

INVESTIGATION OF NOISE SUPPRESSION BY SONIC INLETS FOR TURBOFAN ENGINES

Volume II: Appendixes

D6-40855-1

July 1973
by F. Klujber, J. C. Bosch,
R. W. Demetrick, and W. L. Robb

BOEING COMMERCIAL AIRPLANE COMPANY
prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA Lewis Research Center Contract NAS3-15574

INVESTIGATION OF NOISE SUPPRESSION BY SONIC INLETS FOR TURBOFAN ENGINES

BY: F. KLUJBER,

J. C. BOSCH, R. W. DEMETRICK, AND W. L. ROBB

CONTENTS

Page
APPENDIX A MECHANICAL DESIGN STUDY AND TEST CONFIGURATION SELECTION 1
APPENDIX B DETAILED DESIGN OF MODELS 39
APPENDIX C TEST PROCEDURE AND INSTRUMENTATION DETAILS 77
APPENDIX D DATA ANALYSIS PROCEDURE 131
APPENDIX E CONCEPT SCREENING-DATA ANALYSIS 193

APPENDIXA
MECHANICAL DESIGN STUDY
AND TEST CONFIGURATION SELECTION

SUMMARY

This appendix contains the results of design studies to establish the best mechanical design that meets the criteria for a single- or multipassage sonic inlet on a STOL airplane propulsion system. Conclusions from the study had a major influence on selection of sonic inlet models for testing.

The desired throat area reduction of 27% from cruise to approach was best achieved in the multipassage group with a translating radial vane and centerbody configuration, for a vane-type sonic inlet, and a translating ring and centerbody configuration, for a ring-type sonic inlet. An articulated radial vane configuration is discussed and was chosen to be tested for performance evaluation.

In the single-passage group, the translating centerbody was considered to be the most suitable.

A. 1 INTRODUCTION

The total program for investigation of noise suppression by sonic inlets for turbofan engines is outlined in technical proposal document D6-40195-1, dated September 24, 1971. Mechanical design configuration studies were proposed under task III of the program. Studies conducted to determine mechanical design influence on selection of candidate configurations for model screening tests of single-passage and multipassage sonic inlets are outlined in this document. Preliminary design layouts, design criteria, evaluation charts, and conclusions and comments are included.

A. 2 DESIGN CRITERIA

The following criteria were followed in all design studies to ensure comparison of configurations within the same parameters.

1) The designs were tailored to the engine requirements for a STOL airplane. However, design flexibility, for application to engines having greater area change requirements, was also considered in design selection.
2) The inlets were evaluated as both two-position devices and multiposition devices until test results and/or analysis defined noise and performance payoffs for trade against system complexity.
3) Actuation time from approach to takeoff was considered compatible with engine acceleration capabilities and tolerance to transient flow variations.

A. 3 CONFIGURATIONS

A.3.1 Vane-Type Sonic Inlets

A.3.1.1 Rotating Radial Vane Sonic Inlet

Figure A-1, LO-INSP-003, depicts a rotating radial vane sonic inlet configured to the criteria outlined in section A-2.

Throat area reduction to increase the throat Mach number for noise reduction at takeoff and approach is achieved by rotating the vanes from their partially stowed horizontal cruise position in the outer cowl to a vertical position in the inlet throat area. The maximum thickness line for the vane airfoil was chosen to coincide with the internal inlet surface to minimize seal problems when the vanes are stowed in cruise position. This leaves a portion of the vane in the inlet flow stream during cruise. If further analysis and test show that vane protrusion at cruise is a greater problem than leakage, alternate versions of the basic concept are possible. Twenty vanes having at/c of 0.24 and a taper ratio of $6 / 1$ are shown. The t / c and taper ratio can be reduced by increasing the number of vanes or increasing vane chord length, or both, and accepting the penalties associated with greater cowl penetration and vane protrusion in the diffuser during cruise. As configured, the desired area reduction of 27% for approach is achieved with 8.9 in. of actuation travel.

The outer cowl is of conventional skin and frame construction, with longitudinal stiffening and supports in the area of rotating vane penetration. The vanes are pivoted from cowl structure and driven by links from an actuator-driven unison ring. The actuation system shown consists of four engine-bleed-air-driven piston actuators that are also connected to racks that drive gear boxes interconnected by flex shafting for synchronization. An alternate, and perhaps preferable system, would be hydraulic actuators with transducer position feedback to transfer valves for uniform actuator position control.

Section A. 4 outlines additional characteristics and provides a comparison to other concepts.

A.3.1.2 Translating Parallel Vane Sonic Inlet

Figure A-2, LO-INSP-004, shows a single-grid translating parallel vane inlet configured to the criteria outlined in section A.2. The desired throat area reduction of 27% for approach is achieved by
translating the vanes 22.4 in. from their stowed cruise position in the diffuser section to the throat area of the inlet.

The outer cowl is of conventional skin and frame construction, with longitudinal stiffening and supports in the area of vane translation. The vane ends extend through slots in the cowl wall and attach rigidly to an actuator-driven unison ring that rides on slide blocks and tracks. Slot closure doors are shown as a schematic means for sealing at cruise. Smoothness and leakage elimination at cruise will be a function of how well the complex detail seal design problems are resolved. Slots are left open during approach. As in the rotating radial vane configuration, the actuation system shown consists of four pneumatic actuators with gear boxes and flexible shafting for synchronization. Here also, a preferable system could be hydraulic actuators with transducer feedback to transfer values for uniform actuator position control.

Section A. 4 outlines additional characteristics and provides a comparison to other concepts.

A.3.1.3 Translating Radial Vane Sonic Inlet

Figure A-3, LO-INSP-005, shows a translating radial vane sonic inlet configured to the criteria outlined in section A.2.

The desired throat area reduction of 27% for approach is achieved when a set of radial vanes, that are positioned in the diffuser during cruise, are translated 10 in . forward to alternating positions between radial vanes that are fixed to the cowl.

The outer cowl is of conventional skin and frame construction with longitudinal stiffening and supports in the area of vane translation. The vane ends extend through slots in the cowl wall and attach to an actuator-driven unison ring that moves on slide blocks and guide rails. Sliding filler strips are shown as slot seals. As in the rotating radial and parallel vane configurations, hydrualic actuators with transducer feedback to transfer valves, for control of relative position, may be preferable to the pneumatic actuation with mechanical interconnect that is shown.

Additional characteristics are outlined in section A.4, together with a comparison to other concepts.

A.3.1.4 Expanding Radial Vane Sonic Inlet

Figure A-4, LO-INSP-007, shows an expanding radial vane sonic inlet configured to the criteria outlined in section A.2.

The desired throat area reduction of 27% is achieved when engine bleed air valving is opened to allow flow to air bags that expand inside radial vanes. Air bag pressure overcomes spring load of hinged panels that form the vanes, forcing them outward to increase the vane thickness and reduce throat area.

The outer cowl is of conventional skin and frame construction. Vane venting is required to bring spring forces to a reasonable level. As configured, the concept may have potential as a two-position device with spring forces working against stops in one position and air bag pressure against stops in the other position. Selection of midpoints using air pressure control is not feasible.

Section A. 4 outlines additional characteristics and provides a comparison to other concepts.

A.3.1.5 Translating Radial Vane and Centerbody Sonic Inlet

Figure A-5, LO-INSP-008, depicts a translating radial vane and centerbody sonic inlet configured to the criteria outlined in section A.2.

The desired throat area reduction of 27% is obtained when radial vanes fixed to a centerbody are translated, with the centerbody, 20.0 in . from their cruise position in the diffuser section, to the throat area of the inlet. Part of the area change results from centerbody vane blockage of area between fixed vanes on the cowl and centerbody blockage of area in the center of the inlet at the tips of the cowl vanes.

The outer cowl is of conventional skin and frame construction, with longitudinal bridging between frames for attachment of radial vanes. Fixed fins are attached to the diffuser wall to control flow Mach number at cruise. The centerbody with its radial vanes translates on slide blocks and tracks supported by structure attached to an engine case extension with struts or IGVs. No sealing of moving parts is required except in the anti-ice system. Translation is accomplished with a single actuator using pneumatics if a two-position system is found adequate and hydraulics with transducer position feedback to a transfer valve if multiple position is necessary.

Figure A-6, LO-INSP-016, presents a possible variation of the translating radial vane and centerbody sonic inlet concept, in which the radial vanes rotate and are partially stowed in the cowl during cruise. This is similar to the rotating vane concept shown in figure A-1. It was configured as part of the overall study because of the possibility of better cruise inlet performanance with the vanes rotated out of the inlet flow. However, the study indicates that increased weight will negate inlet performance gains on a short-range STOL airplane. Therefore, there is very little, if any, benefit from the added complexity.

Section A. 4 outlines additional characteristics and provides a comparison to other concepts.

A.3.2 Ring-Type Inlets

A.3.2.1 Translating Ring Sonic Inlet

Figure A-7, LO-INSP-006, shows a translating ring sonic inlet configured to the criteria outlined in section A.2.

The desired 27% area reduction is achieved by translation of a ring that is positioned outside the basic inlet, in what is normally free stream, during cruise and translated 21.3 in . aft into the throat area of the inlet for approach.

The outer cowl is of conventional skin and frame construction. The centerbody is supported by struts or IGVs from an engine case extension. The translating ring is supported by struts from a center housing that forms trackage for translation on slide blocks attached to the fixed centerbody. No sealing of moving parts is required except in the ring anti-ice system. A single pneumatic actuator will accomplish translation for a two-position system. A hydraulic actuator with transducer position feedback to a transfer valve will provide multiposition capability.

Section A. 4 outlines additional characteristics and provides a comparison to other concepts.

A.3.2.2 Translating Ring and Centerbody Sonic Inlet

Figure A-8, LO-INSP-013, shows a translating ring and centerbody sonic inlet configured to the criteria outlined in section A.2.

The desired 27% area reduction is achieved by translating a ring and centerbody 21.8 in . from a cruise position in the diffuser section to a position in the inlet throat for approach.

The outer cowl is of conventional skin and frame construction. The centerbody with its strutsupported ring translates on slide blocks and tracks supported by structure attached to an engine case extension by struts. Sliding seals will be required for the centerbody and ring anti-ice system. A single pneumatic actuator will provide translation for a two-position system. A hydraulic actuator with transducer position feedback to a transfer valve will provide multiposition capability.

Figure A-9, LO-INSP-015, shows a variation of figure A-8 that utilizes a translating ring and centerbody in conjunction with a fixed ring supported from the cowl. All the comments made regarding figure A-8 apply except that translation has been reduced from 21.8 to 18.5 in .

The double ring arrangement of figure A-9 provides a method of achieving a better Mach number match of exit airflow from the separated flow paths.

Section A. 4 outlines additional characteristics and provides a comparison to other concepts.

A.3.3 Articulated Radial Vane Sonic Inlet

Figure A-10, LO-INSP-014, shows an articulated radial vane sonic inlet configured to the criteria outlined in section A.2.

Area reduction is achieved by rotating two sets of radial vanes. The first set has a variable trailing edge and, when rotated, establishes a high throat Mach number for suppression. The second set has a variable leading edge and acts as a straightening vane for flow to the fan. Approximately 40° vane rotation is required to achieve the desired 27% area reduction.

The outer cowl is of conventional skin and frame construction. The radial vanes are supported by an extension of the engine case and nose dome. The vanes are rotated by cranks that are link driven from a unison ring that rotates around the engine case when actuated. A single actuator is shown that could be pneumatic for a two-position system or hydraulic with transducer position feedback to a transfer valve for multiple position.

Section A. 4 outlines additional characteristics and provides a comparison to other concepts.

A.3.4 Translating Centerbody Sonic Inlet

Figure A-11, LO-INSP-001, depicts a translating centerbody sonic inlet configured to the criteria outlined in section A.2.

Throat area reduction to increase the throat Mach number for noise reduction at takeoff and approach is achieved by translating the centerbody forward from its stowed cruise position in the inlet diffuser section. The desired area reduction of 27% for approach is achieved with 27 in . of centerbody translation. It appears that further study and test could reduce this stroke.

The outer cowl is conventional skin and frame construction. The centerbody support structure is attached to an extended section of the engine case by struts or structural inlet guide vanes. The centerbody is supported vertically and horizontally by tracks that ride on structure-mounted slide blocks. The fore and aft positions of the centerbody are variable and are maintained in the position desired by a single actuator. A two-position pneumatic piston actuator is shown. However, in the final analysis, a hydraulic actuator with transfer valve and position feedback for infinite position control will more than likely be used.

Area change capability with a single actuator moving one part and minimal seal problems are the major design advantages of the translating centerbody configuration. Section A. 4 outlines additional characteristics of this configuration.

A.3.5 Variable Cowl Wall Sonic Inlet

Figure A-12, LO-INSP-002, depicts a variable cowl wall sonic inlet configured to the criteria outlined in section A.2. The configuration is similar to the one tested on NASA contract NAS1-7129 and reported in document D6-60120-5.

Eight sets of two leaves are used to vary throat area. The forward leaves rotate from a fixed pivot on the forward end and are attached to the aft leaves by a moving pivot that is driven by links from an actuated unison ring. The aft ends of the aft leaves are pivoted in tracks mounted to structure. The unison ring is actuated by four ball screws that are gear-box-driven by an air rotor with the gear boxes synchronized by flex shafting. The actuation system could be simplified by using eight hydraulic actuators driving the leaves directly, with transducer feedback to transfer valves for uniform actuator position control. The outer surface of the cowl is conventional skin attached to frames. The inner surface in the area of the leaves is a combination of closure pan and leaf support beams. The support beams also form a side wall for the leaves to seal against.

Figure A-13, LO-INSP-002A, shows a variation with flexing material replacing pivot points at the inlet throat. A variable cowl wall approach to single throat sonic inlets becomes more attractive as the amount of required throat area variation increases. Section A. 4 outlines additional characteristics.

A. 4 COMPARATIVE EVALUATION

Figure A-14 presents a matrix of design considerations for comparison of the multipassage sonic inlets briefly described in section A. 3 and depicted in figures A-1 through A-9. The inlets are categorized for comparative purposes as vane-type and ring-type inlets, with the articulated vane inlet a separate category.

Areas of significant differences for vane-type inlets (figs. A-1 through A-5) are tabulated in table A-1. Table A-2 is a tabulation of areas of significant differences for ring-type inlets, (figs. A-7 and A-8).

Figure A-15 presents a matrix of design considerations for comparison of a translating centerbody sonic inlet (fig. A-11) and a variable cowl wall sonic inlet (fig. A-12). Areas of significant differences are tabulated in table A-3, with preferences indicated.

A.4.1 Vane-Type Sonic Inlets

The translating radial vane and centerbody configuration (fig. A-5) provides the best vane-type sonic inlet with regard to structure, mechanism, seal requirements, actuation, control, smoothness, bird-strike vulnerability, leakage, and cruise flow restrictions. The other vane-type inlets have some advantages; however, their overall complexity in conjunction with minimum benefits make the translating radial vane and centerbody the obvious choice of the vane-type configurations evaluated.

A.4.2 Ring-Type Sonic Inlets

The translating ring and centerbody configuration (fig. A-8 or A-9) is considered the best of the two ring-type sonic inlets due to superior characteristics with regard to lines, range of application, angle-of-attack sensitivity, flow passage Mach number mismatch, and cruise flow restrictions.

A.4.3 Articulated Radial Vane Sonic Inlet

This configuration (fig. A-10) represents a unique type and is thus difficult to compare directly to the vane- and ring-type sonic inlets without additional analysis and test to more clearly define the design requirements: Estimates at this point indicate that there may be some weight penalty. However, this cannot be established without additional analysis and test development work to better define vane shape, size, and number.

Split vanes with rotation of leading and trailing edges, as shown on figure A-10, are a possible solution to the large performance losses expected from a leading edge angle of incidence of 40°. Rotation of a single vane as in the alternate concept shown in detail I on figure A-10 would be preferable from a mechanical design viewpoint but is subject to the noted losses.

The concept has potential from a design standpoint, and model testing to determine noise suppression capability and performance is in order.

A.4.4 Translating Centerbody Sonic Inlet

The translating centerbody configuration will provide a better design with respect to contour lines, smoothness, mechanism, sealing, actuation and control, vulnerability to bird strike, and installation of acoustic material.

A.4.5 Variable Cowl Wall Sonic Inlet

The variable cowl wall appears to have an advantage if larger throat area changes are required, but final determination is subject to review of inlet length, diffusion angles, and possibility of boundary layer control requirements on the particular configuration under consideration.

A.5. CONCLUSIONS AND COMMENTS

On the basis of comparisons presented in section A.4, it is concluded that a radial vane and translating centerbody configuration of the type shown in figure A-5 provides the best mechanical design approach of the vane-type sonic inlets studied. It is further concluded that use of a translating centerbody in conjuntion with rings provides the best mechanical design approach of the ring-type sonic inlets studied.

In addition to the comparative considerations presented in section A.4, there is a basic geometry consideration that favors centerbody-type configurations. This applies to any sonic inlet that requires stowage of blockage material in the diffuser section when high Mach number throat flow for suppression is not desired. A centerbody is a natural extension of the engine hub and must be there in some form to divert the cylindrical inlet flow to annular fan flow This hub area is a natural location for stowage of blockage material, and if it is not utilized the outer diffuser surface must be expanded to provide stowage area elsewhere. Outer surface expansion will require greater inlet length or steeper diffusion angles, or both.

The probability for success in design of a good sonic inlet is also enhanced to some extent when engine fan hub/tip ratio increases because a larger hub provides a larger area for stowage of blockage material.

The articulated radial vane approach to a sonic inlet has been considered and evaluated within the limits of available data. Additional testing and analysis are required to better define design parameters. However, this approach to a sonic inlet appears feasible and does have potential from a mechanical design standpoint.

The conclusions noted are made specifically for inlets configured to the criteria outlined in section A.2. It is important to note, however, that for different design criteria other conclusions could be made. This is particularly true if larger area changes are required. Increased area change requires increased centerbody translation, and at some point the amount of translation will become prohibitive and one would choose the variable cowl wall concept or continue the search for another approach.

Idealized inlet lines have been used in these studies for comparative purposes. Analysis and testing of shorter translating centerbody inlets should be completed to establish the best weight/ performance trade prior to finalization of inlet lines. Figure A-16, LO-INSP-010, and figure A-17, LO-INSP-011, showing inlet lines with length/diameter ratios of 1.0 and 1.2 , respectively, are included to emphasize the potential benefits of shorter inlets. It is estimated that a weight reduction from 480 to 370 lb is possible if the L / D of 1.4 shown in figure $\mathrm{A}-11$ is reduced to the L / D of 1.0 shown in figure A-16.

TABLE A-1.-SIGNIFICANT DIFFERENCES-VANE-TYPE SONIC INLETS ${ }^{a}$

Area of significant difference	Configuration				
	1 Rotating radial vanes	```2 Translating parallel vanes```	3 Translating radial vanes	4 Expanding radial vanes	5 Translating radial vane and centerbody
Basic design A. Lines B. Structure C. Mechanism D. Seals				+	+ + +
Actuation					+
Control					+
Smoothness					+
Bird Strike					+
Anti-ice system				+	
Performance concerns A. Leakage					+
B. Angle-of-attack sensitivity	+	+	+	+	
C. Flow passage Mach No. mismatch D. Cruise flow restrictions	+		+	+	+

[^0]| Area of significant difference | Configuration | |
| :---: | :---: | :---: |
| | 6 | 7 |
| | Translating ring | Translating ring and centerbody |
| Basic design | | |
| A. Lines | | + |
| E. Range of application | | + |
| Performance concerns | | |
| B. Angle-of-attack sensitivity | | + |
| E. Diffusion angle | + | + |
| G. Flow passage Mach No. mismatch | | + |
| H. Cruise flow restrictions | | + |

${ }^{a}$ For use with figure A-14

TABLE A-3.-SIGNIFICANT DIFFERENCES-SINGLE-PASSAGE SONIC INLET

Area of significant difference	Translating centerbody	Variable cowl wall
Basic design: A. Lines C. Mechanism D. Seals E. Range of application	+ (Approach)	
Actuation	+	
Control	+	
Smoothness	+	
Bird strike	+	
Acoustic treatment	+	

\pm The variable cowl wall appears to have an advantage if larger throat area variations are required, because movement of the larger outer perimeter surface areas will provide the greatest throat area variation with the least motion. However, a longer inlet or steeper diffusion angles with a boundary layer control system might be required, and the impact should be evaluated prior to a configuration selection.

FIGURE A-1.-LO-INSP-OO3-ROTATING RADIAL VANE SONIC INLET

Erala stowisg vane tranti
FIGURE A-3.-LO-INSP-005-TRANSLATING RADIAL VANE SONIC INLET

FIGURE A-4.-LO-INSP-OOT-EXPANDING RADIAL VANE SONIC INLET

FIGURE A-5.-LO-INSP-0O8-TRANSLATING RADIAL VANE AND CENTERBODY SONIC INLET

FIGURE A-6. -LO-INSP-016-TRANSLATING CENTERBODY AND ROTATING RADIAL VANE SONIC INLET

FIGURE A-7.-LO-INSP-006-TRANSLATING RING SONIC INLET

FIGURE A-8.-LO-INSP-013-TRANSLATING RING AND CENTERBODY SONIC INLET

AREA

FIGURE A-9.-LO-INSP-015-TRANSLATING RING AND FIXED RING SONIC INLET

FIGURE A-10.-LO-INSP-014-ARTICULATED RADIAL VANE SONIC INLET

FIGURE A-11.-LO-INSP-OO1-TRANSLATING CENTERBODY SONIC INLET

FIGURE A-12.-LO-INSP-OO2-VARIABLE COWL WALL SONIC INLET

FIGURE A-13.-LO-INSP-OO2A-VARIABLE COWL WALL SONIC INLET USING FLEXING MATERIAL

FIGURE A-14.-EVALUATION CHART-MULTIPLE THROAT SONIC INLETS

Design Consideration		Translating Parallel Vanes (2)
Basic design	Lines	Vane support and actuation could influence shape of external lines; L/D $=1.1$
	Structure	Conventional skin and frame cowl with longitudinal bridging in area of vane penetration
	Mechanism	Vanes attached to actuator-driven unison ring
	Seals	Difficult and complex seal design required for vane penetration slot closure
	Range of application	Limited by the amount of diffuser expansion possible for vane stowage; diffusion angle or inlet length and vane translation would increase
Actuation	Power source	Same as (1)
	Type of actuation	Same as (1)
	Load and stroke	Load $\approx 800 \mathrm{lb}$; stroke $=22.4 \mathrm{in}$.
	Synchronization	Same as (1)
	Failsafe potential	Friction forces will probably counteract pressure forces, and vanes will remain in position last called for if actuation fails
Control	Two position	
	Multiple position	Same as (1)
Weight estimate (lb)		Basic cowl 184.0 Nose dome 10.0 Vanes 43.0 Actuation and control 58.0 Anti-icing system 59.0
		Total inlet 390.0 Engine penalty $\mathbf{3 7 . 0}$ \quad Total $\mathbf{4 2 7 . 0}$
Smoothness		Open slots in cowl wall during approach; smoothness at cruise will be a function of how well a difficult seal design problem is resolved
Bird strike		Shock-absorbing support plus vane beef-up required
Anti-icing system		Complicated routing to multiple translating vanes
Performance concerns	Leakage	Function of seal design at cruise; concern in other positions
	Angle-af-attack sensitivity	Same as (1)
	Pressure recovery	Same as (1)
	Distortion	Complicated distortion pattern
	Diffusion angle	Same as (1)
	Vane sirfoil	$T / C=0.167$
	Flow passage Mach no. mismatch	Vanes adjacent to cowl could be a problem
	Cruise flow restrictions	Stowed vanes create a second throat
Acoustic potential		Same as (1)

FIGURE A-14.-Continued

FIGURE A-14.-Continued

FIGURE A-14.-Continued

FIGURE A-14.~Continued

FIGURE A-14.-Continued

Dasign Consideration		Translating Ring and Centarbody (7)
Basic design	Lines	Same as (6) except $L / D=0.95$
	Structure	Conventional skin and frame outer cowl with centerbody supported by IGVs or struts
	Mechanism	Same as (6)
	Seals	None required
	Range of application	Larger area changes possible by increasing cowl length and translation
Actuation	Power source	Same as (1) and (6)
	Type of actuation	Same as (1) and (6)
	Load and stroke	Load $\approx 3500 \mathrm{lb}$; stroke $=21.8 \mathrm{in}$.
	Synchronization	Same as (5)
	Failsafe potential	Same as (6)
Control	Two position	
	Multiple position	Same as (1)
Weight estimate (lb)		Basic cowl 126.0 Translating centerbody 55.0 IGV modification or support struts 34.0 Centerbody support structure 70.0 Actuation and control $\mathbf{2 2 . 0}$ Anti-icing system $\underline{65.0}$ \quadTotal inlet Engine penalty $\underline{387.0}$ Total $\mathbf{4 0 7 . 0}$
Smoothness		Same as (6)
Bird strike		Same as (6)
Anti-icing system		Same as (6)
Performance concerns	Leakage	Not a problem
	Angle-of-attack sensitivity	Less cause for concern than (6)
	Pressure recovery	Same as (1)
	Distortion	Same as (6)
	Diffusion angle	9.5°
	Vane airfoil	$\mathrm{T} / \mathrm{C}=0.08$
	Flow passage Mach no. mismatch	Similar problem but to a lesser degree than (6)
	Cruise flow restrictions	Ring and support struts in diffuser
Acoustic potential		Same as (6)

FIGURE A-14.-Continued

Design Considaration		Variable Inlet Guide Vanes (8)
Basic design	Lines	Comparable to current inlets; $\mathrm{L} / \mathrm{D}=0.94$
	Structure	Conventional skin and frame outer cowl with engine case and shaft extended for vane support
	Mechanism	Actuator-driven unison ring that rotates around engine driving links that rotate vanes
	Seals	72 rotary seals required as configured
	Range of application	A Mach 0.80 throat requires close to limit vane turning of 40°
Actuation	Power source	Same as (1)
	Type of actuation	Same as (1)
	Load and stroke	Load $\approx 1500 \mathrm{lb} ;$ stroke $=2.04 \mathrm{in}$.
	Synchronization	Same as (5)
	Failsafe potential	Vane pivot points should be forward of center of pressure for vanes to trail in failsafe position (see detail I on LO-INSP.014)
Control	Two position	
	Multiple position	Same as (1)
Weight estimate (l)		Basic cowl 111.0 Engine case extension 49.0 IGVs 230.0 Vane support hub 19.0 Shaft extension and spinner 15.0 Actuation and control 54.0 Anti-icing system $\underline{56.0}$
		Total inlet 535.0 Engine penalty $\underline{12.0}$ \quad Total 547.0
Smoothness		Surface imperfections will occur at vane ends due to rotation within curved surfaces
Bird strike		Bird strike with vanes at 40° rotation could be difficult to handle
Anti-icing system		Outer cowl comparable to existing inlets; vane leading edge requires multiple complex routing
Performance concerns	Leakage	Not a problem
	Angle-of-attack sensitivity	Comparable to current inlets
	Pressure recovery	Unknown
	Distortion	Same as (1)
	Diffusion angle	7.7°
	Vane airfoil	T/C $=0.087$
	Flow passage Mach no. mismatch	Not a problem from an area standpoint
	Cruise flow restrictions	IGVs in diffuser
Acoustic potential		Same as (1)

