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H Y M P S

Numerical Techniques

Henry P. Decell, Jr.

General University of Houston

In the digital calculations that drive the classification portion of the

hybrid Pattern Recognition System (HYMPS) there are three items that warrant

"tuning". They are:

I. Matrix Inversion

II. Det calculations & Singularity

III. Covariance Factorization

Although I,II,III are essentially viewed separately in the HYMPS writeup,

they are, in fact, related and some improvement in numerical accuracy and

computational speed can be gained by simply deleting redundant matrix manulipations.

Introduction

In what follows we will show that it is more economical to first factor

the covariance matrix and, by so doing, delete the matrix inversion MINV.

Necessary Det calculations can, moreover, be more easily realized by use of

simple theoretical facts about the factorization.

Basically the reasons for doing the factorization first are:

1. MINV (or any other inversion routine, for that matter) can be

eliminated in the current calculations

2. When MINV is deleted, errors in computation will be directly

related to the factor routine and not to a combination of inversion

factorization (unknown) errors.



All required information for classification is contained in the

3. All required information for classification is contained in the

factorization.

4. The upper triangular form required in the analog classification

scheme is preserved in these operations.

5. The B
k

matrix calculations in their present form are no longer

required.

Factorization

We recommend that the covariance matrix £ be fadtored into "upper

triangular form" i.e.

= AAT where

A is a matrix with all zeros below the main diagonal (this is now being done

to - 1
in HIYMPS, after applying MINV to I). The results of this

factorization will be as good as those obtained in factoring 
-

1 since we

propose that the same factorization routine be utilized. In fact, the conditioning

of E would produce factorization error since 
-

1 may well be garbage.

Now if I = AAT then

.- 1= (A-1)TA-l and

-1
since A is upper triangular so is A

We wish to compute the value of the classifier

f(x) 2= 70 3exp - (XX) (X_% .



y=A (X-X) then it is easy to see that the exponent

Q = 1 {AI(X-X) }T{A 1(-X_)}

iQT2 ~ = -1=2

Hence if Y = A -X then AY = X and since A is upper triangular we

can write the recursion formula for the Yi as follows. We do it in general,

however, for IENPS M=6

A Y = X -X
mm m m m

A Ym- + A Y =X -Xm_m-lm rn-i rn-urn i n-i r-i

mn-2m-2 m-2 + Am-2m-lYm-1 + Am-2mYm Xm-2 m-2

AllY1 + A12Y2 + * + * lm + AlmYm = X
1 - Xlm-i rn-i lm mn 1 1

In another form

Y = -
m m m /A

X 1 X -1
Y- A=
m- =l A

mn-lm-l

Amn-lm 1
A A
m-lmur-i m-i-

{X - -A Y }
m-l m-l m-lm m

Y -2 {X 2m-2 A m-2
Ift- 2m-

- X 2 -
a

Am-2mYm - Am_2m- lYm-

A1 = A 1 I X1 - (A1 2Y2 +' ' + A mYm) }
All

If we let Q is

- 3



-4

In general,

k

Ym-k ALk Xm-k - Xm-k) A- Am-km-(j-1)Ym-(j-1l)

Det Calculations

Since = AA it follows that:

detz= det(AAT ) = (det A)(det AT )

= (det A)(det A)

= (det A)2

Since A is upper triangular, its eigenvalues are the diagonal elements of A.

Moreover, the det of any matrix is the product of its eigenvalues so that

m

det A = T A
il Aii

Hence 2

detZ= (det A)2 Aii

det = A. 

an easy by-product of the factorization independent of MITV.

Singularity Evaluation

In the divergence calculations one should avoid concluding that is

"near singular" if det £ - 0.



This is a classical misunderstanding of the theorem which states:

" t is singular if and only if det 2 = 0"

The misunderstanding arises by assuming a similar (however meaningless) theorem,

namely,

" Z is near singular if and only if det £ 0 "

The fact of the matter is that there does not exist a concept of "near

singular" in matrix theory. The term "near singular" applies to numerical

difficulties one may encounter in inverting matrices and is in no way related

to whether or not £ is in fact singular.

Consider the example (3 x 3)

O- 6 10-6 -6
10 10 106

A = 10 10- 6

w0 0 10-
6

-6)3 -18 det A = (106 = 10- = 0

Yet A is neither singular nor numerically difficult to invert.

Note: The fact that the example is "upper triangular is of no particular

consequence except that det A is easy to calculate by inspection.

In fact for this A

= AAT is symmetric and positive definite (See page 6-7)

yet dett= 10- 36 0.
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)IFFERENTIAL CORRECTION SCHEMES

IN NONLINEAR REGRESSION

Henry P. Decell, Jr.

University of Houston, Houston, Texas

F. M. Speed

Texas A & I University

Abstract

This paper briefly reviews and improves upon classical iterative

methods in nonlinear regression. This is accomplished by discussion of

the geometrical and theoretical motivation for introducing modifications

using generalized matrix inversion, other than but in the same general

vein as those discussed by Fletcher [6]. Examples having inherent pitfalls

described in [8], [12] and others are presented and compared in terms of

results obtained using classical and modified techniques. The modification

is shown to be useful alone or in conjunction with other modifications

appearing in the literature.



Introduction

Following for convenience the notation of [8], let yt denote a

set of n responces of the form

Yt = ft( e
) + et t = ,...,n

where the response function ft(6) is a known function of t and an

undetermined vector 0 = (61,..,8p ) We will call the vector e a least-

squares estimate (given the n responses) of 0 provided 0 minimizes

n

Q(e) = E (yt - ft(0))2
t=l

The vectors are defined

Q(Q(0))Q'(e) = M)0.

R(e) = (yt - ft( e ))

and the matrices

a(ft(e)) T
f'(e) = ( a

aQ(e)

Q" (e) D= e.



Three of the most common differential correction schemes for

estimating the parameter vector e are the steepest descent method, the

quadratic approximation, and the Gauss-Newton method, with corrections

respectively given by

Ae = -aQ'(e) , a > 0

As = -(Q"())-iQ,(e)

Ae = -1/2(f'(e)Tf'(e))-lQ'()

These methods have their advantages and disadvantages. Of the

three, the Gauss-Newton method is probably most popular.

The authors of [8] present a modification of a classical method and

state that "The step AS will in general be distinct in both length and

direction for each of the three methods." This is not necessarily the case

from a computational point of view since the matrices to be inverted may be,

for all practical computational purposes, singular; yet the system of

equations may have infinitely many solutions. For example, the Gauss-

Newton correction requires the solution of the equation

f'(e)Tft()AO = f'(e)TR(e)

since

-1/2Q'(e) = f'(e)TR(e) .
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It is known that any equation of this form (i.e., of the form

T 1
A Ax = A z, the normal equations of the least-squares problem: minimize

T
(Ax-z) (Ax-z) given A and z) always has at least one solution and

perhaps infinitely many. We will try to point out the significance and

consequences of these solutions in terms of their relationship to

differential correction schemes.

The Generalized Inverse

A few basic concepts regarding generalized inverses important to

the development follow.

Theorem 1. The four equations AXA = A, XAX = X, (AX)* = AX, and

(XA)* = XA have a unique solution X for each complex mxn matrix A.

This solution X is called the generalized inverse of A and is denoted

by X = A+.

This theorem is due to Penrose [10] and is equivalent to the

apparently more geometric characterization of the generalized inverse

of A which follows.

Theorem 2. The generalized inverse A+ of A is the unique solution

of the equations

AX PR(A)

XA = PR(X)



where PR(A) and PR(X) respectively, denote the perpendicular

projection operators on the range :paces (column spaces) of A and X.

In any case, it is easy to see that if A is square and non-

singular, then A+ is the ordinary inverse of A. Much work has been

done recently in the area of generalized matrix inversion, including

theoretical developments and computational techniques, rendering it a

very useful tool in matrix theory and applications. A rather exhaustive

bibliography concerning applications of generalized inverses can be found

in [2], [3], and [13]. We will not develop the details of the basic

concepts, but rather state an important theorem regarding the solution of

matrix equations in general.

Theorem 3. The matrix equation AXB = C has a solution X if and only

if AA+CB+B = C, in which case all solutions are given by

X = A+CB + S - A+ASBB

where S is an arbitrary matrix having the dimensions of X.

The Equation ATAx = z

As stated earlier, the Gauss-Newton method involves the solution

of an equation of this type at each iteration. The following corollary

to Theorem 3 will give some insight to a possible course of action one

could take at those times during the iteration process when the matrix

f'(6) Tf'() (or perhaps even a matrix such as Q"(e) in another method



recquiring inversion for the calculation of the r-rection L6) is

actually or nearly singular. For the purpose of this paper, we will

describe how generalized inversion can be useful in iterative techniques

T T
requiring the solution of equations of the form A Ax =A z.

Corollary 1. If A is any mxn matrix and z is any mxl vector, then

T T
the equation A Ax = A z has at least one solution and all solutions are

given by

X = A +z + (I - A A)y

where y is arbitrary having the dimensions of x.

The proof of Corollary 1 is an immediate consequence of Theorem 3

and fact that (A A)+AT = A [10].

Corollary 2. Among the solutions of A Ax = A z, the solution x = A z

has the smallest Euclidean norm (henceforth "norm" will be denoted I|I').

The proof of Corollary 2 follows from the facts that I - A A is

the orthogonal projection operator on the orthogonal compliment of the

range space of A+ and hence that A+z and (I - A+A)y are orthogonal

for every y. In fact,

+ jA+z + (I - AA)y 2= jAzjj2= i+(I - AA+)yJJ 2

> Ii +L 12

--6-



The significance of Corollary 1 is that there may be infinitely

many possible corrections AO satisfying an equation defining a

differential correction scheme in the presence of a singular or, in the

computational sense, nearly singular coefficient matrix. There is a

tendency to disregard or remain unaware of these solutions and, with the

inability to invert tha coefficient matrix, to look for new or modified

techniques such as those found in [1], [5], [8], [9], and [12]. For

example, in [7] Jennrich and Sampson modify the coefficient matrix by

selected rows and columns. In [8], Marquardt changes the diagonal of the

coefficient matrix. It has been our experience that these solutions should

be given careful attention in the case of what will hereafter be called an

apparent (i.e., actual or computational) singularity.

Fletcher [6] points out that in the generalized least-squares

(Gauss-Newton) or Newton methods "... A most important property of the

generalized inverse formulation is that in all circumstances (i.e., full

rank or not), even when the generalized least-squares method would fail,

the directions of search generated are downhill and so an imporvement can

always be made to the sum of squares (assuming the approximation is not

already a stationary point)." In this connection, the significance of

Corollary 2 is that there is a reasonable way to choose a correction AG

satisfying the defining equations of the scheme whenever an apparent

singularity occurs. We propose to choose the minimum Euclidean norm

correction A+z (i.e., the correction of shortest length consistent with

the correction equation). It has been our experience that in nonlinear



equations other solutions can result in failure of convergence.

The suggested correction certainly depends upon the algorithm used

to calculate A' and the actual computational way in which the algorithm

establishes that A is not of full rank (i.e., ATA singular). Of course,

this is intimately connected with near-zero tests in the algorithm,

sensitivity to dependent columns or rows, conditioning, and so forth. We

should further point out that, for a general differential correction scheme

of the form M(e)Ae = z(e), the choice of the correction should be

AG = 'i(6) z(e) if there is at least one solution for Ae. Of course,

according to Theorem 3 there will be at least one and possibly infinitely

many solutions AG if and only if M(6)M() +z(e) = z(e). Moreover, if

there is one and only one solution, then that solution is indeed given

by AG = M()+z( z).

For example, in the Gauss-Newton method, M(0) = f'(e)Tf'(6) and

z(6) = f"(a)TR(e) so that Ae = M(6)+z(6) = (f'(e)Tf'( m) )+ f '(e)TR(e) =

+ T_
f'(e) R(e). Even if M(6) is nonsingular, then (f'(6)Tf'(G))+

f'(6) f'(e)) , and either form of Ae may be used in calculations:

As = (f'(G)Tf'
( e))

-
lf'(6)TR( e ) = f'(e)+R(6) .

In other words if M(G) is square and computationally nonsingular, the

classical correction is, in fact, the minimum norm correction. We will

not discuss the comparative aspects of computing Ae in a correction

scheme such as the Gauss-Newton method by one or the other of the



theoretically equivalent formulas:

(1) Ae = (f'(e0)Tf' (e))+f ' (e6 )T:(e)

(2) AS = f'(e)+R(6)

Calculations in our examples use (2).

We have had unusual success with this technique in many practical

problems too numerous to mention here. In many cases, one definite

advantage seems to be the ability to continue making corrections of

reasonable length and perhaps, as in the Gauss-Newton case, reasonable

direction through regions in which the coefficient matrix M(6) behaves

baaiy. We do not propose this technique as a cure-all but rather that it

should be included among other useful techniques in nonlinear regression.

A few examples having known pitfalls will be presented in the next section.

Examnles.

In the following examples, the residual sum of squares Q(8) will

be presented in tables by iteration number. The values of Q(6) for the

methods cited will be those values tabulated in the references cited. Some

authors divide Q(6) by the degrees of freedom. For clarity and easy

comparison we indicate this division in the tables when necessary. Finally,

the residual sum of squares given by the method of this paper (minimum norm

correction) will be noted MN; Q(8).
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Riesults of the method of this paper compared with those of the

Modified Davidon Method (MDM) used in [12] to find the parameters of an

exponential model discussed by Hartley in [7] are given in Table 1.

Table 1

Exponential Model (Hartley)

i

Iteration I MN; Q(e) 1 MDM, Q(6) i
i 1, ,-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0

1

2

3

4

5

6

7

8

27376

14586

13779

13408

13394

27376

20127

15412

13552

13485

1344913390

13425

13394

13393

13390

I

I

i
I

.1

I

I
I
i
t
i
i
t

i

i

I

I
i

i

9
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A second exponential model given by the authors of [8] points out

a failure of Hartley's method [7] due to a siz_-,ar partial derivative

matrix. In [8] a stepwise regression scheme (SR) is successfully utilized

for this example. The results of the (SR) scheme compared with those of

the method of this paper are given in Table 2.

Table 2

Exponential Model - Singular Partials

Iteration i fl; Q(G)/8 SR; Q(e)/8

0 521.41 521.41

1 429.84 429.84

2 39.11 88.15

3 15.765 83.74

4 15.545 *

10 21.33

30 15.545

*The value of SR: Q(e) was not tabulated in [8]
for this iteration.

