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SUMMARY

Free turbulent mixing of two-dimensional and axisymmetric one- and two-

stream flows is analyzed by a relatively simple turbulent kinetic energy method.

This method incorporates a linear relationship between the turbulent shear stress and

the turbulent kinetic energy and an algebraic relationship for the length scale appear-

ing in the turbulent kinetic energy equation. Good results are obtained for a wide

variety of flows. The technique is shown to be especially applicable to flows with

heat and mass transfer, for which nonunity Prandtl and Schmidt numbers may be

assumed.

INTRODUCT_N

For some years a continuing research project has been underway at the Arnold

Engineering Development Center (AEDC) aimed at the development of efficient and

accurate techniques for the prediction of the entire range of free turbulent mixing

phenomena. The goal of this project, sponsored by the Air Force Office of Scientific

Research, has been the development of a method which will allow the accurate deter-

mination of the mean flow structure of free mixing flows. Although the requirements

of accuracy and reliability have dictated the choice of a history-dependent model (i.e.,

one which takes into account some aspects of the turbulence structure), the prediction

of turbulence structure per se has not been considered to be of great importance. In

any event, it would seem to be unlikely that a model which predicted the mean flow

field correctly for a variety of different flows, would be grossly in error in its pre-

diction of the important features of the turbulence structure.

The model to be described in this paper is a development of the turbulent

kinetic energy method originally reported by Lee and Harsha (ref. 1) and further

*This research was performed under the provisions of United States Air Force
Contract No. F40600-72-C-0003 with ARO, Inc., the operating contractor of the
Arnold Engineering Development Center (AEDC) for the Air Force Systems Com-
mand. Major financial support was provided by the Air Force Office of Scientific
Research under Air Force Project 9711. Project Monitor was Dr. B. T. Wolfson.
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described and extended to more complex flows in other publications (refs. 2 to 4). Even

though the model includes flow history through its use of the turbulent kinetic energy

equation, it is still an empirical model as are all current approaches to the prediction of

free turbulent mixing. Indeed, the only basic difference between approaches is in the

point at which empiricism enters. But although empirical information is used in this

model, one restriction not commonly made is enforced: there must exist some system-

atic method for the application of the empiricisms to the calculation of any given flow.

Put another way, the empiricisms must either be universal or have clearly defined limits

of validity.

It is perhaps important to introduce the analytical model to be described in this

paper with a summary of the features of the basic work described in references 1 to 4.

In the first of these papers (ref. 1) a simple turbulent kinetic energy model was intro-

duced, in which a linear relation between the turbulent kinetic energy and turbulent shear

stress was employed to obtain the shear stress from the solution of the turbulent kinetic

energy equation. Gradient diffusion of turbulent kinetic energy was assumed with a con-

stant "kinetic energy Prandtl number," and the length scale required to evaluate the dis-

sipation term in the kinetic energy equation was taken to be proportional to the local width

scale of the mixing zone. In this context the model introduced and applied to two simple

flows in reference 1 is a single-equation model, since compared to an eddy viscosity

method, the only additional equation required is the turbulent kinetic energy equation.

Universal constants were assumed for the kinetic energy Prandtl number, for the ratio

between turbulent shear stress and turbulent kinetic energy, and in the dissipation term.

The work described in reference 2 (summarized in ref. 3) and the similar work

described in reference 4 involved the application of the method to progressively more

complex free mixing flows, including flows with heat and mass transfer. Throughout this

work the universal constants defined in reference 1 were retained. In reference 2, which

to some extent parallels the approach of this conference, the predictions of this single-

equation turbulent kinetic energy method were compared with the predictions of a number

of eddy viscosity models for a wide variety of flows, including several that are included

as test cases for this conference. The conclusion drawn from this comparison was that,

even though some serious difficulties remained, the predictions of the turbulent kinetic

energy model with the universal constants were, in general, better than those of any eddy

viscosity model tested when it was required that the constants appearing in the eddy vis-

cosity models also be considered to be universal.

In particular, good agreement between kinetic energy theory and experiment was

shown in reference 2 for coaxial air-air mixing, similar to test cases 9 and 20 of this

conference, for hydrogen-air mixing, similar to test cases 10 and 21, and for wake flows

such as test cases 14 and 15. Indeed, based on the work of reference 2, it is clear that

the universal constant model would be capable of predicting at least 8 and probably 10 of
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the 23 available test cases for this conference without change. However, reference 2

also showed that the universal-constant model was clearly in error for the important jet

into still air flows. In addition, the asymptotic two-dimensional shear layer had not been

attempted nor had initial conditions other than experimental shear stress profiles been

used, except for one flow. Inevitably, the extension of the model described in references 1

to 4 to handle such problems led to the need for refinement of some features of the model.

As might be expected, the refinements incorporated in the model described in this

paper involve the empirical functions that must be introduced to close the turbulent kinetic

energy equation. The new functions have been developed primarily through a process of

computer experimentation, in which the predictions made by turbulent kinetic energy

theory have been compared both with experimental data and with the predictions of simple

eddy viscosity models in those flows in which the simple models are known to be adequate.

The integral turbulent kinetic energy theory developed by C. E. Peters at AEDC, whiah is

briefly described in paper no. 17 of this compilation, has been very useful in the develop-

ment of these improved functions. Such a theory allows a rapid investigation of the

asymptotic behavior of a given turbulent kinetic energy model in certain relatively simple

flows without the numerical complications that can develop with finite-difference tech-

niques. In addition, integral techniques, in which the profiles of the dependent variables

are specified a priori, eliminate the problem of specification of a diffusion function for

turbulent kinetic energy (since the lateral diffusion integrated over a profile at a given x

must be zero) and allow the production and dissipation terms to be evaluated in terms of

integral quantities. This then simplifies the interpretation of the effects of changing the

constants appearing in the turbulent kinetic energy equation for flows in which the profiles

of the dependent variables can be adequately prescribed.