FIGURE A-14.-Concluded

Design Consideration		Translating Centerbody		
Basic design	Lines	Good area progression profile with maximum cowl wall diffusion angle of 7.5° and L / D of 1.4 ; external lines not affected		
	Structure	Conventional skin and frame outer cowl with centerbody support integrated with engine inlet guide vane design		
	Mechanism	Actuator-driven centerbody translating on slide blocks and tracks		
	Seals	Static seals only		
	Range of application	Larger area changes can be achieved at the expense of increased intet length and/or diffusionangle		
Actuation	Power source	Engine bleed air for two-position preumatic system; hydraulic for multiple position		
	Type of actuation	Preumatic piston for two position; hydraulic piston for multiple position		
	Load and stroke	Load $\approx 3500 \mathrm{Ib}$; stroke $=27.0 \mathrm{in}$.		
	Synchronization	None required		
	Failsafe potential	Careful venting of plug and/or locking devices required to counteract adverse pressure loads		
Control	Two position	Electrical signal to air control valve		
	Multiple position	Electronic input to electromechanical transfer valve nulled by lineariy variable differential transducer position feedback with position selected as a function of engine rpm and total pressure at the fan face		
Weight estimate (lb)		Basic cowl 174.0 Translating centerbody 55.0 IGV modification 34.0 Centerbody support structure 89.0 Actuation and control 22.0 Anti-icing system $\underline{65.0}$ Total inlet $\mathbf{4 3 9 . 0}$ Engine penalty $\underline{40.0}$ Total $\mathbf{4 7 9 . 0}$		Comparative weight of 707-3208 nonsonic inlet $=220 \mathrm{lb}$ (scaled)
Smoothness		Imperfections limited to joint between centerbody and support structure		
Bird strike		Hazard no greater than current inlets		
Anti-icing system		Outer cowl leading edge comparable to existing inlets; telescopic routing to centerbody leading edge required		
Acoustic treatment		Wall treatment more effective		

FIGURE A-15.-EVALUATION CHART-SINGLE THROAT SONIC INLETS

Design Consideration		Variable Cowl Wall
Basic design	Lines	Good area progression profile at cruise; $\mathbf{1 1}^{\circ}$ diffusion angle during approach: $L / \mathrm{D}=1.35$
	Structure	Conventional skin and frame outer surface with combination closure pan and leaf support beams on inner surface
	Mechanism	Eight sets of two leaves with link connected to track-mounted unison ring or driven by individual actuators; option: replace eight sets of two leaves with sight leaves with controlled flexure for throat variation
	Seals	Approximatelv 700 in . of leaf edge requires variable degree of sealing
	Range of application	Has advantage of maximum area change with minimum diameter changa at outer surface
Actuation	Power source	Engine bleed air for two-position pneumatic system; hydraulics for multiple position
	Type of actuation	Four ball screws, gear box driven from air motor, driving unison ring or eight individual actuators
	Load and strake	Load $\approx 20,000 \mathrm{lb}$; stroke $=5.4 \mathrm{in}$.
	Synchronization	Flex shaft between gear boxes for unison ring drive or common input to transfer valves on independent actuators having linearly variable differential transducer position feedback
	Failsafe potential	Pressure loads are adverse
Control	Twa position	Electrical signal to air control valve
	Multiple position	Electronic input to electromechanical transfer valves nulled by linearly variable differential transducer position feedback with position selected as a function of engine rpm and total inlet pressure at the fan face
Weight estimate (${ }^{\text {(b) }}$		Basic cowl 168.0 Nose dome 10.0 Variable leaves 104.0 Comparative weight of 707.320B Actuatton and control 105.0 nonsonic inlet $=\mathbf{2 2 0} \mathrm{lb}$ (scaled) Anti-icing system $\underline{56.0}$ Total inlet $\underline{443.0}$ Engine penalty $\underline{41.0}$ Total 484.0
Smoothness		Leaf support beams protrude into airstream during cruise; longitudinal and circumferential joints around leaves; variable gap in surface continuity at aft end of leaves ${ }^{*}$ Approach ≈ 0.80; cruise $=0.02$
Bird strike		Leaf damage could cause failures that result in leaf ingestion (throat variation using leaves with controlled flexure would minimize this hazard)
Anti-icing system		Leading edge anti-icing is readily accomplished; leaf jamming is a possibility
Acoustic treatment		Wall treatment less effective

FIGURE A-15.-Concluded

LH. SIDE VIEW

FIGURE A-16.-LO-INSP-010-SONIC INLET LINES, TRANSLATING CENTERBODY,
$L / D=1.0$

FIGURE A-17.-LO-INSP-011-SONIC INLET LINES, TRANSLATING CENTERBODY,

$$
L / D=1.2
$$

PRECIDING PAGE BLANE NOT RHMH

APPENDIX B

DETAIL DESIGN OF MODELS

B. 1 INTRODUCTION

Two inlet concepts were studied, a single-passage and a multipassage type, and each embraced two different configurations: contracting cowl wall or translating centerbody for the single-passage type, and radial vanes or double articulated vanes for the multipassage type.

The basic design parameters for all configurations at full scale were as follows:

$$
\begin{aligned}
& \text { Approach }=402 \mathrm{lb} / \mathrm{sec} \\
& \text { Takeoff }=515 \mathrm{lb} / \mathrm{sec} \\
& \text { Maximum Cruise }=476 \mathrm{lb} / \mathrm{sec}
\end{aligned}
$$

These were based on engine criteria used for system design and evaluation studies of jet STOL aircraft under another NASA contract (ref. 2).

B. 2 DETAIL DESIGN OF INLET MODELS

B.2.1 Single-Passage Type

The design procedure for the single-passage inlets was similar for each model. Because the throat and diffuser exit areas were defined by the engine airflow requirements, the prime variables were diffuser length (L/D) and diffuser shape (area distribution). These variables were initially selected on a trial-and-error basis and evaluated with the aid of a computerized potential flow program combined with a boundary layer program. Surface Mach number, boundary layer shape factors, and boundary layer thickness were calculated and plotted as a function of diffuser length. The criterion used for inlet optimization was the attainment of minimum length without boundary layer separation or excessive boundary layer thickness. A shape factor of 2.8 was defined as the limit before separation occurred.

During design of the contracting cowl wall inlets, solutions were obtained for both model- and full-scale inlets. The full-scale inlet was based on the requirements of a typical augmentor wing-type turbofan engine requiring the above-mentioned corrected airflows at critical design conditions. Other variables used in the calculations included average throat Mach number, shape of the fan spinner, and shape of the cowl wall. Since the design computer program would not handle supersonic flow it was necessary to use average throat Mach numbers low enough to ensure that local supersonic velocities on the surface of the cowl were avoided. The principal average throat Mach numbers studied were 0.80 , 0.85 , and 0.90 .

The cowl wall slope had a significant effect on the boundary layer shape factor and was used to good advantage in determining the shortest inlet having good boundary layer characteristics. In general, it was found that a steep slope at the early stages of diffusion with lower slopes near the end resulted in the optimum design. However, danger of separation near the throat existed when using this technique; although the boundary layer was thin, local surface Mach number could be high and Mach number gradient across the channel severe. Examples of shape factor and cowl wall slope given on figure B-1 show that accurate prediction of shape factor was necessary to avoid separation.

Reynolds number exerted a major influence on shape factor and boundary layer thickness, as indicated by the curves comparing model scale and full scale on figure B-2.

B.2.1.1 Contracting Cowl Wall, $\mathrm{L} / \mathrm{D}=2.0$, Model 1

The computerized potential flow program combined with the boundary layer analysis program was used to generate the flow properties of the "fundamental" inlets. Model 1, which was conservatively designed using $\mathrm{L} / \mathrm{D}=2.0$, was the first to be studied. The cowl boundary layer characteristics expected at model scale for an average throat Mach number of 0.8 are shown on figure $\mathrm{B}-3$. The transition from laminar to turbulent flow in the boundary layer occurred slightly downstream of the inlet throat. The analysis indicated that the compressible shape factor for this condition would not exceed 2.0 anywhere in the diffuser and would be close to 1.5 at the diffuser exit. Predicted inlet Mach number distribution is shown on figure B-4. Details of inlet geometry are presented on figure B-5.

B.2.1.2 Contracting Cowl Wall, $\mathrm{L} / \mathrm{D}=1.0$, Model 2

The same design procedure was used for both the approach and takeoff configurations of model 2 , but only the takeoff configuration, details of which are presented in figure B-6, was critical. The internal flow characteristics for model scale Reynolds number and an average throat Mach number of 0.80 are presented in figure B-7, which shows the duct Mach number as a function of inlet length. Figure B- 8 shows boundary layer thickness, and figure B-9 shows boundary layer shape factor.

B.2.1.3 Translating Centerbody, $\mathrm{L} / \mathrm{D}=1.3$, Model 3 and $\mathrm{L} / \mathrm{D}=1.0$, Model 4

The translating centerbody inlets with $\mathrm{L} / \mathrm{D}=1.3$, and 1.0 (models 3 and 4, respectively), were also designed using similar methods, and the same engine characteristics, as previously described.

The inlet lines for model 3 are shown on figure B-10; this inlet was tested in its basic configuration and with various degrees of acoustic treatment. Model 3A, shown on figure B-11, was lined completely; model 3B, shown on figure B-12, had the lining removed from the forward section of the centerbody; and model 3 C , shown on figure B-13, had a lining applied only to the diffuser section of the cowl and centerbody.

To achieve $L / D=1.0$ on the centerbody inlet it was necessary to shorten both the diffuser length and the distance from the highlight to the throat; to have used a conventional elliptical lip shape would have resulted in surface overvelocity. To avoid this, the contour between highlight and throat was modified, and the shape used is compared to the elliptical shape in figure B-14. This change reduced the curvature in the throat and hence the surface Mach number, but it also increased the channel Mach number. The increased curvature behind the throat necessary to enable a short translation of the centerbody, by virtue of a "shortened" centerbody coupled with rapid cowl diffusion, had the effect of delaying boundary layer transition to a location downstream of the throat.

Principal dimensions of the full-scale inlet used for the analysis are given in figure B-15. This shows a centerbody translation of 22 in . (full scale) from the approach to takeoff and cruise positions, which was necessary to satisfy the airflow variation between these flight conditions when the throat Mach number at takeoff is limited to 0.8 . The coordinates of the test model internal contours are presented in figure B-16. Because of computer progam limitations, it was necessary to limit the average throat Mach number at takeoff to 0.8 , based on mass flow and the "rolling ball" minimum area, to avoid supersonic surface velocities on the cowl surface. For test purposes the centerbody translation was determined by recovery and noise performance and was approximately 17 in . full scale.

The results of the computerized analysis are presented below.

Approach: The compressible boundary layer shape factor distributions are shown for both cowl and centerbody on figure B-17. An average throat Mach number of 0.9 was used which represented an engine corrected airflow of $402 \mathrm{lb} / \mathrm{sec}$ at an inlet recovery of 0.995 . The centerbody was in the extended position. At full-scale Reynolds number, no adverse boundary layer characteristics were observed. The boundary layer thickness is shown on figure $\mathrm{B}-18$ and surface Mach number distribution on figure B-19.

Takeoff: Similar data are presented for the centerbody translated to its takeoff position 22 in . behind the approach position and with a corrected engine airflow of $515 \mathrm{lb} / \mathrm{sec}$. The boundary layer shape factor is shown on figure B-20, boundary layer thickness on figure B-21, and Mach number distribution on figure B-22. The irregular characteristics shown for the cowl were a result of the rapid rate of surface curvature necessary to achieve the short inlet. An average throat Mach number of 0.8 was achieved based on minimum flow area.

Cruise: The average throat Mach number was 0.66 because of the reduced corrected airflow of $476 \mathrm{lb} / \mathrm{sec}$. Boundary layer thickness is plotted on figure $\mathrm{B}-23$, shape factor on figure $\mathrm{B}-24$, and Mach number distribution on figure B-25.

The full-scale cowl surface compressible shape factor was compared to the model-scale shape factor, which indicated a value of 2.32 for the model and 1.82 for the full-scale inlet (fig. B-21). To compensate for this effect of Reynolds number, the rate of diffusion was relieved on the model. The modification reduced the maximum shape factor on the cowl surface from 2.32 to 2.06 (fig B-26).

B.2.2 Multipassage Type

B.2.2.1 Radial Vane, L/D = 1.0, Model 5

The basic design configuration for the radial vane inlet (model 5A) was a length-to-diameter ratio of one and a full-length centerbody. The throat, formed by 36 radial vanes, was sized for approach airflow. The centerbody was constant in diameter, with $2: 1$ elliptical nose dome. A symmetrical airfoil with 14% thickness-to-chord ratio was used for the vanes, which tapered uniformly toward zero chord and thickness at the inlet centerline. Maximum thickness was at 40% chord. The maximum diffuser angle on the cowl wall downstream of the vanes was 5.5°. The geometry is presented on figure $\mathrm{B}-27$.

The inlet model was modified slightly for the second phase of testing (model 5B). Flow separation in the hub region was evident during the first phase. It was believed to have been caused by the rate of flow diffusion necessary to reduce flow velocities near the vane row entrance. The alteration involved the introduction of a continuously accelerating flow passage ahead of the vane row. A comparison of the two inlets is presented on figure B-28. The geometry is presented in figure B-29.

B.2.2.2 Articulated Vane, $\mathrm{L} / \mathrm{D}=1.0$, Model 6

The double-articulated radial vane inlet (model 6) was also designed to have an inlet-to-fandiameter ratio of one. Details of the geometry are shown on figures B-30 and B-31. The front vanes were used to turn the flow to provide a sonic throat and the second row of vanes returned the flow to an axial direction.

A computerized compressor design procedure was used to obtain uniform flow at the exit of the front vanes. To achieve this flow condition, it was necessary to contour both the cowl and centerbody and to radially distribute the vane turning angle as shown in figure B-32.

The front vanes were NACA 63 series airfoil basic thickness distribution. The thickness-to-chord ratios were 8% and 4% at nominal tip and hub radii, respectively, and the chord length varied linearly radially to attain uniform blockage (13.3%). The vanes were designed to be hinged (flight inlet) at a
point 25% chord length from the leading edge. The rear vanes had NACA 64 series airfoil basic thickness distribution, and the same thickness-to-chord ratios as the front vanes. However, the blockage was 8% and the hinge point at 40% chord length from the leading edge.

FIGURE B-1.-RELATIONSHIP BETWEEN COWL WALL SLOPE AND BOUNDARY LAYER SHAPE FACTOR-MODEL $2, L / D=1.0$, APPROACH CONFIGURATION

FIGURE B-2.-REYNOLDS NUMBER EFFECT ON BOUNDARY LAYER CHARACTERISICSMODEL 2, L/D $=1.0$, APPROACH CONFIGURATION

FIGURE B-3.-COWL BOUNDARY LAYER CHARACTERISTICS-MODEL 1,
$L / D=2.0, A P P R A O C H$ CONFIGURATION

FIGURE B-4.-COWL SURFACE MACH NUMBER DISTRIBUTION-MODEL 1,
$L / D=2.0, A P P R O A C H$ CONFIGURATION

	X	Y
	0	5.686
	0.238	5.494
	0.475	5.092
	0.950	4.868
	1.426	4.713
	1.901	4.596
	2.376	4.506
	2.851	4.437
	3.326	4.386
	3.802	4.351
	4.277	4.330
Throat	4.752	4.323
	5.250	4.332
	6.000	4.385
	7.000	4.500
	8.000	4.638
	9.000	4.772
	10.000	4.914
	12.000	5.172
	14.000	5.380
	16.000	5.551
	18.000	5.720
	20.000	5.865
	22.000	5.970
	24.000	6.018

FIGURE B-5. - MODEL $1, L / D=2.0$, APPROACH CONFIGURATION

X	Y	X	Y	X	Y	X	Y
0	5.686	5.0041	5.0666	7.1220	5.4734	9.2430	5.8330
0.0281	5.6311	5.0645	5.0784	7.1825	5.4851	9.3090	5.8412
0.2718	5.3678	5.1250	5.0903	7.2429	5.4968	9.3701	5.8494
0.6108	5.2218	5.1855	5.1021	7.3034	5.5085	9.4312	5.8576
0.9654	5.1179	5.2459	5.1140	7.3639	5.5202	9.4923	5.8657
1.3273	5.0425	5.3064	5.1253	7.4244	5.5319	9.5535	5.8730
1.6926	4.9859	5.3669	5.1377	7.4849	5.5436	9.6147	5.8801
2.0599	4.9477	5.4273	5.1495	7.5455	5.5550	9.6759	5.8872
2.4285	4.9165	5.4878	5.1614	7.6061	5.5663	9.7371	5.8943
2.7978	4.8998	5.5483	5.1731	7.6666	5.5776	9.7983	5.9014
3.1675	4.8945	5.6088	5.1847	7.7272	5.5809	9.8535	5.9086
3.1680	4.8940	5.6693	5.1963	7.7878	5.6002	9.9207	5.9157
3.2291	4.8943	5.7298	5.2079	7.8484	5.6115	9.9819	5.9228
3.2907	4.8949	5.7904	5.2195	7.9089	5.6220	10.0000	5.9250
3.6603	4.9042	5.8509	5.2312	7.9695	5.6341	10.0432	5.9292
3.7834	4.9093	5.9114	5.2428	8.0000	5.6400	10.1045	5.9354
3.8449	4.9129	5.9719	5.2544	8.0302	5.6449	10.1658	5.9416
3.9065	4.9164	6.000	5.2600	8.0909	5.6552	10.2271	5.9477
3.9680	4.9199	6.0324	5.2660	8.1517	5.6655	10.2885	5.9531
4.0294	4.9241	6.0930	5.2774	8.2124	5.6758	10.3499	5.9580
4.0909	4.9290	6.1535	5.2889	8.2732	5.6860	10.4000	5.9627
4.1523	4.9339	6.2140	5.3003	8.3339	5.6963	10.5000	5.9710
4.2137	4.9388	6.2746	5.3118	8.3947	5.7066	10.600	5.9792
4.2160	4.9386	6.3351	5.3233	8.4555	5.7169	10.700	5.9863
4.2750	4.9448	6.3957	5.3347	8.5162	5.7269	10.800	5.9920
4.3361	4.9527	6.4562	5.3462	8.5772	5.7360	10.900	5.9975
4.3973	4.9605	6.5167	5.3577	8.6381	5.7452	11.000	6.0020
4.4564	4.9683	6.5773	5.3692	8.6990	5.7544	11.100	6.0050
4.5194	4.9770	6.6378	5.3807	8.7600	5.7636	11.200	6.0075
4.5801	4.9875	6.6983	5.3923	8.8209	5.7728	11.300	6.0096
4.6408	4.9980	6.7589	5.4038	8.8818	5.7820	11.400	6.0115
4.7015	5.0086	6.8194	5.4153	8.9427	5.7312	11.500	6.0130
4.7622	5.0194	6.8799	5.4268	9.000	5.8000	11.600	6.0140
4.8226	5.0312	6.9405	5.4384	9.0037	5.8004	11.700	6.0153
4.8831	5.043	7.000	5.4500	9.0648	5.8085	11.800	6.0160
4.9436	5.0548	7.0010	5.4500	9.1258	5.8167	11.900	6.0172
5.000	5.0680	7.0615	5.4617	9.1869	5.8249	12.000	6.0180

FIGURE B-6.-MODEL $2, L / D=1.0$, TAKEOFF CONFIGURATION

FIGURE B-7.-COWL SURFACE MACH NUMBER VS DISTANCE FROM LIP, MODEL 2, L/D $=1.0$

FIGURE B-8.-BOUNDARY LAYER THICKNESS VS DISTANCE FROM LIP, MODEL 2, L/D $=1.0$

FIGURE B-9.-BOUNDARY LAYER SHAPE FACTOR VS DISTANCE
FROM LIP, MODEL 2, L/D $=1.0$

Cowl			
X	Y	X	Y
0	5.9115	10.4927	5.9010
0.1440	5.6697	10.9430	5.9415
0.3690	5.5323	11.3930	5.9739
0.5939	5.4393	11.8420	5.997
0.8189	5.3678	12.2920	6.0110
1.0439	5.3097	12.7420	6.0180
1.4938	5.2215	15.6670	6.0180
1.9438	5.1601	17.6670	6.0180
2.3937	5.1192		
2.8436	5.0956		
3.2836	5.0879		
3.7435	5.0960		
4.1935	5.1190		
4.6434	5.1536		
5.0934	5.1975		
5.5433	5.2485		
5.9933	5.3030		
6.4432	5.3617		
6.8931	5.4233		
7.3431	5.4870		
7.7930	5.5518		
8.2429	5.6166		
8.6929	5.6803		
9.1428	5.7417		
9.5928	5.7998		
10.0328	5.8523		

FIGURE B-10.-MODEL 3, L/D = 1.3, APPROACH AND TAKEOFF CONFIGURATIONS

Lining $=0.038$ thick polyimide over 0.10 deep honeycomb

FIGURE B-11.-MODEL $3 A, L / D=1.3$, ACOUSTIC LINING DETAILS FOR RUN 101

FIGURE B-12.-MODEL 3B,L/D = 1.3, ACOUSTIC LINING DETAILS FOR RUN 102

All dimensions in inches

Lining: 0.038 thick polyimide over 0.10 deep honeycomb

FIGURE B-13.-MODEL 3C, L/D = 1.3, ACOUSTIC LINING DETAILS FOR RUN 10

FIGURE B-14.-LIP MODIFICATION, TRANSLATING C/B,L/D $=1.0$

FIGURE B-15.-BASIC INLET DIMENSIONS, FULL SCALE, TRANSLATING C/B, L/D=1.0

All dimensions in inches.

FIGURE B-16.-MODELS 4 AND $4 M, L / D=1.0$, APPROACH AND TAKEOFF CONFIGURATIONS

FIGURE B-17.-BOUNDARY LAYER SHAPE FACTOR, APPROACH CONFIGURATION, TRANSLATING C/B INLET (FS),L/D=1.0

FIGURE B-18.-BOUNDARY LAYER THICKNESS, APPROACH CONFIGURATION TRANSLATING C/B INLET (FS), L/D $=1.0$

FIGURE B-19.-SURFACE MACH NUMBER DISTRIBUTION, APPROACH CONFIGURATION,
TRANSLATING C/B INLET (FS), L/D $=1.0$

FIGURE B-20.-BOUNDARY LAYER SHAPE FACTOR, TAKEOFF CONFIGURATION, TRANSLATING C/B INLET (FS), L/D $=1.0$

FIGURE B-21.-BOUNDARY LAYER THICKNESS, TAKEOFF CONFIGURATION, TRANSLATING C/B INLET (FS), L/D = 1.0

FIGURE B-22.-SURFACE MACH NUMBER DISTRIBUTION, TAKEOFF CONFIGURATION, TRANSLATING C/B, INLET (FS), L/D $=1.0$

FIGURE B-23.-BOUNDARY LAYER THICKNESS, CRUISE CONFIGURATION,
TRANSLATING C/B INLET (FS) L/D $=1.0$

FIGURE B-24.-BOUNDARY LAYER SHAPE FACTOR, CRUISE CONFIGURATION, TRANSLATING C/B INLET (FS), L/D $=1.0$

FIGURE B-25.-SURFACE MACH NUMBER DISTRIBUTION, CRUISE CONFIGURATION, TRANSLATING C/S INLET (FS), L/D $=1.0$

FIGURE B-26.-MODEL-SCALE BOUNDARY LAYER SHAPE FACTOR, APPROACH CONFIGURATION, TRANSLATING C/B INLET, L/D $=1.0$

Cowl		Centerbody	
X	Y	X	Y
0	5.45	-0.6	0
0.28	5.37		$2: 1$ Ellipse
0.59	5.31	3.125	2.287
0.88	5.29		Constant
1.88	5.33		
2.88	5.45		
3.88	5.58		
4.78	5.70		
7.40	5.90		
9.65	5.98		
13.10	6.018		

All dimensions in inches
FIGURE B-27.-MODEL $5 A, L / D=1.0$, MULTIPASSAGE TYPE I CONFIGURATION

figure b-28.-DESIGN MODIFICATIONS TO RADIAL VANE INLET FOR PHASE I/ TESTING

All dimensions in inches

FIGURE B-29.-MODEL 5B, L/D = 1.0 MULTIPASSAGE TYPE I CONFIGURATION (PHASE II)

All dimensions in inches
FIGURE B-30.-MODEL 6, LID = 1.0 MULTIPASSAGE TYPE // CONFIGURATION

Tip section ($\mathrm{R}=5.899$)
NACA 64-008
Chord $=0.84$
Solidity $=1.0$

Hub section ($\mathrm{R}=2.099$)
NACA 64-004
Chord $=0.607$
Solidity $=1.91$
$\alpha=$ blade turning angle

NACA 63-008		NACA 64-008		IGV		Stator	
X, \% chord	Y,\% chord ${ }^{\prime}$	X, \% chord	Y, \% chord	Radius	θ, deg	Radius	α, deg
0	0	0	0	1.9797	26.56	2.0742	26.56
0.5	0.664	0.5	0.658	2.5552	30.96	2.5916	30.96
0.75	0.8055	0.75	0.794	3.0391	34.65	3.0505	34.65
1.25	1.023	1.25	1.005	3.4694	36.74	3.4645	36.74
2.50	1.4065	2.50	1.365	3.8620	38.47	3.8559	38.47
5.00	1.9510	5.0	1.875	4.2253	39.58	4.2226	39.58
7.50	2.358	7.5	2.259	4.5646	40.24	4.5714	40.24
10.0	2.686	10.0	2.574	4.8834	40.86	4.9043	40.86
15.0	3.190	15.0	3.069	5.1851	41.37	5.2283	41.37
20.0	3.550	20.0	3.437	5.4719	41.83	5.5500	41.83
25.0	3.797	25.0	3.704	5.7457	42.27	5.8739	42.27
30.0	3.946	30.0	3.884				
35.0	4.000	35.0	3.979				
40.0	3.954	40.0	3.992				
45.0	3.821	45.0	3.883				
50.0	3.609	50.0	3.684				
55.0	3.328	55.0	3.411				
60.0	2.991	60.0	3.081				
65.0	2.608	65.0	3.704				
70.0	2.191	70.0	2.291				
75.0	1.754	75.0	1.854				
80.0	1.313	80.0	1.404				
85.0	0.885	85.0	0.961				
90.0	0.403	90.0	0.550				
95.0	0.176	95.0	0.205				
100.0	0	100.0	0				

FIGURE B-31.-MODEL 6, IGV AND STATOR DETAILS

FIGURE B-32.-VANE TURNING ANGLE DISTRIBUTION, DOUBLE ARTICULATED VANE INLET

APPENDIX C

TEST PROCEDURE AND INSTRUMENTATION DETAILS

C. 1 TEST APPROACH

A baseline test was followed by test runs to acquire data on six different inlet designs. A long bellmouth and straight-wall duct were installed for a "baseline" noise test against which all sonic inlet models could be compared.