Another six-parameter exponential model having inherent singularity

problems is presented in [12] Using the Modified Davidon Method (MiD ).

A comparison of the results using the technique of this paper is given



in Table 3.

Table 3

Six Parameter Exponential Model - Singular Partials

Iteration MN; Q(e) MDM; Q(O)

0 21.38 21.38

10 .873 2.39

20 .792 1.99

30 .396 1.77

40 1.59

50 1.41

60 .90

70 .41

80 .407

Concluding Remarks

We have taken the liberty to exclude a reproduction of the detailed

description of our example models. These models are thoroughly treated in

[7], [8] and [12]. The tables give some indication of rates of convergence

and a comparison of residuals only. We do not wish to leave the impression



tihat iteration counts are comparable. For example, one Gauss-Newton

iteration could have been equivalent to p conjugate direction steps

for the matrix inversion employing the Davidon method.
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DIVERGENCE CONSIDERATICNS

Problem Statement: Let l, 'i , .I2 .·'/]' be n distinct, normally distributed

classes or populations of two dimensional response vectors x ' ( /A'IA2). where

/li is a measurement of the relative response of x along channel i.

channel I

The problem is to determine the "best channel"' in the sense of divergence and

in the sense of minimizing the probability of misclassificationo

Let i; denote the sample covariance matrix for the ith class and suppose,

after training, we find that 2; - I, i = 1,2, o . . , n. Let/l I be the

mean associated with the ith population; then it is easily verified that

the interclass divergence is:

2
D(i,j) = (l. -L _ ) - o

The density function for the ith class is:

P.(x) - \ e- (x )2

It is useful at this time to consider the partitions of a given channel axis

determined by the maximum likelihood solution of the Bayes discriminate problem.

Recall in this case x is assigned to i k if:

In Pk(x) = max ln Pi(x), i 1,2,,. . on 

Under our assumptions that - I, it is easily verified this becomes x is

assigned to / k if

(x- ) min (x -/i) , i = 1,2, . . o , n

We shall assume Li a .1 i+I for i , o . . , n - 1.

Now note 2

-(_I2 +l 2+l
(x- LL + 2(i ~ Le )(x+(Li)(



Page 2

so that (x - i+)2 (x _ whenever 2(,, 1 L)(X (

that is, whenever x' 2(/ I + z i+ )o

Thus associated with each mean I1 , we have a region RI such that if x E R., x

is assigned to the 'T population where the R.:'s are defined as follows:

R X. X, x~ ½(~L1 , 2)}

R. = 2 xl: +(- L ) x + i -2, * * * , n-I

Rn - XI ! n-I n, 5n1
Now consider the n-class problem with equal a priori probabilities q. = n the

cost of misclessifying an individual from population 'i.j as being from population

n #l,C(i [j) = I, and the probability that x belong to Rj given that the individual

is from 1 1 P(jli,R) =3 P.(x)dx * then the cost of misclassification to be

expected totally is: 

Q(R) = qt c(ji)p(jli,R) L 5 . t . P. dx

For i =- I 1
j=2 Rj

il i cn =11 L ji j

P.dx - P d e dx

U R. 2 (1U+u2 )
j= 2 J

02

=t2, ¢2..1 ) e dy
i;/2o

o

- a!co 2 - -- J L ) y
e 2 dy. e-. dy

j I'JD (2,) I e

f -r2' e eY dy
since by symetry of e

since by symmetry of e

2 e= 2
e- Y dy -2 -| e- 2y dy - 1.

After-dy I
we have 2j )

I J
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When i - n we again use the symmetry of the function so that
( I 7(* n X(n-l+,~I

P. dx = n-l P. dx - I
j=1U RJ 2 CD

e 21(x -. An)2dx

( 2 :/n.IiUn)

=- r- 1 e
=~ 2 i2 -J .( I n)

1 2

e dy

2 d
dy

e iy2= dy

When I < i < n
n

Lj P dx =

jii

i-l i-

j=l R3
P. dx

I

n._

+ 
j=i+l RJ

J

dx +

U IRj=i+!

Ca
},i_ +/ti )

)e d ( x-
e dx +

dy + mI'

-( i+l i )

dy +

('i+1 ,Ui )

I l(X-a;. )- 2(x'u.)e
I)

2 2
e Ydy

e y2
e dy

n-I

j=I Rj

P. dx
I

o ;-1 P.
IUR

j=i j
Pi dx

d
dx j

OD

e
( - L-t )
, ! , I -I

' '(.:"i i 'j )

=16J Io, ee

' l)s~
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(''- ~2 dy i+ i)' dy

Finally we have the total cost of misclassification is

I F | g <D(2,1) Iy2 n I (i'DFD(ieI-)_ 2

Q(R) n 2 - i dy-

_ | | )D(i+lul) e* EY d) V j J ElD(n,n-l)
- ½'D~ e' dy )+ e dy

\_'D(' l_ 2 I n-ie

1 n e 1) ndl Z i(Y +li)- l2 dy
n , -2 . .. e d

Son~ ?|2 n 2D(+I) 2 ]

So Q(R) = n (n- ) -- Io, e dy (l)

Thus note that Q(R), the total cost of misclassification does not depend

on D(i,j) for j / i-li+I. But recall the definition (or perhaps criteria) of total

intercleass divergence, namely,

D I D(iJ) (2)
i-l j=;

jYt

I believe equations (I) and (2) express the main problem with the existing

feature selection - classification scheme, namely that the feature selection

criteria (2) is inconsistant with the classification criteria (1). This paper

has shown that when z; - I for all i, and i , a "better" feature

selection criteria would be to desire D large where in this case D z $(n - I) and

-I--i 2

D= iF E J D e dy



& Page 5

The "nice" property about D is that e dy .4987 and e dy - 5

so that there is no need to worry about D(l,j) becoming too large.

Finally, we consider a numerical example with all covariances equal to I and n s 3O

Assume the means along the channel I axis are given by

itI =- 6, .L 2 O, /Z3 6

and the means along the channel 2 axis are given by

V 
I

0, O,(2 = , =- 12.
2 ' 1 °'3l2 ' is a t2 2

Then D Ich D(i,2) + D(1,3) + D(2,3) - (-6) + (-12) + (6) - 216, and
lchannel I

Dkhannel 2 = ( 1)2 _ (-12)2 + (_II)2 - 266. Thus the divergence criteria would imply

selection of channel 2.

But, the total probability of misclassification is given by

Q(R)2n 2 ,D (2, _ ey2 e dy 2 -- D(,,2) e dy 2
Ichannel 1 3 /2i 2' 0

2 /f 1Y2
e dy I

3 /2n T, (00 -Joe0

_ 2 (I - ,4987 - .4987)
3

' ..0017 and

- e 

2

channel 2 - _ L2 e ; dy

=- (I - .1915 - .5000)
3

- .2056

Since the probability of misclassification is much less by this criteria the

choice would be channel 1o A pictorial representation is given below.

I/' Channel I
. '3 it;1 ' 2

Channel 2

. X\
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DIVERGENCE CONSIDERATIONS II

by

J. A. Quirein

The interclass divergence D(i,j) in a sense, a measure of the

"separability" of two classes H. and HI. The problem of determining a

function F of the interclass divergence over all possible combinations of

a fixed number of channels such that maximizing F will minimize the

probability of misclassification (for that number of channels) has not yet

been solved.

Consider the case of three distinct classes Hi' H2' 13. One such

function of the divergence typically constructed is of the form:

F = D(1,2) + D(1,3) + D(2,3).

It has been previously shown that maximizing F need not necessarily mini-

mize the probability of misclassification. A second commonly constructed

function of the divergence is the following

F = min(D(1,2), D(1,3), D(2,3)).

To show how maximizing F does not necessarily minimize the probability of

misclassification, let the means along the channel 1 axis be given by

1= 0, '2 = 2.2, 3 = 5.2
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and the means along the channel 2 axis be given by

31 = O, 12 = 2, 13 = 8

then

Flchannel 1 = min (4.84, 27.04, 9) = 4.84

Flchannel 2 = min (4, 64, 36) = 4

and maximizing F implies selecting channel 1. The probability of mis-

classification is verified to be

Q(R) lchannel 1 = .135

Q(R) lchannel 2= .107

which indicates in this case, the "best" choice would be channel 2.
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PATTERN RECOGNITION AND THE POTENTIAL FUNCTION

Supposing that we have two sets A and B which do not intersect in a space(#i*h)

X , then there exists at least one separation function $ (X) for which /' (X) 0

if X 6 A and 'i(X) < 0 if X E B. The idea of the potential function is to

build, by an iterative process with a finite number of known points from A and B,

a sequence of functions Kr(X) which tend to one of these separation functions

as r increases.

Assume that in -there is a linearly independent system of functions,

i 7(X), a subset of a complete system, such that for any two separable (always
N

taken hereafter to mean in the geometric sense) sets in / , $/: (X) =: p c. i (X)

separates these two sets, N depending on the sets to be separated. In order to

have convergence in probability let the Q(i(X)'s be an orthogonal or orthonormal

systemo Additionally if K(X,Y), the potential function, is bounded on AUB and the

function 2/(X) rigorously separates A and B(i.e. (X) if X A here if X 6-B where E O) 

it can be proved that there is an integer m, independent of the teaching sequence

so that the number of errors corrected does not exceed mo If the appearances of

the points in the teaching sequence are independent events and at any rth step

there is a strictly positive probability of correcting an error if separation

of the sets has not yet occurred, then the probability is unity that the separation

of the sets will be realized in a finite number of steps. If we agree to terminate

the teaching process as soon as no error has occurred in L examples in the sequence

following an error correction (t, an arbitrary prescribed integer) then the entire

teaching sequence will be terminated in Lm steps. Let P be the probability of

error in the process after termination of teaching and E>O, ,0O0, then it can

be proved that the probability that P<E exceeds I -$ if L satisfies L> In ( /m)
In (I - )
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ALGORITHM

The construction of a separation function /' (X) shall be accomplished as

follows:

Let the potential function be defined by:

N

K(x,Y) = 2 (x (Y)

and let A be the positive set and B. the negative one.

For K
I
(X) we will take:

K K(X,X
I
) if X ; A

K (X) = A

- K(X,XI) if X 8

Inductively we proceed after the rth step, inluwhich the function K (X) was

constructed. Compute Kr(Xr+l). If either Kr(Xrl)> O and X 6 A or K (X )< 

and Xr+l (i.e. the function K (X) agrees at the point X r+ with our original

convention of A, positive and B, negative), we shall set K i(X) K (X) and proceed

to the next point Xr+2 . If Kr(Xr+i) > O and Xr+l E B, set Kr+l (X ) - Kr(x) - K(XsXr+
I

If K (x ) O0 and X CrE A, set K rl(X) Kr(X) + K(X,X rl). In either of the
r r*I

latter two cases the potential function is altered by addition to it of the potential

of the (r + I)st point with sign necessary to "correct" the function at this step.

EXAM PLE

For our space we choose [-1,1l X L-I., . Let A - 'i(x,y): /I x-y 5

and B= It(x,y): I8 x,y L 8 and, using the training points given in figure 1,
N >0 ifXEA

build a separation function 7( (X) = c if Since I and(X) < 0 if X < B

x + y are linearly independent and defined on using the Gram-Schmidt process

we find for !, (X) I and 4 2 (X) = x + y - I we have an orthogonal set of functions

where the inner product is defined by ( {C(X), (J(X)) = I ! i(X) 4¢j(X) dx dy.

Letting / I* !, K(XXk) + (xk + Yk - I)(x + y - 1) where X 5 (x,y) and Xk t (x sy ).
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X23 =(10/16, 8/16)
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Construction of K (X) will therefore always yield a line, moreover, a line whose
r

slope is negative one. Since A and B can be separated by such a line choice of

N = 2 will yield a separating function as desired.

By definition Ki(X) = - K(X,Xi) D -I - - (x + y - I) since X1 ~ B. Figure 2

shows K (X) in relation to A and B. Testing X2 in Ki(X) we find K(X2) - 8 (

Since X2 A put K2 (X) - K (X) + K(X,X2 ) - (x + y - I). In figure 3 we see that

X3 lies below the line K2 (X) 0 and testing we find that K2(X3) = and

since X 6 B, K3(X) KX) )K(XX) -i (x y - I). Since K3 (X4) < s
3

(3 2 3 1 21 0

and X4 C A (see figure 4), K)
4
(X) = K3(X) + K(X,X4 ) _- - (x + y - I). Since

K (X5)) 0 and X5e A, K(X ) K4(X ) -- 5(X - I)o

Continuing the process we find:

K6(x) K5(X) K4 (X) = - ( + y - I)

19
K7 (X) - I - 16 (x + y - I)

K8 (X) = K (X) = K) (X) -t 5 (x + y - I)
9 10 II 8

K1 2 (X) ' KI3 (X) -- (X + y I))

K(X) K(X) K(X) - ( + 

K (X) K ( -_ (x + y - I)17 18 8

K i(x)m -J. (x + y )
19 16

K20(X) 3 _I - 9 (x + y - I)

K2 1 (X) - (x * y - )

K2 2 (X ) =K 2 3 (X) K24(X) -l -' ( x + I)

Figure 5 shows the relationship of K.(X), i 4,. . ., 24, to the sets A and B.

Taking (X) K24(X) I 16 1) () L C j(X) for

43c I = - I and c2 _ 146 . Testing the function, it does, indeed, separate the
16

training sample, for 7 (X) ? 0 for all X t A and 24i (X) - 0 for all X C B. A

geometric analysis of the sets shows any function of the form -I + q(x + y - I)

5 and our q = 4will separate if 8and our q 8 n q q 1-- satisfies this inequality.
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Although the training points of this example were purposefully "rigged" to

insure that each part of the definition of K (X) would be used and that convergence

would be accomplished in the limited number of training points, in the latter

case, if the training sample had run out without clear separation it could have

been reused in the continued construction of the function. Certain points appear

more critical to the process; in our example, those points in A nearest the

shaded region in figure 6 are more sensitive to change and those points in B

nearest to the line x + y - I - 0 and to its left produce more change as the

algorithm progresses. Howeversthese remarks are pertinent to this example alone

as alteration by so simple a change as choice of X l A would require completely different)

though analogous, comments.

It was necessary to avoid any point X I for which Kr(Xr+) = since

the algorithm does not deal with this possibility (i.e. take X on the line

x + y - I = 0 at alternating steps of the function construction beginning at r = 2).

It would seem advisable to add to the algorithm "if Kr(Xr+) O, let Xr+2 become

the(r + I)st point, discarding the original Xr+l as a training point and

It

renumbering the points.

