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FOREWORD

The work described in this report was carried out by personnel of the Westinghouse
Astronuclear Laboratory under Contract NAS 3-15555 for the NASA-Lewis
Research Center. The work was administered at the Astronuclear Laboratory
by Messrs. R. W. Buckman, Jr. and L. G. Stemann, Jr. Mr. T. J. Moore was
the NASA Project Manager for this program.

Primary units in this report are the International System of Units (or System
Internationale d' Unites, Reference NASA SP-7012). For clarity, the customary
engineering units have also been provided as secondary units. All measurements
made in the experimental work utilized the latter units.
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1.0 SUMMARY

The effects of filler metal compositions, welding procedures, and joint geometry on under-

bead cracking of multipass gas tungsten-arc (GTA) welds on 0.952 cm (.375 in.) thick T- 11

(Ta-8W-2Hf) plate were studied. This investigation was prompted by previous observations of

a propensity for underbead cracking in thick T- 11 plate GTA welded with T- 11 filler wire.

Thirteen filler metal compositions spanning the tantalum-rich portion of the Ta-W-Hf ternary

phase diagram were studied. The Varestraint test was used early in the program to screen eight

of the filler metal compositions for hot cracking tendencies.

Following the initial screening studies the four most promising alloys and a series of "base-

line" filler metals were used for plate weld tests using a single "V" groove weld in T-1 11

plate. Each of the initial series of butt welds were made using standard multipass GTA weld

techniques. The presence and extent of underbead cracking was determined by metallographic

examination. Evaluation of these welds indicated only modest improvements could be realized

by attempts to metallurgically remedy the problem with filler metal composition variations.

A modified welding procedure incorporating manual welding, low welding speeds, and a

limited number of passes (3 or less) was developed which produced crack-free welds in single

"V" joints of T-1 11 plate but only with hafnium-free filler metals. When this procedure

was applied to hafnium-containing filler metals, cracking occurred but on a reduced scale.

Two of the better performing filler metals, Ta-4W-lHf and Ta-4W, were chosen for use in

further weld procedural and joint design studies. Wire of each of these compositions was

produced from a consumable electrode melted ingot by a combination of hot extrusion and

cold swaging.

Alternate joint designs including the double "V" and single "U" were studied. The single

"U" joint was designed to reduce the amount of filler metal required per joint and thus limit

heat input and thermal cycling. This approach did not provide significant improvement.

1



The double "V" design, because of the inherent balancing of stresses as successive weld

beads are placed on opposite sides, resulted in sound weld structures. It is recognized that

the use of this joint design is severely limited in practice because of the necessity for access

to both sides of the weld joint.

Specimens removed from selected weldments were tensile tested at room temperature and

16490C (30000 F) and tested in bending at room temperature. With severe (90 ° ) bends

around a 1 t radius, cracking was evident, but the cracks did not propagate catastroph-

ically.

Hardness traverses and electron microprobe analyses indicated a substantial effect of base-

metal dilution throughout the weldment. Hafnium segregation was observed in the weld

metal, at grain boundaries, and along solute lines. The presence of hafnium in the highly

stressed grain boundary areas appears to be a very important factor contributing to the under-

bead cracking in single "V" T- 11 GTA plate welds.

2
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2.0 INTRODUCTION

Previous results of welding research with T-111 (Ta-8W-2Hf) plate ( l1 2 '3 ) have demonstrated

this alloy to be sensitive to "underbead cracking"* in multipass gas tungsten-arc (GTA)

weldments. This cracking occurs in the initial passes of manual GTA plate welds during sub-

sequent deposition of intermediate and final passes. The cracks invariably occur at grain

boundaries and frequently extend into the heat affected zone (HAZ). In T-1 11 this problem

is only encountered in plate of section thicknesses greater than approximately 0.95 cm

(3/8 in.).

The basic mode of underbead cracking observed in multipass GTA plate welds on T-1 11 is

grain boundary fracture. Phenomenologically, this is a typical high temperature failure

mode in most metals, occurring usually at low strains although deformation adjacent to the

grain boundaries may be quite extensive. The factors responsible for the observed grain

boundary fracture are both metallurgical and structural in nature. First, T-111 possesses

* The term "underbead cracking", which is used throughout this report, is meant to describe
cracks in plate welds located as shown in the sketch below:

T-111 Plate

0.95 cm (3/8 in.) k <r0.95cm (3/8 in.) ""Typical" location
of intergranular
"underbead cracking"
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good high temperature creep resistance, mainly as the result of solid solution strengthening

of the matrix. Therefore, the relative difference in the matrix and grain boundary strengths

may be more exaggerated than for some other refractory metal alloys at high temperatures.

Secondly, lower melting alloying constituents, such as hafnium in T-1 11, tend to be

concentrated at grain boundaries (4); hence weakening them at high temperatures.

The objective of this program was to develop a modified filler metal composition and/or an

improved GTA welding procedure which would reduce or eliminate grain boundary under-

bead cracking in multipass GTA plate welds of T-111 . A modified Varestraint test procedure

was used early in the program to screen candidate filler metal compositions for basic weldab6l;ty

with regard to hot crack sensitivity. Further qualifications of selected filler metal compositions

were judged on the results of manual, multipass GTA plate welds. Finally, the two most

promising compositions were used in a comprehensive evaluation of alternate plate weld

procedures and joint designs selected to minimize cracking both in the heat affected zone

and base metal regions of the plate weldments.

4
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3o 0 PROGRAM AND PROCEDURES

3. 1 TECHNICAL PROGRAM

The technical program for conducting a comprehensive weldability evaluation of T-1 11

plate as well as advancing the general state-of-the-art in the area of filler metals used in

welding T-111 was divided into three tasks as schematically shown in Figure 1.

The first task of this program was directed toward the selection and preparation of various

filler wire compositions. Eight compositions were selected which minimized the magnitude

and differences in the elevated temperature strength of matrix and grain boundary regions.

The importance of retaining useful mechanical properties and liquid alkali metal corrosion

resistance in the experimental filler wire compositions was recognized.

The objective of Task II was the evaluation of the weld filler metal compositions prepared

in Task 1. Screening of the first eight filler metal for hot crack sensitivity was performed

using a unique specimen design with the Varestraint test. Although all eight filler metals

showed at least some cracking, four compositions were chosen, based on Varestraint data, for

further evaluation using GTA multipass welds on 0.952 cm (0.375 inch) thick T-111 plate. A

second series of five filler metal compositions was added to the program at this point to deter-

mine whether cracking could be eliminated even at the expense of drastic departure from the

T- 11 chemistry. Evaluation was done by both metallographic examination and mechanical

testing of butt welds in plate.

The identification of improved GTA plate welding procedures and joint designs was the

primary objective of Task Ill. To accomplish this, two filler metal compositions, which per-

formed most satisfactorily in Task II, were used. Various joint designs including double "V",

single "U", and single "V" (both with and without lands) were tried. Procedural variations

incorporated were the number of passes, preheat, and restraint.

5



t Prepare experimental filler metal composition
TASK I | and process to weld wire

Development of Filler Metal Check homogeneity by chemistry
Compositions hardness and microstructure

Varestraint test using T-1ll 1 base metal
8 compositions x 4 tests/comp. = 32 tests

Select 4 best filler metal compositions
TASK II

Single "V" butt welds in T-1 11 plateEvaluation of Filler Metal2 weld/comp - ... 4 compositions x 2 weld/comp = 8 weldments
Compositions

\ / I

TASK III

Weld Technique Development

Figure 1.