SYMBOLS

a 1 ratio of turbulent shear stress to turbulent kinetic energy, r/pk

a2 dissipation parameter (see eq. (1))

b local width of mixing region

jet species concentration

D diameter

k turbulent kinetic energy per unit mass,

/ \

l!2(u,2+v2+w,2)
\ /
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constant in Prandtl exchange coefficient model

length scale, equal to distance between 0.90Zlu and 0.10Au in a shear layer,

distance between 0.99_u and 0.01_u in the core region of a jet, and 2rl/2

in an axisymmetric flow

Mach number

kinetic energy Prandtl number

turbulent Prandtl number

"turbulent Reynolds number," equation (2)

radius

turbulent Schmidt number

static temperature

velocity

characteristic velocity difference, (Uma x - Umin)

turbulent shear stress correlation

mean-flow lateral velocity component

axial coordinate

general lateral coordinate

concentration

parameter, 1 for axisymmetric flow and 0 for two-dimensional flow

initial boundary-layer thickness



turbulent eddy viscosity,

0

P

momentum thickness

density

% reference value of spreading parameter

turbulent shear stress, -pu'v'

Cr

Subscripts:

center-fine value

free-stream value or maximum value in outer jet for coaxial mixing

max maximum value at cross section

min minimum value at cross section

O value at the nozzle

value on high velocity side of shear layer

1/2 or mu

value on low velocity side of shear layer

point at which u = 1/2(u c + Ue)value at

ANALYSIS

In addition to the continuity, momentum (mean flow), energy, and species equations

necessary in any treatment of a general free turbulent mixing problem, the method

described in this paper involves the solution of the turbulent kinetic energy equation. This

equation can be written as described, for example, in reference 2: The parameter _ is

0 for a two-dimensional flow and 1 for an axisymmetric flow.

Bk 8k- 1 _ IPeyfl_._k_ _Su a2Pk3/2

°UTx+  -y\p + _y, rk By/. By Ik

Convection Diffusion Production Dissipation

(1)
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In thedevelopmentof this equation and its application along with the momentum

equation to the solution of a given problem, empirical hypotheses have been invoked at

three points. The first of these is in the definition of the appropriate form for the dif-

fusion of turbulent kinetic energy. Equation (I) incorporates a gradient diffusion hypoth-

esis; such a hypothesis, with a constant "kinetic energy Prandtl number" Pr k equal

to 0.70, was used in the model described in references I to 4, and is also used in this

paper.

As written in equation (I), the form assumed for the dissipation term is unchanged

from the earlier work. However, whereas a universal constant value for a2, equal to 1.5,

was assumed in the earlier work, constant a 2 falls to yield the proper asymptotic behav-

ior in all flows, and an expression allowing axial variation of a 2 has been developed. No

lateral variation of a 2 is allowed.

The third hypothesis is the relation between turbulent shear stress and turbulent

kinetic energy. Again, the form of the relationship is the same as that used previously:

= alPk

In the earlier work, two expressions for the lateral variation of a 1 have been used. For

two-dimensional flows (including the core region of an axisymmetric jet), a 1 has been

taken to be essentially constant, with a value of 0.3 (and with its sign defined by the veloc-

ity gradient), whereas in axisymmetric flow, the expression

has been shown to apply (ref. 3). However, in the course of the work described in this

paper, it became clear that a new function for the lateral variation of a 1 had to be

developed for the two-dimensional shear layer. Such a function was devised and is

described subsequently; the new function also has certain implications for the prediction

of the core region of axisymmetric jets.

In addition, one of the often mentioned problems with turbulent kinetic energy meth-

ods is the fact that at the initial station, turbulent shear stress profiles are needed, and

experimental profiles are seldom available. In the work described herein, two simple

techniques have been used to start the calculations, the choice depending on the position

of the start profile. Neither of these techniques involves a detailed knowledge of the ini-

tial shear stress profiles. Taken together, they effectively remove the "initial shear

stress profile" objections.
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The Dissipation Function

As mentioned previously, itquicklybecame evident during the development of the

integral turbulentkinetic energy theory by C. E. Peters and W. J. Phares (paper no. 17)

that a constant value of a2 could not provide the proper asymptotic behavior for all

flows considered in this conference. Although itis certainly arguable that the reason for

thislles in the form of the term itself,itis less complicated to obtain the proper asymp-

toticbehavior through variation of a2, ifthis is at allpossible. Thus, the basic k3/VZ k

proportionalityhas been formally retained,with a new expression describing the axial

variation of a2.

The a2 function developed by Peters is based on a "turbulent Reynolds number"

R T defined as

AUlk "(2)
R T = --_

where Au is a characteristic velocity difference across the mixing region, such as

Uma x - Umin; l k is a characteristic length scale, for example, twice the half-velocity

width rl/2 in an axisymmetric flow; and e is the local value of the effective (or eddy)

viscosity. Because Peters evaluates the shear stress at only one point in a lateral pro=

file Yl/2, RT needs only one value at a given x; in the present work R T varies
across a profile, but in order to assign a characteristic value, the point of maximum tur-

bulent energy is chosen as the point to evaluate R T. With R T defined as in equa-

tion (2), the appropriate values of this parameter can be immediately written down for

some flows for which the Prandtl eddy viscosity model

1

e = kpZkAU = _TT IkAU

is known to provide a good asymptotic prediction. Thus, for the incompressible two-

dimensional shear layer, for which kp = 0.007, RT is 143, whereas for a circular jet

in stillsurroundings, for which kp = 0.0125, RT is 80.

The relation between a2 and R T used in this work is one of a family of rela-

tions developed by Peters and is given by

a2=3.89 315 (RT>143)
R T

(3a)

a 2 = 1.69 (70<R T< 143) (3b)
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a 2 = 0.99 + 0.01R T (R T < 70) (3c)

The relationship expressed by equations (3) is not entirely optimum for the calculations

described in this paper, primarily, because of differences in the point in a lateral profile

at which R T is calculated between the integral and the finite-difference methods. In

particular, the point at which equation (3c) is applied in the finite-difference method prob-

ably should be at R T < 30, and the break at R T = 143 needs to be handled more gradu-

ally than equations (3) allow. However, as the results will show, equations (3) do allow

the accurate calculation of a very wide variety of flows. Further development of the

empirical functions represented by equations (3) is continuing; some of this development

is described by Peters in paper no. 17.