EVALUATION

In [0l], the purely geometric method of the potential function is compared

with a structural approach, basically one of recognition of broad interclass

similarities,and it is the opinion stated in this paper that neither method Is

suitable to solve complex problems. In the case of the recognition of the letters

of the alphabet photoelectric cells 1000x1000 may be needed for a clear picture,

making the vector representation 1,000,000-tuples, which might produce a memory

storage problem. In the development of the idea of a potential function for

construction of a separating function any orilhonormal system of functions :i(X)ts
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will produce convergence of the algorithm. It seems obvious that for some

choices of the system convergence might be more rapid than for others. However,

nowhere was there mention of how this choice might be made to minimize l. In

addition N(X) can be realized as a finite linear combination of the .(X)'s

where the number N of the M (X)'s necessary depended on the sets involved.

There was no discussion of the problem of how determination of an appropriate

N, let alone a minimal one, could be made.

This method does, however, have the advantage that convergence in probability

is assured in a finite number of steps to any desired degree of reliability. The

experiments made and reported bear out this result by the high percentage of

accuracy attained.
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Introduction

The purpose of this paper is twofold:

(1) Introduce the concept of fuzzy set

(Zadeh [1])

(2) Apply the concept of fuzzy set to pattern

recognition (Wee [2])

We will consider only the ideas from fuzzy set theory that are

directly related to pattern recognition. Our approach to pattern

recognition will follow the PhD thesis of W. G. Wee. In this thesis

an iterative procedure for learning the equi-membership surfaces and

for generating a set of discriminate functions for two pattern classes

is given.
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Fuzzy Sets

The concept of fuzzy sets was first introduced by Zadeh [1].

Since we will be interested in fuzzy sets only with respect to pattern

recognition, we will define our concepts in Q = En .

Definition:l: A fuzzy set A in Q is characterized by a membership

function fA: -+ [0,1] with the value of fA at x representing the

"grade of membership" of x in A.

As an example of a fuzzy set in E1, let A be the set of all numbers

"much larger" than 14. One can give a precise characterization of A by

specifying fA(x) on (eg. fA(-l) = 0, fA(10 0 0 ) = .2 ,

fA(10 ) = .5 , etc.). It should be noted that this characterization

is subjective.

Definition 2: The union of two fuzzy sets A and B is a fuzzy set C,

written C = A u B, whose membership function is given by

fc(x) = Max[fA(x),fB(x)]

for x c .

Definition 3: The intersection of two fuzzy sets A and B is a fuzzy

set C, written C = A n B, whose membership function is given by

fc(x) = Min[fA(x),fB(x)]

for x £ Q .



Definition 4: A fuzzy set A

defined by

is convex if and only if the sets T

T = {xlfA(x) > a

are convex for all a E (0,1].

Definition 5: A fuzzy set A is bounded if and only if the sets

T = {xlfA(x) > a}

are bounded for all a > 0.

Definition 6: The maximal grade of a fuzzy set A, written M
A

is

defined

MA = sup fA(x)
x E£

Theorem 1: Let A be a bounded fuzzy set. Then there is at least one

point x 0 E g at which M
A

is essentially attained in the sense that,

for each E > 0, every spherical neighborhood of x0 contains points in

Q(E) = {xIfA(x) > MA - E } .

Definition 7: The core of a bounded fuzzy set A, written C(A), is the

set of all points in Q at which MA is essentially attained.

Definition 8: Let A and B be two

hyperplane. Let Kt cEll such that

bounded fuzzy sets and H a

fA(x) < KH on one side of H



and fB(x) < KH on the other side of H. Set MH = inf KH and

DH = 1 - H . DH is called the degree of separation of A and B

by H. The degree of separation of A and B, denoted D, is defined

as D = 1 - M where M = inf
H
MH .

Theorem 2 (Separation Theorem): Let A and B be bounded convex

fuzzy sets. Set C = A n B. Then D = 1 - MC (where MC is the

maximal grade of C).

Note that Theorem 2 says that the highest degree of separation of two

bounded convex fuzzy sets A and B that can be obtained with a

hyperplane is 1 - MC .

The above definitions and theorems are contained in Zadeh's paper; they

do not exhaust all of the material contained there. Wee introduces the

following definitions.

Definition 9: A fuzzy pattern class is a pattern class which is

a fuzzy set.

Definition 10: A semi-fuzzy set is a fuzzy set A such that

MA = sup fA(x) = Max fA(x) = 1
x x



Definition 11: Let A be a fuzzy set. The non-fuzzy section of A is

defined by NFS = {xlfA(x) = 1} and the complete-fuzzy section of A is

defined by COM = {xlfA(x) < 11 .

Definition 12: A

surface such that

equi-membership surface of a fuzzy set is a separating

points on the surface have equal grade of membership.

Recognition of Two Fuzzy Sets

The discussion that follows deals with the situation

there are two bounded and convex fuzzy pattern classes, A

be recognized.

Suppose we have a set X of training samples. Let

in which

and B, to

a E [0,1] and

define

LA= {xlfA(x) > a and fB(x) < a}

and

LB = {xlfB(x) > a and fA(x) < a}

We further assume that o can be selected so that X c L L
B
cQX = En.

Note that the separation theorem tells us that the lowest value of a that

can be selected is MAnB . In practice we seldom know MAnB .

Wee's algorithm is an iterative procedure for searching for

equi-membership surfaces until the complete set of training samples is

contained within these surfaces.



The first step separates the non-fuzzy section and the complete-fuzzy

section of the training samples for A(B). [Note that this step may not

be necessary] Separating boundaries are then generated to retain the

complete-fuzzy section of A(B). The retained training samples are then

mapped into Q = En. Separation of the non-fuzzy and complete-fuzzy
Y

sections of "A"(B) in Q (as in Q ) is then determined. The complete-
Y x

fuzzy sections of A and B are retained and are mapped into Q = En.
z

This procedure continues until Q is partitioned into two regions.
x

The algorithm converges in a finite number of steps. The algorithm

generates a set of discriminate functions which partitions Qx intox

two regions; generalization to any other point in Q is based on these
x

discriminate functions. The evaluation of this generalization must be

based upon experience.

Figure 1 gives a block diagram of the algorithm.

Figure 1: Block Diagram of Algorithm
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The training samples X are the input for Transformation Unit (TU) I

which is a polynomial transformation in many cases. The output of TU I

is a set Y c RQ which is sent (usually) to the general adaptive element

(GED). First the GED uses the generalized inverse algorithm (Ho and

Kashyap's algorithm [3]) to test the linear separability of the samples

and to find the separating hyperplane. If the samples are not linearly

separable Widrow and Hoff's algorithm [4] is used to generate a

minimum mean sequence error hyperplane H: XTW + W 0 = 0 . Note that

the distance from a point Xi. to H is di = XTW + W From the
1 3. 1 1

samples "close" to H and those erroneously classified, the minimum

and maximum distances from H are searched in order to obtain two

parallel separating hyperplanes H1 and H2. They are as follows:

H1: XTW + W0 - IWjd(max) = 0

H2: XTW + W - IWjd(min) = 0

The following decision rules are now implimented:

(1) P E A if pTw + W 0 > IWId(max)

(2) P E B if pTw + WO < IjW d ( m in )

(3) If P is such that IWjd(min) < pTw + W
0
< JWId(max) ,

send P to TU II. Let Y' represent the set of P's that were not

classified. Let Y.i E Y'. Then TU II transforms Yi E Y' into

Zi E "z = En . Two of the types of transformations used are as follows:
1 Z



IYTw + w 01

(1) Y. + Z = a

(2) Yij + Zij = exp{-a 

The set Z of Z.'s is then sent to the GED and the process continues.

(We remark again that the process terminates after a finite number of

transformations.)
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ABSTRACT

The purpose of this paper is to discuss the properties of a linear

discriminant function for the case of arbitrary distributions with

equal covariance matrices. Using two examples, a comparison is made

showing how the difference of the means relates to the covariance

matrices.
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In the solution of recognition problems the linear discriminant

function LDF of the form

d(x) = x' (PI 2)! (I�2 - (I + 2) (l -U2)

finds wide application, where the vectors in the n-dimensional space L-

of the recognized object, the mean values, and the general covariance

matrix of the distributions in question are denoted by x, ul, u2 and /_

respectively. The method of application of the LDF consists in deter-

mining the membership of the object x in the first class if xe R
I

=

{x I d(x)>0.t and in the second class if xE-L- RI.

The problem is to carry out the discrimination process efficiently

in the case of imcompletely known distributions, for identical covariance

matrix 5- = 2 = -- , since in practice the test of normality of multi-

dimensional distribution is rarely made. If,( = (Ul - u2),' :kP1 - Ju2)'

the interclass divergence, then the bound od p(c,), the probability of

misclassification, is given by

(I) p(cf)C_.(U, - U2)1'S(u, - u2) I+ ] 

for the upper limit and 0 for the lower limit. (For the proof we refer

the reader to 1.63 ).

If the recognized object x comes from the one dimensional space,

then the relation between the distance between ul and u2 and p(o)

can be easily computed. In order to obtain p(~)< for some e >O

(2) \ul - u2:> 21 ( 1 )2

Thus in order to compare two different problems with given covariance

matrices, consider the following numerical example.



, 2

Example I.

Let I = (4), 2 = (4) and C- = 1/10. From the equation (2)

we obtain lul - u2 1l212 for Z I butlY I - 2' 3 for - i n order

to have the maximum probability of misclassifioation less than or

equal to E = 1/10. Note that in each case the inter-class divergence

is 36. The Figure-I describes this example graphically.

-(1 Pz

I U12

Figure-I



In the case of multidimensional space, from the equation (I)

our scheme in comparison of two problems with given covariance

matrices is quite obvious. Leto( = (ul - u2 )'2_ (ul - u
2
), then

this equation gives the ellipsoid in the principle axes plane with

the length of the ith principal axis 2\.c , where M,,-\ ,

are the eigenvalues of E . Hence as long as the difference of the

two means Pl and Y 2 lies on this ellipsoid, the interclass divergence

will be constant and so the upper limit on the maximum probability

of misclassification remains constant also. It is clear that the

shape of the ellipsoid depends of the covariance matrix. The

dependence of the function p on the magnitude of the degree of

divergence of the classes o is shown in Figure-2. The curve denoted

by p shows the relation in the case of normal distributions.

I

8 Io i 2 + I 

Figure-2



Evaluation.

For arbitrary interclass divergence o the maximum probability

of misclassification of any classes using LDF with unknown ul, u
2

and _ is greater than the corresponding probability calculated for

multidimensional normal distributions with the same u , u
2

and 5_.

However, the maximum value of the probability of misclassfication

is a decreasing function of ( and tends to O as o e- c . The lower

limit of the probability of misclafication for arbitraryo( is equal

to 0, which signifies that cases may be encountered even for small

where the LDF constructed will classify without error. For (> 4

the probabulity of misclassification is always less than ½, i.e.,

in these cases classification bu means of LDF will always be better

than random classification with equal probabilit+es of assigning

the objects to the two classes. For 0 ,o( 4 the maximum probability

of misclassification for the two classes is greater than A, which means

the operation of the LDF may be poorer than random classification.
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In this paper we discuss linear programming and linear programming like

techniques as applied to pattern recognition problems. Our method will

be to summarize three relatively recent research articles on such appli-

cations. In particular, we summarize the main results of each paper,

indicating the theoretical tools needed to obtain them, and we include a

synopsis of the author's comments with regard to the applicability or

non-applicability of his methods to particular problems, including compu-

tational results wherever given. For more detailed information on the

methods mentioned here or other such techniques, the reader is referred

to the particular research article of interest.

The basic problem considered in all three papers is the following:

Given two sets of patterns A and B (we consider each pattern as a point

in En - Euclidean n-space), does there exist a surface in En which

separates A and B? That is, does there exist a surface in En such

that all the points of A lie on one side of the surface and all the points

of B lie on the other side? A special, but much studied, case of the

above question is: Does there exist a plane (hyperplane) in En which

separates A and B?

The paper is appropriately divided into three sections, one for each

article.

y 1- 4?Z
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1. Linear and nonlinear separation of patterns by linear programming.

Let A and B be two sets of patterns, the set A consisting of

m patterns, the set B consisting of k patterns, where each pattern

consists of n scalar observations. Assuming that each pattern represents

a point in `En , we wish to determine a surface in En that separates

A and B.

The author of this article, 0. L. Mangasarian, considers two methods

of attempting to separate A and B and states that a generalization of

his second method can be made. In particular, Mangasarian attempts to

separate A and B by:

(i)linear separation (by a plane); and

(2)a quadratic surface.

We now give a summary of the theoretical details and development of the

algorithm.

A pattern will be a row vector (xl,...,x ) in E , each entry x.1 n ' 1

called an observation. We represent a set A containing m patterns as

an m x n matrix, each row of which represents a pattern in A.. Using

this notation, our problem is to determine a surface in En such that if

the m rows of the matrix A and the k rows of the matrix B are

considered as points in E , then they fall on opposite sides of the

surface. Mangasarian states and derives his results for the linear sepa-

rability case and states two of the corresponding results for the quadratic

case. We follow his lead and restrict ourselves to the linear case.

Thus, we wish to determine a single plane



xd - y = 0 (1)

where d is an n-dimensional column vector of real numbers, and y is

a scalar (real number) such that

Ad - ey > 0 (2)

Bd - y < 0 (3)

Where e and Q are respectively m- and k-dimensional column vectors

of ones.

We now make the following definition.

Definition. Two sets of patterns A and B are linearly separable if

and only if there exists some d,y such that (2) and (3) are true. If

no such d,y exist, then A and B are said to be linearly inseparable.

Lemma 1. A and B are linearly separable if and only if there

exists an n-dimensional vector c of constants and real numbers a and

B such that

Ac - ea 2 0 (4)

-Bc + o (5)

- 8 > 0 (6)

f 2 c 2 -f (7)

where f is an n-dimensional column vector of ones.

Now, if a - B is considered as the objective function of the linear

programming problem with constraints (4), (5), and (7), we have the fol-

lowing theorem.
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Theorem 1. Necessary and sufficient conditions for linear separability

of A and B is that O(A,B) > 0 where O(A,B) is the solution of the

linear programming problem

O(A,B) = maxc a , a - 81 subject to the

constraints (4), (5), and (7)}.

Corollary 1. Necessary and sufficient conditions for linear insepa-

rability of A and B is that O(A,B) = 0.

(It should be remarked that the author suggests two possible approaches

in case A and B are linearly inseparable.