Analyze results by metallography and
tensile testing

Single "V" butt welds in T-I 11 plate
5 new compositions 1 weldment of each

Select 2 best filler meta I compositions

Using standard production technique,
fabricate new weld wire of the 2 filler
metal compositions

Prepare plate welds in T- 11 with each
filler metal. Vary weld parameters and
joint geometry to minimize HAZ and base
metal cracking

Analyze results using metallography,
tensile, and bend tests, and dye
penetrcnt inspection

Identify optimum filler metal composition
and welding procedure to minimize cracking

Program Outline

6
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3.2 PROGRAM MATERIALS

The starting materials used to prepare the experimental filler wire compositions are listed

in Table 1 along with the vendor supplied chemical analyses. Generally, Ta-1OW was used

as the base alloying ingredient to minimize any problems in mixing the very high melting

point tungsten with the other alloying additions. Since only a limited amount of material

was required for the Task II evaluations, the experimental compositions were prepared according

to the following sequence:

a. Starting sheet material was sheared, acid pickled, and weighed out as 0. 7 kg

charges.

b. All charges were nonconsumable electrode DC arc melted as 7. 6 2 cm (3 inch)

diameter buttons in a purified argon atmosphere. The procedure used was to

melt each button as completely as possible (generally 75-80% through), open

the furnace, turn the buttons over, and remelt. Figure 2 shows the as-cast

buttons.

c. The buttons were warm rolled at approximately 3710 C (7000 F) to 0. 1 27 cm

(0. 050 inch), sheared, pickled, and reloaded into the button melting furnace.

d. Step b was repeated.

The nonconsumably arc melted buttons were warm rolled at 371 0 C (7000 F) to a thickness of

0.254 cm (0. 100 inch), annealed 1 hour at 16490 C (30000 F), and sheared to yield material

suitable for the Task II evaluations. These evaluations required manual placement of filler

metal on specially designed Varestraint test blanks of T-1 11. For this type of welding,

the sheet material, sheared to narrow widths, was equally suitable as filler wire and, being

easier to produce, was used for the Task II work.

To determine the homogeneity of the various filler metals, both chemical and metallographic

analyses as well as hardness determinations on both the as-cast and rolled/annealed sheet

material were performed.

7



Table 1. As-Received Chemical Analyses of Starting Material

Heat _ Vendor AnalysisMe Filler Metal
Material No. Ta Hf W Re C O H N Used For

Ta 600421 Bal. -- -- -- <30 <50 3.1 10 1,2,3,4,5,7,
8,9,10,12,13

Ta-10W 60B-758 Bal, -- 9. 90 -- 50 40 N/A 20 2,3,4,7,10,11

W C10-314 -- -- Balo -- <20 <20 N/A < 30 1,5,8

Hf 410899 -- Bal. -- -- <30 < 50 N/A 50 1,2,3,4,5,7,8,
12,13

T-111 650043 Bal. 2.0 8.2 -- < 40 90 2.9 12 6

Y YM3-264 Not Available 6

Re P-570 -- -- -- Bal. 6 38 N/A 10 8

T-111 613463 Bal. 2.0 7. 9 -- 40 40 10 40 Weld Blanks

* Metallic analyses in wt. percent. Interstitial (C, O, H, N) analyses in wt. ppm.

N/A = Not Available

oo
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Figure 2. As-cast Buttons of Filler Metals 1 through 8
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The first eight filler metals were analyzed for both major alloying constituents and interstitials.
The results of these analyses are reported in Table2. Concentrations of the intentional

alloying additions were determined only for sheet material while the interstitial analyses for

C, O, H, and N were performed on both as-cast and sheet material. Except for the obser-

vation that the analyzed tungsten content was generally lower than the nominal value, the

chemistry results show the actual compositions are reasonably close to the nominal compositions.

Of the 0. 05 w/o yttrium added to the melt charge, chemical analysis indicated 0o 04 w/o

was retained through the melting and processing stages. Chemical analysis was not performed

on the five filler metals added as a supplement to the original program.

The two most promising alloys, FM 4 (Ta-4W-1Hf) and FM 10 (Ta-4W), as judged from

plate weld evaluations, were selected for use in the study of joint design and welding pro-

cedural effects. The filler metal wires for this phase of the program were manufactured using

a procedure that would simulate a production scale operation. Two lots of each filler metal

were made, each weighing about 2000 grams. Each charge was trough melted, flipped over,

and remelted. The two charges of each filler metal were GTA welded together, consumable

electrode melted, and cast into a 5 cm (2 inch) diameter mold. The resulting billets were

machined to 3. 78 cm (1.49 inch) diameter by 8. 88 cm (3, 5 inches) long and canned in

mild steel, Each can was heated to 12000 C and extruded at a 3 to 1 reduction ratio. After

the mild steel cans were chemically removed, the extruded billets were swaged at room

temperature to 0. 2 03 cm (0. 080 inch) diameter. The filler wire was cut to length, chemically

cleaned, and then vacuum annealed.

The chemical analysis results of the scale-up heats in Table 3 indicate excellent control of

alloying additions and minimal interstitial pickup during the hot extrusion and vacuum

annealing operations.

10



Table 2. Chemical Analyses of Filler Metal Compositions

Filler Nominal Chemical Analysis (
a

)

Metal Composition As Cast Rolled/Annealed Sheet
Number (w/o) C O H N Ta W Hf Re Y C O H N

1 Ta-8W-lHf 16 13 1.6 12 Bal. 8.0 0.96 - - 17 15 1.3 5

2 Ta-7W-1.5Hf 35 5 1.5 15 Bal. 6.7 1.50 - - 32 46 1.0 5

3 Ta-6W-1.5Hf 30 45 1.1 14 Bal. 5.6 1.48 - - 34 48 1.1 14

4 Ta-4W-lHf 33 19 1.6 14 Bal. 3.6 0.88 - - 24 40 0.9 8

5 Ta-4W-2Hf 30 6 0.8 15 Bal. 3.8 1.95 - - 8 17 0.9 4

6 Ta-8W-2Hf-0.05Y 21 5 1.1 24 Bal. 8.5 2.07 - 0.04 22 21 0.8 18

7 Ta-4W-3Hf-0.05C 535 7 0.8 13 Bal. 3.5 3.04 - - 530 36 1.1 14

8 Ta-6W-0.8Re-lHf-0.025C 270 8 0.8 11 Bal. 5.9 1.02 0.77 - 270 18 0.9 6

Typical T-111 Analysis - -- Bal. 8.0 2.0 - - <40 50 <1 10

(a) Metallic analyses in wt. percent.
Interstitial analysis (C, O, H, N) in wt. ppm

@
, >,
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Table 3. Chemical Analyses of Production Filler Metal Compositions

* Metallic analyses in wt. percent. Interstitial analyses (C, 0, H, N) in wt. ppm.

Chemical Analysis*

Filler Nominal As-Cast Extruded/Swaged Wire
Metal Composition
No. (w/o) C O H N Ta W Hf C O H N

4 Ta-4W-1 Hf 32 17 0.5 11 Bal. 3. 9 1.03 48 34 1.3 13

10 Ta-4W 21 32 0.9 8 Ba 1. 3. 9 -- 40 45 0.6 10
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The T-111 plate used as weld blanks in this program was excess material transferred from

NASA Contract NAS 3-10602 (3 ) . The chemical analysis of this material is listed in Table 1.

The T-111 plate was conditioned and rolled at 4260C (8000F) to a thickness of 1 .08 cm

(0. 425 inch) and then ground to the final thickness of 0. 952 cm (0. 375 inch). The specimens

used for Varestraint tests came from the same plate;but instead of grinding to thickness,

the plate was further rolled at 2040 C (4000 F) to a thickness of 0. 318 cm (0. 125 inch). Prior

to vacuum annealing, the weld blanks were pickled in a 10% H2SO4 , 15% HF, 20% HNO3 ,

55% H20 solution to remove any contamination resulting from prior fabrication processes.

Following the pickling operation, the specimens were wrapped in tantalum foil and annealed

for 1 hour at 16490C (30000 F) at a pressure maintained in the 10-6 torr range. Besides

annealing the specimens, this vacuum heat treatment served to further remove any residual

hydrogen.

3.3 FILLER METAL COMPOSITION SELECTION

Filler wire compositions for evaluation were selected to change the structural and deformation

characteristics of T- 11 weld metal such that singly or in combination;

e The imbalance in matrix and grain boundary strengths at intermediate to

high temperatures was lessened.

e Weld grain size was refined.

The thirteen filler metal compositions selected for study are listed in Table 4. The location

of these compositions on the Ta-W-Hf phase diagram is shown in Figure 3 (neglecting

yttrium and rhenium contents of compositions 6 and 8, respectively). Compositions 1 to 5

were selected to investigate the region between the crack-prone T-1 11 (Ta-8W-2Hf) and

crack-free Ta and Ta-lOW compositions. Yttrium was added to the sixth composition in

order to refine the grain side. Compositions 7 and 8 were selected to permit evaluation

of a high interstitial level alloy and a near ASTAR-81 1C composition, respectively.