Relation Between Shear Stress and Kinetic Energy

Although al, the ratio of the turbulent shear stress to the turbulent kinetic energy,

is sensibly constant (at a value of 0.3) for a wide variety of flows (ref. 5), the necessity of

allowing for some lateral variation of a 1 has always been understood. Thus, in previ-

ously reported work in axisymmetric flow, the expression

(where the subscript "max" refers to the point where au/_r attains its maximum value)

has been used from the center line to the point at which

with the expression

0.3(_u/_r)
a 1 -

being used for the rest of the profile to insure the proper algebraic sign for the shear

stress. In two-dimensional flow, the expression
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was used only in a small region around the point of maximum or minimum velocity gra-

client, primarily to avoid excessive steepening of this gradient.

However, in the course of the work carried out for this paper, it was found to be

impossible to obtain an accurate prediction of the incompressible two-dimensional shear

layer by using either of the two models described previously. Because the problem lay

in the prediction of shear stress at the profile edge, it was not possible to determine the

appropriate a 1 function from comparison with experimental data. Instead, use was

made of the fact that the incompressible two-dimensional shear layer is one of the flows

for which the Prandtl eddy viscosity model provides an accurate asymptotic prediction.

A calculation was made with the Prandtl model to obtain the shear stress and the produc-

tion term in the turbulent kinetic energy equation. The resulting shear stress and kinetic

energy profiles were then used to obtain the lateral variation of the parameter al, as

shown in figure 1. In this figure, the symbols represent different x-locations at which

the calculated profiles were obtained, and the solid line represents the a 1 function

derived from these results. Positive values of the abscissa represent the high-velocity

edge of the shear layer. This variation was found to be reasonably universal for the

incompressible shear layer, as can be seen from the figure, and has been used in all

asymptotic shear layer calculations in this study.

The a 1 profile obtained for the two-dimensional shear layer may also be appro-

priate for the mixing layer in the core region of a jet. Because of time limitations it has

not been possible to investigate the application of the a 1 function to these flows, but it

is possible that use of a function such as that represented by figure 1 will reduce the

fairly long transition region that is predicted in some of the flows described in the follow-

ing section.

Initial Conditions

The most often-quoted major objection to the use of turbulent energy methods in the

prediction of free turbulent mixing has been the apparent necessity of obtaining a turbu-

lent shear stress (or turbulent kinetic energy) profile to start the calculation. In the cal-

culations described, this problem has been in large part overcome; experimental shear

stress profiles have not been used to start an___yyof the calculations reported herein, and

experimental estimates of the turbulent shear stress level have been used in only those

few cases where other estimates could not properly be made.
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To start these calculations, two techniqueshave beenused. In all cases in which
the initial profiles have beengiven at x = 0, the turbulent eddy viscosity profiles obtained

for boundary-layer flows by Maise and McDonald (ref. 6) have been used to obtain the pro-

files of the turbulent shear stress. These profiles were also used for the boundary-layer

portion of the initial velocity profile for the compressible two-dimensional shear layer

(test case 5), although the start point for this case was not at x = 0. In all other compu-

tations, for which profiles have been given downstream of the origin of mixing (usually in

the core region of a jet flow), constant eddy viscosity has been used to generate the ini-

tial shear stress profile. One exception is test case 24, for which the start point was in

the laminar part of the flow. The eddy viscosity has in general been that appropriate for

R T = 200 (i.e., a Prandtl constant of 0.005), although in a few cases a more accurate

estimate of the experimental R T was necessary. As the results described in the next

section show, it is not necessary to have detailed knowledge of the initial shear stress

distribution for each case in order to get accurate predictions of the flow development.

Numerical Solution Technique

The finite-difference numerical technique used to make the calculations reported

herein is identical to that reported in references 1 to 4. One of the features of this tech-

nique is that the constant-momentum-excess requirement applicable to free turbulent

flows is satisfied at each station; that is,

_: pu(u - ue)yfldy = Constant

As across-check, the value of the product (rl/2/ro)(Uc/Uo) was evaluatedfortheaxi-

symmetric jet flow of test case 18. If momentum is conserved, this product should be

constant for the similar profile region of the flow. Over the range 30 < x/D < 115, the

valueof (rl/2/ro)(Uc/Uo) varied within +l.5 percent of its average for this calculation.

RESULTS

Successful computations were completed for 23 of the 24 test cases that were avail-

able. The only case not computed was test case 23, the compound coaxial jet, which would

have required fairly complicated reprograming to account for the simultaneous develop-

ment of two shear layers.

Because of the large number of cases to be covered, the discussion in this section

is limited to the most significant aspects of each case computed. The comments to fol-

low in the main emphasize the problems encountered in these computations. The overall
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success of the method described in this paper will speakfor itself. General details of
the starting techniquesandthe dissipation function used are noted in table I, which also
provides a guide to the appropriate figures.

Two-Dimensional ShearLayers

As might be inferred from the discussion of the a1 function, the five shear layer
cases required a relatively large developmenteffort which is not yet complete. This
developmenteffort was particularly important for the three asymptotic cases, for which
the new a1 function was particularly necessary. For test cases 1 to 3, the calculations
beganwith initial shear stress profiles obtainedfrom the appropriate Maise and McDonald
eddy viscosity profiles (ref. 6) and constant al, as is appropriate for boundary-layer
flow. At anarbitrary distance downstreamthe a1 profile indicated in figure 1 was
introduced (approximated analytically by a series of straight-line segments). For test
cases 1 to 3, since only the asymptotic behavior was required, the point at which thenew
a1 function was applied could be truly arbitrary (it was taken to be 1initial boundary-
layer height), but as will be seenin test cases 4 and 5, the choice canbe important for
the preasymptotic shear layer. No transition function was used to changefrom a constant
a1 profile to the profile shownin figure 1.

Self-preservation was approachedat relatively small axial distances for the incom-
pressible shear layers, althoughwith values of a lower than are commonly reported.
The calculation of a was madeby using the standarddefinition of a for this conference

e = 1.855 x2 - xl

Y2 - Yl

where Yl and Y2 represent the lateral distance between the points at which

u - u2 u - u 2
= 0.1 and _ = 0.9 at x 1 and x2, respectively. Figure 2 shows that the

u 1 - u2 u 1 - u 2

profile shape passes through a shape appropriate to the a = 11.8 data of Liepmann and

Laufer (ref. 7), but at these distances it is apparently still evolving with cr decreasing.

Figure 3 shows that the predictions of a are apparently uniformly low, since the classi-

cal behavior of a with velocity ratio is recovered.