(i)A technique of eliminating points of A or points of B so

that those points remaining are linearly separable.

(ii)A technique which uses a finite number of planes to separate

A and B.)

Mangasarian then invokes the duality principle of linear programming

[8; p. 71-74] to obtain the analogues of theorem 1 and corollary 1. He

uses the latter analogue to obtain the following condition, which is simi-

lar to a condition of Highleyman [12] and Nilsson [22]. It is an immediate

way of determining linear inseparability, according to Mangasarian.

Theorem 3. (Dual Inseparability Criterion). Necessary and sufficient

conditionsin order that the sets of patterns A and B be linearly in-

separable is that the system



A'u - B'v = 0

etu = 1

I'v = 1

u 20

vŽO

has a solution, where u and v are m- and k-dimensional column vectors

and the prime denotes transpose. (e and I are as defined previously.)

Although the author does not present any computational results for

his method, he does make comments regarding its usefulness. He says that

the most widely used method for nonparametric pattern separation is

Rosenblatt's error correction procedure [26], [27] for linear separation

or a modification of it. [10])[21]. This method is based on a very simple

iterative procedure. One advantage of this method over his is its

simplicity. Its main disadvantage seems to be its inability to determine

inseparability of pattern sets when it occurs. This is a consequence of

the fact that the error correction procedure converges only when the pattern

sets are separable, a fact which is not known a priori. Since it is possible

to construct some simple examples for which the error correction procedure

converges very slowly, the problem of distinguishing between slow convergence

and nonconvergence may be a difficult one. Another advantage of his tech-

nique, Mangasarian says, is that it can readily be extended to separate

two sets by more than one plane or surface.



2. Pattern separation by convex programming,2

The basic problem considered in this paper by J. B. Rosen is the same

as that of section 1. However, the approach to the problem is different

and perhaps more complicated. Computational results are included; some-

thing lacking in Mangasarian's paper.

We summarize the techniques presented in the paper. Suppose that

A1,...,Ak are sets of patterns (point sets) in E . We wish to partition

En into regions such that each region contains at most one of the A..

The author considers two techniques.

(i)Given two pattern sets A
1

and A
2
, the author shows that in

order that A1 and A2 be linearly separable it is necessary and suffi-

cient that a certain convex quadratic programming problem be solvable.

Moreover, if Al and A
2

are linearly separable, then the author deter-

mines the distance between A1 and A2 and constructs the unique hyper-

plane which determines this distance. Extensions to k pattern sets are

given.

(ii)The second technique or problem which the author considers is

that of enclosing one pattern set in a "minimum" ellipsoid. Rosen defines

what he means by "minimum" and shows that such an ellipsoid is unique.

In the last section of his paper, Rosen gives computational results

achieved on certain problems.

The theoretical details of Rosen's paper are somewhat more complicated

than that of section 1. We summarize these details here, again omitting



proofs as in section 1.

For linear separability, the ideas are similar to those of Mangasarian,

except that Rosen uses convex programming rather than linear programming

to determine linear separability.

By a convex programming problem, Rosen means the minimization of a

convex function subject to linear constraints. Given two point sets

P1 and P2, we say P1 and P2 are linearly separable if and only if

there exists a hyperplane (plane in the terminology of sectionl 1)

H = H(z,a) = {p E E'n p'z = (X} such that P1 and P2 lie on opposite

sides of H, where z is an n-dimensional column vector in En, a is

a real number, and ' denotes transpose. Through a series of substitutions

and generation of equivalent problems, the author proves the following

theorem.

Theorem. P1 and P2 are linearly separable if and only if the con-

vex quadratic programming problem

a = min {1/4 Zn 2 el; -Q'y e2
y i=l Yi'lq y 2 - 2 2

has a solution. If P1 and P2 are linearly separable, then the dis-

X0
tance 6 between them is 6 = 1/,, and a unique vector yO = (B

achieves the minimum O. The separating hyperplane is given by H(Xo,sO) =

{p E EnIp'xO = 8
0
}

Although it is somewhat detailed, an explanation of the notation is in

order.

Let P1 be a point set; that is, a set of patterns. We think of

each pattern as being a point Plj in En , where



alj

2j

nj

Suppose that P1 has m1 elements and write P1 as the matrix whose

j column is PlJ. Thus P1 is an n x ml matrix. Similarly for P2,

another point set. The distance 6 between P1 and P2 is Euclidean

distance; Rosen claims that this distance will be the maximum value of y

(real number) for which a hyperplane H(z,a) exists such that

P'z > (a + 1/2 y) e1

PIz < (a - 1/2y) e2

1lZII = 1 (Euclidean norm)

where ' denotes transpose and el and e2 are ml- and m2-dimensional

column vectors of ones.

Letting z = x/llxll;a = y/IIx1I; y = 2/11xil, and arriving at an equivalent

problem to his original one, the author makes the following definitions:

y =(P

qlj = ( _1 ) for each j = 1,...,ml

( ) for each j = 1,...,m,2
q2j =( _ for each j = 1,.... m
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where m2 is the number of elements P2j in P2. (Note that y,qlj,

and q2j are (n+l)-dimensional vectors.)

Finally, define Q1 and Q2 to be the (n+l)xm1 and (n+l)xm2

th
matrices (respectively), whose j columns are qlj and q2 j (respec-

tively). Thus, we have the notation of the theorem.

Rosen then shows that if P1 and P2 are-linearly separable, then

basic subsets P1 c Pi, P2 ' P2 can be chosen such that: (i)P
1

and P2

determine the the same separating hyperplane as P1 and P2; (ii) the

distance between P1 and P2 is the same as the distance between P1

and P2; and (iii) P1 and P2 have the property that removing one or

more points from either P1 or P2 results in an increase in the dis-

tance between them. The author then generalizes his results to the

case of k pattern sets, k a positive integer.

For the ellipsoidal separation (nonlinear separation), Rosen wishes

to enclose a pattern set in a unique ellipsoid of "minimum" size. He

achieves this by minimizing the sum of the squares of the ellipsoid's

semi-axes. This is shown to be equivalent to the problem of minimizing

the trace of a certain set of matrices. The author proves that such an

ellipsoid is unique. Rosen then describes an iterative technique of

determining this "minimal" ellipsoid. The procedure is to alternatively

solve two convex programming problems, each of which involves the minimi-

zation of quadratic forms. Finally, Rosen shows that this procedure

converges to the unique solution.

The author is quite detailed with regard to computational results

of his techniques and in suggestions for overcoming computational problems.



We will not detail these here. Computational techniques and the corre-

sponding computer programs have been developed for each of the two

methods presented by Rosen ([9], [25], [6], [23]), and computational

results for particular problems are given. (see [6], [23]). Computer

times seem quite good, although the size of the problems Rosen considers

in his computational work may account for this. Finally, Rosen makes no

comparison of his techniques with others.

3. Pattern classifier design by linear programming.3

This paper by F. W. Smith is probably the most detailed of the three

papers reviewed, as far as examples and computational techniques and re-

sults are concerned. Smith considers the same problem as that of the

previous two sections. However, his work is almost exclusively for the

linearly separable case; only brief mention is made that his techniques

extend to the linearly inseparable case.

Smith's approach to the problem differs from that of the previous

two in that he attempts to determine the separating hyperplane subject

to the minimization of the mean error function. [15], [16]. Two types

of the fixed-increment adaptive method; namely, the steepest descent

design method [15], and the one-at-a-time design method 115], [17],

[22] are considered. Both of these methods are iterative type techniques.

The author formulates this approach (that is, minimizing the mean error

function) as a linear programming problem and then compares this formu-

lation with the two previously mentioned fixed-increment adaptive

methods. Computational results, suggestions for handling special types of
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problems; suggestions for overcoming computational difficulties, etc. abound

in the paper.

We briefly summarize the author's. approach to the problem. Smith's

formulation of the problem as a linear programming problem and his many

comments and suggestions for special cases made in doing this are too

detailed for the purposes of this report.

Let A = {T1,...Y K}; B = {Zl.. .,ZM} be two sets of patterns. As

in sections 1 and 2, each Yi and Zj is considered as a point of En .

We wish to find a W -En and a real number d such that

(1)
k kkYk W >, d and -Z k l

(Smith calls d a scale factor 117], which for the purposes df this paper

was taken to be 1.)

The mean error function, h, is defined by

-~ IC k ZK+M
k = 1 khk + k=K+1 khk

where h
k

is the pattern error function associated with

Yk' if k = 1,...,K

and associated with

Zk - K' if k = K+1,...,K+M,

and Tk is a weighting coefficient for each k.

For the fixed-increment adapter method hk is defined by:
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hk = -W- d) if Xk < d

= 0 if XW 2 d

where W is an n-dimensional column vector of En and

X
i
= Yi for i = 1,...,K

XK+i = -Z1 for i = 1,...,M.

En TNote that if WeE and if W is such that XkW 2 d for each k, then

hk = 0 for each k. Thus, h = 0, and W satisfies (1).

Each of the two techniques with which Smith compares his method

are initiated by choosing an arbitrary (but Smith suggests it can be

well chosen) W. One then proceeds by incrementing the initial W,

subject to the criteria of minimizing h. The main content of Smith's

paper is the detailing of the formulation as a linear programming pro-

blem the problem of determining W subject to the criteria of minimizing

h.

The author's primary comments on computational results are comparisons

of his linear programming technique with that of the steepest descent and

one-at-a-time design methods. He is quite detailed on this, giving:

conjectures for when one method is better than another; calculations for

the computer time required for a given, but arbitrary problem; suggestions

for methods of handling certain types of problems, as well as computational

results with time and accuracy comparisons for the three techniques.

The author also gives suggestions on how to eliminate some of the

elements in the pattern sets in order to reduce computer time, but still
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arrive at the same, or nearly the same, W as one gets using all the

patterns.

Finally, the author comments that he thinks his techniques should

extend to the nonseparable case; however, all detailed computational

results are for the linearly separable case.

While it is not our purpose to judge the merits of these linear

programming type approaches with regard to the pattern recognition pro-

blems of MSC and NASA, some comments can be made.

While a nonstatistical approach. to the pattern recognition problems

of MSC and NASA is somewhat questionable, there may still be some partial

utilization of such an approach.

An application of theorem 3 of section 1 might be useful for consider-

ing pattern sets that one suspects to be linearly separable.. Mangasarian

claims this to be an immediate way of determining linear separability.

The techniques suggested in section 2 have the advantage over those of

section 1 in that commuter programs have already been developed for them.

The idea of enclosing a pattern set in a minimal ellipsoid is applicable

in the linear inseparable case and perhaps would have application in,

at least, special problems. The approach suggested in section 3 is dif-

ferent than those of sections 1 and 2, and appears to perhaps have more

potential than the first two. Computer programs have also been developed

for this technique.
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FOOTNOTES

+Mangasarian, 0. L. "Linear and nonlinear separation of patterns by

linear programming"', Operations Research Soc. of America Journal, 13,

No. 3, 444-452 (1965).

2Rosen, J. B., "Pattern separation by convex programming", Journal

of Math. Analysis and Applications, 10, 123-134 (1965).

3Smith, F. W., "Pattern classifier design by linear programming",

IEEE Trans. On Computers, vol.C-17, No. 4, 367-372 (1968).
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INTRODUCTION

A cluster seeking technique is a method of dividing

data into subsets, called clusters. These clusters contain

data points that are "similar" to each other and "different"

from the elements of other clusters. The methods for

determining the clusters differ in a variety of ways.

Basically these methods all stem from the inadequacy

of the most commonly used statistics (the overall mean,

covariance, and correlation) when the distribution is

non-Gaussian. It is relatively easy to construct data

sets which, when plotted, appear quite different but whose

covariance matrices, for example, are identical [33.*

Moreover, the classes into which it is desired to sort

data are usually those established by human perception,

and it has been argued that the usual statistical descriptors

have little perceptual significance [301.

Notation,

In the sequel, Xj will denote the j-th data vector or

pattern. N will be the total number of patterns. If the

patterns are members of a finite dimensional vector space,

* Bracketed references refer to entries in the
bibliography.



D will denote the dimension and XJ(i) will denote the

i-th component of Xj as a member of ED . Si will denote

the similarity coefficient between the i-th and j-th

patterns, and dij will denote the "distance" (not necessarily

a metric) between them.

Since the measure of similarity is crucial to all

the cluster seeking techniques, some of the various measures

that have been used are summarized in Table 1 U3,537.
Some of the algorithms may be applied with any of the measures,

while others are more specific.

The various cluster seeking techniques have been broken

down into seven categories: [32

1.Probabilistic

2.Signal Detection

3,Clustering

4.Clumping

5.Eigenvalue

6.Minimal mode seeking

7.Miscellaneous

In the following sections of this report, each category

will be described and one or more algorithms of that type

will be presented.
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TABLE 1

MEASURES OF SIMILARITY

Dot Products sij

Similarity Ratios Rij

= xi.xj

= xi.xj

Weighted Euclidean
Distances

Unweighted Euclidean
Distancet

-k1 Distances

Component Correlations

Normalized Correlations

Coefficient of Correlations

Sij = Rij/(Rii+Rjj-Rij)

dij = -log Sij

dij kD1 wk(l (k)-Xj(k) )2

dij = D (Xi(k)-Xj(k))

dij = lXi(k)Xj (kk)>

sij = 1 l _ kl[l- IX (k)-XJ(k)O
·

1where r-2l is correlatio(1 (1

where rkl is correlation

coefficient between components k & 1.

Sij = xi.xJ/ (xi.xi)(xJ.xj )

Sij = k (Xi(k)-uk) (Xj(k)- u k)

where uk is the overall mean of

the k-th component.
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TABLE 1 (Continued)

Coefficients of Associations For binary data, n will denote

number of, a capital subscript denotes '1' and a small

subscript denotes '0'.

1. nJK/(nJK+nJk+njK)

2. (nJK+njk)/D

3. njK/D

4. 2nJK/(2nJK+nJk+njK)

5. 2(nJK+njk)/(2(nJK+njk)+nJk+njK)

6. nJK/(njK+2(nJk+njK))

7. (nJK+njk)/(nJK+njk+2(nJk+njK))

8. nJK/(nJ+nK-2nJK)

9.(nJK+njk)/(nJkInjK)

10. i( (njK/n)+(nJK/nK )+(njk/n
j
)+jk/n k ) )

11, E((njK/nj)+(njK/nK))

12o nJK/4n Jn K

13, nJKnjk/\ JnKnj7nk

14. (nJK+njk-nJk-njK)/D

15. (nJKnjk-nJkn jK)/(njKnjk+nJknjK)

16. (nJKnjk-njKnJk)/(nJnKnj nk)



PROBABILISTIC

Probabilistic cluster seeking techniques are primarily

analytical studies. The probability of occurance of a pattern

is estimated and then a weighted combination of patterns

is used to estimate probability distributions.