13



Table 4. Nominal Filler Metal Compositions

I1*

14

Filler Metal Nominal Composition
Number (wt. %)

1 Ta-8W-1 Hf

2 Ta-7W-1. 5Hf

3 Ta-6W-1. 5Hf

4 Ta-4W-1 Hf

5 Ta-4W-2 Hf

6 Ta-8W-2Hf-0. 05Y

7 Ta-4W-3Hf-0. 05C

8 Ta-6W-0. 8Re-1 Hf-0. 025C

9 Ta-unalloyed

10 Ta-4W

11 Ta-1 OW

12 Ta-0. 5Hf

13 Ta-2Hf
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ASTAR-811C has been shown to be less sensitive to underbead cracking than T- 11, and yet
(1)

it retains the desired strength and corrosion resistance

Compositions 9 through 13 were included to determine whether crack-free welds could be

made in T- 11 plate without regard for mechanical or corrosion properties. Hence, com-

positions 9 through 11 contain no Hf while compositions 12 and 13 are tungsten-free.

3.4 VARESTRAINT TESTING

The first eight filler metal compositions were screened using the recently developed Varestraint

test which establishes a quantitative measure of the ability of weld metal to accommodate

superimposed strain at elevated temperatures. The principle and operation of the Varestraint
(5,6)test has been reviewed in detail in past programs (5 ' 6 ) While the Varestraint test does not

reproduce the "underbead cracking" observed in plate welds it is valuable in screening

materials for classic hot cracking tendencies. Further, since the precise cause(s) of the

plate weld cracking are not known, it was hoped some correlation with hot crack propensity

could be identified.

A photo of the Varestraint apparatus is shown in Figure 4, and the various parts are tagged.

Both the specimen and the fixture were placed inside the weld chamber which was evacuated

and backfilled with ultra-high purity helium. Both the oxygen and water vapor levels within

the chamber were constantly monitored, each being maintained below 5 ppm.

The specimens were tested and unloaded while in the chamber, thus eliminating the need to

reload the chamber following each test. During the test an arc was struck on each loaded

specimen. The arc moved automatically along the plate until reaching a triggering mech-

anism which immediately activated the bending mechanism and then shut off the arc as shown

in Figure 5.

16
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PLATE

FIGURE 5 - Schematic: Bending Technique for Augmenting
Strain by Varestraint Testing
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The total outer fiber strain imposed on the specimen is calculated by the following formula:

t tStrain t+2R 

where: t = specimen thickness

R =die block radius

Specimens for the first eight filler metal compositions were prepared for Varestraint testing

as shown in Figure 6. A weld metal layer was deposited for each filler metal composition on T- 11

specimen blanks. The specimens were then surface ground to insure that the weld bead would

be uniform and flat. These blanks were then Varestraint tested using the procedures established

on Contract NAS 3-11827 .( 5 ) The preplaced weld metal layer was of sufficient size to completely

contain the Varestraint weld pass. Hence, this was a test of as-cast and diluted weld metal. By

using the T- 11 containment substrate, the test became a realistic replacement of actual

weld conditions with regard to chemical composition gradients in the base metal-filler metal

interface region. Three specimens were used for each filler metal composition. These

specimens were then tested at various predetermined strain levels of 2, 3, and 4%.

3. 5 BUTT WELDING EVALUATION

3.5.1 Initial Series (Welds 1-13; Single "V" Configuration)

The four most promising filler metal compositions of the first eight compositions were

selected for use in the preparation of butt weld joints. The filler metals chosen were

FM 3 (Ta-6W-1. 5Hf), FM 4 (Ta-4W-1 Hf), FM 5 (Ta-4W-2Hf), and FM 8 (Ta-6W-0. 8Re-

1 Hf-0. 025C). Additional plate welds were prepared using FM 9 (Ta), FM 10 and 11

(Ta-W alloys; no Hf), and FM 12 and 13 (Ta-Hf alloys; no W).
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Two joints of the single "V" configuration, shown in Figure 7, were made using each of the

four Varestraint tested compositions. One joint was made of each of the five additional

compositions for a total of 13 welded joints. Welding was done manually using 9 to 12

passes including the root pass. During welding the T-111 plate weld blanks were clamped in

a restraining fixture. The fixtured weld was mounted on a traversing table which permitted

a uniform, reproducible welding speed of 25.4 cm/min (10 in/min. ) to be used. Prior to

welding, both the filler metal and the weld blanks were pickled and vacuum annealed to

remove any contamination which might have influenced the weld integrity.

The weld chamber was evacuated and backfilled with ultra-pure helium prior to welding.

Oxygen and water vapor levels were maintained at less than 5 ppm, averaging about 1 ppm.

All welding was done using straight polarity direct current (SPDC). The electrodes were

made of 0. 24 cm (0. 094 inch) diameter centerless ground 2% thoriated tungsten which had

been ground to a blunted 0. 079 cm (0. 031 inch) diameter tip.

Prior to welding, the specimens were placed in the molybdenum jaws of a fixture which

provided both positioning during welding and restraint against the inherent weldment defor-

mation. The root faces were in contact, and no gap was permitted. The root pass for the initial

13 weldments was made by fusing the root of the joint without filler metal addition. Hence,

the composition of the root pass weld was that of the T- 11 base metal.

The single "V" butt weld joint design and the welding procedures initially used did not

represent an attempt to optimize either with respect to weld cracking. They were selected

mainly because they represented conditions for which the bulk of the experience on the

underbead cracking has been accrued and also represent reasonable conditions for most

actual hardware-type field welding operations. Limited experience has, however, shown

other weld geometries to be somewhat less prone to cracking (3), although some of these

are not compatible with normal hardware fabrication techniques. Also, some lessening of

21
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the underbead cracking problem has been observed in T-1 11 plate welds by use of certain

procedural variations(l ) . Thus, efforts to optimize both the weld joint design and welding

procedures were undertaken.

3.5.2 Second Series (Welds 14-29; Varied Configurations)

Included in the plate welding parameters evaluated were welding speed, weld joint geometry,

weld restraint, and filler metal deposition rate. Control of the welding speed and weld

deposition rate, in turn, control the heat input per unit weld length. Detailed logistics

were maintained for each of the welds prepared.

Three different weld joint geometries were fabricated and welded. A sketch of the single

"U" design is shown in Figure 8. This configuration results in a relatively "tight" joint.

Significantly less filler metal is required to fill such a joint, and, therefore, the number of

passes and heat input can be greatly reduced. The other design used was a double "V"

groove of two types as shown in Figure 9. The Type I design was tried first because the

root faces allowed for root passes without the use of filler metal. However, initial welds

indicated inadequate penetration in the root areas resulting in unwelded areas. By using the

Type II design and filler metal in the root pass this difficulty was avoided.

For plate welds of both the initial (welds 1-13) and second (welds 14-29) series, the presence

of underbead cracking was established metallographically by examining sections of each weld.

A comparison of the effects of the various metal compositions and weld parameters was established

based upon the effectiveness in eliminating cracking in the weld metal area, heat-affected zone,

and base metal. Specimens were prepared for examination using standard metallographic tech-

niques. The etchant used to reveal the microstructure and to remove smeared metal was a

solution containing by volume 40% HCI-40% HF-20%HNO3 . The specimens were swabbed

with the etchant for about 15 seconds then thoroughly rinsed and dried. The duration of

application and the etchant strength are of prime importance since the grain boundary areas

23
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of the T-1 11 weldments are rapidly attacked. This slightly preferential attack sometimes

resulted in false signs of grain boundary cracking. In fact, some of the very small "cracks",

which appear to be a coalescing of voids within the grain boundary, are not evident in the

as-polished condition and are only observed in the fully etched condition. These "cracks",

which become more distinct if the etchant is allowed to react for greater periods, are best

classified as grain boundary voids which may have resulted from the specimen preparation

rather than being inherent cracks within the weldment.