There is no evidence that the a 1 profile represented in figure 1 is invariant either

with Mach number variation or density ratio variation. Indeed, there is some evidence

that it is not, primarily from the differences between these calculations and those reported

by Peters and Phares (paper no. 17). In the latter work, the shape of the turbulent kinetic

energy profile is assumed to be invariant, wl-dch imp_es that the lateral variation of the
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ratio of the turbulent shear stress to the turbulent kinetic energy (i.e., al) cannot be

invariant with either Mach number or density ratio variation. In any event, the a 1 func-

tion shown in figure 1 was used for all shear layer calculations, and figure 4 shows the

predicted variation of a with Mach number. Note particularly the extremely great dis-

tances required to approach a self-preserving condition at the higher Mach number.

The variation of _ with density ratio predicted by using this model is shown in

figures 5 and 6. As noted in figure 6, the density ratio was obtained by varying the tem-

perature of the two streams. Within the framework of the commonly made unity turbulent

Lewis number assumption, similar results would be obtained by varying the molecular

weight of the two streams. However, the unity turbulent Lewis number assumption is not

necessary in the analysis. The predicted variation of a with density ratio is completely

different from that predicted for a similar variation in density ratio caused by Mach num-

ber variation.

The asymptotic two-dimensional shear layer predictions are not meant to represent

an adequate and correct theory of this particular flow. They do show the necessity for

including a different sort of lateral variation of a 1 in such a flow from that which is

necessary in other flows. This lateral variation may in turn be important in the predic-

tion of the core region of axisymmetric jets. Further, these calculations indicate that,

at least in some instances, self-preservation is only very slowly reached - an observa-

tion that raises obvious questions about the interpretation of experimental results.

Self-preservation, or the lack of it, is also a factor in the two remaining shear

layer flows, test cases 4 and 5. In these calculations direct comparison with experi-

mental profile data is made, and these comparisons indicate that both of these flows were

preasymptotic.

Evidence for this statement in test case 4 is shown in figure 7, which shows that the

"constant al" model provides a better prediction of the velocity profile at x = 76 cm

than does the "shear layer al" model. For both test case 4 and test case 5, the pre-

dicted profiles were matched with the experimental ones at the half-velocity points. This

technique was necessary because the calculation does not satisfy the proper lateral bound-

ary condition at plus or minus infinity. As is well known, the effect of neglect of this

boundary condition is to allow the calculated profiles to "float" in space.

The comparison of shear stress profiles for test case 4 shown in figure 8 shows

that the constant a 1 model overpredicts the shear stress at x = 12.7 cm and strongly

underpredicts it at x = 76 cm. However, analysis of the shear stress profiles given for

test case 4 shows that the peak shear at x = 76 cm is considerably higher than the trend

from the upstream data would indicate it should be. (The experimental peak shear stress

is almost constant at x = 25 cm and x = 46 cm.) Furthermore, it is unlikely that an

error in shear stress prediction of the magnitude shown in figure 8 at x = 76 cm would
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be reflected by the small velocity profile deviations shown in figure 7 at this station.

Therefore, the reported value of shear stress at x = 76 cm is, in the author's opinion,

suspect.

Test case 5 is also evidently preasymptotic, as the comparison of the experimental

and predicted velocity profiles in figure 9 shows. Again, the constant a 1 model pro-

vides the better prediction. This test case and test case 4 both raise the question of what

is the proper point to begin to use the "asymptotic" a 1 profile represented by figure 1.

The answer to this question clearly requires further research.

Axisymmetric Jets Into Still Air

Three test cases in the category of axisymmetric jets into still air were considered,

test cases 6 to 8, and the results were good for all cases as figures 10 to 13 demonstrate.

For all these calculations, the constant a 1 model was used in the mixing layer region

(first regime) of the flow. Downstream of the end of the potential core, the model in

which the constant value of a 1 is modified by the velocity gradient ratio was used as

was used for all axisymmetric flows. The point at which the change of models takes

place is arbitrarily assumed to be that at which the center-line velocity is 0.9 times the

jet velocity. No transition function was used.

The prediction of the subsonic jet of test case 6 began at x/r o = 2 with a Prandtl

constant kp = 0.005. As can be seen from figure 10, the prediction of this flow is quite

good. The fact that the prediction is better if equation (3c) is not used, despite the fact

that the predicted asymptotic value of the turbulent Reynolds number R T is 35, indi-

cates that for these predictions, the upper limit for the use of equation (3c) should be

reduced.

One point of difference between this calculation and the integral technique reported

by Peters is that the R T value is in this analysis obtained at the point at which k = kma x

rather than the half-velocity point. This tends to lower the value of R T somewhat com-

pared with the value obtained by Peters. It would also have been possible in this analysis

to evaluate R T at the point at which v = 7max, which does not in general correspond to

the point at which k = kmax. Had this been done, there would have been a 10-percent

increase in R T for the air-air flows, for which the eddy viscosity is essentially constant

over the inner portion of the flow, and perhaps a 40-percent increase in R T for

hydrogen-air flows. Thus, the point at which R T is evaluated is only a substantial fac-

tor in hydrogen-air flows for which the upper limit for equation (3c) is not a factor.

For test case 7, the length of the potential core is somewhat underpredicted, result-

ing in an overall overprediction of the velocity decay, as shown by figure 11. On the other

hand, the profile prediction is quite good (fig. 12) if the underprediction of the center-line

velocity is taken into account. The profile data are from reference 8.
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Finally, the excellent center-line temperature and velocity agreement with the data

of test case 8 (fig. 13) is obtained by using an assumed (and constant) value of 0.85 for

the turbulent Prandtl number.

Jets in Moving Streams

The first of the coaxial jet cases, test case 9, represents the data of Forstall

(ref. 9). For these calculations, the 10 percent by volume helium trace was included so

that the initial jet to outer stream density ratio was 0.92. In table I it is noted that two

initial profile offsets were used in the calculation for test case 9. One calculation was

made by using the shifted profiles given by the data sheet for test case 9, and the others

were made by using the unshifted profiles given in the data sheet. Figure 14 demon-

strates that the most accurate prediction uses the latter start condition and further

neglects the use of equation (3c). The initial radii reported in figure 14 represent the

location of the inner edge of the viscous region. For test case 9, as for test case 6, the

asymptotic value of R T is of the order of 35, indicating again that the upper limit for

equation (3c) should be of the order of R T = 30 for this method. Profiles of velocity

and concentration are shown in figure 15 (the data obtained from curves presented in

ref. 9), and figure 16 shows excellent agreement with the data for the half-velocity width

calculation. Both of these figures relate to the "unshifted" calculation shown by the

dashed line in figure 14, for which equation (3c) is not used.