The following algorithm developed by Fralick is typical C22~e
Suppose there are M possible classes Wl,..,wM,S and

associated with each is a conditional probability density

p(X/wi) which is known except for a single parameter $i

that is, assume p(X/wi,Qi) is known. Assume also that the

a priori probabilities of occurence p(w
i
) are known, that

the a priori distribution of i, po ($i) is known, and that

ii can assume only a finite number of values. Then the

desired density can be determined as followss

Pk(Xk +l/Wi) =SP(Xk+l/wii )pk(ei) dQi

where iP(Xk/wi,Wi)p( Wi) + jIiPk_1(Xk/w j )p(wj .)

p~k($ i
) = P.l($i)° .'pk-l (X/wj )p(Pwj) 

For the case of an unknown signal in noise, he proves

that pk(Xk+l/wi)Y>p(X/wi). However, the amount of computation

and storage required is considerable, particularly for multi-

variate problems. Moreover, in the case where the class

a priori probabilities are all the same. the initial selection

of the probability distributions for the various classes

must be different for "learning" to occur [21o



Other probabilistic techniques are discussed in 17,45,16A



SIGNAL DETECTION TECHNIQUES

Signal detection techniques grew out of a desire to

detect unknown signals in noise. The final decision is

based on correlation detection to estimate parameters of

a matched filter.

The following algorithm of Jakowatz is typical r29xs

A sample waveform M is stored in the memory of a

correlation detection device. When the dot product

b(t) = M(t).X(t) of the incoming wave X exceeds a threshold

bT(t), the waveform in memory is modified as followse

Let t
i
be the time at which memory is changed. Then

M(t) =(gM(ti.1)eids+X(ti))/(g+l) where g depends on a

capacitor ratio, d is a time constant associated with the

memory device, and s = t-ti.1 for ti.t)tti.1.

The threshold grows with successful detection and decays

with failure to detect.

Other signal detection techniques may be found in

[25,54,51J. All of these are primarily used for signal

detection and as presently conceived their utility outside

this area seems limited. One severe problem is the use

of energy detection to start the process going. There is

a definite thresholding effect for weak signals, and

apparently a minimal adaptable signal, which may be

a function of signal waveform,
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CLUSTERING TECHNIQUES

Clustering techniques can be characterized by sorting

of patterns using multiple cluster points, Tentative

assignments are made to clusters and these assignments

improved until the centroid of the cluster adequately

describes the data. Since these techniques vary in a

number of ways, several algorithms will be presented here.

Okajima proposed the following algorithm for use with

electrocardiagram data 143§1
Step Number Step Description

1 The data vectors are arranged in random

order and a bank of memory filters 3M9 is
initialized to zero.

2

3

The incoming data vector X is selected

and weighted (if desired).

The correlation X'M/((X'X)(M'M)) with

each used memory filter is computed and

a memory filter M is selected which gives

the maximum correlation.

If this maximum correlation exceeds a

predetermined threshold, the filter is

modified by the rule, If Xi is the i-th

pattern entering the same filter M, then

M = (1/i)(X 1 +X2+...+Xi)

4



5 If not, the data vector goes into a new

filter.

6 Repeat 1-5 until all data has been examined.

The algorithm depends on the threshold, the weighting,

and the order in which the pattern vectors are selected.

Algorithms very similar to this have recently been proposed

using different measures of similarity E40,48,593. These

"one-pass" techniques are definitely time-savers t34L.

Sebestyen is concerned with computing a probability

distribution based on the sample data [49,501. A pattern

is selected and compared with existing cluster centers.

The measure of similarity is a weighted Euclidean distance

with the weight depending on both the component and the

cluster. The minimum distance of the pattern from a

cluster point is compared with two thresholds. If the

smaller threshold is not exceeded the pattern is added

to that cluster and a new mean for the cluster is computed.

If the larger threshold is exceeded, a new cluster is formed

using that pattern as its centroid. If the pattern distance

is between the two thresholds, the pattern is temporarily

rejected and will be considered later on in the process.

This algorithm is computationally complex, and very sensitive

to the weight factors.

The ISODATA program of Ball and Hall 5,.6,71 has

recently undergone comprehensive study t27,31,32,33J.
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The version presented here is the "final" version

recommended in C341.

The ISODATA Algorithm

O. Initialize

Loop 1. CLASSify and calculate STATistics

2. Change cluster structures

2.1 DELETE

2,2 If iteration is a split (S) iteration, SPLIT, and

go to Step 3; otherwise continue.

2.3 COMBINE

3. If iteration is the final one in the SC sequence, STOP;

otherwise, go to Loop for the next iteration.

Before the subroutines mentioned above can be explained,

some notation must be developeds

SGMAX Maximum standard deviation allowed in a

cluster, larger than which the cluster is

split.

DLIM Minimum distance between two clusters, less

than which they are combined.

NCLUSTR Number of clusters at any particular iteration.

NDATA(I) Number of data points in the i-th cluster at

any particular iteration.

NMIN Minimum number of points in a legitimate

cluster.

NTOTAL Total number of data points in the input.



SC sequence Split(S) and combine(C) sequence.

u;i ,Sii Mean and standard deviation of the i-th

cluster along the j-th coordinate.

Initializes Input values for SGMAX, DLIM, NMIN, SC sequence,

and a starting procedure. The default option

sets SGMAX = 4.5, DLIM = 3.2, and NMIN = 20.

If no starting procedure is specified, the

SC sequence = SSSCSCSCSCSCCC, NCLUSTR = 1,

and uj1 = 0 j =,...D.

CLASS and STATi From the previous iteration there are left

NCLUSTR cluster centers. The subroutine

reclassifies the data points to their

respective closest reference points, using

A1 distance. The means and standard

deviations of these new clusters are itera-

tively accumulated at the same time the

points are assigned.

DELETES This subroutine deletes the existence of a cluster

when it contains less than a prespecified minimum

number of points (NMIN).

SPLITs This subroutine splits a cluster along the j-th

coordinate by creating two clusters with centers

i i ( i iu if
at (uliu2 1 ,..,uuji sj OUi

(i)Its standard deviation along the j-th coordinate

is larger than SGIMAX; and if (ii)It has more than
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2(NMIN+1) data points.

COMBINEs This subroutine combines two clusters if the

distance between them,

d(uPuq) = £ (1/sjPsjq)(ujP.ujq)2

is less than DLIM.,

Although reasons are given in7347 for the use of three

different distance measures in the same program (computational

simplicity), the logic behind mixing 41 for distance from
data to cluster, 9 2 for standard deviation of cluster, and

a weighted R2 for distance between clusters, is difficult

to follow, The user specified thresholds have a great

influence on MB clusters formed, although the iterative

nature of the algorithm somewhat ameliorates this.



CLUMPING

In these techniques a single pair of patterns is selected

as a nucleus for a clump of patterns. Other patterns are

assigned to this clump on the basis of the similarity measure.

Genrally speaking, these techniques require the calculation

of all pairwise similarity coefficients, forming a similarity

matrix, and some of these must be recalculated after each

new combination.

Several "clustering by linkage" techniques have been

suggested U9,52,53j. All involve first calculating a

similarity matrix, The nucleus of a cluster is established

using those two patterns with the highest similarity

coefficient. Then patterns are added to this nucleus one

at a time. Single linkage calls for admitting a pattern

if its similarity coefficient with any one member of the

cluster exceeds a threshold, Iterative improvement is

provided by recalculating the mean similarity both within

groups and between groups. Complete linkage requires that

a pattern joining a cluster must have a value above the

threshold with all members of the cluster. If there is a

choice, it should be made first to give the larger group,

second to have fewest residual patterns, and third to give

the highest average similarity coefficient, After each

iteration a new similarity matrix is calculated using the

means of the clusters. Clustering by average linkage
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bases admission on the average similarity of that pattern to

all members of the cluster. If an admission would lower this

average similarity by more than .03 (an empirically determined

value) the pattern should not be admitted.

Rogers and Tanimoto use a function related to information

theoretic entropy as a criterion for clustering binary

patterns [46\. Their algorithm is as follows,

Step Number Step Description

1 Compute Rij = XioXj

Sij = Rij/(Rii+Rjj Rij)

H i = j (-log2 sij)
j=1

Ri = # of pattern vectors j such that

Rij O.0
2 Now rank all patterns, first in order of Ri,

and then, for those with equal Ri, in order

of Hi.

3 Let dij = -log2 Sij and form the distance

matrix M.

4 Let En(M) = -i (dij/Tn(M))(log2 (dij/Tn(M)))

where Tn(M) = J( . dij) and I' denotes
ij

summation of the finite terms of M, after

repeated rows and columns have been deleted.

5 Let g be the number of zeros above the diagonal

of M and h the humber of infinite terms

above the diagonal which are not in the same



row or column as one of the g zeros. Set

Fn(g,h) = log2((n-g)(J)(n-g-1) - h) and

Un(M) = 1 - (En(M)/Fn(g,h)).

Un is a measure of heterogeneity.

6 If Un(M) is near one, clusters do exist and

the process proceeds by selecting Xio, the

highest ranked pattern, and XO°, the second

highest.

7 Consider all patterns Xi with dio.j · dij ,

and determine U for this subset, If

U is small, add Xjo to the clump and

recompute U for the larger clump. Continue

until U takes a large jump, indicating the

end of a clump. Remove those cases nearest

the edge and start a new clump.

Bonner proposes two methods Cll. They are both of

sufficient interest to be presented here.

The first method involves computation of a similarity

matrix. This matrix is then "thresholded' by comparing

each entry with a predetermined constant (eg. .45). If

the threshold is exceeded, a one is entered in the

corresponding position in the new matrix. Otherwise a

zero is entered. This new similarity matrix is then

manipulated according to the following algorithma

CLUSTER Is The similarity matrix is now regarded as a set

of binary patterns and its similarity matrix
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is formed using the following measures

If Cij is the number of ones the i-th and j-th

pattern have in common, then

Sij = Cij/(Cii+Cjj-Cij).

This new matrix is then thresholded. This process

of taking the similarity matrix of the similarity

matrix may be repeated as often as desired, hopefully

until stabilization is reached.

CLUSTER III The input here may be the original matrix, or

the result from CLUSTER I. First "tight"

clusters are formed in which all members are

similar and no nonmember is similar to all. Then

using the tight clusters a set of "core" clusters

is located in which no object is in more than

one cluster and all objects in a cluster are

similar. Finally, a cluster adjustment program

attempts to build around the cores.

Algorithm for tight clusters: This algorithm keeps track of

three things at each level of buildups

1., The set of objects (Ai) in the cluster to this point.

2, The set of objects (C
i
) which could possibly be added

to Ai to further increase the cluster.

3. The number (Li) of the last object C
i
to be considered

for addition to the clustero

These three things are stored for each i which is smaller than

or equal to the present i. Also needed is the similarity matrix
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where SLi = Xj

Step Number

1

2

3

4

5

6

8

SLi j= 13.
Step Description

i = 1, C
1
= all objects, A1 = 0, L1 = 1.

If XLA Ci, Li=Li+1 and go to Step 5. Other-

wise continue to step 3.

Ci+l = cifl Li - +l
Li+

1
= Li+1, i = i+l

Is Li greater than the number of the last

possible object? If so, go to Step 6, if

not go to Step 2.

If Ci = 0, store A
i
as cluster. If not,

Ai is a subset of a cluster already found

and so need not be stored. In any event,

T A
i

.

i = i-1. If i = O, STOP. Otherwise, go to

Step 8

Ci = tXj Xi f Ci and j > Li. Is Ci T?

If yes, go to 7. If not, go to 2.

Algorithm for core clusters8 Let i be the alternative index

and j the buildup level.

Step Number

1

Step Description

Find the tight cluster having the largest

number of members and store it as the first

core. Set j = 1. If there is a tie for the

largest cluster, go to Step 9,



2 i=l

3 Find the tight cluster having the most

members different from the total set of members

in all stored "core" clusters of alternative

i of buildup level j. Call this its

difference set. Call the cluster itself

a maximum distance cluster.

4 If this difference set is larger than that

of any of the other alternatives of buildup

level j yet considered, drop these alternatives)

consider only the present alternative and

go to Step 5. If it is smaller, drop the

present alternative and go to Step 6. If it

is the same as that of other alternatives of

buildup level j, consider all still as

possible alternatives and go to 5.

5 If there is only one maximum distance

cluster, store its difference set as the

next core cluster for alternative i and

go to 6, if there is a tie, go to 8.

6 Have all alternatives of buildup level j

been considered? If so, go to 7. If not

i = i+1 and go to 3.

7 For any given alternative, are all possible

objects in one of the core clusters? If

so, print out the core clusters for all
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alternatives and STOP, Otherwise,

j = j+1 and go to 2,

8 Of the set of clusters in the tie, pick

the smallest and store its difference set

as a core for alternative i and go to 6.

If there is still a tie, go to 9.

9 Form a dissimilarity matrix for the clusters

in the tie, where two clusters are considered

dissimilar if their difference sets

contain no common member. Find all the

tight clusters for this matrix. Each tight

cluster here will represent a set of the

original tight clusters whose difference

sets are disjoint, Store the largest such

set of difference sets as a set of core

clusters. If there is a tie, all alternatives

will be followed in the hope that subse-

quent choices of cores will favor some

alternatiws over others. They are therefore

added to the alternative list of the next

level of buildup. Note that it is possible

that more than one core will be added to

each alternative by Step 9. By convention,

this addition is still treated as one level

of buildup. Go to step 6.
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Cluster Adjustment Programs Specify a criteria for judging

a cluster as "large".

Step Number Step Description

1

2

3

i=1

j = 1

Consider the j-th member of cluster is

Compute from the similarity matrix the

number of objects in the first large

cluster to which this j-th object is

similar. Divide this by the number of

objects in the first large cluster to

produce a percentage match of the j-th

object to the first large cluster.

Compute such a percentage match of the

j-th object with each of the large clusters

and with each of the small clusters already

considered.

Are any of these matches above some

threshold (eg. .8)? If yes, go to 5, if

not go to 6.

Delete the j-th object from the small cluster

and put it into the cluster offering the

best match.

j = j+l. Have all members of cluster i

been considered? If no, go to 3, if yes

go to 7.

4

5

6



7 i=i+1, Have all clusters been considered?