Tensile tests were performed at room temperature and 16490C (30000 F) on specimens of the

initial series of welds (1-13) and at room temperature on specimens of the second series

(welds 14-29). The tensile specimen, Figure 10, was relatively small due to the size of the

weld blank. The round bar tensile specimens were machined to have the weld zone transverse

to the longitudinal axis of the tensile specimen as shown in Figure 10. These specimens pro-

vided comparative data on the mechanical strength and ductility of the various filler metals

and weldments. Note in Figure 10 that the cracked region was generally below the reduced

section. A factor which should be considered in the interpretation of the tensile is that, due

to the fact the specimens were removed from the same location in each weld whereas the extent

and severity of cracking varied in the welds, rigorous comparisons should be avoided.

Bend tests were performed on test weldments 18 through 24, which had been prepared with

filler metals FM 4 (Ta-4W-1Hf) and FM 10 (Ta-4W). These were done to further evaluate

weld quality; i. e., soundness and ductility of the weldment. The bend specimens were

5. 08 cm (2 inches) long and 0. 952 cm (0. 375 inch) wide and thick. The face and root

surfaces of the weldment were not ground prior to testing. The bend tests were made using

a 1 t punch radius and a punch speed of 2.54 cm/min. (1. 0 in/min. ). A three point bend

fixture was used with a major span of 5. 08 cm (2. 0 inches). Except where noted in the

Discussion, bends were performed with the weld face in tension.
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Figure 10. Schematic: Orientation of Tensile Specimens
Within Plate Welds
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As supplements to the mechanical tests, electron beam microprobe analyses and hardness

traverses were made to determine the extent of segregation and the variation in weld strength

(hardness) within the weld zone. The electron beam microprobe unit was set to count back-

scattering at the hafnium wave length. Various areas within the weld were scanned and

the relative concentration of hafnium recorded. The beam was typically 1 micron in diameter

thus permitting the sampling of very localized areas. The hardness readings were taken on

a Vickers diamond pyramid hardness tester using 10 or 30 Kg load.
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4.0 RESULTS AN D DISCUSSION

4. 1 FILLER METAL CHARACTERIZATION

Metallographic examination was performed on both as-cast and rolled/annealed material of

all filler metal compositions. The as-cast structures of all compositions were typical of

material prepared in this way. Grain size was quite large, and evidence of the dendritic

solidification mode was abundant. With the exception of the more complex alloys (FM 6-8)

the microstructures were single phase in appearance. The as-cast structure of FM 3 (Ta-6W-

1.5 Hf), typical of all but FM 6-8 , is shown in Figure 11 as is that of FM 6 (Ta-8W-2Hf-

0. 05Y). The as-cast structures of FM 7 (Ta-4W-3Hf-0. 05C) and FM 8 (Ta-6W-0. 8Re-1 Hf-

0. 025C) are shown in Figure 12. The obvious differences in precipitate morphology imply

that the precipitates are of different composition and/or crystal structures.

Typical microstructures of FM 4 (Ta-4W-1 Hf) and FM 8 (Ta-6W-0. 8Re-1 Hf-O. 025C) in the

rolled/annealed condition are shown in Figure 13. FM 4 is typical of all but FM 7 and 8.

Both FM 7 and 8 had the expected intragranular precipitate network typified by FM 8,

Figure 13.

Results of metallographic examinations of the rolled and annealed filler metal compositions

indicated the following:

* The rolling process did not result in sufficient deformation to fully

recrystallize all alloys in the 1 hour - 16490 C (30000F) anneal employed.

* In the solid solution alloys, the heterogeneity of the deformation led to

a duplex grain size after the 1 hour - 16490 C (30000F) anneal.

* The presence of yttrium in FM 6 appears to retard recrystallization.

The resulting grain size is often small but quite irregular.
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50X Ta-6W-1.5Hf FM 3

50X Ta-8W-2Hf - 0. 05Y FM 6

Figure 11. As-Cast Microstructures - FM 3 and 6
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400 X Ta-4W-3Hf-0. 05C FM 7

400 X Ta-6W-O. 8Re-1 Hf-O. 025C FM 8

Figure 12. As-Cast Microstructures - FM 7 and 8
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100 X Ta-4W-1 Hf FM 4

100 X Ta-6W-O. 8Re-1 Hf-O. 025C FM 8

Figure 13. Typical Rolled/Annealed Microstructures - FM 4 and 8
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FM 7 and 8 exhibit small grain size. In FM 7, in particular, the

grains are quite equi-axed.

The as-cast and rolled/annealed hardness was determined for each of the first eight filler

metals while only the rolled/annealed hardness was measured for filler metals 9 through 13.

These data are reported in Table 5.

Along with the average hardness, X, Table 5 also lists the standard deviation, S, and the

number of observations, N. The standard deviation can be considered as an indication of

the relative homogeneity of the material. Unalloyed tantalum, FM 9, has a relatively low

S of 1.51 which is interpreted as meaning a homogeneous structure. On the other extreme

is FM 13 (Ta-2Hf) with an S of 7. 2 indicating the possibility of varying hafnium concentration

within the structure.

The relative effects of additions to solid solution strengthened alloys are shown by the

difference in reported hardness readings. Both tungsten and hafnium are solid solution

strengtheners of tantalum(7 ) Of these two, hafnium is by far the more potent because of its

limited solubility. As an example, using the hardness of FM 9 (pure tantalum) as a basis,

additions of 2% hafnium (FM 13) and 4% tungsten (FM 10) result in nearly equal hardness

increases. Even 0. 5% hafnium (FM 12) increases the hardness of tantalum by 25%.

The manufacture of production scaled lots of FM 4 (Ta-4W-1 Hf) and FM 10 (Ta-4W) for

the welding procedure variation studies was successfully completed using the previous dis-

cussed operations of double trough melting, consumable elec trode casting, extruding, and

swaging. A wire diameter of 0. 203 cm (0. 080 inch) was determined to be optimum for these

welding applications. Wire of larger cross section more rapidly cooled the weld pool resulting

in a tendency for unwelded areas. Smaller cross section wires were more difficult to manip-

ulate when trying to fill the joint in a minimum number of passes.
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Table 5. Results of Hardness Measurements on Filler Metal Compositions

Vickers (Diamond Pyramid) Hardness
Filler
Metal Nominal Composition S et

No. (w/o) X (DPH) S N X (DPH) S N

1 Ta-8W-1 Hf 199.2 6.34 18 191.2 3.97 6

2 Ta-7W-1.5Hf 209.2 5.20 20 189.0 3.16 6

3 Ta-6W-1.5Hf 198.6 5.81 20 181.5 3.50 6

4 Ta-4W-1 Hf 158.2 3.91 20 144.8 2. 78 5

5 Ta -4W-2Hf 164.8 4. 19 19 159. 3 4.46 6

6 Ta-8W-2Hf-0. O!5Y 227. 5 5. 55 19 228. 6 3.46 5

7 Ta-4W-3Hf-0.05C 219.0 5.84 19 194.0 4.76 6

8 Ta-6W-0. 8Re-1 Hf-0. 025C 253.8 3. 36 18 215.3 6.86 6

9 Ta-unal loyed N/A N/A N/A 79.0 1.51 6

10 Ta-4W N/A N/A N/A 153.5 2.4 4

11 Ta-l OW N/A N/A N/A 195.2 6.1 6

12 Ta-0. 5Hf N/A N/A N,/A 100.2 2.6 6

13 Ta-2Hf N/A N/A N/A 147.5 7.2 6

* 30 Kg (294,2 N) Load Used

** 10 Kg (98.06 N) Load Used

S - Standard Deviation

N - Sample Size
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4. 2 VARESTRAINT RESULTS

Three specimens of each of the first eight filler metal compositions were tested. The aug-

mented strain levels used were 2%, 3%, and 4%. All specimens were tested using a

0. 635 cm/sec (15 IPM) welding speed and 205 amps weld current.

The total crack length was determined for each specimen using three different techniqueso

The amount of cracking in the weld fusion zone was determined both on the as-tested

specimens and after the surface of the specimens had been lightly polished and etched.