Some of the models were tested under more than one throat area setting or experimental configuration. A new test run number was assigned to each configuration, and thus some inlet models have more than one run number associated with them. This relationship is recorded in table C-1. The design drawing numbers of each model along with some description of sonic inlet hardware are summarized in table C-2.

A range of throat Mach numbers from 0.5 to 1.0 was obtained in the inlet models. This was accomplished with a $12-\mathrm{in}$. test fan, which took the place of an engine in that it provided both an air suction source and a noise source.

The $12-\mathrm{in}$. fan rig consisted of a 32 -bladed rotor mounted in a housing and discharge case which contained a translating cone to control backpressure on the fan. No inlet guide vanes were installed during these tests, but tandem stators were installed in the fan discharge duct. These two rows of exit stators consisted of 27 blades per row. The leading edge of the first row of stators was located downstream at a distance equal to two true chords of the rotor. The fan face hub-to-tip ratio of the rotor was 0.38 .

Drive power for the fan was provided by a turbodrive directly coupled to the fan shaft. Energy for the drive turbine was derived from plant air that was put through a combustion chamber prior to its introduction into the turbine nozzle. Rotational speed of the unit was controlled by manipulating both the fuel flow and air flow to the turbine; desired throat Mach number settings in the test models were obtained by this means. The fan rpm was measured by a magnetic pickup installed near a gear driven by the turbine shaft. This rpm was always recorded on a separate track of the magnetic tape, concurrently with acoustic data, to provide the necessary input for tone tracking during acoustic data analysis. Aerodynamic data were recorded on punched paper tape and reduced to engineering units by a computer, which also performed most of the required calculations.

TABLE C-1.-SONIC INLET TEST MODEL INDEX

Model	L/D	Run	Fig. no.	Description
0	2.0	1	C. 1	Baseline configuration: straight, constant-diameter duct with long bellmouth fitted
1	2.0	2	C-2, -3	Fundamental (contracting cowl) inlet; approach configuration with long belimouth fitted
2	1.0	3	C-4	Fundamental (contracting cowl) inlet; takeoff configuration with long bellmouth fitted
3	1.3	4	C-5	Translating centerbody inlet; approach configuration with long bellmouth fitted
		5	C-6	Takeoff configuration with long bellmouth fitted
3A	1.3	101	C-9	Model 3, approach configuration with acoustic lining added to internal surfaces.
3B	1.3	102	C-10	Model 3, approach configuration with acoustic lining added to internal cowl surface and diffuser section of centerbody only
3 C	1.3	10	C-13	Model 3, approach configuration with acoustic lining added to diffuser section only
4	1.0	$\begin{array}{r} 6 \\ 8 \\ 11 \end{array}$	C. 7 C. 11 C-14, -15,-16	Translating centerbody inlet; approach configuration - Long bellmouth fitted - Flight lip fitted - Flight lip fitted (part of run) short bellmouth (remainder)
		12	C-17	Takeoff configuration with short bellmouth fitted
5A	1.0	7	C-8	Radial vane inlet; approach configuration with long bellmouth fitted
5B	1.0	13	$\begin{gathered} \hline \text { C-18, } \\ -19 \\ \hline \end{gathered}$	Radial vane inlet; approach configuration with long bellmouth fitted
		14	C-18	Takeoff configuration with short bellmouth fitted
6	1.0	9	C-12	Double-articulating vane inlet; approach configuration - Short bellmouth fitted (part of run) - Flight lip fitted (remainder of run)

TABLE C-2.-SONIC INLET CONFIGURATION SUMMARY

Run.	Model	L/D	Boeing design drawing	Description
1	0	2.0	-	Baseline, straight pipe inlet
2	1	2.0	$5342 \cdot 1$	Fundamental inlet, approach throat
3	2	1.0	5364-4	Fundamental inlet, takeoff throat
4	3	1.3	5364-5	Centerbody inlet, approach thorat
5	3	1.3	5364-5	Centerbody inlet, takeoff throat
6	4	1.0	5364-15	Centerbody inlet, approach throat
7	5A	1.0	5364-16	Radial vane inlet, approach throat, multipassage inlet, type 1
101	3 A	1.3	5369.1	Centerbody inlet, approach throat, acoustic lining on cowl and centerbody
102	3B	1.3	5369-1	Centerbody inlet, approach throat, identical to run 101 except removed 5369-3 portion of lined centerbody and installed hardwall portion of 5364-7-1 assembly
8	4	1.0	5364-15-2	Centerbody inlet, approach throat, same as run 6 except installed flight lip instead of bellmouth
9	6	1.0	5364-20	Double-articulating vane inlet, approach throat, multipassage inlet, type 2
10	3C	1.3	5369-1	Centerbody inlet, approach throat, acoustically lined diffuser, hardwall throat
11	${ }^{a_{4}}$	1.0	5364-31-1	Centerbody inlet, approach throat, same as run 6, except with P_{T} probes on four struts at diffuser exit, short bellmouth for simulated flight inflow
12	${ }^{a_{4}}$	1.0	5364-31-1	Centerbody inlet, takeoff throat, same as run 11 except retracted centerbody by 3.85 in., short bellmouth for simulated flight inflow
13	$b_{5 B}$	1.0	5364-40A-1	Radial vane inlet, approach throat, rotating P_{T} rake at diffuser exit, short bellmouth for simulated flight airflow, same as run 7 but with different centerbody
14	$\mathrm{b}_{5 B}$	1.0	5364-40A-1	Radial vane inlet, takeoff throat, same as run 13 but with vanes removed for takeof f area, short bellmouth for simulated flight inflow

a Final inlet concept 1
b Final inlet concept 2

C. 2 DATA KEYS

During each test run the inlet models were subjected to a range of different operating conditions (and throat Mach numbers), and each different operating condition was assigned a number. A description of the operating parameters for each condition number was compiled in a data key for each test run. These data keys are included in the following pages.

RUN 1 DATA KEY
Baseline 26-in. straight wall inlet, L/D ≈ 2.0

CONDITION	REMARKS
1 through 35	Basic aerodynamic data only-to establish fan map. No traverses taken.
36 through 54	Basic aerodynamic far-field noise, and plane 6 wall-mounted Kulite. Points along a selected operating line.
$\begin{aligned} & 36,38,41, \\ & 46,49,54 \end{aligned}$	Aerodynamic data with plane 6, traverse to establish inlet recovery of bellmouth and straight-wall long inlet.
55	Slow acceleration, with nozzle area as for Condition 54. Recorded far-field noise plus PL 6 Kulite.
56	Slow acceleration, with nozzle area as for Condition 23. Recorded far-field noise on all 10 microphones plus PL 6 Kulite.

RUN 2 DATA KEY

Fundamental approach inlet, Model 1, L/D = 2.0, Dwg. 5342-1, Test conditions 1 through 7

Full aerodynamic and acoustic data, with boundary layer probes in the inlet and $\mathrm{P}_{\mathrm{S}}, \mathrm{P}_{\mathrm{T}}$ traverse at the fan face. No near-field noise data.

Run 2 Test Condition	Normalized Throat Average Mach No.	Throat Wall Mach No.	Recovery	Mechanical rpm	Nearest condition from Run 1 Baseline	
1	0.517	0.558	0.996	13920	36	13910
2	0.667	0.734	0.994	16590	38	16350
3	0.798	0.882	0.990	17920	39	17780
4	0.860	0.966	0.985	18760	$40-41$	$18220-18690$
5	1.000	1.074	0.974	19210	42	19190
6	0.972	1.075	0.959	19580	43	19620
7	0.951	1.078	0.952	19950	44	20040

RUN 2 DATA KEY

Fundamental approach inlet, Model 1. L/D $=2.0$, Dwg. 5342-1, Test conditions 8 through 15

Near-field noise data plus stinger Kulite and \mathbf{P}_{S} traverses

Run 2 Test Condition	Normalized Throat Average Mach No.	Throat Wall Mach No.	Recovery	Mechanical rpm	Nearest condition from Run 1 Baseline	
					Condition	Mechanical rpm
8 9	Stall margin investigation Stall margin investigation					
10	≈ 0.52	0.548		14250	36	13910
11	≈ 0.67	0.725		16770	38	16350
12	≈ 0.80	0.880		18040	39	17780
13	≈ 0.86	0.960		17950	39-40	17 780-18220
14	≈ 0.98	1.053		17990	40	18220
* 15	≈ 0.90	0.933		18000	40	18220

* Stinger Kulite steady-state points of symbol O in diagram were taken for condition 15 only. Conditions 10 through 14 have continuous traverses of stinger.

RUN 3 DATA KEY

Fundamental inlet, takeoff throat, Model 2, L/D $=1.0$, Dwg. 5364-4

Test conditions 1 through 5

Full aerodynamic data with boundary layer rakes and P_{S}, P_{T} traverse at the fan face.

Recorded far-field acoustic data but no near-field acoustic data.

Test conditions 6, 7, and 8

All near-field acoustic data plus midstream stinger traverses. Duct wall Kulites at planes in the inlet: planes $3,4,5$, and 6 , plus stinger Kulite and P_{S}.

Continuous traverses were taken along three radial paths and three axial paths as shown below. Steady-state data in midstream were taken at the circled locations shown.

Run 3 Test Condition	Normalized Throat Average Mach No.	Throat Wall Mach No.	Recovery	Mechanical rpm	Nearest condition from Run 1 Baseline Condition No.	
1	0.515	0.566	0.997	18140	40	18220
2	0.615	0.674	0.996	19350	43	19620
3	0.725	0.802	0.994	21890	$46-47$	$21040-22180$
3	0.863	0.948	0.990	22980	$47-48$	$22180-23410$
4	1.000	1.082	0.986	23730	48	23410
5	≈ 0.72	0.792		22010	$46-47$	$21040-22180$
6	≈ 0.86	0.942		23050	$47-48$	$22180-23.410$
7	≈ 1.0	1.066		23640	48	23410

Centerbody inlet, approach throat, Model 3, L/D $=1.3$, Dwg. 5364-5
Test conditions 1 through 5
Full aerodynamic data with boundary layer rakes and $\mathrm{P}_{\mathbf{S}}, \mathrm{P}_{\mathbf{T}}$ traversed at the fan face. Recorded far-field acoustic data, with near-field acoustic data on the duct wall only near the fan face.

Test conditions 6 through 16
A repeat of conditions 1 through 5 . The noise data from conditions 6 through 16 supersede those of conditions 1 through 5. Aerodynamic data are supplemental to the previous conditions.

Run 4 Test Condition	Normalized Throat Average Mach No.	Throat Wall Mach No.	Recovery	Mechanical rpm	Nearest condition from Run 1 Baseline	
					Condition No.	Mechanical rpm
1	≈ 0.50	0.52	0.996	14940	37	14350
2	≈ 0.60	0.62	0.995	16820	38	16350
3	≈ 0.70	0.72	0.992	17930	39	17780
4	≈ 0.82	0.83	0.986	19160	41	18690
5	≈ 0.98	0.91	0.984	19350	42	19190
6	0.505	0.52	0.996	14000	37	14350
7	0.601	0.62	0.994	15740	38	16350
8	0.710	0.72	-	17190	39	17780
9	0.823	0.82	0.988	18340	40	18220
10	0.853	0.84	0.990	18390	40	18220
11	0.905	0.89	0.984	18870	41	18690
12	1.00	0.93	0.980	19210	42	19190
13	1.00	0.93	-	19330	42	19190
14	≈ 1.00	-	-	19400	43	19620
15	≈ 0.893	0.94	0.966	19910	43	19620
16	Decell from	9800 to 14	0 rpm.			

Centerbody Inlet, takeoff throat, Model 3, L/D $=1.3$, Dwg. 5364-5

Full aerodynamic data with boundary layer rakes and P_{S}, P_{T} traverse at the fan face. Recorded far-field acoustic data, with near-field acoustic data on the duct wall only near the fan face.

Run 5 Test Condition	Normalized Throat Average Mach No.	Throat Wall Mach No. ${ }^{\text {a }}$	Recovery	Mechanical rpm	Nearest condition from Run 1 Baseline	
					Condition 1	Mechanical rpm
1	0.498	0.527	0.995	17880	39	17780
2	0.707	0.727	0.993	22330	47	22180
3	0.820	0.820	0.992	23590	48	23410
4	0.911	0.886	0.989	24690	50	24750
5	0.936	0.900	0.989	24990	51	25350
${ }^{\text {b }} 6$	1.000	0.985	0.985	25660	52	26020
7	0.973	1.113	0.970	25960	52	26020
${ }^{\text {c }} 8$	≈ 0.973	1.113	<0.970	26300	53	26500

a Only the P statics on the centerbody give a good indication of throat wall Mach number. In the takeoff mode the outer wall statics, at minimum diameter, are ahead of the aerodynamic choke plane.
b A deceleration, condition 6A, was taken with all acoustic data on tape, from 25600 to 14000 rpm .
c No aerodynamic data are available for condition 8 .

RUN 6 DATA KEY

Centerbody inlet, approach throat, Model 4, L/D $=1.0$, with standard bellmouth, Dwg. 5364-15
Test conditions 1 through 5
Acoustic data from all far-field microphones, near-field acoustic data at duct wall in planes 6 and 7. Plane 6 aerodynamic traverse.

Test condition 6
Far-field and near-field acoustic data, steady state, plus basic aerodynamic data only, no plane 6 traverse. Also have all acoustic data during deceleration from 21700 to 14000 rpm.

Test condition 7
All acoustic data taken during acceleration from 14000 to 21700 rpm .
Test condition 8
Reset same condition as condition 6 to obtain plane 6 aerodynamic traverse.

Run 6 Test Condition	Normalized Throat Average Mach No.	Throat Wall Mach No.	Recovery	Mechanical rpm	Nearest condition from Run 1 Baseline	
	Condition No.	Mechanical rpm				
1	0.491	0.55	0.997	13600	36	13910
2	0.687	0.77	0.995	16750	38	16350
3	0.807	0.91	0.990	17900	39	17780
4	0.894	1.02	0.985	19150	42	19190
5	0.923	1.05	0.968	19850	43	19620
6	1.00	1.13	0.900	21700	$46-47$	$21040-22180$
7	Accel.	1.13	0.900	21700	$46-47$	$21040-22180$
8	0.898					

RUN 7 DATA KEY

Radial vane inlet, approach throat, Model 5A with standard bellmouth, L/D =1.0, Dwg. 5364-16

Test conditions 1 through 5
Acoustic data from all far-field microphones, near-field acoustic at duct wall in planes 6 and 7 . Full acoustic data plus plane 6 aerodynamic traverse.

Test condition 6
Same data as conditions 1 through 5, plus acoustic data of a deceleration from 23500 to 14000 rpm .

Run 7 Test Condition	Normalized Throat Average Mach No.	Throat Outerwall Mach No.	Recovery	Mechanical rpm	Nearest condition from run 1 baseline	
1	0.522	0.481	0.993	14000	36	13910
2	0.719	0.640	0.983	17100	38	16350
3	0.850	0.763	0.973	18800	41	18690
4	0.992	0.940	0.943	21800	46	21040
5	1.000	1.050	0.884	23500	48	23410
6	0.938	0.881	0.952	20300	44	20040

RUN 8 DATA KEY

Centerbody inlet, approach throat Model 4, L/D = 1.0, Dwg. 5364-15-2
Same as Run 6 except installed flight lip instead of standard belimouth.

Installed boundary layer rake on centerbody in plane 5 in addition to plane 6 rakes.

RUN 9 DATA KEY

Double articulating vane inlet, approach throat, Model 6, L/D = 1.0. Dwg. 5364-20

Conditions 1 through 8

Weight flow calibration only, with standard bellmouth

Conditions 9 through 15

Performance and noise data with flight lip bellmouth

Run 9 Test Condition	Normalized Throat Average Mach No.	Recovery	Mechanical rpm	Nearest condition from run 1 baseline	
				Condition No.	Mechanical rpm
1	0.510	0.977	14600	37	14350
2	0.573	0.971	16000	38	16350
3	0.697	0.957	18200	40	18220
4	0.798	0.946	19650	43	19620
5	0.891	0.932	20850	45	20430
6	0.928	0.924	21500	46	21040
7	0.987	0.909	22500	47	22180
8 Acceleration 14500 to 22500 rpm					
9	0.500	0.976	14400	37	14350
10	0.711	0.954	18300	40	18220
11	0.822	0.942	19700	43	19620
12	0.942	0.928	20800	45	20430
13	1.000	0.916	21700	47	22180
14	0.942	0.896	23000	48	23410
15 Acceleration 14000 to 23000 rpm					

RUN 10 DATA KEY

Centerbody inlet, approach throat, Model 3C, L/D = 1.3, Dwg. 5369-1 Acoustic lining in diffuser, hardwall throat

Acquired aerodynamic and acoustic data on all conditions except condition 6 where aerodynamic data are limited.

Run 10 Test Condition	Normatized Throat Average Mach No.	Recovery	Mechanical rpm	Nearest condition from run 1 baseiine	
			Condition No.	Mechanical rpm	
1	0.520	0.993	14400	37	14350
2	0.705	0.990	17400	39	17780
3	0.795	0.986	18400	40	18220
4	0.938	0.980	19200	42	19190
5	0.976	0.964	19900	44	20040
6	1.00	0.934	20480	45	20430

RUN 11 DATA KEY

Centerbody inlet, approach throat, Model 4, L/D $=1.0$, Dwg. 5364-31-1
Final inlet concept 1

Legend of Remarks Run 11

1. Twenty-eight probe rotating rake at 8 in . from diffuser exit.
2. Full aerodynamic and noise data includes nine-position traverse with four-arm P_{T} rake, boundary layer rakes, all rig pressures, plus all far-field and near-field microphones.
3. Full acoustic data. Aerodynamic rake at fan inlet set at single position only, 0°.
4. Fan backload increased to near stall.
5. Fan was operated halfway between operating line and stall line.
6. Same configuration as note 1 but with short bellmouth $5364-35$ faired to the flight lip.
7. Midstream data taken with stinger probe per section 2.1.1 of coordination sheet INSP-CS-070.
8. Repeat of condition 7 to establish whether bellmouth 5364-35 improved performance over that of flight lip.
9. Same inlet as note 6 but measured diffuser exit pressure with four fixed rakes in the exit plane instead of the rotating rake at 0.75 diameter downstream as on all previous conditions. A check to see if this alters the performance measurements. Recorded all acoustic data.
10. Induced distortion from six crosswind tubes at the inlet lip. Took aerodynamic and acoustic data.

RUN 12 DATA KEY

Centerbody inlet, takeoff throat, Model 4, L/D = 1.0, Dwi. 5364-31-1
Final inlet concept 1

Legend of Remarks Run 12

1. Centerbody retracted by 3.85 in . from the approach configuration. Short bellmouth $5364-35$ was faired to the flight lip. Diffuser exit pressure was measured in the diffuser exit plane by seven elements on each of four fixed struts. Boundary layer was measured at one location on the inner and outer wall in the diffuser exit plane.
2. Recorded full aerodynamic data (but did not use the four-arm rotating rake). Recorded all far-field microphones and the Kulite microphone in outer wall near diffuser exit.
3. The fan was operated very near stall by increasing the backpressure. Same rpm as test condition 5.
4. Fan was operated halfway between operating tine and stall line.
5. Stinger probe measurements (noise and static pressure) were taken in midstream.

Made stinger axial traverses at 3 radii:
$-1 / 8$ in. from throat* outer wall
$-1 / 8$ in. from throat inner wall
-Midway in the throat passage
Made radial traverses at four axial locations:
-in the throat* plan
-4 in. downstream from the throat
-5.5 in. downstream from the throat
-9.0 in . downstream from the throat
Recorded steady-state data at the 12 locations where the above traverse paths cross.
"For reference here, the "throat" is taken to mean the geometric throat plane when the centerbody is in the approach position.
6. Induced distortion from six crosswind tubes at the inlet lip. Took aerodynamic and acoustic data. Same configuration of inlet as note 1 .

RUN 13 DATA KEY

Radial vane inlet, approach throat, Model 5B, L/D $=1.0$, Dwg. 5364-40A-1
Final inlet concept 2

Run 12 Test Condition	Normalized Throat Average Mach No.	Recovery	Mechanical rpm	Remarks
1	0.530	0.989	13925	1,2
2	0.735	0.978	17000	1, 2
3	0.860	0.960	18700	1,2
4	0.945	0.927	20500	1,2
5	0.960	0.904	21650	1, 2
6	0.880	0.864	23680	1.2
7	1.000	0.917	21100	1, 2
8	0.979	0.850	20620	1, 3
9	0.960	0.840	20620	1,4
10	Accel from 13900 to 20630 rpm . Recorded all acoustic data.			1
11	0.670	0.977	17140	1,5
12	1.000	0.934	20650	1,5
13	1.000	0.946	20100	1,6
14	0.735	0.977	17230	$\begin{gathered} 2,7 \\ \text { Blown air, } 0 \mathrm{ft} / \mathrm{sec} \end{gathered}$
15	0.735	0.975	17230	2,7
				Blown air, $100 \mathrm{ft} / \mathrm{sec}$
16	0.735	0.971	17230	$\begin{gathered} 2,7 \\ \text { Blown air, } 200 \mathrm{ft} / \mathrm{sec} \end{gathered}$
17	0.735	0.969	17230	2,7
				Blown air, $300 \mathrm{ft} / \mathrm{sec}$
18	0.910	0.945	19820	2,7 Blown air, $0 \mathrm{ft} / \mathrm{sec}$
19	0.910	0.941	19820	2,7
				Blown air, $100 \mathrm{ft} / \mathrm{sec}$
20	0.910	0.940	19770	$2,7$
21	0.910	0.938	19770	$2,7$
				Blown air, $300 \mathrm{ft} / \mathrm{sec}$
22	1.000	0.929	20710	1,8
23	0.935	0.939	20200	1.8

Legend of Remarks Run 13

1. Short bellmouth $5364-35$ was faired to the flight lip. The rotating four-arm rake was installed to measure pressure in the diffuser exit plane.
2. Recorded full aerodynamic and acoustic data.
3. Fan was operated very near stall by increasing the backpressure.
4. Fan was operated halfway between operating line and stall line.
5. Midstream data taken with stinger probe per section 2.1.1. of coordination sheet INSP-CS-070.
6. Recorded aerodynamic data with rotating rake only at 0°. No noise data recorded. This point was run only to verify maximum flow condition.
7. Induced distortion from six crosswind tubes at the inlet lip. Took aerodynamic and acoustic data. Same configuration of inlet as note 1 .
8. Recorded full aerodynamic traverse but no acoustic data. This point was run only to verify the maximum flow condition for the inlet.

RUN 14 DATA KEY
Radial vane inlet, takeoff throat, Model 58, L/D = 1.0, Dwg. 5364-40A-1
Final inlet concept 2

Run 13 Test Condition	Normalized Throat Average Mach No.	Recovery	Mechanical rpm	Remarks
1	0.485	0.997	16830	1, 2
2	0.670	0.995	20975	1,2
3	0.740	0.994	21970	1,2
4	0.780	0.993	22560	1,2
5	0.840	0.992	23310	1, 2
6	0.890	0.992	23690	1.2
7	0.965	0.968	25000	1.2
8	1.000	0.953	25700	1.2
9	0.960	0.983	24400	1.2
10	0.670	0.995	23710	1, 2, 3
11	0.780	0.993	23710	1, 2, 4
12	Accel from 16000 to 25700 rpm . Recorded all acoustic data.			1
13				5
14	0.660	0.986	21070	5
15	0.655	0.983	21070	5
16	0.650	0.979	21070	5
17	0.880	0.975	24430	5,6
18	0.915	0.960	24980	5
19	0.885	0.957	24880	5
20	0.875	0.957	24850	5
21	0.870	0.957	24850	5
22	0.670	0.995	20940	7
23	0.965	0.968	24900	7

Legend of Remarks Run 14

1. Vanes removed to form the takeoff configuration. Short bellmouth $5364-35$ was faired to the flight lip. The rotating four-arm rake was installed to measure pressure in the diffuser exit plane.
2. Recorded full aerodynamic and acoustic data.
3. Fan backload increased to near stall.
4. Fan was operated halfway between operating line and stall line.
5. Same inlet configuration as note 1. Induced distortion from six crosswind tubes at the inlet lip. Recorded full aerodynamic and acoustic data.
6. No further data were taken at this particular rpm because an undesirable fan blade vibration condition existed.
7. Midstream data were taken with stinger probe per section 2.1.1 of coordination sheet INSP-CS-070.

RUN 101 DATA KEY

Centerbody inlet, approach throat, Model 3A, acoustic lining on cowl and centerbody, L. $/ D=1.3$, Dwg. 5369-1

Extensive instrumentation, included boundary layer rakes on inner and outer wall in the diffuser, and at diffuser exit; plus aerodynamic traverse at diffuser exit.

Far-field acoustic data every 10° plus near-field acoustic data in planes 6 and 7.