If no, go to 2, If yes, go to 8.

8 Iterate this entire procedure as many times

as desired with the hope that stability

will be obtained.

9 Compute for all remaining pairs of clusters

Ci and Cj, a measure of their interaction,
Ni

Iij = (1/NiN ) a l Sab

where Nk is the number of objects in the

k-th cluster, Sab = 1 if object a in Ci is

similar to object b in Cj, and Sab = 0

otherwise. A measure of value for the

i-th cluster is then

V i = Iii - (1/NR ) R i

where NR is the number of clusters other

than the i-th. For the whole set

V = (1/NR+1) rR+ 1 Vi

Bonner admits that this procedure becomes difficult as

the number of clusters becomes large and when "ties" occur

frequently in the core building subprogram. He presents

the following rather ingenious alternative. He states

that he has a program for this algorithm which can handle

2000 objects of 360 binary variables each and which averages

3 minutes of computer time.

Consider a cluster of Nk patterns. Define
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V/Nk) where ui = (1/N) _ xJ(i) ,

(ui)k = (1/Nk) Xi(i) where jo is the index set
j over jo

for the objects in the cluster,

Si2 =N (Xj(i)-ui)2/(N1).

Using as -distribution, calculate the probability P that

G ? Gke
Step Number

1

2

3

4

Step Description

Pick an object to act as a cluster center,

Find the similarity coefficient between

this pattern and all others. All objects

more similar than an arbitrary threshold T

are considered to be in the crude cluster.

Compute the centroid of this cluster.

Compute the expected number of clusters

rarer than this to be found in an

uncorrelated population, as given by

NkPI, If this number exceeds a preset

number K, go to 7. Otherwise, "hill-climbing"

will be done in 4.

Find the similarity between the centroid and

all other objects using the followings

Add up the weights ((ui)k-ui)2/(si2/Nk)

of all attributes i where there is a bit

match between an object and the centroid.
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If this sum is greater than a certain

percentage Y of Gk, then the object is

judged as similar to the centroid. All

objects similar to this centroid are now

members of the new cluster.

5 Is this cluster the same as the last? If

so go to 6, otherwise to 3.

6 Store the stable clusters as final clusters.

Delete each member of the cluster from

consideration as a future cluster center.

7 Have all allowable objects been used as

cluster centers? If not, pick one and go

to 2g if yes, STOP.

Bonner used both these algorithms on some disease

symptom data and got similar results. The same results,

with one notable exception, were also found. through a

standard factor analysis.

Ward describes an algorithm which repeatedly combines

those patterns which maximally increase an "objective

function" o0,61i . This function is supposed to

measure the remaining information when two sets are

united into one (assuming maximal. information corresponds

to singleton sets). For example, when the patterns are

grouped into one, he suggests ESS = Xi'Xi -(1/n)( PXi
' .xi).

1 i 1

It is necessary to know in advance the number of clusters
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to be formed. Let Pi.1 be the smaller and qi-
1
be

the larger of the two numbers used to identify the

subsets S(p ,i) and S(qi.li) at the i-th stage. T.
. i-i

s(pi.1 ,i-1) = S(Pi_,i)V S(q
i l

,i), and the associated

objective function is Z(pi.l,qi_li-1).

Step Number Step Description

hen

k = N

Z(Pk,ltqk l,k-1) = initial value worse

than all others, i = smallest active index.

j = first active index>i.

Compute Z(i,j,k-1)

Is Z(i,j,k-1)Y Z(Pk-1 tqk 1 ,k-1)? If yes

go to 6, if no, go to 7

Z(Pklqkql k- l) = Z(i,j,k-l), Pk. 1 = i,

qk-1 = j'

Is j = last active index? If not, set j =

next higher active index and go to 4. If

yes, go to 8.

Is i 5 next to last active index? If not,

set i = next higher active index and go

to 3. If yes, go to 9.

Identify the union by Pk-_ and make

qk-1 inactive.

Is k = N6cIi3If so, stop. If not, k = k-i an(

go to 2.

d

1

2

3

4

5

6

7

8

9

10

X- 24
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Fisher examines all possible partitions on the real

line and selects that partition which minimizes the

weighted square distance from the cluster center E19j.

For an ordered collection of patterns he proves two lemmas

that allow him to reduce the number of partitions he must

consider. He has a program for his algorithm for N 200

and the number of clusters (assumed known) is less than 10.

He remarks that even with these size restrictions there

are still a number of sources of difficulty.

Sawrey proposes the following for psychological

data C47 .

Step Number Step Description

1 Form the distance matrix

2 Select potential clusters,

Decide on a similarity threshold (eg.

,(sj/2)2 where sj is the standard

deviation of the j-th component).

Construct a chart of the N patterns, listing

with each all others that are similar,

Select as a nucleus any two or more,

beginning with the largest number of

similar patterns.

When a pattern or one similar to it is

selected, it is deleted from the chart.

Select dissimilar clusters:

Decide on dissimilarity threshold

2.1

2.2

2.3

2.4

3

3.1
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(eg. fsj2),

3,2 Construct distance matrix of selected

patterns for nucleus group.

3.3 Sum all columns, selection beginning with

the largest, When selected, all patterns

that are not dissimilar are removed.

Continue until all are gone.

4 Compare and add remaining patterns as

follows ,

4.1 Find centroid of each group.

4.2 Make a chart of all possible additions

(those that are not dissimilar)

4.3 Find distance between possible additions

and nucleus.

4,4 Set several thresholds, (1/4) j2, (1/3)%sj2,

(1/2)4.5 Add 2, (34)those patterns closer than the first
4.5 Add those patterns closer than the first

threshold, except that if a pattern could

be added to more than one group, it should

not be added to any.

4.6 Recompute centroid, determine the new

distances, and add those less than the

second threshold.

4.7 Continue until all thresholds have beer

used.
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McQuitty has a somewhat more stringent definition of

a cluster or "type" 581. A type is a set such that every

one of its members is more like the other members of the

type than like any other nonmember. In order to locate

these types, first the similarity matrix M must be

calculated. The entries of the matrix are then listed in

order, omitting the diagonal, from the largest to the

smallest.

Step Number

1

2

3

4

5

6

7

8

9

Step Description

Let T1,T2,... be the types found so far.

Let C1,... be the categories "expanded" in

finding the types T1,T2,..., which have not

qualified as types.

Let T1 ,T2 ,... denote the first, second, etc.

times a category requalifies as a type.

Let Xa and Xb be the two patterns corresponding

to the highest similarity score.

Since Sab> SaySby for any other pattern XY,

Xa and Xb form a dyadic type T1.

Let Xc and Xd be the pair corresponding to

the second highest similarity coefficient.

If either XC or Xd is Xa or Xb, assign

all to C1.

If not, then XC,Xd constitute T2.

Let Xe and Xf be the pair for the next

highest coefficient.
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10 If Xe is any of the preceding patterns,

assign it to the corresponding C
i.

11 Repe'~ for X f.

12 If Xe is in one category and Xf in another,

then neither category can qualify as a type,

so combine the two categories into one.

13 If Xe or Xf is in a category, but the other

is in neither, then assign both to the

categor.y in which the one is found.

14 If both Xe and Xfare in the same category,

leave them alone.

15 If either 13 or 14 occured, the categories

must be continued.

16 If neither Xe nor Xf are in the previous

categories, start a new category C.

with them in it.

17 Repeat for all ranked patterns in the

order of their rank withall categories

operative at the time the pattern is

considered.

McQuitty claims to prove his method works, but he does

not provide for ties in the ranking.

Other clumping algorithms may be found in

1 0244,41v1g2v36e12,35928].
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EIGENVALUE

Eigenvalue techniques, unlike the other techniques, are

noniterative, They depend on calculation of a matrix

associated with the pattern and determination of one or

more of its eigenvalues and corresponding eigenvectors. The

early effortS in this direction involve estimation of the

covariance matrix followed by its diagonalization and

factor analytic techniques [8,56.57,581. Since a large

number or samples are required, especially as the number

of dimensions increases, the computational aspects are

formidable.

Nunnally is in some sense intermediate between the

clumping techniques and the eigenvalue techniques L4i1.

He constructs a distance matrix rather than the classical

covariance matrix, but he does use the eigenvectors of

the matrix to define the clusters. All patterns are

examined with respect to the eigenvector basis and those

with which many patterns are highly correlated are selected.

Cooper F13,14,15X and Mattson 271 both find clusters

by finding the maximum eigenvalue of the covariance matrix

and splitting patterns on the basis of correlation with the

corresponding eigenvector. Both papers are essentially

limited to the two category case.

Cooper is more analytic in that he proves, for specific

distributions, that the hyperplane determined by the sample
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mean and principal eigenvector of the covariance matrix does

define the optimal partition. However, he does depend

heavily on a number of assumptions regarding the nature

of the data. The cases he treats are those in which the

two cluster. distributions ares (1)univariate normal with

the same standard deviation! (2)spherically symmetric

multivariate normal with equal covariaxnce 3)multivariate

normal, either with diagonal covariance matrices or with

one mean known. He mentions that the analysis for the K

category case is very complicated, Here hi only result is

that for K spherically symmetric distributions differing only

in location, the number K can be determined from the

multiplicity of the smallest eigenvalue of the overall

covariance matrix. This is interesting in that much

earlier Young i621 proposed the dispersion of the

eigenvalues of the covariance matrix as an "index of

clustering", and gave a method for determining the number

of clusters based on this dispersion.

In a sense, Mattson took Cooper's idea a step further,

Making no assumptions regarding the underlying distributions,

he suggests the following procedure: Find A = (aij)

where aij = ~ (Xk(i)-ui)(Xk(j)-uj), ui being the corresponding
k=1

component of the mean. Find the largest eignevalue of A and

the corresponding normalized eigenvector, w. Then use

S = kt X(k)w(k) and a threshold T. If S 7T, X is in case



1, if SLT, X is in case 0. For more than two categories,

he suggests constructing a "network" of these linear

threshold elements and using them to produce a binary code

word for each class.

For those not mathematically minded, the relaxation

of assumptions "make the Mattson technique particularly

useful" as an "excellent example of combination of analytical

and intuitive approaches" 1. However, for those

concerned with rigor, it is unavoidable to wonder at

the logic of applying the method when the covariance matrix

is not an adequate reflection of the data (a point which

Nunnally also raises).
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MINIMAL MODE SEEKING

Thesn techniques require categorization information to

work. A new mode is created only when patterns in one class

are nearer to a mode of a different class. Pattern density,

as such, is not used in cluster seeking.

Firschein /183 partitions classes into subclasses so tk t

each member of a particular class is closer, in the sense

of high dot product, to the centroid of its own subclass than

to the centroid of any other subclass , Unlike previous

procedures, this method does not require the specification

of an arbitrary fixed distance as a criterion for membership

in a subclass, nor is it necessary to specify the required

number of subclasses beforehand.

The algorithm begins by setting subclass equal to class.

The centroid of each subclass is computed. Each vector

in the first subclass is dotted with every centroid to form

a dot product arrays (aij) = Xiuj = #components agree-#compo-

nents disagree. Considering each row in the array, determine

if the corresponding pattern

Class II Has highest dot product with centroid of its

own subclass.

Class II, Has highest dot product with centroid of

another subclass in the same class.

Class IIIs Has highest dot product with centroid of

another subclass of a different class.



If Case I, go to next vector.

If Case II, put vector is subclass with highest dot

product and recompute the centroids and dot products for

the revised subclasses. All asterisks (see below) are deleted

and the procedure returns to the first vector.

If case III, an asterisk is placed next to the vector

and the next vector is examined.

When all vectors in a subclass have been examined,

the *vector (if any) with lowest dot product with its own

subclass is chosen as centroid for a new subclass and all

asterisks are deleted. Centroids and dot products are

recomputed. Go back to first vector and repreat until only

Class I vectors remain, or until an arbitrary number of

iterations has been performed.

This technique appears useful when the pattern subclasses

are linearly separable. However, some modification is

necessary if classes are badly overlapped and intermixed.

Steinbuch forms subclasses if the distance between a

pattern aid a mode of its particular class is greater than

a fixed threshold [55]. The procedure is iterated until

adequate separation is achieved or other constraints are

satisfied. He seems primarily concerned with a description

of the "learning matrix" itself, rather than how it works

and its limitations.
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MISCELLANEOUS

Certain techniques do not fit neatly into any of the

above categories.

The technique of Block 1-031 utilizes a high probability

of contiguous runs of patterns in a time sequence being

from the same class to adjust the machine to a particular

mode, This high probability of runs provides marginal

"teacher information"

Bledsoe C95 seeks to find the set of hyperplanes passing

through "corridors" in the data that have maximal average

distance from the patterns. An arbitrary plane passing

through the patterns is selected. Distances from this plane

are computed for all patterns. The average distance of the

pattern from this plane is maximized by a series of

iterative adjustments of the plane. This procedure is tried

for several different initial starting points. The plane

having maximum average starting distance is selected as

the best plane. All patterns are projected onto this plane

and a second plane in D-1 dimensions that maximizes

distance from all patterns is sought. This appears similar

to the technique of Fu [23-.

Gengerelli C24) analyzes the distribution of pairwise
distances between patterns. He defines a cluster as an
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aggregate of points in the test space such that the

distance between any two points in the set is less than the

distance between any point in the set and any point not in

it. First, the distance matrix is constructed. Then, by

applying a predetermined threshold, it is decided if each

pair of patterns is a neighbor (assign 1) or a stranger

(assign 0). This N-S matrix is then analyzed.

1. Add each column and augment by 1. The augmented sum

is the maximum size of a cluster to which that pattern

could belong.

2. Identical columns are eliminated.

3. Choose the column with the largest and next largest sum.

4. Consider the intersection of the corresponding row and

column (symmetry permits row = column), If it is a 1,

the new column is retained. If not, it is rejected and

the next largest sum is taken.

5, Continue, at each step considering the intersection of

all columns that have been kept. When all columns have

been considered, the kept columns form the first cluster.

This is removed and the whole process repeated.

Hartigan [263 proposed an "adding algorithm" . The

idea is to draw a tree of Lsp levels, where each node

represents a cluster. The node at any level is the parent

node of the nodes (descendent) at one level lower and which

are connected to the node from below.



The algorithm is1

1. Initialize the means of the nodes. Set i = 1.

2. Remove Xi from tree, modify node means.

3. Reassign Xi to nearest node at level 1, then to the

nearest at level 2, and so on down the tree till level Lsp,

Update node means.