Perhaps the strongest feature of the method described in this paper is the relative

ease and accuracy with which more complex flows involving heat and mass transfer are

handled. Figures 17 and 18 show the excellent agreement between theory and experiment

for the hydrogen-air mixing data of test case 10. The experimental profile data were

obtained from reference 10.

For test case 10 (and the similar data of test case 21) a second regime start point

was assumed for the calculations; that is, the initial viscous region was assumed to extend

all the way to the center line. The profile data were obtained, as in all the calculations,

from the appropriate data sheet. The start points for both test cases 10 and 21 are in the

transition region between the first and second flow regimes, and such start points are

among the most difficult to use with this method. For calculations which start at

x/D = 0, the natural tendency is for the level of kinetic energy near the inside edge of the

viscous region to increase fairly slowly but rapidly enough that the center-line kinetic

energy is of the order of 70 percent of the maximum in a profile at the point at which the

"second regime" a 1 profile is put into effect. In calculations starting in the transition

region as this one does, the increase in kinetic energy near the inside edge of the viscous

region does not occur, so that the kinetic energy (and hence the shear stress) is too low

near the flow center line. The result is an excessively long transition region, with
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6 diameters being required in this particular flow for the center-line velocity ratio to

drop to 0.90.

However, this problem was overcome within the framework of a constant eddy vis-

cosity start profile by using the second regime velocity gradient ratio throughout the flow.

Since the initial shear stress is input, the initial kinetic energy was obtained by using the

second regime velocity gradient ratio inverted; thus, the initial kinetic energy was main-

tained at a constant value from the center line to the maximum velocity gradient point,

which is a reasonable approximation to the form that the kinetic energy profile would have

had if the calculation started at x = 0. It must be stressed that this is only a problem if

a transition region start is used and, thus, was only a problem for test cases 10 and 21.

The hydrogen-air flows of test cases 12 and 22 did not require such treatment.

Incidentally, the value of the Prandtl constant implied by the shear stress used to

start this calculation, which was obtained from the Tmu data of reference 10, and the

assumed width of the profile, is kp = 0.005, the same as has been generally assumed for

nonzero start points.

The data of test case 11 have some curious features, not the least of which is the

fact that the value of the center-line velocity, initially lower than the free-stream veloc-

ity, drops still lower before beginning to rise. Nevertheless, the overall prediction still

compares favorably with the data as shown in figure 19.

Comparison of the theoretical prediction of test case 12 with the experimental data

(fig. 20) indicates that very good results can be obtained for hydrogen-air flow with a cal-

culation starting at x/D = 0, with a Maise and McDonald eddy viscosity profile being used

to obtain the initial shear stress. Profile comparison (fig. 21) also shows reasonably

good agreement, if the difference between the predicted and actual center-line values at

the axial station chosen is taken into account. The data are from reference 11.

The prediction of the two-dimensional jet in a moving stream, test case 13, is shown

in figure 22. For this case, no initial boundary-layer data other than an initial momentum

thickness for the two boundary layers together were available. Calculations were begun

with 1/4 power-law initial boundary-layer profiles because the 1/7 power-law profile

ordinarily used resulted in extremely thick initial boundary layers being necessary to

equal the quoted momentum thickness. Maise and McDonald eddy viscosity profiles were

used to obtain the initial shear stress level. The agreement between the experimental

values of center-line velocity and the computed values is quite good as can be seen from

figure 22.
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Wakes

Accurate prediction of the two-dimensional wake flows required the use of a con-
stant value of a2 rather than the variation described by equations (3). The value 1.4
was considerably lower than equations (3) wouldpredict at the RT appropriate to the
flow. For axisymmetric values, the function described by equations (3) seems to be ade-
quate. However, the prediction of the axisymmetric wake flows is not sufficiently good
for any strong conclusionsto be drawn regarding the optimum a2 for those flows.

The center-line velocity prediction for a preasymptotic two-dimensional wake,
case 14, is shownin figure 23. Becausethe presentation method tends to emphasizethe
discrepancies betweentheory and experiment rather markedly, velocity profile shapes
are comparedin figure 24. The corresponding turbulent shear stress profiles are shown
in figure 25,which indicate that the Maise and McDonaldeddyviscosity profiles used to
start thesecalculations may have significantly underpredicted the actual initial shear
stress level.

Theory andexperiment for an axisymmetric wake, test case 15, are comparedin
figure 26.

The asymptotic two-dimensional wake data of test case 16were computedby using
the initial RT reported in reference 12to obtain the initial shear stress. Prediction
and experiment are compared in figure 27.

Again, an initial RT reported in reference 12was used to start the computation
for test case 17,an axisymmetric wake; the comparison betweentheory andexperiment
is shownin figure 28.

Optional Test Cases

Thefirst of the optional cases, test case 18, is the prediction of the asymptotic free
jet. Unfortunately, the data given are not appropriate for an asymptotic jet. Figure 29
showsthe center-line velocity decay for the data of reference 13from which test case 18
was taken; it canbe seenthat the prediction for this casegoes essentially through the
data points. The start condition was taken from the data of Bradshaw, Ferriss, and
Johnson(ref. 14)at x/D = 1. Also shown in figure 29 are the free jet center-line veloc-

ity results obtained by Albertson, Dai, Jensen, and Rouse (ref. 15), which follow the clas-

sical (x/D) -1 decay law quite well. Clearly, the data of reference 13 do not satisfy this

decay law, and, for x = 100, the center-line velocity recorded by Wygnanski and Fiedler

(ref. 13) is considerably lower than that which would be obtained from an (x/D) "1 decay

from, say, x/D = 40. For a free jet, the excess momentum integral must be a constant.

Thus, if two flows vary in center-line velocity with constant momentum excess in such a

manner that the center-line decay curves cross, one would expect the flow with the lower

center-line velocity to have the wider profile. Comparing the test case 18 data with data
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from reference 15 (fig. 30) shows that this is not true. On the other hand, the theory

does show a wider profile than either the reference 15 data or the test case 18 data.