Run 101 Test Condition	Normalized Throat Average Mach No.	Throat Outerwall Mach No.	Recovery	Mechanical rpm	Nearest condition from run 1 baseline	
					Condition No.	Mechanical rpm
1	0.530	0.54	0.986	14400	37	14350
2	0.624	0.61	0.984	15700	38	16350
3	0.706	0.71	0.975	17200	39	17780
4	0.781	0.77	0.971	18200	40	18220
5	0.789	0.78	0.970	18400	41	18690
6	Accelerati	from 150	to 22000			
7	0.799	0.79	0.975	18850	41	18690
8	0.826	0.81	0.974	19200	42	19190
9	0.832	0.82	0.967	19400	43	19620
10	0.869	0.83	0.972	19800	44	20040
11	0.899	0.87	0.963	20500	45	20430
12	1.000	0.88	0.905	21000	46	21040

RUN 102 DATA KEY

Centerbody inlet, approach throat, Model 3B, acoustic lining on cowl with hardwall centerbody, L/D = 1.3, Dwg. 5369-1.
Centerbody treated forward portion (5369-3) replaced by hardwall centerbody 5364-7-1.

Extensive instrumentation, including boundary layer rakes on inner and outer wall in the diffuser, and at diffuser exit; plus aerodynamic traverse at diffuser exit.

Far-field acoustic data every 10° plus near-field acoustic data in planes 6 and 7.

Run 102 Test Condition	Normalized Throat Average Mach No.	Throat Outerwall Mach No.	Recovery	Mechanical rpm	Nearest condition from Run 1 Baseline	
					Condition No.	Mechanical rpm
1	1.000	0.86	0.953	19400	43	19620
2	0.965	0.88	0.943	19800	44	20040

C. 3 INSTRUMENTATION DETAILS

Most of the model tests were part of a concept screening process and did not carry the extensive instrumentation that was used on the last four test runs of the program. The last runs were on two of the selected best concepts, which were more completely instrumented for aerodynamic measurements.

A system of "instrumentation planes" was used as an aid in recordkeeping:

- Plane 0 or 1 , was always taken immediately upstream of the inlet lip. Ambient conditions.
- Plane 2, was always the measuring plane of the bellmouth (flow measuring standard) when used.
- Plane 3, lip highlight of inlet model.
- Plane 4, was always located at the geometric throat.
- Plane 5, midway in the diffuser section.
- Plane 5.5 or 6.0 ; either of these planes was taken as the diffuser exit plane.

Due to the many design differences between inlet concepts, the axial positions of the instrumentation planes were changed from the model to another. Figures $\mathrm{C}-1$ through $\mathrm{C}-19$ were included to clarify the geometry and instrumentation for each test run.

The use of static pressure ports, boundary layer total pressure rakes, and traversing probes or rakes for total pressure $\left(\mathrm{P}_{\mathrm{T}}\right)$ measurement has been indicated on figures $\mathrm{C}-1$ through $\mathrm{C}-19$.

C. 4 MICROPHONE CHARACTERISTICS

The microphones used for measuring far-field noise were $1 / 4$-in.-diameter " $B \& K$ " condenser microphones, type $4135+$ UA $0035+2615$. Near-field noise both in the flow and on the inlet duct walls was measured with $1 / 8$-in.-diameter "Kulite" high-frequency response transducers (model CPL-070-50A). Throughout the rest of this section the two different types of microphones will be referred to as either the far-field or the near-field microphone.

The microphones were calibrated prior to use during each test. Calibration procedure is described in appendix D of volume III of this report (Boeing document D6-40818).

C.4.1 Frequency Response of Microphones

A typical far-field microphone was tested for its frequency response. The results were plotted on curve 4 of figure $\mathrm{C}-20$. The frequency responses measured by microphones used in the test facility were checked by comparing their measurements against a "standards" microphone of known accuracy. The microphone obtained from Boeing Primary Standards Group came complete with a frequency response curve which was included as curve 1 of figure C-21. The Sonic Inlet Test Group used their equipment in an effort to establish the response curve for the "standards" microphone and found essentially the same results. These are shown in curve 2 of figure C-21.

Frequency response characteristics for two of the facility microphones were presented in curves 2 and 3 of figure C-20. It was noted that there appeared to be microphone resonance at 18000 Hz on the duct wall microphone (curve 2, fig. C-20). The observed spike at 1800 Hz , and subsequent drop in dB level, were noted in some of the spectrum plots for this microphone.

C.4.2 Frequency Response of Magnetic Tape and System Analyzer

The frequency response or reproducibility of the magnetic tape system and the subsequent process through the spectrum analyzer was checked as follows. The microphone and preamplifier were removed from the system, and a Gaussian white noise generator was used to feed a signal into the tape conditioning amplifier from which the conditioned signal was then recorded on magnetic tape. The conditioning amplifier was used throughout testing to provide a known gain setting of the signal recorded on tape. The signal level recorded on magnetic tape had to be between 0.1 and 1.0 volt RMS to achieve maximum sensitivity from the tape recording system.

The Gaussian source generator should ideally produce a signal of constant level across the frequency spectrum. Actually, the deviation of $\pm 1.0 \mathrm{~dB}$ noted on figures $\mathrm{C}-22$ and $\mathrm{C}-23$ was found to be in error in the Gaussian source generator and not in the magnetic tape or spectrum analyzer system. The recorded white noise was analyzed with a 40 -cycle, constant-bandwidth filter in conjunction with a system which performed a 32 -second time average of the spectrum. Results shown in figures $\mathrm{C}-22$ and C-23 are the same signal recorded on two separate channels of the magnetic tape. The magnetic tape recorder used during this program had 14 separate channels, each preceded by a separate signal conditioning amplifier. Eleven channels were assigned to microphone signals, and thus all noise data were recorded simultaneously.

C.4.3 Microphone Noise Floor

It was important to determine the noise floor for the noise data acquisition system. This was to eliminate any question that some of the lowest noise levels encountered during test might be equal to
or less than the noise floor of the noise measuring system. The fan was shut down (noise source eliminated), and a recording of the signals from all near-field and far-field microphones was put on magnetic tape. The signals from the tape were then put through a spectrum analyzer which used a $40-$ cycle, constant-bandwidth filter and performed a 32 -second time averaging of the spectrum. The spectrum revealed the floor levels for the far-field and near-field microphones. These are plotted on figures C -24 and $\mathrm{C}-25$, respectively.

The microphones were subjected to a decibei ievel in the upper portion of their range of application when testing them for frequency response. Further investigation was performed on one of the near-field microphones. A test was made to establish the capability of the near-field microphone to measure pure tones that were near the noise floor for the microphone. A near-field microphone was removed from the test facility and examined under laboratory conditions. The electronic noise of the microphone and system was found to be about 75 dB , as shown in figure $\mathrm{C}-26$. A pure tone of 80 dB was fed into the microphone for each of the 13 frequencies (spikes) shown on figure $\mathrm{C}-26$. The results showed that the equipment had the capability of distinguishing discrete tones down to the floor level of the system.

FIGURE C-1.-RUN 1 INSTRUMENTATION-BASELINE MODEL

Points of steady static pressure measurement												
Longitudinal position, X	-5.8(C)	-1.0(C)	O(C)	1.0(C)	2.0(C)	3.0(C)	4.0(C)	4.75(C)		5.0iC)	6.0(C)	7.0(C)
Angular position, φ	0,90,180,270	0	0	0	0	0	0	0,90,180,270		0	0	0
x		8.0(C)		9.0(C)	11.0(C)	13.0(C)		15.0(C)	18.0(C)	21.C(C)		
φ		0,90,180,270		0	0	0,90,180,270		0	0	0	0,90,	0,270

(C) = cowi only

FIGURE C-2.-RUN 2 INSTRUMENTATION-FUNDAMENTAL INLET, APPROACH, MODEL 1, $L / D=2.0, C O N D I T I O N S ~ 1$ THROUGH 7

Points of steady static pressure measurement												
Longitudinal position, X	-5.8(C)	-1.0(C)	O(C)	1.0(C)	2.0(C)	3.01 ${ }^{\text {(})}$	4.0(C)	4.75(C)		5.0(C)	6.0(C)	7.0(C)
Angular position, \emptyset	0,90,180,270	0	0	0	0	0	0	0,90,180,270		0	0	0
x		8.0(C)		9.0(C)	11.0(C)	13.0(C)		15.0(C)	18.0(C)	21.0(C)	23.	
\dagger		0,90,180,270		0	0	0,90,180,270		0	0	0	0,90,	0,270

(C) = cowl only

FIGURE C-3.-RUN 2 INSTRUMENTATION-FUNDAMENTAL INLET, APPROACH, MODEL 1 , $L / D=2.0$, CONDITIONS 8 THROUGH 14

Points of steady static pressure measurement					
Longitudinal position, X	-1.8	3.168	12.4	21.43	
Angular position, φ	$0,90,180,270$	$0,45,90,135,180,225,270,315$	$65,155,245,335$	225,315	

FIGURE C-4.-RUN 3 INSTRUMENTATION-FUNDAMENTAL INLET, TAKEOFF, MODEL 2, L/D = 1.0

All dimensions in inches
$\phi=0^{\circ}$ at 120^{\prime} clock looking downstream

∇-Static taps

- Kulite transducer

FIGURE C-5.-RUN 4 INSTRUMENTATION-CENTERBODY INLET, APPROACH, MODEL $3, L / D=1.3$

FIGURE C-6.-RUN 5 INSTRUMENTATION-CENTERBODY INLET, TAKEOFF, MODEL 3, L/D = 1.3

FIGURE C-7.-RUN 6 INSTRUMENTATION-CENTERBODY INLET, APPROACH, MODEL 4, L/D = 1.0

FIGURE C-8.-RUN 7 INSTRUMENTATION-RADIAL VANE INLET, MODEL $5 A, L / D=1.0$

Points of steady static pressure measurement										
Longitudinal position: X	-5.8(C)		-0.803(C)	0.667(C)	1.667(C)	2.667(C)	3.294(C+CB)	4.667(C)	5.667(C)	6.667(C)
Angular position: ϕ	0,90,180,270		45,135,225,315	45	45	45	45,135,225,315	45	45	45
x	7.667(C)	9.667(C)	12.517	13.0(C)						
ϕ	45	45	$45(C+C B)$	45,135,	225,315					

(C) = cowl only
(C+CB) = cowl and centerbody
FIGURE C-9.-RUN 101 INSTRUMENTATION-CENTERBODY INLET, TREATED, MODEL $3 A, L / D=1.3$

(C) = Cowl only
$(\mathrm{C}+\mathrm{CB})=$ Cowl and centerbody
FIGURE C-10.-RUN 102 INSTRUMENTATION-CENTERBODY INLET, TREATED, MODEL 3B,L/D=1.3

FIGURE C-11.-RUN 8 INSTRUMENTATION-CENTERBODY INLET,FLIGHT LIP, MODEL 4, LID $=1.0$

FIGURE C-12.-RUN 9 INSTRUMENTATION-DOUBLE-ARTICULATED VANE INLET,MODEL 6,LID=1.0

(C) = Cowl only
(C+CB) = Cowl and centerbody
FIGURE C-13.-RUN 10 INSTRUMENTATION-CENTERBODY INLET,TREATED, MODEL 3C, L/D = 1.3

Points of steady static pressure measurement										
Longitudinal position: X	0(C)	0.4(C)	0.9(C)	1.4(C+CB)	$1.85(\mathrm{C}+\mathrm{CB})$		2.3(C+CB)	$2.75(\mathrm{C}+\mathrm{CB})$	$3.25(C+C B)$	3.75(C)
Angular position: \dagger	0	0	0	0	0,45,90,135,180,225,270,315		0	0	0	0
X	$\begin{gathered} 4.25 \\ (C+C B) \end{gathered}$	5.0(C)	6.0(C)	7.25(C)	9.25(C)	11.87(C+CB)				
ϕ	0	0	0	0	0	0,90,180,270				

(C) = Cowl only
$(C+C B)=$ Cowl and centerbody
FIGURE C-14.-RUN 11 INSTRUMENTATION-CENTERBODY INLET, APPROACH, MODEL 4, LID = 1.0

∇-Static taps
∇-Kulite transducer
View looking downstream

FIGURE C-15.-RUN 11 INSTRUMENTATION-MODEL 4, CONDITIONS 1 THROUGH 14

FIGURE C-16.-RUN 11 INSTRUMENTATION-MODEL 4, CONDITIONS 15 AND ON

Points of steady static pressure measurement													
Longitudinal position: X	O(C)	0.4(C)	0.9(C)	1.4(C)	1.85(C)		2.3(C)	2.75(C)	3.25 (C)	3.75(C)	4.25(C)	5.0(C)	5.25(CB)
Angular position: $\quad \varphi$	0	0	0	0	8×45		0	0	0	0	0	0	0
x	$5.7(\mathrm{CB})$		6.01 Cl	6.15(CB)	6.6 (CB)	7.1 (CB)	7.25(C)	8.1 (CB)	9.25(C)	11.87	+CB)		
\bullet	8×45		0	0	0	0	0	0	0	4×90			

(C) = Cowl
(CB) = Centerbody
$(C+C B)=$ Cowl and centerbod y
FIGURE C-17.-RUN 12 INSTRUMENTATION-CENTERBODY INLET, TAKEOFF, MODEL 4, L/D = 1.0

FIGURE C-18.-RUN 13 AND 14 INSTRUMENTATION-RADIAL VANE INLET, MODEL 5B, L/D = 1.0

FIGURE C-19.-RUN 13 INSTRUMENTATION-RADIAL VANE INLET, MODEL 5B, L/D $=1.0$

FIGURE C-20.-MICROPHONE FREQUENCY RESPONSE CHARACTERISTICS

FIGURE C-21.-STANDARD MICROPHONE FREQUENCY RESPONSE CHARACTERISTICS

FIGURE C-22.-FREQUENCY RESPONSE-MAGNETIC TAPE SYSTEM AND SPECTRUM ANALYZER

FIGURE C-23.-FREQUENCY RESPONSE-MAGNETIC TAPE SYSTEM AND SPECTRUM ANALYZER

FIGURE C-24.-NOISE FLOOR-FAR-FIELD FORWARD ARC MICROPHONE

FIGURE C-25.-NOISE FLOOR-NEAR-FIELD MICROPHONE

FIGURE C-26. -NEAR-FIELD MICROPHONE SENSITIVITY

APPENDIX D
DATA ANALYSIS PROCEDURE

This appendix summarizes the methods used for handling the data during test and discusses both the aerodynamic data reduction procedure and the methods of acoustic data analysis.

D. 1 AERODYNAMIC DATA

All pressure, temperature, and rpm data were recorded in digital form on punched paper tape which was subsequently input to a computer at the test laboratory. This provided aerodynamic data of reduced form within 5 minutes of the event during the course of the test program. The test laboratory computer reduced all parameters to engineering units and performed such calculations as air mass-flow, fan pressure recovery, and inlet distortion.

Inlet recovery was defined as the ratio of average exit pressure from the diffuser divided by ambient pressure in the acoustic chamber. Average exit pressure was calculated in the diffuser exit plane. Total pressure measuring instrumentation was located at several different radii to entirely cover the flow area of the diffuser exit plane. The overall average pressure was calculated from an areaweighted average of all total pressure readings in the exit plane. Each total pressure reading was considered representative of the pressure existing in an area described by an annular ring with the pressure element at the centroid radius. Boundaries of each area ring were determined by the proximity of adjacent pressure elements. The calculation procedure can be summarized as follows:

$$
\begin{aligned}
& \overline{\mathrm{PT}}_{6}=\frac{\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~A}_{\mathrm{i}} \mathrm{PT}_{\mathrm{i}}}{\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~A}_{\mathrm{i}}} \\
& \text { Recovery }=\overline{\mathrm{PT}}_{6} / \mathrm{P}_{\text {ambient }}
\end{aligned}
$$

Whenever a multiposition traversing rake was used for complete mapping of total pressure at the diffuser exit plane, the punched paper tape was converted into digital form on a magnectic tape. The format on magnetic tape was made compatible with the CDC 6600. This magnetic tape was then used as input for the 6600 , which used the pressure survey data to produce plots of recovery maps for the diffuser exit plane.

Calculations of flow distortion were based on the same flow measurements, which were used to establish inlet total pressure recovery. Distortion in the diffuser exit plane was defined as:

$$
\text { Distortion }=\frac{\mathrm{P}_{\mathrm{T}_{\max }}-\mathrm{P}_{\mathrm{T}_{\min }}}{\mathrm{PT}_{6}}
$$

Pressure measurements used in calculating distortion were taken at a distance no nearer to the flow duct outer wall than 4% radius, and no nearer than 8% radius to the duct inner wall.

Air flow was measured by a bellmouth with adaptor section, which was bolted on the front of the inlet models. Some models were run with either a short bellmouth or a flight lip. Mass flow for these tests was determined by referring to a flow calibration which correlated mass flow to model throat static pressure. This information was obtained in a prior test where the bellmouth was used as the flow measuring standard.

Table D-1 is a legend of terms used to describe aerodynamic data output. Tables D-2 through D-17 are each a sample of the output from each of the test runs performed during the Sonic Inlet program. A sample for each run was included because the output format is slightly different for each model, as determined by geometry and instrumentation changes.

Bellmouth measured mass flow (WAC) was the first item of the printout. In cases where the model was tested without the standard bellmouth, the computer program used inlet throat area, inlet throat static pressure, and ambient pressure to calculate mass flow. This mass flow printout should be ignored in those cases because there was no information input for throat Mach number gradients; thus, the calculated mass flow was in error. This item was deleted from the output of the latest runs to avoid confusion.

Mass flow was additionally calculated from the total pressure traverses made in the diffuser exit plane. The result was always printed in the data tabulation section covering planes $5.5,6.0$, or 6.5 . Refer to table D-17. Highest reliability in this method of calculating mass flow was found in test runs 11 through 14 (tables D-14, -15, -16, and -17) where the four-arm rake was used for pressure measurement. This rake was able to account for nonuniformity of flow in the duct.

Mach number values were printed in the tabulation of data parameters received during test. Wall surface Mach numbers from the throat and forward were calculated with the assumption that ambient total pressure was still valid (i.e., zero losses). The same procedure applied to the region from the throat to the downstream location where the first boundary layer total pressure rake was located. The Mach number in the region of each total pressure element was calculated by referring to the wall static pressure measurement in that axial location.

Static pressure was measured on both the inner and outer walls of the flow annulus in the diffuser exit plane. The average of these values was used in calculation of Mach number at the location of each total pressure element in the diffuser exit plane.

Calculations of throat midstream Mach number could be performed for only those inlets where an inlet stinger probe was used during test. For these limited cases, throat Mach number was calculated for the outer wall, centerbody wall, and midway in the flow stream.

Throat section average Mach number was used as a base parameter in comparing noise, recovery, and distortion between different models. It was hand calculated after concluding the following:

- The area coefficient of each model inlet throat was not known so throat geometric area was used and all were compared on this basis.
- Measured mass flow and geometric throat area were used to calculate the average throat Mach number.

Throat average Mach number, instead of throat wall Mach number, was used for data comparison because it was more indicative of the total mass flow. Mass flow in turn is a prime indicator of engine power setting, and this is primarily where the noise and aerodynamic performance of flight inlets should be judged. By this means, a practical comparison of different inlet models was obtained regardless of the different Mach number gradients in each inlet design. Inlet throat wall Mach number, on the other hand, was less indicative of total mass flow. It was highly dependent on the contours of both the cowl and centerbody, particularly the contours from the throat and forward.

D. 2 ACOUSTIC DATA

Far-field forward arc noise was measured every 10° for the segment of 0° through 80° from inlet forward centerline. Near-field noise at the diffuser exit was measured on all inlet test models. The microphone was flush mounted in the duct outer wall. Sixty-second time samples of FM tape recording of the acoustic data were taken during the tests, and all microphones were simultaneously recorded on separate channels of a magnetic tape. A flow diagram of the acoustic data analysis system is shown in figure D-1.

D.2.1 Online Analysis

The overall noise level of each microphone was monitored during test by displaying each signal on an oscilloscope. Quick-look at the far-field noise spectrum was obtained by online analysis of the noise measured by the 30° microphone. A spectrum analyzer which used a filter bandwidth equal to 6% of the filter center frequency was used to obtain these quick-look noise spectra.

D.2.2 Offline Analysis

Acoustic data final results were based on spectrum analysis performed by playback of the multichannel magnetic tape.

D.2.2.1 Narrow Band Spectrum Analysis

Spectrum analysis performed on all near-field noise measurements was done with a 40 -cycle constant bandwidth filter. During tape playback the analyzer performed a 32 -second time averaging on each 40 -cycle bandwidth filter in the spectrum. Output was in the form of 40 -cycle bandwidth, 32 second time-averaged spectrum plots.

D.2.2.2 One-Third-Octave Band Spectrum Analysis

Final results of the far-field noise data were obtained from tape playback on a system which provided noise data analysis at $1 / 3$-octave bandwidth. This spectrum analysis was done in the same manner as for narrow band analysis. A 32 -second time averaging of the spectrum was obtained.

Output of the $1 / 3$-octave spectrum was in the form of computer punched cards. These were used as input to a computer program which scaled the noise data to full scale and calculated perceived noise level at $500-\mathrm{ft}$ sideline for the angles 10° through 80°. The PNL at $50^{\circ}, 500-\mathrm{ft}$ sideline, was used for model comparison because this was the location of peak noise level. Output was in the form of sound pressure level in $1 / 3$-octave spectrum plots, tabular printout of $1 / 3$-octave spectra, and printout of perceived noise levels.

D.2.2.3 Perceived Noise Levels

Noise spectra output from the analyzer were of course scale model data as measured by each microphone in its specific location of the test setup. It was considered most beneficial to convert all scale model noise data to full-scale engine data at 500 -ft sideline and compare the results of each model on this basis. To be consistent with other accepted means of noise evaluation on new flight hardware concepts, perceived noise levels were required. This made it necessary to convert the data to full scale because most of the scale model frequency spectrum, including the blade passing tone, was at too high a frequency to be compatible with the standard procedure for calculating perceived noise levels.

The diameter and airflow rate of the STF 369C engine were used as specifications for scaling the data since it was an engine being considered for STOL application. The fan diameter ratio was 52/12, engine to scale model. The number of fan blades and specific weight flow were assumed to be the same for both model and full scale.

Details of the noise scaling and PNL calculation program were documented in reference D-1. The major functions of the program are summarized in the following text.

That portion of the scale model 1/3-octave spectrum lying between 2000 and 40000 Hz was input required by the program. Blade passing tone was calculated for the scale model by referral to the number of fan blades and rpm input. Whenever the blade passing tone fell very nearly on the borderline between two of the $1 / 3$-octave filters, the program was arranged to compute the proper filter to which to assign the blade passing tone. This consisted of calculating the expected rpm error or fluctuation envelope and assigning the blade tone to the filter band of highest sound pressure level only if the rpm could have drifted into that range.

Once the filter band containing the blade passing tone was established, this described the shape of the spectrum for both model and full scale. Since the blade number was the same in both cases, the blade passing tone for full scale was simply that of the model ratioed down by $12 / 52$. That set the filter band which contained blade passing tone for the full-scale engine. The same sound pressure level as for model data was assigned (prior to scaling). This procedure, applied to each filter band of the 2000 to 40000 Hz input spectrum, reduced the full-scale engine spectrum to cover the $1 / 3$-octave filter bands from 630 Hz through 10000 Hz . The portion of the full-scale spectrum from 630 Hz down to 50 Hz was assumed to be the same SPL level as for the $630-\mathrm{Hz}$ band. This assumption was necessary because of a phenomenon peculiar to the scale model fan. The $12-\mathrm{in}$. scale model fan rotor was machined from a forging, and thus the blades were integral with the spool. A rotor vibration existed which created low-frequency noise spikes of high magnitude in the spectrum. The level of these spikes was in many cases comparable in dominance to the blade passing tone. This spectrum peculiarity had never been observed in data from full-scale engines where the fan rotor and blades were manufactured as separate pieces. The high-level spikes at the low end of the spectrum would have introduced error into the perceived noise calculations. Scale model spectra input to the program had to be in keeping with spectra shapes typical of full-scale engines. The spectra were made to conform to full-scale engine data by inserting a command in the program. This took the sound pressure level of the $1 / 3$-octave band at 2500 Hz and assigned the same level to all lower bands. The corresponding region on the full-scale spectrum included the region from the $1 / 3$-octave band at 630 Hz and all lower bands.

Once the frequencies, sound pressure levels, and shape of the spectrum were established, it was converted to full scale by applying the mass flow ratio:

$$
\mathrm{SPL}_{\text {full scale }}=\mathrm{SPL}_{\text {model }}+10 \log _{10}\left(\mathrm{~W}_{\text {full scale }} / \mathrm{W}_{\text {model }}\right)
$$

Full-scale noise levels were converted to 500 -ft sideline values by applying the standard extrapolation inverse square divergence law:

$$
S P L_{\text {full scale }}=S P L_{\text {model }}-20 \log _{10}\left(R_{\text {full scale }} / R_{\text {model }}\right)
$$

where R is the distance from the noise source to a measuring point in far field.

Atmospheric absorption was also taken into account when mathematically constructing the $1 / 3$ octave spectrum (full scale) at $500-\mathrm{ft}$ sideline. At this point in the computer program, the last step was to compute the perceived noise level ($\mathrm{PNdB} \mathrm{)} \mathrm{from} \mathrm{the} \mathrm{scaled} \mathrm{spectrum}$. for each 10° radial lying between 10° and 80° from inlet forward centerline at a point where they crossed the $500-\mathrm{ft}$ sideline. The standard procedure was followed in calculating perceived noise levels. This can be found in reference D-2.

REFERENCES

D-1 A. R. Errington: A Discussion of the Logical Structure and Solution Algorithm Used In Version B of the 12-Inch Fan Noise Scaling Program (TEE 178B). Boeing Coordination Sheet AME P-M-427, October 2, 1972.

D-2 Definitions and Procedures for Computing the Perceived Noise Level of Aircraft Noise. ARP 865, The Society of Automotive Engineers, October 15, 1964.

