others have
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suggested models of this kind). However, I regard this level of closure as unnecessarily

elaborate since the diffusion terms are seldom decisively important in the Reynolds

stress equations. I think therefore that the simpler gradient-diffusion approximation will

suffice. Finally, there is the redistribution term to consider. Although this term does

not appear in the turbulence energy equation (which was the equation you mentioned), it

is of great influence in determining the magnitude of the individual stress components.

The practice we adopt in simulating this term is, we think, suggested by the form of the

exact correlation. Other practices are possible, however, and Kolovandin and Vatutin 1

describe a much more elaborate treatment involving the solution of three-dimensional

elliptic differential equations. I do not believe such an approach is warranted since it

seems that evaluation of the redistribution term would then absorb more computer time

than all the rest of the calculation.

1 Kolovandin, B. A.; and Vatutin, I.A.: Statistical Transfer Theory in Non-
Homogeneous Turbulence. Int. J. Heat& Mass Transfer, vol. 15, no. 12, Dec. 1972,
pp. 2371-2383.
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