Therefore, the conclusion is made that the data for test case 18 were not, in fact, prop-

erly asymptotic.

Figure 31 demonstrates the good agreement of the present method with the data of

test case 19. Three further coaxial mixing cases are presented in figures 32 to 36. Note

especially the excellent profile agreement shown in figures 33 and 35, along with the good

axial decay agreement shown in figures 32 and 34 for both test cases 20 and 21. Fig-

ure 36 demonstrates the quite acceptable prediction of the unusual hydrogen-air flow of

test case 22 achieved with the present method. This method will, of course, not predict

the negative velocity ratios measured experimentally, and the computation stopped at

x/D = 26 where the velocity profile had all but flattened out.

The last case to be discussed is the interesting two-dimensional wake flow of test

case 24. The start point for this case is in the laminar portion of the flow; there follows

in the experimental data a fairly long transition region until behavior characteristic of a

turbulent flow develops. In the computation of this flow, the viscosity term appearing in

the momentum equation was taken to be made Up of a laminar and a turbulent contribution.

The laminar contribution was obtained from the experimental data of reference 12, and

the turbulent contribution was obtained through the solution of the turbulent kinetic energy

equation in the normal manner. A very low, uniform, initial turbulent kinetic energy pro-

file was used to provide the initial condition for the solution of the turbulent kinetic energy

equation, and the level of the energy was allowed to develop as described by the equation.

Referring to the turbulent kinetic energy equation (eq. (1)), the production term was eval-

uated with only the turbulent contribution to the shear stress, whereas the viscosity

appearing in the diffusion term was taken to be the total viscosity.

Results of several computations with this approach are shown in figure 37. The

computations differ only in the initial turbulent kinetic energy level assumed. This level

is described in the figure in terms of the associated turbulent intensity level based on an

assumed isotropic condition - that is, u' = v' = w'. As can be seen from the figure, the

effect of increasing the initial intensity level is to shorten the transition region, as would

be expected. Note also that the level giving the best agreement with the data is 2 percent,

which agrees well with the quoted intensity levels from reference 12, which, based on the

outer stream mean velocity, ranged from 0.3 percent to 3 percent through the laminar and

transition regions. Because the wake was heated, the turbulent Prandtl number for these

calculations was taken to be 0.85.

Since it was not possible to completely establish a priori an appropriate start con-

dition for this problem, the results shown herein should only be taken as a demonstration

of the abilities of the method described in this report, using an admittedly crude start
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technique. Transitioning flows such as test case 24 would appear to require more knowl-

edge of the experimental initial conditions than fully turbulent flows.

CONCLUDING REMARKS

As was stated in the introduction, the work described in AEDC-TR-71-36 made it

clear that the universal constant kinetic energy approach described in that reference was

capable of handling a substantial number of the test cases for this conference without

change. Indeed, ignoring the free shear layer cases for the moment, the only obvious

area in which this method would have clearly failed was in the prediction of the circular

jet, test cases 6, 7, 8, 18, and 19. On the other hand, it had not been developed to the

point that calculations could be routinely initiated without detailed knowledge of the ini-

tial shear stress profiles.

The results described in this paper show that with a small increase in complexity -

that is, the addition of a function describing the axial variation of the dissipation param-

eter a 2 - the kinetic energy method described in AEDC-TR-71-36 can be applied to a

wide variety of flows of engineering interest. In particular, accurate predictions of jets

with zero secondary flow and coaxial jets, including heat and mass transfer, can routinely

be made without exact knowledge of the initial shear stress profiles and with a well-

defined method of obtaining the necessary empirical constants which does not involve

prior knowledge of the results desired.

Some work is still required to obtain the optimum function for the dissipation

parameter a 2. The asymptotic free jet prediction does not seem proper, as the classi-

cal center-line velocity decay rate is not recovered. Also, the shear layer form for the

lateral variation of the ratio of shear stress to turbulent kinetic energy, al, needs to be

further investigated, with particular emphasis on the effects of Mach number and density

variation. Further work is underway on this problem, as well as on the problem of inte-

grating the shear layer a 1 model into an overall model for better prediction of the core

region of axisymmetric jets.
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TABLE I.- SUMMARY OF CALCULATION TECHNIQUES

Test
case Type

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2O

21

22

23

24

Incompressible 2D shear layer

Compressible 2D shear layer

Variable density 2D shear layer

Incompressible 2D shear layer

Compressible 2D shear layer

Circular jet

Supersonic circular jet

Compressible circular jet

Coaxial air jets with He trace

Coaxial H2-air

Compressible coaxial air-air

Compressible coaxial H2-air

Plane jets

Incompressible plane wake

Incompressible axisymmetric wake

Compressible plane wake

Compressible axisymmetric wake

Circular jet

Compressible circular jet

Coaxial air-air jets

Coaxial H2-air jets

Coaxial compressible H2-air jets

Coaxial air-air jets

Compressible plane wake

Start point

x=0cm

x=0cm

x=0cm

X=0cm

X= 2.5cm

x/D = 1

X=0cm

x/D = 2.8

x/D = 0

x/D = 3

x/D = 0

x/D = 0

x=0cm

x=Ocm

x/D = 0

x = ).91 cm

x = ).74 cm

ix/D= 1

x/D = 2.8

x./D = 0.23

x/D = 2.6

x/D = 0

x = 1.67 cm

Start method Dissipation
parameter

Maise & McDonald a 2 = 1.69

eddy viscosity

As for case 1

As for case 1

As for case 1

As /or case 1a

Prandtl e,

kp = 0.005

Maise & McDonald

eddy viscosity

Prandtl e,

kp = 0.005

Maise & McDonald

eddy viscosity

Constant eddy

viscosity

Maise & McDonald

eddy viscosity

As for case 11

As for case Ii

Maise & McDonald

eddy viscosity

Prandtl t,

kp=0.005
Constant eddy

viscosity

Constant eddy

viscosity

Prandtl _,

kp = 0.005

Prandtl e,

kp = 0.005

As for case 19

Constant eddy

viscosity

Maise & McDonald

eddy viscosity

Laminar viscosity

+ constant {low)

turbulent

intensity

aMaise and McDonald eddy viscosit profiles used for boundary-layer

adjacent Maise and McDonald value) for remainder.