TABLE D-1.-LEGEND FOR AERODYNAMIC DATA PRINTOUT

Term	Description
WAC	Inlet airflow $\mathrm{W} \sqrt{\theta} / \delta \mathrm{lb} / \mathrm{sec}$. Note: where flight lip inlets were tested, this airflow was not used. Refer to corresponding airflow calculation run and plot of $W \sqrt{\theta} / \delta$ versus inlet duct wall static.
FPR	Fan pressure ratio-inlet lip to stator discharge.
M6	Calculated from $\mathrm{P}_{\mathrm{S} 6}$ average and $\mathrm{P}_{\mathrm{T} 1}$. Plane 6 Mach number.
N1	Fan mechanical rpm.
PTAMBO	Ambient pressure in the acoustic chamber, i.e., pressure at the inlet of the test vehicle, psia.
PLUG POS	Fan backload plug position, in.-0.0 was full open; 3.00 was point of maximum closure.
FAN TIP MR	Relative Mach number of air to fan blade tip. Based on $\mathrm{P}_{\mathrm{S} 6}$ average and P_{T} near the outer wall in plane 6 .
N1C	Corrected fan rpm, $\mathrm{N} / \sqrt{\theta}$.
TAMB ACOUSTIC TAMB AC CH	Ambient temperature in acoustic chamber, ${ }^{\circ} \mathrm{R}$.
RH	Relative humidity in acoustic chamber, \%.
FAN TIPM	Mach number of fan blade tip.
FAN TIP FPS	Fan tip speed, $\mathrm{ft} / \mathrm{sec}$.
PLANE 1	Ambient or inlet conditions to fan.
PT12ø	Ambient pressure in acoustic chamber at 20° microphone location, psia.
PT1W	Ambient pressure in acoustic chamber at wall near test vehicle inlet, psia.
PT1	Ambient pressure in acoustic chamber (=PTAMBO) = average of PT12ф and PT1W, psia.
TT1.1 through TT1.3	Temperature, ${ }^{\circ} \mathrm{R}$, at three places on the inlet bellmouth when used.
AVG TT1	Temperature, ${ }^{\circ} \mathrm{R}$, average of three bellmouth temperatures.
TT12ø	Temperature, ${ }^{\circ} \mathrm{R}$, in acoustic chamber at location of 20° microphone.
TTIW	Temperature, ${ }^{\circ}$ R, in acoustic chamber on wall adjacent to test vehicle inlet.
TT1	Average of TT $12 \varnothing$ and $T T I W,{ }^{\circ} \mathrm{R}$.
PLANE 2 PS2.1-PS2.4	Plane of bellmouth throat statics when standard bellmouth was used. Four belimouth throat statics spaced at 90° in the throat plane, psia.
BSBM	Average pressure, bellmouth throat wall statics laverage of PS2.1PS2.4.), psia.
PSBM/PT1	$\mathrm{P}_{\mathrm{S}} / \mathrm{P}_{\mathrm{T}}$ for bellmouth throat.
AVG M2	Bellmouth throat Mach number based on $\mathrm{P}_{\text {SBM }}$ and $\mathrm{P}_{\mathrm{T} 1}$.
PLANE 3	Ahead of throat plane. Usually the starting point for a string of cowl statics located along an axial line.
	Specific inlet detail drawing must be consulted for exact location of these statics.

TABLE D-1.-CONCLUDED

Term	Description
PLANE 4	The number 4 or 400 indicates the geometric throat plane.
PLANE 5	Intermediate measuring plane approximately midway in the diffuser.
PLANE 6 M6 FAN TIP MR PS6.1-PS6. 4	Diffuser exit plane. Mach number in plane 6 . The value printed under the plane 6 section was calculated based on P_{S} wall average in plane 6 and the P_{T} measured in plane 6 with the traverse probe inserted to position 1. Differs from M6 printed out in summary group at heading. There $\mathrm{P}_{\mathrm{T} 1}$ was used, assuming zero loss. Mach number relative to the fan blade tip. The value printed under the plane 6 section was calculated based on P_{S} wall average in plane 6, and the P_{T} in plane 6 with the traverse probe inserted to position 1 (i.e., near fan blade tip). Four static pressures spaced at 90° in plane 6.
PLANE 6 TRAV OBS PS-A and OBS PS-B OBS PS/PT true ps true pt WCOR 6 M PT/PT1 WCOR 2 PL6 FPR MB or MB4	Radial traverse with $\mathrm{P}_{\mathrm{S}}, \mathrm{P}_{\mathrm{T}}$ wedge probe. Two observed static pressures on the wedge probe. Observed value of $\mathrm{P}_{\mathrm{S}} / \mathrm{P}_{\mathrm{T}}$ for the probe. Obtained from Mach number correction for the probe. Same as measured \mathbf{P}_{T}. No correction required. Incremental weight flow corrected to local conditions. Local Mach number. Recovery. Local pressure compared to ambient pressure. Plane 6 weight flow calculation corrected to plane 2. Pressure ratio from fan face to stator exit. Mach number, M. Throat section average Mach number calculated based on bellmouth weight flow measurement and inlet throat area. $\mathrm{P}_{\mathrm{S}} / \mathrm{P}_{\mathrm{T}}$ corresponding to this M was sometimes printed out.
PLANE 6 rotating rake	(Used onty in runs 11, 12, 13, and 14) The rotating rake had four arms approximately equally spaced around the circumference. Each arm carried total pressure elements at seven different radii. The rake was set at a new circumferential position in 10° increments to cover the full 360° of the inlet duct. Only readings from the four arms set at the first position were printed out during test. Airflow and total pressure recovery were printed out based on the pressure data from the first position of the rake.
PLANE 10 PT10.1-PT10.5 PS	Total pressure at center of five equal area increments downstream from the stators, psia. Two places on duct inner wall and two places on duct outer wall downstream from the stators.

TABLE D-2.-CONCLUDED

TESI NO. 2274 DATE 11972

RUN NO. ICOND NO. 1.041
MAP NO/CONFIG NO. 6.001

WAC	20.115	PIAMBO	14.540	TAMB ACOUSTIC	509.98
FPR	1.1865	PLUGPOS	2.40	RH	87%
M	0.396	FANTIPMR	0.982	FAN IIPM	0.898
N1	18690	NIC	18855	FAN TIP FPS	978.6

PLANE 18
PTI20 14.550 PTIW 14.530 PTI 14.540
PAMB-PTI 0.004

TII.1	$49.95 F$	509.64 R		
TTI.2	50.30 F	509.98 R		
TII.3	$49.61 F$	509.29 R	BMITI	509.64 R
TTI20	50.30 F	509.98 R		
TTIW	50.99 F	510.67 R	TTI	510.33 R

PLANE 2:

PS2.1-PS2.4	13.546	13.544	13.542	13.543	
PSBM	13.544				
PSBM/PTI	0.932				
WCOR2	20.115	AVG M2	0.396		
PLANE 6:					
PS6.1-PS6.4	13.017	13.066	13.859	13.059	
AVG PS6	13.050				
PT10.1-PT10.5	17.422	17.372	17.212	17.822	17.142
AVG PIIO	17.252				
PSO!0.1-PS010.2	215.594	15.650			
PSI10.1-PSI10.2	2 15.269	15.261			

PLANE 6-TRAVERSE: REC										
	ORS	OBS	OBS PS-AVG	OBS PS/PT	$\begin{gathered} \text { TRUE } \\ \text { PS/PT } \end{gathered}$	TRUE PS	TRUE PT	WCOR6	M	PT/PTI
RADIUS	PS-A	PS-B	PS-AVG	PS/PT	PS/PI			1.957	0.358	0.979
5.885	12.961	13.122	13.042	0.916	0.916	13.830	14.232 14.451	2.95	0.358	0.979 0.994
5.609	13.129	13.106	13.118	0.978	0.906	13.094	14.451 14.472	2.052 2.101	0.378	0.994
5.319	13.089	13.847	13.068	0.903	0.901	13.038	14.472 14.497	2.101 2.136	0.389 0.397	0.997
5.012	13.148	12.934	13.041	0.900	0.897	13.805	14.497 14.517	2.136	0.397	0.997 8.999
4.685	13.178	13.060	13.119	0.904	0.982	13.090	14.517	2.094	0.388	-.999
4.334	13.143	13.151	13.147	0.906	0.904	13.120	14.519	2.075	0.383	0.999
3.951	13.213	13.021	13.117	0.904	0.902	13.088	14.509	2.090	0.387	0.998
3.527	13.232	13.045	13.139	0.905	0.903	13.111	14.519	2.081	0.385	0.999
3.845	13.193	13.190	13.192	0.909	0.907	13.170	14.514	2.839	76	0.998
2.470	13.292	13.290	13.291	0.916	0.915	13.278	14.517	1.966	0.360	0.999
AVG PT:		. 474	AVG PS		102					
AVG PT	/PTI=	. 996	WCOR $6=$		586					
W=		. 492	MR =	0	9764					

TABLE D-3.-CONTINUED
PROG CI
TEST NO. 2274 DATE 20472
PIN NO./COND NO. 2.003
PLANE 4.5:
$\begin{array}{lllll}\text { PSAS.1-PS45.4 } & 11.382 \quad 11.391 \quad 11.371 \quad 11.39\end{array}$
AVG PS45
11.384

B/L PROBE

PORT B/L-PT
112.654
213.589
314.252
414.473
514.524

PS/PT 0.900
0.838
0.799
0.787
0.784

M	$P T / P T 1$
0.392	0.862
0.510	0.925
0.576	0.978
0.596	0.985
0.600	0.989

AVG PT 13.775 aVG M 0.529 REC 0.938
PLANE 5:
$\begin{array}{llllll}\text { PSS.1-PSS.4 } & 12.767 & 12.753 & 12.794 & 12.787\end{array}$
AVG PS5
12.775

B/L PROBE

PORT $B / L-P T$	PS/PT	M	PT/PTI	
113.130	0.973	0.198	0.894	
2	13.249	0.964	0.229	0.902
3	13.397	0.954	0.262	0.912
4	13.782	0.927	0.331	0.938
5	13.780	0.927	0.331	0.938
6	13.932	0.917	0.354	0.949
7	14.123	0.905	0.381	0.962

AVG PT 13.720
AVGM 0̈. 321 REC 0.934
PLAHE 6:
$\begin{array}{lllll}\text { PS6.1-PSG.4 } & 13.158 & 13.185 & 13.230 & 13.226\end{array}$ AVG PS6

B/L PROBE

PORT	B/L-PT	PS/PT	M	PT/PTI
1	13.894	0.950	0.272	0.946
2	13.958	0.946	0.284	0.950
3	14.935	0.941	0.297	0.956
4	14.118	9.9355	0.312	0.961
5	14.295	0.929	0.326	0.957
6	14.280	0.924	0.337	0.972
7	14.351	0.926	0.348	0.977
8	14.429	0.915	0.358	0.982
9	14.428	0.915	0.359	0.982

TABLE D-3.-CONCLUDED
PROG CI-T
TEST NO. 2274 DATE 29472
RIN NO. /COND NO. 2.003
MAP NO/CONFIG NO. 39.002

| WAC | 19.017 | PTAMBO | 14.690 | TAMB ACOUSTIC | 496.87 |
| :--- | :--- | :--- | :---: | :--- | :--- | ---: |
| FPR | 1.1732 | PLUGPOS | 2.40 | RH | 757 |
| M6 | 0.395 | FANTIPMR | $\boxed{0.957}$ | FAN TIP M | 8.872 |
| NI | 17960 | NIC | 18297 | FAN TIP FPS | 940.4 |

PLANE 1:
PT120 14.700 PTIW 14.680 PTI 14.690
PAMB-PTI 0.018
TII.1 $40.29 \mathrm{~F} \quad 499.98 \mathrm{R}$
TT1.2 $39.60 \mathrm{~F} \quad 499.29 \mathrm{R}$
TTI.3 40.29F 499.98 R
TT12. $37.19 \mathrm{~F} \quad 496.87 \mathrm{R}$
TTIW 38.91F 493.60R TTI 497.74R
PLANE 2.1

PS2.1-PS2.4	13.812	13.800	13.791	13.791
PSBM.	13.799			
PSBM/PT1	0.939	AVG M2	0.300	
WCOR2.	19.017	AVG		

PLANE 6:

PLANE 6:	13.179	13.137	13.2 .26	13.232
S.1-PS6.4	13.199			

PLANE 10:
$\begin{array}{llllll}\text { PT10.1-PT10.5 } & 17.510 & 17.430 & 17.200 & 16.960 & 17.070\end{array}$
AVGPIIの 17.234
PSIO.1T-PSIO.2T 15.662 15.699
PSI0.1H-PSI0.2H 15.372 . 15.360
PLANE 6-TRAVERSE:

	OBS	03S	OBS	OBS	TR	TRUE	TRUE			REC
RADI	PS-A	PS-E	PS-A	PS/P	PS	PS	I	WCOR 6		T/PT1
5.885	13.184	13.649	13.117	0.933	0.933	13.122	14.059	1.757	0.316	0.957
5.609	13.235	13.042	13.139	0.921	0.921	13.133	14.261	1.900	0.345	0.971
319	13.189	13.124	13.157	0.912	0.911	13.139	14.429	2.007	0.369	0.982
5.912	13.212	13.130	13.171	0.901	0.899	13.138	14.612	2.118	0.393	0.995
4.685	13.2 .77	13.219	13.248	0.903	0.901	13.217	14.670	2.101	0.389	0.999
4.334	13.2 .73	13.294	13.239	0.902	0.899	13.275	14.684	2.116	0.393	. 083
3.951	13.192	13.258	13.225	0.900	0.898	13.190	14.690	2.129	0.396	anc
3.52 .7	13.315	13.157	13.236	0.981	0.899	13.202	14.692	2.123	0.394	1.009
3.945	13.221	13.371	13.2 .96	-985	0.903	13.268	14.694	2.082	0.385	000
2.	13.35	13.436	13.394	0.912	0.910	13.375	14.693	2.010	D. 369	1.000

AVG PT=	14.547	AVGPS:	13.198
AVG PTG/PTI	0.990	WCOR $6=$	20.335
	20.138	MR=	0.9304

```
pancecl-3
TEST vO. O:74 DATF 392.72
RUN NO./COND NO. 3.004
MNP :M/CO!IFIG NO. 13.933
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline AAC & 2.4 .939 & PTANT3 & 14．66．5 & TANH & ACO & USTIO & 531.73 \\
\hline FP？ & 1.2539 & Plag pos & 1．90 & RH： & & & 83\％ \\
\hline ：1ヶ & 0.505 & FAN TIP M？ & 1．9．31 & FAN & TIP & M & \(1.17 \%\) \\
\hline 11 & 2．2030 & M1C & 2．333？ & FAN & IIP & FPS & 12.33 \\
\hline
\end{tabular}
PLANF I:
PIION 14.56% PTIU 14.67% PTI 14.665
\begin{tabular}{|c|c|c|c|c|}
\hline TT1．1 & 42.718 & \(50: 300\) & & \\
\hline TT1．？ & 43．4．95 & 503.0 园 & & \\
\hline TT1．3 & \(43.40 \%\) & 503．03R & 3，9TI 1 & 5n？．35 \\
\hline TT12．0． & 42．39\％ & 591.73 R & & \\
\hline TTIV & 43.05 F & 592.74 P & TT1 & 5.72 .2 .87 \\
\hline
\end{tabular}
PLA:㛣 ?:
PO?.1-PS2.04 13.041 13.04.3 1.3.741 13.0.04
PSN:4 13.त41
Ps%`/PT1 O.330
OOR? 2.4.939 AVK2 #? A.413
10 STIMGTP PROZF
```



```
AVGPSA S.P.21 \44 ?.043
Pl.Al:G K:
PSK.1-PG5.4 12.0ח0 12.0.93 12.353 12.341
AVS PSS 12.319
PLANF 1:7:
PT1N.1-PT1O.5 13.525 1?.435 1%.435 13.335 13.085
AVEPTIO 1P.337
PSIO.1T-PC1%.2T 15.797 15.76?
PSIT.111-एSIO.2.4 15.253 15.173
```

PEA：Ci－？

7ル PRO3F

POPT	3／1－PT	PS／PT	9	PT／PT1
	13.611	9．995	0.359	9．78号
2.	13.956	9．0？3	C． 4 anf	G． $0^{\text {a }}$ ？
3	$14 . ? 2.3$	J． 6.5	B． 45	0.973
4	14.471	3.354	$\therefore .477$	0.073
5	14．51：	9．3．4？	9．4．97	0.997
6	14.573	8.945	0.496	0.09%
7	1ヶ．506	0.344	0.497	ด．ก๑¢，
3	14．62．5	0.342	3.591	9.987
9	14.651	\％．？ 41	3.50 .4	4．909

PRONE 1：
AVFPT 14．350 AVGM 0．472 REC 0．979
Q／1．PPOPE

PORT	P．$/ 1-\mathrm{PT}$	PS／PT	1	PT／PT1
1	13.593	3.906	9．373	3.027
$?$	13.927	9.455	4．4\％	9.748
3	14.303	0.361	3． 467	3． 775
4	14.485	0.305	9.437	a．99n
5	14．5？1．	2.345	0.497	9.994
\ldots	14．62？	3.8 .43	0.501	0.997
7	14．646	9.741	2．583	9．999
9	14．65？	0.349	0.595	1．nom
9	14.568 .9	9.8407	0.596	1．817．7

PRORE ？：
AVGPT 14．379 AVGM 0.475 SEC 0.931

	$\begin{aligned} & \text { TRAUE } \\ & \text { ORG } \end{aligned}$	E:	S	Ons	UF．	IIE．	TRUE．			－
PADIIS	PSS－A	PS－R	PS－AVG	PS／PT	PS／PT	PS	PT	whores		T 1
5.085	12.43 ？	，1？．453	12．44．3	0.909	7．919	17.465	13.749	2.615	0.377	7 \therefore ¢ 34
5.109	12．4？	，12．415	1？．421	0.373	4.373	12．4？4	14．23：	2.33 ：	3.445	P．$\bigcirc 7$
5.319	12.34 ？	12．453	12.433		7.345	12．324	14．55：1	2.544	3.497	71.001
5.117 ．	12.339	12．234	1\％．31\％	0．345	Q．：3？	12．？？	14.650	2．51？ 4	2.5419	1．01：
4.635	12．19	17．0．95	$1: \bigcirc 0.47$	0.336	9．e．3．	1\％．\％1\％	14．r．5？	？．f14	：1．517	－1．${ }^{\text {a }}$
4.334	12．196	1 1 1 ． 291	12.944	$\bigcirc .934$	9．33\％	12．2．45	14.677	$2.5 \% 3$	3.57 .3	$1 . .11$
3.951	12．119	1 1！ 175	12．11：	1．？25	H．col	12.355	14.679	2． 194	3.53 ？	－1． ＇1 1
3.50 .7	10.715	12．835	12.025	2． 32 ！	9．015	11.96.	14．653	2.714	1.547	71.3
3.345	11.002	11．0．7	11.945	C．915	r．errn	11.865	14．f．fi\％	2.751	0.558	1．\because, \cdots
9.479	11．34？	？ 11.975	11.6	611	8．94	11.794	14．547	2．77	0.555	5 ．n．m
iva PT		14.59 .3	AVEP		155		Reproduced from best available copy．			
Qu；PT	TI	3．92：3	yomos		3.3					
WC）？		S． $3: 3$	Pl .6 FPI							

```
PROG C1-C
TEST NO. 2274
DATE 31572
    N NO./COND NO. 4.009
MAP NO/CONFIG.NO. 40.003
\begin{tabular}{lllcllr} 
WAC & 19.931 & PTAMBO & 14.860 & TAMB ACOUSIIC & 518.95 \\
FPR & 1.1401 & PLUGPOS & 0.00 & RH & 787 \\
M6 & 0.416 & FANTIPMR & 0.968 & FAN TIP M & 0.874 \\
N1 & 18340 & NIC & 18309 & FAN TIP FPS & 960.3
\end{tabular}
PLANE I:
PT120 14.860 PTIW 14.860 PTI 14.860
\begin{tabular}{|c|c|c|c|c|}
\hline TI 1.1 & 60.99F & 520.68R & & \\
\hline TT1.2 & 60.65 F & 529.33R & & \\
\hline ITI. 3 & 60.65 F & 520.33 R & BMT I 1 & 520.45R \\
\hline TT129 & 59.27 F & \(518.95 R\) & & \\
\hline TTIW & 59.27 F & 518.95R & TTI & 518.95R \\
\hline
\end{tabular}
```


PlANE 2:

```
PS2.1-PS2.4 \(13.869 \quad 13.862 \quad 13.856 \quad 13.861\)
PSBM \(\quad 13.862\)
PSBM/PTI 0.933
WCOR2 19.931 AVG M2 0.317
ANE 4:
4.I-PS4.8(0) \(9.550 \quad 9.472 \quad 9.485 \quad 9.723 \quad 9.424 \quad 9.503 \quad 9.5159 .468\)
AVG PSA 9.518 M4 0.824
\(\begin{array}{lllllllll}\text { PSA.9-PS4.16(I) } & 9.679 & 9.322 & 9.918 & 9.445 & 9.584 & 9.602 & 9.685 & 9.611\end{array}\)
AVG PS4 9.606 M4 0.815
PLANE 6:
PS6.1-PS6.4 \(13.175 \quad 13.178 \quad 13.216 \quad 13.195\)
AVG PS6 13.191
AP PL6 FPR 1.239
PLANE 10:
PT10.1-PII0.5 \(17.016 \quad 17.030 \quad 17.030 \quad 16.840 \quad 16.800\)
AVGPT10 16.942
PSID.1T-PSIO.2T \(15.184 \quad 15.193\)
PSIA.1H-PSIO.2H \(14.874 \quad 14.846\)
```

TABLE D-5.-CONCLUDED
PROG Cl-C
TEST NO. 2274
DATE 31572
RUN NO. ICOND NO. 4.0日9
B/L Probe

PORT	B/L.-PT	PS/PT	M	PT/PTI
1	13.827	0.954	0.260	0.931
2	14.175	0.931	0.322	0.954
3	14.474	0.911	0.367	0.974
4	14.597	0.898	0.396	0.989
5	14.789	0.892	0.498	0.995
6	14.926	0.890	0.412	0.998
7	14.848	0.889	0.415	0.999
8	14.856	0.888	0.416	1.090
9	14.863	0.888	0.417	1.000

PROBE 1:
AVG PT 14.585 AVG M 0.382 REC 0.982
B/L PROBE

PORT	$B / L-P T$	PS/PT	M	PT/PTI
1	13.749	0.969	0.244	0.925
2	13.998	0.942	0.293	0.942
3	14.357	0.919	0.350	0.966
4	14.881	0.887	0.419	1.962
5	14.725	0.896	0.409	0.991
6	14.793	0.892	0.408	0.996
7	14.832	0.889	0.413	0.998
8	14.850	0.888	0.415	0.999
9	14.861	0.888	0.416	1.090

PROBE 2:
AVG PI 14.552 AVG M ${ }^{-} 0.377$ REC 0.979

PLANE 6-TRAVERSE: OBS TRUE TRUE TRUE REC										
	OBS	${ }_{\text {PS- }}^{\text {OBS }}$	OBS	PS/PT	TRUE	TRUE PS	true PT	WCOR6	M	$\begin{aligned} & \mathrm{REC} \\ & \mathrm{PT} / \mathrm{PII} \end{aligned}$
RADIUS	PS-A 13.308	PSS-8	PS-AVG 13.285	0.972	0.973	13.309	13.675	1.152	0.200	0.92 .0
5.699	13.241	13.331	13.236	0.916	0.917	13.306	14.585	1.938	0.353	0.976
5.319	13.243	13.332	13.288	0.899	0.998	13.303	14.787	2.113	0.392	0.995
5.012	13.252	2. 13.333	13.293	0.895	0.896	13.3197	14.849	2.145	0.399	0.999
4.685	13.235	513.229	13.232	0.891	0.891	13.244	14.860	2.188	0.409	1.000
4.334	13.173	313.109	13.139	0.884	0.885	13.143	14.857	2.242	8.422	1.000
3.951	13.096	613.864	13.989	0.880	0.881	13.087	14.860 14.856	2.277 2.284	0.430 0.432	1.000 1.000
3.527 3.945	13.078 13.045	9 5 13.051	13.065 13.048	0.880 0.878	0.888 0.879	13.071 13.954	14.856 14.857	2.284 2.294	8.434	1.008
2.470	13.831	113.018	13.1225	0.890	0.891	13.036	14.635	2.193	0.410	0.995
AVG PT AVG PT	PTI ${ }^{1}$	$\begin{array}{r} 14.574 \\ 0.988 \end{array}$	AVG PS WCORG PL 6	$\begin{array}{r}13 \\ 20 \\ \hline 1\end{array}$	$\begin{array}{r} .186 \\ .824 \\ \hline 155 \end{array}$					

TABLE D-6.-RUN 5, SAMPLE AERODYNAMIC DATA TABULATION

```
PROG CI-C
TEST NO. 2274 DATE 32072
RUN NO:/COND NO. 5.003
MAP NO/CONFIG NO. 48.000
\begin{tabular}{lllclrr} 
WAC & 25.419 & PTAMBO & 14.805 & TAMB ACOUSTIC & 508.95 \\
FPR & \(1.24 i 3\) & PLUG POS & 0.00 & RH & 688 \\
M6 & 0.558 & FAN TIPMR & 1.277 & FAN TIP M & 1.149 \\
N! & 23590 & NIC & 23769 & FAN TIP FPS & 1235
\end{tabular}
PLANE 1:
PT120 14.810 PTIW 14.800 PTI 14.805
\begin{tabular}{lllll} 
TT1.1 & \(50.99 F\) & \(510.67 R\) & & \\
TT1.2 & \(51.33 F\) & \(511.02 R\) & & \\
TT1.3 & \(51.33 F\) & \(511.02 R\) & BMTTI & \(510.90 R\) \\
TT120 & \(49.26 F\) & \(598.95 R\) & & \\
TT1W & \(49.61 F\) & \(509.29 R\) & TT: & \(509.12 R\)
\end{tabular}
PLANE 2:
PS2.1-PS2.4 13.086 13.089 13.089 13.103
PSBM 13.092
PSBM/PT1 0.884
HCOR2 25.419 AVG M2 0.423
```



```
PLANE 6:
PS6.1-PS6.4 11.948 11.934 12.038 12.023
AVG PS6 11.986
AP PL6 FPR 1.346
PLANE 10:
PT10.1-PT10.5 18.535 18.735 18.435 1B.235 17.945
AVG PT10 18.377
PS10.1T-PS10.2T 15.557 15.550
PS10.1H-PS10.2H 14.998 14.981
```


TABLE D－6．－CONCLUDED

PROG C1－C
TEST NO． 2274
DATE
32072

RUN NO．／COND NO．
5.903

B／L PROBE

PORT	日／L－PT	PS／PT	M	PT／PT1
1	13.943	0.860	0.470	0.942
2	14.654	0.818	0.544	0.990
3	14.789	0.811	0.556	0.999
4	14.811	0.809	0.558	1.091
5	14.815	0.809	0.559	1.001
6	14.816	0.809	0.559	1.001
7	14.815	0.809	0.559	1.001
8	14.816	0.809	0.559	1.001
9	14.815	0.809	0.559	1.001

