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INTRODUCTION

Turbulent flow fields are generated in shear flows of sufficiently high Reynolds

number for which the laminar shear layer is unstable. Mean flow kinetic energy is

transformed into a random turbulent kinetic energy and finally dissipated into random

thermal energy. The present theoretical model attempts to make predictions of tur-

bulent flow fields by using the historically popular eddy viscosity concept.

The eddy viscosity is assumed to be a fluid property dependent on the state of

the fluid locally, namely the local density, turbulent kinetic energy, turbulence scale,

and Mach number. An empirical law was found (ref. 1) which related eddy viscosity

to these properties satisfactorily for free jets. This law is used without modification

for the present set of test cases in free shear layers, free-jet decay, coaxial mixing,

and wakes.

At present the scale of turbulence is taken as a constant at any axial location

equal to the width of the shear layer.

By utilizing the boundary-layer order-of-magnitude analysis, a coupled set of

fluid dynamic equations is formulated, which of necessity includes the equation for the

production of turbulent kinetic energy.

SYMBOLS

_p mean specific heat at constant pressure

d jet diameter

....def U = VU + , where is the transpose of VU

dk rate of dissipation of turbulence kinetic energy into random

thermal energy

mean static enthalpy

529



T

k

LD

M

Npr

Np r ,T

NSc

NSc ,T

Pe

PT

r

r o

Tt

Tt ,o

T

U

Ue

Uo

530

species enthalpy

identity tensor

turbulence kinetic energy,

scale of large eddies

I_-_'U' + (pV)'V' + (pW)'W'_

local Mach number

mean Prandtl number

turbulent Prandtl number, 0.75

Schmidt number, 0.75

turbulent Schmidt number

static pressure at edge of shear layer in the nonturbulent region

turbulence pressure

mean static pressure

radial coordinate

jet radius

total temperature

initial total temperature

mean static temperature

streamwise velocity

velocity at edge of shear layer

initial velocity



U 1

U2

V

W=I

X

Y

¢xi

ek

gT

P

Pl

P2

¢Y

%

r T

velocity on high-velocity side of shear layer

velocity on low-velocity side of shear layer

U

Ue

normal velocity

streamwise coordinate for two-dimensional shear layers

coordinate normal to shear layer for two-dimensional shear layer

mass fraction of species i

kinematic diffusivity for turbulent kinetic energy,

eddy viscosity

Pek = PT

mean molecular viscosity coefficient

density

density on high-velocity side of shear layer

density on low-velocity side of shear layer

shear layer spreading parameter

incompressible spreading parameter for

Reynolds stress tensor, (pU)'U

stream function (subscripts r and

U 2
_----0

U1

x indicate derivatives with respect

to radius and streamwise coordinate, respectively)

EQUATIONS

The equations are presented in cylindrical coordinates.

531



Reynolds stresses

The turbulence stresses are formulated in the following manner:

_T = -PT I + _T def

separating the turbulence stress tensor into static pressure and shear stress tensor.

Turbulence pressure is by definition

(1)

2
PT = _ pk (2)

Turbulent kinetic energy

The turbulent shear stress and pressure are coupled to the turbulent kinetic energy

by the following equation:

+_ Pek_r -dk (3)

Eddy viscosity

and

where

or

Following reference 1, the equations for eddy viscosity, dissipation, and scale are

_T = _ I-_.5k3 ] \Co/

m m

LD = Umax - Umi n _/2

(4)

(5)

dk = _ P LD
(6)

e = 1 M 2 (0 < M < 0.6)
Eo

_e = (1 + 0.25M) -2
Eo

(0.6 =<M< _o) (7)

1 8 -- 0 --
y-_r (rpV) +-_(pU) = 0 (8)

Continuity
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Radial momentum integral

l_ + PT = Pe

Streamwise momentum equation

Energy equation

--at_+_al_ ___ dk+ _r_\Npr cPov -_ -_= + _\_-) +

Species continuity

+ ' _rE \NSc + N--S-_,Tc,T)_hi Tr j

Numerical solution of these equations follows Edelman and Fortune (ref. 2).