Zqs. (3)

Eqs. (3)

a 2 = 1.69 Eqs. (3)

Zqs. (3)

Eqs. (3)

Eqs. (3)

Zqs. (3)

Eqs. (3a), (3b)

Zqs. (3)

Eqs. (3a), (3b)

Figure Remarks

Uses a I profile from fig. 1

4 As for case 1

5, 6 As for case I

7, 8 As for case I; also with a I = Constant

9 As for case 4

10 a2,mi n = 1.69 in one calculation

11, 12

13

14, 15, 16 Two initial profile offsets

17, 18 e obtained from extrapolation _'mu

plots of ref. 10

19

Sqs. (3)

Eqs. (3) 22

a2 = 1.4 (constant) 23, 24, 25

Eqs. (3) 26

!a 2 = 1.4 (constant) 27

Eqs. (3) 28

Eqs. (3a), (3b) 29, 30

Zqs. (3) 31

Eqs. (3) 32, 33

Eqs. (3) 34, 35

Eqs. (3) 36

a 2 = 1.4 37

20, 21 Initial velocity profile from data of

ref. 14

e obtained from extrapolation of R T

plots of ref. 12

As for case 16

Data not actually fully developed

Eddy viscosity from extrapolated 7mu

of ref. 10

Not attempted

Computed through transition to

turbulent flow

_ortion of initial profile with constant e (equal to one-half the
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Figure 2.- Comparison of predicted shear layer velocity profile with data of
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DISCUSSION

D. M. Bushnell: What has been your experience as far as predicting core length for

heterogeneous mixing? You show results which indicate that you are picking up the right

core length. I wonder, do you feel confident that this is a feature of your method and that

you automatically get this?

P. T. Harsha: I feel confident that I get in the "right ballpark" with the core length.

However, I am not overly confident that I can predict core length in every case. The

results I show here, if I can use the Maise and McDonald type of start, seem to do quite

well, however.

J. M. Eggers: Could you describe your experiences in applying this technique to the

reacting flow field for which I understand you have performed at least some preliminary

calculations.

P. T. Harsha: The problem with the reacting flow calculation is in general that the den-

sity field has an even larger density variation across the shear fields and this tends to

create numerical difficulty for me. The results which we have reported using this have

not used the a 1 and a 2 models I have described here, but that was only because we

were attempting to reproduce some experimental results which were probably in error in

any case. I think that the technique as described here can be used for calculations for

reacting flows - the only problem being the amount of finesse required to handle large

density ratios.

D. B. Spalding: I wonder if you could explain why you say you are using Bradshaw's

model. I know that you start off by looking at the equation • = alPk , but no sooner have

you got it than you depart from it by saying a 1 must vary. The thing which is queer

about the Bradshaw relationship is that it does require that the shear be proportional to

the energy, and so you promptly change. Now your old method was to make a 1 propor-

tional to the velocity gradient which immediately gives you an effective viscosity type of

relationship. There is a direct proportionality between the shear stress and the velocity

gradient. Later on you seem to have done more complicated things. But it seems to me

that right from the start you just introduced Bradshaw's hypothesis and then threw it away

while retaining the name.

P. T. Harsha: Your comment is well taken. I really meant to say that the hypothesis that

I used was originally introduced by Bradshaw but it is necessary to put a lateral variation

of a 1 in an axisymmetric flow. I don't believe that Bradshaw has attempted axisym-

metric flows.

I. E. Alber: How do you obtain the length scale i k in your formulation?
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P. T. Harsha: The length scale is simply a geometric length scale. In the shear layer

region, it is taken to be equal to the distance between the 99- and 1-percent velocity points

and in the developed region of a jet it is taken to be twice the half-radius.

I. E. Alber: Also with respect to the two-dimensional mixing layer, I noticed that you

find little variation with Mach number as other predictors have found, but with respect to

the variation of the spreading parameter _ with the density ratio you find quite a con-

siderable variation. Can you explain that?

P. T. Harsha: No. All I can say is that those were the results that I got. I simply ran

the case to see what happened. I have no good explanation for it.

M. V. Morkovin: It seems to me that it would be desirable for you to take a good look at

where it comes from because this is the central issue of the density stuff. If there is a

clue in the thing it would be nice to know, and if it's a fluke, then it's a fluke, but it seems

to me you want to follow up Alber's comment and see where it comes from.

P. T. Harsha: Well I fully agree, and I simply did not have time in preparing for this

conference to look at it any more thoroughly than to just run the calculations. But I

definitely agree that this is a major problem that must be faced.

Written Comment

S. C. Lee: Referring to the original paper I presented to an AIAA meeting in 1969,1 I

am very glad to see that Dr. Harsha has applied this method to supersonic free mixing

problems. However, using several values for one empirical constant is exactly what I

wish to eliminate by developing the turbulence kinetic energy method instead of using the

simpler eddy viscosity approach. In Harsha's version, the coefficient a 2 (occurring in

the dissipation term) is falling into this category. Professor Spalding introduces a dis-

sipation rate equation which is one way to consider the dissipation term of the turbulence

kinetic energy equation. I feel the direct approach is to measure the spatial correlations

in addition to the Reynolds stresses to obtain a functional relationship of a 2 as I out-

lined in a paper presented at the 1972 Heat Transfer and Fluid Mechanics Institute.

1Lee, S. C.; and Harsha, P.T.: The Use of Turbulent Kinetic Energy in Free IQIixing
Studies. AIAA Paper NS. 69-683, June 1969.
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DISCUSSION

W. G. Hill, Jr.: Do you know of any measurements of the jet behind an actual aircraft in

flight, where you have a lot of other things going on?

P. H. Heck: I know of tunnel data only, where they have used a scale model of an aircraft

and tried to get behind it. Invariably the wake is highly distorted because of the lifting

effect of the aircraft.

W. G. Hill: Yes, well that is part of the point. This question is primarily directed

towards your comments about IR. In flight, you have a self-propelled body which has

a net zero momentum wake. The place where most of the methods seem to have prob-

lems is with the wake, where those who do handle the wake use different constants than

they do for the jets. Now, for the case where you have a wake and a jet that is essen-

tially one and the same, what do you do?