PROBE $1:$
AVG PT 14．671 AVG M 0．545 REC 0．991
B／L PROBE

PORT B／L－PT	$P S / P T$	M	$P T / P T 1$	
1	13.682	0.876	0.439	0.924
2	14.427	0.831	0.522	0.975
3	14.730	0.814	0.551	0.995
4	14.783	0.811	0.556	0.999
5	14.801	0.810	0.557	1.000
6	14.809	0.809	0.558	1.000
7	14.812	0.809	0.558	1.001
8	14.813	0.809	0.559	1.001
9	14.815	0.809	0.559	1.001

PROBE 2：
AVG PT 14.601 AVG M 0．539 REC 0．986

PLANE 6－TRAVERSE：

	OBS	OBS	OBS	OBS	TRUE	TRUE	TRUE			REC
RADIUS	PS－A	PS－B	PS－AVG	PS／PT	PS／PT	PS	PT	WCOR6	M	T／PT1
5.885	12.142	12.288	12.175	0.892	0.893	12.187	13.655	2.178	0.497	0． 922
5.609	12.063	12.385	12.224	0.831	0.828	12.180	14.720	2.648	0.527	0.994
5.319	．12．321	12.133	$12 \cdot 227$	0.828	0.824	12.177	14.776	2.667	0.533	0.998
5.012	12.091	12.153	$12 \cdot 122$	0.819	0.815	12.054	14.798	2.722	0.549	1.090
4.685	12.083	11.999	12.041	0.814	0.808	11.958	14.798	2.757	A． 560	1.990
4.334	11.885	11.997	11.941	0.807	0.800	11.837	14.797	2.799	0.574	1.9096
3.951	11.980	11.893	11.897	0.804	0.796	11．781	14.805	2．820	0． 581	1.9008
3.527	11.827	11.929	11.878	0.802	0.794	11．758	14.804	$2.82 B$	B． 583	1.000
3.045	11.844	11.902	11.873	0.802	0.794	11.752	14.803	2.830	0.584	1 －¢ă
2.470	11.892	11.983	11.938	0．807	$0 \cdot 800$	11．B32	14.799	2.801	0.575	1－8のロ

AVG PT	$14.675 S$	AVG PS	11.9514
AVG PT／PTI	9.9915	WCOR6	27.6482
WCOR2	26.8179	PL 6 FPR	1.2522

TABLE D-7.-RUN 6, SAMPLE AERODYNAMIC DATA TABULATION

```
PROG C:-D
TEST NO. 2274
DATE 32372
RUN NO./COND NO. 6.003
MAP NO/CONFIG NO. O.004
\begin{tabular}{lllcllr} 
WAC & 19.954 & PTAMBO & 14.890 & TAMB AC CH & 511.36 \\
FPR & 1.1381 & PLUGPOS & 0.00 & RH & & 607 \\
M6 & 0.384 & FANTIP MR & 0.939 & FAN TIP M & 9.857 \\
N1 & 17910 & NIC & 18010 & FAN TIP FPS & 937.8
\end{tabular}
PLANE 1:
PT120 14.800 PTIW 14.800 PTI 14.800
\begin{tabular}{lllll} 
IT1.1 & \(53.40 F\) & \(513.09 R\) & & \\
IT1.2 & \(52.37 F\) & \(512.05 R\) & & \\
IT1.3 & \(54.99 F\) & \(513.78 R\) & BMIT1 & \(512.97 R\) \\
IT120 & \(51.68 F\) & \(511.36 R\) & & \\
ITIW & \(52.37 F\) & \(512.05 R\) & TTI & \(511.71 R\)
\end{tabular}
PLANE 2:
```



```
PS4.9-PS4.16(1) 8.470 8.446 8.580 8.602 8.820 8.755 8.473 8.500
AVG PS4 8.531 M4 0.918
    9.759 8.921 9.51011.012
PS/PT 0.659 0.603 0.643 0.744
    M 0.795 0.382 0.821 0.664
PLANE 6:
PSG.1-PS6.4 13.3411 13.360 13.480 13.298
AVG PS6 13.370
AP PLG FPR 1.185
PLANE 10:
PT10.1-PTIO.5 16.910 16.930 16.94016.670 16.770
AVG PTIG 16.844
PS10.1T-PS10.2T 15.118 15.121
PS10.1H-PS1G.2H 14.818 14.794
```

TABLE D.7.-CONCLUDED

PROG CI-E
TEST NO. 22.74
RUN NO./COND NO.
7.992

DATE 40372

PLG RAKE TRAV:

RAD		2	3	4	5	${ }^{6}{ }^{6}$	${ }^{7}$	${ }^{8}$	9
1 PT	14.153	14.167	14.130	14.192	14.191	14.186	14.172	14.164	14.167
PT/PII	0.963	9.964	0.954	0.965	0.955	0.965	0.954	0.953	0.964
M	0.304	0.395	0.307	0.309	0.309	0.303	8.336	0.375	$3{ }^{\text {a }}$
2 PT	14.2 .47	14.251	14.277	14.2 .71	14.2 .75	14.277	14.2 .77	14.2 .75	14.275
PT/PTI	0.969	6.369	0.071	0.079	0.971	0.971	0.971	0.971	0.971
M	0.317	9.318	0.322	0.32 .1	0.322	0.37.2.	0.32%	0.3 ?.?	0.322
3 PT	14.384	14.339	14.497	14.379	14.372	14.369	14.378	14.384	14.39
PT/PTI	0.978	0.978	0.993	0.978	0.977	0.977	0.978	0.973	0.97
M	0.348	0.339	0.343	0.339	0.338	0.337	0.339	0.343	0.341
4 PT	14.659	14.481	14.495	14.434	14.415	14.419	14.458	14.494	14.50
PT/PTI	8.997	0.985	0.986	0.992	0.081	0.98!	0.934	0.985	3.93
M	0.379	0.354.	0.355	3.348	0.345	0.345	0.357	0.356	0.358
5 PT	14.686	14.567	14.568	14.486	14.457	14.459	14.534	14.579	14.59
PT/PTI	0.999	0.991	0.091	0.985	0.933	0.933	0.983	$0.99 ?$	- 0
M	0.382	0.365	0.366	0.354	0.350	0.350	0.361	0.357	8.369
6 PT	14.685	14.567	14.563	14.485	14.457	14.459	14.534	14.579	14.59
PT/PTI	0.939	0.991	0.991	9.985	0.083	0.983	9.988	6.99?	0.99
M	0.382	0.356	0.356	0.354	0.350	0.35\%	0.361	0.367	1. 36
7 PT	14.62.5	14.652^{-}	14.62.3	14.593	14.493	14.531	14.615	14.565	14.63
PT/PTI	9.094	0.996	0.994	0.936	0.934	0.986	0.994	0.997	0.99
M	0.373	8.376	0.373	9.357	0.353	0.356	0.371	0.378	- 37
8 PT	14.690	14.545	14.629	14.518	14.434	14.497	14.505	14.559	14.51
PT/PTI	0.999	0.096	0.995	0.937	9.935	0.985	0.993	0.997	0.90
M	0.382	0.375	0.374	0.359	0.354	0.356	9.371	0.378	
9 PT	14.546	14.512	14.575	14.538	14.477	14.485	14.579	14.539	14.5
PT/PTI	9.99\%	0.994	0.994	0.997	9.035	0.935	0.901	0.993	0.93
M	0.363	0.373	0.372	0.358	0.354	0.355	0.367	0.369	35
18 PT	14.42.7	14.468	14.435	14.379	14.336	14.329	14.352	14.315	14.2 .4
PT/PTI	0.99%	0.994	2.93?	9.979	0.975	0.975	9.976	0.974	0.96
M	0.347	0.353	0.348	0.339	0.333	0.332	0.335	0.338	31
AVG REC	0.037	0.985	0.985	0.990	0.979	0.979	0.983	0.934	9.92
MB	9.684	PS/PT	0.732						

Uses outer wall P_{S} average of 4 for all Mach number calculations on this page.

TABLE D-9.-CONTINUED

TABLE D-9.-CONTINUED

TABLED.9.-CONTINUED
prog cro-A
TEST in. 2.290 DATE 4177?
RUM NO. /COND No. 101.005

TABLE D-9.-CONCLUDED

TABLE D-10.-RUN 102, SAMPLE AERODYNAMIC DATA TABULATION

```
p!nN C?-A
TFGT DO. DAn:% 42.47?
```



```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SAC & 19.934 & PTAMn & 14.695 & TAMR AC & Cl & 515.35 \\
\hline FFP & 1.1495 & PLIJG POS & 7.37 & R11 & & 757, \\
\hline M & 3.547 & FAN TIP :TP & 1.085 & FAM TIP & M & \(3.93 ?\) \\
\hline NI & 10.379 & NIC & 1947.3 & FAll TIP & FPC & 1914 \\
\hline
\end{tabular}
PLA!! 1:
PT10.7 14.730 PTIV I4.607 PTI 14.6.05
TTI.I-TTI.* 516.53? 515.50.3 515.5.73 3.1TTI 515.94.3
IT129 515.34?
TT1!% 515.5.37 TTI 516.13.3
PLA!'R D:
PS?.1-PS%.4 13.749 13.71% 1.4.671 13.631
PSNM 13.7%0
PSD:M/PT1 0.933
AVG 10? 3.317
PLANF 3:
\begin{tabular}{|c|c|c|c|c|c|}
\hline PS3.1- & PS3.4 & 13.745 & 13.315 & 13.995 & 13. 27.5 \\
\hline PS \(/ f\) & T 1 & \(0.34 ?\) & 0.240 & 6.940 & 0.741 \\
\hline AVG & M & 0.297 & & & \\
\hline & 321 & 3 & & 30 & \\
\hline & OUT & IN & D115 & IN & 0115 \\
\hline PS & 12.41? & 12.131 & 10.761 & 9.971 & 9.75 .5 \\
\hline PS/PT & 9.345 & n.s?6 & \(0.73 \%\) & 0.67 .9 & 7.654 \\
\hline M & 0.497 & 7.531 & 3.732 & 9.75¢ & 0.793 \\
\hline
\end{tabular}
PLANF. 4. (TYPNAT):
PG4.I-PSA.A(O) ?.172 9.017 3.355 9.986
PSA AVG O.03I PSAA/PTI D.KIS
```



```
P?.N. C?-A
TEST ツ! ת.9.9 DATE 42.47?
```



```
PLA'IF 5:
O:ITES R/L PNKE PS 11.4.N
PR PT PS/PT PT/PTI M
    1 11.553 7.0.0 9.70.7 19.12.7
    \.11.051 0.n31 6.793 %.104
    3 11.7%0 0.971 ח.7.9? 0.9.97
    4 11.377 亿..955 7.915 9.25?
    9 10.740 M.334 0.334 0.315
    5 12.57a 
AV 1？．434 ri．92？0．9．44 0．343
\begin{tabular}{|c|c|c|c|c|}
\hline 1！9「 & 1. & YF．PS & 11．435 & \\
\hline PR & PT & PG／PT & PT／PT1 & \(M\) \\
\hline 1 & 13．99？ & 0.777 & 7.291 & 8.430 \\
\hline \(?\) & 13.795 & 17．337 & 1）．934 & 9.51 \\
\hline 3 & 14.9 .94 & 7．9．14 & 7． 372 & 9.567 \\
\hline 4 & 14．5．59 & 0.787 & 3.091 & 3.537 \\
\hline 5 & 14.657 & 0.774 & 0.93 .3 & 0.6 .91 \\
\hline 6 & 14．676 & 1．753 & 9．20？ & 3.632 \\
\hline 7 & 14.637 & 0.797 & 9.939 & 9.5 \\
\hline
\end{tabular}
AU 14.331 0．3n2 0.075 0．571
            5%1
                                011T
PST 11.237 11.355
    M 3.565 0.553
PLAVF 17:
PT13.1-PT10.5 16.3n5 15.325 16.965 16.555 15.425
AVG PTIO 10.15.759 13.?
\begin{tabular}{|c|c|c|c|c|}
\hline & IM & IT & I＇1 & \(711 T\) \\
\hline ps & 15．013 & 14.72 .3 & 15．23．7 & 14.695 \\
\hline PS／PT & 3.206 & 0.879 & 月． 3.7 & 9.377 \\
\hline 11 & 3.339 & 0.434 & 6.306 & 0.4 .37 \\
\hline
\end{tabular}
```

TABLE D－10．－CONTINUED

pron co－a						
TESTリッ＊？		2．7．9．9		Date	42.479	
Rリハリソ V．／COMn		ก，1	132．031			
PLAJI：K：						
Mr 3 ．			FAN TIP MP r．99\％			
PSS．1－pSS． 4		1\％．0\％11．n4 1？．0\％11．0．06				
		T／L PAYE	PS 11.085			
PT	PT	PS／PT	PT／PTI	\％		
1	17．93？	O．nos	3.910	0.075		
？	12．1？？	19.379	9.8 .25	0.103		
3	12.205	9.975	0.937	0.101		
4	1？．545	3.955	0.535	3.955		
5	12.044	2．93．3	0.874	0.316		
5	13．2．〇1	9．0．74	0.903	0.323		
7	13.515	9．377	7． 220	－．413		
9	13.75 ？	\％．372．	0.035	0.4 .98		
9	14．151	0.346	9.964	0.404		
$A V$	13.944	0． 19	0.333	0.350		
9iltin un．？		3／1 BAVE	PG 11.075			
Pr	PT	PS／PT	PT／PII	14		
1	$1 ? .197$	\％．903	3.930	9.159		
$?$	12.233	0.275	0.336	m． 128		
3	12．671	1． 245	7.362	0.293		
4	13．255	3.917	9.90 .9	9．353		
5	13．54．3	1．3？ 5	ค．92？	\％．42？		
6	13.053	3.953	0.95%	0.471		
7	14．？n¢．	T． 24.3	0.363	0.571		
3	14．390	9．9．3？	3．93：3	3.510		
9	14.569	$\bigcirc .32 .3$	0.091	7.536		
$A V$	13.495	7．833	0.913	9.415		
AUG PAKEC I\＆？						
PR	PT	PS／PT	PT／PTI	M		
1	12．11a	ก． 939	7．82．4	7． 17.4		
2	12．2．30	7.977	4.33 .3	0.160		
3	$1 ? .473$	19．75：3	9．0．56	3． 2.4 ？		
4	$1 ? .8,95$	9．0．36	\％．371	9.309		
5	13.103	¢．9n？	0.298	0.373		
6	13.637	O．391	3.929	6.4 .30		
7	13．779	$\therefore .764$	3.944	9．46？		
a	14.075	9．35\％	ก．95R	0.405		
9	17.364	C．334	6． 977	3.515		
AV	13．7．69	0.0 .73	0.903	0.334		

TABLE D-10.-CONTINUED

Pil! 10. /COMn \%. 132.0.31

TABLE D-10.-CONCLUDED

Reproduced from
best available copy.

TABLE D-11.-RUN 8, SAMPLE AERODYNAMIC DATA TABULATION

$\begin{aligned} & \text { PROG } \\ & \text { TEST } \end{aligned}$	$\begin{aligned} & \text { C2-B } \\ & \text { NO. } \end{aligned}$	2274		DATE	58272
RUN	NO. $/$ COND	NO.	B. 663		
$\begin{aligned} & \text { PLANE 6: } \\ & \text { M6 } 0.333 \\ & \text { PS6.1-PS6.4 } 13 \end{aligned}$					
OUTER NO. 1		B/L RAKE PS 13.285			
PR	PT	PS/PT	PT/PTI	M	
1	14.359	0.925	0.968	0.335	
2	14.529	0.914	0.980	0.360	
3	14.641	0.907	0.987	0.375	
4	14.732	0.982	0.993	8.387	
5	14.780	0.899	0.997	0.393	
6	14.926	0.896	1.607	0.411	
7	14.819	0.897	0.999	0.398	
8	14.825	0.896	1.0808	0.399	
9	14.829	0.896	1.000	0.400	
AV	14.787	0.903	B. 992	0.384	
OUTER NO.2		B/L RAKE	PS 13.285		
$P R$	PI	PS/PI	PT/PTI	M	
1	14.350	0.926	0.968	6. 334	
$?$	14.461	0.919	0.975	0. 350	
	14.374	0.912	0.983	0.366	
4	14.655	0.907	0.988	0.377	
5	14.718	0.903	0.993	0.385	
6	14.764	0.900	0.996	0.391	
7	14.795	0.898	0.998	0.395	
8	14.810	0.897	6.999	0.397	
9	14.825	0.896	1.008	0.399	
AV	14.662	0.966	6.989	0.378	
AVG RAKES 182					
PR	PT	PS/PT	PT/PTI	M	
1	14.354	0.926	0.968	0.335	
2	14.495	0.917	9.978	0.355	
3	14.687	0.916	0.985	6.371	
4	14.693	0.904	0.991	0.382	
5	14.749	0.961	0.995	0.389	
6	14.845	0.895	1.061	0.462	
7	14.807	¢.897	6.999	0.397	
8	14.817	0.897	6.999	0.398	
9	14.827	0.896	1.080	6.399	
AV	14.684	8.985	0.990	0.381	

PROG C2-B			
IEST NO. 2274		DATE	
RUN NO./COND NO.	8.083		

PLANE 6

	OBS	OBS								
RADIUS	PS-A	PS-B	PS-AvG	PS/PI	PS/PT			WCOR6		PIt
5.888	13.372	13.381	13.377	0.933	0.933	13.375	14.342	1.726	0.317	0.967
5.619	13.400	13.364	13.382	0.907	0.906	13.366	14.753	2.086	37	0.995
5.336	13.387	13.348	13.368	0.997	0.985	13.351	14.745	2.011	0.379	0.995
5.037	13.337	13.344	13.341	0.981	0.899	13.326	14.811	2.068	. 392	0.999
4.719	13.294	13.264	13.279	0.896	0.894	13.254	4.820			
4.379	13.289	13.197	13.243	9.893	9.891	13.216 13.166	4.827 4.821	2.138 2.163	0.489 0.415	1.080
4.018	13.259	13.133	13.196	8.890	9.888 0.888	13.166 13.156	4.821 4.821	2.163 2.169	0.415 0.416	1.08
3.602 3.143	13.255 13.221	13.117 13.130	13.186 13.176	0.890 0.889	Q. 8888 0.887	13.156 13.145	14.821	2.169 2.176	0.416 0.418	1.00
2.604	13.186	13.171	13.179	0.892	-.890	13.150	14.784	2.154	0.413	6. 9

AVG PI	14.7545	AVG PS	13.2498			
AVG PT/PTI	0.9952	WCORG	28.7240			
WCOR2	20.6241	PL6 FPR	1.1413 MB6	0.3719 MB4	0.7998	

TABLE D－12．－RUN 9，SAMPLE AERODYNAMIC DATA TABULATION
PROG C2．－C
TEST NO． 2274 DATE 51772
RIUN NO．／COND NO． 9.011 MAP NO／CONFIG NO． 0.008

WAC	22.678	Ptambo	14.690	TAMB AC	CH	515.85
FPR	1.1411	Plug pos	の．ロ日	RH		80\％
mo	6.523	fan tip mr	1.082	FAN TIP		9.947
Ni	19630	NIC	19664	FAN IIP	FPS	1028

PLANE 1：					
TT1．1－TT1．3 515．503 516．538 518．608 AVGTTI					
TT120 515．848					
TTIW 519．	519.988	T T	517.918		
PLANE 2：					
PS2．1－PS2．4		13.422	13.361	13.364	13.378
PSBM		13.379			
PSBM／PTI		0.911			
AVG M2	0.3				

PLANE 3\＆4：
COWL STATICS：

	301	302	303	304	409	401	402	
PS	12.935	12.504	12.012	9.642	10.237	10.728	10.835	
－$/ \mathrm{PT}$	0.881	0.851	0.818	0.656	0.697	0.73 为	0.738	
M	0.430	0.485	0.544	0.800	0.737	0.686	0.674	
	493	404	405	406	407	408.	489	410
PS	10.725	11.285	11.558	12.090	11.893	11.714	12.026	12.300
PS／PT	0.730	0.768	0.787	0.823	6.816	0.798	6．819	0.837
M	0.686	0.626	0.596	0.535	0.558	0.578	0.542	0.510

$\begin{array}{llllll}\text { PLANE 10：} & & & & \\ \text { PTIO．} 1-\text { PT10．5 } & 17.040 & 17.260 & 16.980 & 16.550 & 15.980 \\ \text { AVG PTI0 } & 16.762 & & & & \end{array}$

PS	14.698	14.692	14.697	14.696
PS／PT	0.877	0.877	0.877	0.877
M	0.437	0.438	0.438	0.438

TABLE D.12.-CONTINUED
PROG CP.-C
TEST NO. 2274 DATE 51772

RUN NO./COND NO. $\quad 9.011$

PLANE. 6:

$\underset{P R \quad}{\text { OUTER NT }}$		B/L RAKE	PS 12.189		
		PT/PT1	M		
1	13.556		0.899	0.923	0.393
2	13.689	0.891	0.932	0.411	
3	13.759	0.886	0.937	0.42 .8	
4	13.827	0.882	0.941	0.428	
5.	13.907?	0.877	0.946	0.438	
6	14.098	9.870	0.954	0.450	
7	13.971	0.873	0.951	0.445	
8	13.961	0.873	0.950	0.445	
9	14.849	0.868	0.956	0.455	
AV	13.863	0.879	0.944	0.433	
OUTE	R N0. 2	B/L RAKE	PS 12.	89	
PR	PT	PS/PT	PT/PTI	M	
1	13.738	0.887	0.935	0.417	
2	13.784	0.884	0.938	0.423	
3	13.881	0.878	0.945	0.435	
4	13.836	0.881	0.942	0.430	
5	13.85 ?	9.880	0.943	0.432	
6	13.816	0.882	0.941	0.427	
7	13.826	0.882	0.941	0.428	
8	13.847	0.889	0.943	0.431	
9	14.090	0.865	0.959	0.469	
AV	13.879	0.878	0.945	0.435	

AVG RAKES 1\&2

PR	PI	PS/PT	PT/PT1	M
1.	13.647	0.893	0.929	0.405
2	13.736	0.887	0.935	0.417
3	13.829	0.882	0.941	0.428
4	13.831	0.881	0.942	0.429
5	13.877	0.878	0.945	0.435
6	13.912	0.876	0.947	0.439
7	13.898	0.877	0.946	0.437
8	13.904	0.877	0.947	0.438
9	14.969	0.866	0.958	0.458
AU	13.871	0.879	0.944	0.434

TABLE D-12.-CONCLUDED

$\begin{aligned} & \text { PROG C2-C } \\ & \text { TEST NO. } \end{aligned}$	2274			DATE 5		1772			
RUN NO. /COND NO.		9.011		4	5	6	7	8	9PRB
PLANE G RAK RAD NO. TEST NO.	KE IRAV 22.74	2	3						
$\underline{i} \overline{\mathrm{~T}}$	13.599	13.658	13.831	13.943	13.952	13.925	13.797	13.771	13.807
PT/PTI	0.926	0.936	0.942	0.949	0.950	0.948	0.939	0.938	0.940
M	0.399	0.407	0.430	0.443	0.444	0.441	0.425	0.42 .2	8.429
TEST NO.	22.74								
2. PT	13.659	13.714	13.938	14.941	14.034	13.980	13.796	13.772	13.380
PT/PII	0.930	0.934	0.949	0.956	0.956	0.952	0.940	0.938	0.945
M	0.498	0.415	0.443	0.455	0.455	0.448	0.426	0.423	0.43 B
TEST NO.	2274								
3 PT	13.674	13.777	14.015	14.039	13.978	13.894	13.731	13.886	13.985
PT/PTI	0.931	0.938	0.954	0.956	0.952	0.946	0.935	0.940	0.952
M	0.410	0.423	0.452	0.455	B. 448	0.437	0.417	0.427	0.448
TEST NO.	2274								
4 PT	13.641	13.797	14.005	13.951	13.865	13.786	13.710	13.873	14.813
PT/PTI	0.929	0.939	0.953	0.950	0.944	0.939	0.933	0.944	0.954
, M	0.495	0.425	0.450	0.444	0.433	0.423	0.414	6. 434	0.45 t
TEST NO.	2274								
5 PT	13.656	13.845	14.013	13.877	13.773	13.714	13.755	13.996	14.036
PT/PTI	0.930	0.943	0.954	0.945	0.938	0.934	0.937	0.953	0.956
M	0.498	0.432	0.452	6.436	0.423	0.416	0.42 .1	0.450	0.458
TEST NO.	2274								
6 PT	13.658	13.980	14.181	13.919	13.737	13.648	13.734	14.113	14.175
PT/PII	0.930	0.946	0.965	0.948	0.935	0.929	0.935	0.961	0.965
M	6.468	0.438	0.471	0.441	0.418	0.406	0.418	0.463	0.47 B
TEST NO.	2274								
7 PT	13.662	13.848	14.210	13.970	13.753	13.638	13.731	14.158	14.131
PT/PTI	0.930	0.943	0.968	0.951	0.937	0.929	0.935	0.964	0.962
M	0.489	0.433	0.475	0.447	0.421	0.406	0.418	0.469	0.46 B
TEST NO.	2274								.
8 PT	13.656	13.760	14.611	13.853	13.698	13.624	13.722	14.0104 0.954	13.884 0.946
PT/PT1	0.930	0.937	0.955	0.944	0.933	0.928	0.935	0.954 0.452	0.946 0.438
M	0.409	0.422	0.453	0.434	0.414	0.464	0.417	0.452	0.438
TEST NO.	2.274								
9 PT	13.797	13.745	13.798	13.744	13.695	13.677	13.686	13.846	13.764
PT/PTI	0.934	0.936	0.940	0.936	0.933	0.931	0.932	0.943	0.937
M	0.415	0.420	0.426	0.428	0.413	0.411	0.412	0.432	0.42 B
TEST NO.	22.74								
1 P PT	13.832	13.725	13.806	13.72.2	13.654	13.666	13.709	13.744	13.876
PT/PTI	0.942	0.934	0.940	9.934	0.930	0.930	0.933	0.936	0.941
M	0.430	0.417	0.47 .7	0.416	0.407	0.409	0.415	0.419	8.429
AVG REC	0.931	0.938	0.952	0.947	0.941	6.937	0.935	0.947	0.950
MB6 O.44品									

TABLE D-13.-RUN 10, SAMPLE AERODYNAMIC DATA TABULATION
PROG C?-A
TEST !10. 2290 DATE 53072
RUN NO./COND NO. 10.003 MAP NO/CONFIG NO. O.0IG

WAC	19.483	PTAMRO	14.710	TAMR AC CH	532.41	
FPR	1.1356	PLUGPOS	9.90	RH		55%
MG	9.499	FANTIP MR	0.955	FAN TIP M	0.863	
HI	18370	NIC	18995	FAN TIP FPS	961.9	