The equations are transformed by the Von Mises transformation as

X=x

¢_r = put

¢_x" _r

q,

Then the finite-difference equations are formed by using the following substitutions:

Partial derivative in the X-direction

(%+1,m" %,m)-_N
AX _X

Partial derivative in the _-direction

(¢n,m+l - Cn,m-1) =

2 _ a_

(9)

(10)

(11)

(12)

(13)

(14)

(15)
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Second derivative in the @-direction

A¢ 2 (q_n,m+l - 2_bn,m + _n,m-1)

l-a_l (16)
1 1 0 a
4 A_2 (_bn, re+l- qSn, m-1)(an,m+l - an,m-l) -_ 0

Further discussion of these equations can be found in reference 1.

RESULTS

Numerical results have been obtained for each of the categories. For each prob-

lem an initial turbulence kinetic energy profile and scale are needed in addition to a veloc-

ity and temperature profile. These data on turbulence were not supplied and were esti-

mated. This was not a serious problem for the test cases for free shear layers; however,

initialturbulence level is important for the decay of free jets and coaxial jets,and free-

stream turbulence is important to the decay of wakes. In the spiritof making predictions,

no attempt was made to "fit"the solutionsto the data by reinitializingthose problems

which did not work well. In fact, comparisons were not made untilall cases were run.

Two-Dimensional Shear Layers

Test cases 1, 2, and 3.- Linear velocity profiles (figs. 1, 2, and 3) and a 1-percent

turbulence intensity were used as input, and computations were started with 14 data points

in gJ-direction. The initial shear layers were a few centimeters thick, and computations

carried out 10 meters (30 ft) in the downstream direction.

Test cases 4 and 5.- The given profiles (figs. 4 to 8) and an initial turbulence inten-

sity of 1 percent of U 1 were used to initialize the problems. The initial number of

points in the gJ-direction were 16 and 19 for cases 4 and 5, respectively. For test case 4,

the profiles were shifted so that a velocity ratio of 0.5 occurred at y -- 7 cm (3 in.). For

case 5, the 0.5 velocity ratio was shifted to y = 2.5 cm (1.0 in.).

Free Jets

Test case 7.- The given profile (figs. 9 and 10) was input with a 1-percent turbulence

intensity by using 14 initial points in the @-direction. The theoretical points seem to have

more scatter than the data points. This may be due to the nature of the e/e o function

used in equation (7).
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Test case 8.- This problem was started downstream at x/d = 2.79 by using the

given profile (fig. 11) and assuming a self-similar turbulence intensity in the shear layer

and 15 initial points in the _-direction.

Coaxial Mixing

Test case 10.- The initial profiles (figs. 12 and 13) at x/d = 2.966 were used with

a self-similar turbulence profile and 14 initial points in the _-direction. The potential

core length is overpredicted in this problem, perhaps because of large initial turbulence

levels in the jet and external stream. This problem is basically one of a free jet with an

embedded coaxial jet. The outer shear layer may also have affected these data through

acoustic radiation to the mixing zone.

Test case 11.- The initial profiles (fig. 14) and a 5-percent turbulence intensity

were used as input. Thirty initial points were used in the _-direction to fit the profiles

adequately. These initial profiles show that basically two shear layers are present - a

feature not accounted for in the formulation of the theory where only one scale is used at

a given axial location. The initial center-line behavior is adequately predicted but not

the final or wakelike zone. The reason for this is not known.

Test case 12.- Fifteen points were used to describe the initial profiles (fig. 15) in

the _-direction. An 8-percent turbulence intensity was used in the hydrogen boundary

layer and a 3-percent initial turbulence intensity in the air boundary layer. Again the

potential core length is overpredicted, and no definite reason can be offered to explain the

discrepancy.

Wakes (Test Case 17)

Fourteen points were used to initialize the problem at the station x/d = 17.0. (See

fig., 16.) An initial turbulence intensity of 6 percent on the center line varying to 1 percent

in the free stream was used.