P. H. Heck: That becomes a rather specialized problem in the IR area, and I don't think

that I am able to answer it right here. For one thing, I have to admit that once you get

into the particulars of IR, you have to stamp a security classification on everything, and

I' 11 have to leave it out.

S. W. Zelazny: How did you get your initial turbulent energy profiles for cases where

they weren't available ?

P. H. Heck: We use a flat initial profile, and it has to be an estimate where we are not

given information.

S. W. Zelazny: How do you determine the amplitude of the flat profile ?

P. H. Heck: In our applications, we have enough data behind our combustion-type engines

which give us an empirical model which we can use as a functional start. Otherwise, we

have to look at the experiments and, in some cases, if we really want to fit data we have

had to look at the experiment very critically and occasionally use trial and error to deter-

mine what the initial turbulence should have been. One of the characteristics we have

found is that the experiments inherently have had low turbulence and, of course, the real

applications have a turbulence of 10 to 20 percent initially.

D. M. Bushnell: I have two questions. First, I don't really understand how we can com-

pute core length for these heterogenous compressible jets but we can't compute developed

free shear layers. Is this because these near-field shear layers in the core are low

Reynolds numbers or are we adjusting initial turbulence levels ?

P. H. Heck: Adjusting initial turbulence levels to make them agree ?

D. M. Bushnell: Yes, I just don't understand how we can compute these things and not

developed shear layers.
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P. H. Heck: The initial turbulence isn't adjusted there. We start with the given quantity

and let the flow field develop, and in the parabolic sense we are moving down the axis.

D. M. Bushnell: Maybe it's the low Reynolds number thing catching up with us. The other

question is, what about your length scale. You don't tell us what you use, especially in

the transition region.

P. H. Heck: The length scale in the mixing layer follows an empirical work by

Ollerhead 1 and in the fully developed region it becomes a constant; we have a transi-

tion between the two which is an exponential decay. It's empirical, of course.

M. V. Morkovin: Did I understand you correctly that you did use the Spalding model but

with different constants ?

P. H. Heck: Yes, we retained the constants in the dissipation term and the diffusion term

that had been developed previously for boundary-layer work. They work quite well.

M. V. Morkovin: What I am driving at is whether a comparison of your results with those

that Professor Spalding presented yesterday (for identical cases) would give us another

clue of the sensitivity to changes in the coefficients. You apparently have differences

between you, yet you are solving the same problems. Is the assumption correct that

there would be some information coming from that ?

P. H. Heck: I guess the comparisons of the details would be very valuable. But we have

to sit down and see what the minute details are.

D. B. Spaldin$: It seems to me that what differences appear in the results must lie in

the differences in the length scale distributions. That is what we really need to know

about. That is where the differences stem from.

P. H. Heck: The length scale is the critical problem in these turbulent kinetic energy

solutions.

B. E. Launder: In your presentation, you gave attention to the fact that you had included

a correlation between density fluctuations and velocity fluctuation. I'm afraid I missed,

however, how you actually approximated this in the model.

P. H. Heck: We used a definition of the turbulent kinetic energy and assumed local isot-

row. I will admit that this assumption is going to be very loose in some of these flows

with high gradients, both temperature and velocity.

B. E. Launder: I'm not sure that I quite understand what you said there. Are you imply-

ing that the correlation between density fluctuations and velocity fluctuations be presumed

to be proportional to, say, a mean density gradient times a turbulent viscosity ?

1Ollerhead, J. B.: On the Prediction of Near Field Noise of Supersonic Jets.
NASA CR-857, 1967.
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P. H. Heck: I'm sorry. In the solution technique, we use the Von Mises transformation.

In using the transformation, the transverse momentum mass flux disappears and there-

fore is not left in the calculation scheme thereafter.

I. E. Alber: I understand, from hearing a talk at a previous AIAA meeting, that your

length scale may be a function of the Mach number in some region of the flow. Is that

correct ?

P. H. Heck: In the initial shear region, the model of Ollerhead includes a term that is

related to the jet exit Mach number squared.

I. E. Alber: I think that is quite important for determining that initial shear layer behav-

ior. Also, I would like to comment on an earlier question about the in-flight problem -

about the zero momentum wake. Typically, if you have engines mounted on the fuselage,

the wakes do not get rolled up in the wing tip vortices, and so you do not have this direct

cancellation of the momentum occurring earlier in the jet development. However, if you

have the jet engines mounted outboard toward the wing tips, you can get the wakes

entrained in the wing tip vortices which carry the induced drag of the aircraft. Then

you can get some different momentum effects.

P. H. Heck: I agree.

S. Corrsin: You have assumed a form of the dissipation which is somewhat different

from that which other people have assumed. Usually, I think, most of the previous

speakers have assumed energy to the three-halves power over a characteristic scale,

whereas you have energy over characteristic scale squared so that basically your char-

acteristic length is the Taylor microscale, whereas the other people's characteristic

length was basically the integral scale. And I think the shortcoming of this as an engi-

neering technique is that the integral scale tends to be independent of Reynolds number

for a given geometry, whereas the microscale tends to be quite sensitive to the Reynolds

number for a given geometry. So this might be a more difficult thing to use.

P. H. Heck: We'll look into it.

S. C. Lee: I'm particularly interested in your correlation between acoustic and turbu-

lence energy or turbulent intensity. One of the curves you showed was pressure fluctua-

tions correlated with the intensity U '2 divided by U 2.

P. H. Heck: The local pressure fluctuations correlated with turbulent intensity, yes.

S. C. Lee: Do you have those two relations directly related with each other? In other

words, every time you measure turbulence intensity, can you say that it is also pressure

fluctuations ?
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P. H. Heck: Maestrello's paper 2 showed a relation which included the equation showing

the static pressure as a function of turbulence plus a constant times another turbulence

term. The constant was arbitrary; not knowing the value of the constant (Maestrello

didn't know it either), the assumption that we made at this point was that the constant

was zero. Of course, we then took a look at the correlation and it did correlate.

S. C. Lee: So there is a relation but not necessarily a known invariant parameter ?

P. H. Heck: Yes, the acoustic relations are much more involved, and that is where you

get into the details.

2 MaestreUo, L.; and McDaid, E.: Acoustic Characteristics of a High-Subsonic Jet.
AIAA J., vol. 9, no. 6, June 1971, pp. 1058-1066.
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