PLANE I:
TTI.1-TT1.3 535.168 535.168 533.443 BMTT1 534.593
TTI.1-TT1.3 535.168 535.168 533.443 BMTT1 534.593
TT10.3 532.408
TT10.3 532.408
TT1W 533.09S TTI 532..753
TT1W 533.09S TTI 532..753
PLANE 2:
PS2.1-PS2.4 13.825 13.746 13.76ロ 13.747
PSBM 13.776
PSRM/PTI 0.936
AVG M2 0.389
PLANF. 3:

PS3.1-	S3. 4	13.899	13.879	13.860	13.890
PS/P		0.944	0.943	0.942	0.944
AVG	M3	0.298			
	301	30			
	OUT	IN	OUT	IN	OUT
PS	12.185	11.72.5	11.016	10.414	10.203
PS/PT	0.82 .8	0.797	0.749	0.798	0.694
M	0.526	0.579	0.656	0.72 .1	3. 742

	$I N$	OUT	$I N$	OUT	IN	OUT
PS	9.710	10.472	10.971	11.086	12.229	12.088
PS/PT	0.660	0.712	0.746	0.754	0.831	0.822
M	0.794	0.714	0.661	0.649	0.521	0.537

TABLE D-13.-CONTINUED

PROG CR-A.
TEST NO. 2290 DATE 53072
RUN NO./COND NO. 10.063
PLANE 5:
OUTER B/L RAKE PS 12.598

$P R$	$P T$	$P S / P T$	$P T / P T 1$	M
1	12.921	0.975	0.878	0.191
2	13.119	0.960	00.892	0.241
3	13.402	0.949	0.911	0.299
4	13.789	0.914	0.937	0.360
5	14.166	0.889	0.963	0.413
6	14.432	0.873	0.991	0.445
7	14.655	0.360	0.996	0.470
AV	13.948	0.903	0.948	0.364

INNER B/L RAKE PS 12.526

PR	PT	PS/PT	PT/PTI	M
1	13.359	0.938	0.908	0.395
2	13.793	0.914	0.932	0.361
3	14.082	0.890	0.957	0.413
4	14.370	0.872	0.977	0.447
5	14.555	0.861	0.990	0.468
6	14.652	0.855	0.996	0.479
7	14.704	0.852	1.090	0.484

AV	14.323	0.875	0.974	0.442

501

IN OUT

PS 12.80712 .940
PS/PT 0.871 0.880
$1 \quad 0.449 \quad 0.432$
PLANE 19:
$\begin{array}{llllll}\text { PTIの.1-PTIV.5 } & 16.830 & 16.380 & 16.880 & 16.460 & 16.420\end{array}$ avg Pila 16.704 10.2

-	18.1		10.2	
	IN	OUT	IN	OUT
PS	15.073	14.723	14.732	14.709
PS/PT	0.992	0.882	9.882.	0.881
M	0.386	0.429	9.428	9.43

PROG TESI	$\begin{aligned} & \text { CR-A } \\ & \text { NO. } 2 \text { ? } \end{aligned}$	22.90		DATE	53672
TUN	NO．$/ C O N D$	D N0．10．0日3			
$\begin{aligned} & \text { PLANE 6: } \\ & \text { M6 } \quad \text { 日. } 2.2 .4 \\ & \text { PS } 5.1-\mathrm{PS} 6.4 \end{aligned}$		FAN TIP MR 0.882$12.9613 .46 \quad 13.9613 .01$			
OUTER	R NO．1	B／L RAKE	PS 13	198	
PR	PT	PS／PT	PT／PTI	M	
11	13．45！	0.975	0.915	0.193	
21	13.715	0.956	0.933	0.255	
3	14.035	0.934	0.954	0.314	
4	14.32 .5	0.915	0.974	0.359	
5	14.577	0.899	0.991	0.393	
6	14.655	0.895	0.996	0.493	
7	14.686	0.893	0.998	D． 486	
8	14．698	8.892	0.999	0.408	
9	14.707	0.891	1．000	0.409	
AV	14.309	0.916	0.973	0.356	
OUTER NO． 2		B／L RAKE	PS 13．193		
PR	PT	PS／PT	PT／PTI	M	
R	13.412	0.977	6.912	0.181	
2	13.669	0.968	0.929	0.244	
3	14.108	0.929	0.959	0.326	
4	14.448	0.967	0.982	0.376	
5	14．522．	0.897	0.994	0.398	
6	14.532.	0.896	0.995	0.408	
7	14.702	0.892	1.005	0.408	
8	14.705	0.891	1.000	0.409	
9	14.710	0.891	1.000	0.409	
AV	14.329	0.915	0.974	0.358	
AVG RAKES I 42					
PR	PT	PS／PT	PT／PTI	M	
11	13.431	0.975	0.913	0.187	
2	13.688	0.958	0.931	0.250	
3	14.471	0.93 ？	0.957	0.320	
4	14.386	0.911	0.978	0.367	
5	14.599	0.898	0.993	0.396	
6	14.643	0.895	0.996	0.481	
7	14.694	0.892	0.999	0.497	
8.	14.701	0.892	1.000	0.408	
9.	． 4.783	0.891	1．0日a	0.409	
AV	14.314	0.915	0.973	0.357	

TABLE D-13.-CONTINUED

TABLE D-14.-RUN 11, SAMPLE AERODYNAMIC DATA TABULATION

```
    M
    PROG DI-1B
```

IEST NO. 2307 DATE 88172
RUN NO./COND NO. 11.012 MAP NO/CONFIG NO. 0.081

* AC	29.310	Ptamb 0	14.820	tamb AC	CH	525.16
FPR	1.1488	PLIJG POS	2.50	RH		65%
Ms	0.340	FAN TIP MR	0.988	FAN TIP	M	0.927
NI	19690	N1C	19543	FAN TIP	FPS	1031

PLANE 1:
PT120 14.820 PTIW 14.820 PTI 14.820
TT1.1-TTI.3 528.613525 .508525 .508 AVGTTI 526.543
TT129 525.153
TIIW 524.818 TTI 524.991
dUCT STATICS:
OUTER

PR	PS	PS/PT1	M
301	10.751	0.726	0.693
302	8.134	0.549	0.967
303	7.928	0.535	0.989
400	7.768	0.524	1.007
401	8.528	0.576	0.925
402	10.027	0.677	0.769
403	10.494	0.798	0.720

 PR PS PS/PT6.5 M
 $404 \quad 10.810 \quad 0.756 \quad 0.645$
$465 \quad 11.115 \quad 0.778 \quad 0.511$
$590 \quad 11.484 \quad 9.803 \quad 0.568$
$50111.889 \quad 0.832 \quad 0.520$
$592 \quad 12.264 \quad 0.858 \quad 0.473$
$\begin{array}{llll}503 & 12.619 & 0.833 & 0.426\end{array}$
690 $12.652 \quad 0.885 \quad 0.422$
I NNER

$P R$	$P S$	$P S / P T 1$	M
303	8.545	0.577	0.923
400	7.768	0.524	1.007
401	8.250	0.557	0.954
402	9.788	0.661	0.793
403	10.355	0.699	0.734
PR	$P S$	$P S / P 16.5$	M
495	11.141	0.779	0.608
600	12.640	0.884	0.423

PLANE	4 (THROAT):		
ANG	PS	PS/PTI	
¢	7.763	0.524	1.007
45	7.178	0.434	1.874
90	7.225	0.488	1.067
135	7.077	0.478	1.084
180	7.125	0.481	1.079
225	7.193	0.485	1.072
279	7.179	0.485	1.073
315	7.235	0.488	
AVg	7.245	0.489	065
SIG	10.879	9.734	0. 68

TABLE D-15.-RUN 12, SAMPLE AERODYNAMIC DATA TABULATION

TABLE D-15.-CONTINUED

TABLE D-15.-CONCLUDED

```
PROG D2-2
TEST NO. 2307 DATE 81472
RIJN NO./COND NO. 12.006
PLANE 6 CONT:
JUTER
B/L RAKE-ANG 25
\begin{tabular}{rcccc} 
RADIUS & PT & PT/PTI & PS/PT & M \\
5.898 & 13.977 & 0.953 & 0.837 & 0.511 \\
5.773 & 14.369 & 0.979 & 0.815 & 0.549 \\
5.658 & 14.581 & 0.094 & 0.802 & 0.579 \\
5.538 & 14.642 & 0.999 & 0.799 & 0.576 \\
5.417 & 14.659 & 1.000 & 0.798 & 0.577 \\
5.297 & 14.653 & 1.000 & 0.798 & 0.577 \\
5.177 & 14.656 & 1.000 & 0.798 & 0.578 \\
5.958 & 14.664 & 1.000 & 0.798 & 0.578 \\
4.817 & 14.665 & 1.000 & 0.798 & 0.578
\end{tabular}
B/L PS 11.698
I NNER
B/L RAKE-ANG 0
\begin{tabular}{ccccc} 
RADIUS & PT & PT/PTI & PS/PT & M \\
3.085 & 14.649 & 0.998 & 0.805 & 0.565 \\
2.72 .7 & 14.627 & 0.998 & 0.806 & 0.564 \\
2.096 & 14.360 & 0.979 & 0.821 & 0.539
\end{tabular}
PLANE \(10:\)
PTI日.1-PTIG.2 18.282 18.239 18.042 17.898 18.255
AVG PTIO 18.143
I NNER
\(\begin{array}{lll}\text { PS } & 14.765 \quad 14.802\end{array}\)
OUTER
\(\begin{array}{lll}\text { PS } & 15.372 \quad 15.376\end{array}\)
```


TABLE D-16.-CONTINUED

TABLE D-16.-CONCLUDED

PROG D3-1
IEST NO. 2307 DATE 91172
RUN NO. /COND NO. 13.003
PLANE 6 CONT:
ROt RAKE

ANG- 6	82	175	268	RAD	RAD	PL6	RING AV
	REC	REC	REC	avg rec	avg M	WACR	PT6
0.943	0.949	0.948	0.947	0.947	0.341	2.598	13.962
0.961	0.961	0.961	0.958	0.960	0.378	2.904	64
0.981	0.978	0.981	0.972	0.978	0.485	3.842	14.423
0.988	0.979	0.980	0.983	0.980	0.489	3.144	14.459
0.968	0.974	0.968	0.975	0.971	0.392	2.986	14.324
0.938	0.967	0.955	0.947	0.952	0.352	2.705	14.035
0.981	0.934	8.915	0.915	0.915	0.262	1.736	

PT 6 AVG 14.126 REBAR 0.958
DISTORTION: 0.087
B/L RAKE-ANG 42

RADIUS	PI	PT/PTI	PS/PT	M
5.978	13.646	0.925	0.938	0.303
5.818	13.963	0.943	0.921	0.345
5.678	13.995	8.949	0.915	0.359
5.518	14.074	0.954	0.918	0.378
5.377	14.149	0.959	0.965	0.381

B/L PS 12.862

PLANE 10:
 AVG PT10 16.637

Inner
$\mathrm{P}_{\mathrm{S}} \quad 14.746 \quad 14.757$
$\begin{array}{lll}P_{S} & 15.056 \quad 15.070\end{array}$

TABLE D-17.-RUN 14, SAMPLE AEROD YNAMIC DATA TABULATION

PROG D4-1 2307 DATE 92072
TEST NO.
RUN NO. /C OND NO. 14.005
PLANE 4 (THROAT):
OUTER

ANG	PS	PS/PT1	M
0	10.451	0.708	0.720
45	10.450	0.708	0.720
90	10.450	0.708	0.720
135	10.504	0.712	0.715
180	10.410	0.705	0.725
225	10.414	0.705	0.724
270	10.413	0.705	0.724
315	10.508	0.712	0.714
AVG	10.450	0.768	0.720

INNER

ANG	PS	PS/PII	M
0	10.042	0.680	0.763
45	10.211	0.692	0.745
90	10.180	0.690	0.749
135	10.291	0.697	0.737
180	9.907	0.671	0.777
225	10.237	0.693	0.743
270	10.239	0.694	0.743
315	10.017	0.679	0.766

AVG 10.141 0.687 0.753
PLANE 6:

OUTER			
ANG	PS	PS/PT6	
\square	12.437	0.848	0.491
98	12.353	0.843	0.501
180	12.429	0.848	0.492
270	12.408	0.846	0.494
avg	12.407	8.846	49
INNER			
ANG	PS	PS/PT6	M
0	12.182	0.826	0.531
90	12.104	0.826	0.531
189	12.098	0.825	0.531
278	12.160	0.837	0.524

TABLE D-17.-CONCLUDED
PROG D4-1
TEST NO. 2307 DATE 92072
RUN NO. CCOND NO. 14.005
PLANE 6 CONT:
rot rake

	- 0	82	175	268	RAD	R	PL6	A
RAD	REC	REC	REC	REC	AVG REC	AVG M	WACR	PT6
5.82 .8	0.948	0.953	0.956	0.961	0.955	0.451	3.266	14.094
5.417	0.991	0.995	0.999	0.999	0.996	0.517	3.759	14.799
4.987	1.200	1.080	1.080	1.300	1.008	0.522	3.687	14.767
4.508	1.008	1.000	1.200	1.000	1.080	0.522	3.778	14.763
3.967	1.000	1.000	1.000	1.000	1.000	0.522	3.716	14.768
3.347	1.000	1.000	1.008	1.000	1.000	0.522	3.685	4.76 B
2.567	1.000	0.999	10.998	1.000	0.999	0.521	3.159	14.754
AVG	0.991	0.993	0.994	0.994	TOTA	1 WAC	24.873	

PT 6 AVG 14.661 REBAR 0.993
DISTORTION: 0.053
B/L RAKE-ANG 42

RADIUS	PT	PT/PTI	PS/PT	M
5.978	13.798	0.935	0.883	0.426
5.818	14.237	0.964	0.855	0.478
5.678	14.386	0.974	0.847	0.494
5.518	14.490	0.975	0.846	0.495
5.377	14.554	0.986	0.837	0.511

B/L PS 12.177

PRECEDING PAGE BLANK NOT FILMED

APPENDIX E

CONCEPT SCREENING-DATA ANALYSIS

SUMMARY

This appendix contains a review of past work in the development of sonic inlet as a means of inlet noise reduction for jet aircraft. The study was undertaken so as to utilize past experience to the greatest extent possible in the initial stages of configuration decisions and to identify technology areas where most of the effort should be expanded. Results of this review were reported in Boeing document D6-40573.

A brief description of each of the past sonic inlet studies is presented in this appendix. A tabulation of these studies, including key data presentation, is also presented to facilitate cross-reference in data interpretation.

Considerable effort has been spent on sonic inlet technology by various investigators in the past 10 years. Most of this work, however, was directed toward development of a specific configuration rather than toward activity contributing to a configuration selection or the establishment of a design technology base. Due to the large variation in configurations, as well as in test and measurement techniques, scatter in the existing data is large enough on any parameter that it makes the drawing of any specific conclusion uncertain. The data survey, however, shows some general trends with respect to sonic inlet performance and noise reduction potential. These trends are as follows:

- Substantial discrete frequency noise reduction can be realized for a nominal sonic inlet throat Mach number less than 1.0.
- Sonic inlet concepts are more effective in reducing discrete frequency noise than broadband noise.
- The broadband noise reduction is frequency dependent. The amount of noise reduction is lower for broadband noise at low frequencies.
- The sonic inlet is effective in noise reduction at all inlet angles.

E. 1 INTRODUCTION

Inlet noise radiation from a jet aircraft at takeoff and landing approach represents a large part of the total noise annoyance in the airport community. An inlet noise reduction device has been the subject of study for more than a decade. Because an acoustic wave propagates at sonic speed relative to
that of air, noise radiated upstream in an engine inlet may be blocked by creating a sonic flow in the inlet. This so-called "sonic inlet" has been the subject of investigation at Boeing and elsewhere.

E. 2 SURVEY OF PAST SONIC INLET WORK

In this section, a brief description of each of the reports reviewed is presented. In addition, a tabulation of these reports, including the key data presentation, is included to facilitate crossreferencing for data interpretation (see table E-1).

Investigations of the sonic inlet as a means of inlet noise suppression were first reported in 1960 and 1961.

Results of a series of model sonic inlet tests were reported in reference E-1. The inlet model was of a translating centerbody type. The inlet throat area could be adjusted by properly positioning the centerbody. The air supply was from plant air which passed through the model inlet and exited through a diffuser. The noise source was a single-frequency air siren located at the exit of the diffuser. One microphone serving as a monitor was located immediately in front of the siren. Another microphone was located in front of the inlet model in the flow duct. Representative results showed a noise reduction of 35 dB at a nominal inlet throat Mach number of 0.9 .

In reference E-2, experimental results on the reduction of compressor noise by means of a completely choked inlet were reported. A "sonic block silencer," consisting of a contoured duct and centerbody, provided an aerodynamic throat in the silencer. The tests were performed on turbojets of different thrust ranges with the silencer installed. The microphone was located 20 in . in front of the inlet plane. The acoustic measurement of a $160 \mathrm{lb} / \mathrm{sec}$ flow jet engine installation demonstrated 16 dB in discrete frequency noise reduction. Subsequent tests on a Bristol Olympus 6 jet engine showed a 12 dB discrete frequency noise reduction. However, background noise associated with the tests may have impaired measurement of the true compressor inlet noise reduction.

In reference E-3, noise measurements were made on an Avon engine fitted with a conventional inlet and a sonic inlet with a center bullet designed to choke the inlet flow. Microphones were positioned along an arc of $50-\mathrm{ft}$ radius at 10° and 90° from the inlet axis. At a 10° angle, a reduction of 28 dB in overall sound pressure level was observed. One-third-octave band spectrum analysis showed a reduction of discrete frequency noise of nearly 40 dB . However, a much smaller reduction of discrete frequency noise, 10 dB , was observed at a 90° angle.

Reference E-4 reports the results of a centerbody-type axisymmetric supersonic inlet test using a J-75 afterburning turbojet engine. The test was set up in an open field. Acoustic instrumentation

TABLE E-1.-SUMMARY OF PREVIOUS SONIC INLET WORK

Test 10	Comfiguration	Tent setup	Locmian of nois measurement	Nouse source	Discrete frequency nolse x		Overat		PNL		Broadtundvs		Direetivity	Narrow band spectrum	${ }^{{ }^{P_{T_{2}}}{ }_{2}{ }^{P_{T_{1}}}}$		Oistortion		
D6-5980 Monestrelio. 1. 1960	Modei cemter.plug type sonic miet in conrection with : flow duct	Open feeld	Upstream and down stream in the flow duet	Siren	x	-	-.	-	-	-	-	-	-	-	\times	-	-	-	-
Nots: Controt Shock. Vitration Welliver, A 1961	Sonic inlet with screw-rype compressor and Oivmpus-6 turboter	Open treid nod indoors	150 fr. $15^{\circ} \mathrm{ot}$ engine axis: 6 -in. and $20-1{ }^{-1}$ in tront of the inlet plame	Compressor	$\begin{aligned} & \text { High } \\ & \text { intet } \\ & \text { throst } \\ & \text { Mach } \\ & \text { - no. } \end{aligned}$	-	-	-	-	-	Higt iniet throas Mach no.	-	-	$\begin{aligned} & \text { 1:3 octove } \\ & \text { band } \end{aligned}$	Leve: ot recor er augted	-	-	-	-
	SST inlet on 1.75 engine	Open fieic	10° to 160° a 110° interval on 200 .t1 radius atc for far: treld. 0^{6} io 90° or 25 th radius are for near fietd	Compressor	$\begin{gathered} \text { Noyt } \\ \text { feld } \end{gathered}$	-	-	-			-	-	x	\times	-	-	-	-	-
NASA TND. 2615 Copeland. W.L 1965	34 -in. OD rotor in duct. $H D=24 \mathrm{in}$. no stator	Driven by morot. T5 = 9BO H/ sec, open fieid tests		Free rotor in duct		nerelf tind	two mel	engut	engt				Overats tan functarnental	$0_{90^{\circ}} 85^{\circ} .$	-	-	-	-	-
NASA TND-3529 Cowthorn. J.M. 1967	SST iniet wist Viper 8 engine (turbojet)	Rig test oben tikid	$\begin{aligned} & 0^{c} 1099^{c} \text { al } 15^{c} \\ & \text { interval on } 25 \mathrm{th} \\ & \text { tadus } \end{aligned}$	Compressar	-	-	-	-	-	-	-	-	Overall and discrete frequency nolpe tor two rDms one choted. one un. thoked	$1: 3$ ctuve bencl spectrum	-	-	-	-	x
D6A 10155-: Sawtill, R.M. 1966	$5 \cdot \mathrm{~m}$ inlet. SST tyde. with ejector	Model in 9 by 94 tunne	20^{2} trom insen 4 at 20 ft tedius	5 neen	x	-	-	-	-	-	-	-	-	$\begin{aligned} & \text { For runnel } \\ & 10 e e d \\ & 0100 \text { and } \\ & 150 \mathrm{kn} \end{aligned}$	-	-	-	-	-

TABLE E-1.-Continued

Test 10	Configuration	Test setup	Location of noise measurement	Norse source			Dweralt V5		PNL		Broadtund *s		Drectivity	$\begin{aligned} & \text { Narrow } \\ & \text { band } \\ & \text { spectrum } \end{aligned}$			$\begin{aligned} & \text { Distortion } \\ & \left.M_{\varepsilon}\right\|^{3} W / w^{*} \end{aligned}$		
$\begin{aligned} & \text { D6A10338. } \\ & \text { Andersson, AO. } \\ & 1966 \end{aligned}$	$\begin{aligned} & 5 \text { in. niel. } 551 \text { tvpe. } \\ & \text { withejerotor } \\ & 7 \text { wo-iniet centerbody } \end{aligned}$	Model in test arena. inlet wapped wit. medustic moterial	$0^{\mathrm{c}}-90^{c} \text { at } 10^{0}$ intenves. radus not soectited	Siren	-	*	-	-	-	-	-	-	$\begin{aligned} & \text { Data at at } 0^{\circ} \text {. } \\ & 30^{\circ} 60^{\circ} \\ & \text { and . } \\ & 90^{\circ} \text { trom } \\ & \text { inlet } 2 \times 13 \end{aligned}$	-	-	-	-	-	-
06.60120.5 The Boeing Company 1968	Mecnamized sonic inlet, eight sides л 30.3 B engine	With tong treated duct	10^{c} to 140^{c} ar 10^{c} imetral on 200 th. radius horizontal arc. 20° to 130° at 10° imerval on $75 . \mathrm{ft}$. radius vertical arc	Compreser	\times	-	-	-	-	-	-	-	x	\times	x	-	-	-	\times
		Rig test with $3 / 4$ rengtr. duct and directian alizer As above	10^{c} to 140^{c} a $: 10^{\circ}$ interval on 200 H radus thorizontal arce. 20^{5} so $130^{2} 2710^{2}$ intervat on $75-1$ tadius verical ars As above	JT30.38 turbotan engine As sbove	Hor:2 and ver Dlane $\xrightarrow{\text { Absuve }}$		Horiz and vert plane						Discrete trequency. overal!. PNL verical and morrantal pianes As above	x			x		
D6.234617N D6.60120-5 Smitt. J N The toring Company 1969	$\begin{aligned} & \text { Five-door } 928 \text { in }{ }^{2} \\ & \text { jT } 30.36 \text { engire } \end{aligned}$	Rig test with direction aliser		лт30-38 turbotan engine	x	-	-	-	x	-	-	-	Discrete trequency	x	-	-	-	-	-
ASME J. of Engr tor Powet Smith, M.J. M Mouse M. 2 1967	Fulli-scalt compresso	-	-	Compressar	-	-	-	-	-	-	x	-	-	-	-	-	-	-	-
Genera ${ }^{1}$ Electrit TR 06-68.7 Smith, E.E 1968	Madel cascade	Test ng	In cascade flow duc!	Worble 10Me generato	\times	\times	-	\cdots	-	-	-	\square	-	-	\times	\times	-	-	—

TABLE E-1.-Concluded

Test ID	Contiguration	Test selua	Location of nolse measurement	Noise nource							Brostand vs		Directivity	Narrow band spectrum			$\left.{ }^{M_{E}}\right\|^{\substack{\text { Distortion } \\ n}} \mathbf{w} w^{*}$		
$\begin{aligned} & \text { D6. } 63276 \\ & \text { Schout. L.A. } \\ & \text { 1969 } \end{aligned}$	Model grid inter, horizontal and vertical grids. simblated bpprasch and cruise conditionis	in test cell. acoustic and per tormince lests in ditterent cells	Mic mounted on boom sweeping harizontally i-20 to 80	Compressor	-	-	Acoustic power on 70° 0 are		-	-	-	-	Overall	For vatious cpm	x	-	Grid decay	-	-
NASA TND 5692 Purnam, TV 1970	X8-70 Arpiane	Ground static tes:	$\begin{aligned} & 0^{c} \text { io } 90^{\circ} \text { af } 10^{\circ} \\ & \text { interval at } 240 \cdot \mathrm{th} \\ & \text { raduss } \end{aligned}$	Compressor	-	-	-	A_{1} two A_{1} / A^{*}	-	-	-	-	Overall at two A/A*		$\begin{aligned} & \text { for } \\ & A \cdot A \cdot O \end{aligned}$	-		-	-
D6-40208 Anderson. R . et al. 1972	(1) Gridinlet. 12.1n. mode 1 (2) Radial wane iniet. 12-1n. mode!	Modei in anectianc chamber As above	0° ro 80° inlet quadant 10° inter. val at iont radus As above	Fan Fan		$\begin{aligned} & \text { erms } \\ & \hline \mathrm{mms} \\ & \hline \mathrm{mms} \\ & \hline \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	-						-		x $\cdot x$		\mathbf{x} x	$-$
NASA TND-4682 Chestnutt, D 1968	Three-s1sge comr. pestor 12-r. TO 6 in. HD iGV. Two sets. 0.12 and 0.06 ve (ufcambered)	Motor inlet in anechoic charnber	$\operatorname{Mis} 0^{\circ}, 15^{\circ}, 30^{\circ}$ and 90° from A. on $10-\mathrm{t}$-radtus arc also mounled on boom sweeping horizontally	Compressor	$\begin{aligned} & (11 \\ & (2) \\ & (33) \\ & 141 \\ & 151 \end{aligned}$			n com	are tan	$\text { one } 31$)	0.12 IGV 0° stagger 0.06 IGV $15{ }^{\circ}$ stager	x	-	-	-	-	-

${ }^{M}$ ci Maxumum flow Mach numbee near inlet throat
WW. Ratio of ines flow to sonct flow
A/A.
A/A. Ratio ot tlow srea to sonic liow area
Dala avalables
Data not evatiabite
included microphones positioned on 200 - and on 25 -ft-radius arcs for far-field and near-field noise measurements, respectively. Typical results showed a reduction of 15 PNdB at angles of 20° and 30° measured from the inlet axis. Test results of sonic inlets with acoustically treated inlet guide vanes were also presented. Approximately 5 PNdB noise reduction was observed for the acoustic treatment at an unchoked operation.