Previous experience has shown the latter procedure makes it easier to distinguish cracks

from grain boundary grooves and folds which also result from the testing. It does, however,

suffer from the difficulty in removing precisely the same amount of material; i. e., going

to the same depth, in all specimenso

The third total crack length count was made on cracks in the "heat affected zone". This

heat affected zone, due to the unique specimen design employed, consists of as-cast filler

metal deposited during the preliminary specimen preparation. Normally, cracking in the

HAZ during Varestraint testing is ignored in the analysis of the data. However, in the

present program this cracking seemed more important. First, the amount of cracking was, in

general, considerably greater than had been observed in the past(5. This undoubtedly

stems from the fact that the HAZ regions of the present Varestraint specimens consist of very

large grained, as-cast material, whereas prior tests have been on wrought, recrystallized

sheet material. Also, the nature of the underbead cracking problem, which is the subject

of this study, implies this type of cracking -- along grain boundaries during high temperature

straining -- may be of more direct importance.

Typical crack patterns for several filler metals are shown in Figures 14 and 15. The specimens

were polished prior to being photographed. The length of each crack was optically measured
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using a microscope with a calibrated filar eyepiece. The HAZ cracks, which are located

in previously deposited weld metal, show up as the large cracks nearer the sides of the

specimens. The fusion zone cracks are those forming a small crescent in the center area.

The filler metal crack patterns shown are not typical of all filler metals tested; in fact, the

structures depicted in these fixtures are those most sensitive to cracking. The best filler

metal, FM 4 (Ta-4W-1Hf), had less than 1/3 the amount of cracks of FM 1 (Ta-8W-1 Hf),

the best of the four shown.

The complete results of the Varestraint tests are presented in tabular form in Table 6. This

data is provided for completeness, but it is obvious that the large number of variables and

data presented make it difficult to concisely review the results. The more important results

would seem to be:

· The HAZ cracking is by far the most severe both in number and in length.

· The effect of higher strain is to increase both the number and length of

the cracks, A plot of strain versus total crack length generally produces

a uniform curve, varying in form from linear to exponential depending

upon the filler metal.

· There is not a large difference between the filler metals in the extent of

their fusion zone cracking. The HAZ data determined the relative sus-

ceptibility to cracking of each filler metal. Since cracking in the HAZ

'v'arestraint specimen most closely approximates the underbead cracking in

GTA welds, the inclusion of the HAZ data in the analysis to determine the

best filler metal is justified.

The data of Table 6 are presented in summary form in Table 7. The values reported in Table 7

represent the total of all crack length measurements for the particular combination of strain

and filler metal; i. e., fusion zone (as-tested) plus fusion zone polished and etched plus
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Table 6. Varestraint Crack Count Data

Fusion Zone Cracks

As-Tested Polished & Etched HAZ Cracks
FM % TCL* MCL** No.*** TCL* MCL** No.*** TCL* MCL** No.**
No. Strain mxlO 5 mxlO mxlO mx 5 mxlO 5 mx0 5

1 2 7.4 7.4 1 N/A N/A N/A N/A N/A N/A

3 199. 34.3 15 236 22. 9 26 1450 135 55

4 142.4 26.2 12 345 45.7 25 1400 137 39

2 2 22.9 16.0 2 64.0 12.6 9 528 76.2 43

3 99.1 17.8 10 22.4 17.8 24 2290 178 84

4 195. 20.6 15 305 22.9 20 564 83. 8 33

3 2 0 0 0 65.6 13.7 8 765 50.8 57

3 150. 12.7 19 229 25.4 20 889 71.1 48

4 236. 27.9 17 351 35.6 20 1800 107 51

4 2 0 0 0 0 0 0 236 33.0 20

3 86.4 20.3 8 206 35.6 16 292 35.6 21

4 234. 25.4 15 157 27. 9 12 43.2 12.7 5

5 2 9.14 9.14 1 54.9 13.7 6 165 35.6 14

3 112. 20. 3 10 257 33.0 27 965 60.9 45

4 165 17.8 13 272 30.5 18 262 61o0 11

6 2 0 0 0 62.7 11,4 9 1760 68.6 107

3 107 20.3 9 218 22.8 18 2490 173 166

4 241 27.8 16 305 30.5 20 2180 239 39

7 2 0 0 0 127 17.1 13 5330 127 270

3 224 22.9 15 239 43.1 17 3990 188 83

4 353 30.5 22 314 35.6 17 5440 216 126

8 2 37.3 10.3 2 101 13.7 11 983 117 38

3 137 15.3 13 348 25.4 31 1900 78.7 86

4 170 25.4 12 281 22.9 21 2320 157 66

* TCL - Total Crack Length
** MCL - Major Crack Length
*** No. - Number of Cracks
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Table 7. Summary of Varestraint Data

N/A = Not Available

Data reported above includes all data from Table 6.

40

Total Crack Lengths

2% 3% 4%Filler
Metal mete s meters mete~

No. (x 10) (mils) (x10 ) (mils)(x 10) (mils)

1 N/A N/A 18. 7 735 19. 3 760

2 6.15 242 21.1 830 10. 8 425

3 8. 33 328 13.0 510 23.6 930

4 2.36 93 5.72 225 5. 84 230

5 2. 29 90 11.9 470 6.86 270

6 18. 3 719 27.4 1080 27.7 1090

7 54.6 2150 45.5 1790 57.66 2270

8 11.0 435 23.7 935 27. 4 1080



Astronuclear
(j Laboratory

HAZ cracks. One of the most striking results observed is the very high total crack length

values for FM 7 for all strains. FM 7 has both the highest hafnium (3%) and carbon (500 ppm)

content of all filler metals tested.

Note also the low crack length values of FM 4 (Ta-4W-1 Hf) and FM 5 (Ta-4W-2Hf). Of

the eight filler metals tested, these two were the lowest in alloying additions and in matrix

strength. The difference between the total crack lengths of FM 4 and FM 5 is relatively

small at the 2% and 4% strain levels. This is significant since FM 5 has twice the amount

of hafnium in FM 4. It could be postulated that the hafnium concentration (as long as it is

2% or lower) is not as critical as the total amount of alloying additions in causing cracking,

Further combining the Varestraint data by adding the data at various strain levels for each

of the filler metals and then ranking the filler metals according to the total crack length

results in Table 8. The eight filler metals are ranked from worst, FM 7 (Ta-4W-3Hf-0. 05C),

with the most cracks, to the best, FM 4 (Ta-4W-1 Hf), with the least amount of cracking.

From the Varestraint results, the eight filler metal compositions can be placed into four

general groups. Both FM 4 and 5 have about the same total crack lengths, likewise for

FM 1, 2, and 3 and FM 6 and 8. FM 7 is in a separate class with a very high total crack

length. In support of the Varestraint groupings similar results would be arrived at based on

alloying additions. FM 4 and 5 have relatively low tungsten and hafnium concentrations

while FM 1, 2, and 3 have relatively high tungsten additions. FM 6 and 8 are high in

both tungsten and hafnium-rhenium levels. FM 7 with its very high hafnium and carbon

levels is in yet another group.
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Table 8. Ranking of Filler Metals According to Results of
Varestraint Tests.

* Incomplete counting - numbers should be higher

42

Filler Material Total Crack Lengths Obtained From
Ranking 2%, 3%, and 4% Varestraint Data
(Cracking 3 3
Sensitivity) meters x 10 mils (in x 103)

Worst 7 157. 7 6210

6 73.4 2889

8 62.1 2440

1 38.0* 1495*

3 44.9 1768

2 38. 0 1497

5 21.1 830

Best 4 13. 9 548
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The Varestraint test did predict that all of the alloys tested were crack sensitive, some

more than others. In addition, the results of the Varestraint testing provided a direct

correlation of the effect of superimposed strain with defects observed metallographically in

plate welds of similar composition. As shown in a previous program (5 ) and again in the

present program, the correlation between plate welding behavior and Varestraint results

is excellent. These results provide the basis for possible wholesale substitution of Varestraint

testing for the more expensive butt weld procedures in future testing. Used in such a way,

Varestraint testing would provide a relatively inexpensive means of material qualification

as a hardware specification requirement.

4.3 PLATE WELDMENT STUDIES

In this program a total of 29 GTA plate welds were prepared and evaluated. Table 9 lists

each of these welds along with pertinent information. The first thirteen welds were made

and metallographically examined to determine if filler metal compositional variations alone

would eliminate underbead cracking in the single "V" multipass welds. The four filler

metal compositions chosen from the Varestraint data and the five base line compositions

used to prepare these welds are given below.