Theprediction is an order of magnitude too low. The reason for such a large dis-

crepancy between theory and data is not known. It appears that the physics employed in

this model do not correspond to what occurred in the experiment or that some larger

error exists in the programing.

RE COMMENDED EXPERIMENTATION

The achievement of rapid mixing is the goal of the propulsion engineer. Some ideas

are proposed to achieve that goal. The instability of shear layers, be they laminar or

turbulent, makes them capable of extracting power from various sources. The instability
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of shear layers is not properly exploited by many devices exceptperhaps in whistles and
musical instruments suchas a flute or anorgan.

Becauseof this instability, greatly enhancedmixing occurs, often leading to anom-
alous experimental results whennot recognized. It is the authors' opinionthat these
exciting phenomenashouldbe exploited more fully by the propulsion engineer. Figure 17
sketchessomeinteresting examplesof shear-layer instabilities producing enhanced
mixing.

The addition of moving mechanical parts which act as triggers or amplifiers to
shear layers is also possible. An exampleof this occurs whenthe vortex sheddingfre-
quencyof a cylinder is equal to the frequency of cylinder oscillations.
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DISCUSSION

D. B. Spalding: Some of the plots of the axial concentration or axial velocity seem to

show points which were rather far apart with straight lines drawn between them. Does

that mean that you actually took very large forward steps in your computation?

P. J. Ortwerth: They were rather large but they weren't that large. That's how often

the program printed out.

D. B. Spalding: What's your forward step size then as a fraction of width, for example?

P. J. Ortwerth: It's comparable to the step size in the radial direction. If you have

14 points, for example, across a shear layer, then you have to march forward with a little

less than 1/14 of a shear layer in distance. So the curves are continuous; however, I

really think that they are discontinuous enough that drawing straight lines between data

points is not all that bad.

\

B. E. Launder: I noticed that when you showed your slide of the kinetic energy equation,

that the first term on the right-hand side was, if memory serves me, something like,

2/3 Density × Turbulence energy × Mean velocity gradient. Could you explain briefly the

origin of thatterm?

P. J. Ortwerth: I assume that'sequal to the turbulence normal stresses ifyou break the

turbulent stress tensor intoa normal part and a shear part like you would for a normal

molecular flow or laminar flow of gas; that is T g O by definition.

B. E. Launder. Well, certainly if we were concerned with the normal stresses, I would

agree with you, but the production in the turbulence energy equation is associated with

shear stresses.

P. J. Ortwerth: That is right. I tried to point that out. If you, for example, have a com-

bustion chamber with a gas velocity in there of 8000 It/see (2400 m/see), and you have a

turbulence intensity of 20 percent, this will correspond to an amount of energy, translated

into gas temperature so you can understand it, of several thousand degrees. Now when

you expand that gas through a nozzle, of course, there's a pressure gradient and a veloc-

ity gradient, and the normal turbulence shear stresses are such a large part of the pres-

sure in the flow, that the work done pushing the gas out of the nozzle is significant. I

want to know how much that is so I can integrate that equation with that term in there.

As far as you're concerned, maybe it doesn't make any difference. In the normal incom-

pressible flow those terms are very smaI1.

W. A. Rodi: In reference to test ease 17 you mention a possible Reynolds number influ-

ence. We found very similar predictions with our model where we do not introduce a

function of one of the constants. I believe the reason for your bad predictions is that you
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use a constant. In this particular case, the production of kinetic energy is very low,

and that's why we get a very different constant. I believe that differences occur because

we introduce this function of production over dissipation.

P. J. Ortwerth: Where I would have difficulty with that comment is if the production of

turbulent energy is low, I wind up with a lower viscosity and with poorer agreement with

the data.

W. A. Rodi: But, we introduced a function where the new constant would increase by a

factor of about 5, and that's why we get better agreement.

P. J. Ortwerth: If I change the constant by a factor of 5, it probably would agree.
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