4. Go back to 2 and repeat until all patterns have been used.

5. If the process stabilizes, stop. Otherwise, set i = 1

again and go back to 2.

This program is very adaptive in the sense that at each

assignment the statistics of all relevant nodes are accordingly

modified and updated. It is very easy to trace the kinship

between clusters by the existence of the tree structure.

Unfortunately, the end result invariably has a prespecified

number of clusters equal to 2 Lsp. Big or small clusters

are indiscriminantly broken up into smaller clusters

whenever more levels are allowed. Dichotomization of

patterns contained in any node at any specified level

(except the lowest) is always carried out. This means that

patterns which should constitute a single cluster may be

split and. end up in nodes which do not have the same parent,

making it impossible to identify the true cluster r343.
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CONCLUSION

Each of the algorithms described in the preceding

chapters are illustrated by one or more examples in the

papers in which they are referenced. In some cases these

examples are small, rigged cases where the algorithm

is easy to follow and its accuracy may be judged. In

other cases, the examples are of "real-life" data

(classification of bees, plants, diseases) which certainly

give a better feel of the practicality of the algorithm, but

there is no "absolute truth" against which to examine the

results. It would be interesting to apply each of the

algorithms to one or more test cases and compare the

results.

In relating and judging the techniques, consideration

must be given to the similarity measure used, to the

criterion for a cluster and. to the computational complexity

and amount of memory required.

The understanding of "convergence" of the methods must

be regarded as minimal, particularly with nonGaussian data,

It appears, from the examples, that if the data is indeed

clustered, then the final clustering will tend to be unique.

If, however, the data is "smeared" and "amoebic" then a

greater variety of clusterings can exist. Finally, if the

data is uniform, then no real stable clusters are formed--

which is as it should be since no clusters in fact exist 03].
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ABSTRACT

The following presents an algorithm for obtaining a solution a to a

set of inequalities Au > 0 where A is an N x m matrix and a is an

m-vector. If the set of inequalities is consistant, then the algorithm is

guaranteed to arrive at a solution in a finite number of steps. Also, if in

the iteration, a negative vector is obtained, then the initial set of

inequalities is inconsistant, and the iteration is terminated.

Several mathematical errors were encountered. These have been corrected,

and distinct correct proofs have replaced the-original proofs whenever possible.

When the damage was irreparable, the material was deleted after appropriate

comments.



AN EVALUATION OF AN ALGORITHM

FOR LINEAR INEQUALITIES AND ITS APPLICATIONS

Let A be a given N X m matrix, with

such that J = IIA- 112 is minimized. The

to a is
BJ T
a= AT (A - ) .a01

N > m. Find 0 > O and a

gradient of J with respect

aJ = O 0 Y = (ATA)# A=O

= A AT# ATO

= A
#

B

is the generalized inverse of A.

From 8 > 0 and the descent procedure

< (i+l) = , (i) + 68 (i)

6Pj(i) is proportional to{ (A (i)
0 if

- M(i))j if (A(i) - (i))j > 0

(A<(i) - B(i))j s 0

that is, 68(i) = p[Ac(i) - (i) + IAY(i) - (i)I] where p > 0 is a

positive constant scalar, to be determined later, we obtain the following

algorithm

a(0) = A
#

(O) , 0(O) > 0 , arbitrary

define y(i) = Ac(i) - (i)

(5)
f (i+l) = (i) + p[y(i) + I y(i)l]

a (i+l) = A#" (i+l)

= A 0(i) + pA [y(i) + Iy(i)l]

= (i) + pA#[y(i) + ly(i)l] .

Thus

where A
#

where

-b



The algorithm (5) can be rewritten as:

y(i+l) = A a(i+l) - 8(i+l)

= A[o(i) + p A (y(i) + ly(i) |)]

- 6(i) - p(y(i) + ly(i)l)

= [A a(i) - (i)] + p(AA# - I)[y(i) + ly(i) ]

= y(i) + p(AA# - I)[y(i) + ly(i) ].

Lemma: Consider the inequalities (6), and the algorithm (5) to solve them.

Then
(1) y(i) ~ 0 for any i (clearly false)

(2) If (v) is consistent, then y(i) % 0. for any i.

Proof: (1) is clearly false; consider the case where

A z , a(0) = (2,2,-,2) =, and (0) = (1,1,-,1)

Then y(0) = A c(0) - S(0)

= (2,2,---,2) T - (1,1,---, 1) T

= (1,1,---,1)

The "proof" is based on the erroneous "fact" that (AA - I) < 0. The example

on page 9 together with the vectors (1,0,-l) and (-2,0,-l) show that (AA - I)

need be neither positive semi-definite nor negative semi-definite.

In case y(i) = A a(i) - B(i) 2 0, for the value 2 for p, as suggested

on page 8, we arrive at a solution in the next iteration:

(i+l) = 6(i) + 2 (A (i) - B(i) + IA (i) - (i) I)
= A a(i)

a(i+l) = A#A a(i)

A (i+l) - $(i+l) = AA A s(i) - A a (i) = 0.
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Lemma (cont)

Proof: (2) Assume .' i E : y(i) < 0. Since (() is consistent,

3a, 8 > O : A = 8 > 0.

(7) Then yT(i) ' < 0.

But A Ty(i) = A T[A(a(i)) - B(i)]

= A [AAt (i) - 8(i)]

= AT(AA# - I) B(i)
= (ATAA# - AT)m(i)

= (AT - AT ) (i)

= 0.

Also, AT(y(i)) = 0 (* ) TATy(i) = 0

>) (a*)TATy(i)]T 0

:> y(i)T*- = o

=) y(i)T* = O.

But this contradicts (7).

Therefore, if (6) is consistent, then y(i) $ 0 for any i.

Proposition Consider the set of inequalities

(S) A a > 0 and the algorithm (5) to solve them. Let V(y(i)) = Iy(i)1 2.

O ~ If (6) is consistent then

lim V(y(i)) = 0, implying convergence to a solution.
i400

Note: this proof corrects the error that AV(y(i)) = -ljy(i) + |y(i)[ ||{p2AA#+(prp2)I}

Proof: AV(y(i)) = V(y(i+l)) - V(y(i))

= Ily(i+l) 112 _ Ily(i) 112

= |ly(i) + p(AA - I)[y(i) + ly(i)I] 112 - Ily(i) 112

= [y(i) + p(AA - I)[y(i) + ly(i)|]]T[y(i) + p(AA# - I)[y(i)+Iy(i)l]]

- [y(i) ]T[y(i) ]

: {o(AA # -
I){y(i) + |y(i) T]} y(i)t{Cp(AA-I



[y(i)]T{p(AA# - I)[y(i) + ly(i)I]}

+ {p(AA#- I)[y(i) + ly(i) I]}T{p(AA#- I)[y(i) + ly(i)I]}

= p[y(i) + ly(i)I]T(AA#- I)Ty(i)

+ py(iT (AA# - I)[y(i) + ly(i)l]

+ p 2(i) + ly(i)|]T(AA#- I).T(AA#- I)[y(i) + ly(i)l]

= p[y(i) + Iy(i)I]T(AA#- I)y(i)

+ py(i)T (AA- I)[y(i) + Iy(i)l]

+ p2 [y(i) + ly(i)I]T(AA#- I)[y(i) + ly(i)l],

since (AA - I) is symmetric and idempotent.

Note: AA y(i) = AA (AA - I)U(i)

= AA#AA# (i) - AA# (i)

= AA #(i) - AA#B(i)

=0

and y(i) TAA# =(AAy(i))T = T = 0.

p[y(i) + y(i) I]T (AA#- I)y(i)

= py(i)T(AA# - I)y(i)

+ ply(i) T(AA#- I)y(i)

= py(i)TAA#y(i) - py(i)TI y(i)

+ ply(i)I AA#y(i) - ply(i)lTI y(i)

= -P |ly(i) y|2 -ply(i) Ty(i)

Also p y(i) (AA# - I)[y(i) + Iy(i)l]

= p y(i) TAA#[y(i) + - p T[(i) + y(i)l]

= -P Y(i)T[Y(i) + Iy(i) I]

= -p Ily(i) 12 - p y(i)Tly(i) I



Also, II y(i) + ly(i)I 112 = [y(i) + ly(i)I]T[y(i) + ly(i)l]

= y(i)Ty(i) + Iy(i) |Ty(i) + ly(
i) ITly(i) + y(i)Tly(i) 

=11 y(i) 112 + Iy(i) lTy(i) + || y(i) 112 + y(i)TIy(i)l

Hence, AV(y(i)) = -p ly(i)ll 2 + |y(i)ITy( )_P Ily(i) 12 + y(i)TIy(i)

+ 2 y(i + iy(i)IT(AA# I)[y(i) + Iy(i)(AA# - I)[y(i) + y(i)]

= -p Ily(i) + ly(i) 112 + p2[y(i)+Iy(i)I]T(AA#-I) [y(i)+ly(i) ]

= -P Ily(i) + Iy(i) + ly(i) I 112

+p [y(i) + ly(i) ]TAA#[y(i) + ly(i) ] -p2 Ily(i) + ly(i)l 112

Also, [y(i) + ly(i)[]TAA#[y(i) + Iy(i)I]

= y(i) TAA#[y(i) + Iy(i)I]

+ Iy(i)I TAA#y(i) + Iy(i)ITAA#Iy(i)I

= ly(il)ITAA#1y(i) I

= 0, since AA#y(i) = 0.

Therefore, AV(y(i)) = -(p + p2) Ily(i) + ly(i) | 112

Thus, for p > 0, AV(y(i)) < 0, for all i

AV(y(i)) = 0 iff y(i) = 0 or y(i) < 0.

By the lemma, y(i) % 0.

Therefore, AV(y(i)) < 0

= 0

vy(i) # O

if y(i) = 0.

By Lyapunov's stability theorem for discrete systems, y(i+l) = y(i) + p(AA -I)

(y(i) + ly(i)j) is globally asymptatically stable.

Therefore, lim Ily(i) = 0.
i-co



Proposition 8 ): If A a > 0 is consistent, then

AV(y(i)) = V(y(i+l)) - V(y(i)) < - AoV(y(i)) with Ao > 0

showing exponential convergence.

The "proof" given was based on the erroneous fact that

LV(y(i)) "=" -I1y(i) + |y(i) Jj 2 {p2 AA + (p-p2)W.}

Hence the non-zero eigenvalues of the matrix

C(i) {2AA# + (p-p2 )I} C(i)

where C(i) is the diagonal matrix defined by

Cjj(i) = 2 if yj(i) > 0

0 if yj(i) < 0

are irrelavant to this discussion.

The "proof" cannot be corrected by using the correct value of AV(y(i)))

_(p+p2) Iy(i) + Iy(i)llI-AV(y(i)) = (p+p2)V(C(i)y(i))

< (p+p2)V(2y(i))

< 4(p+p )V(y(i))

and hence AV(y(i)) > -4(p+p2)V(y(i)).

Fortunately, & 0 is not only a stronger statement than ( Q, it is also

proven independently and correctly.

Proposition - Consider the set of inequalities (B) A a > 0 and the algorithm

(5) to solve them. If (d) is consistent, then a solution

is obtained in a finite number of steps.

Proof: Recalling that B(i+l) = B(i) + p[y(i) + Jy(i)I], p > 0 we observe

that B is a non-decreasing vector. That is, each coordinate of 8

is non-decreasing.
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Thus, choosing (0)T = (1,1,-,1), every coordinate of 6(i) > 1 for

all i.

Since V(y(i))-- 0,] N: i > N * V(y(i)) < 1.

But V(y(i)) < 1- each coordinate of Jy(i)l < 1.

Therefore, A a(i) = B(i) + y(i) > O. V i > N.

Therefore, a solution to A a 2 0 is obtained in a finite number of steps.

Proposition 2: If (4) is inconsistent, then there exists a positive integer

i* such that

AV(y(i)) < - XoV(y(i)) if i < i*

AV(y(i)) - 0 if i > i*

y(i) $ 0 if i < i*

y(i) = y(i*) < 0 if i 2 i*

a (i) = a(i*) if i > i*

6(i) = B(i*) if i > i*

Unfortunately, his entire proof is based on the misconception that (after showing

that AV(y(i)) < 0), "since y(i) and hence V(y(i)) cannot become zero for

any i [since (6) is assumed to be inconsistent], there must exist a value

of i, say i*, such that AV(y(i)) < 0 for i < i*

AV(y(i)) = 0 for i = i*"

However, it does follow from part ( of the lemma, that the verbal explanation

of proposition 2 is correct: "In other words, the occurance of a nonpositive

vector y(i) at any stage terminates the algorithm and indicates the inconsistency

of (6)." This is possible because the verbal explanation is not equivalent

to the statement of the proposition.
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Further implications of the existance of i such that

y(i*) < 0 follow:

Then y(i*) + Iy(i*){ = 0.

y(i* + 1) =

Similiarly B(i* + 1)

a (i* + 1)

Hence y(i) = y(i*)

g(i) = 8(i*)

a (i) = (i*)

also AV(y(i)) = 0

y(i*) + p(AA# - I)(y(i*) + Iy(i*)I) = y(i*).

= 8(i*) + p[y(i*) + Iy(i*)l] = 8(i*) and

= O(i*) + pA # [y(i*) + Iy(i*) I] = (i*)

for

for

for

for

i > i*

i 2. i*

i > i*

i > i*

This proceedure is compared with other

this algorithm is "rewritten as":

c (i + 1) = at(i) + p(A TA) - {|IA(i) -

= o(i) + p(ATA)-l{Iy(i)I -

(i + 1) = B(i) + P{IAa(i) - 8(i) I

= -(i) + p{y(i) I + y(i)}

algorithms, but unfortunately,

(i) I - (Ax(i) (i))}

y(i)}

+ (A a(i) - 8(i))}

This is a change from

o (i + 1) = c(i) + p A#{Iy(i)I + y(i)}.

Clearly these two expressions are not in general equivalent, even if the

sign for y(i) in the new expression is made consistent with all of the other

expressions of this type.

When implementing this algorithm, one standard initialization is to let

B(O) be the vector composed of all +1l's and to let p = 1/2. The latter
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compensates for the multiple of two arising from [y(i) + fy(i)I].
The algorithm was applied to the matrix used to illustrate the

numerical computation of a generalized inverse in the MSC Internal Techinal

Note MSC - IN - 64 - ED6, The Concept of Generalized Inversion of Arbitrary

Complex Matrices by Henry P. Decell, Jr. For ease of calcualtion, only two

place accuracy was used.