Nominal Composition
FM No. (w/o)

3 Ta-6W-1. 5Hf

4 Ta-4W-1 Hf

5 Ta-4W-2Hf

8 Ta-6W-0. 8Re-1 Hf-0. 025C

9 Ta-unalloyed

10 Ta-4W

11 Ta- OW

12 Ta-0. 5Hf

13 Ta-2Hf
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Table 9. Plate Weldment Records

Ident. No. of Passes
No. FM Joint Design (Excluding Root) Comments

Single "V"

Single "V"

Single "V"

Single "V"

Single "V"

Single "V"

Single "V"

Single "V"

Single "V"

Single "V"

Single "V"

Single "V"

Single "V"

Single "V" Gap

Single "V"

Single "V" Gap

Single "V" Gap

Single "V" Gap

Single "V"

Double "V"

Double "V"

Double "V"

Double "V" Gap

Single "U" Gap

Double "V" Gap

Single "V" Gap

Single "V" Gap

Single "U" Gap

Double "V" Gap

16 - 10 IPM

16 - 10 IPM

16 - 10 IPM

16 - 10 IPM

17 - 10 IPM

16 - 10 IMP

16 - 10 IPM

15 - 10 IPM

16 - 10 IPM

17 - 10 IPM

14 - 10 IPM

14 - 10 IPM

13 - 10 IPM

2 manual

15 - 10 IPM

4 manual

2 manual

3 manual

3 manual

12 manual

4 manual

12 - 10 IPM

6 manual

5 manual

4 manual

6 manual

4 manual

4 manual

4 manual

N

- Automatic

No land (Butt)

Duplicate of No. 9; Automatic

No land (Butt)

No land (Butt)

No land (Butt)

No land (Butt)

Automatic

No restraint

No land

No between pass cooldown

No between pass cooldown

Third pass remelted four times

No land
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Two welds were made using each of FM 3, 4, 5, and 8 while one weld was made using

each of FM 9, 10, 11, 12, and 13.

Evaluation for weld quality was accomplished by means of detailed metallographic examin-

ation of each weld joint. None of the initial thirteen weldments were totally crack free.

Typica I microstructures of the welds are shown in Figures 16 through 20. In all but the weld

using FM 9 (pure Ta) the cracks are relatively small and do not extend over the full length

of the grain boundary. The cracks in weldments 9 and 15 (FM 9) were the most severe

noted and were present in both the weld metal and the heat affected zone. FM 9 (pure Ta)

was expected to produce the best weld based on crack elimination but in fact produced the

worst. The observed cracking is considered the result of the low mechanical strength of the

filler metal and the resulting large amount of localized upsetting at weld root. The large

amount of weld root deformation critically stressed the immediately adjacent structure (HAZ)

resulting in extensive grai n boundary cracking.

Based on the amount of underbead cracking, the welds prepared with FM 4 (Ta-4W-1 Hf),

FM 10 (Ta-4W), and FM 12 (Ta-0. 5Hf) were the best of the series. Each of these filler

metals are low in both total alloying additions and in hafnium. In general, all of the welds,

except those prepared with FM 9 (pure Ta), had basically sound structures, although scattered

small cracks were present at the grain boundaries of all welds. Some of the "cracks" observed

on Figures 16-20 appear exaggerated in magnitude due to etching effects during metallographic

preparation.

Based on the results of the first 13 welds, FM 4 (Ta-4W-1 Hf) and FM 10 (Ta-4W) were

selected for use in the study of procedural and joint design effects. FM 4 was shown

by the Varestraint data to be the best of the original eight filler metals tried. FM 10 was

chosen along with FM 4 because it is the same chemistry except it contains no hafnium and

thus provides basic information from which the effect of hafnium on the weld structures

could be derived.

45



Weld 2
FM 3
Ta-6W-1. 5Hf

Weld 4
FM 4

Ta-4W-1 Hf

Figure 16. Microstructures of Single "V" Welds 2 and 4
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Weld 6
FM 5
Ta -4W-2Hf

Weld.8
FM 8

Ta-6W-O. 8Re-
1 Hf-O. 025C

Figure 17. Microstructures of Single "V" Welds 6 and 8.
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Weld 9 Weld 10
FM 9 FM 10
Pure Tantalum Ta-4W

Figure 18. Microstructures of Single "V" Welds 9 and 10
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Weld 11 Weld 12
FM 11 FM 12

Ta-1 OW Ta-O. 5 Hf

Figure 19. Microstructures of Single "V' Welds 11 and 12
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Weld 13
FM 13
Ta-2Hf

Figure 20. Microstructure of Single "V" Weld 13
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The basic factor underlying the weld bead cracking is that the stress/strain imposed upon

the underbead structure during subsequent thermal cycles produces significant shear along

the grain boundary. This shear phenomenon can be seen in the weldment microstructures.

Solute lines representing boundary areas between molten and solid filler metal are continuous

across adjacent grains. These artifacts are readily seen in the weld structures shown in Figures

16 through 20. Close examination of the solute lines in the underbead area where cracking

occurs indicates that these lines are often discontinuous at the grain boundaries. A photo-

micrograph of such a structure is presented in Figure 21. The solute lines are the thin shaded

areas running nearly perpendicular to the grain boundary. The fact that these lines are dis-

continuous at the grain boundary and straight within the grain indicates that the majority

of strain occurring within the weld is accommodated by grain boundary sliding.

Large amounts of grain boundary sliding can result in either complete grain boundary

separation as shown in Figure 22, or the boundary may remain unchanged as was seen in

Figure 21. Grain boundary sliding is present to some degree in all the weld structures,but

cracking usually occurs only in the areas where hafnium is present, such as in the root fusion

area and at the weld metal HAZ interface. Therefore, it is postulated that hafnium adversely

affects the grain boundary properties resulting in crack formation.

4.4 PROCEDURAL AND DESIGN CHANGES

None of the filler metals were capable of producing totally crack-free welds using standard

multipass welding practices. This implied a solution based solely on metallurgical variations

was not possible. Hence, variations in weld procedure were tried. The major procedural

variation considered was to alter the number of weld passes used to produce the weldment.

Weld 14 was made with FM 9 (Ta) using the single "V" groove joint design but with the lands

ground off. Only two filler passes were used to complete the weld. No root fusion pass

was used, and the resultant weld had a poor root structure and incomplete weld penetration.
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24, 187 400 X

Figure 21. Example of Grain Boundary Sliding in Multipass
GTA Plate Weldment
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24, 187 700 X

Figure 22. Example of Grain Boundary Cracking in Multipass
GTA Plate Weldment
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However, there were no underbead cracks in the weld, Figure 23. Compare this to the very

heavily cracked single "V" weld 9 made using standard multipass methods, Figure 18. Note

the incompletely welded area about two-thirds of the way up the photomicrograph. The

chances for this type of problem are much greater in a minimum-pass weldment but are not

considered as critical problems since they can be avoided with experience. In subsequent

welds the problems of incomplete weld penetration and poor root areas were solved by

gapping the weld blanks by 0. 15 cm (0. 06 inch) and making a root pass with filler metal.

The rapid fill (2 to 4 pass) technique was used to prepare four additional plate welds. These

are numbered 16, 17, 18, and 19 on Table 9 and were identical, except for weld 17 which

used T-1 11 as the filler metal, to welds produced in the initial series of plate welds. Cracking

again occurred in welds 16, 17, and 19 but was less severe than observed in corresponding

welds made using standard > 4 -pass techniques. Weld 18, made with FM 10, was crack free

as seen in Figure 24.

It is significant to note that both weld 14, prepared with FM 9 (unalloyed Ta), and weld 18,

prepared with FM 10 (Ta-4W), were completely free of underbead cracking. Hence, crack-

free single "V" GTA welds can be made in T-1 11 plate so long as the filler metal does not

contain hafnium and a minimum-pass welding procedure is used. The latter condition

probably derives from the fact that this procedure minimizes hafnium pickup from the T-1 11

base metal.