In 1965, an investigation was conducted (ref. E-5) of the effects of duct length and duct acoustic treatment on the noise radiation of a rotor in an annular duct. The test setup included a rotor having tip and hub diameters of 34 and 20 in ., respectively. The centerbody was of the same length as the inlet duct. The length of both the inlet duct and centerbody could be changed so that the effect of duct length could be investigated. Typical results showed that increasing the inlet duct length from 4 to 16 ft reduced the overall noise by 7 dB and rotor discrete frequency noise by 10 dB measured at an angle 20° from the inlet axis.

An investigation was reported in 1967 (ref. E-6) on the inlet noise reduction and associated performance level of an axisymmetric external-internal compression SST inlet with a Viper 8 turbojet engine. Tests were made for a range of inlet flow areas by translating the inlet centerbody. The noise measurements were taken on both a 25 - and a 70 -ft-radius circle from 0° to 90° from the inlet axis at 15° intervals. The inlet performance and flow conditions were measured by using total pressure rakes at the exit plane of the inlet and static pressure measurements on the cowl wall and centerbody. Acoustic data were presented for two engine operating conditions-choked and unchoked inlet flows. Reductions were observed of 2 to 5 dB in overall sound pressure level and 2 to 20 dB in the noise level of the fundamental blade passage frequency. The smaller reductions occurred from the 45° to the 90° angles, and the larger reductions from 0° to 45° angles.

In 1966, a series of model SST inlet tests were conducted to investigate the effectiveness of choked flow for inlet noise reduction. Reference E-7 reports on a $5-\mathrm{in}$. SST model inlet test conducted in a 9- by 9 -ft wind tunnel. The tunnel speed was varied from 0 to 150 kn to simulate flight speed. The purpose of the tests was to study the effects of inlet flow Mach number and flight speed on inlet noise suppression. Inlet flow was induced by an air ejector and an air siren was used as noise source. The microphone was placed 20 ft forward of the inlet at 20° from the inlet axis. Narrow band spectrum analysis was made on the noise measurement for various tunnel speeds. The reduction in discrete frequency noise at zero tunnel speed was 33 dB when the inlet flow was increased from 0.63 to 1.0 .

Reference E-8 reports on a model SST inlet test conducted outdoors. Inlet flow was induced by an ejector. A motor-driven air siren was used as noise source. The inlet and the ejector air supply lines were wrapped in acoustic material to minimize noise from other sources than the inlet opening. Microphones were placed at 10° intervals from 0° to 90° from the inlet axis. Two centerbodies of different
sized were tested. Typical results showed $20-\mathrm{dB}$ noise reduction at 95% maximum inlet air flow ($\mathrm{M} \sim 0.77$) .

In May 1967, a development program under a NASA contract was undertaken at Boeing to develop an engine nacelle modification for the Boeing 707 airplane to reduce noise during landing approach. The nacelle modification included both inlet and fan duct. Acoustic treatment was the sole means for reducing fan discharge noise, whereas both acoustic treatment and the sonic flow concept were explored to reduce the engine inlet noise. The sonic inlet development was reported in reference E-9. The sonic inlet program started with the design and test of a full-scale, five-sided contracting cowl wall inlet. The final configuration was an eight-sided, contracting cowl wall inket to provide sonic flow at various landing approach power settings. A full-scale, cight-sided adjustable throat arear inlet was constructed and tested. This inlet was then modified and mechanized including a programmed inlet throat area schedule as a function of engine speed. This mechanized sonic infet was then tested for acoustic and flow performance. In parallel to the full-scale tests, $1 / 9$-scale-model tests were also conducted to provide preliminary information that would influence full-scalc-model decisions.

Test results of the five-door, contracting cowl wall sonic inlet were reported in reference E-10. The inlet flow quality of the eight-sided, adjustable sonic inlet was reported in references E-11 and E-12, and the acoustic measurements in reference E-13. The results of model sonic inlet tests were presented in reference E-14.

Additional investigation of noise reduction due to cascade flow Mach number was reported in 1968 (ref. E-15). Two sets of cascades were placed in a flow duct to create a local increase in Mach number. The stagger angle could be varied because the exhaust duct was moveable. A warble tone generator was used as a noise source and was positioned at the exit of the exhaust duct. Noise data upstream and downstream of the cascade were analyzed. The noise reduction was defined as the difference in transmission loss between any velocity and the zero velocity case. No definite trend in the data can be found as a result of stagger angle. A line faired through each set of data was found to fit approximately the following equation:

$$
N R=-10 \log _{10}\left(\frac{1}{1-M_{2}}\right) x_{f}
$$

where NR is the noise reduction $(\mathrm{dB}), \mathrm{M}_{2}$ is the flow Mach number in the cascade, and x_{f} is a correlation exponent as function of frequency. Typical values of x_{f} are 2 for $8000 \mathrm{~Hz}, 1.5$ for 5000 Hz , and 1.0 for 2000 Hz .

An investigation was made in 1969 (ref. E-16) of the acoustic and internal flow characteristics of a model grid inlet. The preliminary configuration of the grid inlet consisted of an inlet duct in which two rows of two-dimensional airfoils were embedded. The rear airfoils could be translated into
alignment with the front ones to reduce the inlet flow areas. The flow Mach number between the airfoils was maintained at a transonic level to reduce the inlet noise radiation. This model inlet was tested with a T-50 engine. Acoustic measurements were made using a microphone mounted on a boom sweeping horizontally in the inlet quadrant. Overall noise levels and narrow band spectrum were obtained. Inlet performance instrumentation included static and total pressure probes upstream and downstream of the airfoil grid. Typical acoustic results showed a $13-\mathrm{dB}$ overall noise reduction at a nominal grid throat Mach number of 0.9.

A series of tests were reported in 1970 (ref. E-17) on an XB-70 supersonic airplane to determine the noise reduction and performance level of a two-dimensional supersonic inlet. The tests were performed at Edwards Air Force Base, California. Microphones were placed on a horizontal arc of $240-\mathrm{ft}$ radius at 10° intervals at angles 0° to 90° from the inlet axis. Typical inlet performance instrumentation included static pressure probes in the vicinity of the inlet throat and total pressure probes near the engine compressor face. Acoustic and performance measurements were obtained at unchoked and choked inlet operations for 87% and 100% military power, respectively. Typical results showed a 2 - to $5-\mathrm{dB}$ decrease in overall sound pressure level when the inlet was choked at military power.

To evaluate the potential application of the sonic inlet concept to a STOL airplane, a series of model sonic inlet tests were conducted in 1971 and are reported in reference E-18. Two types of sonic inlet concepts were tested. The first configuration was a grid inlet with two rows of parallel vanes (or airfoils) in the inlet duct. One row of the vanes could be translated into alignment with the other to form the inlet throat. The second configuration was a radial vane inlet. Radial vanes were placed in the inlet duct to provide the sonic throat. The inlets were tested on a 12 -in.-diameter fan test rig. Acoustic measurements were made in an anechoic chamber. Microphones were positioned on a horizontal arc of $10-\mathrm{ft}$ radius at 10° intervals at angles from 0° to 80° in the inlet quadrant. Instrumentation was also installed to measure the inlet flow performance and fan operating characteristics. Typical results showed that for the grid inlet to attain a $27-\mathrm{PNdB}$ noise reduction the inlet recovery was reduced to 92.8%, and for the radial vane inlet the noise reduction was 22.5 PNdB for the same inlet recovery.

An experiment using choked inlet guide vanes (IGV) as a means of reduction of compressor noise radiated through the inlet was reported in reference E-19. The compressor used was a three-stage transonic axial flow compressor with hub and tip diameters of 6 and 12 in ., respectively. The design speed was 24850 rpm , which corresponds to a tip speed of $1300 \mathrm{ft} / \mathrm{sec}$. Two sets of IGVs were used. They were uncambered, tapered, and of 0.12 and 0.06 thickness to chord ratio. The inlet assembly was tested in an anechoic chamber. Acoustic instrumentation included microphones located on a $10-\mathrm{ft}$ radius arc at $0^{\circ}, 15^{\circ}, 30^{\circ}, 45^{\circ}$, and 90° from the inlet axis. A horizontally sweeping boom was also used
for noise measurement. Pressures and temperatures were measured to determine compressor performance. Typical noise data included overall SPL and $1 / 10$ octave band spectra. Reduction of the overall noise level of 25 to 30 dB and 36 dB in the first-stage blade passage frequency noise level was reported.

E. 3 DATA ANALYSIS

E.3.1 Flow Mach Number Effect on Sonic Inlet Noise Reduction

The application of the sonic inlet as an inlet noise attenuation device is based upon the fact that sound waves propagate at sonic speed relative to the flow and cannot propagate upstream when flow velocity is greater than or equal to the sonic speed. The propagation of an acoustic wave through the transonic flow in the inlet throat region is highly complex. Analytical solutions are yet to be developed which would describe quantitatively the wave propagation phenomenon. However, some semiempirical correlations of the noise reduction upstream of a flow channel with subsonic to transonic flows have been developed. Based upon acoustic power reduction of broadband noise associated with fan operation, M. J. T. Smith (ref. E-20) arrived at the formula

$$
\begin{equation*}
\mathrm{dB}=-10 \log _{10}\left(\frac{1}{1-\mathrm{M}_{\mathrm{n}}}\right) \tag{A}
\end{equation*}
$$

where M_{n} is the flow Mach number in the channel. Using a set of blade cascades in a flow duct and a warble tone generator as noise source downstream of the cascade, E. B. Smith (ref. E-15) measured the noise intensity (acoustic power) upstream and downstream of the cascade and from the results obtained the formula

$$
\begin{equation*}
\mathrm{dB}=-10 \log _{10}\left(\frac{1}{1-M_{n}}\right) \mathrm{x}_{\mathrm{f}} \tag{B}
\end{equation*}
$$

where M_{n} is the cascade channel flow Mach number and x_{f} is a correlation exponent as a function of frequency.

In arriving at equation (A), a simple explanation was that if there were no flow through the channel, an equal split of the acoustic energy between the forward and rearward propagation would result. The reason for the unbalanced practical result is that the airflow through the fan blade passage convects a greater portion of the noise in the downstream direction. The frequency-dependent function, x_{f}, in equation (B) expresses the effectiveness of reduction of sound intensity at various wavelengths.

The reduction of discrete frequency noise from existing data is plotted against flow Mach number in the channel in figure E-1. The noise reduction is either measured at an angle from the inlet axis where maximum reduction occurs or as specified. The flow Mach number is either based on measured data at the inlet centerline or deduced from inlet mass flow. Equation (A) is also superposed in this figure for comparison. The results show that at a flow Mach number of 0.5 the reduction of discrete frequency noise is an average of 2.5 dB . At flow Mach 0.7 the reduction is 18 dB . According to equation (A), however, the respective noise reductions would be 3 and 5.2 dB . From this observation, it can be concluded that sonic inlet acoustic performance is encouraging as far as discrete frequency noise is concerned. The data points on figure E-1 show a fairly linear relationship between ${ }^{M}$ and $\Delta \mathrm{dB}$ between $0.5 \leqslant \mathrm{M}_{\Phi} \leqslant 0.75$. The curves

$$
\begin{aligned}
& -\Delta \mathrm{dB}_{\mathrm{f}_{\mathrm{O}}}=74.7 * \mathrm{M}-34 \quad 0.5 \leqslant \mathrm{M} \leqslant 0.75 \\
& -\Delta \mathrm{dB}_{\mathrm{f}_{\mathrm{o}}}=-130.6 \mathrm{M}+343.3 \mathrm{M}-186.2 \mathrm{M}^{2} \quad 0.75 \leqslant \mathrm{M} \leqslant 0.9
\end{aligned}
$$

represent the trend of the test data.

In figure E-2 the reduction in overall noise level is plotted against the flow Mach number. Four sets of data from Boeing tests of a full-scale, eight-sided sonic inlet with adjustable throat are shown here. These results indicate a maximum overall noise reduction at flow Mach numbers between 0.7 and 0.8. It is not obvious at this time why the noise reduction effectiveness drops off at $\mathrm{M}=0.9$. Comparison with the noise reduction calculated by equation (A) shows that test data furnishes encouraging noise reduction between $\mathrm{M}=0.7$ and 0.8 . A comparison of figures $\mathrm{E}-1$ and $\mathrm{E}-2$ shows that at $\mathrm{M}<0.6$ the sonic inlet is equally effective in reducing discrete frequency noise and overall noise, although the reduction is limited to below 10 dB on the average. At $\mathrm{M}>0.6$ it can be seen that the reduction in overall noise is less than that of the discrete frequency noise, indicating that the sonic inlet at high flow Mach numbers is not quite as effective on broadband noise as it is with discrete frequency noise.

From the $1 / 3$ octave band spectrum analysis of a $12-\mathrm{in}$. model grid inlet, pure tone and broadband noise reductions are compared as a function of Mach number for different frequencies. Selected results are shown in figure E-3. The reduction of the noise level associated with the fan fundamental frequency was 25 dB at a nominal grid flow Mach number of 0.825 , whereas reductions of broadband noise with center frequencies 4 kHz and 20 kHz were 12 and 17 dB , respectively. More reduction of discrete frequency noise is seen here in comparison to broadband noise reduction.

From the above analysis, one is inclined to suggest that in evaluating sonic inlet applicability the characteristics of the noise source in hand should be considered. If the noise is tone dominated, one may expect that the noise reduction capability would follow that shown in figure E-1. On the other
hand, should the noise source be dominated by broadband noise, one would expect the noise reduction capability to follow that shown in figure E-2 or equation (A). Frequency spectra of fan discrete noise reduction and broadband noise reduction for typical sonic inlet configurations and flow Mach numbers would be of value to practical sonic inlet designers. Inlet PNL reduction is plotted in figure E-4 against nominal inlet throat Mach number.

E.3.2 Directivity Pattern of Noise Reduction

Acoustic results in references E-4 and E-6 indicate that sonic inlet noise reduction deteriorates as the angle measured from the inlet axis becomes large. The reduction of fan discrete frequency noise is plotted against angle measured from the inlet axis on figure E-5. A sonic inlet typical for subsonic aircraft application, such as a contracting cowl wall type (eight-sided, adjustable) with acoustically treated fan duct demonstrates two peaks of noise attenuation at $\theta_{\max }=30^{\circ}$ and 110°. The respective amount of noise reduction is 24 dB and 21 dB . The inlet throat flow Mach number is $\mathrm{M}_{\mathscr{E}}=0.8$. The directivity pattern of fan discrete frequency noise reduction of an 11% grid inlet is that as the angle measured from the inlet axis increases, the noise reduction increases until the angle reaches 70 where a maximum noise reduction exists. Note that the test setup for the grid inlet excludes the power source driving the fan from the anechoic chamber, and the noise measurements register only the inlet noise. These results suggest that the sonic inlet for subsonic aircraft application is effective in reducing inlet noise radiation at all angles in the forward arc. Inlet PNL reduction directivity is shown in figure E-6.

E.3.3 Sonic Inlet Total Pressure Recovery

Inlet total pressure recovery is plotted in figure E-7 against inlet noise reduction for contracting cowl wall, radial vane, and grid sonic inlets. For the contracting cowl wall sonic inlets, due to the large semiconical angle in the inlet diffuser, tangential blowing boundary layer control flow was introduced. The inlet total pressure recovery increased as the blowing flow was increased. At $18-\mathrm{dB}$ fan tone reduction, inlet total pressure ratio increased from 88.5% to 99.5% as the blowing flow increased from 4 to $12 \mathrm{lb} / \mathrm{sec}$. In the low noise reduction region, enough blowing was introduced so that the inlet total pressure recovery exceeded 1.0 , as can be seen in the case of the eight-sided adjustable sonic inlet. In the high noise reduction region, the inlet total pressure recovery decreased at a higher rate than for the low noise reduction. No boundary layer control flow was introduced in the radial vane inlets. The inlet total pressure recovery decreased at approximately a constant rate for the range of noise reduction tested.

E.3.4 Results of a Recent Boeing Somic Inlet Program

In 1971, Boeing conducted a series of model sonic inlet tests to investigate the feasibility of the sonic inlet for STOL application. After preliminary studies, attention was focused on two types of inlet, the grid and the radial vane inlets. The basic idea for both types is to insert a series of airfoils into the inlet duct to reduce the inlet flow areas such that sonic flows may be obtained at both takeoff and landing approach power settings. The grid inlet uses two rows of parallel vanes (airfoils), one of which can be translated into alignment with the other to form the minimum inlet throat area. The radial vane inlet uses radially inserted vanes of a designated taper to give equal "blockage" at various radial positions.

A grid inlet with airfoils of 11% and 17% thickness-to-chord ratio was tested. The inlet consisted of a bellmouth section, a $13-\mathrm{in}$. circular duct section which housed the airfoil grid, and straight circular ducts of four different lengths. A photograph of the airfoil grid is shown in figure E-8. The inlet was connected to a 12 -in.-diameter fan driven by a $900-\mathrm{hp}$ gas turbine, and the inlet section set up to protrude into an anechoic chamber for noise measurements. Near-field and far-field noise measurements were made. Microphones were located on the inside duct walls upstream and downstream of the airfoil grid to measure the near-field noise level. For far-field noise measurement, microphones were located on a 10 - ft arc centered at the bellmouth section, from 0° to 80° from the inlet centerline at 10° intervals. Inlet flow instruments included temperature and pressure probes which permitted the measurement of: bellmouth total temperatures, the anechoic chamber total pressure, vane surface static pressure, total pressure at the fan face, boundary layer velocity profile at the fan face, and total pressure downstream of the fan. One-third octave band noise data were obtained for all the test conditions. Selected $80-\mathrm{Hz}$ bandwidth spectra were also obtained. Typical acoustic results were expressed in PNL reduction at a $500-\mathrm{ft}$ sideline. Inlet flow results included the inlet total pressure recovery (see fig. E-9).

Test configurations for the radial vane inlet included three inlet cowls, one for a typical approach power setting, and two for takeoff power settings. A set of 36 radial vanes with linear taper ratio and constant thickness ratio were inserted into the inlet cowl to provide the sonic flow. The vanes were inserted radially into the approach cowl. For takeoff cowl 1, the vanes were either in a radial position at the rear end of the inlet or swept 30° near the cowl minimum flow area. A photograph of the radial vanes is shown in figure E-10.

The acoustic instrumentation is similar to that of the grid inlet. However, the inlet flow instruments were tailored for the radial vane inlet. Measurements included vane surface velocities and cowlwall surface velocities. Typical results are shown in figure E-11.

REFERENGES

E-1 Maestrello, L.: The Design and Evaluation of an Aerodynamic Inlet Noise Suppressor. Boeing document D6-5980, 1960.

E-2 Sobell III, J. A.; and Welliver, A. D.: Sonic Block Silencing for Axial and Screw-Type Compressor. Report of the Curtiss-Wright Corp. Also: Noise Control Shock Vibration. Vol. 7, no. 5, September-October 1961, pp. 9-11.

E-3 Greatrex, F. B.: "By-Pass Engine Noise," Transactions of the Society of Automotive Engineers. Vol. 60, 1961, pp. 312-324.

E-4 McKaig, M. B.: J-75 Inlet Noise Suppression Test. Boeing document T6-3173, 1964.

E-5 Copeland, W. L.: Inlet Noise Studies for an Axial-Flow Single-Stage Compressor. NASA TND-2615, 1965.

E-6 Cawthorn, J. M.; Morris, G. J.; and Hayes, C.: Measurement of Performance, Inlet Flow Characteristics, and Radiated Noise for a Turbojet Engine Having Choked Inlet Flow. NASA TND-3929, 1967.

E-7 Sawhill, R. H.: Investigation of Inlet Airflow Choking as a Means of Suppressing Compressor Noise-5" Inlet Model. Boeing document D6A-10155-1, 1966.

E-8 Andersson, A. O.: An Acoustic Evaluation on the Effect of Choking Using a Model Supersonic Inlet. Boeing document D6A-10378-1 TN, 1966.

E-9 Study and Development of Turbofan Nacelle Modifications to Minimize Fan-Compressor Noise Radiation, Vol. V-Sonic Inlet Development. Boeing document D6-60120-5, 1969.

E-10 Smith, J. N.: Full-Scale Tests of a Five-Door Sonic Throat Inlet at Tulalip-JT 3D-3B Engine. Boeing document D6-23461TN, 1968.

E-11 Smith, J. N.; and Higgins, C. C.: Inlet and Engine Performance with Eight-Segment Adjustable Boilerplate Sonic Inlet-JT3D-3B Engine. Boeing document D6-23469, 1969.

E-12 Higgins, C. C.; and Lupkes, W. R.: Full Scale Model Tests of an Eight-Sided Contracting Cowl Sonic Throat Inlet. Boeing document D6-22745, 1969.

E-13 Bosch, J. C.: Acoustic Study of a Boilerplate Sonic Inlet for a JT3D Turbofan Engine Nacelle. Boeing document D6-22752, 1969.

E-14 Wise, W. H.: Summary Report-Model Tests of Sonic Throat Inlets for Turbofan Engine Inlet Noise Attenuation. Boeing document D6-23468, 1968.

E-15 Smith, E. B., et. al.: Study and Tests to Reduce Compressor Sounds of Jet Aircraft. General Electric Company technical report DS-68-7, contract FA65WA-1236 to FAA, 1968.

E-16 Schaut, L. A.: Results of an Experimental Investigation of Total Pressure Performance and Noise Reduction of an Airfoil Grid Inlet. Boeing document D6-23276, 1969.

E-17 Putnam, T. W.; and Smith, R. H.: XB-70 Compressor-Noise Reduction and Propulsion-System Performance for Choked Inlet Flow. NASA TND-5692, 1970.

E-18 Anderson, R.; DeStafanis, P.; Farquhar, B. W.; Giarda, G.; Shuehle, A.; and VanDuine, A. A.: Boeing/Aeritalia Sonic Inlet Feasibility Study. Boeing document D6-40208, 1972.

E-19 Chestnutt, D.: Noise Reduction by Means of Inlet-Guide-Vane Choking in an Axial-FlowCompressor. NASA TND-4682, 1968.

E-20 Smith, M. J. T.; and House, M. E.: "Internally Generated Noise From Gas Turbine Engines, Measurement and Prediction," Transactions of ASME, Journal of Engineering for Power. 1967.

FIGURE E-1.-DISCRETE FREQUENCY NOISE REDUCTION VS FLOW MACH NUMBER

- Eight-side adjustable, 900 in. ${ }^{2}$ throat (horizontal)
© Eight-side adjustable, 750 in. ${ }^{2}$ throat (horizontal)
(-) Eight-side adjustable, $900 \mathrm{in}^{2}{ }^{2}$ throat (vertical)
© Eight-side adjustable, 750 in. 2 throat (vertical)
(3) XB-70 ground test data (20° from inlet centerline)
$\boldsymbol{\oplus} \quad$ SST-type inlet with viper- 8 engine $\left(30^{\circ}\right.$ from inlet axis $)$

FIGURE E-2.-OVERALL SPL REDUCTION VS FLOW MACH NUMBER

FIGURE E-3.-DISCRETE FREQUENCY NOISE AND BROAD BAND NOISE REDUCTION OF A GRID SONIC INLET
(1) Five-door inlet, wrapped, $928 \mathrm{in}^{2}$ throat (horizontal plane)
(11% grid inlet, $\Delta \mathrm{X} / \mathrm{C}=0.0,0=60^{\circ}$
A 11% grid inlet, $\Delta X / C=0.5, \theta=60^{\circ}$

- Radial vane, $\theta=60^{\circ}$

Multipassage sonic inlet
A Radial vane, $\theta=60^{\circ}$ at $500-\mathrm{ft}$ sideline

- 17% grid inlet, $\Delta X / C=0.0, \theta=60^{\circ}$

A 17% grid intet, $\Delta X / C=0.5,0=60^{\circ}$)

Eight-side adjustable, $750 \mathrm{in}^{2}, 3 / 4$ length treated duct, $M_{4}=0.8$ horizontal
Eight-side adjustable, $750 \mathrm{in}^{2}, 3 / 4$ length treated duct, $M_{G}=0.8$ vertical
Five-door inlet and duct, wrapped, $928 \mathrm{in}^{2}{ }^{2}$ throat, $\mathrm{M}_{\mathrm{C}}=0.7$
Eight-side mechanized, long treated duct, $\mathrm{M}_{\mathbb{L}}=0.73$ horizontal
SST-type viper 8 turbojet engine
SST-type viper 8 turbojet engine
$\}$
$50-\mathrm{Hz}$ band width
11% grid inlet $M=0.77$
11% grid inlet $M=0.65$
11% grid inlet $M=0.62$

FIGURE E-5.--DIRECTIVITY OF DISCRETE FREQUENCY NOISE REDUCTION

- Eight-side adjustable, $750 \mathrm{in}^{2}{ }^{2}$ throat, $3 / 4$ length treated duct, $M_{G}=0.8$
- Eight-side adjustable, 900 in. 2 throat, $3 / 4$ length treated duct, $M_{\mathcal{L}}{ }^{4}=0.8$
Δ Eight-side mechanized with full length treated duct $M_{G}=0.73$
- Five-door inlet and duct, wrapped, $M_{4}=0.7$
- Five-door inlet and duct, wrapped, $M_{4}^{t}=0.8$
$\boldsymbol{\nabla}$ Model radial vane inlet, $\mathrm{M}_{\mathrm{T}}=0.77$
$\nabla 17 \%$ grid inlet

FIGURE E-7.-INLET TOTAL PRESSURE RECOVERY VS NOISE REDUCTION

FIGURE E-8.-GRID TEST SECTION, VANE CONFIGURATION, 11° VANES

FIGURE E-9.-GRID INLETS, PERCEIVED NOISE LEVEL REDUCTION VS RECOVERY

FIGURE E-10.-RADIAL VANE MODEL SONIC INLET

FIGURE E-11.- RADIAL VANE PERCEIVED NOISE LEVEL REDUCTION VS RECOVERY

[^0]: ${ }^{2}$ For use with figure A-14