4 -1 -3 2

A = -2 5 -1 -3

2 3 -9 -5

0 .6 D-14 .27 D-13

(AA# - I) = .58 D-14 0 69 D-14

-.13 D-13 .92 D-14 0

x3

i .19 .60 D-1 -.36 D-1

.2 .3 -. 1
A =

-.56 D-2 .53 D-1 -.90 D-1

.21 .11 -.11
\/+x3

L
Let (0) = (1, 1, l). Let p = 1/2.



oa(0) = A"[(0) -

/.19

. 2

-.056 D-l

.21

+.06

. 3

.53

.11

D-1

-.036

1

-.90

-.11

21

4

D-1 .43

.21
xl

/ 4

Aa (0) = -2

2

.84

-. 42

.42

.99

.99

.94

-1 -3 2 \ / .21

5 -1 3 . 4

3 -9 -5 / -. 043

3xL .21 /fX 

- .4

+2.0

+1.2

+.129

+.043

+.387

+ .42

- .63

-1.05 3x1

3x1

The algorithm arrives at a solution on the zeroth iteration!

D-1

x xl

A a(0) 2 0



This algorithm has the distinct advantage of being finite, but has no

bound on the number of iterations. There is a flag signaling the inconsistancy

of the set of equations, but unfortunately there is no guarantee that the flag

will occur if the equations are inconsistent.

There are only two matrices that have to be calculated, namely A# and

(AA#-I), and these only have to be calculated once. This has the strong

advantage of minimizing both computation time and storage requirements. This

method has one other disadvantage - the primary iteration does not yield the

desired vector, so two iterations must be continued concurrently (unless it

is preferable to store several to many vectors and perform the second iteration

after is it known that the desired vector exists). This disadvantage is mimimized

by the similiarity in the algorithms: y(i+l) = y(i) + p(AA# - I)[y(i) + ly(i)l]

and cY(i+l) = a(i) + p A#[y(i) + ly(i) I]. That is, only the vector [y(i) + ly(i) ]

need be computed, and then used in both of the algorithms.
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Introduction - One of the important problems in pattern recognition is that of

feature extraction or selection. Tou and Heydorn (1967) proposed a procedure

for two pattern classes to find a dimension reducing transformation matrix B

that maximizes the divergence in the reduced dimension. C.C. Babu (1972)

extended the above procedure to the multi-class problem by maximizing the average

divergence in the reduced dimension. Both of the above papers present necessary

conditions for the divergence in the reduced dimensional space to be an extremum.

Neither of the papers present an explicit solution for obtaining B, and both

suggest that B be obtained numerically. Baba's expression for the gradient

of the average divergence with respect to B is rather lengthy and numerically

unattractive, since it is expressed in terms of many eigenvalues and vectors,

which of course must be obtained. Tou's expression, in addition to being

numerically unattractive, is valid only in the case of two distinct classes.

In this paper, a comparitively simple expression for the gradient of the

average divergence with respect to B is developed. The developed expression

for the gradient contains no eigenvectors or eigenvalues; also, all matrix

inversions necessary to evaluate the gradient are available from computing the

average divergence.



SECTION 1 - THREE FUNDAMENTAL LEMMAS.

Let

B ; k by

A ; n by

S ; n by

n matrix of rank k s n

n symmetric matrix of rank n

n symmetric matrix

and define

1 tr{(B A BT) -(BSB) )}

We prove the following Lemma

Lemma 1

)T = [sBT AB (B A BT) - (B S B )](B A BT)-

Proof: Taking the differential of 4, it is easily verified

d* = F + G, where

F = 1 tr{(B A BT) -(dB S BT + B S dBT )}
2

1 tr{(dB S BT )(B A B ) }

1 T TI
= tr{(dB S B )(B A B ) I

= tr{(dB S BT )(B A B ) I

+ 1 tr{B A BT)-1(B S dBT )}
2

+1 tr{[(dB S BT)(B A BT)-1 IT
2

and
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G = 2 tr{(B A BT l(dB A BT + B A dBT ) (B A BT) - (B S B )}

= 2~ tr{(dB A B T) (B A B -(B S BT ) (B A BT)- 1 }

1 tr{(B A B ) (B S B T ) (B A BT) (B A dBT)}

= -tr{(dB A B T )(B A B - (B S B T)(B A BT ) }

thus

d= F + G

tr{dB[SBT - ABT(B A B T)-(B S B )](B A B ) -

Now, define

H = [SBT - ABT(BAB)(BSB )](BBT )(BAB 
1

so that

d# = tr{dBH}

and

lip= tr{ab H} = hji

.ith
where hji is the element in the ji row and

a .ii. ith
2b 1is the element in the ith row and j
3bij

that

3aB

i column of H. Since

column of 3~/3B, it follows

Q.E.D.



Lemma 2 B

Proof: Immediate from Lemma 1.

Remark 1 - Note that when k

shows that ~ is in variant

Remark 2 - If n 2 3 and k

linearly dependent, since by

= n, so that B is non-singular, Lemma 2

under a non-singular transformation, ie

B= n-, then the column vectors of 

=Lemma tn-wo, the column vectors of (/B)at most

Lemma two, the rank of (3W/3B)
T

is at most

Lemma 3 : Let Q be a non-singular k by k matrix. Let B = QB. Then

) 0 implies = 0

Proof: By Lemma 1

= [SBT - ABT(B A B T) (B S BT)](B A B )
\aB

= [BTQT - ABTQ T(QT)- (B A BT)-Q-Q(BSBT)Q ](QT )- (B A.B T)Q- 1

( aBTQ-l
= (0)

Q.E.D.

are

1.
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SECTION 2

B-AVERAGE INTERCLASS DIVERGENCE - A NECESSARY CONDITION FOR AN EXTREMUM.

Assume the existence of m distinct classes with means and covariances

n-dimensional mean vector for class i.

Ai n by n covariance for class i, assumed to

De positive definite.

ij = pi - ij so that 6ij 6ij = 6T T

The interclass divergence between classes i and j is defined in Reference 1 as

D(i,j) = tr{A (A
j

+ 6ij 6i T)} + 2 tr{A (A
i
+ 6 ijT)} - n

Note that when Ai = A and pi = . Pj

D(i,j) = 0

so that D(i,j) is in a sense, a measure of the degree of difficulty of

distinguishing between classes i and j, with the larger the value of

D(i,j), the less the degree of difficulty of distinguishing between classes

i and j.

There is a discussion in Reference' 2 of a natural generalization of the

interclass divergence i.e., the average interclass divergence, defined by



.m-l m

D= D(i,j)
i=l j=i+l'

1 tr{i' 1-lf T m(m-1)
2 i=l i j=l[ j + 6ij ij )} 2 n

joi

m

1 tr{iAl .i - m(m-1)
2 i= i 2

where
m

S =6[A
si = [j ij [.jT]

j#i

We are interested in performing the transformation

y = Bx

where

x ; an n-dimensional observation vector

B ; a k by n matrix of rank k, with k < n

y ; the k-dimensional transformed observation vector

It is shown in Reference 3 that corresponding to the transformation y = Bx,

the means transforms,

Pi '- > Bpi

and the covariances transforms,

A.i BA.BT1 1



Thus subsequent to performing the transformation y = Bx, we can assume the

existence of m classes with means and covariances-

BPi ; k-dimensional mean vector for class i
1

BA.B ; k by k covariance for class i, which is positive
1

definite by the assumptions on B and A..
1

Thus in k-dimensional space, the B-induced interclass divergence DB(i,J),

is, by definition of the interclass divergence;

1 T TT
DB(i,j) = 2 tr{(BAiBT) -1B(Aj + ij ij)B}

B 2 i, i ij ij

1 l )BT
}

k
+ - tr{(BAjB ) B(A + 6ij ij)B k

Similarly, in k-dimensional space, we can define the B-average interclass

divergence, DB, as

m-l m

D- (.j)
DB - i j=i+lD B(

m

tr{i=
1

[(BAi BT) (BS B )]} m(m k

where, as defined previously

m

S[A + 6. 6"%]
i j=[j + j ij

joi

Note that in performing the transformation y = Bx, the dimension of each



observation is reduced from n to k, so that in a sense, information is lost.

It is shown in Reference 2 that a measure of the information lost is given

by the difference

D - DB 2 0

We are interested in minimizing the information lost, as measured by the

average interclass divergence. Thus, it is desired to maximize the B-average

interclass divergence, or equivalently, minimize - DB. We prove the following

theorem;

THEOREM 1 - Let a k by n matrix B of rank k extremize DB. Then it

is necessary that B satisfy an equation of the form

l / T m

(dB i [SiBT-AiBT(BAi T)- (BS BT)](BAiB ) = 0
i=1 i i i i i

A

Also, if B = QB, where Q is a non-singular k by k matrix,

(D^ T BDB Q-

iadB /

So that B is unique up that B is ique up to a non-singular k by k linear transformation.

Proof: Immediate from the definitions of B and DB, and Lemmas 1 and 3.

Q.E.D.
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Remark 1 - The expression 3DB
dB

is the gradient of the B-average interclass

divergence with respect to B. Note that the expressions for DB and D B/9B

are rather easily evaluated.

THEOREM 2 - Let B be a k by n matrix of rank k such that

satisfying

(BTB)S.i = Si(B B)
1 1

and (B TB)A. = A(BTB)
1 1

i = 1,2,...,m

then aDB T
Proof: By the above commutivity and since BBT = I, it is readily verified

Proof: By the above commutivity and since BB = I, it is readily verified

(BS iB) -1 = BS 1BT
i 1

Note that

m

i=l

m

i=l

and (BAiB )-1 = BA BT
1 1

/DBT can be written as

d dB

[SiBT(BSiB ) -AiBT (BAiB) -1] (BSiBT) (BAiBT )-1

[BTBB - BTBBT ](BsBT)(BAiB )
i i

Q.E.D.

TBB = I, and

( )T

\dBJ
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Remark 1 - In general, such a B satisfying the hypotheses of Theorem 2 will

not exist. However, it will be shown in Remark 3 that the hypotheses of theorem

2 is satisfied when m = 2 and the classes have equal means. Although this

case has no practical value, it is of interest since here a class of matrices

which extremize DB are readily available analytically.

Note that under the hypotheses of Theorem 2, it is true that

(BAiB) 1= BA. -1BT

This is just a special case of the more general result:

(BAiBT) BA = + B + BAi (I - BTB)Y

for some Y and any B of rank k satisfying BB = I.

Remark 2: Note that if B satisfies BB = I and if (B B), Si, and

Ai (i = 1,2,...,m) are all diagonal matrices, then

iD T

An example of a B satisfying B B is a diagonal matrix is given by any

T
selection of k out of n channels. Mathematically, B must satisfy BB I,

with elements bij satisfying

b2 = b
ij ij

Remark 3: Consider the particular case where m = 2 and S12 = 0. Then there
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exists an n by n nonsingular matrix P such that

T T
PAlP = I and PA2P W

where I is the n by n identity matrix and
n

Then any matrix B such that BBT = I and with

W2 is a diagonal matrix.

2
elements b = b.. satisfies

ij 1J

D (BP)) = 0

SECTION 3 - A COMPARISON OF EXPRESSIONS

The following Theorem is proved in Reference 4, with the notation of

Reference 4 being changed to agree with the notation of this note.

THEOREM - If two pattern classes 71 and r2 are normally

to N(41,A1) and N(p2,A2) respectively, then a necessary

B-induced interclass divergence DB(i,j) to be an extremum

B satisfy the following equation:

distributed according

condition for the

is that the matrix

k

il(1 - i2 )(A1B - BiA2B )bii
T

TT _212TB T -k -T
+( '61 2'1 2 B )bk+lbk+1

T1 T T-- -Tk+2
+ (612 612 B k+2AB )k+2bk+2

where Bi and b. are the eigenvalues and eigenvectors of (BA2BT) -(BA
1
BT) ;

1 1 2 1
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Bk+l' bk+l and Bk+2' bk+2 are the eigenvalues and eigenvectors of

T 1 - TBT ) and( (BABT)-l(B6 6 TB T)
(BA 1 B ) (B 2 B and 12 12

respectively.

While the above expression is not too complicated, one is still faced with

the bothersome task of obtaining the eigenvalues and eigenvectors (compare with

theorem 1).

Finally, we present Babu's condition for the B-average interclass divergence

to be an extremum (Reference 5). Again, the notation of Reference 5 has been

changed to agree with the notation of this report.
m m

THEOREM - Let a k by n matrix B of rank k extremize DB = _ilDB(ij)
i=l j=l

Then it is necessary that B satisfy an equation of the form

k m m

r = - (A - (iiAi) lB]e.e.Tj=l i=li i=l i

m k
T T T

+i=l[j'(A.B - AijA.B )e.ieij = 0,
1i=1 j= i i3 1 3j

where Aj and ej are the eigenvalues and their corresponding eigenvectors of:

m m

[ii (BAiB)] [B_ iBAi BT]

and .ij and eij are the eigenvalues and their corresponding eigenvectors of:

(BAiBT) - l TBT
B j=l B6ijij
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and 

A.i j=l6ijij

Again, a comparison of the above Theorem with Theorem 1 suggests the

desirability of using Theorem 1 to compute the gradient. Note that Si and

Ai (i=l,2,,..,m) appearing in Theorem 1 are constant and need to be com-

puted only once.

In addition, Babu's expression for r appears to be incorrect. In deriving

the expression for r, Babu essentially assumes

(1)

m m

_- . "( 2--1.
[ Z1(BA BT)l) = B( l=? ) B

(Equations (7) and (12) of

the above identity is not true

example; let

/1
A =iI1 ko

Reference 5) to be true for arbitrary B. That

in general is evidenced by the following counter

1 II;I
'2

A2 = t
D\0

O 

1 i

:1
-l~2

2 2O

1\0 I

1 i

T
B =a = (1 1)

The left side of equation 1 is

6
51 1

2 3
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The right side of equation 1 is

2 1 7
3 2 6

SUMMARY

It has been shown that for m distinct classes with means pi and

covariances Ai, upon performing the transformation y = Bx where B is a

k by n matrix of rank k, the average divergence in the space of reduced

dimension may be written as
m

1 ) B T1 (BS BT (m)(m-l) k
DB = tr{ (B AiBT)- (BsiB)- DB 2 i=l i i 2

where

i j=1 [j (+ i v j)(.i - j)T]
jil

Also, if B denotes the matrix whose i-j th element is B , where b..
aB dbij

ij
is the i-j th element of B, then

m

)DB = [SiBTAiBT(BAiB ) (BSiBT) ] (BAiBT)-

and 1D =0
B 0
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