In an effort to minimize the severity of thermal cycling during welding, welds 26 and 27 were

prepared without the use of an interpass cooldown period as is normally used. These welds

used the single "V" groove design and were made using the minimum-pass procedure. When

a weld pass was complete, the next pass was started as soon as possible. Thermocouples

were attached to the weld blanks in order to monitor the thermal cycles. The cooldown of

the specimen was so rapid after the arc passed that temperatures above 10000C were present
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Weld 14
FM 9
Pure Tantalum

Figure 23. Microstructure of Single "V" Weld 14

55



Weld 18
FM 10
Ta-4W

Figure 24. Microstructure of Single "V" Weld 18
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for only about 4 seconds after the peak temperature was reached and the weld heated from

10000 C to the maximum temperature in less than 1 second as the arc approached. From the

information recorded it was assumed that the specimen's cooling rate was so rapid that tem-

peratures above 6000 C could not be maintained for prolonged periods, greater than 10 seconds,

and that unless a preheat fixture capable of maintaining temperatures in excess of 10000 C were

available, the thermal cycling inherent in the weld procedure, and a major contributor to

underbead cracking, could not be significantly altered by external heating.

Attempts to eliminate or reduce the problem of underbead cracking via weld design changes

were limited to the use of modified single "U" groove (Figure 8) and double "V" groove

(Figure 9) configurations. The single "U" groove design proved no better than the single "V"

geometry since the same unbalanced stress cycling occurs during successive weld passes.

Use of the double "V" geometry produced much better results. Welds 20 through 23, 25, and

29 were prepared in this way. Examples of the weld microstructures are presented in Figures

25, 26, and 27. Even when T-111 was used as the filler metal (weld 29, Figure 27) the

amount of underbead cracking which could be detected metallographically was insignificant.

As pointed out previously, however, this joint design is not, in general, practical for many

applications requiring heavy plate welding of T-111.

In general, the double "V" joint produces excellent welds regardless of filler metal com-

position although the best joints were made using FM 10 (Ta-4W) and a minimum number of

passes. Similarly, the quality of the single "V" joint appears to be much more sensitive to

weld procedures than to the filler metal used. Using FM 9 (unalloyed Ta) and 12 passes, the

worst case of weldment cracking was observed; however, using the same filler metal but with

2 passes, the weld produced was completely crack free.
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Weld 20
FM 4

Ta-4W-1 Hf

Figure25. Microstructure of Double "V" Weld 20
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Weld 22
FM 10

Ta-4W

Figure 26. Microstructure of Double "V" Weld 22
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4.5 TENSILE TESTS

In addition to the optical metallographic evaluation of the plate welds, the room temperature

tensile properties were determined for each of the filler metal compositions and 1649°C

(30000 F) tensile properties were determined for welds 2, 4, 6, and 8. Specimens were

machined from the plate welds to permit transverse tensile testing, i. e., the longitudinal

weld axis was normal to the longitudinal axis of the round bar tensile specimens. The results

of these tests are presented in Table 10.

Three as-tested specimens are shown in Figure 28. The specimens machined from weld 7 and

weld 20 are not typical in that failure occurred in the parent metal, away from the weld. The

results of these tests and observations made on the tested specimens are summarized below:

· At room temperature and 16490 C (30000F) the presence of underbead

cracks in plate weldments does not measurably affect joint strength.

· Although failures generally occur in the weld metal, this is undoubtedly

strongly influenced by the large and unfavorably oriented grain structure

of the weldment.

· Ductility, as reflected by percent elongation at failure, is noticeably

less for the plate weld specimens than for T-111 base metal. As for the

preceding observation, the large grain size of the weldment would have

a significant influence here and make it rather difficult to separate and

identify any portion of the reduced ductility as being due to the presence

of underbead cracks.

· From the limited number of comparisons available, double "V" joint

welds appear stronger than similarly prepared single "V" welds.
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Table 10. Tensile Test Results

Nominal Test Tota I
FM Ident. Composition Temperature TS YS Elong. RA

No. No. (w/o) oC (OF) 107N/2k 107 N/m2 ksi 07N% I~~~s I 

Ta-6W-1. 5Hf

Ta-6W-1. 5Hf

Ta-4W-1 Hf

Ta-4W-1 Hf

Ta -4W-2 Hf

Ta -4W-2 Hf

Ta-6W-1 Re-
0. 8Hf-0. 025C

II

Ta-unalloyed

Ta-4W

Ta-10W

Ta-0. 5Hf

Ta-2Hf

Ta-unalloyed

Ta-unalloyed

Ta-0 5Hf

Ta-8W-2Hf

Ta-4W

Ta-4W-1 Hf

Ta-4W-I Hf

Ta -4W-1 Hf

Ta-4W

Ta-4W
I

RT ( -)

1649 (3000)

RT ( -)

1649 (3000)

RT (-)

1649 (3000)

RT (-)

1649 (3000)

RT (-)

RT (-)

RT (-)

RT (-)

RT (-)

RT (-)

RT (-)

RT (-)

RT (-)

RT (-)

RT (-)

RT (-)

RT (-)

RT (-)

RT (-)

58. 0

12.2

54.7

12.1

52. 9

12.5

62.7

12.5

43.4

47.4

56.1

42. 7

49. 0

45.4

40.7

35.3

58.5

39.7

50. 8

60. 7

58.6

60.5

59, 9

84. 1

17. 7

79. 3

17.5

76. 7

18.1

90. 9

18.1

62. 9

68.8

81.3

62.0

71.1

63. 9

59. 0

51.2

84. 9

57.6

73.7

88.0

85.0

87.7

86.9

50.4

11.4

48. 3

11.5

44. 1

11.7

51.2

11.6

37. 9

33.5

50. 4

34. 2

41.2

36.0

31.6

27.2

50.2

33.0

48. 3

50. 7

50. 5

50. 5

50. 2

73. 1

16.5

70. 1

16.7

63. 9

17. 0

74.2

16. 8

55. 0

48. 6

73. 1

49. 6

59. 8

52.2

45. 8

39. 4

72. 8

47.8

70.1

73.5

73.2

73. 2

72. 8

7.84

1.17

4.62

1.84

6.50

3.60

17.30

7.88

9.00

9.00

2.84

11.60

10.32

7.31

11.5

8.8

6.14

9,01

0. 9

30.4

11,3

22.0

18. 9

14. 8

1.5

6.1

5. 2

32, 2

5. 0

34.6

I

2. 0

22. 7

28.0

8. 2

48.5

32. 2

34.6

55. 3

37.4

5. 3

36. 2

6.3

87.4

13.9

41.3

53.8

* Specimen failed outside of weld area
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Weld 4 Weld 7 Weld 20

FM 4 FM 8 FM 4

Ta-4W-1 Hf Ta-6W-0. 8Re-1 Hf-O. 025C Ta-4W-1 Hf

Tested at 16490C Tested at RT Tested at RT

Figure 28. As-tested Tensile Specimens. Specimens Machined from
Multipass GTA Plate Weldments.
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* A general correlation between filler metal hardness and weld joint

tensile strength was observed, Figure 29. The relationship implied

by Figure 29 is a trend rather than a direct correlation since the as-welded

hardness would be somewhat higher than the rolled/annealed hardness

values used.

4.6 BEND TESTS

Prior to bend testing the surfaces of the test welds were inspected for weld defects using

dye penetrant techniques. Cracking was not detected for any of the welds. Typical results

are shown in Figure 30.

Bend specimens were prepared from welds 18 through 24. These welds had been made using

either FM 4 (Ta-4W-1 Hf) or FM 10 (Ta-4W). Bending was achieved by using a 1 t punch

radius and bending the specimens 90° or until the punch contacted the specimen at a point

other than at the punch tip. Welds 18, 19, and 24, which were single "V" welds, were

tested in such a manner that the top surface of the weld was in tension. For welds 20-23,

which were double "V" welds, the top and bottom surfaces are indistinguishable. The data

obtained from these tests are presented in Table 11. The outer fiber stress and approximate

outer fiber strain were determined from the following formulas:

1.5 WL 6HD4

Stress- Strain (%)=
BH W

W - Span length

L - Load

B - Specimen width

H - Specimen thickness

D - Deflection
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8(Number Denotes Filler Metal)
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9 1
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4
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I
60

Ambient Tensile Strength of Welded Joint

Figure 29. Relationship Between Filler
at Ambient Temperature

(107N/m2 ) (Single "V")

Metal Hardness and Weld Strength
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TOP ROOT
Weld Number 19

FM 4 (Ta-4W-1 Hf) Single "V"

TOP
Weld 21

FM 4 Ta-4W-1Hf Double "V"

Figure 30. Typical Results of Dye Penetrant Inspection of As-welded
Butt Welds
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Table 11. Results of Bend Tests on Welded Joints

* Weld direction parallel to punch direction

** P. L. = proportional limit

67

Weld Filler Joint Final Stress P.L. Stress** Approx.
Weld Metal Joint Strain

No. No. Description (07N/M2 ) (ksi) (107 N/M2 ) (ksi) (k)%)

19 4 Single V3 pass 127.8 185.4 63.2 91.7 31

20* 4 Double V 12 pass 132.2 191.7 89.9 130.4 40

21 -4 Double V4 pass 122.2 177.2 78.7 114.2 43

18 10 Single V 3 pass 111.1 161.1 58.0 84.1 39

22 10 Double V 12 pass 118.1 171.3 79.4 115.2 39

23 10 Double V 6 pass 111.0 161.0 66.9 97.1 35

24 10 Single U 5 pass 111.6 161.9 67.3 97.6 36



Failure did not occur during any tests. The tests were stopped when the punch began loading

on areas on its sides rather than its radius. The stress at the initiation of plastic deformation

is reported in Table 11 as P. L. (for proportional limit).

Following bend testing, the specimens were again inspected for defects with dye penetrant

techniques. Figures 31 and 32 show both the bent specimen and the dye penetrant indications

of welds 18 and 19. These results are typical showing one instance where significant cracking

was detected on the outer surfaces and a comparatively crack-free bend specimen. One

bend test, on weld 20, was performed on the specimen after rotating it 900 about its axis.

In that orientation the punch moved in a direction parallel to the weld direction. No evidence

of cracking was seen following bend testing.

Figures 33-35 show the results of metallographic examination of several specimens following

bend testing. Figures 34 and 35 compare pre-test and post-test structures of welds 19 and

24, respectively. Both of these welds were made in the single "V" joint design and contained

a small, but discernible, amount of underbead cracking as welded. The bend testing has

resulted in the enlargement of the existing cracks and initiated others. However, while the

cracks do enlarge during deformation, their presence does not seem to greatly alter the bend

behavior of plate weldments containing them.

Figure 35 shows the post-test microstructure of a specimen prepared from a double "V" weld

joint -- weld 23. There were no indications of cracking before testing, and none appeared

following, despite the fact the outer fiber strain reached approximately 35% during testing.

4. 7 MICROPROBE ANALYSIS

In an effort to determine the extent of solute segregation in the weldment, a specimen

removed from weld 4 (FM 4, Ta-4W-1 Hf) was analyzed for hafnium with an electron beam

microprobe. The nominal hafnium concentrations in the T-1 11 base metal and the filler
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Weld 18

FM 10 Ta-4W

Figure 31. As-Bend Tested Plate Weld Specimen. Single "V"
Weld Tested with Top Face of Weldment in Tension
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Weld 19

FM 4 Ta-4W-1 Hf

Figure 32. As-Bend Tested Plate Weld Specimen. Single "V" Weld
Tested with Top Face of Weldment in Tension
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Weld 19
FM 4

Ta-4W-1 Hf

AFTER BEFORE

Figure 33. Microstructure of Single "V' Weld 19 - Before and After
Bend Testing
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Weld 24
FM 10

Ta-4W

BEFORE AFTER

Figure 34. Microstructure of Single "U" Weld 24 - Before and After
Bend Testing
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Weld 23
FM 10
Ta-4W

Tension

Figure 35. Typical Microstructure of Double "V" Weld 23 Following
Bend Test at Room Temperature
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metal were 2% and 1%, respectively. Counts were recorded and compared with the back-

ground. Although the exact hafnium content was not determined, relative measurements

indicated:

· In the T-111 base metal, hafnium concentrations vary little with location.

· Hafnium in the weld metal varied from that of the filler metal to that of

T- 11, being greatest adjacent to the grain boundaries.

· There is not an abrupt change in hafnium content in going from base metal

to weld metal. The dilution of hafnium from the base metal, which occurs

during welding, produces a quasi-uniform concentration gradient within

the weldments.

4.8 HARDNESS TESTS

Hardness traverses were made on representative specimens taken from welds 2, 4, 6, 8, 18,

and 21 to measure property variations within the weld. The results are shown in Table 12.

The location of each hardness reading is shown in Figure 36. In general, the hardness

results indicate that a significant amount of filler metal-base metal mixing occurs in most

of the weld zone and is not confined to the weld metal-HAZ interface. These results

substantiate the variations in hafnium content previously reported. The hardness in the top

bead is most representative of the undiluted filler metal hardness. For weld 2, the filler

metal, FM 3 (Ta-6W-1. 5Hf), had about the same hardness as the base metal; thus, there

Is very little hardness variation within the weld. Welds 4, 6, and 18 have filler metals sig-

nificantly softer than the base metal, and large variations in hardnesses were observed. The

hardnesses at the roots of these welds were the highest within the weld metal because of the

greater mixing in this area. The hardness of FM 8 used in weld 8 is greater than the base

metal; thus, the root area is the lowest hardness within the weld. Similar correlation

between filler metal-base metal mixing was observed in the results of the hardness traverse
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Table 12. Weldment Hardness Results

(Values are in DPH units. )

Also, see Figure 36.
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Weld No. 2 4 6 8 18 21
FM 3 4 5 8 10 4

Joint Single "V" Single "V" Single "V" Single "V" Single "V" Double "V '

A 206 173 183 289 127 191

B 202 179 183 292 131 212

C 197 173 183 294 127 218

D 189 170 193 279 136 219

E 193 175 181 279 133 218

F 212 172 187 276 129 -

G 201 193 199 276 166 227

H 210 205 203 258 167 210

I 212 201 213 262 168 209

J 218 - 222 235 175 203

K 213 216 224 224 166 191

L 199 207 205 209 206 212

M 205 202 205 218 207 -

N 209 190 191 241 134
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Figure 36. Schematic: Location of Hardness Measurements on Plate
Weldments. Data Tabulated on Table 12.
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taken on weld 21, FM 4, which was of the double "V" geometry. The minimum hardness

observed in this weld was 191 DPH and compares to a minimum hardness of 170 DPH observed

in weld 4, FM 4. The filler metals are of the same composition, only the weld geometry

differed. The double "V" is a "tighter" joint than the single "V" is and subject to greater

filler metal-weld metal mixing; hence, the resulting weld has a hardness nearer that of

the base metal.

The observed hardness difference between the double and single "V" joints agrees with the

previously measured and discussed differences in mechanical strength between the two joints;

i. e., the specimens taken from the double "V" joint are stronger than those taken from a

single "V" joint, all other parameters being equal.
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5.0 CONCLUSIONS

This program was directed to reducing or eliminating underbead cracking in T-1 11 GTA

multipass plate welds. The following are the major conclusions reached regarding welding

of T-111 plate.

1. Multipass (greater than 6 passes) single "V" GTA welds in thick T-1 11

plate result in underbead cracking regardless of the filler metal used.

The presence of hafnium in the weld metal inherently results in grain

boundary cracking if substantial weld deformation occurs, as in the

single "V" joint.

2. Using two fill passes and filler metals containing no hafnium, crack-

free welds can be successfully accomplished with the single "V"

joint.

3. Crack-free welds can be made in double "V" joints with hafnium-

containing filler metals.

4. Of all the hafnium containing filler metals tested, FM 4 (Ta-4W-1 Hf)

was the best based upon the reduction of underbead cracking pro-

pensity.

5. Results of the screening of filler metals performed with the Varestraint

test correlated well with the observed butt welding behavior.

6. The reduction in matrix to grain boundary strengths is not a directly

viable solution to the problem of underbead cracking in T-1 11 plate.

To eliminate or reduce underbead cracking, the imposed stress-strain

state along with the hafnium content at the weld metal grain boundaries

must be minimized.
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